WO2022170494A1 - 电极组件及其相关电池、装置、制造方法和制造装置 - Google Patents

电极组件及其相关电池、装置、制造方法和制造装置 Download PDF

Info

Publication number
WO2022170494A1
WO2022170494A1 PCT/CN2021/076292 CN2021076292W WO2022170494A1 WO 2022170494 A1 WO2022170494 A1 WO 2022170494A1 CN 2021076292 W CN2021076292 W CN 2021076292W WO 2022170494 A1 WO2022170494 A1 WO 2022170494A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
electrode assembly
main body
flow guide
active material
Prior art date
Application number
PCT/CN2021/076292
Other languages
English (en)
French (fr)
Inventor
许虎
李星
任苗苗
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/076292 priority Critical patent/WO2022170494A1/zh
Priority to CN202180055224.0A priority patent/CN116325273A/zh
Priority to EP21918119.5A priority patent/EP4095970B1/en
Priority to US17/817,998 priority patent/US20220384918A1/en
Publication of WO2022170494A1 publication Critical patent/WO2022170494A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/48Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
    • H01M50/486Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • H01M50/682Containers for storing liquids; Delivery conduits therefor accommodated in battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the embodiments of the present application relate to the field of batteries, and in particular, to an electrode assembly and related batteries, devices, manufacturing methods, and manufacturing devices.
  • Lithium-ion batteries and other batteries have the advantages of small size, high energy density, high power density, many cycles of use and long storage time, and are widely used in some electronic equipment, electric vehicles, electric toys and electric equipment.
  • lithium-ion batteries have been widely used in products such as mobile phones, notebook computers, battery cars, electric vehicles, electric planes, electric ships, electric toy cars, electric toy ships, electric toy planes, and power tools.
  • the electrolyte is the carrier of ion transport in the lithium ion battery.
  • the electrolyte is used to transport lithium ions between the positive electrode and the negative electrode, so that the lithium ions are normally inserted and extracted between the positive active material area and the negative active material area. Therefore, the infiltration effect of the electrolyte on the active material in the electrode assembly is an important factor to ensure the high performance of the battery.
  • the electrolyte is transported to the inside of the electrode assembly through the gap between the two adjacent electrode tabs, thereby infiltrating the active material regions of the positive and negative electrodes.
  • the tabs of the electrode assembly are usually kneaded and flattened to form bent portions, so as to reduce the space occupied by the electrode assembly as a whole.
  • the bent portion formed by the flattening treatment of the tabs will cause the ends of two adjacent tab layers to abut against each other in the laminated structure and form a closed structure, which hinders electrolysis to a certain extent.
  • the passage of liquid entering the main body from the outer space of the tab leads to insufficient infiltration of the active material area of the positive and negative electrodes, which has an important impact on the performance of the battery.
  • the embodiments of the present application propose an electrode assembly and a related battery, device, manufacturing method, and manufacturing device, so as to improve the infiltration effect of the electrolyte on the active material region and improve the performance of the battery.
  • an electrode assembly comprising: a first pole piece and a second pole piece with opposite polarities, an active material region of the first pole piece and the second pole piece
  • the active material area is wound to form the main body portion
  • the inactive material area of the first pole piece or the inactive material area of the second pole piece is wound to form a pole lug
  • the pole lug includes relative to the
  • the main body part is bent and provided with a bent part; a flow guide member, at least a part of the flow guide member is located in the bent part, and is used for guiding the electrolyte to flow into the inside of the main body part.
  • the size of the opening at the end of the bent portion is increased to a certain extent, so that the electrolyte can be Passing through the opening smoothly improves the infiltration effect of the electrolyte on the active material region, and can effectively improve the performance of the battery when applied to the battery.
  • the air guide member and/or the bent portion is provided with at least one first air guide channel, one end of the first air guide channel is communicated with the outer space of the electrode assembly, and the other end is in communication with the outer space of the electrode assembly.
  • the guide member guides the electrolyte to flow into the inside of the main body part through the first guide channel.
  • the electrolyte can enter the interior of the main body portion of the electrode assembly from the outer space of the electrode assembly through the first guide channel, so that the guide member and/or the bent portion itself can play a role of guide flow.
  • the flow guide member includes at least two flow guide units, a second flow guide channel is formed between two adjacent flow guide units, and the flow guide member passes through the second flow guide unit. Channels guide the flow of electrolyte into the interior of the body portion.
  • the electrolyte can also enter the interior of the main body of the electrode assembly from the outer space of the electrode assembly through the gaps provided between the plurality of guide units, thereby increasing the entry path of the electrolyte and further improving the electrolysis of the electrode assembly.
  • Liquid wettability; and multiple flow guiding units can be arranged regularly or irregularly, so that the design of the flow guiding element can also be more flexible.
  • the flow guide includes a first portion and a second portion, the first portion is located within the bent portion, the second portion is connected to an outer end of the first portion and extends to the The outer space of the electrode assembly.
  • the second part of the guide member can also play a role of drainage, so that the electrolyte located in the outer space of the electrode assembly can flow into the bent portion of the tab along the second part of the guide member, and then Entering the inside of the main body of the electrode assembly, further improving the infiltration effect of the electrolyte on the active material area.
  • the flow guide further includes a third part, the third part is connected to the inner end of the first part and extends to the active material region of the first pole piece and the second pole piece between the active substance zones.
  • the electrolyte can more easily flow into the interior of the main body from the bent portion of the tab along the third portion of the flow guide, thereby further enhancing the infiltration effect of the electrolyte on the active material region.
  • the flow guide is an insulating material, and is provided with through holes for ions to pass through in the thickness direction thereof.
  • the flow guide member may be made of the same or similar material as the diaphragm; and in the case where the flow guide member further includes a third portion, the flow guide member may also function as a diaphragm, or be made of At least a part of the separator is used to form a flow guide, so that the preparation of the electrode assembly can be simplified.
  • the electrode assembly further includes a diaphragm located between the active material region of the first pole piece and the active material region of the second pole piece, and the flow guide is attached to the The diaphragm or the flow guide element is spaced apart from the diaphragm.
  • the design of the flow guide is flexible, and can be attached to or spaced from the diaphragm without affecting the function and function of the diaphragm itself.
  • the end surface of the bent portion has a drainage area and a connection area, the bent portion is connected to the external member through the connection area, and the bent portion is connected to the external member through the guide area located in the drainage area.
  • a flow member directs the electrolyte to flow into the interior of the body portion.
  • the flow guide in the drainage area can more effectively guide the electrolyte to flow into the main body. internal.
  • a battery cell comprising: the electrode assembly of the above-mentioned embodiments; a casing for accommodating the electrode assembly; a terminal assembly, which is provided in the casing, The terminal assembly is used to connect the bent portion to output or input electrical energy.
  • a battery including the battery cells of the above embodiments.
  • an electrical device including the battery of the above embodiments, wherein the battery is used to provide electrical energy.
  • a method for preparing an electrode assembly comprising: providing a first pole piece, a second pole piece and a flow guide, the first pole piece and the second pole piece The polarity is opposite, and at least a part of the current guide is arranged between the first pole piece and the second pole piece; the first pole piece and the second pole piece are wound to form a winding structure, The active material area of the first pole piece and the active material area of the second pole piece are wound to form a main body, and the inactive material area of the first pole piece or the inactive material area of the second pole piece After the material region is wound, a pole tab is formed; and at least a part of the pole tab is bent relative to the main body part to form a bent part, and at least a part of the guide member is located in the bent part for guiding the electrolyte to flow into inside of the main body.
  • an apparatus for preparing an electrode assembly comprising: a pole piece placement module configured to provide a first pole piece, a second pole piece and a current guide, the first pole piece The polarity of the piece is opposite to that of the second pole piece, and at least a part of the flow guide is arranged between the first pole piece and the second pole piece; the winding module is configured to connect the first pole piece The sheet and the second pole piece are wound to form a winding structure, wherein the active material area of the first pole piece and the active material area of the second pole piece are wound to form a main body portion, and the first pole piece The inactive material area of the second pole piece or the inactive material area of the second pole piece is wound to form a tab; and a flattening module is configured to bend at least a part of the tab relative to the main body to form a bend At least a part of the guide member is located in the bending part, and is used for guiding the electrolyte to flow into
  • FIG. 1 is a schematic three-dimensional structure diagram of an electrode assembly according to some embodiments of the present application.
  • FIG. 2 is a schematic diagram of a laminated winding structure of an electrode assembly according to some embodiments of the present application
  • FIG. 3 is a partial cross-sectional structural schematic diagram of an electrode assembly according to some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of an electrode assembly before winding according to some embodiments of the present application.
  • FIG. 5 is a partial cross-sectional structural schematic diagram of an electrode assembly at a bending portion at an end face according to some embodiments of the present application;
  • FIG. 6 is a schematic structural diagram of an electrode assembly before winding according to some embodiments of the present application.
  • FIG. 7 is a partial cross-sectional structural schematic diagram of an electrode assembly according to some embodiments of the present application.
  • FIG. 8 is a schematic structural diagram of an electrode assembly before winding according to some embodiments of the present application.
  • FIG. 9 is a partial cross-sectional structural schematic diagram of an electrode assembly according to other embodiments of the present application.
  • FIG. 10 is a partial cross-sectional structural schematic diagram of an electrode assembly according to other embodiments of the present application.
  • FIG. 11 is a schematic diagram of an end surface structure of an electrode assembly at a bent portion according to some embodiments of the present application.
  • FIG. 12 is a schematic diagram of an exploded structure of a battery cell according to some embodiments of the present application.
  • FIG. 13 is a schematic structural diagram of a battery according to some embodiments of the present application.
  • FIG. 14 is a schematic diagram of an exploded structure of a battery according to some embodiments of the present application.
  • 15 is a schematic structural diagram of an electrical device according to some embodiments of the present application.
  • 16 is a schematic flowchart of a method for preparing an electrode assembly according to some embodiments of the present application.
  • FIG. 17 is a schematic structural diagram of an apparatus for preparing an electrode assembly according to some embodiments of the present application.
  • Electrode assembly 100 first pole piece 110 , first active material area 111 , first inactive material area 112 , second pole piece 120 , second active material area 121 , second inactive material area 122 , current guide 130 , the first part 131, the second part 132, the third part 133, the guide unit 130a, the diaphragm 140, the main body part 150, the tab 160, the first tab 160a, the second tab 160b, the bent part 161, the bent part Layer 161a, connecting portion 162, first diversion channel 171, diversion hole 171a, diversion groove 171b, second diversion channel 172, connection area 181, drainage area 182, central drainage area 182a, peripheral drainage area 182b; battery Single unit 200, housing 210, terminal assembly 220, electrode terminal 221, end cap 222; battery 300, box 310; electrical device 400, motor 401, controller 402; electrode assembly preparation device 600, pole piece placement module 601, Winding module 602 , kneading and flattening module 603 .
  • orientation or positional relationship based on those shown in the accompanying drawings
  • the orientation or positional relationship is only for the convenience of describing the embodiments of the present application and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as implementing the present application. example limitations.
  • multiple refers to two or more (including two), and similarly, “multiple groups” refers to two or more groups (including two groups), and “multiple sheets” refers to two or more sheets (includes two pieces).
  • connection In the description of the embodiments of the present application, unless otherwise expressly specified and limited, the technical terms “installation”, “connection”, “connection”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a fixed connection.
  • the connection can be disassembled or integrated; it can also be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements.
  • connection can be disassembled or integrated; it can also be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal communication between the two elements or the interaction relationship between the two elements.
  • the first feature "on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features Indirect contact through an intermediary.
  • the first feature is “above”, “above” and “over” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • Existing batteries generally include a case and an electrode assembly housed in the case, and the case is filled with an electrolyte.
  • the electrode assembly is mainly formed by stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet with active material constitute the main body of the electrode assembly, and the portions of the positive electrode sheet and the negative electrode sheet without active material constitute positive tabs and negative tabs, respectively.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer disposed on both sides of the positive electrode current collector.
  • the material of the positive electrode current collector can be, for example, aluminum, and the positive electrode active material can be, for example, lithium cobaltate, iron phosphate Lithium, ternary lithium or lithium manganate, etc.; the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer arranged on both sides of the negative electrode current collector.
  • the material of the negative electrode current collector can be copper, for example, and the negative electrode active material can be carbon or silicon, for example Wait.
  • the positive electrode tab and the negative electrode tab can be located at one end of the main body portion together or at both ends of the main body portion respectively.
  • the positive active material and the negative active material of the main body react with the electrolyte, and the tabs are connected to the electrode terminals to form a current loop. If the infiltration effect of the electrolyte on the active material is insufficient, the positive or negative active material may not fully participate in the reaction, which will affect the efficiency of the electrode assembly and affect the battery performance. Therefore, the infiltration effect of the electrolyte on the active material in the electrode assembly is an important factor to ensure the high performance of the battery.
  • the main focus of the measures to improve the wetting effect of the electrolyte on the active material in the battery is to coat the surface of the pole piece with a material that improves the wetting effect, or to change the material of the separator or the layered structure of the separator.
  • a design solution further increases the cost of the electrode assembly and makes the fabrication process more complicated.
  • the flattening treatment of the tabs will cause the ends of two adjacent tab layers in the laminated structure to abut together and form a closed structure, such a closed structure to a certain extent This obstructs the passage of the electrolyte from the outer space of the tab to the main body, which adversely affects the infiltration effect of the electrolyte on the active material in the electrode assembly, thereby affecting the performance of the battery.
  • the inventors of the present application have improved the structural design of the electrode assembly, so as to improve the infiltration effect of the electrolyte in the electrode assembly on the active material and improve the performance of the battery.
  • Various embodiments of the present application will be further described below with reference to the accompanying drawings.
  • an electrode assembly 100 is provided. Please refer to FIG. 1 and FIG. 2 , wherein FIG. 1 schematically shows the three-dimensional structure of the electrode assembly 100 according to some embodiments of the present application; FIG. 2 schematically shows the stacked winding of the electrode assembly 100 according to some embodiments of the present application structure.
  • the electrode assembly 100 includes a first pole piece 110 , a second pole piece 120 and a flow guide 130 .
  • the polarities of the first pole piece 110 and the second pole piece 120 are opposite.
  • the first pole piece 110 is a positive pole piece
  • the second pole piece 120 is a negative pole piece, or vice versa.
  • the first pole piece 110 and the second pole piece 120 are wound about the winding axis to form a winding structure.
  • the first pole piece 110 is provided with a first active material region 111 (that is, a region with a first active material) and a first inactive material region 112 (ie, a region without the first active material); the second pole piece The 120 is provided with a second active material region 121 (ie, a region provided with the second active material) and a second inactive material region 122 (ie, a region without the first active material).
  • the first active material and the second active material may be a positive electrode active material and a negative electrode active material, respectively.
  • the first active material region 111 of the first pole piece 110 and the second active material region 121 of the second pole piece 120 are wound to form the main body portion 150 , and the first inactive material of the first pole piece 110
  • the first tab 160a is formed after the region 112 is wound
  • the second tab 160b is formed after the second inactive material region 122 of the second pole piece 120 is wound.
  • at least a part of the flow guide 130 is located in the bent portion 161 of the tab (eg, the first tab 160 a or the second tab 160 b ) for guiding the electrolyte to flow into the main body portion 150 .
  • FIG. 3 schematically shows a partial cross-sectional structure of an electrode assembly according to some embodiments of the present application, and specifically shows a partial cross-sectional structure of an end where the first tab 160 a is located in the electrode assembly wound structure.
  • the end where the second tab 160b is located may also have a similar structure.
  • the first tab 160a includes a bent portion 161 that is bent relative to the main body portion 150 . At least a part of the deflector 130 is located in the bent portion 161 .
  • the air guides 130 may be spaced between adjacent bent layers 161 a in the bent parts 161 .
  • the flow guide increases the size of the opening at the end of the bent portion 161 to a certain extent, so that the electrolyte can smoothly pass through the opening, and the infiltration effect of the electrolyte on the first active material region 111 and the second active material region 121 is improved. When such an electrode assembly 100 is applied to a battery cell or a battery, the performance of the battery can be effectively improved.
  • first tab 160a and the second tab 160b are located at two ends of the main body portion 150, respectively.
  • first tab 160a and the second tab 160b may also be located at different positions at the same end of the main body portion 150 , so that the Two tab regions, a first tab 160a and a second tab 160b, are formed on the end face.
  • the first pole piece 110 and the second pole piece 120 of the electrode assembly 100 are wound to form a cylindrical laminated winding structure, and the first pole tab 160a and the second pole tab 160b are respectively located at Two circular end surfaces of the main body portion 150 .
  • the electrode assembly 100 may also be a flat cylinder or a rectangular parallelepiped stacked and wound structure.
  • the first tab 160a or the second tab The 160b may be located on the oblate end face or the rectangular end face of one or both ends of the main body portion 150 .
  • the first tab 160a or the second tab 160b may include a bending portion 161 and a connecting portion 162 .
  • the bending portion 161 is bent relative to the main body portion 150
  • the connecting portion 162 is connected between the main body portion 150 and the bending portion 161 , and is generally vertically disposed relative to the main body portion 150 .
  • the connecting portion 162 may not be vertically disposed relative to the main body portion 150, but has an inclined angle relative to the main body portion 150, and is disposed inclined toward the center of the winding axis.
  • first tab 160a or the second tab 160b may not include the connecting portion 162, but the bent portion 161 is directly connected to the main body portion. 150 connection; in other embodiments, the first tab 160a or the second tab 160b may further include other parts other than the bent portion 161 and the connection portion 162 .
  • the electrode assembly 100 further includes a separator 140 .
  • the separator 140 is located in the main body portion 150 and is spaced between the first active material region 111 of the first pole piece 110 and the first active material region 111 of the second pole piece 120 . Between the two active material regions 121 , the diaphragm 140 can be spaced from the flow guide 130 .
  • the diaphragm 140 may also be in contact with the flow guide member 130, or attached to, partially overlapped with the flow guide member 130, or constitute a guide member 130. Portion of flow piece 130 .
  • FIG. 4 schematically illustrates the structure of the electrode assembly 100 before winding according to some embodiments of the present application.
  • the first active material region 111 of the first pole piece 110 and the second active material region 122 of the second pole piece 120 are overlapped, and the separator 140 is spaced between the two. between.
  • the inactive material area 112 of the first pole piece 110 and the inactive material area 122 of the second pole piece 120 protrude at the upper and lower ends respectively, so that the first pole tab 160a and the first pole tab 160a and the first pole tab 160a and the first pole tab 160a and the second pole tab 160a are formed respectively in the wound structure after winding. Diode lugs 160b.
  • the flow guides 130 are disposed on the first pole piece 110 and the second pole piece 120 at the portion corresponding to the bent portion 161 , so that in the wound structure after winding, the flow guide 130 is located adjacent to the bent portion 161 . between the bending layers 161a. Such a design enables the arrangement of the flow guide 130 during the winding operation of the electrode assembly 100 , which simplifies the fabrication process of the electrode assembly 100 .
  • the flow guide 130 is a one-piece structure, and the whole is inside the bent portion 161 .
  • the one-piece flow guide member 130 may be placed between the first pole piece 110 and the second pole piece 120 and communicated with the first pole piece 110 and the second pole piece 120 during the manufacturing process of the electrode assembly 100 .
  • the second pole pieces 120 are wound together to form a wound structure.
  • At least a part of the flow guide 130 overlaps with a part of the first inactive material area 112, or overlaps with a part of the second inactive material area 122, so that after the winding and flattening operations, at least a part of the flow guide 130 is located in the bending position. inside section 161.
  • the air guide 130 may also be composed of multiple parts, and may also include a part located outside the bending part 161 .
  • At least one first guide channel 171 is provided on the bent portion 161 of the guide member 130 and/or the tab 160 .
  • One end of the first guide channel 171 is communicated with the outer space of the electrode assembly 100 , and the other end is communicated with the interior of the main body portion 150 . Therefore, the electrolyte can be guided through the first guide channel 171 to flow into the interior of the main body 150 from the outer space of the bent portion 161 of the tab 160 .
  • FIG. 5 schematically illustrates a partial cross-sectional structure of the electrode assembly 100 at the bending portion 161 according to some embodiments of the present application.
  • the guide member 130 may be provided with a guide hole 171 a, or a guide groove 171 b may be formed on the side wall of the guide member 130 .
  • the guide member 130 is disposed in the bent portion 161 of the tab 160 of the electrode assembly 100 , the guide hole 171 a and the gap between the guide groove 171 b and the bent layer 161 a can form the first guide channel 171 , the outer space of the bending portion 161 is communicated with the interior of the main body portion 150 .
  • the bending portion 161 may also be provided with a bending groove 171c, so that the gap between the bending groove 171c and the deflector 130 can also constitute a first guide connecting the external space of the bending portion 161 and the interior of the main body portion 150.
  • Flow channel 171 may be a groove-shaped structure provided on the tab 160 of the first pole piece 110 or the second pole piece 120, or may be formed by a wrinkle produced by the tab 160 during the flattening process.
  • the electrolyte in the external space can enter the electrode assembly more easily along the first guide channel 171 after entering the bent part 161 from the end opening of the bent part 161 of the tab 160 Inside the main body portion 150 of the electrode assembly 100, the infiltration effect of the electrolyte solution on the active material in the electrode assembly 100 is further improved.
  • the guide holes 171a, the guide grooves 171b, and the bending grooves 171c are all circular or semi-circular structures. Those skilled in the art should understand that what is shown in the figures is only an example. In other embodiments, the guide holes 171a, the guide grooves 171b, and the bending grooves 171c may also have other regular or irregular cross-sectional shapes, and the formed The first diversion channel 171 can have a regular straight or arc-shaped channel, and can also have an irregular channel path, and the direction of the first diversion channel 171 is consistent with the local bending direction of the bending layer 161a, or it can be There are other directions, or random directions, as long as one end of the first guide channel 171 communicates with the outer space of the electrode assembly 100 , and the other end communicates with the interior of the main body portion 150 .
  • the flow guide 130 may be provided with through holes inside, or may be a porous structure with pores.
  • the guide holes 171a, the guide grooves 171b, and the bending grooves 171c may not necessarily exist at the same time, but may be any one or a combination of them.
  • the guide hole 171 a may be provided inside the guide member 130
  • the guide groove 171 b may be provided on the side wall; or the guide hole 171 a may be provided only on the guide member 130 .
  • the flow guide member 130 may further include at least two flow guide units 130a, and a second flow guide channel 172 is formed between two adjacent flow guide units 130a.
  • the flow channel 172 communicates between the inside of the main body part 150 and the outer space of the bent part 161 , so that the electrolyte can be guided into the inside of the main body part 150 through the second guide channel 172 .
  • FIG. 6 schematically illustrates the structure of the electrode assembly 100 before winding according to some embodiments of the present application.
  • the air guide member 130 may include several air guide units 130a, and the air guide units 130a are arranged at intervals, thereby forming a second air guide channel 172 between the air guide units 130a.
  • the second guide channel 172 communicates the external space of the bent portion 161 with the inside of the main body portion 150 , so that the electrolyte outside the bent portion 161 can flow into the inside of the main body portion 150 through the second guide channel 172 .
  • a plurality of guide units 130 a may be disposed at positions corresponding to the bent portions 161 of the tabs 160 .
  • the guide unit 130a may be attached to the tab 160 .
  • the flow guiding unit 130 a will be wound together with the first pole piece 110 , and in the formed winding structure, the flow guiding unit 130 a is located in the bent portion 161 .
  • the gap between the guide units 130a will form the second guide channel 172 in the bent portion 161 .
  • the second guide channel 172 communicates the outer space of the bent portion 161 with the interior of the main body portion 150, so as to allow the electrolyte to enter the interior of the main body portion 150 from the outside of the bent portion 161 through the second guide channel 172.
  • the flow guiding units 130a are square-shaped structures arranged at uniform intervals.
  • the guide units 130a may also be in other shapes, such as regular or irregular block-like and strip-like structures; each guide unit 130a It can be arranged in a regular array or scattered; and each flow guide unit 130a can have the same or different shape and arrangement, as long as a second flow guide channel can be formed between two adjacent flow guide units 130a 172 is enough.
  • any two air guide units 130a are not necessarily arranged at intervals, and some air guide units 130a may be adjacent to each other without a gap.
  • At least two guide units 130a may be disposed on the surface of the first pole piece 110, or the At least two guide units 130a are disposed on the surface of the diode plate 120 .
  • at least a part of the guiding units 130a may be disposed in the first inactive material area 112 or the second inactive material area 122, so that after the winding and flattening operations, the guiding member 130 formed by the plurality of guiding units 130a will At least a part is inside the bent portion 161 .
  • the first guide channel 171 and the second guide channel 172 may also exist at the same time, so as to increase the amount of electrolyte entering the interior of the main body 150 from the outer space of the bent portion 161 . This path further improves the infiltration effect of the electrolyte solution on the active material in the electrode assembly 100 .
  • the air guide member 130 includes at least two air guide units 130a, and the second air guide channel 172 is formed between the air guide units 130a
  • the air guide unit 130a may also be provided with air guide holes 171a or air guide holes 171a.
  • the groove 171b, or the guide unit 130a can also be made of a material with a pore structure, so that a first guide channel 171 is also formed in the bent portion 161 of the tab 160 .
  • all the flow guides 130 may be located in the bent portion 161 of the tab 160 ; In addition to the part outside the bending part 161 , it may also include a part outside the bending part 161 .
  • the flow guide 130 may include a first part 131 and a second part 132, wherein the first part 131 is located in the bent part 161 of the tab 160, and the second part 132 is connected to the first part 131.
  • the outer end of a portion 131 extends to the outer space of the electrode assembly 100 .
  • FIG. 7 schematically shows a partial cross-sectional structure of the electrode assembly 100 according to some embodiments of the present application, and specifically shows the end where the first tab 160 a is located in the wound structure of the electrode assembly 100
  • FIG. 8 schematically shows the structure of the electrode assembly 100 before winding according to some embodiments of the present application.
  • the flow guide 130 includes a first part 131 and a second part 132, the first part 131 is located in the bent part 161; the second part 132 is connected to the outer end of the first part 131 and extends outward to the electrode The outer space of the assembly 100 .
  • the second part 132 of the guide member 130 can play a role of drainage, so that the electrolyte in the outer space of the electrode assembly 100 can be drained along the second part 132 of the guide member 130 into the end of the bent part 161 of the tab 160 . into the opening, and further along the first portion 131 of the flow guide member 130 , into the interior of the main body portion 150 of the electrode assembly 100 .
  • Such a design helps to further improve the infiltration effect of the electrolyte solution on the active material in the electrode assembly 100 , and facilitates the electrolyte solution entering the opening at the end of the bent portion 161 .
  • a bent portion 161 extending beyond the tab 160 may be provided in the flow guide 130 .
  • the part of the flow guide 130 extending from the bent portion 161 will constitute the second part 132 of the flow guide 130, and in the wound electrode assembly, the second part 132 will The bent portion 161 is covered.
  • the second portion 132 of the flow guide 130 may be formed by die cutting. Such an embodiment does not limit the material used for the flow guide 130 . At the die-cut portion, the bent portion 161 of the tab 160 is exposed to ensure that the bent portion 161 of the tab 160 can be attached to an external member such as an electrode terminal. Those skilled in the art should understand that what is shown in the figures is only an example, and in other embodiments, the flow guide 130 may not need to be die-cut. At this time, the second portion 132 may be covered in such an embodiment, and the flow guide 130 may be arranged to be partially or entirely made of a conductive material (eg, conductive metal), or to be entirely or partially outside the flow guide 130 .
  • a conductive material eg, conductive metal
  • the surface is coated with a conductive material to enable external members such as electrode terminals to be attached to the second portion 132 of the deflector 130 protruding from the bent portion 161 , and thus to be conductively connected to the bent portion 161 of the tab 160 .
  • the air guide 130 is a one-piece structure.
  • the air guide 130 can also be a multi-piece structure, such as At least two air guide units 130 a may be included, and at least one air guide unit 130 a may include a portion extending to the outer space of the electrode assembly 100 to constitute the second portion 132 of the air guide member 130 .
  • the flow guide member 130 may further include a third portion 133 connected to the inner end of the first portion 131 , and the third portion 133 extends into the main body portion 150 , that is, extends to the first pole piece between the first active material region 111 of the 110 and the second active material region 121 of the second pole piece 120 .
  • FIG. 9 and FIG. 10 respectively schematically show a partial cross-sectional structure of an electrode assembly 100 according to some embodiments of the present application, and specifically show A partial cross-sectional structure of the end where the first tab 160a is located in the wound structure of the electrode assembly 100 .
  • the flow guide 130 may further include a third part 133 , and the third part 133 may be connected to the inner end of the first part 131 and extend into the main body part 150 so as to extend and be spaced apart from the first pole piece 110 between the first active material region 111 and the second active material region 121 of the second pole piece 120 .
  • the third part 133 can continue the infiltration path of the electrolyte, so that the electrolyte entering the bent part 161 can more easily enter the inside of the main body 150 of the electrode assembly 100 along the third part 133 of the flow guide 130 , infiltrating the active material in the first active material region 111 and the second active material region 121 .
  • the electrode active material can be more fully contacted with the electrolyte and fully participate in the reaction, which is conducive to further improvement of the battery performance.
  • the third portion 133 is spaced in the entire area between the first active material region 111 and the second active material region 121 .
  • Such an embodiment is advantageous for sufficient infiltration of the electrode assembly by the electrolyte.
  • the third portion 133 of the flow guide 130 may only extend to the first active material region 111 and the second active material region 121 part of the area in between.
  • the second portion 132 and the third portion 133 of the flow guide member 130 do not necessarily exist at the same time. That is, in some embodiments, the air guide 130 may only include the first part 131; in some embodiments, the air guide 130 may include the first part 131 and the second part 132; in some embodiments, the air guide 130 may include The first part 131 and the third part 133 ; in some embodiments, the flow guide 130 may include the first part 131 , the second part 132 and the third part 133 .
  • the electrode assembly 100 generally further includes a separator, which is an insulating material, usually located in the main body 150 of the electrode assembly 100 and spaced between the active material regions of the first pole piece 110 and the second pole piece 120 for insulation.
  • the first pole piece 110 and the second pole piece 120 are isolated.
  • the separator is usually made of PP (polypropylene) material or PE (polyethylene) material, and has micro-scale or nano-scale pores inside it for allowing metal ions to pass through during the charging and discharging process of the battery.
  • the flow guide 130 may also be an insulating material, and may also be provided with through holes for ions to pass through in the thickness direction thereof. This allows the flow guide 130 to be made of the same material as the isolation membrane. This is particularly advantageous for simplifying the manufacturing process of the electrode assembly 100 and reducing costs.
  • the flow guide 130 when the flow guide 130 is an insulating material, and there are through holes for ions to pass through in the thickness direction of the flow guide 130 , the flow guide 130 The third portion 133 may also function as an isolation film. Therefore, the flow guide member 130 has the dual functions of flow guide and diaphragm, which is particularly advantageous for simplifying the manufacturing process of the electrode assembly 100 and reducing the cost.
  • the deflector 130 can be made of insulating materials, such as polypropylene (PP), polyethylene (PE), etc., and is provided with through holes for ions to pass through in the thickness direction thereof. , does not mean that an additional separator will not necessarily be provided in the electrode assembly 100 of these embodiments. Therefore, the third portion 133 of the guide member 130 in the electrode assembly 100 may serve as a separator, or a separator 140 may be additionally provided in the electrode assembly 100 .
  • PP polypropylene
  • PE polyethylene
  • the electrode assembly 100 may further include a separator 140 , and the separator 140 is located between the first active material region 111 of the first pole piece 110 and the second active material 121 of the second pole piece 120 .
  • the flow guide 130 may be attached to the diaphragm 140 , and the flow guide 130 may also be spaced from the diaphragm 140 .
  • the electrode assembly 110 further includes a diaphragm 140 , and the diaphragm 140 is spaced from the flow guide 130 ; please refer to FIG. 10 , in the specific embodiment shown in the figure, the flow guide 130 in the electrode assembly 110 is attached to the diaphragm 140 .
  • the flow guide 130 and the diaphragm 140 can be made of the same material or different materials, and the shape and structure of the flow guide 130 can also be designed as required, and no The impact on the diaphragm 140 improves the design flexibility of the flow guide 130 and the electrode assembly 100 .
  • the end surface of the bent portion 161 of the electrode assembly 100 may have a connection area 181 and a drainage area 182, and the bent portion 161 is connected to the external member through the connection area 181;
  • the guide member 130 located in the drainage area 182 guides the electrolyte to flow into the interior of the main body portion 150 .
  • FIG. 11 several structures of the electrode assembly 100 on the end face of the bent portion 161 according to some embodiments of the present application are schematically shown.
  • a connection area 181 may be provided on the end face of the bent portion 161, and the surface of the connection area 181 is Conductive material to facilitate conductive connection of electrode terminals.
  • the bent portion 161 can also be connected to the electrode terminal through a transfer member, for example, the bent portion 161 and the transfer member are directly welded in the connection area 181, and the transfer member is directly welded to the electrode terminal.
  • the rest of the end face of the bent portion 161 may constitute a drainage area 182 , and the guide member 130 of the drainage area 182 is used to guide the motor to flow into the main body portion 150 .
  • connection region 181 may not participate in the drainage of the electrolyte
  • the end portion of the adjacent bending layer 161 a of the connection region 181 on the end surface of the bending portion 161 may be a closed structure.
  • the flow guides 130 may not be provided in the bent portions 161 of the connection regions 181 .
  • the ends of the adjacent bending layers 161a of the connecting region 181 may also be open structures, that is, the air guides 130 may also be provided in the bending parts 161 of these parts.
  • the flow guide 130 may be an insulating material, a conductive material, or a surface coated with a conductive material, so as to facilitate the conductive connection between the connection area 181 and the external components.
  • the air guide 130 in the bent portion 161 of the connecting area 181 may also include a second portion 132 extending to the outer space of the bent portion 161 .
  • the deflector 130 is preferably made of a conductive material or surface-coated with a conductive material to facilitate conductive connection with external components.
  • the flow guide 130 in the bent portion 161 of the drainage area 182 may only have the first portion 131 , or may also have the second portion 132 .
  • connection area 181 or the drainage area 182 may be fan-shaped, as shown in (a) and (b) in the figure. or a rectangle, as shown in (e) in the figure; or a ring sector, as shown in (c) and (d) in the figure; or other shapes.
  • connection region 181 or the drainage region 182 may each have one or more regions, and each region may be distributed symmetrically or asymmetrically.
  • the drainage area 182 may further include a central drainage area 182a and/or a peripheral drainage area 182b.
  • the central drainage area 182a is located in the central area of the end face, and the outer peripheral drainage area 182b is located in the outer peripheral area of the end face.
  • the air guide 130 further comprises the third portion 133, or the air guide 130 also acts as an isolation membrane. This is because the first pole piece 110 and/or the second pole piece 120 are usually not provided at the positions corresponding to the central drainage region 182a and the peripheral drainage region 182b.
  • Disposing the flow guide 130 and the drainage area 182 at such a position can enable the electrolyte to enter the vacant area of the first pole piece 110 or the second pole piece 120 in the electrode assembly 100 , so that the electrodes in the main body 150 of the electrode assembly 100
  • the active material can be fully immersed in the electrolyte to further improve the infiltration effect.
  • a battery cell 200 is also provided. Referring to FIG. 12 , an exploded structure of a battery cell 200 according to some embodiments of the present application is schematically shown.
  • the battery cell 200 includes the electrode assembly 100 of the above-mentioned embodiment, a casing 210 and a terminal assembly 220.
  • the casing 210 is used for accommodating the electrode assembly 100; the terminal assembly 220 is provided on the casing 210 for connecting
  • the tabs 160a and 160b, especially the bent portion 161 connected to the tabs, are used to output or input electrical energy.
  • the battery cell 200 includes an electrode assembly 100 , a casing 210 and a terminal assembly 220 provided on the casing 210 .
  • the casing 210 is a hollow structure for accommodating the electrode assembly 100 therein.
  • the battery cell 200 may also include a plurality of electrode assemblies 100
  • the terminal assemblies 200 may also be constructed according to the number and arrangement of the electrode assemblies 100 . design.
  • the housing 210 may be a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the housing 210 may be a hollow shell with open faces.
  • the casing 210 when the casing 210 is a hollow cylinder, its circular end face can be an open face without a casing wall, so that the inner and outer spaces of the casing 210 are communicated at the open face, so that the at least one electrode assembly 100 can be connected from the opening.
  • At least one electrode assembly 100 is placed in the hollow space inside the casing 210 at the point.
  • the terminal assembly 220 may be disposed at the opening of the housing 210 and connected with the housing 210 to form a closed casing in which the electrode assembly 100 is placed, and the closed casing is filled with an electrolyte.
  • the terminal assembly 220 may include an end cap 222 and a terminal 221 disposed on the end cap 222 .
  • the terminals 221 are used to connect the bent portions 161 of the tabs 160 of the first pole piece 110 and the second pole piece 120 .
  • the battery cell 200 may be a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • the battery cell 200 may be, for example, a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-lithium-ion battery, or a magnesium-ion battery, and the like.
  • a battery 300 is also provided, and the battery 300 includes the battery cells 200 of the above embodiments.
  • FIG. 13 and FIG. 14 schematically illustrate the overall structure and the exploded structure of a battery 300 according to some embodiments of the present application, respectively.
  • the battery 300 may include one or more battery cells 200, and the plurality of battery cells 200 may be connected in series or in parallel or in a mixed connection to meet different electrical energy usage requirements.
  • the battery 300 may further include a box body 310 , which is hollow inside for accommodating one or more battery cells 200 .
  • the box body 310 may also have different shapes and sizes according to the shape, quantity, combination and other requirements of the battery cells 200 to be accommodated. Similar to the description above about the casing 21 of the battery cell 200 , the casing 310 of the battery 300 may be formed by snapping two parts together to form a closed structure.
  • an electrical device 400 is also provided, the device includes the battery 300 of the above embodiment, and the battery 300 is used to provide electrical energy for the electrical device 400 .
  • FIG. 15 schematically shows the structure of an electrical device 400 according to some embodiments of the present application.
  • the electrical device 400 may be, for example, a vehicle, the vehicle may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc. .
  • the battery 300 is provided inside the vehicle, or the battery 300 is provided at the bottom or the front or rear of the vehicle.
  • the vehicle may have a motor 401, a controller 402 and a battery 300, the battery 300 is used to provide electrical energy for the vehicle, and the controller 402 controls the battery 300 to supply power to the motor 401 to make the motor 401 run, thereby driving wheels or other components of the vehicle Work.
  • the power-consuming device 400 may also be other devices including the battery 300 and powered by the battery 300, such as a mobile phone, a portable device, a notebook computer, Battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • Spacecraft includes airplanes, rockets, space shuttles, spaceships, etc.
  • electric toys include stationary or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric aircraft toys, etc.
  • electric tools include metal Cutting power tools, grinding power tools, assembling power tools and railway power tools such as drills, grinders, wrenches, screwdrivers, hammers, impact drills, concrete vibrators and planers.
  • the battery 300 can also be used as the operating power source of the electrical device 400 for the circuit system of the electrical device 400, for example, for the starting, navigation and operating power requirements of the car; or it can also As the driving power source of the electric device 400 , the electric device can be replaced or partially replaced by fuel oil or natural gas to provide driving power for the electric device.
  • a method for preparing an electrode assembly is also provided. Please refer to FIG. 16 , which schematically shows a process flow of a method for preparing an electrode assembly according to some embodiments of the present application.
  • the method of preparing the electrode assembly includes:
  • S501 provide a first pole piece, a second pole piece and a flow guide, the first pole piece and the second pole piece have opposite polarities, and at least a part of the flow guide is arranged between the first pole piece and the second pole piece;
  • S502 the first pole piece and the second pole piece are wound to form a winding structure, wherein the active material area of the first pole piece and the active material area of the second pole piece are wound to form the main body, and the inactive material of the first pole piece
  • the material region or the inactive material region of the second pole piece is wound to form a pole ear; and S503, at least a part of the pole ear is bent relative to the main body part to form a bent part, and at least a part of the guide member is located in the bent part, for The electrolyte solution is guided to flow into the inside of the main body.
  • the flow guide in step S501, may be provided as a separate component, or pre-disposed on the surface of the first pole piece and/or the second pole piece.
  • the flow guide in the case where the flow guide includes a third portion and simultaneously functions as a diaphragm, the flow guide may be provided as a separate component.
  • the flow guide, the first pole piece or the second pole piece can be die-cut in advance according to requirements, so as to obtain the specific shape of the flow guide and the pole ears.
  • the air guide units in the case where the air guide includes at least two air guide units, the air guide units may be pre-arranged on the surface of the first pole piece and/or the second pole piece.
  • the winding structure in the winding operation of step S502, may be a cylindrical winding structure, an oblong winding structure, or a rectangular winding structure.
  • the size of the opening at the end of the bending part is increased to a certain extent, so that the electrolyte can smoothly pass through the bending part.
  • the opening improves the infiltration effect of the electrolyte on the active material area.
  • an apparatus for preparing an electrode assembly is also provided. Referring to FIG. 17 , the structure of an apparatus for preparing an electrode assembly according to some embodiments of the present application is schematically shown.
  • the electrode assembly preparation device 600 includes: a pole piece placement module 601, which is configured to provide a first pole piece, a second pole piece and a flow guide, the first pole piece and the The polarity of the second pole piece is opposite, and at least a part of the flow guide is disposed between the first pole piece and the second pole piece; the winding module 602 is configured to wind the first pole piece The sheet and the second pole piece are wound to form a winding structure, wherein the active material area of the first pole piece and the active material area of the second pole piece are wound to form a main body portion, and the first pole piece The inactive material area of the second pole piece or the inactive material area of the second pole piece is wound to form a tab; and a flattening module 603 is configured to bend at least a part of the tab relative to the main body to form a tab A bent portion, at least a part of the guide member is located in the bent portion, and is used for guiding the electrolyte to flow into the inside of the main

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请公开了一种电极组件及其相关的电池、装置、制造方法和制造装置。根据本申请实施例的电极组件包括:极性相反的第一极片和第二极片,所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳,所述极耳包括相对于所述主体部弯折设置的弯折部;导流件,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。本申请实施例的电极组件提升了电解液对活性物质的浸润效果,在应用于电池中时,能够有效提升电池的性能。

Description

电极组件及其相关电池、装置、制造方法和制造装置 技术领域
本申请实施例涉及电池领域,具体涉及一种电极组件及其相关电池、装置、制造方法和制造装置。
背景技术
锂离子电池等电池具有体积小、能量密度高、功率密度高、循环使用次数多和存储时间长等优点,在一些电子设备、电动交通工具、电动玩具和电动设备上得到广泛应用。例如,在手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等产品中,锂离子电池均已得到广泛的应用。
随着电池技术的不断发展,对电池的性能提出了更高的要求。电解液是锂离子电池中离子传输的载体,通过电解液在正极极片和负极极片之间传输锂离子,使锂离子在正极活性物质区和负极活性物质区之间正常嵌入和脱出。因此,电解液对电极组件中活性物质的浸润效果,是确保电池高性能的重要因素。
对于卷绕结构的电极组件,电解液通过相邻两层极耳之间的缝隙传输至电极组件的内部,从而浸润正负极的活性物质区。然而,电极组件的极耳通常会在经过揉平处理后形成弯折部,以减小电极组件整体所占用的空间。但是,对极耳的揉平处理所形成的弯折部会导致在层叠结构中相邻两个极耳层的端部紧靠在一起并形成闭口结构,这样的闭口结构在一定程度上阻碍了电解液从极耳外部空间进入主体部的通路,导致正负极的活性物质区不能充分浸润,对电池性能有着重要影响。
发明内容
鉴于上述问题,本申请实施例提出一种电极组件及其相关的电池、装置、制造方法和制造装置,以提升电解液对活性物质区的浸润效果,提升电池的性能。
根据本申请实施例的第一方面,提供了一种电极组件,包括:极性相反的第一极片和第二极片,所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳,所述极耳包括相对于所述主体部弯折设置的弯折部;导流件,所述导流件至少一 部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
本申请实施例的电极组件中,通过提供导流件,并设置导流件至少一部分位于极耳的弯折部内,在一定程度上增大了弯折部端部的开口尺寸,使电解液能够顺利通过该开口,提升电解液对活性物质区的浸润效果,在应用于电池中时,能够有效提升电池的性能。
在一些实施例中,所述导流件和/或所述弯折部设有至少一个第一导流通道,所述第一导流通道的一端与所述电极组件的外部空间连通,另一端与所述主体部的内部连通,所述导流件通过所述第一导流通道引导电解液流入所述主体部的内部。
这样的实施例中,电解液能够通过第一导流通道从电极组件外部空间进入电极组件的主体部内部,使得导流件和/或弯折部自身可以起到导流的作用。
在一些实施例中,所述导流件包括至少两个导流单元,相邻的两个所述导流单元之间形成第二导流通道,所述导流件通过所述第二导流通道引导电解液流入所述主体部的内部。
这样的实施例中,电解液还能够通过设于多个导流单元之间的间隙,从电极组件外部空间进入电极组件的主体部内部,增加了电解液的进入路径,进一步提升电极组件的电解液浸润性;并且多个导流单元可以规则或不规则地布置,使得导流件的设计也可以更为灵活。
在一些实施例中,所述导流件包括第一部分和第二部分,所述第一部分位于所述弯折部内,所述第二部分连接于所述第一部分的外端,并且延伸至所述电极组件的外部空间。
这样的实施例中,导流件的第二部分还可以起到引流的作用,以使位于电极组件外部空间的电解液能够沿导流件的第二部分向极耳的弯折部内流动,继而进入电极组件的主体部内部,进一步提升电解液对活性物质区的浸润效果。
在一些实施例中,所述导流件还包括第三部分,所述第三部分连接于所述第一部分的内端,并且延伸至所述第一极片的活性物质区和第二极片的活性物质区之间。
这样的实施例中,电解液能够更容易地沿导流件的第三部分从极耳的弯折部内流入主体部内部,进一步提升电解液对活性物质区的浸润效果。
在一些实施例中,所述导流件为绝缘材料,并且在其厚度方向上设有供离子通过的贯通孔。
这样的实施例中,导流件可以使用与隔膜相同的或类似的材料制成;而且在导流 件还包括第三部分的情况中,导流件还可以起到隔膜的作用,或是由隔膜的至少一部分来形成导流件,从而能够简化电极组件的制备。
在一些实施例中,所述电极组件还包括隔膜,所述隔膜位于所述第一极片的活性物质区和第二极片的活性物质区之间,所述导流件附接于所述隔膜或者所述导流件与所述隔膜间隔设置。
这样的实施例中,在电极组件中还设有隔膜时,导流件设计灵活,可以与隔膜附接或是间隔设置,且不影响隔膜自身的作用和功能。
在一些实施例中,所述弯折部的端面具有引流区和连接区,所述弯折部通过所述连接区与外部构件连接,所述弯折部通过位于所述引流区的所述导流件引导电解液流入所述主体部的内部。
这样的实施例中,通过在弯折部的端面划分引流区和连接区,既便于外部构件(例如电极端子)的连接,还使引流区的导流件能够更有效地引导电解液流入主体部内部。
根据本申请实施例的第二方面,提供了一种电池单体,包括:上述实施例的电极组件;外壳,所述外壳用于容纳所述电极组件;端子组件,设于所述外壳,所述端子组件用于连接所述弯折部,以输出或输入电能。
根据本申请实施例的第三方面,提供了一种电池,包括上述实施例的电池单体。
根据本申请实施例的第四方面,提供了一种用电装置,包括上述实施例的电池,其中所述电池用于提供电能。
根据本申请实施例的第五方面,提供了一种制备电极组件的方法,包括:提供第一极片、第二极片和导流件,所述第一极片与所述第二极片极性相反,所述导流件至少一部分设置于所述第一极片与所述第二极片之间;将所述第一极片和所述第二极片卷绕形成卷绕结构,其中所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳;以及将所述极耳至少一部分相对于所述主体部弯折形成弯折部,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
根据本申请实施例的第六方面,提供了一种制备电极组件的装置,包括:极片放置模块,被配置为提供第一极片、第二极片和导流件,所述第一极片与所述第二极片极性相反,所述导流件至少一部分设置于所述第一极片与所述第二极片之间;卷绕模块,被配置为将所述第一极片和所述第二极片卷绕形成卷绕结构,其中所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活 性物质区或所述第二极片的非活性物质区卷绕后形成极耳;以及揉平模块,被配置为将所述极耳至少一部分相对于所述主体部弯折形成弯折部,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为根据本申请一些实施例的电极组件的立体结构示意图;
图2为根据本申请一些实施例的电极组件的层叠卷绕结构示意图;
图3为根据本申请一些实施例的电极组件的局部剖面结构示意图;
图4为根据本申请一些实施例的电极组件在卷绕前的结构示意图;
图5为根据本申请一些实施例的电极组件在弯折部在端面局部剖面结构示意图;
图6为根据本申请一些实施例的电极组件在卷绕前的结构示意图;
图7为根据本申请一些实施例的电极组件的局部剖面结构示意图;
图8为根据本申请一些实施例的电极组件在卷绕前的结构示意图;
图9为根据本申请另一些实施例的电极组件的局部剖面结构示意图;
图10为根据本申请另一些实施例的电极组件的局部剖面结构示意图;
图11为根据本申请一些实施例的电极组件在弯折部的端面结构示意图;
图12为根据本申请一些实施例的电池单体的分解结构示意图;
图13为根据本申请一些实施例的电池的结构示意图;
图14为根据本申请一些实施例的电池的分解结构示意图;
图15为根据本申请一些实施例的用电装置的结构示意图;
图16为根据本申请一些实施例的制备电极组件的方法的流程示意图;
图17为根据本申请一些实施例的制备电极组件的装置的结构示意图。
具体实施方式中的附图标号如下:
电极组件100,第一极片110,第一活性物质区111,第一非活性物质区112,第 二极片120,第二活性物质区121,第二非活性物质区122,导流件130,第一部分131,第二部分132,第三部分133,导流单元130a,隔膜140,主体部150,极耳160,第一极耳160a,第二极耳160b,弯折部161,弯折层161a,连接部162,第一导流通道171,导流孔171a,导流槽171b,第二导流通道172,连接区181,引流区182,中心引流区182a,外周引流区182b;电池单体200,外壳210,端子组件220,电极端子221,端盖222;电池300,箱体310;用电装置400,马达401,控制器402;电极组件制备装置600,极片放置模块601,卷绕模块602,揉平模块603。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要注意的是,除非另有说明,本申请实施例使用的技术术语或者科学术语应当为本申请实施例所属领域技术人员所理解的通常意义。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
此外,技术术语“第一”“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,亦非用于描述特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员能够理解本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系。例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请实施例的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
现有的电池通常包括壳体和容纳于壳体内的电极组件,并在壳体内填充电解质。电极组件主要由层叠放置的正极片和负极片形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电极组件的主体部,正极片和负极片不具有活性物质的部分各自构成正级极耳和负级极耳。在锂离子电池的情况中,正极片包括正极集流体和设于正极集流体两侧的正极活性物质层,正极集流体的材料例如可以为铝,正极活性物质例如可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等;负极片包括负极集流体和设于负极集流体两侧的负极活性物质层,负极集流体的材料例如可以为铜,负极活性物质例如可以为碳或硅等。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。
在电池的充放电过程中,主体部的正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。若电解液对活性物质的浸润效果不足,将可能导致正极或负极活性物质不能充分参与反应,影响电极组件的效率,影响电池性能。因此,电极组件中电解液对活性物质的浸润效果,是确保电池高性能的重要因素。
目前对电池中电解液对活性物质的浸润效果的改善措施主要关注点在于,在极片表面涂覆提高浸润效果的材料,或是改变隔膜的材料或隔膜的层次结构。然而,这样的设计方案导致电极组件的成本进一步增加,制备工艺更为复杂。
在电极组件的加工和装配程序中,往往需要对极耳进行揉平处理,使极耳发生弯折变形,以便于极耳与电极端子的连接,以及便于电池单体的装配。本申请的发明人在实践中发现,对极耳的揉平处理会导致在层叠结构中相邻两个极耳层的端部紧靠在一起并形成闭口结构,这样的闭口结构在一定程度上阻碍了电解液从极耳外部空间进入主体部的通路,对电极组件中电解液对活性物质的浸润效果造成不利影响,进而影响电池的性能。
基于上述问题的发现,本申请的发明人改进了电极组件的结构设计,以提升电极组件中电解液对活性物质的浸润效果,提升电池的性能。下面将结合附图进一步描述本申请的各个实施例。
根据本申请实施例的第一方面,提供了一种电极组件100。请参阅图1和图2,其中图1示意性地示出根据本申请一些实施例的电极组件100的立体结构;图2示意性地示出根据本申请一些实施例的电极组件100层叠卷绕结构。
如图中所示,该电极组件100包括第一极片110、第二极片120和导流件130。第一极片110与第二极片120的极性相反。例如,第一极片110为正极片,第二极片120为负极片,或者相反。第一极片110和第二极片120关于卷绕轴线卷绕形成卷绕结构。
第一极片110上设有第一活性物质区111(即设有第一活性物质的区域)和第一非活性物质区112(即未设有第一活性物质的区域);第二极片120上设有第二活性物质区121(即设有第二活性物质的区域)和第二非活性物质区122(即未设有第一活性物质的区域)。第一活性物质和第二活性物质分别可以为正极活性物质和负极活性物质。
在卷绕结构中,第一极片110的第一活性物质区111和第二极片120的第二活性物质区121卷绕后形成主体部150,第一极片110的第一非活性物质区112卷绕后形成第一极耳160a,第二极片120的第二非活性物质区122卷绕后形成第二极耳160b。导流件130在卷绕后有至少一部分位于极耳(例如第一极耳160a或第二极耳160b)的弯折部161内,用于引导电解液流入主体部150的内部。
请进一步参阅图3,图3示意性地示出根据本申请一些实施例的电极组件的局部剖面结构,具体示出电极组件卷绕结构中第一极耳160a所在一端的局部剖面结构。本 领域技术人员应当理解,第二极耳160b所在一端也可以具有类似结构。
如图中所示,第一极耳160a包括相对于主体部150弯折设置的弯折部161。导流件130至少一部分位于弯折部161内。导流件130可以间隔在弯折部161中相邻的弯折层161a之间。导流件在一定程度上增大了弯折部161端部的开口尺寸,使电解液能够顺利通过该开口,提升电解液对第一活性物质区111和第二活性物质区121的浸润效果。这样的电极组件100在应用于电池单体或电池中时,能够有效提升电池的性能。
在图中所示的具体实施例中,第一极耳160a和第二极耳160b分别位于主体部150的两端。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,第一极耳160a和第二极耳160b也可以位于主体部150同一端的不同位置,以在主体部150的一个端面上形成第一极耳160a和第二极耳160b两个极耳区域。
在图中所示的具体实施例中,电极组件100的第一极片110与第二极片120卷绕后形成圆柱体层叠卷绕结构,第一极耳160a和第二极耳160b分别位于主体部150的两个圆形端面上。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,电极组件100也可以为扁圆柱体或长方体层叠卷绕结构,相应地,第一极耳160a或第二极耳160b可以位于主体部150一端或两端的扁圆形端面或长方形端面上。
在图中所示的具体实施例中,第一极耳160a或第二极耳160b可以包括弯折部161和连接部162。其中,弯折部161相对于主体部150弯折设置,连接部162连接在主体部150与弯折部161之间,并且通常相对于主体部150竖直设置。可以理解的是,连接部162也可以不相对于主体部150竖直设置,而是相对主体部150具有一倾斜角,并朝向卷绕轴线的中心倾斜设置。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,第一极耳160a或第二极耳160b也可以不包括连接部162,而是弯折部161直接与主体部150连接;在另一些实施例中,第一极耳160a或第二极耳160b还可以包括除弯折部161、连接部162之外的其他部分。
在图中所示的具体实施例中,电极组件100还包括隔膜140,隔膜140位于主体部150中,并且间隔在第一极片110的第一活性物质区111与第二极片120的第二活性物质区121之间,从而隔膜140可以与导流件130间隔设置。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,隔膜140也可以与导流件130相抵,或是与导流件130附接、部分重叠设置,或是构成导流件130的部分。
请进一步参阅图4,图4示意性地示出根据本申请一些实施例的电极组件100在卷绕前的结构。
如图中所示,卷绕前的电极组件100中,第一极片110的第一活性物质区111与第二极片120的第二活性物质区122叠置,隔膜140间隔在二者之间。第一极片110的非活性物质区112和第二极片120的非活性物质区122分别在上下两端伸出,从而在卷绕后的卷绕结构中分别形成第一极耳160a和第二极耳160b。导流件130设置在第一极片110和第二极片120对应于弯折部161的部分,从而在卷绕后的卷绕结构中,导流件130位于弯折部161内的相邻弯折层161a之间。这样的设计,使得能够在电极组件100的卷绕操作过程中实现导流件130的布置,简化了电极组件100的制备工艺。
在图中所示的具体实施中,导流件130为一件式结构,并且整体处于弯折部161之内。在这样的实施例中,可以在电极组件100的制造过程中,将一件式的导流件130放置在第一极片110与第二极片120之间,并与第一极片110和第二极片120一起卷绕形成卷绕结构。导流件130的至少一部分与第一非活性物质区112一部分重叠,或是与第二非活性物质区122一部分重叠,从而在卷绕和揉平操作后,导流件130至少一部分位于弯折部161内。
本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,导流件130也可以由多个部分构成,并且还可以包括位于弯折部161之外的部分。
在本申请一些实施例的电极组件100中,导流件130和/或极耳160的弯折部161设有至少一个第一导流通道171。第一导流通道171的一端与电极组件100的外部空间连通,另一端与主体部150内部连通。从而,能够引导电解液通过第一导流通道171,从极耳160弯折部161的外部空间流入主体部150内部。
请参阅图5,示意性地示出根据本申请一些实施例的电极组件100在弯折部161的局部剖面结构。
如图中所示,导流件130上可以设有导流孔171a,或是在导流件130侧壁上设有导流槽171b。当导流件130设置于电极组件100的极耳160的弯折部161内时,导流孔171a,以及导流槽171b与弯折层161a之间的间隙,可以构成第一导流通道171,连通弯折部161的外部空间与主体部150内部。弯折部161上也可以设有弯折槽171c,从而在弯折槽171c与导流件130之间的间隙,也可以构成连通弯折部161的外部空间与主体部150内部的第一导流通道171。其中,弯折槽171c可以为在第一极片110或第二极片120的极耳160上设置的槽型结构,也可以是由极耳160在揉平过程中产生的褶皱形成。
通过设置第一导流通道171,使得外部空间的电解液在从极耳160弯折部161的 端部开口进入弯折部161内之后,能够更容易地沿第一导流通道171进入电极组件100主体部150内部,进一步提升了电极组件100中电解液对活性物质的浸润效果。
在图中所示的具体实施例中,导流孔171a、导流槽171b、弯折槽171c均为圆形或半圆形结构。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,导流孔171a、导流槽171b、弯折槽171c也可以具有其他规则或不规则的截面形状,并且所形成的第一导流通道171可以具有规则的直形或弧形通道,也可以具有不规则的通道路径,并且第一导流通道171的方向与弯折层161a的局部弯折方向一致,也可以具有其他方向,或是杂乱方向,只要第一导流通道171的一端与电极组件100的外部空间连通,另一端与主体部150内部连通即可。例如,导流件130可以内部设有通孔,也可以为具有孔隙的多孔结构。
本领域技术人员应当理解,在其他实施例中,导流孔171a、导流槽171b、弯折槽171c可以不必同时存在,而是可以为它们中任意一种或多种的组合方式。例如,可以在导流件130内部设置导流孔171a,同时侧壁上设有导流槽171b;或者可以仅在导流件130上设有导流孔171a。
在本申请一些实施例的电极组件100中,导流件130还可以包括至少两个导流单元130a,在相邻的两个导流单元130a之间形成第二导流通道172,第二导流通道172连通主体部150内部与弯折部161的外部空间,从而,电解液能够通过第二导流通道172被引导流入主体部150的内部。
请继续参阅图5,并请进一步参阅图6,其中图6示意性地示出根据本申请一些实施例的电极组件100在卷绕前的结构。
如图5中所示,导流件130可以包括若干导流单元130a,导流单元130a间隔设置,从而在导流单元130a之间形成第二导流通道172。该第二导流通道172连通弯折部161的外部空间与主体部150的内部,使得弯折部161外部的电解液能够经由第二导流通道172流入主体部150内部。
如图6中所示,在电极组件100的第一极片110、第二极片120卷绕之前,可以将若干导流单元130a设置在对应于极耳160弯折部161的位置。例如,可以将导流单元130a附着在极耳160上。在卷绕操作中,导流单元130a将随第一极片110一起卷绕,并且在形成的卷绕结构中,导流单元130a处于弯折部161内。导流单元130a之间的间隙将在弯折部161内形成第二导流通道172。该第二导流通道172连通弯折部161的外部空间与主体部150内部,以允许电解液经由第二导流通道172,从弯折部 161外部进入主体部150内部。
在图中所示的具体实施例中,导流单元130a为均匀间隔布置的方块状结构。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,这些导流单元130a也可以为其他形状,例如规则或不规则的块状、条状结构;各个导流单元130a可以呈规则的阵列布置,也可以散乱布置;并且各个导流单元130a可以具有相同或不同的形状和布置方式,只要在相邻的两个导流件单元130a之间能够形成第二导流通道172即可。此外,本领域技术人员还应当理解,并非任意两个导流单元130a之间都必须间隔布置,也可以有一些导流单元130a之间彼此相邻靠,而不具有间隙。
将导流件130设置为包含若干导流单元130a,增加了导流件130的设计灵活性。例如,在电极组件100的制备过程中,可以在第一极片110和第二极片120的卷绕之前,在第一极片110表面上设置至少两个导流单元130a,或是在第二极片120表面上设置至少两个导流单元130a。其中,至少一部分导流单元130a可以设于第一非活性物质区112或第二非活性物质区122,从而在卷绕和揉平操作后,由若干导流单元130a形成的导流件130将有至少一部分处于弯折部161内。
本领域技术人员还应当理解,在一些实施例中,第一导流通道171与第二导流通道172也可以同时存在,以增加电解液从弯折部161的外部空间进入主体部150内部的路径,进一步提升电极组件100中电解液对活性物质的浸润效果。例如,当导流件130包括至少两个导流单元130a,并且在导流单元130a之间形成有第二导流通道172时,导流单元130a上也可以设有导流孔171a或导流槽171b,或者导流单元130a也可以由具有孔隙结构的材料构成,以便在极耳160的弯折部161内还形成有第一导流通道171。
在本申请一些实施例的电极组件100中,导流件130可以全部处于极耳160的弯折部161内;在其他一些实施例中,导流件130除了位于极耳160弯折部161内的部分之外,还可以包括位于弯折部161之外的部分。
在本申请一些实施例的电极组件100中,导流件130可以包括第一部分131和第二部分132,其中,第一部分131位于极耳160的弯折部161内,第二部分132连接在第一部分131的外端,并且延伸至电极组件100的外部空间。
请参阅附图7和图8,其中图7示意性地示出了根据本申请一些实施例的电极组件100的局部剖面结构,具体示出电极组件100卷绕结构中第一极耳160a所在一端的局部剖面结构;图8示意性地示出了根据本申请一些实施例的电极组件100在卷绕前 的结构。
如图7中所示,导流件130包括第一部分131和第二部分132,第一部分131位于弯折部161内;第二部分132连接在第一部分131的外端,并且向外延伸至电极组件100的外部空间。导流件130的第二部分132可以起到引流的作用,使电极组件100外部空间的电解液能够沿导流件130的第二部分132,引流进入极耳160的弯折部161端部的开口内,并进而沿导流件130的第一部分131,进入电极组件100的主体部150内部。这样的设计有助于进一步提升电极组件100中电解液对活性物质的浸润效果,为电解液进入弯折部161端部的开口提供了便利。
如图8中所示,电极组件100的第一极片110和第二极片120在卷绕前,可以设置导流件130有一部分伸出超过极耳160的弯折部161。在卷绕后的卷绕结构中,导流件130伸出弯折部161的部分将构成导流件130的第二部分132,并在卷绕后的电极组件中,该第二部分132将覆盖弯折部161。
在图中所示的具体实施例中,导流件130的第二部分132可以通过模切形成。这样的实施例对于导流件130所使用的材料不做限制。在模切掉的部分,极耳160的弯折部161露出,以确保极耳160的弯折部161可以与诸如电极端子的外部构件附接。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,导流件130也可以无需模切。此时,第二部分132可以覆盖在这样的实施例中,可以将导流件130设置为部分或全部由导电材料(例如导电金属)制成,或是在导流件130的全部或部分外表面涂覆导电材料,以使诸如电极端子的外部构件能够与导流件130伸出弯折部161的第二部分132附接,并因此与极耳160的弯折部161导电连接。
在图中所示的具体实施例中,导流件130的第一部分131和第二部分132附接,并且导流件130为一体式结构。本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,当导流件130包含第一部分131和第二部分132时,导流件130也可以为多件式结构,例如可以包含至少两个导流单元130a,至少一个导流单元130a可以包括延伸到电极组件100外部空间的部分,以构成导流件130的第二部分132。
在本申请一些实施例的电极组件100中,导流件130还可以包括连接于第一部分131内端的第三部分133,该第三部分133延伸至主体部150内,即延伸至第一极片110的第一活性物质区111与第二极片120的第二活性物质区121之间。
请继续参阅附图8,并请进一步参阅附图9和图10,其中,图9和图10分别示意性地示出了根据本申请一些实施例的电极组件100的局部剖面结构,具体示出电极组 件100卷绕结构中第一极耳160a所在一端的局部剖面结构。
如图中所示,导流件130还可以包括第三部分133,第三部分133可以连接于第一部分131的内端,并向主体部150内延伸,从而延伸并间隔在第一极片110的第一活性物质区111与第二极片120的第二活性物质区121之间。
在这样的实施例中,第三部分133能够继续电解液的浸润路径,使进入弯折部161的电解液能够沿导流件130的第三部分133更容易地进入电极组件100主体部150内部,浸润第一活性物质区111和第二活性物质区121的活性物质。如此,在电池的充放电过程中,电极活性物质能够更充分地与电解液接触,并充分参与反应,有利于电池性能的进一步提升。
在图中所示的具体实施例中,第三部分133间隔在第一活性物质区111和第二活性物质区121之间的全部区域。这样的实施例对于电解液对电极组件的充分浸润是有利的。然而,本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,导流件130的第三部分133也可以仅延伸到第一活性物质区111和第二活性物质区121之间的部分区域。
需要说明的是,在本申请一些实施例的电极组件100中,导流件130的第二部分132和第三部分133并不必须同时存在。亦即,一些实施例中,导流件130可以仅包括第一部分131;一些实施例中,导流件130可以包括第一部分131和第二部分132;一些实施例中,导流件130可以包括第一部分131和第三部分133;一些实施例中,导流件130可以包括第一部分131、第二部分132和第三部分133。
电极组件100通常还包括隔离膜,隔离膜为绝缘材料,通常位于电极组件100的主体部150内,并间隔在第一极片110和第二极片120的活性物质区之间,用于绝缘隔离第一极片110和第二极片120。隔离膜通常由PP(聚丙烯)材料或PE(聚乙烯)材料制成,其内部具有微米级或纳米级的微孔,用于在电池的充放电过程中供金属离子通过。
在本申请一些实施例的电极组件100中,导流件130也可以为绝缘材料,并且在其厚度方向上也可以设有供离子通过的贯通孔。如此使得导流件130可以由与隔离膜相同的材料构成。这对于简化电极组件100的制备工艺、降低成本是尤其有利的。
请继续参阅图8和图9,在图中所示的具体实施例中,当导流件130为绝缘材料,并且在其厚度方向上设有供离子通过的贯通孔时,导流件130的第三部分133也可以起到隔离膜的作用。从而,导流件130兼具导流和隔膜的双重功能,这对于简化电极 组件100的制备工艺、降低成本是尤其有利的。
本领域技术人员应当理解,导流件130可以使用绝缘材料,例如聚丙烯(polypropylene,PP)、聚乙烯(polyethylene,PE)等,并且在其厚度方向上设有供离子通过的贯通孔的方案,并不意味着在这些实施例的电极组件100中将必然不再额外设置隔离膜。因此,电极组件100中导流件130的第三部分133可以充当隔离膜,也可以在电极组件100中另外设置隔膜140。
在本申请一些实施例的电极组件100中,电极组件100还可以包括隔膜140,隔膜140位于第一极片110的第一活性物质区111与第二极片120的第二活性物质121之间。导流件130可以附接于隔膜140,导流件130也可以与隔膜140间隔设置。
请返回参阅附图2至图4,以及附图6和图7,在图中所示的具体实施例中,电极组件110还包括隔膜140,隔膜140与导流件130间隔设置;请返回参阅图10,在图中所示的具体实施例中,电极组件110中的导流件130附接于隔膜140。在这样的实施例中,导流件130与隔膜140可以由相同的材料制成,也可以由不同的材料制成,并且导流件130的形状和结构也可以根据需要进行设计,并且不会对隔膜140造成影响,提升了导流件130以及电极组件100设计的灵活性。
在本申请一些实施例的电极组件100中,电极组件100的弯折部161端面上可以具有连接区181和引流区182,弯折部161通过连接区181与外部构件连接;弯折部161通过位于引流区182的导流件130引导电解液流入主体部150内部。
请参阅图11,示意性地示出根据本申请一些实施例的电极组件100在弯折部161端面上的几种结构。
如图中所示,为了方便电极组件100中极耳160中的弯折部161与诸如电极端子的外部构件相连接,可以在弯折部161的端面上设置连接区181,连接区181表面为导电材料,以便于电极端子的导电连接。本领域技术人员应当理解,弯折部161也可以通过转接构件与电极端子相连接,例如在连接区181弯折部161与转接构件直接焊接,转接构件与电极端子直接焊接。弯折部161端面的其余部分则可以构成引流区182,引流区182的导流件130则用于引导电机也流入主体部150内部。
由于连接区181可以不参与电解液的引流,因此位于弯折部161端面上连接区181的相邻弯折层161a端部可以为闭口结构。例如,在这些连接区181的弯折部161内可以不设置导流件130。
本领域技术人员应当理解,在其他实施例中,连接区181部分的相邻弯折层161a 端部也可以为开口结构,即在这些部分的弯折部161内也可以设置有导流件130。导流件130可以为绝缘材料,也可以为导电材料,或是表面涂覆有导电材料,从而便于连接区181与外部构件的导电连接。
本领域技术人员还应当理解,在另一些实施例中,连接区181部分的弯折部161内的导流件130也可以包括延伸到弯折部161外部空间的第二部分132。在这样的实施例中,导流件130优选为导电材料或表面涂覆导电材料,以方便与外部构件的导电连接。在一些实施例中,引流区182部分的弯折部161内的导流件130可以仅具有第一部分131,或者也可以还具有第二部分132。
如图中所示,在电极组件100为圆柱体,并且电极组件100的端面为圆形的实施例中,连接区181或引流区182可以为扇形,如图中(a)和(b)所示;或为矩形,如图中(e)所示;或为环扇形,如图中(c)和(d)所示;或为其他形状。此外,连接区181或引流区182可以各自有一个或多个区域,各个区域可以对称分布,或不对称分布。
在图中所示的一些实施例中,如图中(c)(d)和(e)所示,引流区182还可以包括中心引流区182a和/或外周引流区182b。其中,中心引流区182a位于端面的中心区域,外周引流区182b位于端面的外周区域。这样的实施例,对于导流件130还包括第三部分133,或是导流件130还充当隔离膜的情况中是尤其有利的。这是因为,通常在中心引流区182a和外周引流区182b对应的位置不具有第一极片110和/或第二极片120。在这样的位置设置导流件130和引流区182,可以使电解液能够进入电极组件100中第一极片110或第二极片120空缺的区域,使电极组件100中主体部150中的电极活性物质能够充分浸泡在电解液中,进一步提升浸润效果。
根据本申请实施例的第二方面,还提供了一种电池单体200。请参阅附图12,示意性地示出了根据本申请一些实施例的电池单体200的分解结构。
如图中所示,该电池单体200包括上述实施例的电极组件100、外壳210和端子组件220,外壳210用于容纳所述电极组件100;端子组件220设于外壳210上,用于连接极耳160a和160b,尤其是连接极耳的弯折部161,以输出或输入电能。
在图中所示的具体实施例中,电池单体200包括一个电极组件100、外壳210和设于外壳210上的端子组件220。外壳210为中空结构,用于容纳电极组件100于其内。本领域技术人员应当理解,图中所示仅为范围,在其他实施例中,电池单体200也可以包括多个电极组件100,并且端子组件200也可以根据电极组件100的数量和 布置方式进行设计。此外,根据电极组件100的形状和放置方式,以及多个电极组件100的组合方式,外壳210可以为圆柱体、扁平体、长方体或其他形状。
在一些实施例中,外壳210可以为具有开口面的中空壳体。例如,当外壳210为中空的圆柱体时,其圆形端面可以为开口面,不具有壳壁,使得在该开口面处外壳210的内外空间连通,便于从该开口处将至少一个电极组件100置于外壳210内部的中空空间;当外壳210为中空的长方体时,其一侧边可以为开口面,不具有壳壁,使得在在该开口面处外壳210的内外空间连通,便于从该开口处将至少一个电极组件100置于外壳210内部的中空空间。
在这样的实施例中,端子组件220可以设置在外壳210的开口处,并与外壳210连接并形成放置电极组件100的封闭壳体,在该封闭壳体内填充电解液。端子组件220可以包括端盖222以及设于端盖222上的端子221。端子221用于连接第一极片110和第二极片120的极耳160的弯折部161。
根据外壳210的形状以及实际需要,电池单体200的可以为圆柱体、扁平体、长方体或其他形状。电池单体200例如可以为锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,等等。
根据本申请实施例的第三方面,还提供了一种电池300,电池300包括上述实施例的电池单体200。
请参阅附图13和图14,分别示意性地示出了根据本申请一些实施例的电池300的整体结构和分解结构。
在图中所示的具体实施例中,电池300可以包括一个或多个电池单体200,多个电池单体200之间可以串联或并联或混联,以满足不同的电能使用需求。电池300还可以包括箱体310,箱体310内部中空,用于容纳一个或多个电池单体200。根据所容纳电池单体200的形状、数量、组合方式以及其他要求,箱体310也可以具有不同形状的尺寸。类似于上文有关电池单体200的外壳21的描述,电池300的箱体310可以由两部分扣合形成封闭结构。
根据本申请实施例的第四方面,还提供了一种用电装置400,该装置包括上述实施例的电池300,电池300用于为该用电装置400提供电能。请参阅附图15,示意性地示出了根据本申请一些实施例的用电装置400的结构。
在图中所示的具体实施例中,用电装置400例如可以为车辆,车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式 汽车等。在车辆的内部设置电池300,或者,在车辆的底部或车头或车尾设置电池300。该车辆可以具有马达401、控制器402和电池300,电池300用于为该车辆提供电能,并通过控制器402控制电池300为马达401供电以使马达401运转,进而驱动车辆的轮子或其他部件工作。
本领域技术人员应当理解,图中所示仅为范例,在其他实施例中,用电装置400也可以为包含电池300并由电池300提供电能的其他装置,例如手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等。航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
在其他实施例中,电池300还可以作为用电装置400的操作电源,用于用电装置400的电路系统,例如,用于汽车的启动、导航和运行时的工作用电需求;或者还可以作为用电装置400的驱动电源,替代或部分地替代燃油或天然气为用电装置提供驱动动力。
根据本申请实施例的第五方面,还提供了一种制备电极组件的方法。请参阅附图16,示意性地示出了根据本申请一些实施例用于制备电极组件的方法流程。
在图中所示的具体实施例中,制备电极组件的方法包括:
S501,提供第一极片、第二极片和导流件,第一极片与第二极片极性相反,导流件至少一部分设置于第一极片与第二极片之间;S502,将第一极片和第二极片卷绕形成卷绕结构,其中第一极片的活性物质区和第二极片的活性物质区卷绕后形成主体部,第一极片的非活性物质区或第二极片的非活性物质区卷绕后形成极耳;以及S503,将极耳至少一部分相对于主体部弯折形成弯折部,导流件至少一部分位于弯折部内,用于引导电解液流入主体部的内部。
在一些实施例中,步骤S501中,导流件可以提供为单独的部件,或是预先设置在第一极片和/或第二极片的表面上。例如,在导流件包括第三部分,并同时起到隔膜功能的情况中,可以将导流件作为单独的部件提供。并且可以根据需要,对导流件、第一极片或第二极片预先进行模切,以获得导流件、极耳的特定形状。在一些实施例中,在导流件包括至少两个导流单元的情况中,可以将导流单元预先设置在第一极片和/或第二极片的表面上。
在一些实施例中,步骤S502的卷绕操作中,卷绕结构可以为圆柱形卷绕结构、扁圆形卷绕结构,或是长方形卷绕结构。
在一些实施例中,步骤S503中的弯折操作过程中,由于导流件在弯折部内的存在,在一定程度上增大了弯折部端部的开口尺寸,使电解液能够顺利通过该开口,提升电解液对活性物质区的浸润效果。
根据本申请实施例的第六方面,还提供了一种制备电极组件的装置。请参阅附图17,示意性地示出了根据本申请一些实施例用于制备电极组件的装置的结构。
在图中所示的具体实施例中,电极组件制备装置600包括:极片放置模块601,其被配置为提供第一极片、第二极片和导流件,所述第一极片与所述第二极片极性相反,所述导流件至少一部分设置于所述第一极片与所述第二极片之间;卷绕模块602,其被配置为将所述第一极片和所述第二极片卷绕形成卷绕结构,其中所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳;以及揉平模块603,其被配置为将所述极耳至少一部分相对于所述主体部弯折形成弯折部,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种电极组件,其特征在于,包括:极性相反的第一极片和第二极片,所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳,所述极耳包括相对于所述主体部弯折设置的弯折部;
    导流件,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
  2. 如权利要求1所述的电极组件,其特征在于,所述导流件和/或所述弯折部设有至少一个第一导流通道,所述第一导流通道的一端与所述电极组件的外部空间连通,另一端与所述主体部的内部连通,所述导流件通过所述第一导流通道引导电解液流入所述主体部的内部。
  3. 如权利要求1或2所述的电极组件,其特征在于,所述导流件包括至少两个导流单元,相邻的两个所述导流单元之间形成第二导流通道,所述导流件通过所述第二导流通道引导电解液流入所述主体部的内部。
  4. 如权利要求1至3任一项所述的电极组件,其特征在于,所述导流件包括第一部分和第二部分,所述第一部分位于所述弯折部内,所述第二部分连接于所述第一部分的外端,并且延伸至所述电极组件的外部空间。
  5. 如权利要求4所述的电极组件,其特征在于,所述导流件还包括第三部分,所述第三部分连接于所述第一部分的内端,并且延伸至所述第一极片的活性物质区和第二极片的活性物质区之间。
  6. 如权利要求1至5任一项所述的电极组件,其特征在于,所述导流件为绝缘材料,并且在其厚度方向上设有供离子通过的贯通孔。
  7. 如权利要求1至6任一项所述的电极组件,其特征在于,所述电极组件还包括隔膜,所述隔膜位于所述第一极片的活性物质区和第二极片的活性物质区之间,
    所述导流件附接于所述隔膜,或者所述导流件与所述隔膜间隔设置。
  8. 如权利要求1至7任一项所述的电极组件,其特征在于,所述弯折部的端面具有引流区和连接区,所述弯折部通过所述连接区与外部构件连接,所述弯折部通过位于所述引流区的所述导流件引导电解液流入所述主体部的内部。
  9. 一种电池单体,其特征在于,包括:
    如权利要求1至8中任意一项所述的电极组件;
    外壳,所述外壳用于容纳所述电极组件;
    端子组件,设于所述外壳,所述端子组件用于连接所述弯折部,以输出或输入电能。
  10. 一种电池,其特征在于,包括如权利要求9所述的电池单体。
  11. 一种用电装置,其特征在于,包括如权利要求10所述的电池,所述电池用于提供电能。
  12. 一种制备电极组件的方法,其特征在于,包括:
    提供第一极片、第二极片和导流件,所述第一极片与所述第二极片极性相反,所述导流件至少一部分设置于所述第一极片与所述第二极片之间;
    将所述第一极片和所述第二极片卷绕形成卷绕结构,其中所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳;以及
    将所述极耳至少一部分相对于所述主体部弯折形成弯折部,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
  13. 一种制备电极组件的装置,其特征在于,包括:
    极片放置模块,被配置为提供第一极片、第二极片和导流件,所述第一极片与所述第二极片极性相反,所述导流件至少一部分设置于所述第一极片与所述第二极片之间;
    卷绕模块,被配置为将所述第一极片和所述第二极片卷绕形成卷绕结构,其中所述第一极片的活性物质区和所述第二极片的活性物质区卷绕后形成主体部,所述第一极片的非活性物质区或所述第二极片的非活性物质区卷绕后形成极耳;以及
    揉平模块,被配置为将所述极耳至少一部分相对于所述主体部弯折形成弯折部,所述导流件至少一部分位于所述弯折部内,用于引导电解液流入所述主体部的内部。
PCT/CN2021/076292 2021-02-09 2021-02-09 电极组件及其相关电池、装置、制造方法和制造装置 WO2022170494A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/076292 WO2022170494A1 (zh) 2021-02-09 2021-02-09 电极组件及其相关电池、装置、制造方法和制造装置
CN202180055224.0A CN116325273A (zh) 2021-02-09 2021-02-09 电极组件及其相关电池、装置、制造方法和制造装置
EP21918119.5A EP4095970B1 (en) 2021-02-09 2021-02-09 Electrode assembly and related battery, apparatus, manufacturing method, and manufacturing apparatus
US17/817,998 US20220384918A1 (en) 2021-02-09 2022-08-08 Electrode assembly and related battery, device, manufacturing method, and manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076292 WO2022170494A1 (zh) 2021-02-09 2021-02-09 电极组件及其相关电池、装置、制造方法和制造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/817,998 Continuation US20220384918A1 (en) 2021-02-09 2022-08-08 Electrode assembly and related battery, device, manufacturing method, and manufacturing device

Publications (1)

Publication Number Publication Date
WO2022170494A1 true WO2022170494A1 (zh) 2022-08-18

Family

ID=82838095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076292 WO2022170494A1 (zh) 2021-02-09 2021-02-09 电极组件及其相关电池、装置、制造方法和制造装置

Country Status (4)

Country Link
US (1) US20220384918A1 (zh)
EP (1) EP4095970B1 (zh)
CN (1) CN116325273A (zh)
WO (1) WO2022170494A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207967188U (zh) * 2018-03-16 2018-10-12 宁德时代新能源科技股份有限公司 电池
CN208256786U (zh) * 2018-03-16 2018-12-18 宁德时代新能源科技股份有限公司 电池
JP2019096392A (ja) * 2017-11-17 2019-06-20 株式会社豊田自動織機 バイポーラ電池の製造方法
CN209675429U (zh) * 2019-05-21 2019-11-22 宁德时代新能源科技股份有限公司 一种二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102459618B1 (ko) * 2015-09-23 2022-10-27 삼성에스디아이 주식회사 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019096392A (ja) * 2017-11-17 2019-06-20 株式会社豊田自動織機 バイポーラ電池の製造方法
CN207967188U (zh) * 2018-03-16 2018-10-12 宁德时代新能源科技股份有限公司 电池
CN208256786U (zh) * 2018-03-16 2018-12-18 宁德时代新能源科技股份有限公司 电池
CN209675429U (zh) * 2019-05-21 2019-11-22 宁德时代新能源科技股份有限公司 一种二次电池

Also Published As

Publication number Publication date
CN116325273A (zh) 2023-06-23
US20220384918A1 (en) 2022-12-01
EP4095970A1 (en) 2022-11-30
EP4095970B1 (en) 2024-05-08
EP4095970A4 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
CN216213945U (zh) 电池单体、电池和用电装置
WO2023092449A1 (zh) 电池单体及其制造方法和装置、用电装置
WO2023186034A1 (zh) 端盖、电池单体、电池及用电设备
US20230411756A1 (en) Battery, electric device, and method and device for manufacturing battery
US20230395869A1 (en) Electrode assembly and manufacturing method and device, battery cell, battery, electric device
WO2023185251A1 (zh) 电极组件、电池单体、电池及用电装置
CN219123419U (zh) 电池单体、电池以及用电装置
WO2022170494A1 (zh) 电极组件及其相关电池、装置、制造方法和制造装置
WO2023141840A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022160296A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
CN115939683A (zh) 电池单体、电池及用电装置
WO2023092529A1 (zh) 外壳及其制备方法和系统、电池单体、电池、用电装置
CN219040578U (zh) 电池单体、电池及用电装置
WO2023082192A1 (zh) 电池单体、电池、用电装置、制备电池的方法和装置
WO2023133848A1 (zh) 电池、用电设备、电池的制造方法及设备
WO2023155210A1 (zh) 电池、用电设备、制备电池的方法和设备
CN219658741U (zh) 集流体、电池单体、电池及用电装置
WO2023092300A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2023092502A1 (zh) 电池单体、电池、用电设备及电池单体的制备方法和设备
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023133847A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023092338A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021918119

Country of ref document: EP

Effective date: 20220827

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918119

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE