WO2023185251A1 - 电极组件、电池单体、电池及用电装置 - Google Patents

电极组件、电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023185251A1
WO2023185251A1 PCT/CN2023/074509 CN2023074509W WO2023185251A1 WO 2023185251 A1 WO2023185251 A1 WO 2023185251A1 CN 2023074509 W CN2023074509 W CN 2023074509W WO 2023185251 A1 WO2023185251 A1 WO 2023185251A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
structures
surface area
height
electrode assembly
Prior art date
Application number
PCT/CN2023/074509
Other languages
English (en)
French (fr)
Inventor
许虎
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023185251A1 publication Critical patent/WO2023185251A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to the field of battery technology, and in particular, to an electrode assembly, a battery cell, a battery and an electrical device.
  • Rechargeable battery cells which can be called secondary battery cells, refer to battery cells that can be activated by charging to activate active materials and continue to be used after the battery cells are discharged.
  • Rechargeable battery cells are widely used in electronic devices, such as mobile phones, laptops, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes, and electric tools.
  • the electrode assembly can be formed by winding positive and negative electrode sheets. Wound-type electrode assemblies have problems such as lithium precipitation or poor electrolyte wettability that affect safety performance or cycle performance.
  • an electrode assembly including: a first pole piece, a second pole piece, and a separator disposed between the first pole piece and the second pole piece, the first pole The sheet, the separator and the second pole piece are rolled along the winding direction to form a rolled structure; wherein at least one of the first pole piece and the second pole piece is adjacent to the third pole piece on one side of the separator.
  • a surface includes a first surface area, a second surface area and a third surface area divided along the winding direction, and the first surface area, the second surface area and the third surface area are in the winding direction.
  • the second surface area has a plurality of discretely distributed second protruding structures
  • the first surface area does not have a protruding structure or has a plurality of discretely distributed first protruding structures
  • the third surface area does not have a protrusion structure or has a plurality of discretely distributed third protrusion structures
  • the protrusion height h1 of the plurality of first protrusion structures and/or the plurality of third protrusions The raised height h3 of the structure is smaller than or greater than the raised height h2 of the plurality of second raised structures.
  • the pole piece will expand during use of the battery, and the pole piece will be separated by the side adjacent to the separator.
  • the distributed convex structure supports the diaphragm and forms a buffer gap between the pole piece and the diaphragm, so as to provide space for the expansion of the pole piece and avoid the formation of a large area of close contact between the pole piece and the diaphragm when the pole piece expands, causing lithium precipitation, and through the convex
  • the buffer gap between the structure and the separator retains the electrolyte to ensure the infiltration effect of the electrolyte in the winding structure, thereby fully reacting with the active material on the pole piece during the battery charge and discharge process, and optimizing the cycle performance of the battery.
  • the first surface area and the third surface area are provided with the second protruding structure.
  • the three-surface area is not provided with a protruding structure or is provided with a protruding structure with a protruding height smaller than or greater than the protruding height of the second protruding structure, so as to achieve a stronger force for different areas after the winding structure is rolled.
  • Adaptability in which a higher protruding structure is used to provide sufficient expansion space and a flow channel for electrolyte infiltration and suction in the area with a large expansion force, and in the area with a small expansion force, the protruding structure is not provided or a relatively large structure is provided.
  • the low protruding structure can save processing technology or reduce process difficulty, or reduce the processing of the pole piece to ensure the strength and stiffness performance of the pole piece.
  • the protruding height h1 of the plurality of first protruding structures and the protruding height h3 of the plurality of third protruding structures are both smaller than or greater than that of the plurality of second protruding structures.
  • the expansion force of the inner first surface area and the outer third surface area of the pole piece along the winding direction is lower than that of the central third surface area when the pole piece expands. Therefore, by setting the protrusion height of the first protrusion structure and the protrusion height of the third protrusion structure to be smaller than the protrusion height of the second protrusion structure, the first surface area and the third surface area can be reduced. The impact of the pole piece processing technology that realizes the convex structure in the region on the strength or stiffness of the pole piece itself.
  • the expansion force of the inner first surface area and the outer third surface area of the pole piece along the winding direction is higher than that of the central second surface area when the pole piece expands. Therefore, by setting the protrusion height of the first protrusion structure and the protrusion height of the third protrusion structure to be greater than the protrusion height of the second protrusion structure, the second surface area can be reduced to achieve pole piece processing of the protrusion structure. The influence of the process on the strength or stiffness of the pole piece itself.
  • the protrusion height h1 of the plurality of first protrusion structures is substantially equal to the protrusion height h3 of the plurality of third protrusion structures.
  • the first protruding structure and the third protruding structure can be realized through the same processing process and basically the same processing parameters during processing of the pole piece, thereby reducing processing process to reduce processing difficulty.
  • the protrusion height h1 of the plurality of first protrusion structures is greater than the protrusion height h3 of the plurality of third protrusion structures.
  • the inner first surface area of the pole piece along the winding direction expands when the pole piece expands.
  • the expansion force is greater than the expansion force of the outer second surface area when the pole piece expands.
  • the protrusion height h1 of the plurality of first protrusion structures is less than the protrusion height h3 of the plurality of third protrusion structures.
  • the expansion force of the inner first surface area of the pole piece along the winding direction when the pole piece expands is smaller than the expansion force of the outer second surface area when the pole piece expands.
  • the protruding height h1 of the plurality of first protruding structures is greater than the protruding height h2 of the plurality of second protruding structures, and the protruding height h3 of the plurality of third protruding structures is It is smaller than the protrusion height h2 of the plurality of second protrusion structures.
  • Some battery winding structures need to be flattened after winding.
  • the first surface area of the pole piece inward along the winding direction will cause a concentration of expansion force when the pole piece expands. situation, and the expansion force of the outer third surface area is smaller relative to both the first surface area and the second surface area, so by making the protrusion height of the first protrusion structure larger than the protrusion of the second protrusion structure
  • the height of the third protruding structure is smaller than that of the second protruding structure, so that the expansion force in different areas can obtain sufficient buffer space, reduce the lithium deposition phenomenon, and improve the electrolyte infiltration effect.
  • the protruding height h1 of the plurality of first protruding structures is less than the protruding height h2 of the plurality of second protruding structures, and the protruding height h3 of the plurality of third protruding structures is is greater than the protrusion height h2 of the plurality of second protrusion structures.
  • the protrusion height h2 of the plurality of second protrusion structures gradually increases or decreases along the winding direction.
  • the expansion force of different winding structures in this surface area also has a changing trend.
  • the second protrusion can be The convex height of the structure is adapted to the expansion force; for a rolled structure in which the expansion force gradually decreases from the inside to the outside of the second surface area, by making the convex height h2 of the second convex structure along the rolling direction Gradually decreasing can make the protrusion height of the second protrusion structure adapt to the expansion force, so that the expansion force at different positions can obtain sufficient buffer space, reduce the lithium precipitation phenomenon, and improve the electrolyte infiltration effect.
  • the protrusion height h1 of the plurality of first protrusion structures and/or the protrusion height h3 of the plurality of third protrusion structures gradually increases or gradually decreases along the winding direction. .
  • the expansion force of different winding structures in this surface area also has a changing trend.
  • the convex height of the first convex structure And/or the protrusion height of the third protrusion structure gradually increases or decreases correspondingly along the winding direction, so that the protrusion height of the first protrusion structure and/or the third protrusion structure can adapt to the expansion force.
  • the expansion force at different positions can obtain sufficient buffer space, reduce the phenomenon of lithium precipitation, and improve the electrolyte infiltration effect.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 30 ⁇ m. Using a protrusion height with a difference of less than or equal to 30 ⁇ m can reduce the process difficulty of the shaped protrusion structure and reduce the processing cost.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 20 ⁇ m. Using a protrusion height with a difference of less than or equal to 20 ⁇ m can balance the process difficulty of reducing the shape of the protrusion structure and the consistency of the formed expansion buffer space and the flow channel for electrolyte infiltration and suction.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 10 ⁇ m. Using a protrusion height with a difference of less than or equal to 10 ⁇ m can make the expansion buffer space formed by the protrusion structure and the flow channel for electrolyte infiltration and suction more uniform, thereby improving battery performance.
  • the winding structure is a hollow cylindrical structure or a square structure.
  • the setting or non-setting of protruding structures in different surface areas as mentioned above, as well as the relationship between the protruding heights of the protruding structures, etc., hollow cylindrical structures or square structures can be adaptively adopted to improve battery performance.
  • the first surface area is a portion of the first surface from the innermost end of the roll structure to a dividing position of the mth layer of the roll structure
  • the second surface area It is the part of the first surface from the dividing position of the m-th layer of the winding structure to the dividing position of the n-th layer of the winding structure
  • the third surface area is the part of the first surface from the dividing position of the n-th layer of the winding structure.
  • the shapes of the plurality of first protruding structures and/or the shapes of the plurality of third protruding structures are different from the shapes of the plurality of second protruding structures.
  • the adaptability of the winding structure is further increased through the shape difference of the protrusion structure in different surface areas, and the battery performance is improved.
  • the second surface area includes divided into at least two surface sections in a direction perpendicular to the winding direction, and the plurality of second protruding structures are located on the at least two surface sections. part of the surface area.
  • the second protruding structure By dividing the second surface area in a direction perpendicular to the winding direction to include at least two surface sections, and then disposing the second protruding structure in part of the surface sections, the second protruding structure is provided with
  • the surface section obtains a large expansion buffer space and electrolyte flow channel, thereby overcoming the phenomenon of local lithium precipitation in these surface sections due to large local expansion force or poor electrolyte flow during battery use.
  • the at least two surface sections include three surface sections, and the plurality of second raised structures are located in a surface section centered among the three surface sections.
  • the expansion force is mainly concentrated in the middle part in the direction perpendicular to the winding direction.
  • the expansion force in the middle part can be improved. Expand the buffer space to eliminate the phenomenon of lithium precipitation in the middle of the winding structure.
  • the at least two surface sections include five surface sections, and the plurality of second protruding structures are respectively located in three surface sections at both ends and in the middle of the five surface sections. within the paragraph.
  • a second surface of at least one of the first pole piece and the second pole piece on a side remote from the diaphragm has a surface corresponding to at least a portion of each of the plurality of second protruding structures.
  • the second protruding structure faces the second concave portion.
  • a convex structure with one side concave and the other side convex can be formed by stamping or extruding the flat plate pole piece.
  • a second surface of at least one of the first pole piece and the second pole piece on a side remote from the diaphragm has a surface corresponding to at least a portion of each of the plurality of first protruding structures.
  • a convex structure with one side concave and the other side convex can be formed by stamping or extruding the flat-plate pole piece, and accordingly there is a first concave portion on the back side opposite the first convex structure, and/ Or there is a third recess on the back side opposite the third protruding structure.
  • the formation process of this structure is relatively low, which is conducive to centralized processing in a large range, improves processing efficiency, and reduces processing costs.
  • each second raised structure in at least a portion of the plurality of second raised structures is a polymer particle attached to or formed on the second surface region.
  • each first raised structure in at least a portion of the plurality of first raised structures is a polymer particle attached to or formed on the first surface area, and/or the plurality of first raised structures
  • Each of at least a portion of the third raised structures is a polymer particle attached to or formed on the third surface region.
  • the impact of processes such as stamping or extrusion can be reduced.
  • the influence of parameters such as the strength or stiffness of the pole piece itself.
  • a battery cell including the aforementioned electrode assembly. Battery cells using the aforementioned electrode components have better performance.
  • a battery including the aforementioned battery cell. Batteries using the aforementioned battery cells have better performance.
  • an electrical device including the aforementioned battery. Electrical devices using the aforementioned batteries have better performance.
  • Figure 1 is a schematic structural diagram of some embodiments of an electrical device according to the present disclosure
  • Figure 2 is an exploded structural schematic diagram of some embodiments of a battery according to the present disclosure
  • Figure 3 is a structural schematic diagram of a wound structure formed according to some embodiments of the electrode assembly of the present disclosure
  • Figure 4 is an exploded structural diagram of another embodiment of a battery according to the present disclosure.
  • Figure 5 is a schematic structural diagram of a wound structure formed according to other embodiments of the electrode assembly of the present disclosure.
  • Figure 6 is a schematic diagram of the electrode assembly according to some embodiments of the present disclosure, in which the pole piece is provided with a second surface area with a second protruding structure, and the first surface area and the third surface area do not have a protruding structure;
  • Figure 7 shows an electrode assembly according to some embodiments of the present disclosure, in which the electrode piece is provided with a first surface area, a second surface area and a third surface area respectively having a first protruding structure, a second protruding structure and a third protruding structure.
  • FIGS 8-13 are respectively schematic diagrams of protrusion heights of the first protrusion structure, the second protrusion structure and the third protrusion structure in some embodiments of the electrode assembly according to the present disclosure
  • Figure 14 is a schematic diagram of the electrode assembly according to some embodiments of the present disclosure, in which the pole piece is provided with a first surface area, a second surface area and a third surface area respectively provided with polymer particles;
  • Figures 15 and 16 are respectively schematic diagrams showing that the pole piece is provided with a second surface area with a second protruding structure, and the first surface area and the third surface area do not have a protruding structure according to other embodiments of the electrode assembly of the present disclosure;
  • Figure 17 shows another embodiment of the electrode assembly according to the present disclosure, in which the electrode piece is provided with a first surface area, a second surface area and a third surface area respectively having a first protrusion structure, a second protrusion structure and a third protrusion.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a removable connection.
  • the electrode assembly is formed by winding positive and negative electrode sheets.
  • the inventor's research found that the rolled electrode assembly expands during the battery charging process, and the expansion force is concentrated in some parts of the rolled structure, resulting in a lack of gaps in these parts, causing the electrolyte to be squeezed out and reducing the Wetting properties.
  • Some related technologies can form a gap between the pole piece and the diaphragm by arranging concave and convex patterns on the pole pieces in a square winding structure to provide expansion buffer space.
  • this type of winding structure lacks applicability and is difficult to apply to other structural forms. winding structure.
  • the setting of the concave and convex patterns does not take into account the characteristics of different parts of the electrode assembly, so it cannot effectively take into account battery performance and processing technology.
  • embodiments of the present disclosure provide an electrode assembly, a battery cell, a battery and a power device, which can improve battery performance and improve adaptability.
  • the electrode assembly of the embodiment of the present disclosure can be applied to various types of battery cells.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of the present disclosure.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into cylindrical battery cells, prismatic battery cells and soft-pack battery cells according to the way of packaging, and the embodiments of the present application are not limited to this.
  • the battery cells of the embodiments of the present disclosure can be applied to various types of batteries. Batteries can be used to power electrical equipment such as vehicles, such as providing power for vehicle control or power for driving.
  • the battery may include a casing and a battery module.
  • the casing is used to provide a receiving space for the battery module.
  • the battery module is installed in the casing.
  • the shell can be made of metal.
  • the battery module may include multiple battery cells connected in series, parallel or mixed.
  • the battery cell is the smallest unit that makes up the battery. Battery cells include electrode components that enable electrochemical reactions to occur.
  • the battery according to the embodiment of the present disclosure can be applied to various types of electrical devices using batteries.
  • Electric devices can be mobile phones, portable devices, laptops, battery cars, electric cars, ships, spacecraft, electric toys and power tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • electric toys include Fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • Power tools include metal cutting power tools, grinding power tools, assembly power tools and railway power tools, such as , electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators and electric planers.
  • the embodiments of the present invention do not impose special restrictions on the above-mentioned electrical devices.
  • FIG. 1 is a schematic structural diagram of some embodiments of an electrical device according to the present disclosure.
  • the description takes the electrical device as a vehicle as an example.
  • a battery 50 is disposed inside a vehicle 60 , and the battery 50 is disposed at the bottom, head, or tail of the vehicle.
  • the battery 50 provides power to the vehicle, for example, the battery 50 serves as the vehicle's operating power source.
  • the battery 50 can be used as a power source for new energy vehicles, ships, smart electrical cabinets and other devices.
  • the battery 50 can also be used as a power supply component to provide required electrical energy to various electrical components of the device.
  • Figure 2 is an exploded structural schematic diagram of some embodiments of a battery according to the present disclosure.
  • 3 is a structural schematic diagram of a wound structure formed according to some embodiments of an electrode assembly of the present disclosure.
  • 4 is a schematic exploded view of another embodiment of a battery according to the present disclosure.
  • FIG. 5 is a schematic structural diagram of a wound structure formed according to other embodiments of the electrode assembly of the present disclosure.
  • the battery 50 includes a case 51, a cover 52, and one or more battery cells 10 or 10' disposed in the case 51.
  • Each battery cell is electrically connected, such as in series, parallel or mixed connection, to achieve the required electrical performance parameters of the battery 50 .
  • Multiple battery cells are arranged in rows, and one or more rows of battery cells can be installed in the box as needed.
  • Electrode terminals 521 electrically connected to the anode and cathode of the battery cell may be provided on the cover 52 .
  • the battery cells of the battery 50 may be arranged along at least one of the length direction and the width direction of the box. At least one row or column of battery cells can be set according to actual needs. According to needs, one or more layers of battery cells can also be provided in the height direction of the battery 50 .
  • multiple battery cells may be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules may be connected in series, parallel, or mixed to form a whole, and be accommodated in the box 51 .
  • all the battery cells are directly connected in series or in parallel or mixed together, and then the whole of the battery cells is accommodated in the box.
  • the battery cell 10 or 10' may include a case, an end cap, and an electrode assembly.
  • the housing has a cavity for accommodating the electrode assembly, and an end of the housing may be configured to be open for disposing an end cap assembly.
  • the electrode assembly is installed in the cavity of the housing.
  • the battery cell 10 or 10' includes an electrolyte in addition to an electrode assembly, an end cap, and a case.
  • the electrode assembly includes: a first pole piece 10A, a second pole piece 10B, and a separator disposed between the first pole piece 10A and the second pole piece 10B. 10C.
  • the first pole piece 10A, the separator 10C and the second pole piece 10B are wound along the winding direction r to form a wound structure.
  • the rolled structure 100 shown in FIG. 3 is pressed into a square structure after rolling, which has a central flat portion and corner portions located on the left and right sides of the flat portion.
  • the casing used for the battery cell including the electrode assembly is a square shell structure.
  • the winding structure 100' shown in Figure 5 forms a hollow cylindrical structure after winding.
  • the casing adopted by the battery cell including the electrode assembly is a cylindrical casing structure.
  • the battery cell 10 or 10' mainly relies on the movement of metal ions between the positive and negative electrode plates.
  • the material of the diaphragm 10C may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), or the like.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer. Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon. In order to ensure that large currents can pass through without melting, the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • FIG. 6 is a schematic diagram of the electrode assembly according to some embodiments of the present disclosure, in which the electrode piece is provided with a second surface area with a second protruding structure, and a first surface area and a third surface area without a protruding structure.
  • Figure 7 shows an electrode assembly according to some embodiments of the present disclosure, in which the electrode piece is provided with a first surface area, a second surface area and a third surface area respectively having a first protruding structure, a second protruding structure and a third protruding structure.
  • schematic diagram. 8-13 are schematic diagrams of protrusion heights of the first protrusion structure, the second protrusion structure, and the third protrusion structure in some embodiments of the electrode assembly according to the present disclosure, respectively.
  • At least one first surface of the first pole piece 10A and the second pole piece 10B adjacent to the side of the separator 10C includes divisions along the winding direction.
  • the lengths of the first surface area 21 , the second surface area 22 and the third surface area 23 in the winding direction are all greater than 0.
  • the second surface area 22 has a plurality of discretely distributed second protruding structures 32 .
  • the diaphragm is supported by discretely distributed convex structures on the side of the pole piece adjacent to the separator to form a buffer gap between the pole pieces and the separator to provide space for the expansion of the pole pieces and avoid polarization.
  • the sheet expands, it forms a large area of close contact with the separator, causing lithium precipitation.
  • the electrolyte is retained through the buffer gap between the convex structure and the separator to ensure the infiltration effect of the electrolyte in the winding structure, thereby ensuring the battery is fully charged. During the discharge process, it fully reacts with the active material on the pole piece to optimize the cycle performance of the battery.
  • neither the first surface area 21 nor the third surface area 23 has a protruding structure.
  • the higher convex structure provides sufficient expansion space and electrolyte infiltration and absorption for the areas with larger expansion force.
  • the flow channel is not provided with a protruding structure in the area where the expansion force is small to save processing technology or reduce process difficulty, or reduce the processing of the pole piece to ensure the strength and stiffness performance of the pole piece.
  • the first surface area 21 has a plurality of discretely distributed first protrusion structures 31
  • the third surface area 23 has a plurality of discretely distributed third protrusion structures 33 .
  • one of the first surface area 21 and the third surface area 23 is not provided with a protruding structure, and the other is provided with a protruding structure.
  • the convex structure can support the diaphragm and form a buffer gap between the pole piece and the diaphragm to allow the pole piece to expand.
  • the expansion provides space to prevent the electrode piece from forming a large area of contact with the separator when it expands, causing lithium precipitation, and retains the electrolyte through the buffer gap between the convex structure and the separator to ensure the infiltration of the electrolyte in the winding structure
  • the effect can fully react with the active material on the pole piece during the battery charging and discharging process, optimizing the cycle performance of the battery.
  • the pole piece includes a current collector base material 11 and an active material layer 12 provided on one side surface or opposite both sides of the current collector base material 11 .
  • At least part of the plurality of first protruding structures 31 , the plurality of second protruding structures 32 and the plurality of third protruding structures 33 may be formed by processing processes such as stamping or extrusion of the pole piece.
  • At least one second surface of the first pole piece 10A and the second pole piece 10B on the side away from the diaphragm 10C has a structure similar to that of the plurality of second pole pieces 10C. At least a portion of each second raised structure 32 faces a second recess 42 .
  • a convex structure with one side concave and the other side convex can be formed by stamping or extruding the flat plate pole piece.
  • This kind of The difficulty of the structure formation process is relatively low, which is conducive to large-scale centralized processing, improves processing efficiency, and reduces processing costs.
  • the second concave portion can also maintain the electrolyte and improve the electrolyte wetting performance.
  • At least one second surface of the first pole piece 10A and the second pole piece 10B on the side away from the diaphragm 10C has a structure corresponding to the plurality of first protrusions.
  • Each first protruding structure 31 in at least a portion of 31 is opposite to the first recess 41 and/or is opposite to each third protruding structure 33 in at least a portion of the plurality of third protruding structures 33 The third recess 43.
  • a convex structure with one side concave and the other side convex can be formed by stamping or extruding the flat-plate pole piece, and accordingly there is a first concave portion on the back side opposite the first convex structure, and/ Or there is a third recess on the back side opposite the third protruding structure.
  • the formation process of this structure is relatively low, which is conducive to centralized processing in a large range, improves processing efficiency, and reduces processing costs.
  • the first recessed portion and the third recessed portion can also maintain the electrolyte and improve the electrolyte wetting performance.
  • the protrusion height h1 of the plurality of first protrusion structures 31 and/or the protrusion height h3 of the plurality of third protrusion structures 33 is less than or greater than The protrusion height h2 of the plurality of second protrusion structures 32.
  • the higher convex structure provides sufficient expansion space and electrolyte infiltration and absorption for the areas with larger expansion force.
  • the pole pieces are processed to ensure the strength and stiffness of the pole pieces.
  • FIG. 8-13 illustrate the protrusion heights of the first, second and third protrusion structures in some embodiments of the disclosed electrode assembly.
  • from left to right corresponds to the winding direction of the pole piece.
  • the dots corresponding to the plurality of first protrusion structures 31, the plurality of second protrusion structures 32 and the plurality of third protrusion structures 33 arranged in the winding direction represent the protrusion heights h1, h2 and h3 respectively.
  • the protrusion height here meets a certain range R due to the accuracy of the machining process. Depending on factors such as processing difficulty and cost, consistency requirements of convex height, etc., the appropriate range R can be selected.
  • the range R is the difference between the maximum and minimum values of the convex height.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 30 ⁇ m. Using a protrusion height with a difference of less than or equal to 30 ⁇ m can reduce the process difficulty of the shaped protrusion structure and reduce the processing cost.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 20 ⁇ m. Using a protrusion height with a difference of less than or equal to 20 ⁇ m can balance the process difficulty of reducing the shape of the protrusion structure and the consistency of the formed expansion buffer space and the flow channel for electrolyte infiltration and suction.
  • the protrusion height h1 of the plurality of first protrusion structures, the protrusion height h2 of the plurality of second protrusion structures, and/or the protrusions of the plurality of third protrusion structures are The range of height h3 is less than or equal to 10 ⁇ m. Using a protrusion height with a difference of less than or equal to 10 ⁇ m can make the expansion buffer space formed by the protrusion structure and the flow channel for electrolyte infiltration and suction more uniform, thereby improving battery performance.
  • the protrusion height h1 of the plurality of first protrusion structures 31 and the protrusion height h3 of the plurality of third protrusion structures 33 are both less than The protrusion height h2 of the plurality of second protrusion structures 32.
  • the first surface area of the pole piece is inward along the winding direction. When the pole piece expands, the expansion force of the outer second surface area and the outer second surface area is lower than that of the central second surface area.
  • the protrusion height h1 of the plurality of first protrusion structures 31 and the protrusion height h3 of the plurality of third protrusion structures 33 are both greater than the protrusion height h3 of the plurality of second protrusions.
  • the protruding height h2 of the raised structure 32 In the winding structure of some batteries, the expansion force of the inner first surface area and the outer second surface area of the pole piece along the winding direction is higher than that of the central second surface area when the pole piece expands.
  • the second surface area can be reduced to realize the pole piece processing process of the protrusion structure.
  • the influence of properties such as the strength or stiffness of the pole piece itself.
  • the protrusion height h1 of the plurality of first protrusion structures 31 is equal to The protrusion heights h3 of the plurality of third protrusion structures 33 are substantially equal.
  • the basic equality here means that the designed protrusion height h1 and protrusion height h3 are equal.
  • the actual protrusion height h1 on the pole piece is approximately equal to the protrusion height h3.
  • the protrusion height h1 of the plurality of first protrusion structures 31 is greater than the protrusion height h3 of the plurality of third protrusion structures 33 .
  • the expansion force of the inner first surface area of the pole piece along the winding direction when the pole piece expands is greater than the expansion force of the outer second surface area when the pole piece expands.
  • the protrusion height h1 of the plurality of first protrusion structures 31 is smaller than the protrusion height h3 of the plurality of third protrusion structures 33 .
  • the expansion force of the inner first surface area of the pole piece along the winding direction when the pole piece expands is smaller than the expansion force of the outer second surface area when the pole piece expands.
  • the protrusion height h1 of the plurality of first protrusion structures 31 and the The protrusion height h3 of the plurality of third protrusion structures 33 may also be greater than the protrusion height h2 of the plurality of second protrusion structures 32 .
  • the protrusion height h1 of the plurality of first protrusion structures 31 is greater than the protrusion height h2 of the plurality of second protrusion structures 32, and the protrusion height h2 of the plurality of third protrusions
  • the protruding height h3 of the structure 33 is smaller than the protruding height h2 of the plurality of second protruding structures 32 .
  • this winding structure needs to be flattened after winding, and when the winding structure is flattened, the pole piece is rolled along the The expansion force of the inner first surface area in the circumferential direction will be concentrated when the pole piece expands, while the expansion force of the outer third surface area is smaller relative to both the first surface area and the second surface area, so by Make the convex height of the first convex structure greater than the convex height of the second convex structure, and make the convex height of the third convex structure smaller than the convex height of the second convex structure, thereby increasing the expansion force in different areas. It can obtain sufficient buffer space, reduce the phenomenon of lithium precipitation, and improve the electrolyte infiltration effect.
  • the protrusion height h1 of the plurality of first protrusion structures 31 is less than the The protrusion height h2 of the plurality of second protrusion structures 32 and the protrusion height h3 of the plurality of third protrusion structures 33 are greater than the protrusion height h2 of the plurality of second protrusion structures 32 .
  • the expansion force on the outside of the winding structure is concentrated when the pole piece expands, while the internal hollow expansion force is smaller.
  • the protrusion height of the third protrusion structure is greater than the protrusion height of the second protrusion structure, so that the expansion force in different areas can obtain sufficient buffer space, reduce the lithium precipitation phenomenon, and improve the electrolyte infiltration Effect.
  • the protrusion heights of the multiple protrusion structures in each surface area can be substantially equal, which is beneficial to the consistency of processing of the protrusion structures in different surface areas and reduces processing difficulty and cost.
  • the plurality of raised structures in each surface area can also vary along the winding direction.
  • the protrusion height h2 of the plurality of second protrusion structures 32 gradually increases or decreases along the winding direction.
  • the expansion force of different winding structures in this surface area also has a changing trend.
  • the protrusion height h2 of the second protrusion structure can be adapted to the expansion force; for the second surface area, from the inner
  • the protrusion height h2 of the second protrusion structure can be made consistent with the expansion force. Therefore, the expansion force at different positions can obtain sufficient buffer space, reduce the phenomenon of lithium precipitation, and improve the electrolyte infiltration effect.
  • the protrusion height h1 of the plurality of first protrusion structures 31 and/or the protrusion height h3 of the plurality of third protrusion structures 33 are formed along the roll.
  • the winding direction gradually increases or decreases.
  • the expansion force of different winding structures in this surface area also has a changing trend.
  • the convex height of the first convex structure And/or the protrusion height of the third protrusion structure gradually increases or decreases correspondingly along the winding direction, so that the protrusion height of the first protrusion structure and/or the third protrusion structure can adapt to the expansion force. , so that the expansion force at different positions can obtain sufficient buffer space, reduce the phenomenon of lithium precipitation, and improve the electrolyte infiltration effect.
  • the protrusion height h1 of the plurality of first protrusion structures 31 , the protrusion height h2 of the plurality of second protrusion structures 32 and the protrusion height h3 of the plurality of third protrusion structures 33 are all along the The winding direction gradually decreases.
  • This design can accommodate the tendency of the rolled structure to gradually reduce the expansion force present in each surface area.
  • the protrusion height h1 of the plurality of first protrusion structures 31 , the protrusion height h2 of the plurality of second protrusion structures 32 and the protrusion height h3 of the plurality of third protrusion structures 33 are all along the The winding direction gradually increases. This design can accommodate the tendency of the rolled structure to gradually increase in expansion forces present in all surface areas.
  • the first surface area 21 is the first surface from the innermost end 2s of the roll structure 100 or 100' to the mth layer of the roll structure 100 or 100'.
  • the part of the dividing position 2m, the second surface area 22 is the first surface from the dividing position 2m of the mth layer of the rolling structure 100 or 100' to the nth layer of the rolling structure 100 or 100'.
  • the third surface area 23 is a portion of the first surface from the dividing position 2n of the nth layer of the roll structure 100 or 100' to the roll structure 100 or 100'.
  • the outermost part 2e n>m>1, in some embodiments, n and m can be positive integers.
  • the pole piece is divided into three surface areas from the innermost end to the outermost end along the winding direction, and the surface area between the dividing position of the m-th layer and the dividing position of the n-th layer is set as the second surface area.
  • FIG. 14 is a schematic diagram of the electrode assembly according to some embodiments of the present disclosure, in which the electrode piece is provided with a first surface area, a second surface area and a third surface area where polymer particles are respectively arranged.
  • each second protruding structure 32 in at least a portion of the plurality of second protruding structures 32 is a polymer particle attached to or formed on the second surface area 22 .
  • the surface of the pole piece on the side away from the diaphragm can be set as a plane without providing a recess.
  • each first protruding structure 31 in at least part of the plurality of first protruding structures 31 may be polymer particles attached or formed on the first surface area 21 .
  • Each third protruding structure 33 in at least part of the plurality of third protruding structures 33 may also be polymer particles attached or formed on the third surface area 23 .
  • a part of the plurality of protruding structures is a protruding structure with a recessed portion on the back side, and the other part is a polymer particle.
  • some surface areas may be provided with raised structures with recesses on the back side, and other surface areas may be provided with polymer particles.
  • a plurality of protruding structures may be arranged uniformly or randomly throughout the surface area, for example, in an array, or in an odd-even row staggered arrangement, etc. In other embodiments, the plurality of protruding structures may also be discretely distributed only in local areas of the surface area.
  • Figures 15 and 16 respectively show another embodiment of the electrode assembly according to the present disclosure, in which the pole piece is provided with a second surface area. Schematic illustration of a first surface area with a second raised structure and a third surface area without a raised structure.
  • the second surface area 22 includes at least two surface sections divided in a direction perpendicular to the winding direction, and the plurality of second protruding structures 32 A partial surface section located in the at least two surface sections.
  • the second protruding structure By dividing the second surface area in a direction perpendicular to the winding direction to include at least two surface sections, and then disposing the second protruding structure in part of the surface sections, the second protruding structure is provided with
  • the surface section obtains a large expansion buffer space and electrolyte flow channel, thereby overcoming the phenomenon of local lithium precipitation in these surface sections due to large local expansion force or poor electrolyte flow during battery use.
  • the at least two surface sections include three surface sections 22a, 22b, and 22c, and the plurality of second protruding structures 32 are located on the three surface sections 22a. , 22b and 22c are centered within the surface section 22b.
  • the expansion force is mainly concentrated in the middle of the direction perpendicular to the winding direction.
  • the central part is prone to obvious lithium precipitation due to the concentration of expansion force.
  • the at least two surface sections include five surface sections 22a, 22b, 22c, 22d and 22e, and the plurality of second protruding structures 32 are respectively located on the five surface sections.
  • Three of the surface sections 22a, 22b, 22c, 22d and 22e are located at both ends and in the center.
  • For some winding structures (the winding structure 100' of the hollow cylindrical structure shown in Figure 5), in addition to the concentration of expansion force in the middle in the direction perpendicular to the winding direction, which leads to lithium deposition, there are also corner positions. Lithium precipitation is caused by concentrated expansion force and poor electrolyte circulation.
  • the second protruding structure in the three surface sections at both ends and in the middle of the five surface sections, the lithium deposition at both ends and the middle can be improved.
  • the buffer space and electrolyte flow channel are expanded to eliminate the phenomenon of lithium precipitation in the middle and corners of the winding structure.
  • Figure 17 shows another embodiment of the electrode assembly according to the present disclosure, in which the electrode piece is provided with a first surface area, a second surface area and a third surface area respectively having a first protrusion structure, a second protrusion structure and a third protrusion.
  • Schematic diagram of the structure. Referring to FIG. 17 in some embodiments, the first surface area 21 , the second surface area 22 and the third surface area 23 each include a structure divided into at least two along a direction perpendicular to the winding direction. surface section.
  • the plurality of first protruding structures 31 are located in part of the surface section 21b of at least two surface sections 21a, 21b and 21c divided by the first surface area 21, and the plurality of second protruding structures 32 Located in the partial surface section 22b of at least two surface sections 22a, 22b and 22c divided by the second surface area 22, the plurality of third protruding structures 33 are located in the third surface area 23 divided by Partial surface section 23b of at least two surface sections 23a, 23b and 23c.
  • the shapes of the plurality of first protruding structures 31 may be different from the shapes of the plurality of second protruding structures 32
  • the shapes of the plurality of third protruding structures 33 may be different from those of the plurality of second protruding structures 32
  • the shape of the plurality of second protruding structures 32 may also be different. Since there are certain differences in the supporting effects achieved by the shapes of different protruding structures, matching the protruding height of the protruding structures can effectively increase the adaptability of the winding structure and improve battery performance.
  • the shape here can be at least one of the outer contour shape, cross-sectional shape and longitudinal cross-sectional shape of the protruding structure.
  • the cross-sectional shape of the second protruding structure 32 is a circle
  • the cross-sectional shape of at least one of the first protruding structure 31 and the third protruding structure 33 is a regular polygon.
  • the longitudinal cross-sectional shape of the second protruding structure 32 is a semicircular ring shape
  • the longitudinal cross-sectional shape of at least one of the first protruding structure 31 and the third protruding structure 33 is a semi-elliptical ring shape, etc.
  • embodiments of the present disclosure also provide a battery cell, including the aforementioned electrode assembly.
  • Battery cells using the aforementioned electrode components have better performance, such as safety performance or cycle performance.
  • manufacturing difficulty and manufacturing costs can also be reduced.
  • a battery including the aforementioned battery cell.
  • Batteries using the aforementioned battery cells have better performance, such as safety performance or cycle performance. In some embodiments, manufacturing difficulty and manufacturing costs can also be reduced.
  • an electrical device including the aforementioned battery.
  • Electrical devices using the aforementioned batteries have better performance, such as safety performance or cycle performance. In some embodiments, manufacturing difficulty and manufacturing costs can also be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

一种电极组件、电池单体、电池及用电装置。电极组件包括:第一极片(10A)、第二极片(10B)和设于第一极片(10A)和第二极片(10B)之间的隔膜(10C),第一极片(10A)、隔膜(10C)和第二极片(10B)沿卷绕方向卷绕并形成卷绕结构(100;100');其中,第一极片(10A)和第二极片(10B)的至少一个邻近隔膜(10C)一侧的第一表面包括沿卷绕方向划分的第一表面区域(21)、第二表面区域(22)和第三表面区域(23),第二表面区域(22)具有离散分布的多个第二凸起结构(32),第一表面区域(21)不具有凸起结构或具有离散分布的多个第一凸起结构(31),第三表面区域(23)不具有凸起结构或具有离散分布的多个第三凸起结构(33),多个第一凸起结构(31)的凸起高度h1和/或多个第三凸起结构(33)的凸起高度h3小于多个第二凸起结构(32)的凸起高度h2。

Description

电极组件、电池单体、电池及用电装置
相关申请的交叉引用
本申请是以申请号为202210311856.5,申请日为2022年3月28日的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电池技术领域,特别是涉及一种电极组件、电池单体、电池及用电装置。
背景技术
可再充电电池单体,可以称为二次电池单体,是指在电池单体放电后可通过充电的方式使活性物质激活而继续使用的电池单体。可再充电电池单体广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等。
电极组件作为构成电池单体的关键部件,可采用正负极片卷绕的方式形成。卷绕式的电极组件存在着析锂或电解液浸润性较差等影响安全性能或循环性能的问题。
发明内容
在本公开的一个方面,提供一种电极组件,包括:第一极片、第二极片和设于所述第一极片和所述第二极片之间的隔膜,所述第一极片、所述隔膜和所述第二极片沿卷绕方向卷绕并形成卷绕结构;其中,所述第一极片和所述第二极片的至少一个邻近所述隔膜一侧的第一表面包括沿所述卷绕方向划分的第一表面区域、第二表面区域和第三表面区域,所述第一表面区域、所述第二表面区域和所述第三表面区域在所述卷绕方向上的长度均大于0,所述第二表面区域具有离散分布的多个第二凸起结构,所述第一表面区域不具有凸起结构或具有离散分布的多个第一凸起结构,所述第三表面区域不具有凸起结构或具有离散分布的多个第三凸起结构,所述多个第一凸起结构的凸起高度h1和/或所述多个第三凸起结构的凸起高度h3小于或大于所述多个第二凸起结构的凸起高度h2。
在该实施例中,电池在使用过程中极片会发生膨胀,通过极片邻近隔膜一侧离散 分布的凸起结构支撑隔膜而形成极片与隔膜之间的缓冲间隙,以便给极片的膨胀提供空间,避免极片膨胀时与隔膜形成较大面积的紧贴而造成析锂,并且通过凸起结构与隔膜之间的缓冲间隙存留电解液,以确保电解液在卷绕结构中的浸润效果,从而在电池充放电过程中充分地与极片上的活性物质发生反应,优化电池的循环性能。
在凸起结构的分布上,通过使沿卷绕方向划分的第一表面区域、第二表面区域和第三表面区域中的第二表面区域设置第二凸起结构,在第一表面区域和第三表面区域不设置凸起结构或设置凸起高度小于或大于第二凸起结构的凸起高度的凸起结构,这样就针对于卷绕结构卷绕后的不同区域的受力实现更强的适应性,其中通过较高的凸起结构对膨胀力较大的区域提供充分的膨胀空间和电解液浸润回吸的流道,并在膨胀力较小的区域通过不设置凸起结构或设置较低的凸起结构来节省加工工艺或降低工艺难度,或减少对极片的加工以确保极片的强度刚度性能。
在一些实施例中,所述多个第一凸起结构的凸起高度h1和所述多个第三凸起结构的凸起高度h3均小于或均大于所述多个第二凸起结构的凸起高度h2。
在一些电池的卷绕结构(例如中空圆柱结构)中,极片沿卷绕方向靠内的第一表面区域和靠外的第三表面区域在极片膨胀时的膨胀力均低于居中的第二表面区域,因此通过将第一凸起结构的凸起高度和第三凸起结构的凸起高度设置为均小于第二凸起结构的凸起高度,可以降低第一表面区域和第三表面区域实现凸起结构的极片加工工艺对极片本身的强度或刚度等性能的影响。而在另一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域和靠外的第三表面区域在极片膨胀时的膨胀力均高于居中的第二表面区域,因此通过将第一凸起结构的凸起高度和第三凸起结构的凸起高度设置为均大于第二凸起结构的凸起高度,可以降低第二表面区域实现凸起结构的极片加工工艺对极片本身的强度或刚度等性能的影响。
在一些实施例中,所述多个第一凸起结构的凸起高度h1与所述多个第三凸起结构的凸起高度h3基本相等。
通过使第一凸起结构和第三凸起结构的高度基本相等,可以使极片在加工时通过同一加工工序按照基本相同的加工参数实现第一凸起结构和第三凸起结构,减少加工工序,降低加工难度。
在一些实施例中,所述多个第一凸起结构的凸起高度h1大于所述多个第三凸起结构的凸起高度h3。
在一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域在极片膨胀时的 膨胀力大于靠外的第二表面区域在极片膨胀时的膨胀力,通过使第一凸起结构的凸起高度大于第三凸起结构的凸起高度,可以使得不同区域的实际膨胀力与该区域中设置的凸起结构的凸起高度相适应,从而进一步地提升电池性能。
在一些实施例中,所述多个第一凸起结构的凸起高度h1小于所述多个第三凸起结构的凸起高度h3。
在一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域在极片膨胀时的膨胀力小于靠外的第二表面区域在极片膨胀时的膨胀力,通过使第一凸起结构的凸起高度小于第三凸起结构的凸起高度,可以使得不同区域的实际膨胀力与该区域中设置的凸起结构的凸起高度相适应,从而进一步地提升电池性能。
在一些实施例中,所述多个第一凸起结构的凸起高度h1大于所述多个第二凸起结构的凸起高度h2,所述多个第三凸起结构的凸起高度h3小于所述多个第二凸起结构的凸起高度h2。
一些电池的卷绕结构(例如方形结构)在卷绕后需要压扁,而当卷绕结构压扁后极片沿卷绕方向靠内的第一表面区域在极片膨胀时会出现膨胀力集中的情况,而靠外的第三表面区域的膨胀力相对于第一表面区域和第二表面区域均较小,因此通过使第一凸起结构的凸起高度大于第二凸起结构的凸起高度,并使第三凸起结构的凸起高度小于第二凸起结构的凸起高度,从而使不同区域的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
在一些实施例中,所述多个第一凸起结构的凸起高度h1小于所述多个第二凸起结构的凸起高度h2,所述多个第三凸起结构的凸起高度h3大于所述多个第二凸起结构的凸起高度h2。
在一些电池的卷绕结构中,存在着极片膨胀时卷绕结构外部膨胀力集中,而内部中空膨胀力较小的情形,通过使第一凸起结构的凸起高度小于第二凸起结构的凸起高度,并使第三凸起结构的凸起高度大于第二凸起结构的凸起高度,从而使不同区域的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
在一些实施例中,所述多个第二凸起结构的凸起高度h2沿所述卷绕方向逐渐增大或逐渐减小。
对于极片沿卷绕方向居中的第二表面区域来说,不同的卷绕结构在该表面区域的膨胀力也存在着变化趋势,对于第二表面区域从内到外膨胀力逐渐增大的卷绕结构来说,通过使第二凸起结构的凸起高度h2沿所述卷绕方向逐渐增大,可使得第二凸起 结构的凸起高度与膨胀力相适应;对于第二表面区域从内到外膨胀力逐渐减小的卷绕结构来说,通过使第二凸起结构的凸起高度h2沿所述卷绕方向逐渐减小,可使得第二凸起结构的凸起高度与膨胀力相适应,从而使不同位置的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
在一些实施例中,所述多个第一凸起结构的凸起高度h1和/或所述多个第三凸起结构的凸起高度h3沿所述卷绕方向逐渐增大或逐渐减小。
对于第一表面区域和第三表面区域,不同的卷绕结构在该表面区域的膨胀力也存在着变化趋势,根据膨胀力的逐渐增大或逐渐减小,使得第一凸起结构的凸起高度和/或第三凸起结构的凸起高度沿卷绕方向相应地逐渐增大或逐渐减小,可使得第一凸起结构和/或第三凸起结构的凸起高度与膨胀力相适应,从而使不同位置的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于30μm。采用极差小于等于30μm的凸起高度可降低形凸起结构的工艺难度,降低加工成本。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于20μm。采用极差小于等于20μm的凸起高度能够兼顾降低形凸起结构的工艺难度和形成的膨胀缓冲空间和电解液浸润回吸的流道的一致性。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于10μm。采用极差小于等于10μm的凸起高度能够使凸起结构形成的膨胀缓冲空间和电解液浸润回吸的流道更加均匀一致,从而提升电池性能。
在一些实施例中,所述卷绕结构为中空圆柱结构或方形结构。结合前述不同表面区域对凸起结构的设置或不设置,以及凸起结构的凸起高度关系等,适应性地采用中空圆柱结构或方形结构,以提升电池性能。
在一些实施例中,所述第一表面区域为所述第一表面从所述卷绕结构的最内端到所述卷绕结构的第m层的划分位置的部分,所述第二表面区域为所述第一表面从所述卷绕结构的第m层的划分位置到所述卷绕结构的第n层的划分位置的部分,所述第三表面区域为所述第一表面从所述卷绕结构的第n层的划分位置到所述卷绕结构的最外端的部分,n>m>1。
通过将极片沿卷绕方向从最内端到最外端划分为三个表面区域,并设定第m层的划分位置到第n层的划分位置之间的表面区域为第二表面区域,以区别于极片的第一表面只在卷绕方向划分两个区域或不划分的情形,结合前述凸起结构的设置,有效地增加了卷绕结构的适应性,提高电池性能。
在一些实施例中,所述多个第一凸起结构的形状和/或所述多个第三凸起结构的形状与所述多个第二凸起结构的形状不同。
结合凸起结构的凸起高度,进一步通过不同表面区域的凸起结构的形状差异来增加卷绕结构的适应性,提高电池性能。
在一些实施例中,所述第二表面区域包括沿垂直于所述卷绕方向的方向划分为至少两个表面区段,所述多个第二凸起结构位于所述至少两个表面区段中的部分表面区段。
通过在垂直于卷绕方向的方向划分第二表面区域,使其包括至少两个表面区段,再使第二凸起结构设置在部分表面区段内,从而使设置有第二凸起结构的表面区段获得了较大的膨胀缓冲空间和电解液流道,进而克服这些表面区段在电池使用中因局部膨胀力较大或电解液流动不畅等原因而发生局部析锂的现象。
在一些实施例中,所述至少两个表面区段包括三个表面区段,所述多个第二凸起结构均位于所述三个表面区段居中的表面区段内。
对一些卷绕结构(例如中空圆柱结构)来说,其膨胀力主要集中在垂直于卷绕方向的方向上的中部,通过将第二凸起结构设置在居中的表面区段,可以改善中部的膨胀缓冲空间,消除卷绕结构中部析锂的现象。
在一些实施例中,所述至少两个表面区段包括五个表面区段,所述多个第二凸起结构分别位于所述五个表面区段中位于两端和居中的三个表面区段内。
对于一些卷绕结构(例如中空圆柱结构)来说,除了在垂直于卷绕方向的方向上的中部存在膨胀力集中而导致析锂,还存在着拐角位置膨胀力集中、电解液流通不畅而导致的析锂,因此通过将第二凸起结构设置在五个表面区段中位于两端和居中的三个表面区段,可以改善两端和中部的膨胀缓冲空间和电解液流道,消除卷绕结构中部和拐角位置析锂的现象。
在一些实施例中,所述第一极片和所述第二极片的至少一个远离所述隔膜一侧的第二表面具有与所述多个第二凸起结构的至少部分中的每个第二凸起结构正对的第二凹部。
通过对平板形式的极片进行冲压或挤压等工艺可形成一侧凹入另一侧凸起的凸起结构,相应地在第二凸起结构正对的背侧具有第二凹部,这种结构形成工艺难度相对较低,有利于较大范围的集中加工,提高加工效率,降低加工成本。
在一些实施例中,所述第一极片和所述第二极片的至少一个远离所述隔膜一侧的第二表面具有与所述多个第一凸起结构的至少部分中的每个第一凸起结构正对的第一凹部和/或与所述多个第三凸起结构的至少部分中的每个第三凸起结构正对的第三凹部。
通过对平板形式的极片进行冲压或挤压等工艺可形成一侧凹入另一侧凸起的凸起结构,相应地在第一凸起结构正对的背侧具有第一凹部,和/或在第三凸起结构正对的背侧具有第三凹部,这种结构形成工艺难度相对较低,有利于较大范围的集中加工,提高加工效率,降低加工成本。
在一些实施例中,所述多个第二凸起结构的至少部分中的每个第二凸起结构为附着或形成在所述第二表面区域的聚合物颗粒。通过附着或形成在第二表面区域的聚合物颗粒作为第二凸起结构可以减少冲压或挤压等工艺对极片自身的强度或刚度等参数的影响。
在一些实施例中,所述多个第一凸起结构的至少部分中的每个第一凸起结构为附着或形成在所述第一表面区域的聚合物颗粒,和/或所述多个第三凸起结构的至少部分中的每个第三凸起结构为附着或形成在所述第三表面区域的聚合物颗粒。
通过附着或形成在第一表面区域的聚合物颗粒作为第一凸起结构和/或通过附着或形成在第三表面区域的聚合物颗粒作为第三凸起结构可以减少冲压或挤压等工艺对极片自身的强度或刚度等参数的影响。
在本公开的一个方面,提供一种电池单体,包括前述的电极组件。采用前述电极组件的电池单体具有更优的性能。
在本公开的一个方面,提供一种电池,包括前述的电池单体。采用前述电池单体的电池具有更优的性能。
在本公开的一个方面,提供一种用电装置,包括前述的电池。采用前述电池的用电装置具有更优的性能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使 用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开用电装置的一些实施例的结构示意图;
图2是根据本公开电池的一些实施例的分解结构示意图;
图3是根据本公开电极组件的一些实施例形成的卷绕结构的结构示意图;
图4是根据本公开电池的另一些实施例的分解结构示意图;
图5是根据本公开电极组件的另一些实施例形成的卷绕结构的结构示意图;
图6是根据本公开电极组件的一些实施例中极片设有第二表面区域具有第二凸起结构,第一表面区域和第三表面区域不具有凸起结构的示意图;
图7是根据本公开电极组件的一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别具有第一凸起结构、第二凸起结构和第三凸起结构的示意图;
图8-图13分别是根据本公开电极组件的一些实施例中第一凸起结构、第二凸起结构和第三凸起结构的凸起高度的示意图;
图14是根据本公开电极组件的一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别设置聚合物颗粒的示意图;
图15-图16分别是根据本公开电极组件的另一些实施例中极片设有第二表面区域具有第二凸起结构,第一表面区域和第三表面区域不具有凸起结构的示意图;
图17是根据本公开电极组件的另一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别具有第一凸起结构、第二凸起结构和第三凸起结构的示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
附图标记说明:
10,10’:电池单体;10A:第一极片;10B:第二极片;10C:隔膜;100,100’:
卷绕结构;11:集流体;12:活性物质层;
21:第一表面区域;22:第二表面区域;23:第三表面区域;2e:卷绕结构的最
外端;2m:卷绕结构第m层的划分位置;2n:卷绕结构第n层的划分位置;2s:卷绕结构的最内端;21a,21b,21c,22a,22b,22c,22d,22e,23a,23b,23c:表面 区段;
31:第一凸起结构;32:第二凸起结构;33:第三凸起结构;31’,32’,33’:聚
合物颗粒;
41:第一凹部;42:第二凹部;43:第三凹部;
50:电池;51:箱体;52:端盖;521:电极端子;
60:车辆。
具体实施方式
下面结合附图和实施例对本公开的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本公开的原理,但不能用来限制本公开的范围,即本公开不限于所描述的实施例。
在本公开的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本公开的具体结构进行限定。在本公开的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本公开中的具体含义。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
在一些相关技术中,电极组件采用正负极片卷绕的方式形成。经发明人研究发现,卷绕式的电极组件在电池充电过程中发生膨胀,而在卷绕结构的一些部位会发生膨胀力集中的情况,造成这些部位缺乏间隙而导致电解液被挤出而降低浸润性能。而一些相关技术通过在方形的卷绕结构中的极片上设置凹凸图案可以形成极片与隔膜之间的间隙以提供膨胀缓冲空间,但此类卷绕结构缺乏适用性,难以应用到其他结构形式 的卷绕结构。而且凹凸图案的设置未考虑电极组件不同部位的特点,从而不能有效地兼顾电池性能和加工工艺等方面。
有鉴于此,本公开实施例提供一种电极组件、电池单体、电池及用电装置,能够提升电池性能,并提高适应性。
本公开实施例的电极组件可适用于各类电池单体。电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本公开实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本公开实施例的电池单体可适用于各类电池。电池可用于车辆等用电设备的供电,例如给车辆提供操控用的电源或者驱动行驶用的电源。电池可包括壳体和电池模组,壳体用于为电池模组提供容纳空间,电池模组安装在壳体内。壳体可采用金属材质。电池模组可包括串联、并联或混联的多个电池单体。电池单体为组成电池的最小单元。电池单体包括能够发生电化学反应的电极组件。
本公开实施例的电池可适用于各类使用电池的用电装置。用电装置可以是手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。本发明实施例对上述用电装置不做特别限制。
图1是根据本公开用电装置的一些实施例的结构示意图。为了方便,以用电装置为车辆为例进行说明。参考图1,车辆60的内部设置有电池50,电池50设置于车辆的底部或头部或尾部。电池50为车辆供电,例如,电池50作为车辆的操作电源。该电池50可作为新能源汽车、船舶、智能电器柜等装置的电源。电池50也可作为电源供给部件,给装置的各种电器元件提供所需要的电能。
图2是根据本公开电池的一些实施例的分解结构示意图。图3是根据本公开电极组件的一些实施例形成的卷绕结构的结构示意图。图4是根据本公开电池的另一些实施例的分解结构示意图。图5是根据本公开电极组件的另一些实施例形成的卷绕结构的结构示意图。
参考图2和图4,在一些实施例中,电池50包括箱体51、封盖52以及设置于箱体51中的一个或者多个电池单体10或10’。各个电池单体之间电连接,比如串联、并联或者混联,以实现所需要的电池50的电性能参数。多个电池单体成排设置,根据需要可以在箱体内设置一排或者多排电池单体。在封盖52上可设置与电池单体的阳极和阴极分别电连接的电极端子521。
在一些实施例中,电池50的各电池单体可以沿着箱体的长度方向和宽度方向中的至少一个排列。根据实际需要可设置至少一行或一列电池单体。根据需要,还可以在电池50的高度方向,也可设置一层或者多层电池单体。
在一些实施例中,多个电池单体可先串联或并联或混联组成电池模块,然后多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体51内。在另一些实施例中,所有电池单体直接串联或并联或混联在一起,再将所有电池单体构成的整体容纳于箱体内。
参考图2-图5,在一些实施例中,电池单体10或10’可包括壳体、端盖和电极组件。壳体具有空腔,用于容纳所述电极组件,且所述壳体的端部可被构造为敞口的,用于设置端盖组件。电极组件则被装在壳体的空腔中。电池单体10或10’除了包括电极组件、端盖和壳体,还包括电解液。
参考图3和图5,在一些实施例中,电极组件包括:第一极片10A、第二极片10B和设于所述第一极片10A和所述第二极片10B之间的隔膜10C。所述第一极片10A、所述隔膜10C和所述第二极片10B沿卷绕方向r卷绕并形成卷绕结构。图3所示的卷绕结构100在卷绕后被压制成方形结构,其具有居中的扁平部分和位于扁平部分左右两侧的拐角部分。相应地,包括该电极组件的电池单体所采用的壳体为方壳结构。图5所示的卷绕结构100’在卷绕后形成中空圆柱结构。相应地,包括该电极组件的电池单体所采用的壳体为圆柱壳体结构。
电池单体10或10’主要依靠金属离子在正极极片和负极极片之间移动来工作。隔膜10C的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
图6是根据本公开电极组件的一些实施例中极片设有第二表面区域具有第二凸起结构,第一表面区域和第三表面区域不具有凸起结构的示意图。图7是根据本公开电极组件的一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别具有第一凸起结构、第二凸起结构和第三凸起结构的示意图。图8-图13分别是根据本公开电极组件的一些实施例中第一凸起结构、第二凸起结构和第三凸起结构的凸起高度的示意图。
参考图6和图7,在一些实施例中,所述第一极片10A和所述第二极片10B的至少一个邻近所述隔膜10C一侧的第一表面包括沿所述卷绕方向划分的第一表面区域21、第二表面区域22和第三表面区域23。所述第一表面区域21、所述第二表面区域22和所述第三表面区域23在所述卷绕方向上的长度均大于0。所述第二表面区域22具有离散分布的多个第二凸起结构32。
由于电池在使用过程中极片会发生膨胀,通过极片邻近隔膜一侧离散分布的凸起结构支撑隔膜而形成极片与隔膜之间的缓冲间隙,以便给极片的膨胀提供空间,避免极片膨胀时与隔膜形成较大面积的紧贴而造成析锂,并且通过凸起结构与隔膜之间的缓冲间隙存留电解液,以确保电解液在卷绕结构中的浸润效果,从而在电池充放电过程中充分地与极片上的活性物质发生反应,优化电池的循环性能。
参考图6,在一些实施例中,所述第一表面区域21和所述第三表面区域23均不具有凸起结构。这样就针对于卷绕结构卷绕后的不同区域的受力实现更强的适应性,其中通过较高的凸起结构对膨胀力较大的区域提供充分的膨胀空间和电解液浸润回吸的流道,并在膨胀力较小的区域通过不设置凸起结构来节省加工工艺或降低工艺难度,或减少对极片的加工以确保极片的强度刚度性能。
参考图7,在一些实施例中,所述第一表面区域21具有离散分布的多个第一凸起结构31,所述第三表面区域23具有离散分布的多个第三凸起结构33。在另一些实施例中,第一表面区域21和第三表面区域23中的一个不设置凸起结构,另一个设置凸起结构。凸起结构可以支撑隔膜而形成极片与隔膜之间的缓冲间隙,以便给极片的膨 胀提供空间,避免极片膨胀时与隔膜形成较大面积的紧贴而造成析锂,并且通过凸起结构与隔膜之间的缓冲间隙存留电解液,以确保电解液在卷绕结构中的浸润效果,从而在电池充放电过程中充分地与极片上的活性物质发生反应,优化电池的循环性能。
另外,在图6和图7中,极片包括集流体基材11和设置在集流体基材11的一侧表面或相反两侧表面的活性物质层12。多个第一凸起结构31、多个第二凸起结构32和多个第三凸起结构33中的至少部分可通过对极片的冲压或挤压等加工工艺形成。
相应地,参考图6,在一些实施例中,所述第一极片10A和所述第二极片10B的至少一个远离所述隔膜10C一侧的第二表面具有与所述多个第二凸起结构32的至少部分中的每个第二凸起结构32正对的第二凹部42。通过对平板形式的极片进行冲压或挤压等工艺可形成一侧凹入另一侧凸起的凸起结构,相应地在第二凸起结构正对的背侧具有第二凹部,这种结构形成工艺难度相对较低,有利于较大范围的集中加工,提高加工效率,降低加工成本。另外,第二凹部还能够实现对电解液的保持作用,提高电解液浸润性能。
参考图7,在一些实施例中,所述第一极片10A和所述第二极片10B的至少一个远离所述隔膜10C一侧的第二表面具有与所述多个第一凸起结构31的至少部分中的每个第一凸起结构31正对的第一凹部41和/或与所述多个第三凸起结构33的至少部分中的每个第三凸起结构33正对的第三凹部43。通过对平板形式的极片进行冲压或挤压等工艺可形成一侧凹入另一侧凸起的凸起结构,相应地在第一凸起结构正对的背侧具有第一凹部,和/或在第三凸起结构正对的背侧具有第三凹部,这种结构形成工艺难度相对较低,有利于较大范围的集中加工,提高加工效率,降低加工成本。另外,第一凹部和第三凹部还能够实现对电解液的保持作用,提高电解液浸润性能。
参考图8-图13,在一些实施例中,所述多个第一凸起结构31的凸起高度h1和/或所述多个第三凸起结构33的凸起高度h3小于或大于所述多个第二凸起结构32的凸起高度h2。这样就针对于卷绕结构卷绕后的不同区域的受力实现更强的适应性,其中通过较高的凸起结构对膨胀力较大的区域提供充分的膨胀空间和电解液浸润回吸的流道,并在膨胀力较小的区域适应性地设置较低的凸起结构,使得膨胀缓冲空间更加均匀,并且节省凸起结构的加工工艺或降低加工凸起结构的工艺难度,或减少对极片的加工以确保极片的强度刚度性能。
图8-图13示出了本公开电极组件的一些实施例中第一凸起结构、第二凸起结构和第三凸起结构的凸起高度。在图8-图13中,从左到右对应了极片的卷绕方向。沿 卷绕方向排布的多个第一凸起结构31、多个第二凸起结构32和多个第三凸起结构33对应的圆点分别代表凸起高度h1、h2和h3。这里的凸起高度由于加工工艺精度的原因而满足一定的极差R。根据加工难度及成本、凸起高度的一致性要求等因素,可选择适合的极差R。极差R为凸起高度的最大值和最小值之差。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于30μm。采用极差小于等于30μm的凸起高度可降低形凸起结构的工艺难度,降低加工成本。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于20μm。采用极差小于等于20μm的凸起高度能够兼顾降低形凸起结构的工艺难度和形成的膨胀缓冲空间和电解液浸润回吸的流道的一致性。
在一些实施例中,所述多个第一凸起结构的凸起高度h1、所述多个第二凸起结构的凸起高度h2和/或所述多个第三凸起结构的凸起高度h3的极差小于等于10μm。采用极差小于等于10μm的凸起高度能够使凸起结构形成的膨胀缓冲空间和电解液浸润回吸的流道更加均匀一致,从而提升电池性能。
参考图8、图10和图11,在一些实施例中,所述多个第一凸起结构31的凸起高度h1和所述多个第三凸起结构33的凸起高度h3均小于所述多个第二凸起结构32的凸起高度h2。在一些电池的卷绕结构中,例如图5所示的中空圆柱结构的卷绕结构100’,由于该卷绕结构100’具有中空结构,因此极片沿卷绕方向靠内的第一表面区域和靠外的第二表面区域在极片膨胀时的膨胀力均低于居中的第二表面区域,因此通过将第一凸起结构的凸起高度和第三凸起结构的凸起高度设置为小于第二凸起结构的凸起高度,可以降低第一表面区域和第三表面区域实现凸起结构的极片加工工艺对极片本身的强度或刚度等性能的影响。
参考图9,在一些实施例中,所述多个第一凸起结构31的凸起高度h1和所述多个第三凸起结构33的凸起高度h3均大于所述多个第二凸起结构32的凸起高度h2。在一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域和靠外的第二表面区域在极片膨胀时的膨胀力均高于居中的第二表面区域,因此通过将第一凸起结构的凸起高度和第三凸起结构的凸起高度设置为均大于第二凸起结构的凸起高度,可以降低第二表面区域实现凸起结构的极片加工工艺对极片本身的强度或刚度等性能的影响。
参考图8和图9,在一些实施例中,所述多个第一凸起结构31的凸起高度h1与 所述多个第三凸起结构33的凸起高度h3基本相等。这里的基本相等是指按照设计的凸起高度h1和凸起高度h3相等,但由于存在一定的极差,因此实际极片上的凸起高度h1约等于凸起高度h3。通过使第一凸起结构和第三凸起结构的高度基本相等,可以使极片在加工时通过同一加工工序按照基本相同的加工参数实现第一凸起结构和第三凸起结构,减少加工工序,降低加工难度。
参考图10,在一些实施例中,所述多个第一凸起结构31的凸起高度h1大于所述多个第三凸起结构33的凸起高度h3。在一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域在极片膨胀时的膨胀力大于靠外的第二表面区域在极片膨胀时的膨胀力,通过使第一凸起结构的凸起高度大于第三凸起结构的凸起高度,可以使得不同区域的实际膨胀力与该区域中设置的凸起结构的凸起高度相适应,从而进一步地提升电池性能。
参考图11,所述多个第一凸起结构31的凸起高度h1小于所述多个第三凸起结构33的凸起高度h3。在一些电池的卷绕结构中,极片沿卷绕方向靠内的第一表面区域在极片膨胀时的膨胀力小于靠外的第二表面区域在极片膨胀时的膨胀力,通过使第一凸起结构的凸起高度小于第三凸起结构的凸起高度,可以使得不同区域的实际膨胀力与该区域中设置的凸起结构的凸起高度相适应,从而进一步地提升电池性能。
参考图10和图11所示的多个第一凸起结构31和多个第三凸起结构33的凸起高度关系,所述多个第一凸起结构31的凸起高度h1和所述多个第三凸起结构33的凸起高度h3也可均大于所述多个第二凸起结构32的凸起高度h2。
参考图12,在一些实施例中,所述多个第一凸起结构31的凸起高度h1大于所述多个第二凸起结构32的凸起高度h2,所述多个第三凸起结构33的凸起高度h3小于所述多个第二凸起结构32的凸起高度h2。这样就实现了一种凸起结构的凸起高度从内到外逐段下降的结构形式。对于一些电池的卷绕结构(例如图3所示的方形结构的卷绕结构100)来说,这种卷绕结构在卷绕后需要压扁,而当卷绕结构压扁后极片沿卷绕方向靠内的第一表面区域在极片膨胀时会出现膨胀力集中的情况,而靠外的第三表面区域的膨胀力相对于第一表面区域和第二表面区域均较小,因此通过使第一凸起结构的凸起高度大于第二凸起结构的凸起高度,并使第三凸起结构的凸起高度小于第二凸起结构的凸起高度,从而使不同区域的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
参考图13,在一些实施例中,所述多个第一凸起结构31的凸起高度h1小于所述 多个第二凸起结构32的凸起高度h2,所述多个第三凸起结构33的凸起高度h3大于所述多个第二凸起结构32的凸起高度h2。在一些电池的卷绕结构中,存在着极片膨胀时卷绕结构外部膨胀力集中,而内部中空膨胀力较小的情形,通过使第一凸起结构的凸起高度小于第二凸起结构的凸起高度,并使第三凸起结构的凸起高度大于第二凸起结构的凸起高度,从而使不同区域的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
参考图8-图11,各个表面区域中的多个凸起结构的凸起高度可以基本相等,从而有利于不同表面区域凸起结构的加工的一致性,降低加工难度和成本。参考图12和图13,各个表面区域的多个凸起结构也可以沿卷绕方向变化。在一些实施例中,所述多个第二凸起结构32的凸起高度h2沿所述卷绕方向逐渐增大或逐渐减小。
对于极片沿卷绕方向居中的第二表面区域来说,不同的卷绕结构在该表面区域的膨胀力也存在着变化趋势,对于第二表面区域从内到外膨胀力逐渐增大的卷绕结构来说,通过使第二凸起结构的凸起高度h2沿所述卷绕方向逐渐增大,可使得第二凸起结构的凸起高度与膨胀力相适应;对于第二表面区域从内到外膨胀力逐渐减小的卷绕结构来说,通过使第二凸起结构的凸起高度h2沿所述卷绕方向逐渐减小,可使得第二凸起结构的凸起高度与膨胀力相适应,从而使不同位置的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
参考图12和图13,在一些实施例中,所述多个第一凸起结构31的凸起高度h1和/或所述多个第三凸起结构33的凸起高度h3沿所述卷绕方向逐渐增大或逐渐减小。对于第一表面区域和第三表面区域,不同的卷绕结构在该表面区域的膨胀力也存在着变化趋势,根据膨胀力的逐渐增大或逐渐减小,使得第一凸起结构的凸起高度和/或第三凸起结构的凸起高度沿卷绕方向相应地逐渐增大或逐渐减小,可使得第一凸起结构和/或第三凸起结构的凸起高度与膨胀力相适应,从而使不同位置的膨胀力能够获得充分的缓冲空间,减少析锂现象,提高电解液浸润效果。
例如,在图12中,多个第一凸起结构31的凸起高度h1、多个第二凸起结构32的凸起高度h2和多个第三凸起结构33的凸起高度h3均沿所述卷绕方向逐渐减小。这种设计可以与卷绕结构在各个表面区域均存在的膨胀力逐渐减小的趋势相适应。而在图13中,多个第一凸起结构31的凸起高度h1、多个第二凸起结构32的凸起高度h2和多个第三凸起结构33的凸起高度h3均沿所述卷绕方向逐渐增加。这种设计可以与卷绕结构在各个表面区域均存在的膨胀力逐渐增加的趋势相适应。
参考图3和图5,所述第一表面区域21为所述第一表面从所述卷绕结构100或100’的最内端2s到所述卷绕结构100或100’的第m层的划分位置2m的部分,所述第二表面区域22为所述第一表面从所述卷绕结构100或100’的第m层的划分位置2m到所述卷绕结构100或100’的第n层的划分位置2n的部分,所述第三表面区域23为所述第一表面从所述卷绕结构100或100’的第n层的划分位置2n到所述卷绕结构100或100’的最外端2e的部分。这里的n>m>1,在一些实施例中,n和m可以为正整数。
这样通过将极片沿卷绕方向从最内端到最外端划分为三个表面区域,并设定第m层的划分位置到第n层的划分位置之间的表面区域为第二表面区域,以区别于极片的第一表面只在卷绕方向划分两个区域或不划分的情形,结合前述凸起结构的设置,有效地增加了卷绕结构的适应性,提高电池性能。
除了图6和图7所示的凸起结构,在另一些实施例中还可以采用其他形式的凸起结构。图14是根据本公开电极组件的一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别设置聚合物颗粒的示意图。参考图14,在一些实施例中,所述多个第二凸起结构32的至少部分中的每个第二凸起结构32为附着或形成在所述第二表面区域22的聚合物颗粒。相应地,在极片远离隔膜一侧的表面可以设置为平面,而不设置凹部。通过附着或形成在第二表面区域的聚合物颗粒作为第二凸起结构可以减少冲压或挤压等工艺对极片自身的强度或刚度等参数的影响。
在图14中,所述多个第一凸起结构31的至少部分中的每个第一凸起结构31可以为附着或形成在所述第一表面区域21的聚合物颗粒。而所述多个第三凸起结构33的至少部分中的每个第三凸起结构33也可以为附着或形成在所述第三表面区域23的聚合物颗粒。通过附着或形成在第一表面区域的聚合物颗粒作为第一凸起结构和/或通过附着或形成在第三表面区域的聚合物颗粒作为第三凸起结构可以减少冲压或挤压等工艺对极片自身的强度或刚度等参数的影响。
在另一些实施例中,多个凸起结构中的一部分为背侧设有凹部的凸起结构,另一部分为聚合物颗粒。或者,一些表面区域设置背侧设有凹部的凸起结构,另一些表面区域设置聚合物颗粒。
参考图6和图7,在每个表面区域中,多个凸起结构可以在整个表面区域均匀或随机地排布,例如排布成阵列形式,或者排布成奇偶行交错排布形式等。在另一些实施例中,多个凸起结构也可以只离散地分布在表面区域中的局部区域。
图15-图16分别是根据本公开电极组件的另一些实施例中极片设有第二表面区域 具有第二凸起结构,第一表面区域和第三表面区域不具有凸起结构的示意图。参考图15-图16,在一些实施例中,所述第二表面区域22包括沿垂直于所述卷绕方向的方向划分为至少两个表面区段,所述多个第二凸起结构32位于所述至少两个表面区段中的部分表面区段。通过在垂直于卷绕方向的方向划分第二表面区域,使其包括至少两个表面区段,再使第二凸起结构设置在部分表面区段内,从而使设置有第二凸起结构的表面区段获得了较大的膨胀缓冲空间和电解液流道,进而克服这些表面区段在电池使用中因局部膨胀力较大或电解液流动不畅等原因而发生局部析锂的现象。
参考图15,在一些实施例中,所述至少两个表面区段包括三个表面区段22a、22b和22c,所述多个第二凸起结构32均位于所述三个表面区段22a、22b和22c居中的表面区段22b内。对一些卷绕结构(例如图5所示的中空圆柱结构的卷绕结构100’)来说,其膨胀力主要集中在垂直于卷绕方向的方向上的中部。当电池充电时中部容易因膨胀力集中而造成明显的析锂现象,而通过将第二凸起结构设置在居中的表面区段,可以改善中部的膨胀缓冲空间,消除卷绕结构中部析锂的现象。
参考图16,在一些实施例中,所述至少两个表面区段包括五个表面区段22a、22b、22c、22d和22e,所述多个第二凸起结构32分别位于所述五个表面区段22a、22b、22c、22d和22e中位于两端和居中的三个表面区段22a、22c和22e内。对于一些卷绕结构(图5所示的中空圆柱结构的卷绕结构100’)来说,除了在垂直于卷绕方向的方向上的中部存在膨胀力集中而导致析锂,还存在着拐角位置膨胀力集中、电解液流通不畅而导致的析锂,因此通过将第二凸起结构设置在五个表面区段中位于两端和居中的三个表面区段,可以改善两端和中部的膨胀缓冲空间和电解液流道,消除卷绕结构中部和拐角位置析锂的现象。
图17是根据本公开电极组件的另一些实施例中极片设有第一表面区域、第二表面区域和第三表面区域分别具有第一凸起结构、第二凸起结构和第三凸起结构的示意图。参考图17,在一些实施例中,所述第一表面区域21、所述第二表面区域22和所述第三表面区域23均包括沿垂直于所述卷绕方向的方向划分为至少两个表面区段。所述多个第一凸起结构31位于所述第一表面区域21所划分的至少两个表面区段21a、21b和21c中的部分表面区段21b,所述多个第二凸起结构32位于所述第二表面区域22所划分的至少两个表面区段22a、22b和22c中的部分表面区段22b,所述多个第三凸起结构33位于所述第三表面区域23所划分的至少两个表面区段23a、23b和23c中的部分表面区段23b。
通过在各个表面区域在垂直于所述卷绕方向的方向对至少两个表面区段进行划分,并根据电池的局部析锂情况或膨胀力等对部分表面区段适应性地设置凸起结构,可以有效地消除卷绕结构的特定部位析锂的现象,改善膨胀力集中,实现更均匀的膨胀缓冲空间和电解液浸润回流通道。
在上述各电极组件的实施例中,所述多个第一凸起结构31的形状可以与所述多个第二凸起结构32的形状不同,所述多个第三凸起结构33的形状也可以与所述多个第二凸起结构32的形状不同。由于不同的凸起结构的形状所实现的支撑作用存在一定的差异,配合凸起结构的凸起高度,可有效地增加卷绕结构的适应性,提高电池性能。
这里的形状既可以为凸起结构的外轮廓形状、横截面形状和纵截面形状中的至少一种。例如第二凸起结构32的横截面形状为圆形,第一凸起结构31和第三凸起结构33中的至少一种的横截面形状为正多边形。又例如第二凸起结构32的纵截面形状为半圆环形,而第一凸起结构31和第三凸起结构33中的至少一种的纵截面形状为半椭圆环形等。
基于本公开上述电极组件的各个实施例,本公开实施例还提供了电池单体,包括前述的电极组件。采用前述电极组件的电池单体具有更优的性能,例如安全性能或循环性能。在一些实施例中,还能够降低制造难度和制造成本。
在本公开的一个方面,提供一种电池,包括前述的电池单体。采用前述电池单体的电池具有更优的性能,例如安全性能或循环性能。在一些实施例中,还能够降低制造难度和制造成本。
在本公开的一个方面,提供一种用电装置,包括前述的电池。采用前述电池的用电装置具有更优的性能,例如安全性能或循环性能。在一些实施例中,还能够降低制造难度和制造成本。
虽然已经参考优选实施例对本公开进行了描述,但在不脱离本公开的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (25)

  1. 一种电极组件,包括:第一极片(10A)、第二极片(10B)和设于所述第一极片(10A)和所述第二极片(10B)之间的隔膜(10C),所述第一极片(10A)、所述隔膜(10C)和所述第二极片(10B)沿卷绕方向卷绕并形成卷绕结构(100;100’);
    其中,所述第一极片(10A)和所述第二极片(10B)的至少一个邻近所述隔膜(10C)一侧的第一表面包括沿所述卷绕方向划分的第一表面区域(21)、第二表面区域(22)和第三表面区域(23),所述第一表面区域(21)、所述第二表面区域(22)和所述第三表面区域(23)在所述卷绕方向上的长度均大于0,所述第二表面区域(22)具有离散分布的多个第二凸起结构(32),所述第一表面区域(21)不具有凸起结构或具有离散分布的多个第一凸起结构(31),所述第三表面区域(23)不具有凸起结构或具有离散分布的多个第三凸起结构(33),所述多个第一凸起结构(31)的凸起高度h1和/或所述多个第三凸起结构(33)的凸起高度h3小于或大于所述多个第二凸起结构(32)的凸起高度h2。
  2. 根据权利要求1所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1和所述多个第三凸起结构(33)的凸起高度h3均小于或均大于所述多个第二凸起结构(32)的凸起高度h2。
  3. 根据权利要求2所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1与所述多个第三凸起结构(33)的凸起高度h3基本相等。
  4. 根据权利要求2所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1大于所述多个第三凸起结构(33)的凸起高度h3。
  5. 根据权利要求2所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1小于所述多个第三凸起结构(33)的凸起高度h3。
  6. 根据权利要求1所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1大于所述多个第二凸起结构(32)的凸起高度h2,所述多个第三凸起结构(33)的凸起高度h3小于所述多个第二凸起结构(32)的凸起高度h2。
  7. 根据权利要求1所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1小于所述多个第二凸起结构(32)的凸起高度h2,所述多个第三凸起结构(33)的凸起高度h3大于所述多个第二凸起结构(32)的凸起高度h2。
  8. 根据权利要求1~7任一所述的电极组件,其中所述多个第二凸起结构(32)的 凸起高度h2沿所述卷绕方向逐渐增大或逐渐减小。
  9. 根据权利要求1~8任一所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1和/或所述多个第三凸起结构(33)的凸起高度h3沿所述卷绕方向逐渐增大或逐渐减小。
  10. 根据权利要求1~9任一所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1、所述多个第二凸起结构(32)的凸起高度h2和/或所述多个第三凸起结构(33)的凸起高度h3的极差小于等于30μm。
  11. 根据权利要求10所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1、所述多个第二凸起结构(32)的凸起高度h2和/或所述多个第三凸起结构(33)的凸起高度h3的极差小于等于20μm。
  12. 根据权利要求11所述的电极组件,其中所述多个第一凸起结构(31)的凸起高度h1、所述多个第二凸起结构(32)的凸起高度h2和/或所述多个第三凸起结构(33)的凸起高度h3的极差小于等于10μm。
  13. 根据权利要求1~12任一所述的电极组件,其中所述卷绕结构(100;100’)为中空圆柱结构或方形结构。
  14. 根据权利要求1~13任一所述的电极组件,其中所述第一表面区域(21)为所述第一表面从所述卷绕结构(100;100’)的最内端到所述卷绕结构(100;100’)的第m层的划分位置的部分,所述第二表面区域(22)为所述第一表面从所述卷绕结构(100;100’)的第m层的划分位置到所述卷绕结构(100;100’)的第n层的划分位置的部分,所述第三表面区域(23)为所述第一表面从所述卷绕结构(100;100’)的第n层的划分位置到所述卷绕结构(100;100’)的最外端的部分,n>m>1。
  15. 根据权利要求1~14任一所述的电极组件,其中所述多个第一凸起结构(31)的形状和/或所述多个第三凸起结构(33)的形状与所述多个第二凸起结构(32)的形状不同。
  16. 根据权利要求1~15任一所述的电极组件,其中所述第二表面区域(22)包括沿垂直于所述卷绕方向的方向划分为至少两个表面区段,所述多个第二凸起结构(32)位于所述至少两个表面区段中的部分表面区段。
  17. 根据权利要求16所述的电极组件,其中所述至少两个表面区段包括三个表面区段,所述多个第二凸起结构(32)均位于所述三个表面区段居中的表面区段内。
  18. 根据权利要求16所述的电极组件,其中,所述至少两个表面区段包括五个表 面区段,所述多个第二凸起结构(32)分别位于所述五个表面区段中位于两端和居中的三个表面区段内。
  19. 根据权利要求1~18任一所述的电极组件,其中所述第一极片(10A)和所述第二极片(10B)的至少一个远离所述隔膜(10C)一侧的第二表面具有与所述多个第二凸起结构(32)的至少部分中的每个第二凸起结构(32)正对的第二凹部(42)。
  20. 根据权利要求1~19任一所述的电极组件,其中所述第一极片(10A)和所述第二极片(10B)的至少一个远离所述隔膜(10C)一侧的第二表面具有与所述多个第一凸起结构(31)的至少部分中的每个第一凸起结构(31)正对的第一凹部(41)和/或与所述多个第三凸起结构(33)的至少部分中的每个第三凸起结构(33)正对的第三凹部(43)。
  21. 根据权利要求1~20任一所述的电极组件,其中所述多个第二凸起结构(32)的至少部分中的每个第二凸起结构(32)为附着或形成在所述第二表面区域(22)的聚合物颗粒。
  22. 根据权利要求1~21任一所述的电极组件,其中所述多个第一凸起结构(31)的至少部分中的每个第一凸起结构(31)为附着或形成在所述第一表面区域(21)的聚合物颗粒,和/或所述多个第三凸起结构(33)的至少部分中的每个第三凸起结构(33)为附着或形成在所述第三表面区域(23)的聚合物颗粒。
  23. 一种电池单体,包括:权利要求1~22任一所述的电极组件。
  24. 一种电池,包括权利要求23所述的电池单体。
  25. 一种用电装置,包括权利要求24所述的电池。
PCT/CN2023/074509 2022-03-28 2023-02-06 电极组件、电池单体、电池及用电装置 WO2023185251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210311856.5A CN116864600A (zh) 2022-03-28 2022-03-28 电极组件、电池单体、电池及用电装置
CN202210311856.5 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023185251A1 true WO2023185251A1 (zh) 2023-10-05

Family

ID=88199084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074509 WO2023185251A1 (zh) 2022-03-28 2023-02-06 电极组件、电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN116864600A (zh)
WO (1) WO2023185251A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073812A (ja) * 2011-09-28 2013-04-22 Hitachi Vehicle Energy Ltd リチウム二次電池及びその製造方法
CN207677000U (zh) * 2017-12-27 2018-07-31 宁德时代新能源科技股份有限公司 极片、电极组件及二次电池
CN208256822U (zh) * 2018-06-15 2018-12-18 宁德时代新能源科技股份有限公司 电极组件及二次电池
CN110034338A (zh) * 2019-04-24 2019-07-19 欣旺达电动汽车电池有限公司 一种改善锂离子电池层间间隙的方法
CN110190338A (zh) * 2018-12-22 2019-08-30 江苏时代新能源科技有限公司 电极组件和二次电池
CN112701246A (zh) * 2020-12-29 2021-04-23 珠海冠宇电池股份有限公司 电极片和电池
CN217562603U (zh) * 2022-03-07 2022-10-11 江苏正力新能电池技术有限公司 一种电池极片及电池极芯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013073812A (ja) * 2011-09-28 2013-04-22 Hitachi Vehicle Energy Ltd リチウム二次電池及びその製造方法
CN207677000U (zh) * 2017-12-27 2018-07-31 宁德时代新能源科技股份有限公司 极片、电极组件及二次电池
CN208256822U (zh) * 2018-06-15 2018-12-18 宁德时代新能源科技股份有限公司 电极组件及二次电池
CN110190338A (zh) * 2018-12-22 2019-08-30 江苏时代新能源科技有限公司 电极组件和二次电池
CN110034338A (zh) * 2019-04-24 2019-07-19 欣旺达电动汽车电池有限公司 一种改善锂离子电池层间间隙的方法
CN112701246A (zh) * 2020-12-29 2021-04-23 珠海冠宇电池股份有限公司 电极片和电池
CN217562603U (zh) * 2022-03-07 2022-10-11 江苏正力新能电池技术有限公司 一种电池极片及电池极芯

Also Published As

Publication number Publication date
CN116864600A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
CN213692108U (zh) 电极组件、电池单体、电池以及用电装置
US20230223642A1 (en) Pressure relief apparatus, battery cell, battery, and electrical device
WO2023179236A1 (zh) 电池的箱体、电池及用电装置
WO2023185251A1 (zh) 电极组件、电池单体、电池及用电装置
US20220246993A1 (en) Electrode assembly, battery cell, battery, and method and device for manufacturing electrode assembly
CN216872125U (zh) 电池单体、电池和用电设备
CN215299297U (zh) 电极组件、电池单体、电池以及用电装置
US20220247043A1 (en) Battery cell, battery, power consumption device and battery cell manufaturing method and device
WO2022170492A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2024020910A1 (zh) 电池单体、电池以及用电装置
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
WO2023185252A1 (zh) 极片、电极组件、电池单体、电池及用电装置
CN219696676U (zh) 电池单体、电池和用电设备
CN218867147U (zh) 一种电极组件、电池单体、电池及用电装置
WO2023225911A1 (zh) 电池单体、电池以及用电装置
CN220774658U (zh) 连接件、电池模组、电池、用电设备和储能设备
US20240088447A1 (en) Electrode assembly, battery cell, battery and electrical device
CN217903325U (zh) 电池壳体、电池单体、电池及用电装置
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
CN218414630U (zh) 极片、电极组件、电池单体、电池及用电装置
WO2023221104A1 (zh) 壳体、电池单体、电池和用电装置
CN219226369U (zh) 电极组件、电池单体、电池以及用电装置
WO2024113484A1 (zh) 极片、辊件、电极组件、电池单体、电池及用电装置
CN219017778U (zh) 电池单体、电池及用电装置
CN219144431U (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777630

Country of ref document: EP

Kind code of ref document: A1