WO2022171069A1 - 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用 - Google Patents

锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用 Download PDF

Info

Publication number
WO2022171069A1
WO2022171069A1 PCT/CN2022/075479 CN2022075479W WO2022171069A1 WO 2022171069 A1 WO2022171069 A1 WO 2022171069A1 CN 2022075479 W CN2022075479 W CN 2022075479W WO 2022171069 A1 WO2022171069 A1 WO 2022171069A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
glass
mol
chemically strengthened
aluminum silicate
Prior art date
Application number
PCT/CN2022/075479
Other languages
English (en)
French (fr)
Inventor
李树晨
古丛彬
赵天波
董汉飞
邹崇力
Original Assignee
醴陵旗滨电子玻璃有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 醴陵旗滨电子玻璃有限公司 filed Critical 醴陵旗滨电子玻璃有限公司
Priority to JP2023548778A priority Critical patent/JP2024506360A/ja
Priority to US18/264,846 priority patent/US20240116799A1/en
Priority to EP22752230.7A priority patent/EP4292991A1/en
Publication of WO2022171069A1 publication Critical patent/WO2022171069A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/50Doped silica-based glasses containing metals containing alkali metals

Definitions

  • the present application relates to the technical field of glass, in particular to a lithium aluminum silicate glass, a lithium aluminum silicate chemically strengthened glass, and a preparation method and application thereof.
  • Lithium aluminosilicate glass because it can be chemically strengthened twice, that is, first use Na + Exchange Li on the glass surface + , use K again + Exchange Na on the glass surface + , Replacing small ions with large ions twice makes the glass surface obtain greater compressive stress, thereby better blocking the "Griffith micro-cracks" on the surface and increasing the strength of the glass by nearly 20 times. Therefore, it becomes the protective glass (also known as cover glass, Cover Glass) for the touch screen of the smart display terminal.
  • cover glass also known as cover glass, Cover Glass
  • lithium aluminum silicate glass also needs to have high Young's modulus and chemical corrosion resistance. Oxides such as alumina and zirconia are used to deal with this problem. However, when these oxides are introduced too much, the melting temperature of the glass will be higher, which will lead to harsh production methods and conditions for mass production, and also lead to energy consumption. Higher consumption.
  • One of the purposes of the embodiments of the present application is to provide a lithium-aluminosilicate glass, a lithium-alumino-silicate chemically strengthened glass and a preparation method and application thereof, aiming at solving the problems of the low strength of the lithium-aluminosilicate glass and the high tearing static electricity in the prior art. , the problem of high energy consumption.
  • a lithium aluminosilicate glass in terms of the molar percentage of oxides, the lithium aluminosilicate glass includes the following components:
  • the lithium aluminum silicate glass further includes the following components:
  • the thickness of the lithium aluminum silicate glass is 0.25 mm to 2.5 mm.
  • the molar percentage of the Li 2 O is 8.0-13.0 mol %.
  • the molar percentage of the SiO 2 is 63-67 mol %.
  • the stress layer depth DOL of the lithium aluminum silicate glass corresponds to the compressive stress CS-30>100MPa at 30 ⁇ m.
  • lithium aluminum silicate glass when dropped onto the 180-mesh silicon carbide sandpaper with a free-fall speed of 180 g in a counterweight, its fracture height reaches more than 1.6 meters.
  • the melting temperature of the lithium aluminum silicate glass is lower than 1590°C.
  • a method for preparing lithium aluminum silicate glass comprising the following steps:
  • the raw materials of the components are mixed, melted, shaped and annealed in proportion to prepare the lithium aluminosilicate glass.
  • the melting temperature is 1510°C to 1578°C.
  • a chemically strengthened Li-Al-Si glass wherein the Li-Al-Si chemically-strengthened glass is a Li-Al-Si glass prepared from the Li-Al-Si glass or the Li-Al-Si glass prepared by the method for preparing the Li-Al-Si glass formed by chemical strengthening.
  • the melting temperature of the lithium-aluminum-silicon chemically strengthened glass when the viscosity is 10 2 dPa.s is less than 1590°C.
  • the "tear-off static electricity" generated at the moment of tearing off the protective film is less than 300V.
  • a method for preparing lithium-aluminum-silicon chemically strengthened glass comprising the steps of: strengthening the lithium-aluminum-silicon glass in a monovalent metal nitrate molten salt to obtain the lithium-aluminum-silicon chemically strengthened glass Glass.
  • the monovalent metal nitrate molten salt is sequentially selected from sodium nitrate molten salt, potassium nitrate molten salt, or the monovalent metal nitrate molten salt is selected from the mixed molten salt of sodium nitrate and potassium nitrate;
  • the time of strengthening treatment is 1-3 hours, and the temperature of strengthening treatment is 380-450°C.
  • the lithium aluminum silicate glass is subjected to the first strengthening treatment in pure sodium nitrate molten salt;
  • the second strengthening treatment is carried out in pure potassium nitrate molten salt.
  • the first chemical strengthening is performed by soaking in pure sodium nitrate molten salt at 440°C for 2 hours, and then soaking in pure potassium nitrate molten salt at 420°C.
  • the second chemical fortification was performed at 1.5 hours.
  • a fifth aspect provides an application of the lithium-aluminum-silicon chemically strengthened glass obtained by the lithium-aluminum-silicon chemically strengthened glass or the preparation method of the lithium-aluminum-silicon chemically strengthened glass in a display screen and a protective glass.
  • the lithium aluminum silicate glass of the present application controls the molar percentage of SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O and the ratio of (Li 2 O+Na 2 O+MgO)/Al 2 O 3
  • SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O controls the molar percentage of SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O and the ratio of (Li 2 O+Na 2 O+MgO)/Al 2 O 3
  • the preparation method of the lithium aluminosilicate glass of the present application is simple and convenient, and the lithium aluminosilicate glass can be obtained through the processes of mixing, melting, molding and annealing of the components, and the operation is simple and suitable for large-scale industrial applications.
  • the lithium-aluminum-silicon chemically strengthened glass of the present application is formed from the lithium-aluminum-silicon glass through chemical strengthening treatment, and the obtained lithium-aluminum-silicon chemically strengthened glass has a compressive stress value CS-30>100MPa when the stress layer depth (DOL) is 30 ⁇ m ;
  • the melting temperature when the glass viscosity is 10 2.0 dPa.s is less than 1590°C; when the TP and LCM are laminated and covered with a protective film, the “tear film static electricity” generated at the moment when the protective film is torn off is less than 300V;
  • the lithium-aluminum-silicon chemically strengthened glass has high strength, low "tear-off static electricity", low melting temperature, and has the excellent properties of reducing energy consumption and saving energy.
  • the lithium aluminum silicate glass can be strengthened in a monovalent metal nitrate molten salt, and the process is simple, which is favorable for wide application.
  • lithium-aluminum-silicon chemically strengthened glass in the display screen protection glass of the present application, because lithium-aluminum-silicon chemically strengthened glass has high strength, low "tear-off static electricity", low melting temperature, and excellent energy consumption reduction and energy saving properties, the obtained application products also have the excellent characteristics of high strength and "tear film static electricity”.
  • Fig. 1 is the relation diagram of the K 2 O content of the glass provided by the embodiment of the present application and the static electricity of tearing film;
  • FIG. 2 is a relationship diagram between the stress layer depth DOL and CS of the glass provided in the embodiment of the present application.
  • a first aspect of the embodiments of the present application provides a lithium aluminum silicate glass, which, in terms of the molar percentage of oxides, includes the following components:
  • the lithium aluminum silicate glass provided in the first aspect of the embodiments of the present application controls the mole percentages of SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O and (Li 2 O+Na 2 O+MgO) /Al 2 O 3 ratio range, so as to ensure that the obtained lithium aluminum silicate glass has high strength after chemical strengthening, and at the same time meets the customer's requirements for "tear film static electricity", and has the advantages of low melting temperature, energy saving and consumption reduction. Effect.
  • lithium aluminum silicate glass in terms of the molar percentage of oxides, includes 62-68 mol% SiO 2 , wherein SiO 2 is the main component of lithium aluminum silicate glass, and adding SiO 2 can make the glass obtain sufficient Young's Modulus and chemical resistance to meet the needs of users not to be scratched and not hazy during processing.
  • the mole percentage of SiO 2 is 62-68 mol %. If the added amount of SiO 2 is less than 62 mol %, the obtained lithium aluminum silicate glass will have poor chemical resistance. If the added amount of SiO 2 is higher than 68 mol % mol%, the melting temperature of the obtained lithium-aluminosilicate glass will be higher, it will be difficult to achieve mass production and increase energy consumption, which is not conducive to extensive preparation.
  • the molar percentage of SiO 2 is 63-67 mol %. In a specific embodiment, in the lithium aluminum silicate glass, the molar percentage of SiO 2 is selected from 62 mol%, 62.5 mol%, 63 mol%, 63.5 mol%, 64 mol%, 64.5 mol%, 65 mol%, 65.5 mol% , 66 mol%, 66.5 mol%, 67 mol%, 67.5 mol%, 68 mol%.
  • lithium aluminum silicate glass in terms of the molar percentage of oxides, includes 9-14 mol% of Al 2 O 3 , wherein Al 2 O 3 and SiO 2 are well matched, which can not only improve the chemical corrosion resistance of the glass At the same time, due to the increase of alkali metal ion channels during chemical strengthening, the strengthening process can be promoted, and a greater compressive stress and stress layer depth can be obtained.
  • the mole percentage of Al 2 O 3 is 9-14 mol %. If the addition amount of Al 2 O 3 is less than 9 mol %, the chemical corrosion resistance and strength of the obtained lithium aluminum silicate glass will be unsatisfactory. When the addition amount of Al 2 O 3 is higher than 14 mol%, the melting temperature of the obtained lithium-aluminosilicate glass will be higher, which makes it difficult to achieve mass production and increases energy consumption, which is not conducive to extensive preparation.
  • the molar percentage of Al 2 O 3 is 9-14 mol %. In a specific embodiment, in the lithium aluminum silicate glass, the molar percentage of Al 2 O 3 is selected from 9 mol%, 9.5 mol%, 10 mol%, 10.5 mol%, 11 mol%, 11.5 mol%, 12 mol%, 12.5 mol% mol%, 13 mol%, 13.5 mol%, 14 mol%.
  • the lithium aluminum silicate glass in terms of the molar percentage of oxides, includes 6-10 mol% Na 2 O, wherein the addition of Na 2 O can improve the strength of the glass during chemical strengthening, and at the same time help the glass.
  • the effect of melting and reducing viscosity, that is, reducing the melting temperature, the corresponding forming and annealing temperature will also be reduced, to achieve the purpose of energy saving and consumption reduction; at the same time, Na 2 O is a necessary substance for ion exchange in the process of strengthening treatment, providing Na 2 O In order to ensure the smooth progress of subsequent strengthening treatment.
  • the mole percentage of Na 2 O is 6-10 mol %. If the addition amount of Na 2 O is less than 6 mol %, the ion exchange of the obtained Li-Al silicate glass will have a low compressive stress, and the corresponding CS- 30 can not reach 100MPa, the plugging of "Griffith micro-cracks" is not ideal, and glass breakage will still occur due to crack propagation. If the addition amount of Na 2 O is higher than 10 mol%, it will The chemical resistance stability and Young's modulus of the obtained lithium-aluminosilicate glass decrease, and it is easy to appear hazy and scratches during the customer's processing, which is unfavorable for use.
  • the molar percentage of Na 2 O in the lithium aluminum silicate glass is 6-10 mol %.
  • the mole percentage of Na 2 O is selected from 6 mol%, 6.5 mol%, 7 mol%, 7.5 mol%, 8 mol%, 8.5 mol%, 9 mol%, 9.5 mol% %, 10 mol%.
  • lithium aluminum silicate glass in terms of the molar percentage of oxides, includes 0.2-0.7 mol% of K 2 O, wherein the addition of K 2 O can improve the strength of the glass during chemical strengthening, and at the same time increase the strength of the glass.
  • K 2 O is a necessary substance for ion exchange in the process of strengthening treatment. Ions that can accelerate the strengthening process and shorten the ion exchange time to improve the strengthening efficiency.
  • the mole percentage of K 2 O is 0.2-0.7 mol %.
  • controlling the mole percentage of K 2 O to be greater than 0.2 mol % and less than 0.7 mol % can accelerate the strengthening process and shorten the ion exchange time.
  • it can also avoid the occurrence of "tear film static electricity" greater than 500V when customers work in a place with a certain degree of cleanliness, attracting dust and causing the product to be scrapped.
  • the addition amount of K 2 O is less than 0.2 mol%, the ion exchange time will be longer in the strengthening process of the obtained Li-Al-Si glass, resulting in lower strengthening efficiency; if the addition amount of K 2 O is higher than 0.7 mol%
  • the glass products are chemically strengthened and coated with an AF film (anti-fingerprint film), which is then combined with LCM (LCD).
  • AF film anti-fingerprint film
  • LCM liquid crystal display module
  • the molar percentage of K 2 O in the lithium aluminum silicate glass is 0.2-0.7 mol %. In a specific embodiment, in the lithium aluminum silicate glass, the molar percentage of K 2 O is selected from 0.2 mol%, 0.25 mol%, 0.3 mol%, 0.35 mol%, 0.4 mol%, 0.45 mol%, 0.5 mol%, 0.55 mol% %, 0.6 mol%, 0.65 mol%, 0.7 mol%.
  • the lithium aluminum silicate glass includes 8.0-14.0 mol% Li 2 O in terms of the molar percentage of oxides, wherein the addition of Li 2 O can improve the strength of the glass during chemical strengthening, and at the same time enhance the strength of the glass.
  • Li 2 O is an essential substance for ion exchange in the process of strengthening treatment, providing In order to ensure the smooth progress of subsequent strengthening treatment when Li 2 O is used.
  • the mole percentage of Li 2 O is 8.0-14.0 mol %. If the addition amount of Li 2 O is less than 8.0 mol %, the depth of the compressive stress layer reached by ion exchange is too low, and the sealing of "Griffith microcracks" will be too low. If the plugging is not ideal, there will still be a high probability that the glass will break and fail due to crack propagation; if the amount of Li 2 O added is higher than 14.0 mol%, the crystallization tendency of the glass will increase, and it is easy to produce precipitation during the process. Defects or even devitrification occur.
  • the mole percentage of Li 2 O is 8.0-13.0 mol %. Furthermore, in the lithium aluminum silicate glass, the mole percentage of Li 2 O is 8.0-12.0 mol %.
  • the molar percentage of Li 2 O is selected from 8 mol%, 8.5 mol%, 9 mol%, 9.5 mol%, 10 mol%, 10.5 mol%, 11 mol%, 11.5 mol% %, 12 mol%.
  • the lithium aluminum silicate glass (Li 2 O+Na 2 O+MgO)/Al 2 O 3 is 1.7-2.5; the ratio of (Li 2 O+Na 2 O+MgO)/Al 2 O 3 is controlled,
  • its stress layer depth DOL corresponds to the compressive stress CS-30>100MPa at 30 ⁇ m, such a strength can well achieve the plugging of "Griffith microcracks", using
  • the fracture height can reach more than 1.6 meters; and the melting temperature of the glass is lower than 1590 °C, and the corresponding forming and annealing temperatures are also It is relatively low in mass production and energy saving; it ensures that the obtained lithium-aluminosilicate glass achieves the purpose of scratch resistance before chemical strengthening and chemical corrosion resistance after strengthening, and at the same time has the characteristics of low melting
  • alkaline earth metal oxides are added to some lithium-aluminosilicate glasses, which is beneficial to reduce the melting temperature and adjust the properties of glass forming materials. After adding, it is beneficial to control and control the forming temperature, and at the same time, it has the effect of inhibiting crystallization. effect.
  • the lithium aluminosilicate glass provided by the present application does not use raw materials that introduce Ca + , Sr + , and Ba + ions, but uses magnesium oxide raw materials that introduce small ionic radius.
  • the lithium aluminum silicate glass includes 2.0-5.5 mol% MgO in terms of the molar percentage of oxides.
  • MgO is beneficial to reduce the melting temperature and adjust the properties of the glass forming material. After adding, it is beneficial to control the forming temperature. and control, and at the same time have the effect of inhibiting crystallization.
  • the radius of the magnesium ion is small, only 0.72 ⁇ , which can reduce the melting temperature, inhibit the crystallization and adjust the properties of the forming material, and at the same time provide a relatively smooth ion exchange channel.
  • the molar percentage of MgO in the lithium aluminum silicate glass is 2.0-5.5 mol %. In a specific embodiment, in the lithium aluminum silicate glass, the molar percentage of MgO is selected from 2 mol%, 2.5 mol%, 3 mol%, 3.5 mol%, 4 mol%, 4.5 mol%, and 5 mol%.
  • the introduction of ZrO 2 is beneficial to improve the intrinsic strength of the glass, that is, to improve the elastic modulus, and at the same time increase the pre-chemical strengthening. Scratch resistance and chemical resistance during customer processing. If the addition amount of ZrO 2 is too high, it will increase the viscosity of the glass, increase the difficulty of melting and increase the energy consumption.
  • the mole percentage of ZrO 2 is 0.5-1.5 mol %. In a specific embodiment, in the lithium aluminum silicate glass, the mole percentage of ZrO 2 is selected from 0.5 mol%, 1 mol%, and 1.5 mol%.
  • the thickness of the lithium aluminum silicate glass is 0.25 mm to 2.5 mm.
  • a second aspect of the embodiments of the present application provides a method for preparing lithium aluminum silicate glass, comprising the following steps:
  • the raw materials of the components are mixed, melted, shaped and annealed according to the proportions to prepare lithium aluminum silicate glass.
  • the lithium aluminosilicate glass For the preparation method of lithium aluminosilicate glass provided in the second aspect of the embodiment of the present application, by sequentially performing the processes of mixing, melting, forming and annealing treatment according to each component raw material of the lithium aluminosilicate glass, the lithium aluminosilicate glass can be obtained in the realization of After strengthening, it has high strength, and at the same time meets the customer's requirements for "tear film static electricity", and has the excellent effects of lower melting temperature, energy saving and consumption reduction.
  • the preparation method is simple and convenient, easy to operate, and suitable for large-scale industrial application.
  • step S01 the content of each component is provided according to the lithium aluminum silicate glass provided above and the ratio of raw materials is determined. In order to save space, details are not repeated here.
  • step S02 the raw materials of the components are mixed, melted, shaped and annealed according to the proportions to prepare lithium aluminum silicate glass.
  • the melting temperature is 1510°C to 1578°C. Melt processing is performed at this temperature. Further, it also includes quality inspection, cutting and slicing, sorting, stacking, random inspection, and storage.
  • the lithium aluminum silicate chemically strengthened glass provided in the third aspect of the embodiments of the present application is formed by chemically strengthening the lithium aluminum silicate glass or the lithium aluminum silicate glass prepared by the preparation method of the lithium aluminum silicate glass. .
  • the lithium-aluminum-silicon chemically strengthened glass provided by the third aspect of the embodiments of the present application is formed by chemically strengthening the lithium-aluminum-silicon glass, and the obtained lithium-aluminum-silicon chemically strengthened glass has a depth of stress layer (DOL) of Compressive stress value CS-30>100MPa at 30 ⁇ m; melting temperature ⁇ 1590°C when glass viscosity is 10 2 dPa.s; after the Li-Al-Si chemically strengthened glass is attached to the module and covered with a protective film, tear it off The "tear-off static electricity" generated at the moment of removing the protective film is less than 300V; the obtained lithium-aluminum-silicon chemically strengthened glass has high strength, low "tear-off static electricity", low melting temperature, and has the advantages of reducing energy consumption and saving energy. nature.
  • DOL depth of stress layer
  • the lithium aluminum silicate glass is strengthened in a monovalent metal nitrate molten salt to obtain a lithium aluminum silicate chemically strengthened glass.
  • the fourth aspect of the embodiment of the present application provides a method for preparing a lithium-aluminum-silicon chemically strengthened glass, wherein the lithium-aluminum-silicon glass is strengthened in a monovalent metal nitrate molten salt to obtain a lithium-aluminum-silicon chemically strengthened glass.
  • the preparation method has a simple process and is favorable for wide application.
  • the monovalent metal nitrate molten salt is sequentially selected from sodium nitrate molten salt, potassium nitrate molten salt, or the monovalent metal nitrate molten salt is selected from the mixed molten salt of sodium nitrate and potassium nitrate.
  • the first strengthening treatment is performed on the lithium aluminum silicate glass in pure sodium nitrate molten salt;
  • the second strengthening treatment was carried out in potassium nitrate molten salt.
  • the lithium aluminosilicate glass is strengthened twice in a mixed molten salt of sodium nitrate and sodium potassium nitrate.
  • the time of strengthening treatment is 1 to 3 hours, and the temperature of strengthening treatment is 380 to 450°C.
  • the first chemical strengthening was performed by soaking in pure sodium nitrate molten salt at 440°C for 2 hours, and then the first chemical strengthening was performed in pure potassium nitrate molten salt at 420°C for 1.5 hours. Secondary chemical strengthening.
  • lithium-aluminum-silicon chemically strengthened glass is used in aspects including but not limited to display screen protection of electronic products, car windows, and car protective glass.
  • the application of the lithium-aluminum-silicon chemically strengthened glass provided in the fifth aspect of the embodiment of the present application in the display screen protection glass because the lithium-aluminum-silicon chemically strengthened glass has high strength, low "tear-off static electricity", low melting temperature, and has With the excellent properties of reducing energy consumption and energy saving, the obtained application products also have the excellent characteristics of high strength and low "tear film static electricity”.
  • the components of the lithium aluminum silicate glasses of Examples 1 to 5 and Comparative Examples 1 to 3 are listed in Table 1. According to the glass composition provided in Table 1, it was prepared as follows:
  • the required raw materials are calculated, and the raw materials are mixed uniformly to prepare a 0.70mm glass plate by the float method, the overflow method or the crucible kiln method. Then the glass plate is cut and quality inspected to obtain lithium aluminum silicate glass.
  • the obtained lithium aluminum silicate glass of Examples 1 to 5 and Comparative Examples 1 to 3 was soaked in pure sodium nitrate molten salt at 440 ° C for 2 hours for the first chemical strengthening, and then soaked in pure potassium nitrate molten salt at 420 ° C.
  • the second chemical strengthening treatment was carried out for 1.5 hours to obtain the lithium aluminum silicon chemically strengthened glasses of Examples 1 to 5 and Comparative Examples 1 to 3, respectively.
  • the lithium aluminum silicon chemically strengthened glass of Examples 1 to 5 and Comparative Examples 1 to 3 is provided. After AF film is evaporated on one side, the uncoated surface is bonded to LCM with OCA glue. At this time, the glass plate can be called For modules covered with cover glass, cover the cover glass of the module with a protective film to test "tear film electrostatic", test method: use a tear film electrostatic tester, model TREK-520 (USA), measuring range 0 ⁇ 1999V, the test environment requires a humidity of 40% to 60% and a temperature of 18 to 28°C; keep the probe of the tear-off electrostatic tester perpendicular to the surface of the sample to be tested, and the test personnel wear anti-static gloves, anti-static wristbands, and test probes The distance from the glass surface is 5-15mm, the film tearing speed is 0.5s, the sample cannot be placed on the table in the air, and the static voltage value at the moment of tearing the film is tested.
  • the performance test results of the lithium aluminum silicate glass of the above-mentioned Examples 1 to 5 and Comparative Examples 1 to 3 and the lithium aluminum silicate chemically strengthened glasses of Examples 1 to 5 and Comparative Examples 1 to 3 are shown in Table 2.
  • Examples The melting temperature of the obtained Li-Al-Si glass in 1 ⁇ 5 is ⁇ 1590°C, and the obtained Li-Al-Si chemically strengthened glass CS-30>100 MPa; tearing static (V) ⁇ 300V; drop height (180g load, 180 mesh silicon carbide sand) Paper) > 160CM, it can be seen that the lithium aluminum silicate glass provided in Examples 1 to 5 has high strength after chemical strengthening, and at the same time meets the customer's requirements for "tear film electrostatic", and also has a lower melting temperature, energy saving and consumption reduction. Excellent effect.
  • the melting temperature is >1610°C
  • the CS-30 is less than 95 MPa
  • the static electricity (V) of tearing film is >300V
  • the expected effects of the present invention namely, melting temperature ⁇ 1590°C; CS-30 >100 MPa; tear film static (V) ⁇ 300V; drop height (180g load, 180-mesh silicon carbide sandpaper) >160CM.
  • the stress layer depth DOL obtained in Examples 1 to 5 after strengthening treatment of the lithium aluminum silicate glass corresponds to the compressive stress CS-30>100MPa at 30 ⁇ m, and such strength can be well achieved.
  • the lithium aluminum silicate glass provided by this application can control the mole percentages of SiO 2 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O and (Li 2 O+Na 2 O+MgO)/Al 2
  • the ratio of O 3 to ensure that the obtained lithium aluminum silicate glass has high strength after chemical strengthening, and at the same time meets the customer's requirements for "tear film electrostatic", and has the excellent effects of lower melting temperature, energy saving and consumption reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本申请公开一种锂铝硅玻璃,按照氧化物的摩尔百分率计,所述锂铝硅玻璃包括如下组分:62~68 mol% SiO 2;9~14 mol% Al 2O 3;6~10 mol% Na 2O;0.2~0.7 mol% K 2O;8.0~14.0 mol% Li 2O ;其中,(Li 2O+Na 2O+MgO)/Al 2O 3为1.7~2.5,该锂铝硅玻璃通过控制了SiO 2、Al 2O 3、Na 2O、K 2O、Li 2O的摩尔百分率以及(Li 2O+Na 2O+MgO)/Al 2O 3的比值范围,进而保证得到的锂铝硅玻璃实现化学强化后具有高强度,同时满足客户对"撕膜静电"的要求,又兼有较低熔解温度、节能降耗的优异效果。

Description

锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
本申请要求于2021年02月09日在中国专利局提交的、申请号为202110177598.1、发明名称为“锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃技术领域,具体涉及一种锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用。
背景技术
锂铝硅玻璃,因可进行二次化学强化,即先用Na +交换玻璃表面的Li +、再用K +交换玻璃表面的Na +,两次以大离子替换小离子,而使玻璃表面获得更大的压缩应力,从而更好地封堵了表面的“格里菲斯微裂纹”,使玻璃的强度提升近20倍。也因此使其成为触控智能显示终端屏幕的保护玻璃(亦称盖板玻璃,Cover Glass)。
同时锂铝硅玻璃为了在强化前的加工过程中避免划伤、发朦,还要具有较高的杨氏模量和耐化学腐蚀性,因此现有产品中多以引入较高的氧化硅、氧化铝、氧化锆等氧化物来对应这一问题,但是这几种氧化物过多引入时,会造成玻璃的熔解温度较高,导致量产的生产方式和条件比较苛刻,同时也导致能耗消耗较高。
技术问题
本申请实施例的目的之一在于:提供一种锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用,旨在解决现有技术中锂铝硅玻璃强度较低、撕膜静电高、能耗高的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种锂铝硅玻璃,按照氧化物的摩尔百分率计,所述锂铝硅玻璃包括如下组分:
SiO 2        62~68 mol%
Al 2O 3       9~14 mol%;
Na 2O        6~10 mol%;
K 2O         0.2~0.7 mol%;
Li 2O        8.0~14.0 mol%;
MgO           2.0~5.5 mol%;
其中,(Li 2O+Na 2O+MgO)/Al 2O 3为 1.7~2.5。
进一步地,按照氧化物的摩尔百分率计,所述锂铝硅玻璃还包括如下组分:
ZrO 2         0.5~1.5 mol%。
进一步地,所述锂铝硅玻璃的厚度为0.25毫米~2.5毫米。
进一步地,所述Li 2O的摩尔百分率为8.0~13.0 mol%。
进一步地,所述SiO 2的摩尔百分率为63~67mol%。
进一步地,所述锂铝硅玻璃的应力层深度DOL对应30μm时的压应力CS-30>100MPa。
进一步地,所述锂铝硅玻璃在配重180g的情况下,以自由落体速度面着地方式向180目碳化硅砂纸上跌落时,其破裂高度达到1.6米以上。
进一步地,所述锂铝硅玻璃的熔解温度低于1590℃。
第二方面,提供了一种锂铝硅玻璃的制备方法,包括如下步骤:
根据所述的锂铝硅玻璃的组分;
将所述组分的原料按照比例进行混合、熔融、成型、退火处理,制备得到所述锂铝硅玻璃。
进一步地,熔融的温度为1510℃~1578℃。
第三方面,提供一种锂铝硅化学强化玻璃,所述锂铝硅化学强化玻璃是由所述的锂铝硅玻璃或由所述的锂铝硅玻璃的制备方法制备得到的锂铝硅玻璃经过化学强化处理形成的。
进一步地,所述锂铝硅化学强化玻璃在应力层深度(DOL)为30μm时的压缩应力值CS-30>100MPa。
进一步地,所述锂铝硅化学强化玻璃的粘度10 2 dPa.s时的熔化温度<1590℃。
进一步地,在所述锂铝硅化学强化玻璃与模组贴合后,覆有保护膜的情况下,撕去所述保护膜的瞬间所产生的“撕膜静电”<300V。
第四方面,提供一种锂铝硅化学强化玻璃的制备方法,包括如下步骤:将所述的锂铝硅玻璃于一价金属硝酸盐熔盐中进行强化处理,得到所述锂铝硅化学强化玻璃。
进一步地,所述一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐,或所述一价金属硝酸盐熔盐选自硝酸钠和硝酸钾的混合熔盐;
所述强化处理的步骤中,强化处理的时间为1~3小时,强化处理的温度为380~450℃。
进一步地,所述一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐时,是将所述锂铝硅玻璃先于纯硝酸钠熔盐中进行第一次强化处理;再于纯硝酸钾熔盐中进行第二次强化处理。
进一步地,所述锂铝硅玻璃的厚度为0.70mm时,是先在纯硝酸钠熔盐中440℃浸泡2小时进行所述第一次化学强化,之后在纯硝酸钾熔盐中420℃浸泡1.5小时进行所述第二次化学强化。
第五方面,提供一种所述的锂铝硅化学强化玻璃或所述的锂铝硅化学强化玻璃的制备方法得到的锂铝硅化学强化玻璃在显示屏幕、防护玻璃中的应用。
与现有技术相比,本申请具有以下的技术效果:
本申请锂铝硅玻璃通过控制了SiO 2 Al 2O 3、Na 2O、K 2O、Li 2O的摩尔百分率以及(Li 2O+Na 2O+MgO)/Al 2O 3的比值范围,进而保证得到的锂铝硅玻璃实现化学强化后具有高强度,同时满足客户对“撕膜静电”的要求,又兼有较低熔解温度、节能降耗的优异效果。
本申请锂铝硅玻璃的制备方法简单方便,通过将各组分混合、熔融、成型、退火处理的工艺,即可得到锂铝硅玻璃,操作简单,适合大规模工业应用。
本申请锂铝硅化学强化玻璃是由所述的锂铝硅玻璃经过化学强化处理形成,得到的锂铝硅化学强化玻璃在应力层深度(DOL)为30μm时的压缩应力值CS-30>100MPa;玻璃粘度10 2.0 dPa.s时的熔化温度<1590℃;在TP与LCM贴合后覆有保护膜的情况下,撕去该保护膜的瞬间所产生的“撕膜静电”<300V;得到的锂铝硅化学强化玻璃强度高,“撕膜静电”较低,熔解温度较低,且具有降低能耗、节能的优异性质。
本申请锂铝硅化学强化玻璃的制备方法将锂铝硅玻璃于一价金属硝酸盐熔盐中进行强化处理即可,工艺简单,有利于广泛应用。
本申请锂铝硅化学强化玻璃在显示屏幕防护玻璃中的应用,由于锂铝硅化学强化玻璃具有强度高,“撕膜静电”较低,熔解温度较低,且有降低能耗、节能的优异性质,得到的应用产品也具有强度高、“撕膜静电”较的优异特点。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的玻璃的K 2O的含量与撕膜静电的关系图;
图2是本申请实施例提供的玻璃的应力层深度DOL与CS的关系图。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实施例第一方面提供一种锂铝硅玻璃,按照氧化物的摩尔百分率计,锂铝硅玻璃包括如下组分:
SiO 2        62~68 mol%
Al 2O 3       9~14 mol%;
Na 2O        6~10 mol%;
K 2O        0.2~0.7 mol%;
Li 2O       8.0~14.0 mol %;
MgO          2.0~5.5 mol%;
其中,(Li 2O+Na 2O+MgO)/Al 2O 3为 1.7~2.5。
本申请实施例第一方面提供的锂铝硅玻璃通过控制了SiO 2 Al 2O 3、Na 2O、K 2O、Li 2O的摩尔百分率以及(Li 2O+Na 2O+MgO)/Al 2O 3的比值范围,进而保证得到的锂铝硅玻璃实现化学强化后具有高强度,同时满足客户对“撕膜静电”的要求,又兼有较低熔解温度、节能降耗的优异效果。
具体的,锂铝硅玻璃,按照氧化物的摩尔百分率计,包括62~68 mol% 的SiO 2,其中,SiO 2是锂铝硅玻璃的主要成分,添加SiO 2能够使玻璃获得足够的杨氏模量和耐化学腐蚀性,以满足用户在加工时不易划伤、不发朦的需求。
其中,SiO 2的摩尔百分率为62~68 mol%,若SiO 2的添加量低于62 mol%,则会导致得到的锂铝硅玻璃的耐化学腐蚀性差,若SiO 2的添加量高于68 mol%时,则会导致得到的锂铝硅玻璃的熔解温度会较高,量产难以实现并增加能耗,不利于广泛制备。
在一些实施例中,锂铝硅玻璃中,SiO 2的摩尔百分率为63~67 mol%。在具体实施例中,锂铝硅玻璃中,SiO 2的摩尔百分率选自62 mol%、62.5 mol%、63 mol%、63.5 mol%、64 mol%、64.5 mol%、65 mol%、65.5 mol%、66 mol%、66.5 mol%、67 mol%、67.5 mol%、68 mol%。
具体的,锂铝硅玻璃,按照氧化物的摩尔百分率计,包括9~14 mol%的Al 2O 3,其中,Al 2O 3与SiO 2较好配合,不仅仅可以提升玻璃的耐化学腐蚀性,同时在化学强化时由于增大碱金属离子通道而促进强化的进行,可以得到更大的压缩应力和应力层深度。
其中,Al 2O 3的摩尔百分率为9~14 mol%,若Al 2O 3的添加量低于9 mol%,则会导致得到的锂铝硅玻璃的耐化学腐蚀性和强度不理想,若Al 2O 3的添加量高于14 mol%时,则会导致得到的锂铝硅玻璃的熔解温度会较高,量产难以实现并增加能耗,不利于广泛制备。
在一些实施例中,锂铝硅玻璃中,Al 2O 3的摩尔百分率为9~14 mol%。在具体实施例中,锂铝硅玻璃中,Al 2O 3的摩尔百分率选自9 mol%、9.5 mol%、10 mol%、10.5 mol%、11 mol%、11.5 mol%、12 mol%、12.5 mol%、13 mol%、13.5 mol%、14 mol%。
具体的,锂铝硅玻璃,按照氧化物的摩尔百分率计,包括6~10mol%的Na 2O    ,其中,添加Na 2O能够使玻璃在化学强化时获得较高的强度提升,同时起到助熔和降低粘度的作用,即降低熔解温度,相应的成型、退火温度也会降低,达到节能降耗的目的;同时Na 2O是进行强化处理的过程中进行离子交换的必须物质,提供Na 2O  为了保证后续强化处理顺利进行。
其中,Na 2O的摩尔百分率为6~10 mol%,若Na 2O的添加量低于6 mol%,则会导致得到的锂铝硅玻璃的离子交换达到的压缩应力低,相应的CS-30达不到100MPa,对“格里菲斯微裂纹”的封堵不理想,仍会出现因裂纹扩展而导致玻璃破碎发生,若Na 2O的添加量高于10 mol%时,则会导致得到的锂铝硅玻璃的耐化学稳定性和杨氏模量下降,在客户加工过程中,易出现发朦和划伤,不利于使用。
在一些实施例中,锂铝硅玻璃中,Na 2O的摩尔百分率为6~10 mol%。在具体实施例中,锂铝硅玻璃中,Na 2O的摩尔百分率选自6 mol%、6.5 mol%、7 mol%、7.5 mol%、8 mol%、8.5 mol%、9 mol%、9.5 mol%、10 mol%。
具体的,锂铝硅玻璃,按照氧化物的摩尔百分率计,包括0.2~0.7 mol%的K 2O ,其中,添加K 2O能够使玻璃在化学强化时能够获得较高的强度提升,同时起到助熔和降低粘度的作用,即降低熔解温度,相应的成型、退火温度也会降低,达到节能降耗的目的;同时K 2O     是进行强化处理过程中进行离子交换的必须物质,钾离子可以加速强化进程的离子,缩短离子交换时间,以提高强化效率。
其中,K 2O的摩尔百分率为0.2~0.7 mol%,如附图1所示,控制K 2O的摩尔百分率>0.2 mol%,且<0.7 mol%,可以加速强化进程,缩短离子交换时间,以提高强化效率,又可避免客户在具有一定洁净度的场所作业发生“撕膜静电”大于500V,吸附尘埃而造成产品报废的情况发生。若K 2O的添加量低于0.2 mol%,则会导致得到的锂铝硅玻璃的强化进程中离子交换时间较长,导致强化效率较低;若K 2O的添加量高于0.7 mol%时,因氧化钾与氧化钠共存,起到“双碱效应”提高了玻璃的表面电阻,在客户端应用时,玻璃制品化学强化并镀有AF膜(防指纹膜)之后,与LCM(LCD液晶显示模组)贴合的情况下,撕去制品最外层保护膜的瞬间所产生的“撕膜静电”大于500V,吸附过多的尘埃粒子,造成客产品报废,不利于使用。
在一些实施例中,锂铝硅玻璃中,K 2O的摩尔百分率为0.2~0.7 mol%。在具体实施例中,锂铝硅玻璃中,K 2O的摩尔百分率选自0.2 mol%、0.25 mol%、0.3 mol%、0.35 mol%、0.4 mol%、0.45 mol%、0.5 mol%、0.55 mol%、0.6 mol%、0.65 mol%、0.7 mol%。
具体的,锂铝硅玻璃,按照氧化物的摩尔百分率计,包括8.0~14.0 mol%的Li 2O,其中,添加Li 2O能够使玻璃在化学强化时能够获得较高的强度提升,同时起到助熔和降低粘度的作用,即降低熔解温度,相应的成型、退火温度也会降低,达到节能降耗的目的;同时Li 2O是进行强化处理的过程中进行离子交换的必须物质,提供Li 2O时为了保证后续强化处理顺利进行。
其中,Li 2O的摩尔百分率为8.0~14.0 mol%,若Li 2O的添加量低于8.0 mol%,离子交换达到的压缩应力层深度过低,对“格里菲斯微裂纹”的封堵不理想,仍会出现因裂纹扩展而导致玻璃破碎失效的大概率情况发生;若Li 2O的添加量高于14.0 mol%时,会导致玻璃的析晶倾向增加,在制程中易产生析晶而出现缺陷甚至失透。
在一些实施例中,锂铝硅玻璃中,Li 2O的摩尔百分率为8.0~13.0 mol%。更进一步,锂铝硅玻璃中,Li 2O的摩尔百分率为8.0~12.0 mol%。
在具体实施例中,锂铝硅玻璃中,Li 2O的摩尔百分率选自8 mol%、8.5 mol%、9 mol%、9.5 mol%、10 mol%、10.5 mol%、11 mol%、11.5 mol%、12 mol%。
具体的,锂铝硅玻璃中,(Li 2O+Na 2O+MgO)/Al 2O 3为 1.7~2.5;控制(Li 2O+Na 2O+MgO)/Al 2O 3的比值,得到的锂铝硅玻璃经强化处理后,其应力层深度DOL对应30μm时的压应力CS-30>100MPa,这样的强度可以很好地实现对“格里菲斯微裂纹”的封堵,使用仿真手机加载180g配重,以自由落体速度面着地方式向180目碳化硅砂纸上跌落时,其破裂高度可达到1.6米以上;且玻璃的熔解温度低于1590℃,对应地成型、退火温度也较低,量产容易并且节能;确保得到的锂铝硅玻璃达到化学强化前耐划伤、强化后耐化学腐蚀的目的,同时得到熔解温度低、离子交换速率高、强度高的特点。
在一些实施例中,一些锂铝硅玻璃中会加入碱土金属氧化物,有利于降低熔解温度、调节玻璃成形料性的作用,加入后有利于成形温度的驾驭和控制,同时有抑制析晶的作用。但因Ca +、Sr +、Ba +的离子半径较大,分别为1.00Å、1.18Å和1.35Å,造成玻璃结构网格的“拥堵”而阻碍离子交换通道的畅通,使离子交换效率变低,故本申请提供的锂铝硅玻璃不使用引入Ca +、Sr +、Ba +离子的原料,而使用引入离子半径小的氧化镁原料。
进一步的,锂铝硅玻璃中,按照氧化物的摩尔百分率计,包括2.0~5.5 mol%的MgO,引入MgO有利于降低熔解温度、调节玻璃成形料性的作用,加入后有利于成形温度的驾驭和控制,同时有抑制析晶的作用。且氧化镁离子中,镁离子半径较小,只有0.72 Å,能够起到降低熔解温度、抑制析晶和调整成形料性的作用,同时提供较畅通的离子交换通道。
在一些实施例中,锂铝硅玻璃中,MgO的摩尔百分率为2.0~5.5 mol%。在具体实施例中,锂铝硅玻璃中,MgO的摩尔百分率选自2 mol%、2.5 mol%、3 mol%、3.5 mol%、4 mol%、4.5 mol%、5 mol%。
进一步的,锂铝硅玻璃中,按照氧化物的摩尔百分率计,包括0.5~1.5 mol%的ZrO 2,引入ZrO 2有利于提高玻璃的本征强度,即提高弹性模量,同时增加化学强化前客户加工时的抗划伤、耐化学腐蚀性。若ZrO 2的添加量过高,会增加玻璃粘度而增加熔解难度同时增加能耗。
在一些实施例中,锂铝硅玻璃中,ZrO 2摩尔百分率为0.5~1.5 mol%。在具体实施例中,锂铝硅玻璃中,ZrO 2的摩尔百分率选自0.5 mol%、1 mol%、1.5 mol%。
进一步,锂铝硅玻璃的厚度为0.25毫米~2.5毫米。
本申请实施例第二方面提供一种锂铝硅玻璃的制备方法,包括如下步骤:
S01. 根据锂铝硅玻璃的组分;
S02. 将组分的原料按照比例进行混合、熔融、成型、退火处理,制备得到锂铝硅玻璃。
本申请实施例第二方面提供的锂铝硅玻璃的制备方法,通过根据锂铝硅玻璃的各组分原料依次进行混合、熔融、成型、退火处理的工艺,可使得到锂铝硅玻璃在实现强化后具有高强度,同时满足客户对“撕膜静电”的要求,又兼有较低熔解温度、节能降耗的优异效果。另外,该制备方法简单方便,易于操作,适合大规模工业应用。
步骤S01中,根据上文所提供的锂铝硅玻璃提供各组分含量并确定原料配比,为了节约篇幅,此处不再进行赘述。
步骤S02中,将组分的原料按照比例进行混合、熔融、成型、退火处理,制备得到锂铝硅玻璃。其中,熔融的温度1510℃~1578℃。在该温度下进行熔融处理。进一步,还包括良品检测、切裁分片、分选、堆叠、抽检、入库。
本申请实施例第三方面提供的锂铝硅化学强化玻璃,锂铝硅化学强化玻璃是由锂铝硅玻璃或由锂铝硅玻璃的制备方法制备得到的锂铝硅玻璃经过化学强化处理形成的。
本申请实施例第三方面提供的锂铝硅化学强化玻璃,锂铝硅化学强化玻璃是由锂铝硅玻璃经过化学强化处理形成,得到的锂铝硅化学强化玻璃在应力层深度(DOL)为30μm时的压缩应力值CS-30>100MPa;玻璃粘度10 2 dPa.s时的熔化温度<1590℃;在锂铝硅化学强化玻璃与模组贴合后,覆有保护膜的情况下,撕去该保护膜的瞬间所产生的“撕膜静电”<300V;得到的锂铝硅化学强化玻璃强度高,“撕膜静电”较低,熔解温度较低,且具有降低能耗、节能的优异性质。
本申请实施例第四方面提供的锂铝硅化学强化玻璃的制备方法,包括如下步骤:
G01. 将锂铝硅玻璃于一价金属硝酸盐熔盐中进行强化处理,得到锂铝硅化学强化玻璃。
本申请实施例第四方面提供的锂铝硅化学强化玻璃的制备方法,将锂铝硅玻璃于一价金属硝酸盐熔盐中进行强化处理,得到锂铝硅化学强化玻璃,该锂铝硅化学强化玻璃在应力层深度(DOL)为30μm时的压缩应力值CS-30>100MPa;玻璃粘度10 2.0 dPa.s时的熔化温度<1590℃;在TP与LCM贴合后有保护膜的情况下,撕去该保护膜的瞬间所产生的“撕膜静电”<300V;因此,所得到的锂铝硅化学强化玻璃具有强度高,“撕膜静电”较低,熔解温度较低的优点,且具有降低能耗、节能的优异性质。另外,该制备方法工艺简单,有利于广泛应用。
步骤G01中,一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐,或一价金属硝酸盐熔盐选自硝酸钠和硝酸钾的混合熔盐。
在一些实施例中,一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐时,是将锂铝硅玻璃于纯硝酸钠熔盐中进行第一次强化处理;再于纯硝酸钾熔盐中进行第二次强化处理。
在另一些实施例中,将锂铝硅玻璃于硝酸钠和硝酸钠钾的混合熔盐中进行两次强化处理。
其中,强化处理的步骤中,强化处理的时间为1~3小时,强化处理的温度为380~450℃。
在具体的实施例中,以0.70mm的玻璃板为例,在纯硝酸钠熔盐中440℃浸泡2小时进行第一次化学强化,之后在纯硝酸钾熔盐中420℃浸泡1.5小时进行第二次化学强化。
本申请实施例第五方面提供的一种锂铝硅化学强化玻璃或锂铝硅化学强化玻璃的制备方法得到的锂铝硅化学强化玻璃在显示屏幕防护玻璃中的应用。
进一步,该锂铝硅化学强化玻璃运用于包括但不限于电子产品的显示屏幕保护、汽车视窗、汽车防护玻璃的方面。
本申请实施例第五方面提供的锂铝硅化学强化玻璃在显示屏幕防护玻璃中的应用,由于锂铝硅化学强化玻璃具有强度高,“撕膜静电”较低,熔解温度较低,且有降低能耗、节能的优异性质,得到的应用产品也具有强度高、“撕膜静电”较低的优异特点。
下面结合具体实施例进行说明。
实施例及对比例
为节约篇幅,将实施例1~5和对比例1~3的锂铝硅玻璃的组分列举于表1中。根据表1提供的玻璃组分,按照如下方式进行制备:
根据锂铝硅玻璃组分,计算所需原料,将原料混合均匀通过浮法、溢流法或坩埚窑法熔融法制备成0.70mm的玻璃板。随后对玻璃板进行切割,质检,得到锂铝硅玻璃。
将得到的实施例1~5和对比例1~3的锂铝硅玻璃,经纯硝酸钠熔盐中440℃浸泡2小时进行第一次化学强化,之后在纯硝酸钾熔盐中420℃浸泡1.5小时进行第二次化学强化处理,分别得到实施例1~5和对比例1~3的锂铝硅化学强化玻璃。
表1
Figure dest_path_image001
性能测试:
对上述实施例1~5和对比例1~3的锂铝硅玻璃和实施例1~5和对比例1~3的锂铝硅化学强化玻璃进行以下性能测试:
(1)提供实施例1~5和对比例1~3的锂铝硅玻璃,按照ASTM C965玻璃粘度测定方法测试熔化温度,即黏度值为10 2.0 dPa.s时对应的温度。
(2)提供实施例1~5和对比例1~3的锂铝硅化学强化玻璃,采用日本折原株式会社生产的SLP-200散乱光光弹性应力仪进行测试其CS-30。
(3)提供实施例1~5和对比例1~3的锂铝硅化学强化玻璃,测试整机跌落高度,测试方法:使用东莞市豪恩自动化设备有限公司生产的跌落试验机,型号HE-DL-315D,仿真手机模型重量180g,地面覆有180目碳化硅砂纸,以自由落体速度面朝下,90CM为起点,每次增高5CM,直至玻璃破碎为止(出现裂纹即为破碎)。
(4)提供实施例1~5和对比例1~3的锂铝硅化学强化玻璃,单面蒸镀AF膜后未镀膜面用OCA胶与LCM贴合,此时的玻璃板就可称为覆有盖板玻璃的模组,在模组的盖板玻璃上覆上保护膜,测试“撕膜静电”,测试方法:使用撕膜静电测试仪,型号TREK-520(美国),测量范围0~±1999V,测试环境要求湿度40%~60%,温度18~28℃;保持撕膜静电测试仪的探针与被测样品表面垂直,试人员戴防静电手套、防静电手环,测试探头距离玻璃表面5-15mm,撕膜速度0.5s,样品悬空不能放置桌上,测试撕膜瞬间的静电压值。
结果分析:
对上述实施例1~5和对比例1~3的锂铝硅玻璃和实施例1~5和对比例1~3的锂铝硅化学强化玻璃进行性能测试的结果如表2所示,实施例1~5得到的锂铝硅玻璃制备熔融温度 ≤1590℃,得到的锂铝硅化学强化玻璃CS-30 >100 MPa;撕膜静电(V)<300V;跌落高度(180g载荷,180目碳化硅砂纸)>160CM,可见,实施例1~5提供的锂铝硅玻璃实现化学强化后具有高强度,同时满足客户对“撕膜静电”的要求,又兼有较低熔解温度、节能降耗的优异效果。
而对比例1~3的锂铝硅玻璃中,虽然对比例1 的“撕膜静电”小于300V,但其它项目均未来达到本发明的预期效果。对比例2~3实施项目,熔化温度>1610℃,CS-30 小于95 MPa,撕膜静电(V)>300V;跌落高度(180g载荷,180目碳化硅砂纸)<90 CM,均达不到本发明的预期效果,即熔化温度<1590℃;CS-30 >100 MPa;撕膜静电(V)<300V;跌落高度(180g载荷,180目碳化硅砂纸)>160CM。
表2
性能测试结果 实施例1 实施例2 实施例3 实施例4 实施例5 对比例1 对比例2 对比例3
T2(102泊) 1510℃ 1582℃ 1560℃ 1576℃ 1578℃ 1620 1612 1654
CS-30 125 109 138 135 126 83 91 85
撕膜静电(V) 226 272 185 196 269 215 368 523
跌落高度(180g载荷,180目碳化硅砂纸) 165 170 190 180 185 80 85 90
其中,如附图2所示,实施例1~5得到的锂铝硅玻璃强化处理后的应力层深度DOL对应30μm时的压应力CS-30>100MPa,这样的强度可以很好地实现对“格里菲斯微裂纹”的封堵,使用仿真手机加载180g配重,以自由落体速度面着地方式向180目碳化硅砂纸上跌落时,其破裂高度可达到1.6米以上。
综上,本申请提供的锂铝硅玻璃通过控制SiO 2 Al 2O 3、Na 2O、K 2O、Li 2O的摩尔百分率以及(Li 2O+Na 2O+MgO)/Al 2O 3的比值范围,进而保证得到的锂铝硅玻璃实现化学强化后具有高强度,同时满足客户对“撕膜静电”的要求,又兼有较低熔解温度、节能降耗的优异效果。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (15)

  1. 一种锂铝硅玻璃,其特征在于,按照氧化物的摩尔百分率计,所述锂铝硅玻璃包括如下组分:
    SiO 2        62~68 mol%
    Al 2O 3       9~14 mol%;
    Na 2O        6~10 mol%;
    K 2O        0.2~0.7 mol%;
    Li 2O       8.0~14.0 mol%;
    MgO          2.0~5.5 mol%;
    其中,(Li 2O+Na 2O+MgO)/Al 2O 3为 1.7~2.5。
  2. 根据权利要求1所述的锂铝硅玻璃,其特征在于,按照氧化物的摩尔百分率计,所述锂铝硅玻璃还包括如下组分:
    ZrO 2         0.5~1.5mol%。
  3. 根据权利要求1~2任一所述的锂铝硅玻璃,其特征在于,所述锂铝硅玻璃的厚度为0.25毫米~2.5毫米。
  4. 根据权利要求1~2任一所述的锂铝硅玻璃,其特征在于,所述Li 2O的摩尔百分率为8.0~13.0mol%;和/或
    所述SiO 2的摩尔百分率为63~67mol%。
  5. 根据权利要求1~2任一所述的锂铝硅玻璃,其特征在于,所述锂铝硅玻璃的应力层深度DOL对应30μm时的压应力CS-30>100MPa;和/或
    所述锂铝硅玻璃在配重180g的情况下,以自由落体速度面着地方式向180目碳化硅砂纸上跌落时,其破裂高度达到1.6米以上。
  6. 根据权利要求1~2任一所述的锂铝硅玻璃,其特征在于,所述锂铝硅玻璃的熔解温度低于1590℃。
  7. 一种锂铝硅玻璃的制备方法,其特征在于,包括如下步骤:
    根据权利要求1~6任一所述的锂铝硅玻璃的组分;
    将所述组分的原料按照比例进行混合、熔融、成型、退火处理,制备得到锂铝硅玻璃。
  8. 根据权利要求7所述的锂铝硅玻璃的制备方法,其特征在于,所述熔融的温度为1510℃~1578℃。
  9. 一种锂铝硅化学强化玻璃,其特征在于,所述锂铝硅化学强化玻璃是由权利要求1~6任一项所述的锂铝硅玻璃或由权利要求7~8任一项所述的锂铝硅玻璃的制备方法制备得到的锂铝硅玻璃经过化学强化处理形成的。
  10. 根据权利要求9所述的锂铝硅化学强化玻璃,其特征在于,所述锂铝硅化学强化玻璃在应力层深度(DOL)为30μm时的压缩应力值CS-30>100MPa;
    所述锂铝硅化学强化玻璃的粘度10 2 dPa.s时的熔化温度<1590℃;
    在所述锂铝硅化学强化玻璃与模组贴合后,覆有保护膜的情况下,撕去所述保护膜的瞬间所产生的“撕膜静电”<300V。
  11. 一种锂铝硅化学强化玻璃的制备方法,其特征在于,包括如下步骤:
    将权利要求1~6任一项所述的锂铝硅玻璃于一价金属硝酸盐熔盐中进行强化处理,得到所述锂铝硅化学强化玻璃。
  12. 根据权利要求11所述的锂铝硅化学强化玻璃的制备方法,其特征在于,所述一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐,或所述一价金属硝酸盐熔盐选自硝酸钠和硝酸钾的混合熔盐;和/或
    所述强化处理的步骤中,强化处理的时间为1~3小时,强化处理的温度为380~450℃。
  13. 根据权利要求12所述的制备方法,其特征在于,所述一价金属硝酸盐熔盐依次选自硝酸钠熔盐、硝酸钾熔盐时,是将所述锂铝硅玻璃先于纯硝酸钠熔盐中进行第一次强化处理;再于纯硝酸钾熔盐中进行第二次强化处理。
  14. 根据权利要求13所述的制备方法,其特征在于,所述锂铝硅玻璃的厚度为0.70mm时,是先在纯硝酸钠熔盐中440℃浸泡2小时进行所述第一次化学强化,之后在纯硝酸钾熔盐中420℃浸泡1.5小时进行所述第二次化学强化。
  15. 一种如权利要求9-10任一项所述的锂铝硅化学强化玻璃或如权利要求11-14任一项所述的锂铝硅化学强化玻璃的制备方法得到的锂铝硅化学强化玻璃在显示屏幕防护玻璃中的应用。
PCT/CN2022/075479 2021-02-09 2022-02-08 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用 WO2022171069A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023548778A JP2024506360A (ja) 2021-02-09 2022-02-08 リチウムアルミノシリケートガラス、リチウムアルミノシリケート化学強化ガラス、並びに、その製造方法及び使用
US18/264,846 US20240116799A1 (en) 2021-02-09 2022-02-08 Lithium-aluminosilicate glass, lithium-aluminosilicate chemically strengthened glass, preparation method therefor, and application thereof
EP22752230.7A EP4292991A1 (en) 2021-02-09 2022-02-08 Lithium-aluminosilicate glass, lithium-aluminosilicate chemically strengthened glass, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110177598.1 2021-02-09
CN202110177598.1A CN112960904B (zh) 2021-02-09 2021-02-09 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022171069A1 true WO2022171069A1 (zh) 2022-08-18

Family

ID=76284491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075479 WO2022171069A1 (zh) 2021-02-09 2022-02-08 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Country Status (5)

Country Link
US (1) US20240116799A1 (zh)
EP (1) EP4292991A1 (zh)
JP (1) JP2024506360A (zh)
CN (1) CN112960904B (zh)
WO (1) WO2022171069A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116750965A (zh) * 2023-06-28 2023-09-15 湖南旗滨新材料有限公司 锂铝硅酸盐玻璃组合物、锂铝硅酸盐玻璃及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960904B (zh) * 2021-02-09 2022-02-15 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
CN113480169A (zh) * 2021-08-03 2021-10-08 四川虹科创新科技有限公司 一种耐酸耐碱锂铝硅玻璃
CN114230196B (zh) * 2022-01-04 2023-11-24 四川虹科创新科技有限公司 一种具有抗划伤性能的强化玻璃及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096310A1 (ja) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法及び情報記録媒体
CN102363567A (zh) * 2010-06-18 2012-02-29 旭硝子株式会社 显示装置用玻璃以及玻璃板
CN102811963A (zh) * 2010-03-24 2012-12-05 Hoya株式会社 显示器用防护玻璃及显示器
CN110615611A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN111003936A (zh) * 2018-10-08 2020-04-14 肖特股份有限公司 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法
CN112960904A (zh) * 2021-02-09 2021-06-15 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019123658A (ja) * 2018-01-19 2019-07-25 Agc株式会社 化学強化ガラスの製造方法および化学強化ガラス
CN110615610B (zh) * 2019-10-10 2020-09-04 清远南玻节能新材料有限公司 锂锆质铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN111646693B (zh) * 2020-06-17 2022-07-08 深圳南玻科技有限公司 低介电常数和损耗的锂铝硅酸盐玻璃、制备方法及应用
CN111995243A (zh) * 2020-09-04 2020-11-27 彩虹集团(邵阳)特种玻璃有限公司 一种高强度、低脆性的铝硅酸盐玻璃及其强化方法和应用
CN112142323B (zh) * 2020-09-04 2022-10-21 咸宁南玻光电玻璃有限公司 具有表面裂纹修复能力的锂铝硅酸盐玻璃及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096310A1 (ja) * 2010-02-03 2011-08-11 コニカミノルタオプト株式会社 情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法及び情報記録媒体
CN102811963A (zh) * 2010-03-24 2012-12-05 Hoya株式会社 显示器用防护玻璃及显示器
CN102363567A (zh) * 2010-06-18 2012-02-29 旭硝子株式会社 显示装置用玻璃以及玻璃板
CN111003936A (zh) * 2018-10-08 2020-04-14 肖特股份有限公司 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法
CN110615611A (zh) * 2019-10-10 2019-12-27 清远南玻节能新材料有限公司 铝硅酸盐玻璃、强化玻璃及其制备方法和显示器件
CN112960904A (zh) * 2021-02-09 2021-06-15 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116750965A (zh) * 2023-06-28 2023-09-15 湖南旗滨新材料有限公司 锂铝硅酸盐玻璃组合物、锂铝硅酸盐玻璃及其制备方法
CN116750965B (zh) * 2023-06-28 2023-12-26 湖南旗滨新材料有限公司 锂铝硅酸盐玻璃组合物、锂铝硅酸盐玻璃及其制备方法

Also Published As

Publication number Publication date
CN112960904B (zh) 2022-02-15
CN112960904A (zh) 2021-06-15
EP4292991A1 (en) 2023-12-20
JP2024506360A (ja) 2024-02-13
US20240116799A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2022171069A1 (zh) 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
US10173923B2 (en) Tempered glass, tempered glass plate, and glass for tempering
JP6237840B2 (ja) 化学強化用ガラス
US8835007B2 (en) Tempered glass and tempered glass sheet
JP5721066B2 (ja) 強化ガラス及び強化ガラス板
JP4947502B2 (ja) 強化ガラス基板及びその製造方法
US20120196110A1 (en) Tempered glass and tempered glass sheet
US10968136B2 (en) Tempered glass
WO2012099053A1 (ja) 強化ガラス及び強化ガラス板
WO2020239048A1 (zh) 一种含碱铝硅酸盐玻璃及其制品、强化方法和应用
WO2013187465A1 (ja) 強化ガラス、強化ガラス板及び強化用ガラス
TWI663139B (zh) glass plate
KR20100019480A (ko) 강화유리기판 및 그 제조방법
CN109020196B (zh) 一种易于离子交换的化学强化玻璃
TW202216626A (zh) 結晶化玻璃以及強化結晶化玻璃
WO2023008168A1 (ja) 強化ガラス、強化用ガラス、およびディスプレイデバイス
WO2023176070A1 (ja) 強化ガラスの製造方法、及び強化ガラス
WO2022261307A1 (en) Glass compositions having improved mechanical durability and low characteristic temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752230

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18264846

Country of ref document: US

Ref document number: 2023548778

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022752230

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022752230

Country of ref document: EP

Effective date: 20230911