CN111003936A - 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法 - Google Patents

可存储张应力增加的玻璃、化学强化玻璃制品及生产方法 Download PDF

Info

Publication number
CN111003936A
CN111003936A CN201910934646.XA CN201910934646A CN111003936A CN 111003936 A CN111003936 A CN 111003936A CN 201910934646 A CN201910934646 A CN 201910934646A CN 111003936 A CN111003936 A CN 111003936A
Authority
CN
China
Prior art keywords
amount
glass
glass article
weight
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910934646.XA
Other languages
English (en)
Other versions
CN111003936B (zh
Inventor
R·迪特里希
J·奥克珀
O·霍克莱恩
S·克鲁格
J·韦斯霍恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to CN202310325317.1A priority Critical patent/CN116143406A/zh
Publication of CN111003936A publication Critical patent/CN111003936A/zh
Application granted granted Critical
Publication of CN111003936B publication Critical patent/CN111003936B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B27/00Tempering or quenching glass products
    • C03B27/04Tempering or quenching glass products using gas
    • C03B27/06Tempering or quenching glass products using gas for glass products other than flat or bent glass plates, e.g. hollow glassware, lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/24Wet processes, e.g. sol-gel process using alkali silicate solutions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment

Abstract

本发明总体上涉及玻璃,特别是能够被强化的玻璃,尤其是可化学强化的玻璃,并且还涉及包含此类玻璃的玻璃制品,例如,由此类玻璃制成或由此类玻璃组成的玻璃制品。本发明尤其还涉及可化学强化和化学强化的玻璃制品。优选地,这些玻璃和玻璃制品被设计成能够比现有技术的玻璃和玻璃制品存储更多的张应力。此外,本发明还涉及一种该玻璃制品的生产方法及其用途。

Description

可存储张应力增加的玻璃、化学强化玻璃制品及生产方法
技术领域
本发明总体上涉及玻璃,特别是能够被强化的玻璃,尤其是可化学强化的玻璃,并且还涉及包含此类玻璃的玻璃制品,例如,由此类玻璃制成或由此类玻璃组成的玻璃制品。特别地,本发明还涉及可化学强化和化学强化的玻璃制品。优选地,这些玻璃和玻璃制品被设计成能够比现有技术的玻璃和玻璃制品存储更多的张应力。此外,本发明还涉及一种该玻璃制品的生产方法及其用途。
背景技术
已强化和可强化的玻璃和/或玻璃制品已被,例如,US2018/0057401A1、US2018/0029932A1、US2017/0166478A1、US9,908,811B2、US2016/0122240A1、US2016/0122239A1、US2017/0295657A1、US8,312,739B2、US9,359,251B2、US9,718,727B2、US2012/0052271A1、US2015/0030840A1、US2014/0345325A1、US9,487,434B2、US9,517968B2、US9,567,254B2、US9,676,663B2、US2018/0002223A1、US2017/0166478A1、US2017/0129803A1、US2016/01002014A1、US2015/0368153A1、US2015/0368148A1、US2015/0239775A1、US9,908,812B2、US9,902,648B2、US9,593,042B2、WO 2012/126394A1、US9,540,278B2、US8,759,238B2、US8,075,999B2、US4,055,703、DE102010009584B4、以及CN102690059A等公开。
为了满足譬如对移动设备的防护玻璃的要求,已经开发出可高度强化的玻璃。此类玻璃通常指铝硅酸盐玻璃(本文亦称为AS玻璃),或所谓的铝硅酸锂玻璃(本文亦称为LAS玻璃)。
也就是说,AS玻璃的组分包括氧化硅(SiO2)和氧化铝(Al2O3),以及除氧化锂(Li2O)之外的碱金属氧化物。LAS玻璃则是除了包括AS玻璃的组分外还包括氧化锂(Li2O)。因此,在本文所称“AS玻璃”和“LAS玻璃”之间的区别在于,LAS玻璃包括Li2O,但AS玻璃不包括Li2O。除上述组分以外,此类玻璃通常还包括其他组分。
因此,此类玻璃被设计成能够进行化学强化。在本发明的上下文中,可化学强化的玻璃是指可以进行离子交换工艺的玻璃,通过该工艺玻璃板等玻璃制品表层上的碱金属离子会被替换。其具体过程是通过将半径较小的离子交换为半径较大的离子从而在表层上建立压应力区。为了这一目的,需要将玻璃制品浸入所谓的离子交换浴中,例如,熔融盐中。该离子交换浴包括离子半径较大的离子,尤其是钾和/或钠离子,使得这些离子迁移到玻璃制品的表层。在交换过程中,离子半径较小的离子,特别是锂和/或钠离子,会从玻璃制品的表层迁移到离子交换浴中。
这样就形成了压应力区,该压应力区可以由压应力(简称为“CS”)和压应力深度(也称为“层深度”或可简称为DoL)的特性参数来表征。本领域技术人员已经熟知压应力深度(DoL),其在本发明的上下文中指的是应力曲线中应力为零时的深度。替代地或附加地,可以通过应力光学零交叉测量方法(例如利用商品名FSM-6000或SLP 1000的测量设备)来测定该深度DoL。
上述测量设备还可用于测定AS玻璃的玻璃片或片状玻璃制品的表面压应力和最大压应力CS。
对于可高度强化的玻璃(那些有资格用作例如具有不同强度需求的移动设备的防护玻璃的玻璃),通常在40μm到200μm的压应力深度下可以达到较高的压应力值(700MPa-1000MPa)。如果不只是交换一种离子,而是例如在LAS玻璃中常发生的同时交换钾离子和钠离子,那么,通常会针对各个组分或离子来表示表征压应力的参数CS和DoL,例如,钾交换产生的压应力表示为“钾CS”,以及相应的压应力深度表示为“钾DoL”或钾压应力深度。
与AS玻璃相比,LAS玻璃的优势在于可以更快获得更大的压应力深度。此处所给的压应力深度是应力曲线值为0MPa时的深度,因此,在应力图中用应力曲线的零交叉点来标记该压应力深度。对于LAS玻璃,持续处理1到3小时后,其压应力深度通常至少为100μm或者更大。
实际上,AS玻璃的压应力深度也很高,例如,其也可以高达125μm或者更大。然而,要实现这种压应力深度,AS玻璃需要450℃或更高的高强化温度和/或8小时或更长的长强化持续时间。相比之下,LAS玻璃的优势在于,其只需在较低温度和/或较短交换时间等明显更有利的条件下,就能获得较高的压应力值和压应力深度。
可以使用市售设备来测定压应力值和压应力深度。例如,设备FSM 6000可以用于确定通过钾交换达到的压应力值(钾CS)和压应力深度(钾DoL),以及设备SLP 1000可以用于确定通过钠交换达到的特征应力值,特别是确定通过钠交换在30μm深度处达到的压应力值(也缩写为“Na CS-30”)以及钠达到的压应力深度(钠DoL)。这些设备可以从OriharaLtd.所购得。
以这种方式强化的玻璃制品,其机械强度很高。但是,对于玻璃制品等产品的强度,产品的机械强度不仅取决于材料还特别地取决于载荷的类型。例如,现有技术的化学强化玻璃制品具有例如在四点弯曲试验中确定的高抗弯强度,或者具有例如在所谓的落球试验中确定的高抗冲强度,或者具有可以抵抗例如所谓“锐物冲击”的高强度。例如,所谓的包装跌落试验对移动设备非常重要,其用于测量实际应用中玻璃制品可能承受的载荷。为此目的,需要以类似安装在智能手机等后期移动设备上的方式来安装玻璃制品,进而将该玻璃制品作为显示屏等来建立一种智能手机等终端设备的模型。该模型的重量和玻璃制品的安装大致对应于实际的终端设备,只是不使用相应的组件。然后,将玻璃制品朝下的模型跌落在例如其上具有小曲率半径的颗粒的表面。所以,此类试验旨在模拟实际载荷,例如当智能手机掉在沥青或瓷砖地面上时的载荷。众所周知,用于移动设备的防护玻璃是否完整与其是否跌落在具有凸出的尖石或沙粒的粗糙地面上有很大关系。例如,上述安装有玻璃的模型跌落到花岗岩等光滑表面所能承受的跌落高度与跌落在例如覆有砂纸的花岗岩等粘附有砂纸的粗糙表面所能承受的跌落高度完全不同。针对粗糙地面(用覆有砂纸的花岗岩来模拟)的跌落高度要小于针对光滑地面的跌落高度。比如,用于测量这种“锐物冲击”强度的选择性试验就包括所谓的“砂纸落球试验”。例如,美国专利申请US2015/0239775A1公开了一种针对砂纸落球试验的示例性装置。
尽管在光滑表面包装跌落试验中AS玻璃的钢化分布实现的跌落高度也高或者非常高,但在砂纸包装跌落试验中,其与LAS玻璃的区别却异常明显。如附图4所示,这一对比也相当明显。如附图2,其示出了AS玻璃的压应力参数。此时,压应力CS和压应力深度DoL等压应力的常规参数实际上与LAS玻璃的参数相差无几。图3示出了包括LAS玻璃的强化玻璃制品的示例性压应力分布。这是根据现有技术的LAS玻璃的压应力的分布。对比图2和3,可以明显看出两类玻璃制品之间的区别主要在于AS玻璃所存储的张应力较高。图4示例性地示出了这一事实。在砂纸包装跌落试验(即所谓的“锐物冲击”强度试验)中,存储有较高张应力的AS玻璃显示出异常低的强度(如条形图401所示),该强度比在砂纸包装跌落试验中LAS玻璃所显示的强度(如条形图402所示)要低得多。
在现有技术中,除了常规的压应力参数CS和DoL之外,张应力也与强度有关。如果压应力积分过高,这也意味着张应力积分也会很高。在这种情况下,由于因强化处理而引入表面的玻璃制品的压应力与玻璃内部产生的张应力相等,所以实践证明,这会使得该玻璃制品的强度不再增加甚至降低。因为,如在四点弯曲试验等强度试验或者包装跌落试验等检查锐物冲击强度的试验中显示的那样,这会使得裂纹更快速地蔓延,也使得玻璃更早地破裂。附图4根据试验数据也例证了这一事实。如图所示,在锐物冲击试验的砂纸包装跌落试验中,存储有较高抗拉强度的AS玻璃表现出较差的强度。在这种情况下,如上所述,该AS玻璃制品的CS和DOL(见图2)等其它压应力参数实际上与图3所示的LAS玻璃制品的压应力参数相当。然而,他们也存在明显区别,该AS玻璃制品所存储的张应力为60.7MPa(另见表2所示的比较例7),其明显较高。这是因为钾和钠离子交换的压应力组分构成的LAS玻璃制品具有复合或组合的压应力分布。
因此,就临界的锐物冲击强度而言,具有复合压应力分布的玻璃制品比AS玻璃或AS玻璃制品要更有优势,这是因为它们在CS和DoL值相当的情况下所存储的张应力明显较低。尽管如此,目前市场上销售的具有最佳强化分布的LAS玻璃或LAS玻璃制品在粗糙地面上的跌落高度也没有超过相关市场跌落高度的1米。因此,需要可以进一步化学强化或可化学强化的玻璃制品,使得该玻璃制品具有增强的强度以抵抗锐物冲击,以便例如用作移动设备的防护屏。然而,当前市场上的玻璃及其采用的后处理程序,无法在保证所存储的张应力较低的同时增加应力参数CS和DoL。目前的LAS玻璃,进一步增加CS和DoL(因其存储的张应力较低而仍可能实现)无法实现,这是因为它已经达到了可存储的最大张应力。例如,表2所示的比较例3-5就示出了当前的LAS玻璃及其可达到的最大存储的张应力。
因此,在这种情况下,载荷对AS玻璃就变得尤为重要,因为鉴于离子交换分布图,表面的高压应力和高压应力深度始终意味着此时存储的张应力也较高。
在LAS玻璃中,不仅钠离子交换,钾离子交换也可以引起压应力或离子交换分布,因此,所谓的LAS玻璃此时就具有更大的优势。这是因为,在这种情况下,与AS玻璃相比,LAS玻璃可以在所存储张应力较低的情况下获得高压应力和高压应力深度。例如,德国专利DE102010009584B4公开了两阶段离子交换过程,即先例如在390℃的硝酸钠熔体中交换4个小时以上,然后在390℃的硝酸钾熔体中交换3个小时以上。这样就可以获得这种复合压应力分布。
如果LAS玻璃中的钠和/或锂离子被钾和钠离子取代,这就譬如意味着玻璃中产生的部分压应力是钾交换引起的,而另一部分是钠交换引起的。
高度强化的玻璃制品在承受“锐物冲击”载荷的情况下尤其会较早破裂,这是因为,在这种载荷下,锐利的颗粒引起的此种载荷对玻璃制品的损害会穿过压应力区进入玻璃制品中张应力主导的区域。这就会导致玻璃破裂,而且当玻璃制品所存储的张应力非常高的时候,这种情况尤其明显。
在玻璃制品的表面上产生非常高的压应力并结合高总交换深度可以使得该压应力随着玻璃制品厚度的增加而快速降低,从而来避免这种锐物冲击导致的破裂。
对于LAS玻璃而言,这是可以实现的。例如,通过钾交换可以在表面上产生非常高的压应力,但同时钾的压应力深度却很低只有几微米,与此同时,钠交换引起的钠的压应力深度较高但同时其压应力却很低,这特别地可以通过所产生的压应力的所谓Na CS-30值来表征。
然而,实践证明,在钾的压应力深度非常低尤其当低于4μm的时候,如果Na CS-30压应力值小于120MPa,则会使得耐缺陷性能较差,而且强度试验测定的值会有较大变数,甚至会向下包括异常值。如果突破这些极限值,则即使在所谓的“钝物”故障的情况下,还是会得出非常低的强度值,其中,“钝物”故障也就是指由钝物引起的载荷(如常规的落球试验)以及根据双环法或四点弯曲试验等静态强度试验的情形。
耐缺陷性是指在玻璃制品已经发生损坏的情况下测量其强度的情形。应当理解的是,玻璃制品耐缺陷性较低就意味着较小程度的初步损坏已经引起了强度的急剧降低。另一方面,耐缺陷性高则意味着即使发生了初步损坏,其强度依然较高。本文的初步损坏是指由于例如喷砂或用粗糙表面来处理玻璃制品而在玻璃制品的表面造成的损坏。由于玻璃制品的强度基本上取决于表面光洁度,因此玻璃制品表面的初步损坏通常会导致其强度显着降低。
因此,需要对所谓的“锐物冲击”载荷表现出较高的机械强度的玻璃制品。此外,还需要一种在所谓的“锐物冲击”下表现出高强度,优选地得益于化学强化的高强度的玻璃。
发明内容
本发明的目的是提供玻璃制品和玻璃,其可以克服或至少可以减轻现有技术的上述缺陷,并且,例如与现有技术相比,特别地,其对锐物冲击载荷的抵抗力有所增强。此外,本发明还涉及上述玻璃制品的用途及其生产方法。
该目的通过独立权利要求的主题来实现,从属权利要求阐述了优选的和特定的实施例。
本发明的第一方面涉及一种化学强化的片状玻璃制品,其厚度介于0.4mm和3mm之间,其中,该玻璃制品中钾的压应力深度至少为4μm且至多为8μm,而且,对于钠交换在30μm深度处引起的压应力,当该玻璃制品的厚度为0.5mm时,该压应力至少为90MPa,当该玻璃制品的厚度为0.55mm时,该压应力至少为100MPa,当该玻璃制品的厚度为0.6mm时,该压应力至少为110MPa,当该玻璃制品的厚度为0.7mm时,该压应力至少为120MPa,当该玻璃制品的厚度为1mm时,该压应力至少为140MPa,优选地,该压应力至多为200MPa;其中,钠交换深度(以μm为单位)与玻璃制品厚度(以mm为单位)的比值大于0.130;而且,其中,该玻璃制品的可存储张应力至少为20.6Mpa且至多为30MPa,优选地,至多为27.5MPa,更优选地,至多为25MPa,最优选地,至多为24MPa。此处,该可存储张应力是指从第一主表面到相对主表面的沿法线直线方向的张应力的积分,然后,将该积分除以积分长度(即基板的厚度),使得厚度不同的多个基板的值相当。因此,通过归一到厚度的张应力积分可以得到应力的大小,而且能为厚度不同的多个基板提供相当的应力值。
该玻璃制品有利地结合了高压应力和高压应力深度。高压应力深度确保只有在玻璃制品的损坏较深,例如,造成非常深的划痕等情况下,才能到达玻璃制品的张应力区域,从而提高了该玻璃制品对锐物冲击载荷的抵抗力。可以通过至少20.6MPa的可存储张应力来得到这种高强度。
然而,显然如AS玻璃的示例(参见表2的比较例7)所示,不可以将可存储张应力最大化,因为继续增加可存储张应力值会再次使其对锐物冲击载荷的抵抗力较低。可存储或存储的张应力的可能上限值为30MPa,该上限值在锐物冲击试验中仍能获得良好的结果。优选地,存储的张应力不应超过27.5MPa,更优选地,其不应超过25MPa。特别地,目前实践证明,存储的张应力的最大值特别优选地为24MPa。
可以将测定值浮动5%到10%来测定存储的张应力。
为了方便计算,通过假设压应力分布线性延伸来计算张应力积分。因此,AS玻璃的张应力积分可根据以下公式得出:CS*DoL/2*1000*d。
其中,CS是指玻璃制品表面的最大压应力,DoL是压应力深度,d是玻璃制品的厚度。
对于具有复合压应力分布的LAS玻璃的张应力积分,其计算要稍微复杂一点,可以根据以下公式得出:[KCS*KDoL/2*1000+NaCS交点*((NaDoL-KDoL)+(NaDoL-KDoL交点))/2*1000]/d。
其中,d同样指玻璃制品的厚度。“NaCS交点”是指在压应力分布中钠压应力曲线和钾压应力曲线交点处的压应力。“KDoL交点”是指在压应力分布中钠压应力曲线和钾压应力曲线交点处的该玻璃制品的深度。
附图中,图1的附图标记108和图3的附图标记303分别表示上述交点。
本发明的第二方面涉及一种厚度介于0.4mm和3.0mm之间的片状玻璃制品;优选地一种化学强化或者可化学强化的片状玻璃制品;特别优选地,一种化学强化的片状玻璃制品,该玻璃制品中钾的压应力深度至少为4μm且至多为8μm,而且,对于其钠交换在30μm深度处引起压应力,当该玻璃制品的厚度为0.5mm时,该压应力至少为90MPa,当该玻璃制品的厚度为0.55mm时,该压应力至少为100MPa,当该玻璃制品的厚度为0.6mm时,该压应力至少为110MPa,当该玻璃制品的厚度为0.7mm时,该压应力至少为120MPa,当该玻璃制品的厚度为1mm时,该压应力至少为140MPa,优选地,该压应力至多为200MPa,钠交换深度(以μm为单位)与该玻璃制品的厚度(以mm为单位)的比值大于0.130,而且其中,该玻璃制品的可存储张应力至少为20.6MPa且至多为30MPa,优选地,至多为27.5MPa,更优选地,至多为25MPa,以及最优选地,至多为24MPa。
该玻璃制品以重量%计包括如下组分:
SiO2,其含量为54-64重量%,优选地,含量为57-64重量%,更优选地,含量为60-62重量%,以及最优选地,含量为61-62重量%;
Al2O3,其含量为16-28重量%,优选地,含量为16-21重量%,更优选地,含量为17.5-19.5重量%,以及最优选地,含量为18-19重量%;
B2O3,其含量为0-0.6重量%,优选地,含量为0-0.45重量%,更优选地,含量为0-0.28重量%,以及最优选地,含量为0-0.1重量%;
Li2O,其含量为3.5-6.5重量%,优选地,含量为3.7-5.7重量%,更优选地,含量为3.9-5.5重量%,更为优选地,含量为4-5.4重量%,以及最优选地,4.5-5.4重量%;
Na2O,其含量为3-11.1重量%,优选地,含量为7.1-11.1重量%,更优选地,含量为7.5-10.7重量%,以及最优选地,含量为7.8-10.5重量%;
K2O,其含量为0-1.5重量%,优选地,含量为0.1-1.5重量%,更优选地,含量为0.2-1重量%,以及最优选地,含量为0.3-0.75重量%;
MgO,其含量为0-2重量%,优选地,含量为0-1.5重量%,以及最优选地,含量为0-1重量%;
CaO,其含量为0-0.55重量%,优选地,含量为0-0.5重量%,优选地,含量为0-0.25重量%,以及最优选地,含量为0-0.1重量%;
ZnO,其含量为0-3重量%,优选地,含量为0-2重量%,更优选地,含量为0-1.5重量%,以及最优选地,含量为0-1重量%;
P2O5,其含量为0.1-4.5重量%,优选地,含量为0.1-2重量%,更优选地,含量为0.25-1.75重量%,以及最优选地,含量为0.5-1.5重量%;以及
ZrO2,其含量为1-4.5重量%,优选地,含量为2.5-4.5重量%,更优选地,含量为2.8-4.2重量%,以及最优选地,含量为2.9-4.1重量%;
其中,该玻璃制品优选地包括至多0.15重量%,更优选地,至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3,而且,其中,该玻璃制品优选地以不可避免的痕量的形式仅包括浓度不超过500ppm的SrO和BaO,其中
0.8<[P2O5+(Na2O*ZnO)]<12。
在上述组分范围内的玻璃或玻璃制品具有诸多优点。
特别地,实践证明,玻璃或玻璃制品中Al2O3的含量在16-28重量%之间有利于提高该玻璃或玻璃制品的韧性。优选地,该玻璃或玻璃制品中,Al2O3的含量在16-21重量%之间,更优选地,在17.5-19.5重量%之间,以及最优选地,在18-19重量%之间。
B2O3这一组分可以降低熔体的熔点。加入B2O3有利于增加玻璃或玻璃制品的耐刮擦性。然而,B2O3的含量过高会降低玻璃或玻璃制品的韧性。因此,根据本发明的玻璃和玻璃制品限制了其B2O3的含量。特别地,根据本发明的玻璃或玻璃制品中,B2O3的含量至多为0.6重量%,优选地,至多0.45重量%,更优选地,至多为0.28重量%,以及最优选地,至多为0.1重量%。根据本发明的玻璃或玻璃制品也可以不包含任何B2O3,或者可以仅以玻璃或玻璃制品中不可避免的杂质的形式包括B2O3
Li2O是本发明的玻璃和玻璃制品的必要组分。特别地,在诸如根据四点弯曲试验来确定弯曲强度或根据双环试验来确定强度等静态强度试验中,本发明的玻璃和玻璃制品中的Li2O的含量使得强化玻璃具有良好的强度,不仅如此,其也使得强化玻璃具有抵抗如落球试验中的钝物冲击载荷能力和如角度小于100°的颗粒冲击玻璃或玻璃制品表面等锐物冲击载荷的能力。因此,根据本发明的玻璃和玻璃制品中,Li2O的含量至少为3.5重量%,优选地,至少为3.7重量%,更优选地,至少为3.9重量%,还更优选地,至少为4重量%,以及最优选地,至少为4.5重量%。然而,根据本发明,Li2O的含量是受限制的。例如,Li2O含量过高可能导致偏析(segregation)。因此,该玻璃和玻璃制品中,Li2O的含量至多为6.5重量%,优选地,至多为5.7重量%,更优选地,至多为5.5重量%,以及最优选地,至多为5.4重量%。
此外,本发明的玻璃和玻璃制品包括氧化钠(Na2O)。根据本发明的玻璃中,Na2O的含量至少为3重量%,优选地,至少为7.1重量%,更优选地,至少为7.5重量%,以及最优选地,至少为7.8重量%。根据本发明,Na2O的含量也是受限制的。根据本发明的玻璃和玻璃制品中,Na2O的含量至多为11.1重量%,优选地,至多为10.7重量%,以及最优选地,至多为10.5重量%。
K2O是玻璃和玻璃制品的可选组分。然而,玻璃中最好包含一定量的K2O,这样才有利于调节玻璃或玻璃制品的最佳强度,尤其是,有利于调节抵抗锐物冲击的最佳强度,同时还可以保证在弯曲强度等静态强度试验和钝化冲击载荷中具有良好的强度。特别地,实践证明,K2O可以改善离子交换从而也可以改善韧性。这是因为钾离子可以使玻璃结构变得疏松。优选地,根据本发明的玻璃或玻璃制品中,K2O的含量至少为0.1重量%,更优选地,至少为0.2重量%,以及最优选地,至少为0.3重量%。然而,由于K2O不参与离子交换,其含量是受限制的。因此,根据本发明的玻璃中,K2O的含量至多为1.5重量%,更优选地,至多为1重量%,以及最优选地,至多为0.75重量%。
MgO是根据本发明的玻璃或玻璃制品的另一可选组分。镁会降低熔体的粘度,还会影响离子交换。玻璃和玻璃制品中,MgO的含量是受限制的,其含量至多为2重量%,优选地,至多为1.5重量%,以及最优选地,至多为1重量%。
此外,根据本发明的玻璃或玻璃制品中,CaO的含量至多为0.55重量%,优选地,至多为0.5重量%,更优选地,至多为0.25重量%,以及最优选地,至多为0.1重量%。本发明的玻璃或玻璃制品也可以包括SrO,其含量至多为3重量%。
ZnO是本发明的玻璃或玻璃制品的又一可选组分。根据本发明的玻璃或玻璃制品中,ZnO的含量至多为3重量%,优选地,至多为2重量%,更优选地,至多为1.5重量%,以及最优选地,至多为1重量%。
本发明的玻璃或玻璃制品包括至少0.1重量%的P2O5。P2O5是一种可以促进离子交换的组分,从而使得或者可以使得处理时间变短。优选地,玻璃或玻璃制品中,P2O5的含量为0.25重量%,更优选地,至少为0.5重量%。然而,玻璃或玻璃制品中P2O5的含量过高会降低玻璃或玻璃制品的化学稳定性,或者P2O5会引起偏析现象。因此,根据本发明的玻璃或玻璃制品中,P2O5的含量至多为4.5重量%,优选地,至多为2重量%,更优选地,至多为1.75重量%,以及最优选地,至多为1.5重量%。
ZrO2是根据本发明的玻璃和玻璃制品的另一组分。ZrO2是本发明的玻璃和玻璃制品的有效的网络形成剂,并且有利于增加玻璃或玻璃制品的耐化学性和硬度。因此,根据本发明的玻璃和玻璃制品中,ZrO2的含量至少为1重量%,优选地,至少为2.5重量%,更优选地,至少为2.8重量%,以及最优选地,至少为2.9重量%。此外,根据本发明的玻璃和玻璃制品中,ZrO2的含量至多为4.5重量%,优选地,至多为4.2重量%,以及最优选地,至多为4.1重量%。
此外,本发明的玻璃或玻璃制品还优选地包括至多0.15重量%、优选地至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3。例如,可以添加CeO2作为澄清剂。另外,CeO2有利于增加玻璃和玻璃制品的紫外线稳定性。
进一步优选地,本发明的玻璃制品或玻璃仅以不可避免的痕量的形式包含SrO和BaO,其浓度为500ppm以下。
此外,玻璃或玻璃制品中所含的碱金属氧化物和碱土金属氧化物的比例很重要,它们可以拓宽网络,因此可以快速实现较高的韧性。在这方面,P2O5对其具有决定性作用。发明人已经发现,可以用玻璃或玻璃制品中组分的含量(都以重量%计)来表示这种相互作用,这些组分分别是Na2O(相当于碱金属氧化物)、ZnO(假定有碱土金属氧化物的功能)、以及P2O5,即:
[P2O5+(Na2O*ZnO)]。
该值应当大于0.8,但小于12。令人惊讶地,实践证明,只有满足上述条件并且以上述成分区间来构成的组合物,才有可能达到恰当的存储张应力,即抵抗锐物冲击载荷的良好强度。
本发明的又一方面涉及一种厚度介于0.4mm和3mm之间的化学强化的片状玻璃制品;优选地根据本发明第一方面和/或第二方面所述的玻璃制品,
所述玻璃制品通过铝硅酸锂玻璃的两阶段离子交换来制备;其中,
第一次离子交换在380℃-400℃、尤其是不超过395℃的温度下持续1.5到4个小时,其中交换浴的组分钾盐、特别地KNO3的含量为40-70重量%,以及钠盐、特别地NaNO3的含量为30-60重量%;以及
第二次离子交换在360-390℃的温度下持续2.5到5个小时,其中交换浴的组分钾盐、特别地KNO3的含量为90-95重量%,以及钠盐、特别地NaNO3的含量为5-10重量%。
如上所述强化玻璃制品的制备使得较快地生产具有高强度的玻璃制品成为可能。
特别地,这种方式可以用来生产锐物冲击载荷下仍具有高强度的玻璃制品。
在本发明的上下文中,会用到如下术语和定义。
交换浴应理解为盐熔体,该盐熔体用在玻璃或玻璃制品的离子交换过程中。在本发明的上下文中,术语交换浴和离子交换浴意思相同。
通常,工业纯度的盐用于交换浴,这意味着,尽管仅使用例如硝酸钠作为交换浴的原料,但是交换浴仍会包含某些杂质。交换浴是盐(例如硝酸钠)或盐的混合物(例如钠盐和钾盐的混合物)的熔体。在此,交换浴的成分被指定为是指交换浴的标称成分,而不考虑可能包括的任何杂质。因此,若在本发明的上下文中提及100%的硝酸钠熔体,这意味着仅硝酸钠被用作原料。然而,特别地,由于工业原料包括一定含量的杂质,所以交换浴中硝酸钠的实际含量可能并且通常会与此偏离。然而,基于交换浴的总重量,杂质的含量通常小于5重量%,特别地,小于1重量%。
类似地,如果交换浴包括的是不同种类盐的混合物,仅考虑给定盐的标称含量而不考虑原料工业上的纯度。因此,包括90重量%的KNO3和10重量%的NaNO3的交换浴也会具有少量杂质,但是这归因于原料,并且基于交换浴的总重量,杂质的含量通常应小于5重量%,特别地,小于1重量%。
此外,交换浴的成分在离子交换过程中也会发生变化,因为特别是锂离子由于连续离子交换而从玻璃或玻璃制品迁移到交换浴中。但是,除非另有明确说明,否则在此同样不考虑由于时效引起的交换浴的成分的变化。当然,在本发明的上下文中,将基于标称原始成分来指定交换浴的成分。
在本发明的上下文中,应力分布应理解为在考虑诸如玻璃板等玻璃制品的情况下玻璃制品的应力相对于厚度延伸的曲线图。在本发明的上下文中提到的压应力分布应理解为应力分布中应力为正值(即大于零)的部分。相反,张应力则是负数的那部分。
在本发明的上下文中,复合压应力分布应理解为玻璃制品等相应制品中产生的压应力由至少两个局部区域组成的压应力分布。
储存在强化玻璃制品中的压应力是玻璃制品在整个厚度上的压应力的积分。在本发明的上下文中,该积分被称为压应力积分。
储存在强化玻璃制品中的张应力是玻璃制品在整个厚度上的张应力积分的平均值。在本发明的上下文中,该积分被称为张应力积分。因此,在本发明的上下文中,可存储张应力应理解为归一化的张应力,也称为归一化的张应力积分,其指归一化到厚度的张应力积分且总被指定为绝对值(正值)。
在本发明的上下文中,可存储张应力、归一化的(或基于厚度的)张应力、归一化的(或基于厚度的)张应力积分,这三个术语可以互换。
在本发明的上下文中,片状玻璃制品应理解为一种玻璃制品,其在一个空间方向上的横向尺寸比在另两个空间方向上的横向尺寸至少小一个数量级,而且,这些空间方向是相对于笛卡尔坐标系给出的,在笛卡尔坐标系中,这些空间方向相互垂直延伸,并且在两个主表面中较大的表面或主表面的表面法线方向上测量厚度。
由于玻璃制品的厚度至少比宽度和长度小一个数量级,因此玻璃制品的宽度和长度可以具有相同的数量级。然而,玻璃制品的长度也可能明显大于其宽度。因此,在本发明的意义上,片状玻璃制品也可以包括玻璃带。
为了本发明的目的,玻璃应理解为材料,玻璃制品应理解为由玻璃材料制成和/或包括玻璃材料的产品。特别地,玻璃制品可以由玻璃组成或主要包括玻璃材料,即至少包括90重量%的玻璃材料。
在本发明的上下文中,化学强化应理解为将玻璃制品浸入所谓的交换浴的工艺,这会使得离子进行交换。为了本发明的目的,钾交换应理解为将钾离子从交换浴迁移到玻璃制品、特别地迁移到玻璃制品的表面并渗入其中,同时钠离子等小的碱离子从玻璃制品迁移到交换浴中。类似地,钠交换应理解为将来自交换浴的钠离子迁移到玻璃制品的表面,同时小离子、如锂离子将从玻璃制品迁移、特别地从玻璃制品的表面迁移到交换浴中。如上所述,这种离子交换使得在玻璃制品的表面上形成压应力区。
为了本发明的目的,最大张应力应理解为玻璃制品的应力分布中的最低应力值。
在本发明的上下文中,所谓的“锐物冲击”应理解为由小尖头物体或多个这样的小尖头物体造成损坏而产生的载荷。也就是说,“锐物冲击”是指来自一个或多个尖头物体的冲击,或对一个或多个尖头物体进行冲击,该尖头物体可以是例如曲率半径非常小或其尖端角度小于100°的颗粒。
根据本发明的一个实施例,玻璃制品的最大张应力在55MPa至85MPa之间。特别地,玻璃制品的该实施例有利于提高玻璃制品在钝物冲击载荷下的强度,也就是说,有利于提高所谓的落球强度。因此,在所有相关载荷情况下,如果体现出较高的强度,其可以归因于根据该实施例的玻璃制品。目前这还无法行得通。特别地,到目前为止,尚不可能在取得较高最大张应力的同时还具有可以抵抗锐物冲击载荷的高强度,其中,该最大张应力也称为中心张应力或中枢张应力,例如,其可缩写为CT。目前可达到的最大张应力在55MPa至85MPa之间,这比目前市场上的玻璃或玻璃制品高出约10%至15%。
优选地,玻璃制品的厚度至少为0.5mm。这种最小厚度是有益的,因为如果厚度较小,玻璃制品整体上就已经非常易碎。
然而,玻璃制品厚度小是有益的,因为厚度小的玻璃其重量也轻。这有利于将该玻璃制品用作诸如智能电话等移动设备的显示屏。
根据玻璃制品的另一实施例,玻璃制品的厚度至多为2mm,优选地,至多为1mm。这一设置是有益的,因为玻璃制品的厚度越厚就能越稳定地对抗机械冲击。因此,较厚的玻璃制品固然会具有较高的机械稳定性,但是,这也使其重量增加。因此,有利的是,玻璃制品的厚度应不超过2mm,特别地,不超过1mm。
本发明的又一方面涉及根据本发明的实施例的玻璃制品的用途。因此,本发明涉及根据实施例的玻璃制品作为盖板的用途,特别是作为消费电子产品的盖板,或者指作为防护玻璃,特别地是作为机械设备的防护玻璃、或者作为高速列车的玻璃、或者作为安全玻璃、或者作为汽车玻璃的用途、或者所述玻璃制品在潜水表或者潜水艇中的用途、或者所述玻璃制品作为防爆设备的盖板,特别是必须使用玻璃的设备的盖板的用途。
本发明的又另一方面涉及一种玻璃,该玻璃按重量%计包括以下组分:
SiO2,其含量为54-64重量%,优选地,含量为57-64重量%,更优选地,含量为60-62重量%,以及最优选地,含量为61-62重量%;
Al2O3,其含量为16-28重量%,优选地,含量为16-21重量%,更优选地,含量为17.5-19.5重量%,以及最优选地,含量为18-19重量%;
B2O3,其含量为0-0.6重量%,优选地,含量为0-0.45重量%,更优选地,含量为0-0.28重量%,以及最优选地,含量为0-0.1重量%;
Li2O,其含量为3.5-6.5重量%,优选地,含量为3.7-5.7重量%,更优选地,含量为3.9-5.5重量%,更为优选地,含量为4-5.4重量%,以及最优选地,4.5-5.4重量%;
Na2O,其含量为3-11.1重量%,优选地,含量为7.1-11.1重量%,更优选地,含量为7.5-10.7重量%,以及最优选地,含量为7.8-10.5重量%;
K2O,其含量为0-1.5重量%,优选地,含量为0.1-1.5重量%,更优选地,含量为0.2-1重量%,以及最优选地,含量为0.3-0.75重量%;
MgO,其含量为0-2重量%,优选地,含量为0-1.5重量%,以及最优选地,含量为0-1重量%;
CaO,其含量为0-0.55重量%,优选地,含量为0-0.5重量%,优选地,含量为0-0.25重量%,以及最优选地,含量为0-0.1重量%;
ZnO,其含量为0-3重量%,优选地,含量为0-2重量%,更优选地,含量为0-1.5重量%,以及最优选地,含量为0-1重量%;
P2O5,其含量为0.1-4.5重量%,优选地,含量为0.1-2重量%,更优选地,含量为0.25-1.75重量%,以及最优选地,含量为0.5-1.5重量%;以及
ZrO2,其含量为1-4.5重量%,优选地,2.5-4.5重量%,更优选地,2.8-4.2重量%,以及最优选地,2.9-4.1重量%;
其中,该玻璃和/或由该玻璃制成的玻璃制品优选地包括至多0.15重量%、更优选地至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3,而且,其中,该玻璃优选地以不可避免的痕量的形式仅包括浓度不超多500ppm的SrO和BaO,其中
0.8<[P2O5+(Na2O*ZnO)]<12。
此外,本发明的又另一方面涉及一种制造本发明实施例所述的玻璃制品的方法,该方法包括:
第一次离子交换,其在380-400℃的温度下持续1.5到4个小时,其中,交换浴的组分钾盐、特别地KNO3的含量为40-70重量%,和钠盐、特别地NaNO3的含量为30-60重量%;以及
第二次离子交换,其在360-390℃的温度下持续2.5到5个小时,其中,交换浴的组分钾盐、特别地KNO3的含量为90-95重量%,以及钠盐、特别地NaNO3的含量为5-10重量%。
示例
以下将通过实施例更详细地阐述本发明。
在一个实施例中,根据本发明的玻璃或玻璃制品包含以下组分(以重量%计):
54-64重量%的SiO2
16-28重量%的Al2O3
0-0.6重量%的B2O3
3.5-6.5重量%的Li2O;
3-11.1重量%的Na2O;
0-1.5重量%的K2O;
0-2重量%的MgO;
0-0.55重量%的CaO;
0-3重量%的、优选地0-2重量%的、更优选地0-1.5重量%的、最优选地0-1重量%的ZnO;
0.1-4.5重量%的P2O5,以及
1-4.5重量%的ZrO2,而且,
0.8<[P2O5+(Na2O*ZnO)]<12。
根据玻璃或玻璃制品的另一实施例,根据本发明的玻璃或玻璃制品包含以下组分(以重量%计):
57-64重量%的SiO2
16-21重量%的Al2O3
0-0.45重量%的B2O3
3.7-5.7重量%的Li2O;
7.1-11.1重量%的Na2O;
0.1-1.5重量%的K2O;
0-2重量%的MgO;
0-0.5重量%的CaO;
0-2重量%的ZnO;
0.1-2重量%的P2O5;以及
2.5-4.5重量%的ZrO2,而且
0.8<[P2O5+(Na2O*ZnO)]<12。
根据玻璃或玻璃制品的又一实施例,该玻璃或玻璃制品包含以下组分(以重量%计):
60-62重量%的SiO2
17.5-19.5重量%的Al2O3
0-0.28重量%的B2O3
3.9-5.5重量%的Li2O;
7.5-10.7重量%的Na2O;
0.2-1重量%的K2O;
0-1.5重量%的MgO;
0-0.25重量%的CaO;
0-1.5重量%的ZnO;
0.25-1.75重量%的P2O5;以及
2.8-4.2重量%的ZrO2,而且,
0.8<[P2O5+(Na2O*ZnO)]<12。
根据玻璃或玻璃制品的又一实施例,该玻璃或玻璃制品包含以下组分(以重量%计):
61-62重量%的SiO2
18-19重量%的Al2O3
0-0.1重量%的B2O3
4-5.4重量%的Li2O;
7.8-10.5重量%的Na2O;
0-1重量%的、优选地0.3-0.75重量%的K2O,
0-1重量%的MgO;
0-0.1重量%的CaO;
0-1重量%的ZnO;
0.5-1.5重量%的P2O5;以及
2.9-4.1重量%的ZrO2,而且,
0.8<[P2O5+(Na2O*ZnO)]<12。
此外,该玻璃或玻璃制品还可以包含至多0.15重量%、优选地至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3。优选地,该玻璃以不可避免的痕量形式包含BaO和/或SrO,其各自浓度不超过500ppm。
表1列出了一些强化玻璃制品的示例。特别地,表1示出了根据本发明的示例性实施例与比较例之间的比较。
表1包括组分不同的LAS玻璃的不同强化玻璃制品的初始应力值
Figure BDA0002221284210000181
表2示出了强化玻璃制品与根据本发明的最佳强化玻璃制品之间的比较。
表2不同强化玻璃制品的初始应力值
Figure BDA0002221284210000182
为了更好地理解计算过程,以下两个表示出了用来计算存储的张应力的多个值,其中,“IP”指代“交点”。
表3根据表1的玻璃存储的张应力的计算
Figure BDA0002221284210000191
表4根据表2的玻璃存储的张应力的计算
Figure BDA0002221284210000192
下方表5总结了根据本发明的玻璃的成分。所有数据均以重量百分比来计算,该重量百分比是通过分析熔融后和化学强化前的玻璃得到的。
表5示例玻璃的成分
名称 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
SiO<sub>2</sub> 61.40 60.40 61.50 61.20 61.30 61.40
Al<sub>2</sub>O<sub>3</sub> 18.20 18.00 18.30 18.70 18.70 18.70
B<sub>2</sub>O<sub>3</sub> 0.58 0.55 0.55 0.28 0.27 0.10
Li<sub>2</sub>O 4.90 4.80 4.50 4.60 4.60 4.70
Na<sub>2</sub>O 8.80 8.10 8.80 8.80 9.10 9.10
K<sub>2</sub>O 0.84 1.60 0.90 0.84 0.47 0.50
MgO 0.52 0.53 0.53 0.5
CaO 0.51 0.013 0.013 0.014 -
ZnO 0.53 1.24 0.19 0.19 0.19 0.20
P<sub>2</sub>O<sub>5</sub> 0.58 1.58 1.03 1.04 1.04 1.03
Fe<sub>2</sub>O<sub>3</sub> 0.036 0.034 0.034 0.033 0.032 0.032
ZrO<sub>2</sub> 3.53 3.47 3.60 3.61 3.63 3.60
CeO<sub>2</sub> 0.095 0.093 0.098 0.097 0.100 0.096
P<sub>2</sub>O<sub>5</sub>+Na<sub>2</sub>O*ZnO 5.244 11.624 2.702 2.712 2.769 2.850
表6列出了比较例中玻璃的成分。
表6比较例中的成分
名称 比较例1 比较例2 比较例3
SiO<sub>2</sub> 60.70 60.60 62.00
Al<sub>2</sub>O<sub>3</sub> 18.10 18.10 18.40
B<sub>2</sub>O<sub>3</sub> 0.57 0.56 0.59
Li<sub>2</sub>O 4.90 4.70 4.80
Na<sub>2</sub>O 8.80 8.70 9.40
K<sub>2</sub>O 0.84 0.87 0.10
MgO - - -
CaO 0.01 - 0.78
SrO - - 0.091
ZnO 1.24 1.24 0.08
P<sub>2</sub>O<sub>5</sub> 1.14 1.60 -
Fe<sub>2</sub>O<sub>3</sub> 0.036 0.037 0.037
ZrO<sub>2</sub> 3.48 3.47 3.56
CeO<sub>2</sub> 0.093 0.095 0.1
P<sub>2</sub>O<sub>5</sub>+Na<sub>2</sub>O*ZnO 12.052 12.388 0.752
表7示出了化学强化对根据本发明的实施例6的具有最佳成分的玻璃制品的影响。
表7强化条件对根据本发明的LAS玻璃制品强度值的影响
Figure BDA0002221284210000211
然而,除了其他条件之外,可达到的强化程度也取决于交换浴的持续时间,尤其取决于交换浴中的锂含量。从下表8可以明显看出,所达到的存储的张应力会随着锂含量的增加而减小,并且因此随着交换浴的持续时间的增加而减小。
为了达到目标存储的张应力,其关键特别地在于第一次离子交换的交换浴的标称含量,具体来说,其中钾盐的含量至少为40重量%(相应地,钠盐的含量至多为60%)且至多为70重量%(相应地,钠盐的含量至少为30重量%)。除此之外,还在于温度,其在380℃到400℃之间,例如至多395℃。第一次离子交换过程中,不满足这些条件的交换所显示的存储的张应力都不足,并在上表7中以斜体字示出。
表8交换浴中锂的含量对可达到的存储的张应力的影响
Figure BDA0002221284210000221
附图说明
现在将参考附图进一步阐述本发明。附图中:
图1至图3示出了根据现有技术的玻璃制品的应力分布图;
图4示出了玻璃成分和应力分布对所谓的跌落强度的影响;
图5是示出了砂纸落球试验中存储的张应力与强度之间的关系的示意图;
图6是砂纸球落试验中不同玻璃制品的强度的示意图;
图7是未按比例绘制的根据本发明的玻璃制品的示意图;并且
图8示出了厚度为0.7mm的玻璃的砂纸落球试验中存储的张应力与断裂高度之间的关系。
具体实施方式
图1是曲线图,其中,y轴是以MPa为单位的应力,x轴是以μm为单位的玻璃深度,而且通过示例性复合应力分布1示出了包括LAS玻璃的玻璃制品的应力分布的特征参数。此图中,示出的并不是玻璃制品的整个厚度上的应力,而是仅示出了玻璃制品的约一半厚度上的应力。
此处,点101指玻璃制品表面的应力,即玻璃深度为0μm时的应力,该应力是钾离子交换引起的压应力(钾CS)。点102指由于钠离子交换而在玻璃制品的表面产生的压应力(也称为钠CS),此处的值是通过外推法确定的值,因为此时钠离子交换引起的应力分布和钾交换引起的应力分布彼此重叠。点103指在30μm的玻璃深度处钠离子交换引起的压应力的值(钠CS-30)。在点105,玻璃制品的应力为0,这就是钠离子的所谓压应力深度,也称为钠DoL(或简称DoL)。点104指钠离子交换引起的压应力积分。
通过外推初期应力分布1的那部分,可以得到钾的压应力深度(钾DoL),其标记为106。
点107指归一化张应力积分的区域,即存储的张应力。最后,点108指“钠CS交点”,即压应力分布上钠压应力曲线和钾压应力曲线交点处的压应力。
图2示意性地示出了应力分布2,其是厚度为0.7mm的玻璃制品的纯理论的压应力分布,其中,该玻璃制品包括碱金属硅酸盐玻璃。如图所示,这种玻璃也可以实现高压应力深度和高压应力。然而,与例如图1所示的复合压应力分布相比,图2所示的玻璃制品具有较高的压应力积分,相应地也具有较高的张应力积分。这意味着这种强化AS玻璃在承受锐物冲击载荷时表现出较低的强度,归一化张应力积分的值高达约60.7MPa。
图3示出了包括LAS玻璃的玻璃制品的应力分布3。因此,这里的应力分布是一个复合分布。尽管图3所示的表面的压应力深度和压应力与图2的AS玻璃相当,但图3的压应力积分明显较小,其仅是根据图2确定的玻璃制品的压应力积分的三分之一。此处,301指钾CS值为975MPa以及钾DoL为5μm的情况下储存的压应力的钾积分。302指钠CS-30为127μm以及钠DoL为127μm的情况下储存的压应力的钠积分。这两个积分的和就是压应力积分,并且其绝对值对应于强化玻璃的张应力积分。
图4通过所谓的落定试验的多个值示出了这一关系,该多个值是相对于根据图2的AS玻璃和根据图3的LAS玻璃来确定的。尽管表面的压应力以及压应力深度几乎相同,但在锐物冲击载荷试验中所测到的强度明显不同。特别地,在这种载荷下,所测定的强化LAS玻璃制品的强度明显高于所测定的强化AS玻璃制品的强度。
图5示出了砂纸落球试验中确定的强度与存储的张应力之间的关系。如果存储的张应力低于20MPa,则试验结果较差,即断裂高度低于20cm。图6示出了玻璃成分对强度的影响。图6绘制了多个所包括的LAS原料玻璃不同的玻璃制品在砂纸落球试验中所获得的强度。图表左侧的条形图601示出了化学强化玻璃制品的砂纸落球强度,该化学强化玻璃制品包括例如根据WO2012/126394A1的LAS玻璃。右侧的条形图603示出了包括另一现有技术LAS玻璃的另一强化玻璃制品的砂纸落球强度。中间的条形图602示出了根据本发明的化学强化玻璃制品的砂纸落球强度,该玻璃制品在砂纸落球试验中具有最佳的强度。
图7示出了根据本发明的实施例的化学强化或可化学强化的片状玻璃制品7。
图8是示出了厚度为0.7mm的玻璃在砂纸包装跌落试验中的断裂高度与归一化张应力积分之间关系的示意图。可以清楚地看到,至少在图示张应力的范围内,断裂高度不断增加,因此,存储的张应力越大,玻璃或玻璃制品的强度越大,玻璃或玻璃制品对这种机械应力的抵抗力也越大。
附图标记
1 强化LAS玻璃制品的示例应力分布
101 玻璃制品表面的钾CS
102 钠CS
103 钠CS-30
104 钠压应力积分
105 钠DoL,即钠离子的压应力深度
106 钾DoL,即钾离子的压应力深度
107 存储的张应力,归一化张应力积分
108 钠CS/钾DoL的交点
2 强化AS玻璃制品的应力分布示意图
3 强化LAS玻璃制品的应力分布
301 归一化钾压应力积分
302 归一化钠压应力积分
303 钠CS/钾DoL的交点
7 化学强化或可化学强化的片状玻璃制品
401 AS玻璃的砂纸包装跌落强度
402 LAS玻璃的砂纸包装跌落强度
601 现有技术LAS玻璃的砂纸落球强度
602 根据一个实施例的LAS玻璃的砂纸落球强度
603 另一现有技术LAS玻璃的砂纸落球强度

Claims (9)

1.一种化学强化的片状玻璃制品(7),其厚度在至少0.4mm和至多3mm之间,其中,所述玻璃制品中钾的压应力深度至少为4μm且至多为8μm,而且,对于钠交换在30μm深度处引起的压应力,当所述玻璃制品的厚度为0.5mm时,所述压应力至少为90MPa,当所述玻璃制品的厚度为0.55mm时,所述压应力至少为100MPa,当所述玻璃制品的厚度为0.6mm时,所述压应力至少为110MPa,当所述玻璃制品的厚度为0.7mm时,所述压应力至少为120MPa,当所述玻璃制品的厚度为1mm时,所述压应力至少为140MPa,以及优选地,所述压应力至多为200MPa;其中,以μm计的钠交换深度与以mm计的所述玻璃制品的厚度的比值大于0.130;而且,所述玻璃制品表现出归一化张应力积分,也即,所述玻璃制品的能够存储的张应力至少为20.6MPa且至多30MPa,优选地至多为27.5MPa,更优选地至多为25MPa,以及最优选地至多为24MPa。
2.一种厚度在至少0.4mm和至多3mm之间的片状玻璃制品(7)、优选地化学强化或能够化学强化的片状玻璃制品(7),优选地,根据权利要求1所述的化学强化的片状玻璃制品(7),其包括以重量%计的如下组分:
SiO2,其含量为54-64重量%,优选地,含量为57-64重量%,更优选地,含量为60-62重量%,最优选地,含量为61-62重量%;
Al2O3,其含量为16-28重量%,优选地,含量为16-21重量%,更优选地,含量为17.5-19.5重量%,最优选地,含量为18-19重量%;
B2O3,其含量为0-0.6重量%,优选地,含量为0-0.45重量%,更优选地,含量为0-0.28重量%,最优选地,含量为0-0.1重量%;
Li2O,其含量为3.5-6.5重量%,优选地,含量为3.7-5.7重量%,更优选地,含量为3.9-5.5重量%,更为优选地,含量为4-5.4重量%,最优选地,4.5-5.4重量%;
Na2O,其含量为3-11.1重量%,优选地,含量为7.1-11.1重量%,更优选地,含量为7.5-10.7重量%,最优选地,含量为7.8-10.5重量%;
K2O,其含量为0-1.5重量%,优选地,含量为0.1-1.5重量%,更优选地,含量为0.2-1重量%,最优选地,含量为0.3-0.75重量%;
MgO,其含量为0-2重量%,优选地,含量为0-1.5重量%,最优选地,含量为0-1重量%;
CaO,其含量为0-0.55重量%,优选地,含量为0-0.5重量%,优选地,含量为0-0.25重量%,最优选地,含量为0-0.1重量%;
ZnO,其含量为0-3重量%,优选地,含量为0-2重量%,更优选地,含量为0-1.5重量%,最优选地,含量为0-1重量%;
P2O5,其含量为0.1-4.5重量%,优选地,含量为0.1-2重量%,更优选地,含量为0.25-1.75重量%,最优选地,含量为0.5-1.5重量%;以及
ZrO2,其含量为1-4.5重量%,优选地,含量为2.5-4.5重量%,更优选地,含量为2.8-4.2重量%,最优选地,含量为2.9-4.1重量%;
其中,所述玻璃制品(7)优选地包括至多0.15重量%、更优选地至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3,而且其中,所述玻璃制品优选地以不可避免的痕量的形式仅包括浓度不超过500ppm的SrO和BaO,其中
0.8<[P2O5+(Na2O*ZnO)]<12。
3.一种厚度在至少0.4mm和至多3mm之间的化学强化的片状玻璃制品(7),优选地根据权利要求1和2中任一项所述的化学强化的片状玻璃制品(7),
所述化学强化的片状玻璃制品通过铝硅酸锂玻璃的两阶段离子交换来制备;其中,
第一次离子交换在380-400℃、特别地至多395℃的温度下持续1.5到4个小时,并且交换浴的组分钾盐、特别是KNO3的含量为40-70重量%,和钠盐、特别是NaNO3的含量为30-60重量%;并且
第二次离子交换在360-390℃的温度下持续2.5到5个小时,并且交换浴的组分钾盐、特别是KNO3的含量为90-95重量%,以及钠盐、特别是NaNO3的含量为5-10重量%。
4.根据权利要求1至3中任一项所述的玻璃制品(7),其最大张应力在55MPa至85MPa之间。
5.根据权利要求1至4中任一项所述的玻璃制品(7),其中,所述玻璃制品的厚度至少为0.5mm。
6.根据权利要求1至5中任一项所述的玻璃制品(7),其中,所述玻璃制品的厚度至多为2mm,优选地,至多为1mm。
7.权利要求1至6中任一项所述的玻璃制品(7)作为盖板的用途,特别是作为消费电子产品的盖板、或者作为防护玻璃,特别是作为机械设备的防护玻璃、或者作为高速列车的玻璃、或者作为安全玻璃、或者作为汽车玻璃的用途、或所述玻璃制品(7)在潜水表或者潜水艇中的用途、或者所述玻璃制品(7)作为防爆设备的盖板,特别是必须使用玻璃的设备的盖板的用途。
8.一种玻璃,其包括以重量%计的如下组分:
SiO2,其含量为54-64重量%,优选地,含量为57-64重量%,更优选地,含量为60-62重量%,最优选地,含量为61-62重量%;
Al2O3,其含量为16-28重量%,优选地,含量为16-21重量%,更优选地,含量为17.5-19.5重量%,最优选地,含量为18-19重量%;
B2O3,其含量为0-0.6重量%,优选地,含量为0-0.45重量%,更优选地,含量为0-0.28重量%,最优选地,含量为0-0.1重量%;
Li2O,其含量为3.5-6.5重量%,优选地,含量为3.7-5.7重量%,更优选地,含量为3.9-5.5重量%,更为优选地,含量为4-5.4重量%,最优选地,4.5-5.4重量%;
Na2O,其含量为3-11.1重量%,优选地,含量为7.1-11.1重量%,更优选地,含量为7.5-10.7重量%,最优选地,含量为7.8-10.5重量%;
K2O,其含量为0-1.5重量%,优选地,含量为0.1-1.5重量%,更优选地,含量为0.2-1重量%,最优选地,含量为0.3-0.75重量%;
MgO,其含量为0-2重量%,优选地,含量为0-1.5重量%,最优选地,含量为0-1重量%;
CaO,其含量为0-0.55重量%,优选地,含量为0-0.5重量%,优选地,含量为0-0.25重量%,最优选地,含量为0-0.1重量%;
SrO,其含量为0-3重量%;
ZnO,其含量为0-3重量%,优选地,含量为0-2重量%,更优选地,含量为0-1.5重量%,最优选地,含量为0-1重量%;
P2O5,其含量为0.1-4.5重量%,优选地,含量为0.1-2重量%,更优选地,含量为0.25-1.75重量%,最优选地,含量为0.5-1.5重量%;以及
ZrO2,其含量为1-4.5重量%,优选地,2.5-4.5重量%,更优选地,2.8-4.2重量%,最优选地,2.9-4.1重量%;
其中,所述玻璃优选地包括至多0.15重量%、更优选地至多0.1重量%的CeO2,和/或至多0.1重量%的Fe2O3,而且其中,所述玻璃优选地以不可避免的痕量的形式仅包括浓度不超过500ppm的SrO和BaO,其中
0.8<[P2O5+(Na2O*ZnO)]<12。
9.一种制造权利要求1至6中任一项所述的玻璃制品(7)的方法,包括:
第一次离子交换,其在380-395℃的温度下持续1.5到4个小时,其中,交换浴的组分钾盐、特别是KNO3的含量为40-70重量%,和钠盐、特别是NaNO3的含量为30-60重量%;以及
第二次离子交换,其在360-390℃的温度下持续2.5到5个小时,其中,所述交换浴的组分钾盐、特别是KNO3的含量为90-95重量%,以及钠盐、特别是NaNO3的含量为5-10重量%。
CN201910934646.XA 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法 Active CN111003936B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310325317.1A CN116143406A (zh) 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018124785.0 2018-10-08
DE102018124785.0A DE102018124785A1 (de) 2018-10-08 2018-10-08 Glas mit vorzugsweise erhöhter speicherbarer Zugspannung, chemisch vorgespannter Glasartikel mit vorzugsweise erhöhter speicherbarer Zugspannung, Verfahren zu dessen Herstellung sowie dessen Verwendung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310325317.1A Division CN116143406A (zh) 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法

Publications (2)

Publication Number Publication Date
CN111003936A true CN111003936A (zh) 2020-04-14
CN111003936B CN111003936B (zh) 2023-04-18

Family

ID=67997528

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201910934646.XA Active CN111003936B (zh) 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法
CN202310325317.1A Pending CN116143406A (zh) 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310325317.1A Pending CN116143406A (zh) 2018-10-08 2019-09-29 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法

Country Status (6)

Country Link
US (1) US11339082B2 (zh)
EP (1) EP3636609B1 (zh)
JP (1) JP2020059645A (zh)
KR (1) KR20200040675A (zh)
CN (2) CN111003936B (zh)
DE (1) DE102018124785A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171069A1 (zh) * 2021-02-09 2022-08-18 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019121147A1 (de) 2019-08-05 2021-02-11 Schott Ag Scheibenförmiger, chemisch vorgespannter Glasartikel und Verfahren zu dessen Herstellung
KR20210127268A (ko) * 2020-04-13 2021-10-22 삼성디스플레이 주식회사 유리 제품 및 이를 포함하는 디스플레이 장치
CN114212996A (zh) * 2021-12-15 2022-03-22 中建材蚌埠玻璃工业设计研究院有限公司 一种锂铝硅酸盐玻璃及其制备方法
CN114380496B (zh) * 2021-12-31 2023-10-24 河北光兴半导体技术有限公司 玻璃组合物、碱性锂铝硅酸盐玻璃及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167507A (zh) * 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
CN107265884A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有含两个区域的应力分布的玻璃基制品及其制备方法
WO2018152845A1 (en) * 2017-02-27 2018-08-30 Schott Glass Technologies (Suzhou) Co. Ltd. Lithium containing aluminosilicate glass with low expansion after chemical toughening

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055703A (en) 1975-08-15 1977-10-25 Ppg Industries, Inc. Ion exchange strengthened glass containing P2 O5
US4156755A (en) * 1978-04-19 1979-05-29 Ppg Industries, Inc. Lithium containing ion exchange strengthened glass
US9247208B2 (en) 2006-07-25 2016-01-26 At&T Intellectual Property I, Lp Adaptive video-server reconfiguration for self-optimizing multi-tier IPTV networks
CN102137822B (zh) 2008-07-29 2015-12-09 康宁股份有限公司 用于化学强化玻璃的双阶段离子交换
CN102149649A (zh) 2008-08-08 2011-08-10 康宁股份有限公司 强化的玻璃制品及其制造方法
DE102010009584B4 (de) * 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
US9540278B2 (en) 2010-05-27 2017-01-10 Corning Incorporated Ion exchangeable glasses
US8759238B2 (en) 2010-05-27 2014-06-24 Corning Incorporated Ion exchangeable glasses
US20120052271A1 (en) 2010-08-26 2012-03-01 Sinue Gomez Two-step method for strengthening glass
CN102690059B (zh) 2011-03-23 2016-08-03 肖特玻璃科技(苏州)有限公司 用于化学钢化的铝硅酸盐玻璃和玻璃陶瓷
US9359251B2 (en) 2012-02-29 2016-06-07 Corning Incorporated Ion exchanged glasses via non-error function compressive stress profiles
KR101825276B1 (ko) * 2013-03-15 2018-02-02 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. 화학 강인화 가요성 초박형 유리
US20140345325A1 (en) 2013-05-24 2014-11-27 Corning Incorporated Double ion exchange process
US11079309B2 (en) 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
US10118858B2 (en) 2014-02-24 2018-11-06 Corning Incorporated Strengthened glass with deep depth of compression
TW202311197A (zh) 2014-06-19 2023-03-16 美商康寧公司 無易碎應力分布曲線的玻璃
WO2015195419A2 (en) 2014-06-19 2015-12-23 Corning Incorporated Strengthened glass with deep depth of compression
WO2016037343A1 (en) * 2014-09-12 2016-03-17 Schott Glass Technologies (Suzhou) Co. Ltd. Ultrathin chemically toughened glass article and method for producing such a glass article
CN112340984A (zh) 2014-10-08 2021-02-09 康宁股份有限公司 包含金属氧化物浓度梯度的玻璃和玻璃陶瓷
US10150698B2 (en) 2014-10-31 2018-12-11 Corning Incorporated Strengthened glass with ultra deep depth of compression
TWI726720B (zh) 2014-11-04 2021-05-01 美商康寧公司 深不易碎的應力分佈及其製造方法
RU2017125036A (ru) 2014-12-24 2019-01-24 Пьер Фабр Медикамент Новое гуманизированное антитело к adam17
CN107108331A (zh) * 2014-12-26 2017-08-29 旭硝子株式会社 玻璃以及化学强化玻璃
US9908812B2 (en) 2015-02-10 2018-03-06 Integrity Municipal Systems, LLC Lime slaker system, modular water panel for lime slaker system, and method of using the same
KR102029948B1 (ko) 2015-12-11 2019-10-08 코닝 인코포레이티드 금속 산화물 농도 구배를 포함하는 융합-형성가능한 유리계 제품

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167507A (zh) * 2010-02-26 2011-08-31 肖特玻璃科技(苏州)有限公司 用于3d紧密模压的薄锂铝硅玻璃
CN107265884A (zh) * 2016-04-08 2017-10-20 康宁股份有限公司 具有含两个区域的应力分布的玻璃基制品及其制备方法
WO2018152845A1 (en) * 2017-02-27 2018-08-30 Schott Glass Technologies (Suzhou) Co. Ltd. Lithium containing aluminosilicate glass with low expansion after chemical toughening

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022171069A1 (zh) * 2021-02-09 2022-08-18 醴陵旗滨电子玻璃有限公司 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用

Also Published As

Publication number Publication date
CN111003936B (zh) 2023-04-18
US20200109080A1 (en) 2020-04-09
KR20200040675A (ko) 2020-04-20
EP3636609A1 (de) 2020-04-15
JP2020059645A (ja) 2020-04-16
DE102018124785A1 (de) 2020-04-09
CN116143406A (zh) 2023-05-23
US11339082B2 (en) 2022-05-24
EP3636609B1 (de) 2021-06-23

Similar Documents

Publication Publication Date Title
CN111003936B (zh) 可存储张应力增加的玻璃、化学强化玻璃制品及生产方法
CN108473370B (zh) 化学强化玻璃以及化学强化用玻璃
KR102391152B1 (ko) 높은 압입 임계값을 갖는 빠른 이온 교환 가능한 유리
US20190300422A1 (en) Glasses having high fracture toughness
CN110461795B (zh) 化学强化玻璃
JP6290425B2 (ja) 化学強化可能なガラスおよびそれから製造されたガラス要素
JP5621239B2 (ja) ディスプレイ装置用ガラス板、ディスプレイ装置用板ガラスおよびその製造方法
EP2467340B1 (en) Crack and scratch resistant glass
TWI593643B (zh) Chemically toughened glass sheets and methods of making the same
TWI439435B (zh) 用於顯示裝置之玻璃板
KR101785819B1 (ko) 유리 조성물, 화학 강화용 유리 조성물, 강화 유리 물품, 및 디스플레이용 커버 유리
US20130095310A1 (en) Damage resistant, chemically toughened protective cover glass
CN110799467A (zh) 化学强化玻璃、其制造方法和化学强化用玻璃
CN111670172A (zh) 化学强化用玻璃
US20140308525A1 (en) Chemically temperable glass element with high scratch tolerance and methods for producing the glass element
KR20210073544A (ko) 강화 유리 및 강화 유리의 제조 방법
JPWO2014045809A1 (ja) 化学強化ガラスの製造方法
US20230071964A1 (en) Chemically strengthened glass sheet and method for its production
US20230056119A1 (en) Glasses having high fracture toughness
CN114929641A (zh) 化学强化玻璃物品及其制造方法
KR102289741B1 (ko) 화학적으로 강화된 방현 유리 및 방현 처리용 유리
EP4148025A1 (en) Chemically strengthened glass sheet and method for its production
WO2014097986A1 (ja) ガラス素板、ガラス素板の製造方法及び化学強化ガラスの製造方法
CN113905992A (zh) 玻璃、化学强化玻璃及其制造方法
KR20170118964A (ko) 화학적 강화에 적합한 플로트 유리 조성물

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant