WO2022172769A1 - 映像装置を備える電気炉を用いた溶鉄の製造方法 - Google Patents
映像装置を備える電気炉を用いた溶鉄の製造方法 Download PDFInfo
- Publication number
- WO2022172769A1 WO2022172769A1 PCT/JP2022/003173 JP2022003173W WO2022172769A1 WO 2022172769 A1 WO2022172769 A1 WO 2022172769A1 JP 2022003173 W JP2022003173 W JP 2022003173W WO 2022172769 A1 WO2022172769 A1 WO 2022172769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron source
- cold iron
- chamber
- preheating chamber
- melting
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 734
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 367
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 238000002844 melting Methods 0.000 claims abstract description 147
- 230000008018 melting Effects 0.000 claims abstract description 147
- 238000010079 rubber tapping Methods 0.000 claims abstract description 37
- 230000008093 supporting effect Effects 0.000 claims abstract description 13
- 230000000007 visual effect Effects 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims description 27
- 229910000831 Steel Inorganic materials 0.000 claims description 18
- 239000010959 steel Substances 0.000 claims description 18
- 238000003384 imaging method Methods 0.000 claims description 14
- 238000002360 preparation method Methods 0.000 claims description 12
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 85
- 239000002893 slag Substances 0.000 description 38
- 239000007789 gas Substances 0.000 description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 229910052760 oxygen Inorganic materials 0.000 description 17
- 239000001301 oxygen Substances 0.000 description 17
- 238000007664 blowing Methods 0.000 description 16
- 239000003575 carbonaceous material Substances 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 230000000630 rising effect Effects 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 238000010309 melting process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 239000003570 air Substances 0.000 description 7
- 238000005187 foaming Methods 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000112 cooling gas Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/20—Arrangements of devices for charging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/28—Arrangements of monitoring devices, of indicators, of alarm devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing molten iron from a cold iron source using an electric furnace equipped with a video device.
- the present invention separates the cold iron source in the preheating chamber from the melting chamber and observes the state of the lower part of the preheating chamber, thereby reliably supplying the cold iron source to the melting chamber and efficiently obtaining molten iron. It relates to a method for producing molten iron.
- molten iron is obtained by melting cold iron sources such as ferrous scrap with arc heat, so there is the problem of consuming a large amount of electric power to generate arc heat.
- a method of preheating a cold iron source before melting using high-temperature exhaust gas generated during melting of the cold iron source in a subsequent step (2) A method of blowing a carbonaceous material such as coke into the melting chamber as an auxiliary heat source;
- a preheating chamber for preheating the cold iron source is connected to the upper part of the melting chamber, and the hot exhaust gas generated in the melting chamber in the previous process is filled into the cold iron source. It is known to preheat a cold iron source by passing it through a heated preheating chamber. By melting the preheated cold iron source in this way, it is expected that the melting efficiency will be improved and power consumption will be reduced.
- CO gas is generated by the reduction of iron oxide by the carbon material injection and the combustion of the carbon material, and the molten slag is foamed by this CO gas, so-called "slag foaming". is known to promote This slag forming is expected to reduce the radiant heat of the arc, improve the melting efficiency of the cold iron source, and reduce power consumption.
- Electric furnaces using the above methods (1) and (2) include, for example, a compound arc melting furnace disclosed in Patent Document 1 and an arc melting facility disclosed in Patent Document 2.
- a compound arc melting furnace is characterized by comprising a melting chamber and a shaft-shaped preheating chamber capable of inducing high-temperature exhaust gas generated in the melting chamber.
- the apparent bulk density of the ferrous scrap in the preheating chamber is adjusted within an appropriate range.
- Patent Document 1 discloses an openable and closable supply port provided in the upper part of the preheating chamber, and iron-based scrap supplied through the supply port and preheated in the preheating chamber is melted in the melting chamber. Depending on the speed, they are moving continuously or intermittently one after the other into the melting chamber.
- Patent Document 2 discloses, as a conventional technology, a technique of continuously supplying scrap to an arc furnace by a pusher (extruder); supply technology, respectively, the technology of Patent Document 2 does not include scrap transport and supply equipment such as pushers and fingers, so that the temperature of the exhaust gas is raised to preheat the scrap. Also in Patent Document 2, the scrap of the preheating shaft is supplied to the melting furnace by melting the scrap in the melting furnace.
- JP 2012-180560 A JP-A-10-292990
- the molten iron in the production of molten iron, at the stage when the cold iron source is melted and a predetermined amount of molten iron is accumulated in the melting chamber based on design, the molten iron can be further heated to a preset temperature before tapping. Normal.
- This temperature increase is a process for ensuring the temperature of the molten iron required in the next process such as composition adjustment and casting after the obtained molten iron is transported to the outside of the electric furnace. It is set in consideration of the temperature drop during transport of molten iron to the process.
- neither of the techniques of Patent Documents 1 and 2 has considered at all about completely separating the iron-based scrap in the next charge of the preheating chamber from the melting chamber.
- the present inventors have found that in order to increase the heating efficiency and reduce power consumption in molten iron production, more preferably, to strictly control the components of the molten iron to be produced, when the molten iron is heated It was found that it is necessary to accurately separate the cold iron source in the preheating chamber from the molten iron in the melting chamber.
- the present inventors first provided a cold iron source support machine capable of holding the cold iron source in one section of the preheating chamber, and during the temperature rise of the molten iron, the cold iron source in the preheating chamber was separated from the melting chamber.
- a cold iron source support machine capable of holding the cold iron source in one section of the preheating chamber, and during the temperature rise of the molten iron, the cold iron source in the preheating chamber was separated from the melting chamber.
- the cold iron source in order to reliably increase the efficiency of heating the molten iron, the cold iron source must be separated from the melting chamber by the cold iron source support machine while the molten iron is being heated, and then the cold iron source must be placed below the cold iron source support machine. It has been found that it is additionally necessary to ensure that no sources remain.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method of manufacturing molten iron using an electric furnace, which can increase the efficiency of temperature rise of molten iron and reduce the manufacturing cost. Another object of the present invention is preferably to control well the components of the resulting molten iron.
- the preheating chamber is divided into two, one on the introduction side of the cold iron source (usually vertically upward) and the other on the melting chamber side (usually vertically downward).
- a cold iron source support machine that can be divided into two parts in the preheating chamber, the cold iron source in the preheating chamber can be separated from the melting chamber during heating;
- An extruder is provided in the preheating chamber.
- the molten iron that is being heated can be properly supplied to the melting chamber. It is possible to confirm the presence or absence of a cold iron source that can be mixed in without the presence of a cold iron source. can be accurately separated from the melting chamber during heating; They also found that by raising the temperature of the molten iron while preventing unintentional mixing of the cold iron source in this way, the temperature raising efficiency can be enhanced and the electric power consumption rate in manufacturing can be effectively reduced.
- a method for producing molten iron using an electric furnace comprising a preheating chamber for preheating a cold iron source and a melting chamber for melting the preheated cold iron source into molten iron,
- the electric furnace comprises a cold iron source support machine that can be opened and closed by partitioning the preheating chamber into a first preheating chamber on the introduction side of the cold iron source and a second preheating chamber on the melting chamber side, and the second preheating chamber.
- the cold iron source supporting machine opened, the cold iron source supplied to the preheating chamber and preheated is supplied to the melting chamber by the extruder, and the cold iron source supplied to the melting chamber is arced.
- a melting step of melting by heat to obtain molten iron Close the cold iron source supporting machine (that is, in a state in which the first preheating chamber is isolated from the melting chamber), and introduce a new cold iron source (cold iron source for next charge) into the first preheating chamber.
- a method for producing molten iron wherein in the temperature raising step, temperature raising of the molten iron is started based on visual information in the second preheating chamber after the cold iron source supporter is closed, which is obtained from the image device.
- the extruder supplies the remaining cold iron source to the melting chamber, and after confirming that the cold iron source does not remain in the second preheating chamber, starts raising the temperature of the molten iron. 4.
- the present invention it is possible to improve the efficiency of temperature rise of molten iron and manufacture molten iron with high energy utilization efficiency, making it possible to reduce manufacturing costs. Moreover, according to the present invention, it is possible to preferably further accurately control the composition of molten iron to be obtained.
- FIG. 1 is a longitudinal sectional view of an electric furnace equipped with a video device used in one embodiment of the present invention
- FIG. FIG. 4 is a conceptual diagram illustrating a preparation process according to one embodiment of the invention
- FIG. 2 is a conceptual diagram illustrating a dissolution process according to one embodiment of the invention
- FIG. 4 is a conceptual diagram illustrating a temperature raising process according to one embodiment of the present invention
- It is a conceptual diagram explaining the tapping process according to one embodiment of the present invention.
- the method for producing molten iron of the present invention is a method using an electric furnace having a predetermined structure, in which a cold iron source preheated in a preheating chamber is supplied to the melting chamber by an extruder and melted by arc heat in the melting chamber. a melting process to obtain molten iron, a heating process to raise the temperature of the molten iron with the cold iron source support machine closed, a preheating process to preheat the cold iron source with residual heat from the heating process, and the heated molten iron and a steel tapping process leading to the outside of the electric furnace, and continuous operation is possible.
- the method for producing molten iron of the present invention optionally includes a preparation step of opening the cold iron source support machine after tapping and supplying preheated cold iron source from the first preheating chamber to the second preheating chamber. It may further comprise and optionally further comprise other steps. Then, in the heating step of the present invention, heating of molten iron is started based on visual information obtained from a video device for observing the inside of the second preheating chamber. By appropriately and timely controlling the molten iron heating environment based on the visual information in the second preheating chamber, it is possible to prevent unintended cold iron sources from being mixed in while the molten iron is heating, and improve the molten iron heating efficiency. can be effectively enhanced.
- the electric furnace 1 includes a melting chamber 2 which melts a cold iron source 15 by heat from an arc 18 to obtain molten iron 16, and a melting chamber 2 which preheats the cold iron source 15 and melts the preheated cold iron source 15 with an extruder 10. 2, a shaft-shaped preheating chamber 3 communicated with the melting chamber 2, and an imaging device 30 installed at an arbitrary position.
- a cold iron source supporter 11 that can be opened and closed is provided at an arbitrary position in the vertical direction of the preheating chamber 3 .
- the cold iron source supporting machine 11 can be opened and closed, for example, in the cross-sectional direction or horizontal direction of the electric furnace 1 .
- the preheating chamber 3 can have one space. It is possible to have two spaces, a first preheating chamber 3a partitioned on the upper side) and a second preheating chamber 3b partitioned on the melting chamber side (vertically lower side).
- the extruder 10 is normally provided in this second preheating chamber 3b, and one end thereof can move back and forth to any position between the second preheating chamber 3b and the melting chamber 2 adjacent thereto. With the video device 30, the state inside the second preheating chamber 3b can be checked at any time, and if necessary, at all times.
- the cold iron source 15 which is the raw material, is temporarily placed, for example, in a scrap storage place according to type, and is blended with an appropriate type and mass ratio according to the steel grade of molten iron to be manufactured.
- the mixed cold iron source 15 is loaded into a bottom-opening supply bucket 14 and transported to a desired position above the cold iron source supply port 19 via a traveling carriage 23 .
- the cold iron source supply port 19 is opened to supply the cold iron source 15 to the preheating chamber 3 from above.
- the cold iron source supporter (fingers) 11 that can be opened and closed provided substantially in the middle of the preheating chamber 3 is in an open state, the supplied cold iron source 15 is placed on the top of the cold iron source supporter 11. and the second preheating chamber 3b, which may occupy the lower portion of the cold iron source supporter 11.
- the cold iron source 15 can be supplied by charging the cold iron source 15 for one charge into the supply bucket 14 in a plurality of times.
- the cold iron source 15 examples include, but are not limited to, in-house scraps generated in ironworks, scrap generated in the city, and pig iron obtained by solidifying hot metal.
- Cold iron source 15 may be contaminated with organic material (eg, plastic, rubber, biomass).
- the slag forming material for generating the molten slag 17 includes, but is not limited to, quicklime and limestone. Light burnt dolomite or recycled slag generated in steelmaking or the like may be used as the slag forming material.
- the slag forming material can be supplied from an auxiliary raw material chute (not shown) provided above the melting chamber 2 .
- the charged cold iron source 15 is preheated by any method.
- the cold iron source 15 is preheated by passing the high-heat exhaust gas generated in the melting chamber 2 to the first preheating chamber 3a and the second preheating chamber 3b, the manufacturing efficiency can be increased, which is preferable.
- an exhaust duct 20 may be provided in the upper portion of the preheating chamber 3 and connected to a suction blower (not shown).
- Suction by the suction blower allows high-temperature exhaust gas generated in the melting chamber 2 to flow into and pass through the preheating chamber 3 , rise in the preheating chamber 3 , and then be exhausted from the duct 20 .
- a dust collector (not shown) may be provided in the middle of the duct 20 .
- High-temperature exhaust gas that can be suitably used for preheating is generated by melting and temperature increase by an arc heating unit as a main heat source, a carbon material as an auxiliary heat source, and a burner 9, etc., which will be described later, and includes CO, CO 2 and unreacted. It may include O 2 , and outside air, etc., entering from openings and the like.
- an extruder 10 (pusher ) is provided in the second preheating chamber 3b.
- the extruder 10 can be provided so as to penetrate the side wall of the melting chamber 2 and move forward and backward along the direction toward the arc heating portion (substantially the center of the melting chamber in this embodiment) generated by the arc 18. can be extruded from the second preheating chamber 3 b to the arc heating portion of the melting chamber 2 .
- Extruder 10 may be driven by a drive (not shown).
- the boundary between the melting chamber 2 and the preheating chamber 3 (second preheating chamber 3b) is vertically downward from the portion of the side wall of the preheating chamber 3 that is connected to the furnace lid 5 that constitutes the melting chamber 2.
- the melting chamber 2 is partitioned by a furnace wall 4 and a furnace lid 5.
- the furnace wall 4 preferably has a water-cooled structure
- the furnace lid 5 preferably has an openable/closable water-cooled structure.
- a cold iron source 15 is melted by inserting a plurality of electrodes 6 from above through a furnace lid 5 into approximately the center of the melting chamber 2 in the horizontal direction, and generating an arc 18 between these electrodes 6.
- An arc heating section can be configured as the main heat source.
- the electrode 6 is usually composed mainly of graphite and is vertically movable. There are two types of electric furnaces 1: DC type and AC type.
- the electric furnace 1 is of a DC type
- electrodes may be provided on the bottom of the furnace and the upper part of the melting chamber, respectively, and the cold iron source may be melted by blowing an arc between the electrodes.
- the present invention can also be applied to the production of molten iron using a DC electric furnace.
- An oxygen blowing lance 7 and a carbon material blowing lance 8 may be inserted into the melting chamber 2 from above through the furnace lid 5 .
- the carbon material injection lance 8 can inject carbon material consisting of one or more kinds of coke, char, coal, charcoal, graphite, etc. as an auxiliary heat source into the molten slag 17 through a carrier gas such as air or nitrogen.
- the oxygen blowing lance 7 injects and supplies oxygen (pure oxygen or, for example, an oxygen-containing gas in which pure oxygen and air are mixed), and the oxygen pushes away the molten slag 17 to directly blow oxygen into the molten iron 16. be able to.
- the oxygen-blown molten iron 16 is decarburized to a desired carbon content.
- a method of adding oxygen and carbon materials in addition to blowing with a lance, there is a method of injecting into the bath (molten iron 16 or molten slag 17) from above the melting chamber 2, and bottom blowing injection by providing a dedicated nozzle at the bottom of the furnace. method may be adopted. Further, the oxygen and carbon material blowing lances 7 and 8 may be immersed in the molten iron 16 and the molten slag 17, respectively. It is also possible to adopt a method of following up above the interface according to fluctuations in the surface (interface) level of the molten iron 16 and the molten slag 17 . Alternatively, an oxygen blowing lance 7 may be installed on the furnace wall 4 to blow oxygen through the furnace wall 4 .
- a burner 9 may also be inserted into the melting chamber 2 from above through the furnace lid 5 and/or through the furnace wall 4 from obliquely above.
- This burner 9 serves as a combustion support burner for burning fossil fuels such as heavy oil, kerosene, pulverized coal, propane gas and natural gas with a combustion-supporting gas (oxygen, air or oxygen-enriched air).
- fossil fuels such as heavy oil, kerosene, pulverized coal, propane gas and natural gas with a combustion-supporting gas (oxygen, air or oxygen-enriched air).
- the burner 9 can be used to efficiently help melt the unmelted cold iron source 15, for example, in the temperature rising step. It is preferable to arrange the burner 9 at a position in the vicinity of directly above the hot water outlet 12, which will be described later, in other words, at a position where cold spots are likely to occur.
- the melting chamber 2 may be provided with a tapping port 12 on the bottom of the furnace opposite to the preheating chamber 3 and a slag tapping port 13 on the furnace wall 4 above the tapping port 12 .
- the slag outlet 13 is closed by the slag outlet door 22 during processes other than the tapping process.
- tapping hole 12 is closed by packing sand or mud agent filled inside and tapping door 21 for holding these on the outside of the furnace.
- the obtained molten iron 16 can be tapped from the tapping port 12 by opening the tapping door 21 .
- the molten slag 17 generated during the production of the molten iron 16 can be discharged from the slag discharge port 13 by opening the slag discharge door 22 .
- the inside of the second preheating chamber can be observed by the imaging device 30 .
- the video device 30 is not particularly limited, and may be any device capable of capturing an image of an observation target, and normally includes a lens and a camera. It is preferable to flow the cooling gas at an arbitrary flow rate around the lens (not shown) installed at the tip of the imaging device 30 . By properly cooling the imaging device 30, it is possible to withstand the high temperature inside the electric furnace, and to prevent the field of view from being narrowed when slag or molten steel scatters. Cooling gases include air and inert gases such as nitrogen. It is preferable to install the video device 30 on the side wall of the second preheating chamber 3b from the viewpoint of better grasping the state inside the second preheating chamber 3b.
- the side wall of the preheating chamber 3 is also cooled by water cooling or air cooling.
- the installation method is not particularly limited, when the imaging device 30 is installed on the side wall of the second preheating chamber 3b, if the imaging device 30 is attached through a hole (not shown) made in the side wall, the lens can be attached to the second preheating chamber 3b.
- the camera can be positioned outside the electric furnace 1 while being positioned inside the preheating chamber 3b, and it is possible to achieve both a clear visual field and simple workability. Images captured by the imaging device 30 are generally connected to a monitor and a recording device (both not shown) in an operation room operated by an operator via a cable (not shown).
- the cold iron source is adjusted so as to keep the height within a certain range. Since it can be supplied, the cold iron source can be preheated more efficiently.
- an additional video device can be installed on the side wall constituting the first preheating chamber 3a.
- the high-temperature exhaust gas generated in the melting chamber by melting is flowed into the preheating chamber 3 by the method described above for the electric furnace, for example, and the cold iron source 15 filled in the preheating chamber 3 is efficiently preheated. is preferable from the viewpoint of manufacturing efficiency.
- the temperature of the exhaust gas flowing into the preheating chamber 2 is about 1000 to 1500.degree.
- the molten slag 17 in the melting process may contain iron oxide (FeO) generated due to oxygen blowing. Therefore, it is preferable to reduce FeO by blowing a carbonaceous material into the molten slag 17 according to the method described above. Further, it is preferable to bring about a so-called "slag foaming" state in which the molten slag 17 bubbles due to the generation of CO gas by combustion of the injected carbonaceous material.
- the slag forming reduces the radiant heat of the arc 18, and the melting efficiency of the cold iron source 15 can be further improved. By shortening the melting time with higher melting efficiency, the time for which the slag foaming state can be stably maintained can be extended, and the energy efficiency can be further improved.
- the next temperature raising process is started and at the same time the cold iron source is supported.
- machine 11 is closed.
- the unintended molten iron from the cold iron source 15 can be detected during the subsequent temperature rise of the molten iron 16. It is possible to further prevent the mixture from being mixed in, and to perform the next temperature raising step with higher efficiency.
- the furnace lid 5 When the electric furnace 1 starts operation for charging (that is, when the cold iron source 15 is supplied for the first time), the furnace lid 5 is opened to uniformly supply the cold iron source 15 into the melting chamber 2.
- the cold iron source 15 and, if necessary, the carbonaceous material may be supplied in advance into the space of the melting chamber 2 on the opposite side of the preheating chamber 3 (the right side of the electrode 6 in FIG. 2).
- hot metal may also be supplied to the melting chamber 2 when the cold iron source 15 is supplied. Hot metal can be supplied to the melting chamber 2 by a feed ladle (not shown) or a hot metal trough (not shown) leading to the melting chamber 2 .
- the molten iron 16 obtained in the previous melting step is placed in a state in which the cold iron source supporter 11 is closed and the first preheating chamber 3a is cut off from the melting chamber 2.
- the temperature is further raised to the desired temperature.
- the molten iron 16 tapped after the temperature raising process and transported to the next process outside the electric furnace, such as composition adjustment and casting, must maintain the desired high temperature required for the next process. Therefore, in the temperature raising process, it is necessary to raise the temperature of the molten iron 16 to a temperature determined by design, taking into consideration the temperature drop at the time of transition to the next process outside the electric furnace after the tapping process.
- the molten iron 16 cannot be tapped unless the temperature of the molten iron 16 is raised to a predetermined temperature. Further, in the temperature raising step, the cold iron source supporter 11 is closed to isolate the first preheating chamber 3a from the melting chamber 2, and a new cold iron source 15 for the next charging is placed in the first preheating chamber 3a. Introduce. In this temperature raising process, it is essential to start raising the temperature of the molten iron 16 based on the visual information obtained from the image device 30, which is inside the second preheating chamber 3b after the cold iron source supporter 11 is closed. be. For example, when the cold iron source 15 left without being supplied to the melting chamber 2 exists in the second preheating chamber 3b after the cold iron source supporter 11 is closed, the temperature is raised in this state.
- the relatively low temperature cold iron source 15 is undesirably mixed into the relatively high temperature molten iron 16 that is being heated, and the temperature of the molten iron 16 is lowered.
- the timing of the temperature rise was determined by the experience of the operator.
- the image device 30 was used to visually confirm that the cold iron source 15 did not remain in the second preheating chamber 3b after the cold iron source supporter 11 was closed. It is preferable to start raising the temperature of the molten iron 16 later. If it can be confirmed by the imaging device 30 that the cold iron source 15 does not remain, the temperature rise can be started as it is.
- the extruder 10 it is preferable to start heating the molten iron 16 after forcibly supplying the iron source 15 to the melting chamber 2 and confirming that the cold iron source 15 does not remain in the second preheating chamber 3b. In this way, by raising the temperature of the molten iron 16 in a state where the cold iron source 15 does not exist in the second preheating chamber 3b, the temperature of the molten iron 16 being heated is not lowered, and the temperature raising efficiency is further increased. be able to.
- the cold iron source 15 rushes into the melting chamber 2 from the preheating chamber 3 during the temperature rising process, causing slag foaming to subside, and as a result, the arc 18 becomes unstable and the temperature rises. There was a loss of efficiency.
- the cold iron source 15 in the first preheating chamber 3a during the temperature raising process is physically completely isolated from the melting chamber 2 by the cold iron source support machine 11, and the second Since it is possible to visually confirm that the inside of the preheating chamber 3b is in a state suitable for starting temperature rise, the avalanche of the cold iron source 15 during the temperature rise process is reliably suppressed, and slag foaming and arc 18 are prevented. It is possible to maintain the temperature stably and, in turn, to increase the temperature raising efficiency.
- the cold iron source 15 for the next charge is supplied to the first preheating chamber 3a.
- the cold iron source supporting machine 11 is closed to isolate the first preheating chamber 3a from the melting chamber 2, and the state inside the second preheating chamber can be visually confirmed. Even if the cold iron source 15 for the charge remains in the second preheating chamber 3b, it can be accurately separated from the cold iron source 15 for the next charge in the first preheating chamber 3a.
- the cold iron source supporting machine 11 since the cold iron source supporting machine 11 is not provided or the condition of the second preheating chamber 3b cannot be visually confirmed, it is up to the operator to separate the cold iron source 15 for the current charge and the next charge. It was done by experience.
- the cold iron source supporter 11, the visual device 30, and the extruder 10 capable of forcibly supplying the remaining cold iron source 15 to the melting chamber 2 are provided, the current charge is reduced.
- the cold iron source 15 for the next charge can be accurately divided and handled without being mixed with the cold iron source 15 for the next charge. This is very useful especially in the case of producing molten iron 16 with different composition or characteristics from the current charge in the next charge.
- a new cold iron source (cold iron source for next charge) 15 in the first preheating chamber 3a is preheated with residual heat from the temperature rising step. Therefore, the preheating process proceeds almost simultaneously with the temperature raising process.
- Preheating can be performed by causing residual heat such as high-temperature exhaust gas generated during temperature rise to flow into the first preheating chamber 3a by the method described above for the electric furnace, for example.
- the temperature raising step the melting chamber 2 is brought to a high temperature state of, for example, about 1600° C., so that the cold iron source 15 for the next charge filled in the first preheating chamber 3a is efficiently preheated. Dissolution efficiency can be increased.
- the temperature of the exhaust gas flowing into the first preheating chamber 3a is about 1000-1600.degree. When the molten iron 16 is heated up to the set temperature, the next tapping process is started.
- molten iron 16 whose temperature has been raised is led out of electric furnace 1 while cold iron source supporter 11 is closed.
- a specific tapping method may follow the method described above for the electric furnace.
- residual heat such as high-temperature exhaust gas remaining from the heating step is heated to the first temperature by the method described above for the electric furnace, for example. It can be performed by continuously flowing into the preheating chamber 3a.
- the temperature of the exhaust gas flowing into the first preheating chamber 3a is about 1100 to 1600.degree.
- a new cold iron source (cold iron source for next charge) 15 preheated in 1 is supplied from the first preheating chamber 3a to the second preheating chamber 3b. This completes the production preparation for the next charge.
- multiple charges can be continuously operated. Since the cold iron source 15 supplied to the second preheating chamber 3b in the preparatory step is already sufficiently preheated, the subsequent melting step and subsequent steps can be performed efficiently.
- the preparatory step it is preferable to open the cold iron source supporter 11 while the tip of the extruder 10 on the side of the melting chamber 2 is positioned at the boundary between the second preheating chamber 3b and the melting chamber 2 (see FIG. 2A). .
- the cold iron source 15 it is possible to prevent the cold iron source 15 from rushing into the melting chamber 2 during the next melting step, thereby preventing a decrease in melting efficiency and damage to the electrodes and the like.
- the other process is not particularly limited, and includes, for example, a slag discharge process for discharging the generated molten slag 17 out of the electric furnace.
- the slag removal process can be performed, for example, according to the technique described above for electric furnaces.
- the cold iron source was selected from raw materials stipulated in the "Unified Standards for Acceptance Inspection of Ferrous Scrap" of the Japan Iron Source Association and used in the following ratio (total blending ratio: 100%). Heavy (grade: H2), blending ratio 60% Shincut (grade: rose A), blending ratio 20% Shredder (grade: A), blending ratio 10% Old pig iron (grade: A), blending ratio 5% Steel turning powder (grade: A), blending ratio 5%
- the temperature rising process in the pre-charging was in progress, and the cold iron source 15 in the first preheating chamber 3a was preheated using the exhaust gas from the melting chamber 2.
- the cold iron source 15 in the first preheating chamber 3a was continuously preheated using the exhaust gas from the melting chamber 2.
- the cold iron source 15 in the second preheating chamber 3b is supplied to the melting chamber 2 by the extruder 10, and the heat of the arc 18 generated by the electrode 6 (graphite electrode)
- the cold iron source 15 was melted to form molten iron 16 .
- Pure oxygen was fed from the oxygen blowing lance 7 at 3000 to 5000 Nm 3 /hr, and coke powder was blown from the carbon material blowing lance 8 at 40 to 80 kg/min.
- the coke powder had a fixed carbon content of 85% by mass or more, a water content of 1.0% by mass or less, a volatile content of 1.5% by mass or less, and an average particle diameter of 5 mm or less.
- Quicklime used as a slag forming material was supplied from an auxiliary raw material charging chute (not shown) provided on the furnace lid 5 .
- the inside of the second preheating chamber 3b was monitored by the imaging device 30 during the melting process.
- Tons of new cold iron source 15 was replenished into the preheating chamber 3 from the cold iron source supply port 19, and the filling height of the cold iron source 15 in the preheating chamber 3 was kept within a certain range.
- the melting progresses in a state where the cold iron source 15 is continuously present in the melting chamber 2 and the preheating chamber 3, and a total of about 130 tons of cold iron source 15 for one charge is obtained.
- approximately 200 tons of molten iron 16 accumulated in the melting chamber 2, including 80 tons of molten iron 16 that had been left in the melting chamber 2 during the previous charge.
- the molten iron 16 for the previous charge is not left in the melting chamber 2, and the next charge is melted.
- a temperature measuring probe was inserted into the molten iron 16 to measure the temperature of the molten iron. At this time, if the molten iron temperature reached 1600° C., which is the designed heating temperature, the steel tapping process was started. Moreover, if the temperature did not reach the elevated temperature, the molten iron temperature was measured again after the temperature was raised for about 1 minute, and the steel tapping was repeatedly performed. Further, during the temperature rising step, with the cold iron source supporting machine 11 closed, about 10 tons of cold iron source 15, which is one charge for the next charge, was supplied to the first preheating chamber 3a.
- ⁇ steel tapping process> After the temperature was raised, 80 tons of molten iron 16 out of about 200 tons was left in the melting chamber 2, and 120 tons of molten iron 16 corresponding to one charge was tapped from the tapping port 12 to a ladle outside the furnace. During the tapping process, the exhaust gas from the melting chamber 2 was used to continue preheating the cold iron source 15 in the first preheating chamber 3a. The temperature of the molten iron 16 at the tapping was about 1600°C. The carbon concentration in the molten iron was operated with a target of 0.060% by mass. After the tapping process, the state of the molten iron 16 was maintained while blowing oxygen and coke, and the above-described ⁇ preparation process> and thereafter were repeated for a total of 20 charges.
- Comparative example 1 In the temperature raising process, the cold iron source supporter 11 and the image device 30 are not used (that is, the cold iron source supporter 11 is left open throughout the entire process, and the state inside the furnace is not visually confirmed. ), the extruder 10 was operated according to the operator's empirical judgment to raise the temperature. Otherwise, charging was repeated 20 times in the same manner as in the invention example.
- Comparative example 2 In the temperature rising process, without using the video device 30 (that is, without visually confirming the state inside the furnace), the cold iron source support machine 11 and the extruder 10 are operated based on the operator's empirical judgment, The temperature was raised. Otherwise, charging was repeated 20 times in the same manner as in the invention example.
- the average time (minutes) required for each process in 20 charges, the average power consumption unit (kWh/t) required for the entire manufacturing process, and the mixing of the cold iron source into the molten iron in the heating process The frequency (times/charge), the average noise level (dB) in the electric furnace during operation, and the average carbon concentration (mass %) in the molten iron were evaluated. Table 1 shows the results.
- the average power unit consumption was calculated as the amount of power used per 1 ton of molten iron tapped for 20 charges.
- the mixing frequency of the cold iron source was calculated by dividing the number of times the loud sound generated when the cold iron source collapsed was confirmed by the number of charges.
- the noise level of the electric furnace was measured by installing a decibel meter at a position 5 m away from the electric furnace. The noise level of the electric furnace is an index for determining the quality of slag forming, and the lower the noise level, the more stable the arc. Measurements were performed during the melting process and the heating process, and the average value was calculated.
- the carbon concentration in the molten iron was measured by inserting the carbon concentration measuring probe into the molten iron together with the temperature measuring probe, and the average value of all charges was calculated.
- the invention examples can significantly shorten the time required for the melting step and the temperature raising step, shortening the time required for the entire manufacturing process and reducing the power consumption rate. led to a decrease.
- the power unit consumption was 385 kWh/t in Comparative Example 1 and 380 kWh/t in Comparative Example 2, whereas the invention example was able to operate with power saving up to 365 kWh/t (where t is steel output (meaning tonnes, which is the volume of molten iron that is melted).
- This reduction in power consumption in the example of the invention is achieved by appropriately controlling the cold iron source support machine by using the video device to reliably prevent the cold iron source from collapsing and avalanching during the temperature rising process.
- the carbon concentration in the molten iron was 0.055% by mass in Comparative Example 1 and 0.057% by mass in Comparative Example 2 with respect to the target of 0.060% by mass, whereas in the invention example It was 0.059% by mass, a value closer to that of the comparative example, and it became possible to control the carbon concentration in the molten iron more easily and accurately.
- the reason why the carbon concentration decreased is presumed to be that the cold iron source 15 was mixed into the molten iron 16 whose temperature was being raised, resulting in a decrease in temperature raising efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Furnace Charging Or Discharging (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Ink Jet (AREA)
- Furnace Details (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
また、上述の(2)の具体的な方法では、炭材吹込みよる酸化鉄の還元と炭材の燃焼とによってCOガスが発生し、このCOガスによって溶融スラグが泡立つ、いわゆる「スラグフォーミング」が促進されることが知られている。このスラグフォーミングによりアークの輻射熱が軽減し、冷鉄源の溶解効率を向上させて電力消費を抑えることが期待される。
特許文献1によれば、複合アーク溶解炉は、溶解室と、この溶解室内で発生する高温の排ガスを誘引できるシャフト形予熱室とからなる点に特徴がある。そして、特許文献1の複合アーク溶解炉では、予熱室内に充填された鉄系スクラップを効率的に予熱するために、予熱室内における鉄系スクラップの見掛け嵩密度を適正範囲に調整している。特許文献1の図には、予熱室の上部に設けた開閉可能な供給口が開示されており、該供給口を通じて供給され、予熱室で予熱された鉄系スクラップは、溶解室で溶解される速度に応じて、溶解室内に順次に連続的または間欠的に移動している。
また、溶鉄と接触した鉄系スクラップの一部に熱が伝わり、予熱室内下部の鉄系スクラップが局所的に溶解することにより、予熱室内の鉄系スクラップが崩落して溶解室内になだれ込む問題も生じた。このとき、鉄系スクラップが電極までなだれ込み、電極折損を引き起すという深刻な事態も確認された。
しかしながら、上記手法によっても、依然として昇温効率が顕著に改善されない場合があった。この点について本発明者らが更に検討したところ、冷鉄源支持機によって予熱室内の冷鉄源を溶解室から切り離した場合であっても、冷鉄源支持機の下方(予熱室の下部)に溶解室へと供給されなかった冷鉄源が残存する場合があり、この残存する冷鉄源が昇温中の溶鉄の中に意図せずに混入する事態が確認された。したがって、溶鉄の昇温効率を確実に高めるには、溶鉄の昇温中に、冷鉄源支持機により冷鉄源を溶解室から切り離したうえで、冷鉄源支持機の下方にも冷鉄源が残存しないことを確実にすることが更に必要であるとの知見に至った。
1.冷鉄源を予熱する予熱室と該予熱された冷鉄源を溶解して溶鉄とする溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
前記電気炉は、前記冷鉄源の導入側の第1予熱室および前記溶解室側の第2予熱室に前記予熱室を区画して開閉可能な冷鉄源支持機と、前記第2予熱室から前記溶解室側へ進退可能な押し出し機と、前記第2予熱室内を観察可能な映像装置と、を更に備え、
前記冷鉄源支持機を開けた状態にて、前記予熱室に供給されて予熱された冷鉄源を前記押し出し機によって前記溶解室に供給し、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、
前記冷鉄源支持機を閉じて(つまり、前記第1予熱室を前記溶解室から遮断した状態で)、前記第1予熱室に新たな冷鉄源(次チャージ用冷鉄源)を導入するとともに、前記溶解室内の前記溶鉄を昇温させる溶鉄の昇温工程と、
前記第1予熱室内の前記新たな冷鉄源を、前記昇温工程の余熱により予熱する予熱工程と、
前記昇温された溶鉄を前記電気炉の外部に導出する出鋼工程と、を有し、
前記昇温工程において、前記映像装置から得られた、前記冷鉄源支持機を閉じた後の前記第2予熱室内の視覚情報に基づき、前記溶鉄の昇温を開始する、溶鉄の製造方法。
前記準備工程の後に、前記溶解工程、昇温工程、予熱工程および出鋼工程を順に行う、前記1に記載の溶鉄の製造方法。
前記押し出し機によって前記残存する冷鉄源を前記溶解室に供給し、前記第2予熱室内に前記冷鉄源が残存していないことを確認した後に、前記溶鉄の昇温を開始する、前記1~3のいずれかに記載の溶鉄の製造方法。
以下の実施形態は、本発明の好適な一例を示すものであり、これらの例によって何ら限定されるものではない。
本発明の溶鉄の製造方法は、所定の構造を有する電気炉を用いる方法であって、予熱室において予熱された冷鉄源を押し出し機で溶解室に供給し、溶解室においてアーク熱で溶解して溶鉄を得る溶解工程と、冷鉄源支持機を閉じた状態で溶鉄を昇温させる昇温工程と、昇温工程の余熱により冷鉄源を予熱する予熱工程と、昇温された溶鉄を電気炉外部に導出する出鋼工程と、を有し、連続操業が可能である。また、本発明の溶鉄の製造方法は、任意に、出鋼後に冷鉄源支持機を開けて、予熱された冷鉄源を第1予熱室から前記第2予熱室へと供給する準備工程を更に有し、任意にその他の工程を更に有し得る。そして、本発明の昇温工程では、第2予熱室内を観察するための映像装置から得られた視覚情報に基づき、溶鉄の昇温を開始する。
第2予熱室内の視覚情報に基づいて、溶鉄の昇温環境を適切かつ適時に制御することにより、溶鉄の昇温中に意図しない冷鉄源の混入を防ぐことができ、溶鉄の昇温効率を効果的に高めることができる。
以下、本発明が好適に用い得る電気炉について、図を参照して詳述する。
電気炉1は、冷鉄源15をアーク18からの熱によって溶解して溶鉄16を得る溶解室2と、冷鉄源15を予熱し、予熱された冷鉄源15を押し出し機10で溶解室2に供給するために、溶解室2に連通されたシャフト型の予熱室3と、任意の位置に設置された映像装置30とを備える。予熱室3の鉛直方向任意の位置には、開閉可能な冷鉄源支持機11が設けられている。冷鉄源支持機11は、例えば電気炉1の断面方向または水平方向に開閉可能である。この冷鉄源支持機11を開くことにより予熱室3が一つの空間を有することができ、反対に、この冷鉄源支持機11を閉じることにより予熱室3が冷鉄源の導入側(鉛直方向上部)に区画された第1予熱室3aと、溶解室側(鉛直方向下部)に区画された第2予熱室3bとの2つの空間を有することができる。押し出し機10は通常、この第2予熱室3bに設けられ、一方の先端が該第2予熱室3bとこれに隣接する溶解室2との間の任意の位置まで進退して移動可能である。映像装置30によって、第2予熱室3b内の様子を適時、必要によっては常時確認することができる。
一方、溶融スラグ17を生成させるための造滓材としては生石灰や石灰石が挙げられるが、これらに限定されない。造滓材として、軽焼ドロマイト、または、製鋼などで発生するリサイクルスラグを使用してもよい。溶解室2上部に設けられた副原料シュート(図示せず)から造滓材を供給することができる。
予熱に好適に利用し得る高温の排ガスは、後述する、主たる熱源としてのアーク加熱部、補助熱源としての炭材、バーナー9などによる溶解・昇温によって発生し、CO、CO2、未反応のO2、および開口部などから流入する外気などを含み得る。
なお、溶解室2と予熱室3(第2予熱室3b)との境界は、予熱室3の側壁のうち、溶解室2を構成する炉蓋5と接続される部分を出発して鉛直方向下方に延びる想像上の面とする。
電気炉1のタイプとしては直流式と交流式とがあるが、本実施形態に例示する電気炉1は交流式であり、上述した電極6を有する。一方、電気炉1が直流式の場合は、炉底と溶解室上部のそれぞれに電極を設け、その電極間でアークを飛ばして冷鉄源を溶解させてもよい。本発明は直流式の電気炉による溶鉄の製造にも適用可能である。
映像装置30は、第2予熱室3b内の様子を良好に把握する観点から、第2予熱室3bを構成する側壁に設置することが好ましい。この場合、予熱室3の側壁に対しても、水冷または空冷などの冷却を行うことが好ましい。設置方法は特に限定されないが、映像装置30を第2予熱室3bの側壁に設置する場合、映像装置30を、該側壁に空けた孔(図示せず)に通して取り付ければ、レンズを第2予熱室3b内に位置させつつカメラを電気炉1の外部に位置させることができ、鮮明な映像視野と簡便な作業性とを両立できるので好適である。映像装置30で取り込んだ映像は、一般的にはケーブル(図示せず)を介して、オペレーターが操作する操作室のモニターや記録装置(いずれも、図示せず)へ繋ぐ。
本発明の溶解工程では、図2Bを参照して、冷鉄源支持機11を開けた状態で、予熱室3で予熱された冷鉄源15を押し出し機10によって溶解室2に供給し、溶解室2に供給された冷鉄源15をアーク熱によって溶解して溶鉄16を得る。押し出し機10を図2の矢印方向に繰り返し進退させることにより、第2予熱室3b内に充填された冷鉄源15を順次押し出す。これに伴って予熱室3内に充填されている冷鉄源15が順次降下するので、それに応じて、供給用バケット14から予熱室3内に新たな冷鉄源15を供給することを繰り返し行う。これにより、1チャージ用の量の冷鉄源を溶解することができる。
ここで、溶解により溶解室で発生した高温の排ガスを、例えば電気炉について上述した手法により予熱室3に流入させ、予熱室3に充填されている冷鉄源15を効率的に予熱しておくことが、製造効率の観点から好ましい。本実施形態の場合、予熱室2に流入する排ガスの温度は1000~1500℃程度である。
本発明の昇温工程では、図2Cを参照して、冷鉄源支持機11を閉じて第1予熱室3aを溶解室2から遮断した状態で、前の溶解工程で得られた溶鉄16を所望の温度まで更に昇温させる。昇温工程後に出鋼され、成分調整および鋳造などの電気炉外での次工程まで搬送された溶鉄16は、該次工程で必要とされる所望の高温状態を保っている必要がある。したがって、昇温工程において、出鋼工程後の電気炉外での次工程への移行の際の温度低下を加味した設計上定められた温度まで溶鉄16を昇温しておく必要がある。所定の温度まで溶鉄16を昇温しなければ、出鋼することができない。また、昇温工程では、冷鉄源支持機11を閉じて第1予熱室3aを溶解室2から遮断した状態で、第1予熱室3aに内の次チャージ用の新たな冷鉄源15を導入する。この昇温工程においては、映像装置30から得られた、冷鉄源支持機11を閉じた後の第2予熱室3b内の視覚情報に基づき、溶鉄16の昇温を開始することが肝要である。例えば、冷鉄源支持機11を閉じた後の第2予熱室3b内に、溶解室2内に供給されずに残された冷鉄源15が存在している場合、この状態で昇温を行ってしまうと、昇温中の比較的高温の溶鉄16の中に、比較的低温の冷鉄源15が望まずに混入して溶鉄16の温度を低下させてしまう。これは、電力消費の大きい昇温工程の効率を低下させ、製造コストの増大に繋がる。したがって、第2予熱室3b内の様子を視覚的に確認してから、昇温工程を開始する必要がある。
従来技術では、第2予熱室3bの様子を視覚的に確認することができなかったため、昇温のタイミングはオペレーターの経験によってなされていた。しかし、本発明では、昇温効率を妨げる要因が存在しないことを視覚情報で確認してから昇温のタイミングを決定することができるので、昇温効率、ひいては製造効率を格段に向上させることができる。
一方、映像装置30により、冷鉄源支持機11を閉じた後の第2予熱室3b内に冷鉄源15が残存していることを確認した場合には、押し出し機10によってこの残存する冷鉄源15溶解室2に強制的に供給したうえで、第2予熱室3b内に冷鉄源15が残存していないことを確認した後に、溶鉄16の昇温を開始することが好ましい。
このように、第2予熱室3b内に冷鉄源15が確実に存在しない状態で溶鉄16の昇温を行うことにより、昇温中の溶鉄16の温度を低めることなく昇温効率をより高めることができる。
本発明の予熱工程では、第1予熱室3a内の新たな冷鉄源(次チャージ用冷鉄源)15を、昇温工程からの余熱により予熱する。したがって、予熱工程は、昇温工程とほぼ同時に進行する。予熱は、昇温中に発生した高温の排ガス等の余熱を、例えば電気炉について上述した手法により第1予熱室3aに流入させて行うことができる。昇温工程では、溶解室2を、例えば1600℃程度もの高温状態にするため、第1予熱室3a内に充填されている次チャージ用の冷鉄源15を効率的に予熱し、次チャージにおける溶解効率を高めることができる。予熱工程において、第1予熱室3aに流入する排ガスの温度は1000~1600℃程度である。
設定された温度まで溶鉄16が昇温されたら、次の出鋼工程に移る。
本発明の出鋼工程では、図2Dを参照して、冷鉄源支持機11を閉じた状態で、昇温された溶鉄16を電気炉1の外部に導出する。このようにして、1チャージ分の溶鉄16を得ることができる。具体的な出鋼の手法は、電気炉について上述した手法に従えばよい。
また、出鋼工程では、第1予熱室3a内の次チャージ用の冷鉄源15を引き続き予熱することが好ましい。出鋼工程で、第1予熱室3a内の次チャージ用の冷鉄源15を予熱する際も、昇温工程から残存する高温の排ガス等の余熱を、例えば電気炉について上述した手法により第1予熱室3aに引き続き流入させて行うことができる。第1予熱室3aに流入する排ガスの温度は1100~1600℃程度である。
本発明の製造方法が任意に有し得る準備工程では、図2Aを参照して、出鋼工程の終了後に冷鉄源支持機11を開けて、上述の昇温工程および場合によっては出鋼工程において予熱された新たな冷鉄源(次チャージ用冷鉄源)15を第1予熱室3aから第2予熱室3bへと供給する。これにより、次チャージ用の製造準備が整う。そして、次チャージ用の冷鉄源15に対して、上述した溶解工程、昇温工程、予熱工程および出鋼工程を順に繰り返すことにより、複数チャージ用を連続操業することができる。準備工程で第2予熱室3bに供給される冷鉄源15は、既に十分に予熱されているため、続く溶解工程以降を効率的に行うことができる。
その他の工程としては、特に限定されることなく、例えば、生成した溶融スラグ17を電気炉の外に出す排滓工程が挙げられる。排滓工程は、例えば電気炉について上述した手法に従って行うことができる。
図1に示す溶解室2と、予熱室3と、冷鉄源支持機11と、押し出し機10と、第2予熱室3bに設置された映像装置30とを備えた電気炉において、冷鉄源を溶解して溶鉄を製造した。この電気炉の設備諸元を以下に示す。
溶解室:炉径7m、炉高5m
予熱室:幅3m、奥行き4m、高さ8m
炉容量:210トン
電力:交流50Hz
トランス容量:75MVA
電極数:3
冷鉄源の1チャージ当たりの供給量:約130トン
冷鉄源の1回当たりの供給量:約10トン
冷鉄源の1チャージ当たりの供給回数:13回
1チャージ分の出鋼量:約120出鋼トン
酸素吹込みランスでの酸素原単位:約20Nm3/出鋼トン
炭材吹込みランスでの炭材原単位:約20kg/出鋼トン
造滓材としての石灰原単位:約18.8kg/出鋼トン
ただし、「出鋼トン」とは、出鋼された溶鉄の容量(単位:トン)を意味し、「/出鋼トン」とは、出鋼された溶鉄1トン当たりを意味する。
ヘビー(等級:H2)、配合比率60%
新断(等級:バラA)、配合比率20%
シュレッダー(等級:A)、配合比率10%
故銑(等級:A)、配合比率5%
鋼ダライ粉(等級:A)、配合比率5%
上記昇温中に、冷鉄源支持機11を閉じた状態で、1回分である約10トン(または、複数回分の容量)の冷鉄源15を第1予熱室3aに供給した。このとき、前チャージにおける昇温工程の最中であり、溶解室2からの排ガスを利用して第1予熱室3a内の冷鉄源15を予熱した。続く前チャージにおける出鋼工程においても、溶解室2からの排ガスを利用して第1予熱室3a内の冷鉄源15を引き続き予熱した。
前チャージにおける出鋼工程終了後に、冷鉄源支持機11を開けて、予熱された冷鉄源15を第1予熱室3aから第2予熱室3bへと供給した。このとき、押し出し機10の溶解室2側先端は第2予熱室3bと溶解室2との境界に位置させた。
冷鉄源支持機11を開けた状態で、第2予熱室3b内の冷鉄源15を押し出し機10によって溶解室2に供給し、電極6(黒鉛電極)によって発生させたアーク18の熱によって冷鉄源15を溶解して溶鉄16とした。酸素吹き込みランス7からは純酸素を3000~5000Nm3/hrで送り、炭材吹き込みランス8からはコークス粉を40~80kg/minで吹き込んだ。コークス粉は、固定炭素分85質量%以上、水分1.0質量%以下、揮発分1.5質量%以下、平均粒径5mm以下であった。造滓材として使用した生石灰は、炉蓋5に設けられた副原料投入シュート(図示せず)から供給した。
溶解工程中は映像装置30で第2予熱室3b内を監視した。溶解室2内での冷鉄源15の溶解および押し出し機10による押し出しに伴って予熱室3内に充填された冷鉄源15が順次降下した際に、供給用バケット14で搬送された約10トンの新たな冷鉄源15を冷鉄源供給口19から予熱室3内へと補充し、予熱室3内の冷鉄源15の充填高さを一定範囲に保持した。この作業を計13回分繰り返すことにより、溶解室2および予熱室3内に冷鉄源15が連続して存在する状態で溶解を進行させ、1チャージ分である合計約130トンの冷鉄源15を溶解室2内で溶解した。
実際には、前チャージで溶解室2内に残存させていた80トンの溶鉄16を含み、溶解室2には約200トンの溶鉄16が溜まった。チャージ前後で得られる溶鉄の成分等を変更させたい場合には、前チャージ分の溶鉄16を溶解室2に残すことなく、次チャージの溶解を行えばよい。
約200トンの溶鉄16が溶解室2内に溜まった段階で、冷鉄源支持機11を閉じ、映像装置30によって第2予熱室3bの様子を確認した。映像装置30から得られた視覚情報の結果、第2予熱室3bに冷鉄源15が残存している様子が確認された。したがって、直ちに昇温を開始することなく、残存した冷鉄源15が溶解室2に供給されて第2予熱室3b内に確認されなくなるまで押し出し機10を繰り返し進退させた。そして、第2予熱室3bに冷鉄源15が存在しないことを確認したうえで、昇温を開始した。昇温から約3~4分後に測温用プローブを溶鉄16中に挿入し、溶鉄温度を測定した。このとき、溶鉄温度が設計上の昇温温度である1600℃に達していれば、出鋼工程へ移行した。また、昇温温度に達していなければ、更に約1分間昇温後、溶鉄温度を再び測定し、出鋼可否を繰り返し行った。
また、上記昇温工程中に、冷鉄源支持機11を閉じた状態で、次チャージの1回分である約10トンの冷鉄源15を第1予熱室3aに供給した。
第1予熱室3aに供給された次チャージ用冷鉄源15は、昇温工程と同時進行で、昇温による溶解室2からの予熱(排ガス)を利用して予熱した。
昇温後、約200トンのうち80トンの溶鉄16を溶解室2内に残し、1チャージ分に相当する120トンの溶鉄16を出湯口12から炉外の取鍋に出鋼した。出鋼工程中も、溶解室2からの排ガスを利用して第1予熱室3a内の冷鉄源15を引き続き予熱した。出鋼時の溶鉄16の温度は約1600℃であった。溶鉄中の炭素濃度は0.060質量%を目標として操業した。出鋼工程後も酸素およびコークスの吹込みを行いながら溶鉄16の状態を維持し、再度、上述の<準備工程>以降を計20チャージ繰り返した。
昇温工程において、冷鉄源支持機11および映像装置30を使用せず(つまり、全工程にわたって冷鉄源支持機11を開けたまま、かつ、炉内の様子を視覚的に確認することなく)、オペレーターの経験上の判断で押し出し機10を操作し、昇温を行った。それ以外は発明例と同様にして20チャージ繰り返した。
昇温工程において、映像装置30を使用せず(つまり、炉内の様子を視覚的に確認することなく)、オペレーターの経験上の判断で冷鉄源支持機11および押し出し機10を操作し、昇温を行った。それ以外は発明例と同様にして20チャージ繰り返した。
また、冷鉄源の混入頻度は、冷鉄源が崩落する際に発生する大きな音を耳で確認した回数をチャージ数で除することにより算出した。
また、電気炉の騒音レベルは、電気炉から5m離れた位置にデシベル計を設置して計測した。電気炉の騒音レベルは、スラグフォーミングの良否を判定する指標であり、騒音レベルが低いほど、アークが安定していることを示す。計測は溶解工程および昇温工程中に行い、その平均値を算出した。
そして、溶鉄中の炭素濃度は、上記測温用プローブと一緒に、炭素濃度測定用プローブを溶鉄中に挿入して測定し、全チャージの平均値を算出した。
発明例におけるこの電力原単位の低減は、映像装置の利用により、冷鉄源支持機を適切に制御して昇温工程中の冷鉄源の崩落・なだれ込みを確実に抑止し、昇温中の溶鉄への冷鉄源の意図しない混入を完全に抑止できたこと、これにより昇温工程を大きく短縮できたことに主に起因する。また、発明例では、騒音レベルも低下していることから、スラグフォーミングが良好に安定し、溶解効率が向上したことにも起因したものと推察される。更には、溶解工程において、第1予熱室3aの側壁に設置された追加の映像装置の利用により、予熱室3内の冷鉄源の充填高さを確認し、適時、一定範囲内に保つことができたため、排ガスによる冷鉄源の着熱効率も高まり、溶解効率も高まったことにも起因したものと推察される。
そして、溶鉄中の炭素濃度は、目標である0.060質量%に対して、比較例1では0.055質量%、比較例2では0.057質量%であったのに対し、発明例では0.059質量%と比較例よりも近い値であり、溶鉄中の炭素濃度をより容易かつ正確に制御可能となった。なお、比較例において炭素濃度が低下したのは、冷鉄源15が昇温中の溶鉄16の中に混入して昇温効率が低下したことに起因したものと推察される。
2 溶解室
3 予熱室
3a 第1予熱室
3b 第2予熱室
4 炉壁
5 炉蓋
6 電極
7 酸素吹き込みランス
8 炭材吹き込みランス
9 バーナー
10 押し出し機(プッシャー)
11 冷鉄源支持機(フィンガー)
12 出湯口
13 出滓口
14 供給用バケット
15 冷鉄源
16 溶鉄
17 溶融スラグ
18 アーク
19 冷鉄源供給口
20 ダクト
21 出湯用扉
22 出滓用扉
23 走行台車
30 映像装置
Claims (6)
- 冷鉄源を予熱する予熱室と該予熱された冷鉄源を溶解して溶鉄とする溶解室とを備える電気炉を用いる、溶鉄の製造方法であって、
前記電気炉は、前記冷鉄源の導入側の第1予熱室および前記溶解室側の第2予熱室に前記予熱室を区画して開閉可能な冷鉄源支持機と、前記第2予熱室から前記溶解室側へ進退可能な押し出し機と、前記第2予熱室内を観察可能な映像装置と、を更に備え、
前記冷鉄源支持機を開けた状態にて、前記予熱室に供給されて予熱された冷鉄源を前記押し出し機によって前記溶解室に供給し、前記溶解室に供給された冷鉄源をアーク熱によって溶解して溶鉄を得る溶解工程と、
前記冷鉄源支持機を閉じて前記第1予熱室に新たな冷鉄源を導入するとともに、前記溶解室内の前記溶鉄を昇温させる溶鉄の昇温工程と、
前記第1予熱室内の前記新たな冷鉄源を、前記昇温工程の余熱により予熱する予熱工程と、
前記昇温された溶鉄を前記電気炉の外部に導出する出鋼工程と、を有し、
前記昇温工程において、前記映像装置から得られた、前記冷鉄源支持機を閉じた後の前記第2予熱室内の視覚情報に基づき、前記溶鉄の昇温を開始する、溶鉄の製造方法。 - さらに、前記出鋼工程の終了後に、前記冷鉄源支持機を開けて前記予熱された新たな冷鉄源を前記第1予熱室から前記第2予熱室へと供給する準備工程を有し、
前記準備工程の後に、前記溶解工程、昇温工程、予熱工程および出鋼工程を順に行う、請求項1に記載の溶鉄の製造方法。 - 前記準備工程において、前記押し出し機の前記溶解室側先端を前記第2予熱室と前記溶解室との境界に位置させた状態で、前記冷鉄源支持機を開ける、請求項2に記載の溶鉄の製造方法。
- 前記昇温工程において、前記映像装置により、前記冷鉄源支持機を閉じた後の前記第2予熱室内に前記冷鉄源が残存していないことを確認した後に、前記溶鉄の昇温を開始する、請求項1~3のいずれか一項に記載の溶鉄の製造方法。
- 前記昇温工程において、前記映像装置により、前記冷鉄源支持機を閉じた後の前記第2予熱室内に前記冷鉄源が残存していることを確認した場合に、
前記押し出し機によって前記残存する冷鉄源を前記溶解室に供給し、前記第2予熱室内に前記冷鉄源が残存していないことを確認した後に、前記溶鉄の昇温を開始する、請求項1~3のいずれか一項に記載の溶鉄の製造方法。 - 前記溶解工程において、前記映像装置により、所定量の前記冷鉄源が前記溶解室へ供給されたことを確認した後に、前記昇温工程を行う、請求項1~5のいずれか一項に記載の溶鉄の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/264,249 US20240093320A1 (en) | 2021-02-10 | 2022-01-27 | Method for producing molten iron using electric furnace provided with video device |
EP22752598.7A EP4273275A4 (en) | 2021-02-10 | 2022-01-27 | METHOD FOR PRODUCING MOLTEN IRON USING AN ELECTRIC FURNACE EQUIPPED WITH A VIDEO DEVICE |
MX2023009356A MX2023009356A (es) | 2021-02-10 | 2022-01-27 | Metodo para producir hierro fundido utilizando un horno electrico provisto con un dispositivo de video. |
CN202280013903.6A CN116867913A (zh) | 2021-02-10 | 2022-01-27 | 使用具备影像装置的电炉的铁水的制造方法 |
JP2022534341A JP7115662B1 (ja) | 2021-02-10 | 2022-01-27 | 映像装置を備える電気炉を用いた溶鉄の製造方法 |
KR1020237028173A KR20230132835A (ko) | 2021-02-10 | 2022-01-27 | 영상 장치를 구비하는 전기로를 사용한 용철의 제조방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-019720 | 2021-02-10 | ||
JP2021019720 | 2021-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172769A1 true WO2022172769A1 (ja) | 2022-08-18 |
Family
ID=82838771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003173 WO2022172769A1 (ja) | 2021-02-10 | 2022-01-27 | 映像装置を備える電気炉を用いた溶鉄の製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI796131B (ja) |
WO (1) | WO2022172769A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292990A (ja) | 1997-02-24 | 1998-11-04 | Nkk Corp | 冷鉄源の溶解方法および溶解設備 |
JP2002538295A (ja) * | 1999-02-23 | 2002-11-12 | テキント コンパニア テクニカ インテルナツィオナレ ソシエタ ペル アチオニ | 装入物を予熱し溶融し精錬し鋳造する連続電気炉製鋼 |
JP2003049217A (ja) * | 2001-08-03 | 2003-02-21 | Topy Ind Ltd | 鉄スクラップ溶解方法 |
JP2012180560A (ja) | 2011-03-01 | 2012-09-20 | Jfe Steel Corp | 複合アーク溶解炉による鉄系スクラップの溶解方法 |
CN205690871U (zh) * | 2016-05-30 | 2016-11-16 | 中冶赛迪工程技术股份有限公司 | 一种电弧炉密闭加料装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114959171A (zh) * | 2015-01-27 | 2022-08-30 | 杰富意钢铁株式会社 | 电炉以及利用电炉制造铁水的方法 |
-
2022
- 2022-01-27 WO PCT/JP2022/003173 patent/WO2022172769A1/ja active Application Filing
- 2022-02-08 TW TW111104441A patent/TWI796131B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10292990A (ja) | 1997-02-24 | 1998-11-04 | Nkk Corp | 冷鉄源の溶解方法および溶解設備 |
JP2002538295A (ja) * | 1999-02-23 | 2002-11-12 | テキント コンパニア テクニカ インテルナツィオナレ ソシエタ ペル アチオニ | 装入物を予熱し溶融し精錬し鋳造する連続電気炉製鋼 |
JP2003049217A (ja) * | 2001-08-03 | 2003-02-21 | Topy Ind Ltd | 鉄スクラップ溶解方法 |
JP2012180560A (ja) | 2011-03-01 | 2012-09-20 | Jfe Steel Corp | 複合アーク溶解炉による鉄系スクラップの溶解方法 |
CN205690871U (zh) * | 2016-05-30 | 2016-11-16 | 中冶赛迪工程技术股份有限公司 | 一种电弧炉密闭加料装置 |
Also Published As
Publication number | Publication date |
---|---|
TWI796131B (zh) | 2023-03-11 |
TW202231879A (zh) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SU1496637A3 (ru) | Способ непрерывного рафинировани стали в электропечи и устройство дл его осуществлени | |
JP3860502B2 (ja) | 溶融金属の製造方法および装置 | |
SE452476B (sv) | Forfarande for smeltning av jernskrot | |
KR101728286B1 (ko) | 배기 가스 처리 방법 및 배기 가스 처리 설비 | |
JP5552754B2 (ja) | アーク炉の操業方法 | |
EP2210959B1 (en) | Process for producing molten iron | |
JP2009102697A (ja) | 溶鋼の製造方法 | |
RU2453608C2 (ru) | Способ производства расплавленного чугуна | |
JP7115662B1 (ja) | 映像装置を備える電気炉を用いた溶鉄の製造方法 | |
WO2022172769A1 (ja) | 映像装置を備える電気炉を用いた溶鉄の製造方法 | |
RU2815875C2 (ru) | Способ производства расплавленного чугуна, использующий электропечь, снабженную видеоустройством | |
JP7006807B2 (ja) | 電気炉による溶鉄の製造方法 | |
JP2000017319A (ja) | アーク炉操業方法 | |
JP7259803B2 (ja) | 電気炉による溶鉄の製造方法 | |
WO2024185210A1 (ja) | 溶鉄の製造方法 | |
JPH11344287A (ja) | アーク炉操業方法 | |
JPH11257859A (ja) | 冷鉄源の溶解方法及び溶解設備 | |
JP2001074377A (ja) | 冷鉄源の溶解方法及び溶解設備 | |
JP2002285225A (ja) | 使用済み自動車又は使用済み家電機器のリサイクル処理方法 | |
JP3521277B2 (ja) | 冷鉄源の溶解方法及び溶解設備 | |
WO2024185211A1 (ja) | 溶鉄の製造方法 | |
JP6237664B2 (ja) | アーク炉の操業方法及び溶鋼の製造方法 | |
JP2013028826A (ja) | 複合アーク溶解炉を用いた冷鉄源の溶解方法 | |
JP3978973B2 (ja) | 溶銑の製造方法 | |
JP2002339013A (ja) | 鋼ダライコ屑の溶解方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022534341 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752598 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18264249 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022752598 Country of ref document: EP Effective date: 20230801 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280013903.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2023/009356 Country of ref document: MX |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023015981 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20237028173 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237028173 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317056497 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023123297 Country of ref document: RU |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112023015981 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230808 |