WO2022172696A1 - 成形体の製造方法 - Google Patents

成形体の製造方法 Download PDF

Info

Publication number
WO2022172696A1
WO2022172696A1 PCT/JP2022/001405 JP2022001405W WO2022172696A1 WO 2022172696 A1 WO2022172696 A1 WO 2022172696A1 JP 2022001405 W JP2022001405 W JP 2022001405W WO 2022172696 A1 WO2022172696 A1 WO 2022172696A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
latex
molded article
washing
conjugated diene
Prior art date
Application number
PCT/JP2022/001405
Other languages
English (en)
French (fr)
Inventor
順司 小出村
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2022581274A priority Critical patent/JPWO2022172696A1/ja
Priority to US18/275,239 priority patent/US20240067813A1/en
Priority to EP22752528.4A priority patent/EP4292792A1/en
Publication of WO2022172696A1 publication Critical patent/WO2022172696A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/14Dipping a core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2009/00Use of rubber derived from conjugated dienes, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0064Latex, emulsion or dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/48Wearing apparel
    • B29L2031/4842Outerwear
    • B29L2031/4864Gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • C08J2309/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/52Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C

Definitions

  • the present invention relates to a method for producing a molded article obtained using a latex composition containing a conjugated diene-based polymer latex and a xanthogen compound, and more specifically, for immediate allergy (Type I) and delayed allergy.
  • the present invention relates to a production method capable of producing a molded article that suppresses the occurrence of allergy (Type IV) symptoms, suppresses odor, and has excellent color tone.
  • a latex composition containing latex of natural rubber is dip-molded to obtain dip-molded articles that are used in contact with the human body, such as nipples, balloons, gloves, balloons, and sacks.
  • natural rubber latex contains proteins that cause symptoms of immediate-type allergy (Type I) in the human body, it may pose a problem as a dip-molded article that comes into direct contact with living mucous membranes or organs. Therefore, the use of synthetic rubber latex instead of natural rubber latex has been investigated.
  • Patent Document 1 discloses, as a dip molding composition, a latex composition obtained by blending zinc oxide, sulfur, and a vulcanization accelerator with synthetic polyisoprene latex, which is a synthetic rubber.
  • a vulcanization accelerator contained in the body, when it touched the human body, it sometimes caused an allergic symptom of delayed allergy (Type IV).
  • Patent Document 2 proposes a latex composition obtained by blending a xanthogen compound with a latex of a carboxy-modified conjugated diene polymer. According to the technique of this Patent Document 2, a molded article in which not only immediate-type allergy (Type I) but also delayed-type allergy (Type IV) is suppressed can be obtained, but the odor is relatively strong. was required to be reduced.
  • the present invention has been made in view of such circumstances, and suppresses the occurrence of symptoms of immediate-type allergy (Type I) and delayed-type allergy (Type IV), and suppresses odor. Further, it is an object of the present invention to provide a method for producing a molded article, which can produce a molded article excellent in color tone.
  • the present inventors have found that a molded article obtained using a latex composition containing a latex of a conjugated diene polymer and a xanthogen compound is heated in warm water at 40 to 100°C.
  • the inventors have found that the above problems can be solved by washing, and have completed the present invention based on such findings.
  • a molded article comprising a washing step of washing a molded article obtained using a latex composition containing a latex of a conjugated diene polymer and a xanthogen compound with warm water of 40 to 100°C.
  • the method for producing a molded article of the present invention further comprises a vulcanization step of heating the molded article obtained using the latex composition at 80 to 150° C. to vulcanize the molded article, and the washing step.
  • the step is a step of washing with the warm water the molded body subjected to the vulcanization step.
  • the washing time with warm water is 1 to 120 minutes.
  • the washing with warm water is performed by rotating the molded article immersed in warm water in a tumbler-type washing bath.
  • the conjugated diene polymer latex is a synthetic polyisoprene latex, a styrene-isoprene-styrene block copolymer latex, or a natural rubber latex from which proteins have been removed. is preferred.
  • the washing step includes adding a metal salt to the warm water before washing the molded body, and the amount of the metal salt added to the warm water is It is preferably 0.1 to 10 parts by weight per 100 parts by weight of the body.
  • a molded article obtained by cross-linking a conjugated diene polymer with a xanthogen compound and having a carbon disulfide content of 3 ppm by weight or less.
  • the occurrence of symptoms of delayed-type allergy (Type IV) in addition to immediate-type allergy (Type I) is suppressed, odor is suppressed, and a molded product with excellent color tone is produced. can do.
  • the method for producing a molded article of the present invention comprises a step of washing a molded article obtained using a latex composition containing a latex of a conjugated diene polymer and a xanthogen compound with warm water of 40 to 100°C. is.
  • the latex composition used in the production method of the present invention contains a latex of a conjugated diene polymer and a xanthogen compound.
  • the conjugated diene-based polymer latex used in the present invention is not particularly limited. Natural rubber) latex, nitrile group-containing conjugated diene copolymer latex, and the like. Among these, latexes of polymers containing isoprene units such as synthetic polyisoprene latex, SIS latex and deproteinized natural rubber latex are preferred, and synthetic polyisoprene latex is particularly preferred.
  • the synthetic polyisoprene contained in the synthetic polyisoprene latex may be a homopolymer of isoprene or may be copolymerizable with isoprene. It may be copolymerized with other ethylenically unsaturated monomers.
  • the content of isoprene units in synthetic polyisoprene is preferably 70% by weight or more, more The content is preferably 90% by weight or more, more preferably 95% by weight or more, and particularly preferably 100% by weight (isoprene homopolymer).
  • ethylenically unsaturated monomers copolymerizable with isoprene include conjugated diene monomers other than isoprene such as butadiene, chloroprene, 1,3-pentadiene; acrylonitrile, methacrylonitrile, fumaronitrile, ⁇ - ethylenically unsaturated nitrile monomers such as chloroacrylonitrile; vinyl aromatic monomers such as styrene and alkylstyrene; methyl (meth)acrylate (meaning "methyl acrylate and/or methyl methacrylate”; hereinafter , Ethyl (meth)acrylate, etc.), ethylenically unsaturated carboxylic acid ester monomers such as ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; is mentioned.
  • conjugated diene monomers other than isoprene such
  • Synthetic polyisoprene is prepared in an inert polymerization solvent by a conventionally known method, for example, using a Ziegler polymerization catalyst composed of trialkylaluminum-titanium tetrachloride or an alkyllithium polymerization catalyst such as n-butyllithium or sec-butyllithium.
  • isoprene, and other copolymerizable ethylenically unsaturated monomers that are optionally used can be obtained by solution polymerization.
  • the polymer solution of synthetic polyisoprene obtained by solution polymerization may be used as it is for the production of synthetic polyisoprene latex. It can also be used to make synthetic polyisoprene latex.
  • isoprene units in synthetic polyisoprene there are four types of isoprene units in synthetic polyisoprene, depending on the bonding state of isoprene: cis bond units, trans bond units, 1,2-vinyl bond units, and 3,4-vinyl bond units.
  • the content of cis bond units in the isoprene units contained in the synthetic polyisoprene is preferably 70% by weight or more, and more It is preferably 90% by weight or more, more preferably 95% by weight or more.
  • the weight average molecular weight of the synthetic polyisoprene is preferably 10,000 to 5,000,000, more preferably 500,000 to 5,000,000, still more preferably 500,000 to 5,000,000, in terms of standard polystyrene by gel permeation chromatography analysis. is between 800,000 and 3,000,000.
  • the polymer Mooney viscosity (ML 1+4 , 100° C.) of the synthetic polyisoprene is preferably 50-80, more preferably 60-80, still more preferably 70-80.
  • Methods for obtaining synthetic polyisoprene latex include, for example, (1) emulsifying a solution or fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an emulsifier; (2) Emulsion polymerization of isoprene alone or a mixture of isoprene and an ethylenically unsaturated monomer copolymerizable therewith in the presence of an emulsifier.
  • a method of directly producing a synthetic polyisoprene latex by suspension polymerization but synthetic polyisoprene having a high proportion of cis-bond units in the isoprene unit can be used, and mechanical properties such as tensile strength can be improved.
  • the manufacturing method (1) is preferable because it is easy to obtain a molded article such as a dip-molded article having excellent ductility.
  • Examples of the organic solvent used in the above production method (1) include aromatic hydrocarbon solvents such as benzene, toluene, and xylene; alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohexene; pentane, hexane, Aliphatic hydrocarbon solvents such as heptane; halogenated hydrocarbon solvents such as methylene chloride, chloroform and ethylene dichloride; Among these, alicyclic hydrocarbon solvents and aliphatic hydrocarbon solvents are preferred, pentane, cyclohexane and n-hexane are more preferred, and n-hexane is particularly preferred.
  • aromatic hydrocarbon solvents such as benzene, toluene, and xylene
  • alicyclic hydrocarbon solvents such as cyclopentane, cyclopentene, cyclohexane, and cyclohexen
  • the amount of the organic solvent to be used is preferably 2,000 parts by weight or less, more preferably 20 to 1,500 parts by weight, and still more preferably 500 to 1,500 parts by weight with respect to 100 parts by weight of the synthetic polyisoprene. be.
  • anionic emulsifiers include fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate, potassium rosinate; sodium dodecylbenzenesulfonate, dodecylbenzenesulfonic acid; Alkylbenzenesulfonates such as potassium, sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium cetylbenzenesulfonate, potassium cetylbenzenesulfonate; sodium di(2-ethylhexyl)sulfosuccinate, di(2-ethylhexyl)sulfosuccinic acid Alkyl sulf
  • fatty acid salts, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl sulfate ester salts and polyoxyethylene alkyl ether sulfate ester salts are preferred, and fatty acid salts and alkylbenzene sulfonates are particularly preferred.
  • alkylbenzene At least one selected from the group consisting of sulfonates, alkylsulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates may be used in combination with fatty acid salts. In this case, it is preferable to use alkylbenzene sulfonate and fatty acid salt together.
  • preferred fatty acid salts are sodium rosinate and potassium rosinate
  • preferred alkylbenzenesulfonates are sodium dodecylbenzenesulfonate and potassium dodecylbenzenesulfonate.
  • At least one selected from the group consisting of alkylbenzenesulfonates, alkylsulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates may be used in combination with a fatty acid salt.
  • the resulting latex contains at least one selected from alkylbenzenesulfonates, alkylsulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates, and a fatty acid salt. .
  • ionic emulsifiers other than anionic emulsifiers include copolymerizable emulsifiers such as ⁇ , ⁇ -unsaturated carboxylic acid sulfoesters, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, and sulfoalkylaryl ethers. be done.
  • polyoxyethylene alkyl ethers polyoxyethylene alkylphenol ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan alkyl esters, etc., within a range that does not inhibit coagulation by the coagulant used when performing molding such as dip molding.
  • a nonionic emulsifier may also be used in combination.
  • the amount of the emulsifier used in the above production method (1) is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, and still more preferably 1 part by weight with respect to 100 parts by weight of synthetic polyisoprene. ⁇ 20 parts by weight.
  • the total amount used is within the above range. That is, for example, when at least one selected from alkylbenzenesulfonates, alkylsulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates is used in combination with a fatty acid salt, these The total amount used is preferably within the above range.
  • an anionic emulsifier when at least one selected from alkylbenzenesulfonates, alkylsulfosuccinates, alkyl sulfates and polyoxyethylene alkyl ether sulfates is used in combination with a fatty acid salt , the ratio of these used is defined as "fatty acid salt”: "the total of at least one emulsifier selected from alkylbenzene sulfonate, alkyl sulfosuccinate, alkyl sulfate ester salt and polyoxyethylene alkyl ether sulfate ester salt” , preferably in the range of 1:1 to 10:1, more preferably in the range of 1:1 to 7:1.
  • the amount of water used in the above production method (1) is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, and most preferably 100 parts by weight of the synthetic polyisoprene solution in an organic solvent. is 50 to 100 parts by weight.
  • Types of water to be used include hard water, soft water, ion-exchanged water, distilled water, zeolite water, etc. Soft water, ion-exchanged water and distilled water are preferred.
  • An apparatus for emulsifying a solution or fine suspension of synthetic polyisoprene dissolved or finely dispersed in an organic solvent in water in the presence of an emulsifier is not particularly limited as long as it is generally commercially available as an emulsifier or disperser. can be used without
  • the method of adding the emulsifier to the synthetic polyisoprene solution or fine suspension is not particularly limited, and the emulsifier may be added in advance to either or both of water or the synthetic polyisoprene solution or fine suspension. Alternatively, it may be added to the emulsified liquid during the emulsification operation, may be added all at once, or may be added in portions.
  • emulsifying devices include batch-type emulsifiers such as the trade name "Homogenizer” (manufactured by IKA), the trade name “Polytron” (manufactured by Kinematica), and the trade name “TK Auto Homomixer” (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • Homogenizer manufactured by IKA
  • Polytron manufactured by Kinematica
  • TK Auto Homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.
  • Membrane emulsifiers such as the trade name "Membrane Emulsifier” (manufactured by Reika Kogyo Co., Ltd.); Vibratory emulsifiers such as the trade name “Vibro Mixer” (manufactured by Reika Kogyo Co., Ltd.); Trade name “Ultrasonic Homogenizer” (Branson (manufactured by Co., Ltd.);
  • the conditions for the emulsification operation by the emulsifying device are not particularly limited, and the treatment temperature, treatment time, etc. may be appropriately selected so as to obtain a desired dispersed state.
  • the organic solvent preferably an alicyclic hydrocarbon solvent or an aliphatic hydrocarbon solvent
  • the content of the organic solvent is set to 500 ppm by weight or less.
  • methods such as vacuum distillation, normal pressure distillation, steam distillation, and centrifugation can be employed.
  • the organic solvent can also be removed while adding the defoamer. By adding an antifoaming agent, foaming of the synthetic polyisoprene can be suppressed.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, etc.
  • centrifugation is preferable from the viewpoint of increasing the solid content concentration of the synthetic polyisoprene latex and reducing the amount of residual emulsifier in the synthetic polyisoprene latex.
  • the centrifugal force is preferably 100 to 10,000 G
  • the solid content concentration of the synthetic polyisoprene latex before centrifugation is preferably 2 to 15% by weight, and centrifugation is performed.
  • the flow rate sent into the machine is preferably 500 to 1700 Kg / hr
  • the back pressure (gauge pressure) of the centrifuge is preferably 0.03 to 1.6 MPa.
  • synthetic polyisoprene latex can be obtained. And, thereby, the residual amount of the emulsifier in the synthetic polyisoprene latex can be reduced.
  • the solid content concentration of the synthetic polyisoprene latex is preferably 30-70% by weight, more preferably 40-70% by weight, and even more preferably 50-70% by weight.
  • the solid content concentration is preferably 30-70% by weight, more preferably 40-70% by weight, and even more preferably 50-70% by weight.
  • the volume average particle size of the synthetic polyisoprene latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, still more preferably 0.5 to 2.0 ⁇ m.
  • the viscosity of the latex becomes appropriate, which facilitates handling, and when the synthetic polyisoprene latex is stored, it is possible to suppress the formation of a film on the surface of the latex.
  • synthetic polyisoprene latex contains additives such as pH adjusters, antifoaming agents, preservatives, cross-linking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc. May be blended.
  • pH adjusters examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogencarbonates such as sodium hydrogencarbonate; organic amine compounds such as trimethylamine and triethanolamine; and the like, but alkali metal hydroxides and ammonia are preferred.
  • a styrene-isoprene-styrene block copolymer (SIS) latex can also be used, as described above.
  • SIS styrene-isoprene-styrene block copolymer
  • S represents a styrene block
  • I represents an isoprene block.
  • SIS contained in the latex of SIS can be obtained by a conventionally known method, for example, by block copolymerizing isoprene and styrene in an inert polymerization solvent using an active organic metal such as n-butyllithium as an initiator. .
  • the resulting SIS polymer solution may be used as it is for the production of SIS latex, but after removing solid SIS from the polymer solution, the solid SIS is dissolved in an organic solvent, It can also be used in the production of SIS latex.
  • the method for producing the SIS latex is not particularly limited, but a solution or fine suspension of SIS dissolved or finely dispersed in an organic solvent is emulsified in water in the presence of an emulsifier, and the organic solvent is removed if necessary. Therefore, a method for producing a latex of SIS is preferred. At this time, impurities such as a residue of the polymerization catalyst remaining in the polymer solution after the synthesis may be removed. Moreover, you may add the antiaging agent mentioned later to the solution during superposition
  • the organic solvent the same solvents as those used for the synthetic polyisoprene can be used, with aromatic hydrocarbon solvents and alicyclic hydrocarbon solvents being preferred, and cyclohexane and toluene being particularly preferred.
  • the amount of the organic solvent used is usually 50 to 2,000 parts by weight, preferably 80 to 1,000 parts by weight, more preferably 100 to 500 parts by weight, more preferably 150 to 300 parts by weight, based on 100 parts by weight of SIS. weight part.
  • the same ones as those for the synthetic polyisoprene can be exemplified.
  • Anionic emulsifiers are preferable, and potassium rosinate and sodium dodecylbenzenesulfonate are particularly preferable.
  • the amount of emulsifier used is preferably 0.1 to 50 parts by weight, more preferably 0.5 to 30 parts by weight, based on 100 parts by weight of SIS. By setting the amount of the emulsifier to be used within the above range, the stability of the obtained latex can be improved.
  • the amount of water used in the SIS latex production method described above is preferably 10 to 1,000 parts by weight, more preferably 30 to 500 parts by weight, and most preferably 100 parts by weight of the SIS organic solvent solution. 50 to 100 parts by weight.
  • Types of water to be used include hard water, soft water, ion-exchanged water, distilled water, zeolite water, and the like.
  • a polar solvent represented by alcohol such as methanol may be used in combination with water.
  • Examples of the apparatus for emulsifying an organic solvent solution or fine suspension of SIS in water in the presence of an emulsifier are the same as those for the above synthetic polyisoprene.
  • the method of adding the emulsifier is not particularly limited. It may be added to the emulsion, may be added all at once, or may be added in portions.
  • the method for producing the SIS latex described above it is preferable to obtain the SIS latex by removing the organic solvent from the emulsion obtained through the emulsification operation.
  • the method for removing the organic solvent from the emulsion is not particularly limited, and methods such as vacuum distillation, normal pressure distillation, steam distillation, and centrifugation can be employed.
  • a concentration operation may be performed by a method such as vacuum distillation, atmospheric distillation, centrifugation, membrane concentration, or the like.
  • the organic solvent can also be removed while adding the defoamer. Foaming can be suppressed by adding an antifoaming agent.
  • the solid content concentration of the SIS latex is preferably 30-70% by weight, more preferably 40-70% by weight, and even more preferably 50-70% by weight.
  • the solid content concentration is preferably 30-70% by weight, more preferably 40-70% by weight, and even more preferably 50-70% by weight.
  • SIS latex contains additives such as pH adjusters, antifoaming agents, preservatives, cross-linking agents, chelating agents, oxygen scavengers, dispersants, anti-aging agents, etc.
  • pH adjuster include the same as those for the synthetic polyisoprene, and alkali metal hydroxides and ammonia are preferred.
  • the pH of the SIS latex at this time is not particularly limited. It is preferable that the pH of the composition is 10 or higher.
  • the content of styrene units in the styrene block in SIS contained in the SIS latex thus obtained is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, based on the total monomer units. , more preferably 100% by weight.
  • the content of isoprene units in the isoprene blocks in SIS is preferably 70 to 100% by weight, more preferably 90 to 100% by weight, still more preferably 100% by weight, based on the total monomer units.
  • the content ratio of styrene units and isoprene units in SIS is usually 1:99 to 90:10, preferably 3:97 to 70:30, more preferably 5, in terms of the weight ratio of "styrene units:isoprene units". :95 to 50:50, more preferably 10:90 to 30:70.
  • the weight average molecular weight of SIS is preferably 10,000 to 1,000,000, more preferably 50,000 to 500,000, and still more preferably 100,000 in terms of standard polystyrene by gel permeation chromatography analysis. ⁇ 300,000.
  • the volume average particle size of the latex particles (SIS particles) in the SIS latex is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 3 ⁇ m, still more preferably 0.5 to 2.0 ⁇ m.
  • a latex of the conjugated diene-based polymer a latex of a nitrile group-containing conjugated diene-based copolymer can be used as described above.
  • the nitrile group-containing conjugated diene copolymer is a copolymer obtained by copolymerizing a conjugated diene monomer with an ethylenically unsaturated nitrile monomer. It may be a copolymer obtained by copolymerizing another ethylenically unsaturated monomer copolymerizable with.
  • Conjugated diene monomers include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-pentadiene and chloroprene. be done. Among these, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred.
  • These conjugated diene monomers can be used alone or in combination of two or more.
  • the content of conjugated diene monomer units formed by the conjugated diene monomer in the nitrile group-containing conjugated diene copolymer is preferably 56 to 78% by weight, more preferably 56 to 73% by weight. , more preferably 56 to 68% by weight. By setting the content of the conjugated diene monomer unit within the above range, the resulting molded article such as a dip molded article can have sufficient tensile strength and excellent texture and elongation.
  • the ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a nitrile group. etc. Among them, acrylonitrile and methacrylonitrile are preferred, and acrylonitrile is more preferred. These ethylenically unsaturated nitrile monomers can be used alone or in combination of two or more.
  • the content of ethylenically unsaturated nitrile monomer units formed by ethylenically unsaturated nitrile monomers in the nitrile group-containing conjugated diene copolymer is preferably 20 to 40% by weight, more preferably is 25 to 40% by weight, more preferably 30 to 40% by weight.
  • ethylenically unsaturated monomers copolymerizable with conjugated diene monomers and ethylenically unsaturated nitrile monomers include, for example, ethylenically unsaturated monomers containing carboxyl groups.
  • Saturated carboxylic acid monomers vinyl aromatic monomers such as styrene, alkylstyrene, vinylnaphthalene; fluoroalkyl vinyl ethers such as fluoroethyl vinyl ether; (meth)acrylamide, N-methylol (meth)acrylamide, N,N-dimethylol Ethylenically unsaturated amide monomers such as (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-propoxymethyl (meth)acrylamide; methyl (meth)acrylate, ethyl (meth)acrylate, (meth)acrylamide Butyl acrylate, 2-ethylhexyl (meth)acrylate, trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth)acrylate, dibutyl maleate, dibutyl fumarate, diethyl maleate, methoxy (meth)acrylate methyl, e
  • the ethylenically unsaturated carboxylic acid monomer is not particularly limited as long as it is an ethylenically unsaturated monomer containing a carboxyl group.
  • ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid
  • Ethylenically unsaturated polycarboxylic acid monomers such as itaconic acid, maleic acid and fumaric acid
  • Ethylenically unsaturated polycarboxylic acid anhydrides such as maleic anhydride and citraconic anhydride
  • monobutyl fumarate maleic acid
  • Ethylenically unsaturated polyvalent carboxylic acid partial ester monomers such as monobutyl and mono-2-hydroxypropyl maleate
  • ethylenically unsaturated monocarboxylic acids are preferred, and methacrylic acid is particularly preferred.
  • ethylenically unsaturated carboxylic acid monomers can also be used as alkali metal salts or ammonium salts. Also, the ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
  • the content of ethylenically unsaturated carboxylic acid monomer units formed by ethylenically unsaturated carboxylic acid monomers in the nitrile group-containing conjugated diene copolymer is preferably 2 to 5% by weight, More preferably 2 to 4.5 wt%, still more preferably 2.5 to 4.5 wt%.
  • the content of other monomer units formed by other ethylenically unsaturated monomers in the nitrile group-containing conjugated diene copolymer is preferably 10% by weight or less, more preferably 5% by weight. % or less, more preferably 3% by weight or less.
  • the nitrile group-containing conjugated diene-based copolymer can be obtained by copolymerizing a monomer mixture containing the above-described monomers, and is preferably copolymerized by emulsion polymerization.
  • a conventionally known method can be employed as the emulsion polymerization method.
  • auxiliary polymerization materials such as emulsifiers, polymerization initiators, and molecular weight modifiers.
  • the method of adding these auxiliary materials for polymerization is not particularly limited, and any method such as an initial batch addition method, a divided addition method, or a continuous addition method may be used.
  • emulsifiers include, but are not limited to, nonionic emulsifiers such as polyoxyethylene alkyl ethers, polyoxyethylene alkylphenol ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan alkyl esters; potassium dodecylbenzenesulfonate, dodecylbenzene Anionic emulsifiers such as alkylbenzenesulfonates such as sodium sulfonate, higher alcohol sulfates, and alkylsulfosuccinates; cationic emulsifiers such as alkyltrimethylammonium chloride, dialkylammonium chloride, and benzylammonium chloride; ⁇ , ⁇ -unsaturation Copolymerizable emulsifiers such as carboxylic acid sulfoesters, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, and sulfoalkylaryl
  • anionic emulsifiers are preferred, alkylbenzenesulfonates are more preferred, and potassium dodecylbenzenesulfonate and sodium dodecylbenzenesulfonate are particularly preferred.
  • These emulsifiers can be used alone or in combination of two or more.
  • the amount of emulsifier used is preferably 0.1 to 10 parts by weight per 100 parts by weight of the monomer mixture.
  • the polymerization initiator is not particularly limited, but for example, sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, inorganic peroxides such as hydrogen peroxide; diisopropylbenzene hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, di-t-butyl peroxide, di- ⁇ - Organic peroxides such as cumyl peroxide, acetyl peroxide, isobutyryl peroxide, and benzoyl peroxide; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, and methyl azobisisobutyrate; can be mentioned. These polymerization initiators can be used alone or in combination of two or more. The amount of
  • a peroxide initiator can be used as a redox polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; sulfonic acid compounds such as sodium methanesulfonate; amine compounds such as dimethylaniline. ; and the like. These reducing agents can be used alone or in combination of two or more.
  • the amount of the reducing agent used is preferably 3 to 1000 parts by weight with respect to 100 parts by weight of the peroxide.
  • the amount of water used for emulsion polymerization is preferably 80 to 600 parts by weight, particularly preferably 100 to 200 parts by weight, based on 100 parts by weight of all the monomers used.
  • Methods of adding the monomers include, for example, a method of collectively adding the monomers used in the reaction vessel, a method of continuously or intermittently adding the monomers as the polymerization progresses, and a method of partially adding the monomers. reaction to a specific conversion rate, and then the remaining monomers are added continuously or intermittently for polymerization, and any method may be employed.
  • the composition of the mixture can be constant or varied.
  • each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added to the reaction vessel separately.
  • secondary polymerization materials such as chelating agents, dispersants, pH adjusters, deoxidants, and particle size adjusters can be used, and there are no particular restrictions on the type or amount used.
  • the polymerization temperature for emulsion polymerization is not particularly limited, but is usually 3 to 95°C, preferably 5 to 60°C.
  • the polymerization time is about 5 to 40 hours.
  • the monomer mixture is emulsion polymerized, and when a predetermined polymerization conversion rate is reached, the polymerization reaction is stopped by cooling the polymerization system or adding a polymerization terminator.
  • the polymerization conversion rate when stopping the polymerization reaction is preferably 90% by weight or more, more preferably 93% by weight or more.
  • polymerization terminator examples include, but are not limited to, hydroxylamine, hydroxylamine sulfate, diethylhydroxylamine, hydroxylaminesulfonic acid and alkali metal salts thereof, sodium dimethyldithiocarbamate, hydroquinone derivatives, catechol derivatives, and hydroxydimethyl aromatic hydroxydithiocarboxylic acids such as benzenethiocarboxylic acid, hydroxydiethylbenzenedithiocarboxylic acid, hydroxydibutylbenzenedithiocarboxylic acid, and alkali metal salts thereof;
  • the amount of the polymerization terminator used is preferably 0.05 to 2 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • anti-aging agents preservatives, antibacterial agents, dispersants, etc. may be appropriately added to the latex of the nitrile group-containing conjugated diene copolymer, if necessary.
  • the number average particle size of the nitrile group-containing conjugated diene copolymer latex is preferably 60 to 300 nm, more preferably 80 to 150 nm.
  • the particle size can be adjusted to a desired value by a method such as adjusting the amount of emulsifier and polymerization initiator used.
  • the latex of the conjugated diene polymer as described above, the latex of natural rubber from which proteins have been removed (deproteinized natural rubber) can also be used.
  • the deproteinized natural rubber latex can be obtained by a known protein removal method, such as a method of decomposing proteins in natural rubber latex with a proteolytic enzyme or a surfactant and removing the proteins by washing, centrifugation, or the like. , so-called "deproteinized natural rubber latex" can be used.
  • conjugated diene-based polymer used in the present invention synthetic polyisoprene, styrene-isoprene-styrene block copolymer (SIS), nitrile group-containing conjugated diene-based copolymer, deproteinized natural rubber, and the like can be used. Although it can be used, it is not limited to these, and a butadiene polymer, a styrene-butadiene copolymer, and the like may also be used.
  • SIS styrene-isoprene-styrene block copolymer
  • the butadiene polymer may be a homopolymer of 1,3-butadiene as the conjugated diene monomer, or other ethylenic heteropolymers copolymerizable with 1,3-butadiene as the conjugated diene monomer.
  • a copolymer obtained by copolymerizing a saturated monomer may also be used.
  • the styrene-butadiene copolymer is a copolymer obtained by copolymerizing styrene with 1,3-butadiene as a conjugated diene monomer. It may be a copolymer obtained by copolymerizing other copolymerizable ethylenically unsaturated monomers.
  • the conjugated diene-based polymer used in the present invention may be an acid-modified conjugated diene-based polymer obtained by modifying with a monomer having an acidic group, or a carboxy-modified conjugated diene-based polymer that is carboxy-modified. is preferably A carboxy-modified conjugated diene-based polymer can be obtained by modifying the above-described conjugated diene-based polymer with a monomer having a carboxyl group.
  • the method of modifying a conjugated diene polymer with a monomer having a carboxyl group is not particularly limited, but for example, a conjugated diene polymer is graft-polymerized with a monomer having a carboxyl group in an aqueous phase.
  • the method of graft-polymerizing a monomer having a carboxyl group in an aqueous phase is not particularly limited, and conventionally known methods may be used.
  • a method of reacting the conjugated diene-based polymer with a monomer having a carboxyl group in an aqueous phase after adding the monomer and the graft polymerization catalyst is preferred.
  • the graft polymerization catalyst is not particularly limited, but examples thereof include inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; Organic peroxides such as t-butyl hydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, di-t-butyl peroxide, isobutyryl peroxide, benzoyl peroxide; 2,2'- Azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, and methyl azobisisobutyrate; From this point of view, organic peroxides are preferred, and 1,1,3,3-tetramethylbutyl hydroperoxide is particularly preferred. These graft polymerization catalysts may be used alone or in combination of two or more.
  • the above graft polymerization catalysts can be used alone or in combination of two or more.
  • the amount of the graft polymerization catalyst used varies depending on the type, but is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, with respect to 100 parts by weight of the conjugated diene polymer.
  • the method for adding the graft polymerization catalyst is not particularly limited, and known addition methods such as batch addition, divided addition, continuous addition, and the like can be employed.
  • an organic peroxide can be used as a redox polymerization initiator in combination with a reducing agent.
  • the reducing agent is not particularly limited, but for example, compounds containing metal ions in a reduced state such as ferrous sulfate and cuprous naphthenate; sulfinates such as sodium hydroxymethanesulfinate; amine compounds; and the like. These reducing agents may be used singly or in combination of two or more.
  • the amount of the reducing agent to be added is not particularly limited, but it is preferably 0.01 to 1 part by weight with respect to 1 part by weight of the organic peroxide.
  • the method of adding the organic peroxide and the reducing agent is not particularly limited, and known addition methods such as batch addition, divided addition, and continuous addition can be used.
  • reaction temperature for reacting the conjugated diene-based polymer with the monomer having a carboxyl group is not particularly limited, it is preferably 15 to 80°C, more preferably 30 to 50°C.
  • the reaction time for reacting the conjugated diene-based polymer with the monomer having a carboxyl group may be appropriately set according to the reaction temperature, preferably 30 to 300 minutes, more preferably 60 to 120 minutes. be.
  • the solid content concentration of the latex of the conjugated diene polymer when reacting the conjugated diene polymer with a monomer having a carboxyl group is not particularly limited, but is preferably 5 to 60% by weight, more preferably 10 to 10% by weight. 40% by weight.
  • Examples of monomers having a carboxyl group include ethylenically unsaturated monocarboxylic acid monomers such as acrylic acid and methacrylic acid; Carboxylic acid monomers; partial ester monomers of ethylenically unsaturated polycarboxylic acids such as monobutyl fumarate, monobutyl maleate, and mono-2-hydroxypropyl maleate; polycarboxylic acids such as maleic anhydride and citraconic anhydride acid anhydride; and the like, but since the effect of carboxy modification becomes more pronounced, ethylenically unsaturated monocarboxylic acid monomers are preferred, acrylic acid and methacrylic acid are more preferred, and methacrylic acid is preferred. Especially preferred. These monomers may be used singly or in combination of two or more. Moreover, the above carboxyl group includes those in the form of salts with alkali metals, ammonia, and the like.
  • the amount of the monomer having a carboxyl group to be used is preferably 0.01 to 100 parts by weight, more preferably 0.01 to 40 parts by weight, still more preferably 0.01 to 40 parts by weight, with respect to 100 parts by weight of the conjugated diene polymer. 5 to 20 parts by weight, more preferably 2 to 5 parts by weight.
  • the method of adding the monomer having a carboxyl group to the latex of the conjugated diene polymer is not particularly limited, and known addition methods such as batch addition, divisional addition and continuous addition can be employed.
  • the degree of modification with a monomer having a carboxyl group in the carboxy-modified conjugated diene polymer may be appropriately controlled according to the purpose of use of the resulting molded article such as a dip molded article, but is preferably 0.01 to 10% by weight. %, more preferably 0.2 to 5% by weight, still more preferably 0.3 to 3% by weight, still more preferably 0.4 to 2% by weight, particularly preferably 0.4 to 1% by weight .
  • the modification rate is represented by the following formula.
  • Modification rate (% by weight) (X/Y) x 100
  • X represents the weight of the unit of the monomer having a carboxyl group in the carboxy-modified conjugated diene-based polymer
  • Y represents the weight of the carboxy-modified conjugated diene-based polymer.
  • X is a method of performing 1 H-NMR measurement on the carboxy-modified conjugated diene polymer and calculating from the results of 1 H-NMR measurement, or calculating the acid amount by neutralization titration and calculating it from the obtained acid amount. It can be obtained by a method or the like.
  • the latex of the conjugated diene-based polymer (including the acid-modified conjugated diene-based polymer) used in the present invention contains pH adjusters, antifoaming agents, preservatives, and chelating agents that are usually added in the latex field. , oxygen scavengers, dispersants, anti-aging agents, and other additives may be added.
  • pH adjusters examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkali metal carbonates such as sodium carbonate and potassium carbonate; alkali metal hydrogencarbonates such as sodium hydrogencarbonate; organic amine compounds such as trimethylamine and triethanolamine; and the like, but alkali metal hydroxides and ammonia are preferred.
  • the solid content concentration of the latex of the conjugated diene-based polymer (including the acid-modified conjugated diene-based polymer) used in the present invention is preferably 30 to 70% by weight, more preferably 40 to 70% by weight, and still more preferably 50 to 70% by weight.
  • the latex composition used in the present invention contains a xanthogen compound in addition to the latex of the conjugated diene polymer described above.
  • the xanthogen compound acts as a vulcanization accelerator when the conjugated diene polymer contained in the latex composition used in the present invention is vulcanized to form a molded article such as a dip molded article.
  • the xanthogen compound acts as a vulcanization accelerator in the latex composition, and after vulcanization is decomposed into alcohol, carbon disulfide, etc. by the heat applied during vulcanization. For example, the xanthogen compound is decomposed into alcohol, carbon disulfide, etc.
  • the latex composition of the present invention contains vulcanization accelerators (e.g., dithiocarbamate-based vulcanization accelerators, thiazole-based vulcanization accelerators, etc.) that have conventionally caused symptoms of delayed allergy (Type IV).
  • vulcanization accelerators e.g., dithiocarbamate-based vulcanization accelerators, thiazole-based vulcanization accelerators, etc.
  • the xanthogen compound is not particularly limited. compounds in which an acid is bonded via a sulfur atom or the like).
  • the xanthate is not particularly limited as long as it has a xanthate structure.
  • hydrocarbon Z is a metal atom
  • x is a number that matches the valence of Z, and is usually 1 to 4, preferably 2 to 4, particularly preferably 2.).
  • xanthates may be used singly or in combination.
  • Xanthogen disulfide is a compound in which two xanthogen acids are bonded via a sulfur atom or the like, and is not particularly limited. Examples include xanthogen polysulfide, diisopropyl xanthogen polysulfide, dibutyl xanthogen polysulfide, etc. Among these, diisopropyl xanthogen disulfide and dibutyl xanthogen disulfide are preferred.
  • a xanthogen polysulfide is a compound in which three or more xanthogenic acids are bonded via a sulfur atom or the like. xanthogen tetrasulfide in which five xanthates are bonded via sulfur, and xanthogen pentasulfide in which five xanthates are bonded via sulfur.
  • xanthates are preferable, and zinc diisopropylxanthate and zinc dibutylxanthate are particularly preferable, from the viewpoint that the tear strength of the obtained molded article such as a dip molded article can be further increased. .
  • xanthogen compounds may be contained singly in the latex composition, but preferably two or more of them are contained.
  • xanthogenic acid when xanthogenic acid is added to the latex composition, part of the xanthogenic acid is present in the form of xanthate, resulting in the latex composition containing two or more xanthogenic compounds. You may end up being Alternatively, part of the xanthogenic acid compounded in the latex composition may exist in the form of xanthogen disulfide or xanthogen polysulfide due to the action of the sulfur vulcanizing agent in the latex composition.
  • the latex composition contains xanthates, xanthogen disulfides or xanthogen polysulfides, these are xanthates, xanthates, xanthogen disulfides and xanthogen polysulfides, respectively. It may exist in any form.
  • the amount of the xanthogen compound used (the total amount used when multiple xanthogen compounds are included) is, with respect to 100 parts by weight of the conjugated diene polymer contained in the latex of the conjugated diene polymer, It is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 7 parts by weight, still more preferably 0.5 to 5 parts by weight, and even more preferably 1 to 3 parts by weight.
  • the xanthogen compound may be compounded in the latex of the conjugated diene polymer by any method, and is not particularly limited. It is preferably mixed in the latex of the conjugated diene polymer in the state. That is, a xanthogen compound is dispersed in water using a surfactant to obtain an aqueous dispersion of the xanthogen compound, and then the obtained aqueous dispersion of the xanthogen compound is blended with the latex of the conjugated diene polymer. preferably.
  • the surfactant used for dispersing the xanthogen compound in water is not particularly limited, and examples thereof include nonionic surfactants, nonionic anionic surfactants, anionic surfactants, and the like. Among these, nonionic surfactants and nonionic anionic surfactants are preferably used from the viewpoint that the tensile strength of molded articles such as dip molded articles can be improved.
  • the anionic surfactant used for dispersing the xanthogen compound in water is not particularly limited. The same thing as an agent can be mentioned.
  • the nonionic surfactant used for dispersing the xanthogen compound in water is not particularly limited as long as it has a segment acting as a nonionic surfactant in its molecular main chain.
  • a polyoxyalkylene structure is preferably exemplified as the segment that acts as a nonionic surfactant.
  • nonionic surfactants include polyoxyalkylene glycol, polyoxyalkylene alkyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyethylene styrenated phenyl ether, polyoxyethylene (hardened) castor oil, polyoxyethylene alkyl amines, fatty acid alkanolamides, and the like.
  • polyoxyalkylene glycols examples include polyoxyethylene glycol, polyoxypropylene glycol, and polyoxypropylene glycol ethylene oxide adducts such as polyoxyethylene polyoxypropylene glycol.
  • polyoxyalkylene alkyl ethers examples include linear or branched ethers to which 1 to 50 (preferably 1 to 10) propylene oxide and/or ethylene oxide are added.
  • linear or branched ethers with 1 to 50 (preferably 1 to 10) propylene oxide added straight chain ethers with 1 to 50 (preferably 1 to 10) ethylene oxide added
  • straight chain ethers with 1 to 50 (preferably 1 to 10) ethylene oxide added Linear or branched chain ethers, linear or branched chain ethers in which a total of 2 to 50 (preferably 2 to 10) ethylene oxide and propylene oxide are added block or randomly.
  • Polyoxyalkylene alkyl ethers include polyoxyethylene oleyl ether, polyoxyethylene octyldodecyl ether, polyoxyethylene dodecyl ether, polyoxyethylene lauryl ether, among others, polyoxyethylene oleyl ether and polyoxyethylene Ethylene octyldodecyl ether is preferred.
  • polyoxyalkylene alkylphenyl ethers examples include compounds obtained by adding 1 to 50 (preferably 1 to 10) propylene oxide and/or ethylene oxide to alkylphenol.
  • polyoxyethylene styrenated phenyl ethers examples include ethylene oxide adducts of (mono-, di-, and tri)styrenated phenols. Styrenated phenyl ethers are preferred.
  • Polyoxyethylene (hardened) castor oil includes castor oil and ethylene oxide adducts of hardened castor oil.
  • fatty acid alkanolamides examples include lauric acid diethanolamide, palmitic acid diethanolamide, myristic acid diethanolamide, stearic acid diethanolamide, oleic acid diethanolamide, palm oil fatty acid diethanolamide, and coconut oil fatty acid diethanolamide.
  • nonionic surfactants having a polyoxyalkylene structure are preferred, nonionic surfactants having a polyoxyethylene structure are more preferred, and hydrocarbylated ethers of polyoxyethylene are more preferred. , polyoxyethylene alkyl ethers and polyoxyethylene distyrenated phenyl ethers are more preferred, and polyoxyethylene distyrenated phenyl ethers are particularly preferred.
  • a nonionic surfactant may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the nonionic anionic surfactant used for dispersing the xanthogen compound in water has a segment acting as a nonionic surfactant and an anionic surfactant in the main chain of the molecule. It is not particularly limited as long as it has a segment that
  • nonionic anionic surfactants include compounds represented by the following general formula (1).
  • R 1 is an alkyl group having 6 to 16 carbon atoms, or an aryl group having 6 to 14 carbon atoms optionally substituted with an alkyl group having 1 to 25 carbon atoms
  • R 2 to R 5 is a group independently selected from the group consisting of hydrogen and methyl groups
  • M is an alkali metal atom or an ammonium ion
  • n is 3-40.
  • Specific examples of the compound represented by the general formula (1) include polyoxyethylene lauryl ether sulfate, polyoxyethylene cetyl ether sulfate, polyoxyethylene stearyl ether sulfate, polyoxyethylene oleyl ether sulfate, and the like. polyoxyethylene alkyl ether sulfate; polyoxyethylene aryl ether sulfate such as polyoxyethylene nonylphenyl ether sulfate, polyoxyethylene octylphenyl ether sulfate, polyoxyethylene distyryl ether sulfate;
  • nonionic anionic surfactants nonionic anionic surfactants having a polyoxyalkylene structure are preferred, and nonionic anionic surfactants having a polyoxyethylene structure are more preferred.
  • Nonionic anionic surfactants may be used singly or in combination of two or more.
  • the content of the nonionic surfactant and/or the nonionic anionic surfactant in the aqueous dispersion of the xanthogen compound is not particularly limited, but is preferably 1 to 50 parts by weight with respect to 100 parts by weight of the xanthogen compound. parts, more preferably 3 to 30 parts by weight, and even more preferably 5 to 20 parts by weight.
  • the total amount is preferably within the above range.
  • the crushing treatment is not particularly limited as long as it is a treatment capable of crushing the xanthogen compound contained in the aqueous dispersion and mitigating aggregation.
  • a method using a known crushing device such as a method using a crushing device utilizing a crushing action, a method using a stirring type crushing device, or the like can be mentioned.
  • a crushing device such as a roll mill, a hammer mill, a vibration mill, a jet mill, a ball mill, a planetary ball mill, a bead mill, a sand mill, and a three-roll mill can be used.
  • a method of crushing using a ball mill, a planetary ball mill, or a bead mill is preferable.
  • the media when crushing treatment is performed using a ball mill, the media preferably have a media size of ⁇ 5 to ⁇ 50 mm, more preferably ⁇ 10 to ⁇ 35 mm, and the rotation speed is preferably 10 to 300 rpm. , more preferably 10 to 100 rpm, and the treatment time is preferably 24 to 120 hours, more preferably 24 to 72 hours.
  • the media when the crushing treatment is performed using a planetary ball mill, the media preferably have a media size of ⁇ 0.1 to ⁇ 5 mm, more preferably ⁇ 0.3 to ⁇ 3 mm, and the rotation speed is , preferably 100 to 1000 rpm, more preferably 100 to 500 rpm, the treatment time is preferably 0.25 to 5 hours, more preferably 0.25 to 3 hours. be.
  • the media when crushing treatment is performed using a bead mill, the media preferably have a media size of ⁇ 0.1 to ⁇ 3 mm, more preferably ⁇ 0.1 to ⁇ 1 mm, and the rotation speed is preferably is preferably 1000 to 10000 rpm, more preferably 1000 to 5000 rpm, and the treatment time is preferably 0.25 to 5 hours, more preferably 0.25 to 3 hours.
  • the latex composition used in the present invention preferably further contains a sulfur-based vulcanizing agent.
  • the sulfur-based vulcanizing agent is not particularly limited, but for example, sulfur such as powdered sulfur, sulfur flower, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide , caprolactam disulfide (N,N'-dithio-bis(hexahydro-2H-azepinone-2)), phosphorus-containing polysulfides, polymeric polysulfides, and sulfur-containing compounds such as 2-(4'-morpholinodithio)benzothiazole mentioned.
  • sulfur can be preferably used.
  • the sulfur-based vulcanizing agents may be used singly or in combination of two or more.
  • the amount of the sulfur-based vulcanizing agent used is not particularly limited, but usually 0.1 to 10 parts by weight, preferably 0.1 to 3 parts by weight, per 100 parts by weight of the conjugated diene polymer contained in the latex composition. , more preferably 0.2 to 2 parts by weight, more preferably 0.3 to 1 part by weight.
  • the latex composition used in the present invention may optionally contain an activator. may be added.
  • the latex composition used in the present invention is used to vulcanize the conjugated diene-based polymer in the latex composition to form a molded article such as a dip molded article.
  • the activator acts as a vulcanization accelerator together with the xanthogen compound described above, thereby further improving the tear strength of the resulting molded article such as a dip molded article.
  • metal compounds include, but are not limited to, metal oxides and metal compounds containing at least one carbon atom.
  • Metals constituting the metal compound are not particularly limited, but typical metals (group 1 elements, group 2 elements, group 12 elements, group 13 elements, group 14 elements, group 15 elements, group 16 elements at least one element selected from the group consisting of elements, Group 17 elements, and Group 18 elements) is preferred, Group 2 elements, Group 12 elements, Group 13 elements, and Group 14 elements are more preferred, Zinc, magnesium, calcium, aluminum and lead are more preferred, zinc, magnesium and calcium are particularly preferred, and zinc is most preferred.
  • These metal compounds may be used singly or in combination.
  • the metal oxide is not particularly limited, but zinc oxide, magnesium oxide, titanium oxide, calcium oxide, lead oxide, iron oxide, Copper oxide, tin oxide, nickel oxide, chromium oxide, cobalt oxide, and aluminum oxide are preferred, and zinc oxide is more preferred.
  • metal compound containing at least one carbon atom carbonates, hydrogencarbonates, hydroxides, and organometallic compounds are preferable from the viewpoint of further improving the tear strength of the obtained molded article such as a dip molded article. More preferred are carbonates, hydrogen carbonates and organometallic compounds. Among these, inorganic salts such as carbonates and hydrogen carbonates are particularly preferred from the viewpoint of excellent stability of the compound itself and excellent availability.
  • the amount of the activator used is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 100 parts by weight of the conjugated diene polymer contained in the latex composition. 1 to 3 parts by weight.
  • the method of blending the activator is not particularly limited as long as the conjugated diene polymer latex and the activator are finally mixed.
  • a vulcanization accelerator may be added to the latex composition as long as it is possible to suppress the occurrence of symptoms of delayed allergy (Type IV) in the resulting molded article such as a dip molded article. .
  • vulcanization accelerators those commonly used in dip molding can be used, such as diethyldithiocarbamate, dibutyldithiocarbamate, di-2-ethylhexyldithiocarbamate, dicyclohexyldithiocarbamate, diphenyldithiocarbamate, and dibenzyldithiocarbamine.
  • Dithiocarbamic acids such as acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2-(2,4-dinitrophenylthio)benzothiazole, 2 -(N,N-diethylthio-carbylthio)benzothiazole, 2-(2,6-dimethyl-4-morpholinothio)benzothiazole, 2-(4'-morpholino-dithio)benzothiazole, 4-morphonylyl-2-benzothiazyl - disulfide, 1,3-bis(2-benzothiazyl-mercaptomethyl)urea and the like.
  • a vulcanization accelerator can be used individually by 1 type or in combination of 2 or more types.
  • xanthogen compound is preferably more than 50% by weight, more preferably 80% by weight or more, and still more preferably 100% by weight.
  • the latex composition further requires compounding agents such as antioxidants; dispersants; reinforcing agents such as carbon black, silica and talc; fillers such as calcium carbonate and clay; can be blended according to
  • Antiaging agents include 2,6-di-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, styrenated phenol, 2,2′-methylene-bis(6- ⁇ -methyl-benzyl-p-cresol), 4, 4′-methylenebis(2,6-di-t-butylphenol), 2,2′-methylene-bis(4-methyl-6-t-butylphenol), alkylated bisphenols, butylation of p-cresol and dicyclopentadiene Phenolic antioxidants containing no sulfur atoms such as reaction products; 2,2'-thiobis-(4-methyl-6-t-butylphenol), 4,4'-thiobis-(6-t-butyl- o-cre
  • the content of the anti-aging agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and still more preferably 1 to 3 parts by weight with respect to 100 parts by weight of the conjugated diene polymer. be.
  • the method of mixing various ingredients into the latex composition is not particularly limited. After that, using a dispersing machine such as a ball mill, kneader, disper, etc., the obtained composition is mixed with various compounding agents, if necessary. Moreover, at least a part of the various compounding agents may be compounded after aging, which will be described later.
  • the solid content concentration of the latex composition used in the present invention is preferably 10-60% by weight, more preferably 10-55% by weight.
  • the latex composition is aged (pre-cured) before being subjected to molding such as dip molding.
  • cross-linking or pre-vulcanization is preferably carried out.
  • Aging (pre-vulcanization) time is not particularly limited, but is preferably 8 to 120 hours, more preferably 24 to 72 hours.
  • the aging (pre-vulcanization) temperature is not particularly limited, but is preferably 20 to 40°C.
  • a molded article (pre-washed molded article) obtained by using the latex composition containing the latex of the conjugated diene polymer and the xanthogen compound is heated at 40 to 100°C. It includes a step of washing with warm water of
  • the method for obtaining the pre-washed molded article obtained by using the latex composition containing the latex of the conjugated diene polymer and the xanthogen compound is not particularly limited, but a method of dip-molding the latex composition. is preferred. That is, the pre-washed molded article and the molded article obtained by washing it are preferably dip-molded articles obtained through dip molding.
  • Dip molding is a method in which a mold is immersed in a latex composition, the composition is deposited on the surface of the mold, the mold is then lifted from the composition, and the composition deposited on the surface of the mold is dried.
  • the mold may be preheated before being immersed in the latex composition.
  • a coagulant can also be used, if desired, before the mold is dipped into the latex composition or after the mold is lifted from the latex composition.
  • the method of using the coagulant include a method of immersing the mold before being immersed in the latex composition in a coagulant solution to adhere the coagulant to the mold (anodic coagulant dipping method), and a method of depositing the latex composition.
  • anodic coagulant dipping method there is a method of immersing the molded mold in a coagulant solution (Teeg adhesion dipping method)
  • the anodic adhesion dipping method is preferable in that a dip molded article with little unevenness in thickness can be obtained.
  • coagulants include metal halides such as barium chloride, calcium chloride, magnesium chloride, zinc chloride and aluminum chloride; nitrates such as barium nitrate, calcium nitrate and zinc nitrate; acetic acid such as barium acetate, calcium acetate and zinc acetate; salts; sulfates such as calcium sulfate, magnesium sulfate, and aluminum sulfate; water-soluble polyvalent metal salts such as; Among them, calcium salts are preferred, and calcium nitrate is more preferred. These water-soluble polyvalent metal salts can be used alone or in combination of two or more.
  • the coagulant can usually be used as a solution of water, alcohol, or a mixture thereof, preferably in the form of an aqueous solution.
  • This aqueous solution may further contain a water-soluble organic solvent such as methanol or ethanol, or a nonionic surfactant.
  • concentration of the coagulant varies depending on the type of water-soluble polyvalent metal salt, but is preferably 5-50% by weight, more preferably 10-30% by weight.
  • the mold After the mold is pulled up from the latex composition, it is usually heated to dry the deposit formed on the mold. Drying conditions may be appropriately selected.
  • crosslinking (vulcanization) of the dip-molded layer can be carried out by heat treatment usually at a temperature of 80 to 150° C., preferably for 10 to 130 minutes.
  • a heating method external heating using infrared rays or heated air or internal heating using high frequency waves can be employed. Among them, external heating with heated air is preferable.
  • the dip-molded layer may be subjected to a leaching treatment for removing water-soluble impurities (for example, excessive emulsifier, coagulant, etc.).
  • the leaching treatment is carried out by immersion in water, preferably warm water of 30 to 70° C., for several tens of seconds to several minutes.
  • a molded article before washing (dip-molded article) is obtained.
  • a detachment method a method of manually peeling from the mold or a method of peeling by water pressure or compressed air pressure can be adopted. After desorption, heat treatment may be performed at a temperature of 60 to 120° C. for 10 to 120 minutes.
  • the thickness of the dip-molded layer is preferably 0.03-0.50 mm, more preferably 0.05-0.40 mm, and particularly preferably 0.08-0.30 mm.
  • the pre-washed molded article thus obtained is washed with warm water of 40 to 100°C, and the obtained molded article is treated with immediate allergy (Type I).
  • immediate allergy Type IV
  • the occurrence of symptoms of delayed allergy Type IV is suppressed, the odor is suppressed, and the color tone is excellent.
  • a xanthogen compound as a vulcanization accelerator, vulcanization accelerators (for example, dithiocarbamate-based vulcanization accelerators, thiazole-based vulcanization accelerators, etc.), the resulting molded product such as a dip molded product exhibits delayed allergy (Type IV) in addition to immediate allergy (Type I). It is possible to suppress the occurrence of the symptoms of On the other hand, as a result of investigation by the present inventors, there is a problem that the use of a xanthogen compound as a vulcanization accelerator deteriorates the odor of the resulting molded product.
  • vulcanization accelerators for example, dithiocarbamate-based vulcanization accelerators, thiazole-based vulcanization accelerators, etc.
  • the present inventors have found that by washing with hot water at 100°C, the odor of the resulting molded article can be reduced and the color tone can be improved.
  • the reason why the use of a xanthogen compound as a vulcanization accelerator worsens the odor of the resulting molded product is not necessarily clear, but decomposition products derived from the xanthogen compound generated by cross-linking or the like are contained in the molded product. It is thought that this is due to the fact that
  • hot water of 50 to 95°C is used. It is preferable to use hot water of 65 to 90°C, and it is particularly preferable to use hot water of 75 to 90°C.
  • the washing time using hot water is preferably 1 to 120 minutes, more preferably 5 to 60 minutes, even more preferably 10 to 40 minutes, and particularly preferably 15 to 30 minutes.
  • the method of washing with hot water is not particularly limited, but includes a method of washing the pre-washed compact while immersed in hot water, and a method of washing with hot water steam.
  • the method of washing by immersion in hot water is preferable from the point that the effect of reducing the color tone and the effect of improving the color tone can be further enhanced.
  • the method of washing the molded article before washing while immersed in warm water is not particularly limited. , an external force generated by the contact between pre-cleaned compacts), for example, the pre-cleaned compacts are immersed in hot water, and the cleaning is performed by generating a stream of warm water.
  • a method in which the pre-cleaned compact is immersed in warm water and then moved or vibrated in hot water. and a method of rotating in a washing tank.
  • the tumbler-type washing tank is used because the odor reduction effect and the color tone improvement effect can be further enhanced.
  • a rotating method is preferred.
  • the amount of hot water used is preferably 10 to 5,000 parts by weight, more preferably 30 to 1,000 parts by weight, and still more preferably 50 to 50 parts by weight with respect to 100 parts by weight of the molded article before washing. 500 parts by weight, particularly preferably 100 to 200 parts by weight.
  • the hot water used for cleaning contains metal salts such as iron (II) sulfate, copper (II) sulfate, zinc (II) sulfate, and manganese (II) sulfate, activated carbon, zeolite, and the like. It is preferable to wash by adding a compound having pores, more preferably a metal salt. As a result, the content of carbon disulfide (CS 2 ) in the compact can be further reduced, and the odor reduction effect can be further enhanced.
  • metal salts such as iron (II) sulfate, copper (II) sulfate, zinc (II) sulfate, and manganese (II) sulfate, activated carbon, zeolite, and the like. It is preferable to wash by adding a compound having pores, more preferably a metal salt. As a result, the content of carbon disulfide (CS 2 ) in the compact can be further reduced, and the odor reduction effect can be
  • the amount of the metal salt and the compound having pores added to the warm water is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 10 parts by weight, relative to 100 parts by weight of the pre-washed compact. 2 to 5 parts by weight, more preferably 0.5 to 2 parts by weight.
  • the dip molded layer formed by dip molding is subjected to leaching to remove water-soluble impurities (for example, excess emulsifier, coagulant, etc.).
  • water-soluble impurities for example, excess emulsifier, coagulant, etc.
  • Treatments may be used, but such leaching treatments are usually performed prior to cross-linking for the purpose of removing water-soluble impurities. Therefore, it is completely different from washing with warm water performed in the present invention, which is performed after cross-linking.
  • the leaching process involves immersing the material in hot water for a short period of time, ranging from several tens of seconds to several minutes, to prevent the vulcanizing agent and vulcanization accelerator required for cross-linking from eluting.
  • the leaching treatment is completely different from the washing using hot water performed in the present invention, and in particular, since the leaching treatment is performed before cross-linking, the mechanical strength is not sufficient, so a constant external force is applied. It is usually not expected to be done in an environment where
  • the pre-washed molded article obtained as described above is washed with warm water of 40 to 100° C., thereby obtaining a molded article using a xanthogen compound.
  • immediate-type allergy Type I
  • the development of symptoms of delayed-type allergy Type IV
  • odor is suppressed
  • color tone is excellent.
  • the content of carbon disulfide (CS 2 ) among the sulfides that cause odor is preferably suppressed to 3 ppm by weight or less, more preferably 1 weight ppm.
  • the content of carbonyl sulfide (SCO) is preferably suppressed to 2.5 ppm by weight or less. more preferably 2 ppm by weight or less, and even more preferably 1 ppm by weight or less.
  • the lower limits of the carbon disulfide (CS 2 ) and carbonyl sulfide (SCO) contents in the molded article of the present invention are not particularly limited, they are usually 0.01 ppm by weight or more.
  • the molded article of the present invention obtained by the manufacturing method of the present invention can be particularly preferably used as gloves, for example, by taking advantage of its properties.
  • inorganic fine particles such as talc or calcium carbonate or organic fine particles such as starch particles are added to prevent adhesion between the contact surfaces of the film molded articles and to improve slippage during putting on and taking off. may be dispersed on the surface of the glove, an elastomer layer containing fine particles may be formed on the surface of the glove, or the surface layer of the glove may be chlorinated.
  • the molded article of the present invention can also be used as medical supplies such as nursing bottle nipples, droppers, tubes, water pillows, balloon sacks, catheters, condoms, and probe covers; toys such as balloons, dolls, and balls; Industrial products such as pressure molding bags and gas storage bags; can also be used for finger cots and the like.
  • ⁇ Modification rate of carboxy-modified synthetic polyisoprene> The carboxy-modified synthetic polyisoprene constituting the carboxy-modified synthetic polyisoprene latex was subjected to neutralization titration using an aqueous sodium hydroxide solution to determine the number of carboxyl groups in the carboxy-modified synthetic polyisoprene. Next, based on the determined number of carboxyl groups, the modification rate with a monomer having a carboxyl group was determined according to the following formula.
  • Modification rate (% by weight) (X/Y) x 100
  • X represents the weight of the monomer unit having a carboxyl group in the carboxy-modified synthetic polyisoprene
  • Y represents the weight of the carboxy-modified synthetic polyisoprene
  • ⁇ Sulfide gas amount> A test piece obtained by cutting a film-like dip-molded body into a size of 5 x 5 mm was precisely weighed, put into a headspace vial (TurboMatrix 40, manufactured by PerkinElmer), sealed, and kept at room temperature for 14 days. I left it. After 14 days, the gas generated inside the vial was sampled with a headspace sampler and introduced into a gas chromatograph to measure the amounts of carbon disulfide (CS 2 ) and carbonyl sulfide (SCO) as sulfide gases.
  • CS 2 carbon disulfide
  • SCO carbonyl sulfide
  • the content of carbon disulfide (CS 2 ) and the content of carbonyl sulfide (SCO) were calculated from the obtained measurement results and the weight of the precisely weighed test piece.
  • Gas chromatography measurement uses a gas chromatograph (GC7890, manufactured by Agilent Technologies), a flame photometric detector (FPD) is used as a detector, and the column tank temperature is 40° C. (5 minutes)-260° C. ( 0 minutes), and the rate of temperature increase was 11°C/minute.
  • Example 1 (Production of latex of carboxy-modified synthetic polyisoprene (A-1)) Synthetic polyisoprene (trade name “NIPOL IR2200L”, manufactured by Nippon Zeon Co., Ltd.) was mixed with n-hexane (boiling point: 69°C), and the temperature was raised to 60°C with stirring to dissolve the synthetic polyisoprene at a concentration of 15. % by weight of synthetic polyisoprene in n-hexane solution (a) was prepared.
  • Synthetic polyisoprene trade name “NIPOL IR2200L”, manufactured by Nippon Zeon Co., Ltd.
  • potassium rosinate was added to water and dissolved by raising the temperature to 60°C to prepare an emulsifier aqueous solution (b) with a concentration of 1.5% by weight.
  • the synthetic polyisoprene n-hexane solution (a) obtained above and the emulsifier aqueous solution (b) are added to 100 parts of the synthetic polyisoprene in the synthetic polyisoprene n-hexane solution (a).
  • the total feed flow rate of the synthetic polyisoprene n-hexane solution (a) and the emulsifier aqueous solution (b) was 2,000 kg/hr, the temperature was 60° C., and the back pressure (gauge pressure) was 0.5 MPa.
  • the resulting emulsified dispersion (c) was heated to 80° C. under reduced pressure of ⁇ 0.01 to ⁇ 0.09 MPa (gauge pressure) to distill off n-hexane, and A dispersion (d) was obtained.
  • an antifoaming agent (trade name "SM5515", manufactured by Dow Corning Toray Co., Ltd.) is continuously added while being sprayed so that the amount becomes 300 ppm by weight with respect to the synthetic polyisoprene in the emulsified dispersion (c). did.
  • the emulsified dispersion liquid (c) is adjusted so that it is 70% by volume or less of the volume of the tank, and a three-stage inclined paddle blade is used as the stirring blade, and the speed is 60 rpm. Slow stirring was carried out at .
  • the resulting aqueous dispersion of synthetic polyisoprene (d) is centrifuged using a continuous centrifuge (product name: "SRG510", manufactured by Alfa Laval). It was concentrated by centrifugation at 000 to 9,000 G to obtain a synthetic polyisoprene latex (e) having a solid content concentration of 60% by weight as a light liquid.
  • the conditions for centrifugation were as follows: the solid content concentration of the aqueous dispersion (d) before centrifugation was 8% by weight; the flow rate during continuous centrifugation was 1300 kg/hr; 1 MPa.
  • the synthetic polyisoprene latex (e) to which the dispersant was added was charged into a nitrogen-purged reaction vessel equipped with a stirrer and heated to 30° C. while stirring.
  • 3 parts of methacrylic acid as a carboxyl group-containing compound and 16 parts of distilled water were mixed to prepare a diluted methacrylic acid solution.
  • This methacrylic acid diluted solution was added over 30 minutes into a reaction vessel maintained at a temperature of 20°C.
  • 05 parts were pulverized by mixing with a ball mill (trade name: “Porcelain Ball Mill”, manufactured by Nitto Kagaku Co., Ltd.) to obtain an aqueous dispersion of a xanthogen compound.
  • the mixing conditions for the ball mill were ⁇ 10 mm to ⁇ 35 mm ceramic porcelain balls ( ⁇ 10 mm, ⁇ 15 mm, ⁇ 20 mm, ⁇ 25 mm, ⁇ 30 mm, and ⁇ 35 mm mixed ceramic porcelain balls), and 72 hours at 50 rpm. .
  • the hand mold coated with the coagulant was taken out from the oven and immersed in the aged latex composition obtained above for 10 seconds.
  • the hand mold was air-dried at room temperature for 10 minutes and then immersed in hot water at 60° C. for 30 seconds to elute water-soluble impurities and form a dip-molded layer on the hand mold.
  • the dip-molded layer formed on the hand mold is vulcanized by heating in an oven at a temperature of 120° C. for 20 minutes, cooled to room temperature, sprinkled with talc, and then peeled off from the hand mold. , to obtain a glove-shaped shaped body before washing.
  • the molded article before washing and ion-exchanged water at a temperature of 90° C.
  • the obtained film-like dip-molded body after washing was subjected to a patch test and measurement of tensile strength and tensile elongation under the following conditions.
  • tensile strength was 25 MPa or more and the tensile elongation was 900% or more (the same applies to Examples 2 to 6 described later).
  • ⁇ Patch test> A test piece obtained by cutting a film-like dip molded body into a size of 10 ⁇ 10 mm was attached to each arm of 10 subjects. After 48 hours, the applied area was observed to confirm whether or not the symptoms of delayed allergy (Type IV) occurred, and the evaluation was made according to the following criteria.
  • Examples 2 to 6 A film-like dip molded article after washing was obtained in the same manner as in Example 1, except that the temperature and washing time of the ion-exchanged water in the washing using hot water were changed as shown in Table 1, and evaluated in the same manner. did Table 1 shows the results.
  • 1.0 part of iron (II) sulfate was mixed with 100 parts of hot water in the washing using hot water.
  • Example 1 A film-like dip molded article was obtained in the same manner as in Example 1, except that the washing with warm water was not performed, and the evaluation was performed in the same manner.
  • Example 2 A film-like dip-molded article was obtained in the same manner as in Example 1, except that instead of washing with hot water, heating was performed in an oven at 120 ° C. for 120 minutes, and the evaluation was performed in the same manner. .
  • Example 3 A film-like dip-molded article was obtained in the same manner as in Example 1, except that instead of washing with hot water, heating was performed in an oven at 80 ° C. for 120 minutes, and the evaluation was performed in the same manner. .
  • Example 4 A film-like dip molded article after washing was obtained in the same manner as in Example 1, except that instead of washing with hot water, ion-exchanged water at 25° C. was used and washing was performed for 30 minutes. and evaluated in the same way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄する洗浄工程を備える成形体の製造方法を提供する。

Description

成形体の製造方法
 本発明は、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体の製造方法に関し、さらに詳しくは、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生が抑制されており、臭気が抑えられており、かつ、色調に優れた成形体を製造可能な製造方法に関する。
 従来、天然ゴムのラテックスを含有するラテックス組成物をディップ成形して、乳首、風船、手袋、バルーン、サック等の人体と接触して使用されるディップ成形体が得られることが知られている。しかしながら、天然ゴムのラテックスは、人体に即時型アレルギー(Type I)の症状を引き起こすような蛋白質を含有するため、生体粘膜又は臓器と直接接触するディップ成形体としては問題がある場合があった。そのため、天然ゴムのラテックスではなく、合成ゴムのラテックスを用いる検討がされてきている。
 たとえば、特許文献1には、ディップ成形用組成物として、合成ゴムである合成ポリイソプレンのラテックスに、酸化亜鉛、硫黄および加硫促進剤を配合してなるラテックス組成物が開示されている。しかしながら、この特許文献1の技術では、天然ゴムに由来する蛋白質による即時型アレルギー(Type I)の発生を防止できる一方で、ディップ成形体などの成形体とした場合に、ディップ成形体などの成形体に含まれる加硫促進剤が原因で、人体に触れた際に、遅延型アレルギー(Type IV)のアレルギー症状を発生させることがあった。
 これに対し、たとえば、特許文献2では、カルボキシ変性共役ジエン系重合体のラテックスに、キサントゲン化合物を配合してなるラテックス組成物が提案されている。この特許文献2の技術によれば、即時型アレルギー(Type I)に加え、遅延型アレルギー(Type IV)の発生をも抑制された成形体が得られるものの、臭気が比較的強く、そのため、臭気の低減が求められていた。
国際公開第2014/129547号 国際公開第2018/155243号
 本発明は、このような実状に鑑みてなされたものであり、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生が抑制されており、臭気が抑えられており、かつ、色調に優れた成形体を製造可能な、成形体の製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した結果、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄することにより、上記課題を解決できることを見出し、このような知見に基づき、本発明を完成させるに至った。
 すなわち、本発明によれば、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄する洗浄工程を備える成形体の製造方法が提供される。
 本発明の成形体の製造方法において、前記ラテックス組成物を用いて得られる成形体を、80~150℃で加熱することで、成形体の加硫を行う加硫工程をさらに備え、前記洗浄工程が、前記加硫工程を行った成形体について、前記温水で洗浄を行う工程であることが好ましい。
 本発明の成形体の製造方法において、前記温水での洗浄時間を、1~120分とすることが好ましい。
 本発明の成形体の製造方法において、前記温水での洗浄を、前記成形体を温水中に浸した状態にて、タンブラー式洗浄槽中で回転させることにより行うことが好ましい。
 本発明の成形体の製造方法において、前記共役ジエン系重合体のラテックスが、合成ポリイソプレンのラテックス、スチレン-イソプレン-スチレンブロック共重合体のラテックス、または蛋白質を除去した天然ゴムのラテックスであることが好ましい。
 本発明の成形体の製造方法において、前記洗浄工程が、前記成形体を洗浄する前に、前記温水に金属塩を添加することを含み、前記温水への前記金属塩の添加量が、前記成形体100重量部に対して0.1~10重量部であることが好ましい。
 また、本発明によれば、共役ジエン系重合体を、キサントゲン化合物を用いて架橋してなる成形体であって、二硫化炭素の含有量が、3重量ppm以下である成形体が提供される。
 本発明によれば、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生が抑制されており、臭気が抑えられており、かつ、色調に優れた成形体を製造することができる。
 本発明の成形体の製造方法は、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄する工程を備えるものである。
<ラテックス組成物>
 まず、本発明の製造方法で用いるラテックス組成物について、説明する。
 本発明の製造方法で用いるラテックス組成物は、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有する。
 本発明で用いる共役ジエン系重合体ラテックスとしては、特に限定されないが、たとえば、合成ポリイソプレンのラテックス、スチレン-イソプレン-スチレンブロック共重合体(SIS)のラテックス、蛋白質を除去した天然ゴム(脱蛋白質天然ゴム)のラテックス、ニトリル基含有共役ジエン系共重合体のラテックスなどが挙げられる。これらのなかでも、合成ポリイソプレンのラテックス、SISのラテックス、脱蛋白質天然ゴムのラテックスなどのイソプレン単位を含有する重合体のラテックスが好ましく、合成ポリイソプレンのラテックスが特に好ましい。
 共役ジエン系重合体のラテックスとして合成ポリイソプレンのラテックスを用いる場合には、合成ポリイソプレンのラテックスに含まれる合成ポリイソプレンは、イソプレンの単独重合体であってもよいし、イソプレンと共重合可能な他のエチレン性不飽和単量体とを共重合したものであってもよい。合成ポリイソプレン中のイソプレン単位の含有量は、柔軟で、引張強度に優れるディップ成形体などの成形体が得られやすいことから、全単量体単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上、特に好ましくは100重量%(イソプレンの単独重合体)である。
 イソプレンと共重合可能な他のエチレン性不飽和単量体としては、たとえば、ブタジエン、クロロプレン、1,3-ペンタジエン等のイソプレン以外の共役ジエン単量体;アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル等のエチレン性不飽和ニトリル単量体;スチレン、アルキルスチレン等のビニル芳香族単量体;(メタ)アクリル酸メチル(「アクリル酸メチルおよび/またはメタクリル酸メチル」の意味であり、以下、(メタ)アクリル酸エチルなども同様。)、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル等のエチレン性不飽和カルボン酸エステル単量体;などが挙げられる。これらのイソプレンと共重合可能な他のエチレン性不飽和単量体は、1種単独でも、複数種を併用してもよい。
 合成ポリイソプレンは、従来公知の方法、たとえばトリアルキルアルミニウム-四塩化チタンからなるチーグラー系重合触媒やn-ブチルリチウム、sec-ブチルリチウムなどのアルキルリチウム重合触媒を用いて、不活性重合溶媒中で、イソプレンと、必要に応じて用いられる共重合可能な他のエチレン性不飽和単量体とを溶液重合して得ることができる。溶液重合により得られた合成ポリイソプレンの重合体溶液は、そのまま、合成ポリイソプレンラテックスの製造に用いてもよいが、該重合体溶液から固形の合成ポリイソプレンを取り出した後、有機溶媒に溶解して、合成ポリイソプレンラテックスの製造に用いることもできる。
 上述した方法により合成ポリイソプレンの重合体溶液を得た場合には、重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形の合成ポリイソプレンを用いることもできる。
 合成ポリイソプレン中のイソプレン単位としては、イソプレンの結合状態により、シス結合単位、トランス結合単位、1,2-ビニル結合単位、3,4-ビニル結合単位の4種類が存在する。得られるディップ成形体などの成形体の引張強度向上の観点から、合成ポリイソプレンに含まれるイソプレン単位中のシス結合単位の含有割合は、全イソプレン単位に対して、好ましくは70重量%以上、より好ましくは90重量%以上、さらに好ましくは95重量%以上である。
 合成ポリイソプレンの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~5,000,000、より好ましくは500,000~5,000,000、さらに好ましくは800,000~3,000,000である。合成ポリイソプレンの重量平均分子量を上記範囲とすることにより、得られるディップ成形体などの成形体の引張強度、および引張伸びがより向上するとともに、合成ポリイソプレンラテックスが製造しやすくなる傾向がある。
 また、合成ポリイソプレンのポリマー・ムーニー粘度(ML1+4、100℃)は、好ましくは50~80、より好ましくは60~80、さらに好ましくは70~80である。
 合成ポリイソプレンラテックスを得るための方法としては、たとえば、(1)有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、乳化剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、合成ポリイソプレンラテックスを製造する方法、(2)イソプレン単独または、イソプレンとそれと共重合可能なエチレン性不飽和単量体との混合物を、乳化剤の存在下に、乳化重合もしくは懸濁重合して、直接、合成ポリイソプレンラテックスを製造する方法、が挙げられるが、イソプレン単位中のシス結合単位の割合が高い合成ポリイソプレンを用いることができ、引張強度等の機械的特性に優れるディップ成形体などの成形体が得られやすい点から、上記(1)の製造方法が好ましい。
 上記(1)の製造方法で用いる有機溶媒としては、たとえば、ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;シクロペンタン、シクロペンテン、シクロヘキサン、シクロヘキセン等の脂環族炭化水素溶媒;ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶媒;塩化メチレン、クロロホルム、二塩化エチレン等のハロゲン化炭化水素溶媒;等を挙げることができる。これらのうち、脂環族炭化水素溶媒、脂肪族炭化水素溶媒が好ましく、ペンタン、シクロヘキサン、n-ヘキサンがより好ましく、n-ヘキサンが特に好ましい。
 なお、有機溶媒の使用量は、合成ポリイソプレン100重量部に対して、好ましくは2,000重量部以下、より好ましくは20~1,500重量部、さらに好ましくは500~1,500重量部である。
 上記(1)の製造方法で用いる乳化剤としては、イオン性乳化剤を用いることが好ましく、中でも、アニオン性乳化剤を用いることがより好ましい。アニオン性乳化剤としては、たとえば、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム、ロジン酸カリウム等の脂肪酸塩;ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、セチルベンゼンスルホン酸ナトリウム、セチルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;ラウリル硫酸ナトリウム、ラウリル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩;等が挙げられる。
 これらアニオン性乳化剤の中でも、脂肪酸塩、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩が好ましく、脂肪酸塩およびアルキルベンゼンスルホン酸塩が特に好ましい。
 また、合成ポリイソプレン由来の、微量に残留する重合触媒(特に、アルミニウムとチタニウム)をより効率的に除去でき、ラテックス組成物を製造する際における、凝集物の発生が抑制されることから、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用してもよい。この場合、アルキルベンゼンスルホン酸塩と、脂肪酸塩とを併用することが好ましい。ここで、脂肪酸塩としては、ロジン酸ナトリウムおよびロジン酸カリウムが好ましく、また、アルキルベンゼンスルホン酸塩としては、ドデシルベンゼンスルホン酸ナトリウムおよびドデシルベンゼンスルホン酸カリウムが好ましい。また、これらの乳化剤は、1種単独でも2種以上を併用してもよい。
 なお、上述したように、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩からなる群から選ばれる少なくとも1種と、脂肪酸塩とを併用して用いることにより、得られるラテックスが、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを含有するものとなる。
 また、アニオン性乳化剤以外のイオン性乳化剤としては、α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性の乳化剤が挙げられる。
 さらに、ディップ成形等の成形を行う際に使用する凝固剤による凝固を阻害しない範囲であれば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤も併用してもよい。
 上記(1)の製造方法で用いる乳化剤の使用量は、合成ポリイソプレン100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部、さらに好ましくは1~20重量部である。なお、2種類以上の乳化剤を用いる場合においては、これらの合計の使用量を上記範囲とすることが好ましい。すなわち、たとえば、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用量の合計を上記範囲とすることが好ましい。乳化剤の使用量を上記範囲とすることにより、乳化時の凝集物の発生をより抑制することができる。
 また、アニオン性乳化剤として、アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種と、脂肪酸塩とを併用する場合には、これらの使用割合を、「脂肪酸塩」:「アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の乳化剤の合計」の重量比で、1:1~10:1の範囲とすることが好ましく、1:1~7:1の範囲とすることがより好ましい。アルキルベンゼンスルホン酸塩、アルキルスルホコハク酸塩、アルキル硫酸エステル塩およびポリオキシエチレンアルキルエーテル硫酸エステル塩の中から選ばれた少なくとも1種の乳化剤の使用割合を上記範囲とすることにより、合成ポリイソプレンの取り扱い時に発生する泡立ちを抑制することができ、これにより、長時間の静置や、消泡剤の添加などの操作が不要になり、作業性の改善およびコストダウンに繋がる。
 上記(1)の製造方法で使用する水の量は、合成ポリイソプレンの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられ、軟水、イオン交換水および蒸留水が好ましい。
 有機溶媒に溶解または微分散した合成ポリイソプレンの溶液または微細懸濁液を、乳化剤の存在下、水中で乳化する装置は、一般に乳化機または分散機として市販されているものであれば特に限定されず使用できる。合成ポリイソプレンの溶液または微細懸濁液に、乳化剤を添加する方法としては、特に限定されず、予め、水もしくは合成ポリイソプレンの溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。
 乳化装置としては、たとえば、商品名「ホモジナイザー」(IKA社製)、商品名「ポリトロン」(キネマティカ社製)、商品名「TKオートホモミキサー」(特殊機化工業社製)等のバッチ式乳化機;商品名「TKパイプラインホモミキサー」(特殊機化工業社製)、商品名「コロイドミル」(神鋼パンテック社製)、商品名「スラッシャー」(日本コークス工業社製)、商品名「トリゴナル湿式微粉砕機」(三井三池化工機社製)、商品名「キャビトロン」(ユーロテック社製)、商品名「マイルダー」(太平洋機工社製)、商品名「ファインフローミル」(太平洋機工社製)等の連続式乳化機;商品名「マイクロフルイダイザー」(みずほ工業社製)、商品名「ナノマイザー」(ナノマイザー社製)、商品名「APVガウリン」(ガウリン社製)等の高圧乳化機;商品名「膜乳化機」(冷化工業社製)等の膜乳化機;商品名「バイブロミキサー」(冷化工業社製)等の振動式乳化機;商品名「超音波ホモジナイザー」(ブランソン社製)等の超音波乳化機;等が挙げられる。なお、乳化装置による乳化操作の条件は、特に限定されず、所望の分散状態になるように、処理温度、処理時間などを適宜選定すればよい。
 上記(1)の製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去することが望ましい。
 乳化物から有機溶媒を除去する方法としては、得られる合成ポリイソプレンラテックス中における、有機溶媒(好ましくは脂環族炭化水素溶媒または脂肪族炭化水素溶媒)の含有量を500重量ppm以下とすることのできる方法が好ましく、たとえば、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
 消泡剤を添加しながら、有機溶媒を除去することもできる。消泡剤を添加することにより、合成ポリイソプレンの泡立ちを抑制することができる。
 さらに、有機溶媒を除去した後、必要に応じ、合成ポリイソプレンラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよく、特に、合成ポリイソプレンラテックスの固形分濃度を上げるとともに、合成ポリイソプレンラテックス中の乳化剤の残留量を低減することができるという観点より、遠心分離を行うことが好ましい。
 遠心分離は、たとえば、連続遠心分離機を用いて、遠心力を、好ましくは100~10,000G、遠心分離前の合成ポリイソプレンラテックスの固形分濃度を、好ましくは2~15重量%、遠心分離機に送り込む流速を、好ましくは500~1700Kg/hr、遠心分離機の背圧(ゲージ圧)を、好ましくは0.03~1.6MPaの条件にて実施することが好ましく、遠心分離後の軽液として、合成ポリイソプレンラテックスを得ることができる。そして、これにより、合成ポリイソプレンラテックス中における、乳化剤の残留量を低減することができる。
 合成ポリイソプレンラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%、さらに好ましくは50~70重量%である。固形分濃度を上記範囲の下限以上とすることにより、得られるディップ成形体などの成形体が破れにくくなる。また、固形分濃度を上記範囲の上限以下とすることにより、合成ポリイソプレンラテックスの粘度が高くなりすぎることを防止し、配管での移送や調合タンク内での撹拌が容易なものとなる。
 合成ポリイソプレンラテックスの体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。この体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、合成ポリイソプレンラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。
 また、合成ポリイソプレンラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
 また、共役ジエン系重合体のラテックスとしては、上述したように、スチレン-イソプレン-スチレンブロック共重合体(SIS)のラテックスを用いることもできる。なお、SISにおいては、「S」はスチレンブロック、「I」はイソプレンブロックをそれぞれ表す。
 SISのラテックスに含まれるSISは、従来公知の方法、たとえばn-ブチルリチウムなどの活性有機金属を開始剤として、不活性重合溶媒中で、イソプレンとスチレンとをブロック共重合して得ることができる。そして、得られたSISの重合体溶液は、SISのラテックスの製造にそのまま用いてもよいが、該重合体溶液から固形のSISを取り出した後、その固形のSISを有機溶媒に溶解して、SISのラテックスの製造に用いることもできる。SISのラテックスの製造方法としては、特に限定されないが、有機溶媒に溶解または微分散したSISの溶液または微細懸濁液を、乳化剤の存在下に、水中で乳化し、必要により有機溶媒を除去して、SISのラテックスを製造する方法が好ましい。
 この際、合成した後に重合体溶液中に残った重合触媒の残渣などの不純物を取り除いてもよい。また、重合中または重合後の溶液に、後述する老化防止剤を添加してもよい。また、市販の固形のSISを用いることもできる。
 有機溶媒としては、上記合成ポリイソプレンの場合と同様のものを使用することができ、芳香族炭化水素溶媒および脂環族炭化水素溶媒が好ましく、シクロヘキサンおよびトルエンが特に好ましい。
 なお、有機溶媒の使用量は、SIS100重量部に対して、通常50~2,000重量部、好ましくは80~1,000重量部、より好ましくは100~500重量部、さらに好ましくは150~300重量部である。
 乳化剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アニオン性乳化剤が好適であり、ロジン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。
 乳化剤の使用量は、SIS100重量部に対して、好ましくは0.1~50重量部、より好ましくは0.5~30重量部である。乳化剤の使用量を上記範囲とすることにより、得られるラテックスの安定性を向上させることができる。
 上述したSISのラテックスの製造方法で使用する水の量は、SISの有機溶媒溶液100重量部に対して、好ましくは10~1,000重量部、より好ましくは30~500重量部、最も好ましくは50~100重量部である。使用する水の種類としては、硬水、軟水、イオン交換水、蒸留水、ゼオライトウォーターなどが挙げられる。また、メタノールなどのアルコールに代表される極性溶媒を水と併用してもよい。
 SISの有機溶媒溶液または微細懸濁液を、乳化剤の存在下、水中で乳化する装置は、上記合成ポリイソプレンの場合と同様のものを例示することができる。そして、乳化剤の添加方法は、特に限定されず、予め水もしくはSISの有機溶媒溶液または微細懸濁液のいずれか、あるいは両方に添加してもよいし、乳化操作を行っている最中に、乳化液に添加してもよく、一括添加しても、分割添加してもよい。
 上述したSISのラテックスの製造方法においては、乳化操作を経て得られた乳化物から、有機溶媒を除去して、SISのラテックスを得ることが好ましい。乳化物から有機溶媒を除去する方法は、特に限定されず、減圧蒸留、常圧蒸留、水蒸気蒸留、遠心分離等の方法を採用することができる。
 また、有機溶媒を除去した後、必要に応じ、SISのラテックスの固形分濃度を上げるために、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法で濃縮操作を施してもよい。
 消泡剤を添加しながら、有機溶媒を除去することもできる。消泡剤を添加することにより泡立ちを抑制することができる。
 SISのラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%、さらに好ましくは50~70重量%である。固形分濃度を上記範囲の下限以上とすることにより、得られるディップ成形体などの成形体が破れにくくなる。また、固形分濃度を上記範囲の上限以下とすることにより、SISのラテックスの粘度が高くなりすぎることを防止し、配管での移送や調合タンク内での撹拌が容易なものとなる。
 また、SISのラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、架橋剤、キレート剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。pH調整剤としては、上記合成ポリイソプレンの場合と同様のものを例示することができ、アルカリ金属の水酸化物またはアンモニアが好ましい。なお、この際におけるSISのラテックスのpHは特に限定されないが、後述するように、SISラテックス等を用いてラテックス組成物とし、該ラテックス組成物を所定の条件で熟成させる際に、熟成前のラテックス組成物のpHが、10以上となっていることが好ましい。
 このようにして得られるSISラテックスに含まれる、SIS中のスチレンブロックにおけるスチレン単位の含有量は、全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 また、SIS中のイソプレンブロックにおけるイソプレン単位の含有量は、全単量体単位に対して、好ましくは70~100重量%、より好ましくは90~100重量%、さらに好ましくは100重量%である。
 なお、SIS中のスチレン単位とイソプレン単位の含有割合は、「スチレン単位:イソプレン単位」の重量比で、通常1:99~90:10、好ましくは3:97~70:30、より好ましくは5:95~50:50、さらに好ましくは10:90~30:70の範囲である。
 SISの重量平均分子量は、ゲル・パーミーエーション・クロマトグラフィー分析による標準ポリスチレン換算で、好ましくは10,000~1,000,000、より好ましくは50,000~500,000、さらに好ましくは100,000~300,000である。SISの重量平均分子量を上記範囲とすることにより、得られるディップ成形体などの成形体の引張強度と柔軟性のバランスが向上するとともに、SISのラテックスが製造しやすくなる傾向がある。
 SISラテックス中のラテックス粒子(SIS粒子)の体積平均粒子径は、好ましくは0.1~10μm、より好ましくは0.5~3μm、さらに好ましくは0.5~2.0μmである。ラテックス粒子の体積平均粒子径を上記範囲とすることにより、ラテックス粘度が適度なものとなり取り扱いやすくなるとともに、SISラテックスを貯蔵した際に、ラテックス表面に皮膜が生成することを抑制できる。
 また、共役ジエン系重合体のラテックスとしては、上述したように、ニトリル基含有共役ジエン系共重合体のラテックスを用いることもできる。
 ニトリル基含有共役ジエン系共重合体は、共役ジエン単量体にエチレン性不飽和ニトリル単量体を共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ペンタジエンおよびクロロプレンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンがより好ましい。これらの共役ジエン単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、共役ジエン単量体により形成される共役ジエン単量体単位の含有割合は、好ましくは56~78重量%であり、より好ましくは56~73重量%、さらに好ましくは56~68重量%である。共役ジエン単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの成形体を、引張強度を十分なものとしながら、風合いおよび伸びにより優れたものとすることができる。
 エチレン性不飽和ニトリル単量体としては、ニトリル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-クロロアクリロニトリル、α-シアノエチルアクリロニトリルなどが挙げられる。なかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。これらのエチレン性不飽和ニトリル単量体は、単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和ニトリル単量体により形成されるエチレン性不飽和ニトリル単量体単位の含有割合は、好ましくは20~40重量%であり、より好ましくは25~40重量%、さらに好ましくは30~40重量%である。エチレン性不飽和ニトリル単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの成形体を、引張強度を十分なものとしながら、風合いおよび伸びにより優れたものとすることができる。
 共役ジエン単量体およびエチレン性不飽和ニトリル単量体と共重合可能なその他のエチレン性不飽和単量体としては、たとえば、カルボキシル基を含有するエチレン性不飽和単量体であるエチレン性不飽和カルボン酸単量体;スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体;フルオロエチルビニルエーテル等のフルオロアルキルビニルエーテル;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-プロポキシメチル(メタ)アクリルアミド等のエチレン性不飽和アミド単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸-2-エチルヘキシル、(メタ)アクリル酸トリフルオロエチル、(メタ)アクリル酸テトラフルオロプロピル、マレイン酸ジブチル、フマル酸ジブチル、マレイン酸ジエチル、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸メトキシエトキシエチル、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸-2-シアノエチル、(メタ)アクリル酸-1-シアノプロピル、(メタ)アクリル酸-2-エチル-6-シアノヘキシル、(メタ)アクリル酸-3-シアノプロピル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル単量体;ジビニルベンゼン、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトール(メタ)アクリレート等の架橋性単量体;などを挙げることができる。これらのエチレン性不飽和単量体は単独で、または2種以上を組み合わせて使用することができる。
 エチレン性不飽和カルボン酸単量体としては、カルボキシル基を含有するエチレン性不飽和単量体であれば特に限定されないが、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸等のエチレン性不飽和多価カルボン酸単量体;無水マレイン酸、無水シトラコン酸等のエチレン性不飽和多価カルボン酸無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ-2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸部分エステル単量体;などが挙げられる。これらのなかでも、エチレン性不飽和モノカルボン酸が好ましく、メタクリル酸が特に好ましい。これらのエチレン性不飽和カルボン酸単量体はアルカリ金属塩またはアンモニウム塩として用いることもできる。また、エチレン性不飽和カルボン酸単量体は単独で、または2種以上を組合せて用いることができる。ニトリル基含有共役ジエン系共重合体中における、エチレン性不飽和カルボン酸単量体により形成されるエチレン性不飽和カルボン酸単量体単位の含有割合は、好ましくは2~5重量%であり、より好ましくは2~4.5重量%、さらに好ましくは2.5~4.5重量%である。エチレン性不飽和カルボン酸単量体単位の含有量を上記範囲とすることにより、得られるディップ成形体などの成形体を、引裂強度を十分なものとしながら、風合いにより優れたものとすることができる。
 ニトリル基含有共役ジエン系共重合体中における、その他のエチレン性不飽和単量体により形成されるその他の単量体単位の含有割合は、好ましくは10重量%以下であり、より好ましくは5重量%以下、さらに好ましくは3重量%以下である。
 ニトリル基含有共役ジエン系共重合体は、上述した単量体を含有してなる単量体混合物を共重合することにより得られるが、乳化重合により共重合する方法が好ましい。乳化重合方法としては、従来公知の方法を採用することができる。
 上述した単量体を含有してなる単量体混合物を乳化重合する際には、通常用いられる、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。これら重合副資材の添加方法は特に限定されず、初期一括添加法、分割添加法、連続添加法などいずれの方法でもよい。
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤などを挙げることができる。なかでも、アニオン性乳化剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましく、ドデシルベンゼンスルホン酸カリウムおよびドデシルベンゼンスルホン酸ナトリウムが特に好ましい。これらの乳化剤は、単独で、または2種以上を組合せて用いることができる。乳化剤の使用量は、単量体混合物100重量部に対して、好ましくは0.1~10重量部である。
 重合開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ジ-α-クミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などを挙げることができる。これらの重合開始剤は、それぞれ単独で、または2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、単量体混合物100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~2重量部である。
 また、過酸化物開始剤は還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。この還元剤としては、特に限定されないが、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;メタンスルホン酸ナトリウム等のスルホン酸化合物;ジメチルアニリン等のアミン化合物;などが挙げられる。これらの還元剤は単独で、または2種以上を組合せて用いることができる。還元剤の使用量は、過酸化物100重量部に対して3~1000重量部であることが好ましい。
 乳化重合する際に使用する水の量は、使用する全単量体100重量部に対して、80~600重量部が好ましく、100~200重量部が特に好ましい。
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
 さらに、必要に応じて、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることもでき、これらは種類、使用量とも特に限定されない。
 乳化重合を行う際の重合温度は、特に限定されないが、通常、3~95℃、好ましくは5~60℃である。重合時間は5~40時間程度である。
 以上のように単量体混合物を乳化重合し、所定の重合転化率に達した時点で、重合系を冷却したり、重合停止剤を添加したりして、重合反応を停止する。重合反応を停止する際の重合転化率は、好ましくは90重量%以上、より好ましくは93重量%以上である。
 重合停止剤としては、特に限定されないが、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシルアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノン誘導体、カテコール誘導体、ならびに、ヒドロキシジメチルベンゼンチオカルボン酸、ヒドロキシジエチルベンゼンジチオカルボン酸、ヒドロキシジブチルベンゼンジチオカルボン酸などの芳香族ヒドロキシジチオカルボン酸およびこれらのアルカリ金属塩などが挙げられる。重合停止剤の使用量は、単量体混合物100重量部に対して、好ましくは0.05~2重量部である。
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整することで、ニトリル基含有共役ジエン系共重合体のラテックスを得ることができる。
 また、ニトリル基含有共役ジエン系共重合体のラテックスには、必要に応じて、老化防止剤、防腐剤、抗菌剤、分散剤などを適宜添加してもよい。
 ニトリル基含有共役ジエン系共重合体のラテックスの数平均粒子径は、好ましくは60~300nm、より好ましくは80~150nmである。粒子径は、乳化剤および重合開始剤の使用量を調節するなどの方法により、所望の値に調整することができる。
 また、共役ジエン系重合体のラテックスとして、上述したように、蛋白質を除去した天然ゴム(脱蛋白質天然ゴム)のラテックスを用いることもできる。脱蛋白質天然ゴムのラテックスとしては、天然ゴムラテックス中の蛋白質を、たとえば蛋白質分解酵素や界面活性剤などにより分解し、洗浄や遠心分離などにより除去する方法などの、公知の蛋白質除去法により得られる、いわゆる「脱蛋白質天然ゴムラテックス」として知られているものを用いることができる。
 本発明で用いる共役ジエン系重合体としては、上述したように、合成ポリイソプレン、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ニトリル基含有共役ジエン系共重合体、脱蛋白質天然ゴムなどを用いることができるが、これらに限定されず、ブタジエン重合体、スチレン-ブタジエン共重合体などを用いてもよい。
 ブタジエン重合体は、共役ジエン単量体としての1,3-ブタジエンの単独重合体であってもよいし、共役ジエン単量体としての1,3-ブタジエンと共重合可能な他のエチレン性不飽和単量体とを共重合してなる共重合体であってもよい。
 また、スチレン-ブタジエン共重合体は、共役ジエン単量体としての1,3-ブタジエンにスチレンを共重合してなる共重合体であり、これらに加えて、必要に応じて用いられる、これらと共重合可能な他のエチレン性不飽和単量体を共重合してなる共重合体であってもよい。
 また、本発明で用いる共役ジエン系重合体は、酸性基を有する単量体により変性して得られる酸変性共役ジエン系重合体であってもよく、カルボキシ変性されたカルボキシ変性共役ジエン系重合体であることが好ましい。カルボキシ変性共役ジエン系重合体は、上述した共役ジエン系重合体を、カルボキシル基を有する単量体により変性することにより得ることができる。なお、ニトリル基含有共役ジエン系共重合体として、可能なその他のエチレン性不飽和単量体として、エチレン性不飽和カルボン酸単量体を使用した場合には、既にカルボキシ変性されているため、後述するカルボキシル基を有する単量体による変性は、必ずしも必要でない。
 共役ジエン系重合体を、カルボキシル基を有する単量体により変性する方法としては、特に限定されないが、たとえば、共役ジエン系重合体に、カルボキシル基を有する単量体を水相中でグラフト重合する方法が挙げられる。カルボキシル基を有する単量体を水相中でグラフト重合する方法としては、特に限定されず、従来公知の方法を用いればよいが、たとえば、共役ジエン系重合体のラテックスに、カルボキシル基を有する単量体と、グラフト重合触媒とを添加した後、水相中で、共役ジエン系重合体に、カルボキシル基を有する単量体を反応させる方法が好ましい。
 グラフト重合触媒としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができるが、得られるディップ成形体などの成形体の引張強度がより向上するという観点から、有機過酸化物が好ましく、1,1,3,3-テトラメチルブチルハイドロパーオキサイドが特に好ましい。これらのグラフト重合触媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記グラフト重合触媒は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。グラフト重合触媒の使用量は、その種類によって異なるが、共役ジエン系重合体100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.2~5重量部である。また、グラフト重合触媒を添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。
 また、有機過酸化物は、還元剤との組み合わせで、レドックス系重合開始剤として使用することができる。還元剤としては、特に限定されないが、たとえば、硫酸第一鉄、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;ヒドロキシメタンスルフィン酸ナトリウムなどのスルフィン酸塩;ジメチルアニリン等のアミン化合物;等が挙げられる。これらの還元剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 還元剤の添加量は、特に限定されないが、有機過酸化物1重量部に対して0.01~1重量部であることが好ましい。
 有機過酸化物および還元剤の添加方法は、特に限定されず、それぞれ、一括添加、分割添加、連続添加等の公知の添加方法を用いることができる。
 共役ジエン系重合体にカルボキシル基を有する単量体を反応させる際の反応温度は、特に限定されないが、好ましくは15~80℃、より好ましくは30~50℃である。共役ジエン系重合体にカルボキシル基を有する単量体を反応させる際の反応時間は、上記反応温度に応じて適宜設定すればよいが、好ましくは30~300分間、より好ましくは60~120分間である。
 共役ジエン系重合体にカルボキシル基を有する単量体を反応させる際における、共役ジエン系重合体のラテックスの固形分濃度は、特に限定されないが、好ましくは5~60重量%、より好ましくは10~40重量%である。
 カルボキシル基を有する単量体としては、たとえば、アクリル酸、メタクリル酸等のエチレン性不飽和モノカルボン酸単量体;イタコン酸、マレイン酸、フマル酸、ブテントリカルボン酸等のエチレン性不飽和多価カルボン酸単量体;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ2-ヒドロキシプロピル等のエチレン性不飽和多価カルボン酸の部分エステル単量体;無水マレイン酸、無水シトラコン酸等の多価カルボン酸無水物;などを挙げることができるが、カルボキシ変性による効果がより一層顕著になることから、エチレン性不飽和モノカルボン酸単量体が好ましく、アクリル酸およびメタクリル酸がより好ましく、メタクリル酸が特に好ましい。なお、これらの単量体は1種単独でも、2種以上を併用して用いてもよい。また、上記カルボキシル基は、アルカリ金属やアンモニア等との塩になっているものも含まれる。
 カルボキシル基を有する単量体の使用量は、共役ジエン系重合体100重量部に対して、好ましくは0.01~100重量部、より好ましくは0.01~40重量部、さらに好ましくは0.5~20重量部、よりさらに好ましくは2~5重量部である。カルボキシル基を有する単量体の使用量を上記範囲とすることにより、ラテックス組成物の粘度がより適度なものとなり、移送しやすくなるとともに、得られるディップ成形体などの成形体の引裂強度がより向上する。
 カルボキシル基を有する単量体を共役ジエン系重合体のラテックスに添加する方法としては、特に限定されず、一括添加、分割添加、連続添加等の公知の添加方法を採用することができる。
 カルボキシ変性共役ジエン系重合体におけるカルボキシル基を有する単量体による変性率は、得られるディップ成形体などの成形体の使用目的に応じて適宜制御すればよいが、好ましくは0.01~10重量%、より好ましくは0.2~5重量%であり、さらに好ましくは0.3~3重量%、さらにより好ましくは0.4~2重量%、特に好ましくは0.4~1重量%である。なお、変性率は、下記式で表される。
  変性率(重量%)=(X/Y)×100
 なお、上記式においては、Xは、カルボキシ変性共役ジエン系重合体中における、カルボキシル基を有する単量体の単位の重量を、Yは、カルボキシ変性共役ジエン系重合体の重量をそれぞれ表す。Xは、カルボキシ変性共役ジエン系重合体について、H-NMR測定を行い、H-NMR測定の結果から算出する方法、あるいは、中和滴定により酸量を求め、求めた酸量から算出する方法などにより求めることができる。
 本発明で用いる共役ジエン系重合体(酸変性された共役ジエン系重合体を含む)のラテックスには、ラテックスの分野で通常配合される、pH調整剤、消泡剤、防腐剤、キレート化剤、酸素捕捉剤、分散剤、老化防止剤等の添加剤を配合してもよい。
 pH調整剤としては、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物;炭酸ナトリウム、炭酸カリウムなどのアルカリ金属の炭酸塩;炭酸水素ナトリウムなどのアルカリ金属の炭酸水素塩;アンモニア;トリメチルアミン、トリエタノールアミンなどの有機アミン化合物;等が挙げられるが、アルカリ金属の水酸化物またはアンモニアが好ましい。
 本発明で用いる共役ジエン系重合体(酸変性された共役ジエン系重合体を含む)のラテックスの固形分濃度は、好ましくは30~70重量%、より好ましくは40~70重量%、さらに好ましくは50~70重量%である。固形分濃度を上記範囲とすることにより、ラテックス中における凝集物の発生をより有効に抑制することができるとともに、ラテックスを貯蔵した際における重合体粒子の分離をより有効に抑制することができる。
 また、本発明で用いるラテックス組成物は、上述した共役ジエン系重合体のラテックスに加えて、キサントゲン化合物を含有する。キサントゲン化合物は、本発明で用いるラテックス組成物中に含まれる共役ジエン系重合体を加硫し、ディップ成形体などの成形体とする場合に、加硫促進剤として作用する。また、キサントゲン化合物は、ラテックス組成物中において、加硫促進剤として作用し、加硫が行われた後に、加硫時に加わる熱等により、アルコールおよび二硫化炭素等に分解されるものである。たとえば、キサントゲン化合物は、ディップ成形体などの成形体を製造する際に加わる熱(共役ジエン系重合体を加硫させる際における100~130℃程度の熱)によって、アルコールおよび二硫化炭素等に分解され、さらに、分解により生成した成分(アルコールおよび二硫化炭素等)が揮発する。これにより、得られるディップ成形体などの成形体は、キサントゲン化合物の残留量が低減されたものとなる。すなわち、本発明のラテックス組成物は、従来、遅延型アレルギー(Type IV)の症状の発生原因となっていた加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)を含有することなく、キサントゲン化合物を加硫促進剤として含有するため、これにより、得られるディップ成形体などの成形体におけるキサントゲン化合物の残留量を低減させることができ、そのため、得られるディップ成形体などの成形体について、即時型アレルギー(Type I)に加えて、遅延型アレルギー(Type IV)の症状の発生を抑制することが可能となる。
 キサントゲン化合物としては、特に限定されないが、たとえば、キサントゲン酸、キサントゲン酸塩、キサントゲン二硫化物(2つのキサントゲン酸が硫黄原子等を介して結合された化合物)、キサントゲン多硫化物(3以上のキサントゲン酸が硫黄原子等を介して結合された化合物)などが挙げられる。
 キサントゲン酸塩としては、キサントゲン酸構造を有するものであればよく、特に限定されないが、たとえば、一般式(ROC(=S)S)x-Z(ここで、Rは直鎖状または分岐状の炭化水素、Zは金属原子である。xはZの原子価と一致する数で、通常1~4、好ましくは2~4、特に好ましくは2である。)で表される化合物が挙げられる。
 上記一般式(ROC(=S)S)x-Zで表されるキサントゲン酸塩としては、特に限定されないが、たとえば、ジメチルキサントゲン酸亜鉛、ジエチルキサントゲン酸亜鉛、ジプロピルキサントゲン酸亜鉛、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛、ジペンチルキサントゲン酸亜鉛、ジヘキシルキサントゲン酸亜鉛、ジヘプチルキサントゲン酸亜鉛、ジオクチルキサントゲン酸亜鉛、ジ(2-エチルヘキシル)キサントゲン酸亜鉛、ジデシルキサントゲン酸亜鉛、ジドデシルキサントゲン酸亜鉛、ジメチルキサントゲン酸カリウム、エチルキサントゲン酸カリウム、プロピルキサントゲン酸カリウム、イソプロピルキサントゲン酸カリウム、ブチルキサントゲン酸カリウム、ペンチルキサントゲン酸カリウム、ヘキシルキサントゲン酸カリウム、ヘプチルキサントゲン酸カリウム、オクチルキサントゲン酸カリウム、2-エチルヘキシルキサントゲン酸カリウム、デシルキサントゲン酸カリウム、ドデシルキサントゲン酸カリウム、メチルキサントゲン酸ナトリウム、エチルキサントゲン酸ナトリウム、プロピルキサントゲン酸ナトリウム、イソプロピルキサントゲン酸ナトリウム、ブチルキサントゲン酸ナトリウム、ペンチルキサントゲン酸ナトリウム、ヘキシルキサントゲン酸ナトリウム、ヘプチルキサントゲン酸ナトリウム、オクチルキサントゲン酸ナトリウム、2-エチルヘキシルキサントゲン酸ナトリウム、デシルキサントゲン酸ナトリウム、ドデシルキサントゲン酸ナトリウム等が挙げられる。これらのなかでも、上記一般式(ROC(=S)S)x-Zにおけるxが2以上であるキサントゲン酸塩が好ましく、イソプロピルキサントゲン酸塩類、ブチルキサントゲン酸塩類がより好ましく、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛が特に好ましい。これらのキサントゲン酸塩は、1種単独でも、複数種を併用してもよい。
 キサントゲン二硫化物は、2つのキサントゲン酸が硫黄原子等を介して結合された化合物であり、特に限定されないが、ジメチルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジイソプロピルキサントゲンジスルフィド、ジブチルキサントゲンジスルフィド、ジメチルキサントゲンポリスルフィド、ジエチルキサントゲンポリスルフィド、ジイソプロピルキサントゲンポリスルフィド、ジブチルキサントゲンポリスルフィドなどが挙げられ、これらのなかでも、ジイソプロピルキサントゲンジスルフィド、ジブチルキサントゲンジスルフィドが好ましい。
 キサントゲン多硫化物は、3以上のキサントゲン酸が硫黄原子等を介して結合された化合物であり、3つのキサントゲン酸が硫黄を介して結合されたキサントゲン三硫化物、4つのキサントゲン酸が硫黄を介して結合されたキサントゲン四硫化物、5つのキサントゲン酸が硫黄を介して結合されたキサントゲン五硫化物などが挙げられる。
 以上に例示したキサントゲン化合物のなかでも、得られるディップ成形体などの成形体の引裂強度をより高めることができるという観点より、キサントゲン酸塩が好ましく、ジイソプロピルキサントゲン酸亜鉛、ジブチルキサントゲン酸亜鉛が特に好ましい。
 なお、これらのキサントゲン化合物は、ラテックス組成物中に、1種単独で含まれていてもよいが、2種以上が含まれていることが好ましい。たとえば、ラテックス組成物にキサントゲン酸を配合した場合には、配合したキサントゲン酸の一部が、キサントゲン酸塩の形態で存在することで、結果として、ラテックス組成物に2種以上のキサントゲン化合物が含まれることになってもよい。あるいは、ラテックス組成物に配合したキサントゲン酸の一部が、ラテックス組成物中の硫黄系加硫剤の作用により、キサントゲン二硫化物やキサントゲン多硫化物の形態で存在してもよい。同様に、ラテックス組成物にキサントゲン酸塩、キサントゲン二硫化物またはキサントゲン多硫化物を配合した場合においても、これらは、それぞれ、キサントゲン酸、キサントゲン酸塩、キサントゲン二硫化物、キサントゲン多硫化物のいずれかの形態で存在してもよい。
 キサントゲン化合物の使用量(複数のキサントゲン化合物が含まれることとなる場合には、その合計の使用量)は、共役ジエン系重合体のラテックスに含まれる共役ジエン系重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~7重量部、さらに好ましくは0.5~5重量部、よりさらに好ましくは1~3重量部である。キサントゲン化合物の使用量を上記範囲とすることにより、得られるディップ成形体などの成形体について、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度をより向上させることができる。
 キサントゲン化合物としては、どのような方法で共役ジエン系重合体のラテックスに配合されたものであってもよく、特に限定されないが、たとえば、界面活性剤を用いて水中に分散させた水分散液の状態で、共役ジエン系重合体のラテックスに配合されたものであることが好ましい。すなわち、キサントゲン化合物を、界面活性剤を用いて水中に分散させることにより、キサントゲン化合物の水分散液を得た後、得られたキサントゲン化合物の水分散液を、共役ジエン系重合体のラテックスに配合することが好ましい。
 キサントゲン化合物を、水中に分散させる際に用いる界面活性剤としては、特に限定されないが、たとえば、ノニオン系界面活性剤、ノニオニックアニオン系界面活性剤、アニオン系界面活性剤等を挙げることができ、これらの中でも、ディップ成形体などの成形体の引張強度をより優れたものとすることができるという観点より、ノニオン系界面活性剤、ノニオニックアニオン系界面活性剤を用いることが好ましい。
 キサントゲン化合物を水中に分散させる際に用いるアニオン系界面活性剤としては、特に限定されないが、硫黄系加硫剤の水分散液において硫黄系加硫剤を水中に分散させる際に用いるアニオン系界面活性剤と同様のものを挙げることができる。
 キサントゲン化合物を水中に分散させる際に用いるノニオン系界面活性剤としては、その分子主鎖中に、非イオン性の界面活性剤として作用するセグメントを有するものであれば、特に限定されないが、このような非イオン性の界面活性剤として作用するセグメントとしては、ポリオキシアルキレン構造が好適に挙げられる。
 ノニオン系界面活性剤の具体例としては、ポリオキシアルキレングリコール、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレン(硬化)ヒマシ油、ポリオキシエチレンアルキルアミン、脂肪酸アルカノールアミドなどが挙げられる。
 ポリオキシアルキレングリコールとしては、たとえば、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシエチレンポリオキシプロピレングリコールなどのポリオキシプロピレングリコールエチレンオキサイド付加物等が挙げられる。
 ポリオキシアルキレンアルキルエーテルとしては、たとえば、プロピレンオキサイドおよび/またはエチレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテルが挙げられる。これらの中でも、プロピレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテル、エチレンオキサイドが1~50個(好ましくは、1~10個)付加した直鎖状もしくは分岐鎖状エーテル、エチレンオキサイドとプロピレンオキサイドが合計2~50個(好ましくは、2~10個)ブロックもしくはランダムに付加した直鎖状もしくは分岐鎖状エーテルなどが挙げられる。ポリオキシアルキレンアルキルエーテルとしては、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンオクチルドデシルエーテル、ポリオキシエチレンドデシルエーテル、ポリオキシエチレンラウリルエーテルなどが挙げられ、これらのなかでも、ポリオキシエチレンオレイルエーテルおよびポリオキシエチレンオクチルドデシルエーテルが好ましい。
 ポリオキシアルキレンアルキルフェニルエーテルとしては、アルキルフェノールに、プロピレンオキサイドおよび/またはエチレンオキサイドが1~50個(好ましくは、1~10個)付加した化合物などが挙げられる。
 ポリオキシエチレンスチレン化フェニルエーテルとしては、(モノ、ジ、トリ)スチレン化フェノールのエチレンオキサイド付加物などが挙げられ、これらのなかでも、ジスチレン化フェノールのエチレンオキサイド付加物である、ポリオキシエチレンジスチレン化フェニルエーテルが好ましい。
 ポリオキシエチレン(硬化)ヒマシ油としては、ヒマシ油もしくは硬化ヒマシ油のエチレンオキサイド付加物が挙げられる。
 脂肪酸アルカノールアミドとしては、たとえば、ラウリン酸ジエタノールアミド、パルミチン酸ジエタノールアミド、ミリスチン酸ジエタノールアミド、ステアリン酸ジエタノールアミド、オレイン酸ジエタノールアミド、パーム油脂肪酸ジエタノールアミド、ヤシ油脂肪酸ジエタノールアミド等が挙げられる。
 ノニオン系界面活性剤の中でも、ポリオキシアルキレン構造を有するノニオン系界面活性剤が好ましく、ポリオキシエチレン構造を有するノニオン系界面活性剤がより好ましく、ポリオキシエチレンのヒドロカルビル化エーテルであることがより好ましく、ポリオキシエチレンアルキルエーテルおよびポリオキシエチレンジスチレン化フェニルエーテルがさらに好ましく、ポリオキシエチレンジスチレン化フェニルエーテルが特に好ましい。ノニオン系界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 キサントゲン化合物を水中に分散させる際に用いるノニオニックアニオン系界面活性剤としては、その分子主鎖中に、非イオン性の界面活性剤として作用するセグメント、および、アニオン性の界面活性剤として作用するセグメントを有するものであれば、特に限定されない。
 ノニオニックアニオン系界面活性剤としては、たとえば、下記一般式(1)で表される化合物などが挙げられる。
  R-O-(CRCR-SOM   (1)
 (上記一般式(1)中、Rは、炭素数6~16のアルキル基、または炭素数1~25のアルキル基で置換されていてもよい炭素数6~14のアリール基、R~Rは、水素およびメチル基よりなる群からそれぞれ独立して選ばれる基、Mは、アルカリ金属原子またはアンモニウムイオン、nは3~40である。)
 上記一般式(1)で表される化合物の具体例としては、ポリオキシエチレンラウリルエーテル硫酸塩、ポリオキシエチレンセチルエーテル硫酸塩、ポリオキシエチレンステアリルエーテル硫酸塩、ポリオキシエチレンオレイルエーテル硫酸塩などのポリオキシエチレンアルキルエーテル硫酸塩;ポリオキシエチレンノニルフェニルエーテル硫酸塩、ポリオキシエチレンオクチルフェニルエーテル硫酸塩、ポリオキシエチレンジスチリルエーテル硫酸塩などのポリオキシエチレンアリールエーテル硫酸塩;などが挙げられる。
 ノニオニックアニオン系界面活性剤の中でも、ポリオキシアルキレン構造を有するノニオニックアニオン系界面活性剤が好ましく、ポリオキシエチレン構造を有するノニオニックアニオン系界面活性剤がより好ましい。ノニオニックアニオン系界面活性剤は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 キサントゲン化合物の水分散液中における、ノニオン系界面活性剤および/またはノニオニックアニオン系界面活性剤の含有量は、特に限定されないが、キサントゲン化合物100重量部に対して、好ましくは1~50重量部、より好ましくは3~30重量部、さらに好ましくは5~20重量部である。ノニオン系界面活性剤とノニオニックアニオン系界面活性剤とを併用する場合には、合計量が上記範囲となることが好ましい。
 キサントゲン化合物の水分散液の製造方法としては、キサントゲン化合物と、界面活性剤と、水とを混合し、次いで、得られた混合液について解砕処理を行う方法が好ましい。ここで、解砕処理としては、水分散液中に含有される、キサントゲン化合物の破砕や凝集の緩和を可能とすることができる処理であればよく、特に限定されないが、たとえば、せん断作用や摩砕作用を利用した解砕装置を用いる方法、攪拌式の解砕装置を用いる方法など、公知の解砕装置を用いる方法が挙げられる。具体的には、ロールミル、ハンマーミル、振動ミル、ジェットミル、ボールミル、遊星型ボールミル、ビーズミル、サンドミル、三本ロールミル等の解砕装置を使用することができる。これらのなかでも、ボールミル、遊星型ボールミル、またはビーズミルを使用して解砕処理を行う方法が好適である。
 たとえば、ボールミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ5~φ50mm、より好ましくはφ10~φ35mmであるものを使用し、回転数が、好ましくは10~300rpm、より好ましくは10~100rpm、処理時間が、好ましくは24~120時間、より好ましくは24~72時間の条件にて、解砕処理を行うことが好適である。また、遊星型ボールミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ0.1~φ5mm、より好ましくはφ0.3~φ3mmであるものを使用し、回転数が、好ましくは100~1000rpm、より好ましくは100~500rpm、処理時間が、好ましくは0.25~5時間、より好ましくは0.25~3時間の条件にて、解砕処理を行うことが好適である。さらに、ビーズミルを用いて解砕処理を行う場合には、メディアとして、メディアサイズが、好ましくはφ0.1~φ3mm、より好ましくはφ0.1~φ1mmであるものを使用し、回転数が、好ましくは1000~10000rpm、より好ましくは1000~5000rpm、処理時間が、好ましくは0.25~5時間、より好ましくは0.25~3時間の条件にて、解砕処理を行うことが好適である。
 また、本発明で用いるラテックス組成物は、硫黄系加硫剤をさらに含有していることが好ましい。硫黄系加硫剤としては、特に限定されないが、たとえば、粉末硫黄、硫黄華、沈降硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄等の硫黄;塩化硫黄、二塩化硫黄、モルホリン・ジスルフィド、アルキルフェノールジスルフィド、カプロラクタムジスルフィド(N,N’-ジチオ-ビス(ヘキサヒドロ-2H-アゼピノン-2))、含りんポリスルフィド、高分子多硫化物、2-(4’-モルホリノジチオ)ベンゾチアゾール等の硫黄含有化合物が挙げられる。これらのなかでも、硫黄が好ましく使用できる。硫黄系加硫剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
 硫黄系加硫剤の使用量は、特に限定されないが、ラテックス組成物に含まれる共役ジエン系重合体100重量部に対して、通常0.1~10部、好ましくは0.1~3重量部、より好ましくは0.2~2重量部、さらに好ましくは0.3~1重量部である。硫黄系加硫剤の含有量を上記範囲とすることにより、得られるディップ成形体などの成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制しながら、引張強度をより高めることができる。
 また、本発明で用いるラテックス組成物には、上述した共役ジエン系重合体のラテックス、キサントゲン化合物、および必要に応じて用いられる硫黄系加硫剤に加えて、必要に応じて、活性化剤を添加してもよい。
 ラテックス組成物に、活性化剤を添加することにより、本発明で用いるラテックス組成物を用いて、ラテックス組成物中の共役ジエン系重合体を加硫してディップ成形体などの成形体とする際に、活性化剤が、上述したキサントゲン化合物とともに加硫促進剤として作用し、これにより、得られるディップ成形体などの成形体の引裂強度がより向上する。
 活性化剤としては、特に限定されないが、得られるディップ成形体などの成形体の引裂強度がより向上するという観点より、金属化合物を用いることが好ましい。金属化合物としては、特に限定されないが、たとえば、金属酸化物、炭素原子を少なくとも1つ含有する金属化合物などが挙げられる。金属化合物を構成する金属としては、特に限定されないが、典型金属(第1族元素、第2族元素、第12族元素、第13族元素、第14族元素、第15族元素、第16族元素、第17族元素、および第18族元素からなる群から選ばれる少なくとも1種の元素)が好ましく、第2族元素、第12族元素、第13族元素、第14族元素がより好ましく、亜鉛、マグネシウム、カルシウム、アルミニウム、鉛がさらに好ましく、亜鉛、マグネシウム、カルシウムが特に好ましく、亜鉛が最も好ましい。これらの金属化合物は、1種単独でも、複数種を併用してもよい。
 金属酸化物としては、特に限定されないが、得られるディップ成形体などの成形体の引裂強度がより向上するという観点より、酸化亜鉛、酸化マグネシウム、酸化チタン、酸化カルシウム、鉛酸化物、酸化鉄、酸化銅、酸化錫、酸化ニッケル、酸化クロム、酸化コバルト、および酸化アルミニウムが好ましく、酸化亜鉛がより好ましい。
 炭素原子を少なくとも1つ含有する金属化合物としては、得られるディップ成形体などの成形体の引裂強度がより向上するという観点より、炭酸塩、炭酸水素塩、水酸化物、有機金属化合物が好ましく、炭酸塩、炭酸水素塩、有機金属化合物がより好ましい。これらのなかでも、化合物自体の安定性に優れ、入手容易性にも優れるという観点より、炭酸塩、炭酸水素塩などの無機塩が特に好ましい。
 活性化剤の使用量は、ラテックス組成物に含まれる共役ジエン系重合体100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部、さらに好ましくは1~3重量部である。活性化剤の使用量を上記範囲とすることにより、得られるディップ成形体などの成形体の引裂強度をより向上させることができる。
 活性化剤の配合方法は、最終的に共役ジエン系重合体のラテックスと活性化剤とが混合した状態となる方法であればよく、特に限定されない。
 また、ラテックス組成物には、得られるディップ成形体などの成形体において、遅延型アレルギー(Type IV)の症状の発生を抑制可能な範囲であれば、さらに加硫促進剤を添加してもよい。
 加硫促進剤としては、ディップ成形において通常用いられるものを使用することができ、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホニリル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられる。加硫促進剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。なお、得られるディップ成形体などの膜成形体において、遅延型アレルギー(Type IV)の症状の発生をより抑制できるという観点より、キサントゲン化合物と加硫促進剤との合計の含有量に対する、キサントゲン化合物の含有割合は、好ましくは50重量%超であり、より好ましくは80重量%以上であり、さらに好ましくは100重量%である。
 さらに、ラテックス組成物には、さらに、老化防止剤;分散剤;カーボンブラック、シリカ、タルク等の補強剤;炭酸カルシウム、クレー等の充填剤;紫外線吸収剤;可塑剤;等の配合剤を必要に応じて配合することができる。
 老化防止剤としては、2,6-ジ-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物、などの硫黄原子を含有しないフェノール系老化防止剤;2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種単独で、または2種以上を併用することができる。
 老化防止剤の含有量は、共役ジエン系重合体100重量部に対して、好ましくは0.05~10重量部、より好ましくは0.1~5重量部、さらに好ましくは1~3重量部である。
 ラテックス組成物に各種配合剤を混合する方法としては、特に限定されないが、たとえば、上述したようにして共役ジエン系重合体のラテックス、硫黄系加硫剤、およびキサントゲン化合物を含有する組成物を得た後、ボールミル、ニーダー、ディスパー等の分散機を用いて、得られた組成物に、必要に応じて配合される各種配合剤を混合する方法などが挙げられる。また、各種配合剤のうち少なくとも一部については、後述する熟成の後に配合してもよい。
 なお、本発明で用いるラテックス組成物の固形分濃度は、好ましくは10~60重量%、より好ましくは10~55重量%である。
 また、本発明においては、得られるディップ成形体などの成形体の機械的特性を十分なものとするという観点より、ディップ成形などの成形に供する前に、ラテックス組成物に対して、熟成(前架橋または前加硫)を行うことが好ましい。熟成(前加硫)時間は、特に限定されないが、好ましくは8~120時間、より好ましくは24~72時間である。熟成(前加硫)の温度は、特に限定されないが、好ましくは20~40℃である。
<成形体の製造方法>
 本発明の成形体の製造方法は、上記した、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体(洗浄前成形体)を、40~100℃の温水で洗浄する工程を備えるものである。
 本発明において、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる洗浄前成形体を得る方法としては、特に限定されないが、ラテックス組成物をディップ成形する方法が好適である。すなわち、洗浄前成形体、およびこれを洗浄して得られる成形体は、ディップ成形を経て得られるディップ成形体であることが好適である。
 ディップ成形は、ラテックス組成物に型を浸漬し、型の表面に当該組成物を沈着させ、次に型を当該組成物から引き上げ、その後、型の表面に沈着した当該組成物を乾燥させる方法である。なお、ラテックス組成物に浸漬される前の型は予熱しておいてもよい。また、型をラテックス組成物に浸漬する前、または、型をラテックス組成物から引き上げた後、必要に応じて凝固剤を使用できる。
 凝固剤の使用方法の具体例としては、ラテックス組成物に浸漬する前の型を凝固剤の溶液に浸漬して型に凝固剤を付着させる方法(アノード凝着浸漬法)、ラテックス組成物を沈着させた型を凝固剤溶液に浸漬する方法(ティーグ凝着浸漬法)などがあるが、厚みムラの少ないディップ成形体が得られる点で、アノード凝着浸漬法が好ましい。
 凝固剤の具体例としては、塩化バリウム、塩化カルシウム、塩化マグネシウム、塩化亜鉛、塩化アルミニウムなどのハロゲン化金属;硝酸バリウム、硝酸カルシウム、硝酸亜鉛などの硝酸塩;酢酸バリウム、酢酸カルシウム、酢酸亜鉛など酢酸塩;硫酸カルシウム、硫酸マグネシウム、硫酸アルミニウムなどの硫酸塩;などの水溶性多価金属塩である。なかでも、カルシウム塩が好ましく、硝酸カルシウムがより好ましい。これらの水溶性多価金属塩は、1種単独で、または2種以上を併用することができる。
 凝固剤は、通常、水、アルコール、またはそれらの混合物の溶液として使用することができ、好ましくは水溶液の状態で使用する。この水溶液は、さらにメタノール、エタノールなどの水溶性有機溶媒やノニオン性界面活性剤を含有していてもよい。凝固剤の濃度は、水溶性多価金属塩の種類によっても異なるが、好ましくは5~50重量%、より好ましくは10~30重量%である。
 型をラテックス組成物から引き上げた後、通常、加熱して型上に形成された沈着物を乾燥させる。乾燥条件は適宜選択すればよい。
 次いで、加熱して、型上に形成されたディップ成形層の架橋(加硫)を行う。ディップ成形層の架橋(加硫)は、通常、80~150℃の温度で、好ましくは10~130分の加熱処理を施すことにより行うことができる。加熱の方法としては、赤外線や加熱空気による外部加熱または高周波による内部加熱による方法が採用できる。なかでも、加熱空気による外部加熱が好ましい。なお、架橋を行う前に、ディップ成形層に対し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去するためのリーチング処理を行ってもよい。リーチング処理は、水、好ましくは30~70℃の温水に、数十秒~数分程度浸漬することにより行われる。リーチング処理の時間を上記範囲とすることにより、ディップ成形層中に含まれるキサントゲン化合物や硫黄系加硫剤のディップ成形層からの溶出を抑制しながら、水溶性不純物の除去を十分に行うことができる。
 次いで、ディップ成形層をディップ成形用型から脱着することによって、洗浄前成形体(ディップ成形体)が得られる。脱着方法としては、手で成形用型から剥したり、水圧や圧縮空気の圧力により剥したりする方法を採用することができる。なお、脱着後、さらに60~120℃の温度で、10~120分の加熱処理を行なってもよい。
 ディップ成形層の膜厚は、好ましくは0.03~0.50mm、より好ましくは0.05~0.40mm、特に好ましくは0.08~0.30mmである。
 そして、本発明においては、このようにして得られる洗浄前成形体について、40~100℃の温水で洗浄するものであり、これにより、得られる成形体を、即時型アレルギー(Type I)に加えて遅延型アレルギー(Type IV)の症状の発生が抑制されており、臭気が抑えられており、かつ、色調に優れたものとすることができるものである。
 ここで、本発明においては、加硫促進剤として、キサントゲン化合物を用いることで、従来、遅延型アレルギー(Type IV)の症状の発生原因となっていた加硫促進剤(たとえば、ジチオカルバミン酸塩系加硫促進剤、チアゾール系加硫促進剤など)を含有することがないため、得られるディップ成形体などの成形体について、即時型アレルギー(Type I)に加えて、遅延型アレルギー(Type IV)の症状の発生を抑制することが可能となるものである。その一方で、本発明者等が検討したところ、加硫促進剤として、キサントゲン化合物を用いると、得られる成形体の臭気が悪化してしまうという課題があること、および、これに対し、40~100℃の温水で洗浄を行うことで、得られる成形体の臭気を低減でき、かつ、色調に優れたものとすることができることを見出したものである。なお、加硫促進剤として、キサントゲン化合物を用いると、得られる成形体の臭気が悪化してしまう理由としては必ずしも明かではないが、成形体内に、架橋等により生成したキサントゲン化合物に由来の分解物が残存したりすることによるものと考えられる。
 洗浄前成形体を洗浄する際には、40~100℃の温水を用いて洗浄を行えばよいが、臭気の低減効果および色調の改善効果が高いという観点より、50~95℃の温水を用いることが好ましく、65~90℃の温水を用いることがより好ましく、75~90℃の温水を用いることが特に好ましい。
 また、温水を用いた洗浄時間は、好ましくは1~120分であり、より好ましくは5~60分、さらに好ましくは10~40分、特に好ましくは15~30分である。洗浄時間を上記範囲とすることにより、洗浄による機械的特性の低下を適切に抑制しながら、臭気の低減効果および色調の改善効果をより高めることができる。
 温水を用いた洗浄方法としては、特に限定されないが、洗浄前成形体を、温水に浸した状態にて洗浄を行う方法や、温水のスチームを用いて洗浄を行う方法などが挙げられるが、臭気の低減効果および色調の改善効果をより高めることができるという点より、温水に浸漬させて洗浄を行う方法が好ましい。また、洗浄前成形体を温水中に浸した状態にて洗浄を行う方法としては、特に限定されず、温水中で、洗浄前成形体に対して、一定の外力(水圧の変動により生じる外力や、洗浄前成形体同士が接触することにより生じる外力)を与えるような方法であればよく、たとえば、洗浄前成形体を温水中に浸した状態とし、温水の水流を発生させることにより洗浄を行う方法、洗浄前成形体を温水中に浸した状態とし、洗浄前成形体を温水中で移動あるいは振動させる方法、タンブラー式洗浄槽を用い、洗浄前成形体を温水中に浸した状態として、タンブラー式洗浄槽中で回転させる方法などが挙げられる。これらの中でも、臭気の低減効果および色調の改善効果をより一層高めることができるという点より、タンブラー式洗浄槽を用い、洗浄前成形体を温水中に浸した状態として、タンブラー式洗浄槽中で回転させる方法が好ましい。
 温水に浸漬させて洗浄を行う方法における、温水の使用量は、洗浄前成形体100重量部に対して、好ましくは10~5000重量部、より好ましくは30~1000重量部、さらに好ましくは50~500重量部、特に好ましくは100~200重量部である。温水の使用量を上記範囲とすることにより、臭気の低減効果および色調の改善効果をより適切に高めることができる。
 また、温水を用いた洗浄においては、洗浄に用いる温水中に、硫酸鉄(II)、硫酸銅(II)、硫酸亜鉛(II)、硫酸マンガン(II)などの金属塩や活性炭、ゼオライト等の細孔を有する化合物を添加して洗浄を行うことが好ましく、金属塩がより好ましい。これにより、成形体の二硫化炭素(CS)の含有量をより低減し、臭気の低減効果をより高めることができる。温水中における、金属塩および細孔を有する化合物の添加量は、特に限定されないが、洗浄前成形体100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは0.2~5重量部、さらに好ましくは0.5~2重量部である。金属塩の添加量を上記範囲とすることにより、臭気の低減効果をより一層高めることができる。
 なお、ディップ成形などにおいては、架橋(加硫)を行う前に、ディップ成形により形成されたディップ成形層に対し、水溶性不純物(たとえば、余剰の乳化剤や凝固剤等)を除去するためのリーチング処理が行われることがあるが、このようなリーチング処理は、水溶性不純物を除去するという目的のため、架橋前に行われることが通常である。そのため、本発明で行う温水を用いた洗浄のように、架橋を行った後に行われるものとは全く異なるものである。加えて、リーチング処理は、架橋に必要となる加硫剤や加硫促進剤等が溶出してしまうことを防ぐため、温水に、数十秒~数分程度と短時間浸漬させるものであるという点においても、本発明で行う温水を用いた洗浄とは全く異なるものであり、特に、リーチング処理は、架橋前に行われるものであることから、機械強度が充分でないため、一定の外力を与えられるような環境で行われることも、通常は、想定されないものである。
 これに対し、本発明によれば、上記のようにして得られる洗浄前成形体について、40~100℃の温水で洗浄するものであり、これにより、キサントゲン化合物を用いることにより、得られる成形体を、即時型アレルギー(Type I)に加えて、遅延型アレルギー(Type IV)の症状の発生が抑制され、しかも、臭気が抑えられ、色調に優れたものとすることができるものである。特に、本発明の成形体は、臭気の原因となる硫化物のうち、二硫化炭素(CS)の含有量が、好ましくは3重量ppm以下に抑えられたものであり、より好ましくは1重量ppm以下に抑えられたものであり、さらに好ましくは0.1重量ppm以下に抑えられたものであり、また、硫化カルボニル(SCO)の含有量が、好ましくは2.5重量ppm以下に抑えられたものであり、より好ましくは2重量ppm以下に抑えられたものであり、さらに好ましくは1重量ppm以下に抑えられたものである。なお、本発明の成形体中における、二硫化炭素(CS)、硫化カルボニル(SCO)の含有量の下限は、特に限定されないが、通常、それぞれ、0.01重量ppm以上である。
 そして、上記本発明の製造方法により得られる本発明の成形体は、その特性を活かし、たとえば、手袋として特に好適に用いることができる。本発明の成形体が手袋である場合、膜成形体同士の接触面における密着を防止し、着脱の際の滑りをよくするために、タルク、炭酸カルシウムなどの無機微粒子または澱粉粒子などの有機微粒子を手袋表面に散布したり、微粒子を含有するエラストマー層を手袋表面に形成したり、手袋の表面層を塩素化したりしてもよい。
 また、本発明の成形体は、上記手袋の他にも、哺乳瓶用乳首、スポイト、チューブ、水枕、バルーンサック、カテーテル、コンドーム、プローブカバーなどの医療用品;風船、人形、ボールなどの玩具;加圧成形用バック、ガス貯蔵用バックなどの工業用品;指サックなどにも用いることができる。
 以下、実施例により本発明が詳細に説明されるが、本発明はこれらの実施例に限定されない。なお、以下の「部」は、特に断りのない限り、重量基準である。なお、各種の物性は以下のように測定した。
<固形分濃度>
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
<カルボキシ変性合成ポリイソプレンの変性率>
 カルボキシ変性合成ポリイソプレンのラテックスを構成するカルボキシ変性合成ポリイソプレンについて、水酸化ナトリウム水溶液を用いた中和滴定により、カルボキシ変性合成ポリイソプレン中におけるカルボキシル基の数を求めた。次いで、求めたカルボキシル基の数に基づいて、下記式にしたがって、カルボキシル基を有する単量体による変性率を求めた。
  変性率(重量%)=(X/Y)×100
 なお、上記式においては、Xは、カルボキシ変性合成ポリイソプレン中における、カルボキシル基を有する単量体の単位の重量を、Yは、カルボキシ変性合成ポリイソプレンの重量をそれぞれ表す。
<硫化物ガス量>
 フィルム状のディップ成形体を、5×5mmのサイズに切断して得た試験片を、精秤した後、ヘッドスペースバイアル(TurboMatrix 40、パーキンエルマー社製)に入れ密栓をし、室温で14日間放置した。14日経過後、バイアル内部に発生したガスをヘッドスペースサンプラで採取し、ガスクロマトグラフに導入することにより、硫化物ガスとしての、二硫化炭素(CS)、硫化カルボニル(SCO)の量を測定し、得られた測定結果と、精秤した試験片の重量から、二硫化炭素(CS)の含有量、および、硫化カルボニル(SCO)の含有量を算出した。ガスクロマトグラフィ測定は、ガスクロマトグラフ(GC7890、アジレントテクノロジー社製)を使用し、検出器としては、炎光光度検出器(FPD)を用い、カラム槽温度は、40℃(5分)-260℃(0分)で、昇温速度11℃/分とした。
<臭気>
 フィルム状のディップ成形体を、5×5mmのサイズに切断して得た試験片を用い、これを5mLの容器に入れて、室温で24時間放置した後、放置後の臭気の確認を行い、以下の基準で判定を行った。
  A:臭気を全く感じない。
  B:わずかな臭気を感じる。
  C:明らかに臭気を感じる。
<色調>
 各実施例、比較例で行った、温水洗浄(実施例1~6)の前後、温水洗浄の代わりに行った加熱処理(比較例2,3)の前後のフィルム状のディップ成形体の色味の変化を、目視にて確認した。なお、比較例4については、温水洗浄の代わりの処理は行わなかったので、「変化なし」とした。
<実施例1>
(カルボキシ変性合成ポリイソプレン(A-1)のラテックスの製造)
 合成ポリイソプレン(商品名「NIPOL IR2200L」、日本ゼオン社製)をn-ヘキサン(沸点:69℃)と混合し、攪拌しながら温度を60℃に昇温して溶解し、合成ポリイソプレン濃度15重量%である、合成ポリイソプレンのn-ヘキサン溶液(a)を調製した。
 一方、ロジン酸カリウムを水に添加し、温度を60℃に昇温して溶解し、濃度1.5重量%の乳化剤水溶液(b)を調製した。
 次に、上記にて得られた合成ポリイソプレンのn-ヘキサン溶液(a)と、乳化剤水溶液(b)とを、合成ポリイソプレンのn-ヘキサン溶液(a)中の合成ポリイソプレン100部に対して、乳化剤水溶液(b)中のロジン酸カリウムが10部となるように、ミキサー(製品名「マルチラインミキサーMS26-MMR-5.5L」、佐竹化学機械工業社製)を用いて混合し、続いて、乳化装置(製品名「マイルダーMDN310」、太平洋機工社製)を用いて、回転数4100rpmで混合および乳化することで、乳化分散液(c)を得た。なお、この際、合成ポリイソプレンのn-ヘキサン溶液(a)と乳化剤水溶液(b)との合計のフィード流速は2,000kg/hr、温度は60℃、背圧(ゲージ圧)は0.5MPaとした。
 次いで、得られた乳化分散液(c)を、-0.01~-0.09MPa(ゲージ圧)の減圧下で80℃に加温し、n-ヘキサンを留去し、合成ポリイソプレンの水分散液(d)を得た。その際、消泡剤(商品名「SM5515」、東レ・ダウコーニング社製)を、乳化分散液(c)中の合成ポリイソプレンに対して300重量ppmの量になるよう、噴霧しながら連続添加した。なお、n-ヘキサンを留去する際には、乳化分散液(c)がタンクの容積の70体積%以下になるように調整し、かつ、攪拌翼として3段の傾斜パドル翼を用い、60rpmでゆっくり攪拌を実施した。
 そして、n-ヘキサンの留去が完了した後、得られた合成ポリイソプレンの水分散液(d)を、連続遠心分離機(製品名「SRG510」、アルファラバル社製)を用いて、8,000~9,000Gで遠心分離することで濃縮し、軽液としての固形分濃度60重量%の合成ポリイソプレンのラテックス(e)を得た。なお、遠心分離の条件は、遠心分離前の水分散液(d)の固形分濃度8重量%、連続遠心分離時の流速は1300kg/hr、遠心分離機の背圧(ゲージ圧)は0.1MPaとした。
 次いで、得られた合成ポリイソプレンのラテックス(e)中の合成ポリイソプレン100部に対して、蒸留水130部を添加して希釈した。そして、合成ポリイソプレンのラテックス(e)に、合成ポリイソプレン100部に対して、分散剤としてのβ-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩(商品名「デモールT-45」、花王社製)0.8部を合成ポリイソプレン100部に対し4部の蒸留水で希釈したものを5分間かけて添加した。次いで、分散剤を添加した合成ポリイソプレンのラテックス(e)を、窒素置換された攪拌機付き反応容器に仕込み、撹拌しながら温度を30℃にまで加温した。また、別の容器を用い、カルボキシル基含有化合物としてのメタクリル酸3部と蒸留水16部とを混合してメタクリル酸希釈液を調製した。このメタクリル酸希釈液を、温度20℃に保った反応容器内に、30分間かけて添加した。
 さらに、別の容器を用い、蒸留水7部、ナトリウムホルムアルデヒドスルホキシレート(商品名「SFS」、三菱ガス化学社製)0.32部、硫酸第一鉄(商品名「フロストFe」、中部キレスト社製)0.01部からなる溶液(f)を調製した。この溶液(f)を反応容器内に移した後、1,1,3,3-テトラメチルブチルハイドロパーオキサイド(商品名「パーオクタH」、日本油脂社製)0.5部を添加して20℃で1時間反応させた後、遠心分離機にて濃縮することで、カルボキシ変性合成ポリイソプレン(A-1)のラテックスを得た。得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスについて、上記方法にしたがって変性率を測定したところ、変性率は0.5重量%であった。
(キサントゲン化合物の水分散液の調製)
 キサントゲン化合物としてのジイソプロピルキサントゲン酸亜鉛(商品名「ノクセラーZIX」、大内新興化学工業株式会社製、体積平均粒子径:14μm、95%体積累積径(D95):55μm)2.5部、ノニオン系界面活性剤としてのポリオキシエチレンジスチレン化フェニルエーテル(商品名「エマルゲンA-60」、花王社製)0.45部(ジイソプロピルキサントゲン酸亜鉛100部に対し18.0部)、および水2.05部を、ボールミル(商品名「磁製ボールミル」、日陶科学社製)により混合することで解砕処理を行うことで、キサントゲン化合物の水分散液を得た。なお、ボールミルによる、混合条件としては、φ10mm~φ35mmのセラミック磁製ボール(φ10mm、φ15mm、φ20mm、φ25mm、φ30mmおよびφ35mmのセラミック磁製ボールを混合したもの)を使用し、50rpmで72時間とした。
(ラテックス組成物の調製)
 上記にて得られたカルボキシ変性合成ポリイソプレン(A-1)のラテックスを撹拌しながら、カルボキシ変性合成ポリイソプレン(A-1)のラテックス中のカルボキシ変性合成ポリイソプレン(A-1)100部に対して、上記にて調製したキサントゲン化合物の水分散液を、ジイソプロピルキサントゲン酸亜鉛換算で2.5部となる量添加した。
 そして、得られた混合物を撹拌しながら、混合物中のカルボキシ変性合成ポリイソプレン(A-1)100部に対して、それぞれ固形分換算で、硫黄1.0部、活性化剤としての酸化亜鉛1.5部、老化防止剤(商品名「Wingstay L」、グッドイヤー社製)2部となるように添加して、ラテックス組成物を得た。そして、得られたラテックス組成物について、25℃に調整された恒温水槽で48時間熟成(前加硫)を行った。
(ディップ成形体の製造)
 市販のセラミック製手型(シンコー社製)を洗浄し、70℃のオーブン内で予備加熱した後、18重量%の硝酸カルシウムおよび0.05重量%のポリオキシエチレンラウリルエーテル(商品名「エマルゲン109P」、花王社製)を含有する凝固剤水溶液に5秒間浸漬し、凝固剤水溶液から取り出した。次いで、手型を70℃のオーブン内で30分以上乾燥させることで、手型に凝固剤を付着させて、手型を凝固剤により被覆した。
 その後、凝固剤で被覆された手型を、オーブンから取り出し、上記にて得られた熟成後のラテックス組成物に10秒間浸漬した。次いで、この手型を、室温で10分間風乾してから、60℃の温水中に30秒間浸漬して水溶性不純物を溶出させて、手型にディップ成形層を形成した。その後、手型に形成したディップ成形層を、オーブンにより温度120℃、20分間の条件で加熱することにより加硫させた後、室温まで冷却し、タルクを散布してから手型から剥離して、手袋形状の洗浄前成形体を得た。次いで、洗浄前成形体と、温度90℃としたイオン交換水を、洗浄前成形体100部に対して、イオン交換水150部となる割合にて、タンブラー式の洗浄槽に投入し、温度を90℃に保った状態で、30分間洗浄を行うことで、膜厚が約0.2mmの、洗浄後のフィルム状のディップ成形体を得た。そして、得られた洗浄後のフィルム状のディップ成形体について、上記した方法にて、硫化物ガス量、臭気および色調の測定を行った。結果を表1に示す。
 また、得られた洗浄後のフィルム状のディップ成形体について、下記条件にて、パッチテスト、引張強度および引張伸びの測定を行ったところ、パッチテストにおいては、全ての被検者について、遅延型アレルギー(Type IV)の症状はみられない結果となり、また、引張強度は25MPa以上、引張伸びは900%以上であった(後述する実施例2~6においても同様。)。
<パッチテスト>
 フィルム状のディップ成形体を、10×10mmのサイズに切断して得た試験片を、被検者10人の腕にそれぞれ貼付した。その後、48時間後に貼付部分を観察することで、遅延型アレルギー(Type IV)のアレルギー症状の発生有無を確認し、以下の基準で評価した。
<引張強度および引張伸び>
 ASTM D412に基づいて、のフィルム状のディップ成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、引張強度測定用試験片を作製した。当該試験片をテンシロン万能試験機(製品名「RTG-1210」、オリエンテック社製)で引張速度500mm/minで引っ張り、破断直前の引張強度、および破断直前の伸びを測定した。
<実施例2~6>
 温水を用いた洗浄におけるイオン交換水の温度および洗浄時間を表1に示す通りに変更した以外は、実施例1と同様にして、洗浄後のフィルム状のディップ成形体を得て、同様に評価を行った。結果を表1に示す。なお、実施例3,5においては、温水を用いた洗浄において、温水100部に対して、硫酸鉄(II)1.0部を配合したものを使用した。
<比較例1>
 温水を用いた洗浄を行わなかった以外は、実施例1と同様にして、フィルム状のディップ成形体を得て、同様に評価を行った。
<比較例2>
 温水を用いた洗浄に代えて、120℃のオーブンで120分の条件で加熱を行った以外は、実施例1と同様にして、フィルム状のディップ成形体を得て、同様に評価を行った。
<比較例3>
 温水を用いた洗浄に代えて、80℃のオーブンで120分の条件で加熱を行った以外は、実施例1と同様にして、フィルム状のディップ成形体を得て、同様に評価を行った。
<比較例4>
 温水を用いた洗浄に代えて、25℃のイオン交換水を用い、洗浄時間を30分として洗浄を行った以外は、実施例1と同様にして、洗浄後のフィルム状のディップ成形体を得て、同様に評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄する工程を経た場合には、得られる成形体は、硫化物としての二硫化炭素(CS)、硫化カルボニル(SCO)の含有量が低減されており、臭気が抑えられ、色調の変化が抑制されたものであった(実施例1~6)。
 一方、40~100℃の温水で洗浄を行わなかった場合、40~100℃の温水による洗浄に代えて、加熱処理を行った場合、25℃の水で洗浄を行った場合のいずれにおいても、臭気が悪化する結果であり、また、加熱処理を行った場合には、色調の変化も起こる結果となった(比較例1~4)。

Claims (7)

  1.  共役ジエン系重合体のラテックスと、キサントゲン化合物とを含有するラテックス組成物を用いて得られる成形体を、40~100℃の温水で洗浄する洗浄工程を備える成形体の製造方法。
  2.  前記ラテックス組成物を用いて得られる成形体を、80~150℃で加熱することで、成形体の加硫を行う加硫工程をさらに備え、
     前記洗浄工程が、前記加硫工程を行った成形体について、前記温水で洗浄を行う工程である請求項1に記載の成形体の製造方法。
  3.  前記温水での洗浄時間を、1~120分とする請求項1または2に記載の成形体の製造方法。
  4.  前記温水での洗浄を、前記成形体を温水中に浸した状態にて、タンブラー式洗浄槽中で回転させることにより行う請求項1~3のいずれかに記載の成形体の製造方法。
  5.  前記共役ジエン系重合体のラテックスが、合成ポリイソプレンのラテックス、スチレン-イソプレン-スチレンブロック共重合体のラテックス、または蛋白質を除去した天然ゴムのラテックスである請求項1~4のいずれかに記載の成形体の製造方法。
  6.  前記洗浄工程が、前記成形体を洗浄する前に、前記温水に金属塩を添加することを含み、
     前記温水への前記金属塩の添加量が、前記成形体100重量部に対して0.1~10重量部である請求項1~5のいずれかに記載の成形体の製造方法。
  7.  共役ジエン系重合体を、キサントゲン化合物を用いて架橋してなる成形体であって、二硫化炭素の含有量が、3重量ppm以下である成形体。
PCT/JP2022/001405 2021-02-09 2022-01-17 成形体の製造方法 WO2022172696A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022581274A JPWO2022172696A1 (ja) 2021-02-09 2022-01-17
US18/275,239 US20240067813A1 (en) 2021-02-09 2022-01-17 Method for producing molded body
EP22752528.4A EP4292792A1 (en) 2021-02-09 2022-01-17 Method for producing molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-018992 2021-02-09
JP2021018992 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172696A1 true WO2022172696A1 (ja) 2022-08-18

Family

ID=82837696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001405 WO2022172696A1 (ja) 2021-02-09 2022-01-17 成形体の製造方法

Country Status (4)

Country Link
US (1) US20240067813A1 (ja)
EP (1) EP4292792A1 (ja)
JP (1) JPWO2022172696A1 (ja)
WO (1) WO2022172696A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241412A (ja) * 2000-12-12 2002-08-28 Takeda Chem Ind Ltd ディップ成形用ラテックス及びディップ成形物
WO2014129547A1 (ja) 2013-02-22 2014-08-28 日本ゼオン株式会社 ディップ成形用ラテックス、ディップ成形用組成物およびディップ成形体
JP2017538799A (ja) * 2014-12-24 2017-12-28 エルジー・ケム・リミテッド ジエン系ゴムラテックスの製造方法、及びこれを含むアクリロニトリル−ブタジエン−スチレングラフト共重合体
WO2018155243A1 (ja) 2017-02-22 2018-08-30 日本ゼオン株式会社 ラテックス組成物
WO2019151020A1 (ja) * 2018-01-31 2019-08-08 日本ゼオン株式会社 フォームラバー用ラテックス
WO2020054247A1 (ja) * 2018-09-14 2020-03-19 日本ゼオン株式会社 ラテックス組成物および膜成形体
JP2020164690A (ja) * 2019-03-29 2020-10-08 日本ゼオン株式会社 ディップ成形用ラテックス組成物
WO2021006118A1 (ja) * 2019-07-05 2021-01-14 デンカ株式会社 クロロプレン共重合体ラテックス及びその製造方法、加硫物、並びに、浸漬成形体及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241412A (ja) * 2000-12-12 2002-08-28 Takeda Chem Ind Ltd ディップ成形用ラテックス及びディップ成形物
WO2014129547A1 (ja) 2013-02-22 2014-08-28 日本ゼオン株式会社 ディップ成形用ラテックス、ディップ成形用組成物およびディップ成形体
JP2017538799A (ja) * 2014-12-24 2017-12-28 エルジー・ケム・リミテッド ジエン系ゴムラテックスの製造方法、及びこれを含むアクリロニトリル−ブタジエン−スチレングラフト共重合体
WO2018155243A1 (ja) 2017-02-22 2018-08-30 日本ゼオン株式会社 ラテックス組成物
WO2019151020A1 (ja) * 2018-01-31 2019-08-08 日本ゼオン株式会社 フォームラバー用ラテックス
WO2020054247A1 (ja) * 2018-09-14 2020-03-19 日本ゼオン株式会社 ラテックス組成物および膜成形体
JP2020164690A (ja) * 2019-03-29 2020-10-08 日本ゼオン株式会社 ディップ成形用ラテックス組成物
WO2021006118A1 (ja) * 2019-07-05 2021-01-14 デンカ株式会社 クロロプレン共重合体ラテックス及びその製造方法、加硫物、並びに、浸漬成形体及びその製造方法

Also Published As

Publication number Publication date
US20240067813A1 (en) 2024-02-29
JPWO2022172696A1 (ja) 2022-08-18
EP4292792A1 (en) 2023-12-20

Similar Documents

Publication Publication Date Title
JP6769445B2 (ja) ラテックス組成物
JP5999103B2 (ja) ラテックス、ディップ成形用組成物およびディップ成形体
JP5472286B2 (ja) ディップ成形用組成物及びディップ成形体
JP5488137B2 (ja) ディップ成形用組成物及びディップ成形体
EP3029100B1 (en) Composition for dip molding, and dip-molded article
JP6816728B2 (ja) 重合体ラテックスの製造方法
JP7127649B2 (ja) ラテックス組成物
JP6984607B2 (ja) ラテックス組成物
JP5187501B2 (ja) ディップ成形用組成物及び成形体
WO2014157034A1 (ja) 合成イソプレン重合体ラテックスの製造方法
JP6879218B2 (ja) 重合体ラテックスの製造方法
JP7222398B2 (ja) 医療用バルーンの製造方法
JPWO2016088576A1 (ja) ディップ成形用合成ポリイソプレンラテックス、ディップ成形用組成物およびディップ成形体
JP7163924B2 (ja) ラテックス組成物の製造方法
JP6459564B2 (ja) ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
JP6729549B2 (ja) ディップ成形用合成イソプレン重合体ラテックスの製造方法、ディップ成形用組成物の製造方法およびディップ成形体の製造方法
JP7415933B2 (ja) キサントゲン化合物分散体、共役ジエン系重合体ラテックス組成物、および膜成形体
WO2022024672A1 (ja) 膜成形体
JP2016150946A (ja) ディップ成形用合成イソプレン重合体ラテックス、ディップ成形用組成物およびディップ成形体
JP2016141691A (ja) ディップ成形用組成物およびディップ成形体
WO2021171994A1 (ja) ディップ成形体の製造方法
WO2022172696A1 (ja) 成形体の製造方法
JP2018053173A (ja) ラテックス組成物
JP6984610B2 (ja) 合成ポリイソプレンラテックス
WO2023026782A1 (ja) ラテックス組成物およびディップ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275239

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022752528

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752528

Country of ref document: EP

Effective date: 20230911