WO2022160296A1 - 电池单体、电池、用电设备、电池单体的制造方法及设备 - Google Patents

电池单体、电池、用电设备、电池单体的制造方法及设备 Download PDF

Info

Publication number
WO2022160296A1
WO2022160296A1 PCT/CN2021/074514 CN2021074514W WO2022160296A1 WO 2022160296 A1 WO2022160296 A1 WO 2022160296A1 CN 2021074514 W CN2021074514 W CN 2021074514W WO 2022160296 A1 WO2022160296 A1 WO 2022160296A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
connection part
battery cell
section
thickness
Prior art date
Application number
PCT/CN2021/074514
Other languages
English (en)
French (fr)
Inventor
苏华圣
邢承友
李全坤
王鹏
刘文忠
覃炎运
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180049154.8A priority Critical patent/CN115836438A/zh
Priority to EP21820071.5A priority patent/EP4068490A4/en
Priority to PCT/CN2021/074514 priority patent/WO2022160296A1/zh
Priority to US17/554,412 priority patent/US20220247043A1/en
Publication of WO2022160296A1 publication Critical patent/WO2022160296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/567Terminals characterised by their manufacturing process by fixing means, e.g. screws, rivets or bolts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery cell, a battery, an electrical device, and a manufacturing method and device for a battery cell.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry. Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages of energy saving and environmental protection. Battery technology is an important factor in the development of electric vehicles.
  • the output power of the battery is an important evaluation index of the battery performance.
  • the output power of the battery is low and cannot meet the demand of the power type battery. Therefore, how to improve the output power of the battery is a technical problem that needs to be solved urgently in the battery technology.
  • the purpose of this application is to provide a battery cell, a battery, an electrical equipment, and a manufacturing method and equipment for the battery cell. demand.
  • the present application provides a battery cell, comprising:
  • the adapter includes a first connecting part for connecting electrode terminals and a second connecting part for connecting electrode components, the first connecting part and the second connecting part are integrally arranged and connected to each other, and the first connecting part is a multi-layer structure And it includes multilayered conductive sheets, the second connection part is a single-layer structure, and the minimum thickness of the first connection part is greater than the maximum thickness of the second connection part.
  • the multi-layered arrangement of the first connecting portion facilitates the bending of the first connecting portion, and the thickness of the first connecting portion is increased under the requirement of convenient bending and process welding, and the turning
  • the adapter has a large overcurrent area, the adapter has a high overcurrent capability, and the resistance of the adapter is small, which improves the output power of the battery cell and meets the needs of power batteries.
  • the minimum thickness of the second connection portion is greater than the maximum thickness of any one layer of the multi-layer conductive sheets.
  • the thickness of the second connection portion is greater than the thickness of any one layer of the multi-layer conductive sheet, so that the thickness of each conductive sheet is thinner, which reduces the difficulty of bending the first connection portion and facilitates the realization of the first connection. Bending of the part.
  • the thickness of each layer of the conductive sheet in the multilayer conductive sheet is equal.
  • each layer of conductive sheets is equal, which is convenient for processing, modularized production, and reduces processing cost; at the same time, it is convenient to realize the bending of the first connecting part, and the bending effect of the first connecting part is good.
  • two adjacent layers of conductive sheets in the multilayer conductive sheets are welded or connected by conductive glue.
  • connection method of the two adjacent layers of conductive sheets can ensure the connection strength and also ensure the passage of current.
  • the first connection part and the second connection part are welded or connected by conductive glue.
  • connection by welding or conductive glue can ensure the connection strength, and can also ensure the passage of current.
  • the second connecting part includes a first surface facing the electrode assembly and a second surface facing away from the electrode assembly, and the first connecting part is connected to the second surface.
  • the second surface of the second connecting portion facing away from the electrode assembly is connected to the first connecting portion, which can avoid interference with the welding of the second connecting portion and the electrode assembly, and ensure stable connection between the second connecting portion and the electrode assembly.
  • the first connection part includes a first segment, a second segment and a third segment, the first segment is used for connecting with the second connection part, the third segment is used for connecting with the electrode terminal, and the second segment is used for connecting with the electrode terminal.
  • the segment connects the first segment and the third segment, and the first segment and the third segment are located on both sides in the thickness direction of the second end, respectively.
  • the first connection portion is bent in an S-shape, so that the bending and extension of the conductive sheets of each layer are the same, that is, the edges of both ends of the conductive sheets of each layer are flush, and on the one hand, the layers of the first connection portion are The conductive sheet is uniformly stressed and not prone to breakage.
  • the height of the first connection part after bending is controlled, which ensures the energy density of the battery cell, avoids the delamination phenomenon of the multi-layer structure, and the inner layer is prone to wrinkles, and then As a result, the height increases after bending, which occupies installation space and is inconvenient for the assembly of battery cells.
  • two adjacent layers of conductive sheets in the multi-layer conductive sheet are welded at the third section or connected by conductive glue, so that the hardness of the third section is greater than that of the second section.
  • the hardness of the third segment is greater than that of the second segment, which facilitates the bending of the third segment relative to the second segment and reduces the difficulty of bending.
  • two adjacent layers of conductive sheets in the multilayer conductive sheet are welded at the first section or connected by conductive glue, so that the hardness of the first section is greater than that of the second section.
  • the hardness of the first segment is greater than that of the second segment, which facilitates the bending of the second segment relative to the first segment and reduces the difficulty of bending.
  • the second connection part includes a first connection area for connecting with the first connection part and two second connection areas for connection with the electrode assembly, the first connection areas are located in two second connection areas. between the two connecting regions.
  • the first connection area is located between the two second connection areas to ensure the connection stability between the second connection part and the electrode assembly.
  • the second connection part includes a main body area, a first connection area for connection with the first connection part, and two second connection areas for connection with the electrode assembly, the first connection areas are located at Between the two second connection regions, the maximum thickness of the first connection region is smaller than the minimum thickness of the main body region, and the maximum thickness of the first connection region is smaller than the minimum thickness of the smaller of the two second connection regions.
  • the thickness of the first connection area is set, which reduces the assembly height of the first connection part and the second connection part, reduces the space occupation, and improves the energy density of the battery cell.
  • the electrode terminal includes a first connector and two second connectors
  • the battery cell further includes: a case with an end opening, and the electrode assembly and the adapter are arranged in the case;
  • the cover is used to cover the opening of the end portion, two second connecting pieces are mounted on the end cover and are arranged at intervals along the first direction, the two second connecting pieces are both connected with the first connecting portion, and the first connecting piece is located at the end of the end cover.
  • the side facing away from the interior of the casing is connected with the two second connecting pieces; the first insulating piece is arranged between the first connecting piece and the end cover, and is used for isolating the first connecting piece and the end cover.
  • the first insulating member isolates the first connecting member and the end cap, so as to achieve insulation between the first connecting member and the end cap.
  • the first connecting member includes a first side surface, a second side surface, a third side surface and a fourth side surface, the second side surface and the third side surface are oppositely arranged along the first direction, and the first side surface and the fourth side surface are opposite to each other along the first direction.
  • the sides are arranged opposite along the second direction, the second direction, the first direction and the thickness direction of the end cover are perpendicular to each other, the first side, the second side and the third side are all flat, and the fourth side is the center of the end cover. Arc face at the center of the circle.
  • the arrangement of the first connecting piece can increase the overcurrent, and can also prevent the first insulating piece from being deformed and damaged during welding and assembly.
  • the present application also provides a battery, including the above-mentioned battery cell.
  • the present application also provides an electrical device, including the above-mentioned battery.
  • the present application also provides a method for manufacturing a battery cell, the manufacturing method comprising:
  • an adapter includes a first connection part and a second connection part, the first connection part and the second connection part are arranged in a body and connected to each other, and the first connection part is a multi-layer structure and includes multilayer conductive layers arranged in layers sheet, the second connection part is a single-layer structure, and the minimum thickness of the first connection part is greater than the maximum thickness of the second connection part;
  • the first connection part is connected to the electrode terminal, and the second connection part is connected to the electrode assembly.
  • the present application also provides a manufacturing equipment for a battery cell, comprising:
  • an adapter includes a first connection part and a second connection part, the first connection part and the second connection part are arranged in a body and connected to each other, and the first connection part is a multi-layer structure and includes multilayer conductive layers arranged in layers sheet, the second connection part is a single-layer structure, and the minimum thickness of the first connection part is greater than the maximum thickness of the second connection part;
  • the mounting module is used for connecting the first connection part to the electrode terminal and for connecting the second connection part to the electrode assembly.
  • FIG. 1 is a schematic structural diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery according to an embodiment of the application.
  • FIG. 3 is an exploded view of a battery cell according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of an expanded state of an adapter according to an embodiment of the application.
  • FIG. 5 is a schematic diagram of a bending state of an adapter according to an embodiment of the application.
  • FIG. 6 is a top view of an adapter according to an embodiment of the application.
  • Fig. 7 is the sectional view of the A-A direction of Fig. 6;
  • Fig. 8 is an enlarged view at B of Fig. 7;
  • FIG. 9 is a schematic diagram of the first connecting portion after bending according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a second connecting portion according to an embodiment of the application.
  • FIG. 11 is a partial enlarged view of a connection position between the first connection portion and the first connection region according to an embodiment of the application;
  • FIG. 12 is a schematic structural diagram of some components of a battery cell according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a first connector according to an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a first insulating member according to an embodiment of the application.
  • 15 is a schematic structural diagram of an end cap assembly according to an embodiment of the application.
  • 16 is a schematic flowchart of a method for manufacturing a battery cell according to an embodiment of the application.
  • FIG. 17 is a schematic block diagram of an apparatus for manufacturing a battery cell according to an embodiment of the application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, and the positive electrode active material layer is not coated.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet comprises a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), and the like.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the battery cell further includes an adapter and an electrode terminal, and the adapter is used to connect the electrode assembly and the electrode terminal, so as to conduct electric energy of the electrode assembly through the electrode terminal.
  • the electrode terminal connected to the positive electrode tab is the positive electrode terminal
  • the electrode terminal connected to the negative electrode tab is the negative electrode terminal.
  • the adapter is generally bent to reduce the assembly height.
  • the adaptor is a component connecting the electrode assembly and the electrode terminal in the battery cell, and its resistance directly affects the internal resistance of the entire battery cell, thereby affecting the output power of the battery cell;
  • the thickness of the adapter is usually small, resulting in a small overcurrent area of the adapter, and a large resistance of the adapter, resulting in a voltage drop loss, resulting in a relatively high internal resistance of the battery cell. large, the output power is low.
  • the present application provides a technical solution, under the premise of convenient bending and process welding, by locally increasing the thickness of the adapter to increase the flow area, improve the flow capacity of the adapter and reduce the transfer rate.
  • the resistance of the connector increases the output power of the battery cell and meets the needs of the power battery.
  • FIG. 1 shows a schematic structural diagram of a vehicle 1000 according to an embodiment of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended range vehicle car etc.
  • the battery 100 is provided inside the vehicle 1000 .
  • the battery 100 may be provided at the bottom or the front or rear of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as the operating power source of the vehicle 1000 , for the circuit system of the vehicle 1000 , such as for starting, navigating and running of the vehicle 1000 .
  • the battery 100 can not only be used as the operating power source of the vehicle 1000 , but also can be used as the driving power source of the vehicle 1000 to provide driving force for the vehicle 1000 instead of or partially instead of fuel or natural gas.
  • the interior of the vehicle 1000 may also be provided with a motor 200 and a controller 300 , and the controller 300 is used to control the battery 100 to supply power to the motor 200 , for example, for starting, navigating, and running the vehicle 1000 for working electricity requirements.
  • the battery 100 may include a plurality of battery cells, wherein the plurality of battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connection.
  • the battery 100 may also be referred to as a battery pack.
  • a plurality of battery cells can be connected in series or in parallel or in a mixed connection to form a battery module, and then a plurality of battery modules can be connected in series, in parallel or in a mixed connection to form the battery 100 . That is, a plurality of battery cells may directly form the battery 100 , or may form a battery module first, and then the battery module may form the battery 100 .
  • FIG. 2 shows a schematic structural diagram of a battery 100 according to an embodiment of the present application.
  • the battery 100 may include a plurality of battery cells 101 and a box body 102 , the box body 102 has a hollow structure inside, and the plurality of battery cells 101 are accommodated in the box body 102 .
  • the box 102 includes a first part 1021 and a second part 1022, the first part 1021 includes an accommodating space with an opening, and the second part 1022 is used to cover the opening of the accommodating space, so as to be connected with the first part 1021 to form a container for accommodating multiple The accommodating cavity of each battery cell 101 .
  • FIG. 3 shows an exploded view of a battery cell 101 according to an embodiment of the present application.
  • the battery cell 101 includes two electrode terminals 12 , an electrode assembly 13 and an adapter 11 .
  • the two electrode terminals 12 include a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is used for connecting with the positive electrode tab of the electrode assembly 13, the negative electrode terminal is used for connecting with the negative electrode tab of the electrode assembly 13, and the positive electrode terminal corresponds to one turn.
  • Connector 11 the negative electrode terminal corresponds to one adapter 11 .
  • FIG. 4 shows a schematic diagram of the adapter 11 before bending according to an embodiment of the application
  • FIG. 5 shows a schematic diagram of the adapter 11 after bending according to an embodiment of the application
  • a plan view of the adapter 11 according to an embodiment of the application is provided
  • FIG. 7 is a cross-sectional view taken along the line A-A of FIG. 6
  • FIG. 8 is an enlarged view of part B of FIG. 7 .
  • the adapter 11 includes a first connecting portion 111 for connecting the electrode terminal 12 (shown in FIG. 3 ) and a second connecting portion 112 for connecting the electrode assembly 13 (shown in FIG. 3 ).
  • the first connecting portion 111 and the second connecting portion 112 are provided separately and connected to each other.
  • the first connection portion 111 is a multi-layer structure and includes multilayer conductive sheets 110 arranged in layers, and the second connection portion 112 is a single-layer structure.
  • the minimum thickness of the first connection portion 111 is greater than the maximum thickness of the second connection portion 112 .
  • the multi-layered arrangement of the first connecting portion 111 is convenient to realize the bending of the first connecting portion 111; under the requirement of convenient bending and process welding, the thickness of the first connecting portion 111 is increased, and the transfer
  • the adapter 11 has a large overcurrent area, the adapter 11 has a strong overcurrent capability, and the adapter 11 has a small resistance, which improves the output power of the battery cell 101 and meets the requirements of a power battery.
  • the multi-layer structure of the first connecting portion 111 can also absorb and disperse the stress during bending, so as to reduce the fatigue condition of the adapter 11 at the bending position.
  • the conductive sheet 110 can be a metal sheet (eg, copper sheet, aluminum sheet or other conductive metal sheet), which has good electrical conductivity, so as to facilitate the export of the electrical energy of the electrode assembly 13 .
  • the conductive sheet 110 may also be a non-metallic conductive sheet, such as a graphite sheet or a conductive ceramic sheet.
  • the minimum thickness of the first connecting portion 111 refers to that when the first connecting portion 111 has an irregular thickness structure, for example, when the conductive sheet 110 is a sheet-like structure with unequal thicknesses, the first connecting portion 111 as a whole has the smallest thickness
  • the thickness value at is the minimum thickness of the first connecting portion 111; when the first connecting portion 111 is a structure with regular thickness, for example, when the conductive sheet 110 is a sheet-like structure of equal thickness, the total thickness value of the plurality of conductive sheets 110 That is, the minimum thickness of the first connecting portion 111 .
  • the maximum thickness of the second connecting portion 112 refers to that, when the second connecting portion 112 is an unequal thickness structure, the thickness value at the maximum thickness of the second connecting portion 112 is the maximum thickness of the second connecting portion 112; When the connecting portion 112 has an equal thickness structure, the thickness value of any position of the second connecting portion 112 is the maximum thickness of the second connecting portion 112 .
  • the minimum thickness of the second connection portion 112 is greater than the maximum thickness of any one layer of the conductive sheets 110 in the multilayer conductive sheets 110 . It can be understood that the thickness of the second connection portion 112 is greater than the thickness of any layer of the conductive sheet 110 , that is, the thickness of the conductive sheet 110 can be thinner, which reduces the difficulty of bending the first connection portion 111 and facilitates the realization of the first connection portion 111 Therefore, the bending height of the adapter 11 is low, the space occupation is reduced, and the energy density of the battery cell 101 is guaranteed. For example, in FIGS. 7 and 8 , the thickness of the second connection portion 112 is greater than the thickness of any one layer of the conductive sheet 110 in the multilayer conductive sheet 110 .
  • the second connecting portion 112 is disc-shaped, the size of the second connecting portion 112 is substantially the same as the size of the end face of the electrode assembly 13 , and the second connecting portion 112 is connected to the electrode assembly. 13 has a larger contact area and better overcurrent capability. Therefore, the thickness of the second connection portion 112 can be smaller than the minimum thickness of the multilayer conductive sheet 110, and the second connection portion 112 does not need to be thickened or arranged in a multi-layer structure. .
  • the second connecting portion 112 and the electrode assembly 13 are connected and fixed by penetration welding. If the entire adapter 11 adopts a multi-layer structure, that is, the second connecting portion 112 also adopts a multilayer structure, the adapter 11 cannot be multi-layered.
  • the layer pier is as thin as the thickness of the process welding, and the multilayer structure is easy to crack when the pier is thin; in addition, the adapter 11 used to connect with the negative electrode tab needs to be electroplated in the area where it is welded with the negative electrode tab. During electroplating, the electroplating solution It will remain in the gap of the multi-layer structure, causing corrosion and affecting the use.
  • the thickness of the second connecting portion 112 should not be too thick, for example, the thickness of the second connecting portion 112 may be 0.3-0.4 mm.
  • the thickness of any one layer of the conductive sheet 110 in the multilayer conductive sheet 110 is smaller than the minimum thickness of the second connection portion 112, for example, the thickness of each layer of the conductive sheet 110 may be 0.05-0.1 mm,
  • the first connection part 111 may include 8-10 layers of conductive sheets 110 .
  • the thickness of each layer of the conductive sheets 110 in the multilayer conductive sheets 110 is equal.
  • the multi-layer conductive sheet 110 adopts the same thickness, which is convenient for processing, modularized production, and reduces the processing cost.
  • the thickness of each layer of the conductive sheet 110 in the multi-layer conductive sheet 110 may also be unequal. According to different usage requirements, the multi-layer conductive sheet 110 is designed to be a conductive sheet 110 with different thickness specifications.
  • two adjacent layers of conductive sheets 110 in the multilayer conductive sheets 110 are welded or connected by conductive glue.
  • the connection method of welding or conductive glue can ensure the conductivity between the multi-layer conductive sheets 110, so as to ensure the passage of current, and at the same time, the connection strength can also be ensured.
  • the two adjacent layers of conductive sheets 110 are laser welded, so that the two adjacent layers of conductive sheets 110 have better connection stability, and can also ensure the passage of current.
  • the connection manner of two adjacent layers of conductive sheets 110 may also be other manners that can realize metal connection, such as riveting, bolt connection, and the like.
  • the first connecting part 111 includes a first segment 1111 , a second segment 1112 and a third segment 1113 , and the first segment 1111 is used for connecting with the second connecting part 112 ,
  • the third section 1113 is used to connect with the electrode terminal 12 , and the second section 1112 connects the first section 1111 and the third section 1113 ; before the adapter 11 is bent, as shown in FIG. 4 , along the length of the adapter 11 , the first section 1111 and the third section 1113 are located at both ends of the second section 1112; after the adapter 11 is bent, as shown in FIG. both sides in the thickness direction.
  • first bending area 113 between the first segment 1111 and the second segment 1112
  • second bending area 114 between the second segment 1112 and the third segment 1113
  • first connection The part 111 is S-shaped after being bent; it can be understood that the second section 1112 is bent relative to the first section 1111 around the first bending axis 115 to form a first bending area 113, and the third section 1113 is relative to the second section.
  • the 1112 is bent around the second bending axis 116 to form a second bending area 114 .
  • the first connecting part 111 has a first surface (not shown in the figure) and a second surface (not shown in the figure) opposite to each other, and the bending form of the first connecting part 111, at the first bending area 113, the first One side is located in the inner circle of the first bending area 113, and the second side is located in the outer circle of the first bending area 113.
  • the conductive sheet 110 close to the first side has a smaller bending radius
  • the conductive sheet 110 close to the second side has a smaller bending radius.
  • FIG. 9 shows a schematic diagram of the bending of the first connecting portion 111 according to an embodiment of the present application.
  • the first connection portion 111 is bent twice, the bending and extension of the conductive sheets 110 of each layer are the same, that is, the edges of both ends of the conductive sheets 110 of each layer are flush.
  • the layered conductive sheet 110 is uniformly stressed and not prone to breakage. On the other hand, it controls the height of the first connecting portion 111 after bending, ensures the energy density of the battery cell 101, avoids delamination in the multi-layer structure, and the inner layer Wrinkles are prone to occur, which in turn leads to increased height after bending, occupying installation space and inconvenient to assemble the battery cells 101 .
  • two adjacent layers of conductive sheets 110 in the multilayer conductive sheet 110 are welded at the third section 1113 or connected by conductive glue, so that the hardness of the third section 1113 is greater than that of the second section 1112 hardness. It can be understood that when two adjacent layers of conductive sheets 110 are welded at the third section 1113 or connected by conductive glue, the hardness of the third section 1113 is increased, and when the third section 1113 is bent relative to the second section 1112 , it is easy to guide the deformation of the first connecting portion 111 at the connection between the third segment 1113 and the second segment 1112 , which reduces the difficulty of bending.
  • two adjacent layers of conductive sheets 110 in the multilayer conductive sheet 110 are welded at the first section 1111 or connected by conductive glue, so that the hardness of the first section 1111 is greater than that of the second section 1112 hardness. It can be understood that when two adjacent layers of conductive sheets 110 are welded at the first section 1111 or connected by conductive glue, the hardness of the first section 1111 is increased, and when the first section 1111 is bent relative to the second section 1112 , it is easy to guide the deformation of the first connecting portion 111 at the connection between the first segment 1111 and the second segment 1112 , which reduces the difficulty of bending.
  • FIG. 4 shows the area division of the first segment 1111 , the second segment 1112 and the third segment 1113 of the first connecting part 111 .
  • the schematic diagram of the connection area of the conductive sheet 110 at the first section 1111, the oblique line at the third section 1113 represents the schematic diagram of the connection area of the multi-layer conductive sheet 110 at the third section 1113, not after the multi-layer conductive sheet 110 is connected shape.
  • the first connection portion 111 and the second connection portion 112 are welded or connected by conductive glue. Welding or conductive glue connection can ensure the connection strength, and also ensure the passage of current.
  • the first connection part 111 and the second connection part 112 are welded by laser, so that the first connection part 111 and the second connection part 112 have better connection stability, and can also ensure the passage of current.
  • the connection manner of the first connection portion 111 and the second connection portion 112 may also be other manners that can realize metal connection, such as riveting, bolt connection, and the like.
  • the welding of the first connecting portion 111 and the second connecting portion 112 may be that the multi-layer conductive sheet 110 is welded to the second connecting portion 112 at the same time; After welding, the whole multilayer conductive sheet 110 is welded to the second connection portion 112; it can also be that after the first layer of the conductive sheet 110 and the second connection portion 112 in the multilayer conductive sheet 110 are welded, two adjacent ones of the multilayer conductive sheet 110 are welded. The layer conductive sheet 110 is welded.
  • the second connecting portion 112 includes a first surface 1124 facing the electrode assembly 13 and a second surface 1125 facing away from the electrode assembly 13 .
  • the connecting portion 111 is connected to the second surface 1125 . Since the first surface 1124 is welded with the electrode assembly 13 , the connection between the first connecting portion 111 and the second surface 1125 can avoid interference with the welding of the second connecting portion 112 and the electrode assembly 13 , and ensure the connection between the second connecting portion 112 and the electrode assembly 13 . connection area, thereby ensuring the stability of the two.
  • FIG. 10 shows a schematic structural diagram of the second connection portion 112 according to an embodiment of the present application.
  • the second connection part 112 includes a first connection area 1121 for connection with the first connection part 111 and a second connection area for connection with the electrode assembly 13
  • the connection area 1122, the first connection area 1121 is located between the two second connection areas 1122.
  • the first connection area 1121 is located between the two second connection areas 1122, and the assembly space is reasonably allocated to ensure that the connection between the second connection part 112 and the electrode assembly 13 is balanced in force, and to ensure the connection between the first connection part 111 and the second connection part 112. Stablize.
  • the second connecting part 112 includes a main body area 1120 , a first connecting area 1121 for connecting with the first connecting part 111 , and a first connecting area 1121 for connecting with the first connecting part 111 .
  • the two second connection regions 1122 connected by the electrode assembly 13 the first connection region 1121 is located between the two second connection regions 1122, the maximum thickness of the first connection region 1121 is smaller than the minimum thickness of the main body region 1120, and the first connection region The maximum thickness of 1121 is smaller than the minimum thickness of the smaller one of the two second connection regions 1122 .
  • the first connection region 1121 can be formed by reducing the thickness of the second connection portion 112. Under the condition of ensuring the connection between the first connection portion 111 and the first connection region 1121, the thickness of the first connection region 1121 should be reduced as much as possible. It can be understood that Therefore, the first connecting region 1121 is the thinnest part of the second connecting portion 112 .
  • the assembly thickness of the first connection portion 111 and the first connection area 1121 after being connected is thinner than the assembly thickness of the first connection portion 111 and the main body area 1120 and the second connection area 1122.
  • the first connection portion 111 and the second connection portion 112 The assembled space occupies less space, and the energy density of the battery cell 101 is improved. For example, FIG.
  • FIG. 11 shows a partial enlarged view of the connection position between the first connection part 111 and the first connection area 1121 according to an embodiment of the present application.
  • the thickness of the first connection area 1121 is smaller than that of the main body area 1120 and
  • the thickness of the second connection region 1122 and the second surface 1125 of the second connection portion 112 form a stepped surface between the first connection region 1121 and the main body region 1120 .
  • the second connection area 1122 faces the electrode assembly relative to the main body area 1120 13 protruding.
  • the two opposite surfaces in the thickness direction of the main body region 1120 are the first surface 1124 and the second surface 1125 respectively, and the second connection region 1122 protrudes out of the first surface 1124 along the direction from the second surface 1125 to the first surface 1124 .
  • Surface 1124 is the two opposite surfaces in the thickness direction of the main body region 1120.
  • the second connection area 1122 is a V-shaped structure, and V The type structure points to the center of the second connection portion 112 , and the two second connection regions 1122 are arranged opposite to each other to ensure that the connection between the second connection portion 112 and the electrode assembly 13 is balanced in force.
  • the first connection area 1121 is located between the two second connection areas 1122, and the outline of the first connection area 1121 matches the outline of the two second connection areas 1122 to ensure that the first connection part 111 and the second connection part 112 have
  • the larger contact area is convenient to ensure the connection stability of the first connection part 111 and the second connection part 112 .
  • the portion of the first connecting portion 111 connected to the second connecting portion 112 ie, the first segment 1111
  • the portion of the first connecting portion 111 connected to the second connecting portion 112 is a trapezoidal structure.
  • the second connection part 112 is provided with a through hole 1123 , for example, the through hole 1123 may be located in the middle of the second connection part 112 , when the second connecting part 112 is assembled with the electrode assembly 13, the through hole 1123 is aligned with the winding center hole of the electrode assembly 13 to realize the assembly and positioning of the second connecting part 112 and the electrode assembly 13; at the same time, when the electrolyte is injected It is convenient for the electrolyte to contact the electrode assembly 13 after passing through the through hole 1123 to infiltrate the electrode assembly 13 , and the air in the electrode assembly 13 or the gas after the chemical reaction of the electrolyte can be discharged through the through hole 1123 .
  • a plurality of through holes 1123 may be provided, and may be distributed in other regions of the main body region 1120 in addition to being provided in the middle of the second connection
  • FIG. 12 shows a schematic structural diagram of some components of the battery cell 101 according to an embodiment of the present application.
  • the electrode terminal 12 includes a first connector 121 and two second connectors 122 ; the battery cell 101 further includes a housing 14 , an end cap 151 and The first insulating member 153 .
  • the casing 14 has an end opening 141, and the electrode assembly 13 and the adapter 11 are arranged in the casing 14; the end cover 151 is used to cover the end opening 141, and the two second connecting pieces 122 are mounted on the end cover 151 and are arranged along the first
  • the two second connecting members 122 are both connected to the first connecting portion 111 , and the first connecting members 121 are located on the side of the end cover 151 away from the interior of the housing 14 and are connected to the two second connecting members 122 .
  • the first connector 121 is also used for electrical connection with other battery cells 101 or other current collecting components; the first insulator 153 is provided on the first The connection between the connector 121 and the end cover 151 is used to isolate the first connector 121 and the end cover 151 to achieve insulation between the first connector 121 and the end cover 151 .
  • the first direction refers to the direction indicated by X shown in FIG. 12 , which can be understood as the width direction of the adapter 11 .
  • the shape of the casing 14 is determined according to the combined shape of one or more electrode assemblies 13.
  • the casing 14 can be a hollow cuboid, a square or a cylinder, and at least one face of the casing 14 has an end opening 141 so that a One or more electrode assemblies 13 and adapters 11 may be placed in the housing 14 .
  • the casing 14 is a cylinder, and an end surface of the casing 14 is provided with an end opening 141 .
  • the end cap 151 covers the end opening 141 and is connected to the casing 14 to form a closed cavity for placing the electrode assembly 13 .
  • the housing 14 is filled with an electrolyte, such as an electrolytic solution.
  • the casing 14 has two opposite end openings 141 , the two end openings 141 correspond to the positive electrode tab and the negative electrode tab of the electrode assembly 13 respectively, and each end opening 141
  • the end cap assembly 150 includes an end cap 151 , a first insulating member 153 , a first connecting member 121 , and a second connecting member 122 .
  • the first connecting part 111 is provided with a first connecting hole 1114 and a second connecting hole 1115 corresponding to the two second connecting pieces 122 , and one second connecting piece 122 passes through the first connecting hole 1114, the end cap 151 and the first insulating member 153 and is connected to the first connecting member 121, and the other second connecting member 122 passes through the second connecting hole 1115, the end cap 151 and the first insulating member After 153 , it is connected to the first connecting piece 121 , so as to ensure the stability of the connection between the first connecting part 111 and the first connecting piece 121 .
  • the first connecting piece 121 is provided with a third connecting hole 1215 and a fourth connecting hole 1216 for corresponding to two second connecting pieces 122, one second connecting piece 122 passing through the first connecting hole 1114, the end cap 151 and the
  • the first insulating member 153 is then inserted into the third connecting hole 1215 and riveted with the first connecting member 121
  • the other second connecting member 122 is inserted into the fourth connecting hole 1115 , the end cap 151 and the first insulating member 153 after passing through the second connecting hole 1115 , the end cap 151 and the first insulating member 153 .
  • the connecting hole 1216 is riveted with the first connecting piece 121 .
  • a sealing ring 154 (as shown in FIG. 12 ) is provided at the connection between each second connecting member 122 and the end cap 151 to achieve insulation isolation between the electrode terminal 12 and the end cap 151 .
  • the number of the second connectors 122 can be selected according to the actual situation, for example, the number of the second connectors 122 can be one, or three or more.
  • the first connection portion 111 and the electrode terminal 12 are welded to ensure the connection strength between the first connection portion 111 and the electrode terminal 12 .
  • FIG. 13 shows a schematic structural diagram of the first connecting member 121 according to an embodiment of the present application
  • FIG. 14 shows a structural schematic diagram of the first insulating member 153 according to an embodiment of the present application
  • FIG. 15 shows an embodiment of the present application. Schematic diagram of the structure of the end cap assembly 150 .
  • the first connecting member 121 includes a first side surface 1211 , a second side surface 1212 , a third side surface 1213 and a fourth side surface 1214 .
  • the second side 1212 and the third side 1213 are oppositely arranged along the first direction X
  • the first side 1211 and the fourth side 1214 are oppositely arranged along the second direction Y
  • the second direction Y the first direction X and the thickness direction of the end cap 151 Z pairs are perpendicular to each other
  • the first side surface 1211 , the second side surface 1212 and the third side surface 1213 are all flat surfaces
  • the fourth side surface 1214 is an arc surface with the center of the end cover 151 as the center of the circle.
  • both ends of the second side surface 1212 along the second direction Y are respectively connected to the first side surface 1211 and the fourth side surface 1214
  • both ends of the third side surface 1213 along the second direction Y are respectively connected to the first side surface 1211 and the fourth side surface 1214 .
  • 1211 and the fourth side 1214 are connected.
  • the first side surface 1211, the second side surface 1212, the third side surface 1213 and the fourth side surface 1214 constitute the side surfaces of the first connector 121
  • the first connector 121 also has two end surfaces facing and away from the end cover 151 ( Not shown in the figure), the end face of the first connecting member 121 facing the end cap 151 is in contact with the first insulating member 153 .
  • the first insulating member 153 includes a bottom wall 1531 and a peripheral wall 1532 formed around the bottom wall 1531.
  • the bottom wall 1531 is located between the first connecting member 121 and the end cover 151, and the bottom wall 1531 is provided with a fifth connecting hole. 1533 and the sixth connecting hole 1534, the fifth connecting hole 1533 corresponds to the third connecting hole 1215, the sixth connecting hole 1534 corresponds to the fourth connecting hole 1216, for the two second connecting pieces 122 to pass through; the outline of the peripheral wall 1532 Corresponding to the side surface of the first connecting piece 121 , as shown in FIG. 15 , the peripheral wall 1532 wraps the above-mentioned side surface of the first connecting piece 121 to further ensure insulation isolation between the end cap 151 and the first connecting piece 121 .
  • the structural form of the first connector 121 in the embodiment of the present application has a larger overcurrent area, which improves the overcurrent capability and increases the output power of the battery cell 101 .
  • the fourth side surface 1214 is an arc surface, the fourth side surface 1214 is close to the edge of the end cover 151 relative to other side surfaces, and each point on the fourth side surface 1214 is along the radial direction of the end cover 151 to the edge of the end cover 151 The distance between them is equal, which can prevent the first insulating member 153 from being deformed and damaged during welding and assembling, which affects the aesthetic appearance.
  • the welding assembly here may include, but is not limited to, welding assembly of the end cap 151 and the housing 14 .
  • the end cap assembly 150 further includes a second insulating member 155 , the second insulating member 155 is disposed between the end cap 151 and the first connecting portion 111 , and the second insulating member 155 connects the end cap 151 is isolated from the first connection portion 111 .
  • An embodiment of the present application further provides an electrical device, and the electrical device may include the battery 100 in the foregoing embodiments.
  • the powered device may be a vehicle 1000, a ship, or a spacecraft.
  • the battery cell 101 , the battery 100 , and the electrical equipment according to the embodiments of the present application are described above, and the manufacturing method and device for the battery cell 101 according to the embodiment of the present application will be described below.
  • the parts that are not described in detail reference may be made to the foregoing embodiments. example.
  • FIG. 16 shows a schematic flowchart of a method for manufacturing a battery cell 101 according to an embodiment of the present application. As shown in Figure 16, the method may include:
  • the adapter 11 includes a first connection part 111 and a second connection part 112, the first connection part 111 and the second connection part 112 are provided separately and connected to each other, and the first connection part 111 is multiple
  • the layer structure includes multi-layer conductive sheets 110 arranged in layers, the second connection portion 112 is a single-layer structure, and the minimum thickness of the first connection portion 111 is greater than the maximum thickness of the second connection portion 112;
  • Step 440 connect the first connection part 111 to the electrode terminal 12 , and connect the second connection part 112 to the electrode assembly 13 .
  • steps “410, providing electrode terminals 12", “420, providing electrode assemblies 13" and “430, providing electrode assemblies 13” and “430, providing The order of the adapters 11" is not unique and can be adjusted.
  • steps “420, providing electrode assemblies 13", “410, providing electrode terminals 12" and “430, providing adapters 11” are performed in sequence; or, “430” , provide the adapter 11", “410, provide the electrode terminal 12" and “420, provide the electrode assembly 13” in turn; or, “430, provide the adapter 11", "420, provide the electrode assembly 13" and "410, Provide electrode terminal 12" is performed sequentially.
  • FIG. 17 shows a schematic block diagram of an apparatus 500 for manufacturing a battery cell according to an embodiment of the present application.
  • the manufacturing apparatus 500 of the battery cell may include a supply module 510 and an installation module 520 .
  • Provide module 510 for: providing electrode terminal 12; providing electrode assembly 13; providing adapter 11, adapter 11 including first connection part 111 and second connection part 112, first connection part 111 and second connection part 112 are separately arranged and connected to each other, the first connection part 111 is a multi-layer structure and includes multilayer conductive sheets 110 arranged in layers, the second connection part 112 is a single-layer structure, and the minimum thickness of the first connection part 111 is greater than that of the second connection the maximum thickness of the portion 112;
  • the mounting module 520 is used for connecting the first connection part 111 to the electrode terminal 12 and for connecting the second connection part 112 to the electrode assembly 13 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电设备、电池单体的制造方法及设备,属于电池技术领域。电池单体包括转接件,转接件包括用于连接电极端子的第一连接部和用于连接电极组件的第二连接部,第一连接部与第二连接部分体设置且相互连接,第一连接部为多层结构且包括层叠设置的多层导电片,第二连接部为单层结构,第一连接部的最小厚度大于第二连接部的最大厚度。该电池单体具有较小的内阻,能够提高电池单体的输出功率,满足功率型电池的需求。

Description

电池单体、电池、用电设备、电池单体的制造方法及设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电设备、电池单体的制造方法及设备。
背景技术
节能减排是汽车产业可持续发展的关键。电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术是关乎其发展的一项重要因素。
电池的输出功率是电池性能的重要评价指标。相关技术中,电池的输出功率较低,无法满足功率型电池的需求。因此,如何提高电池的输出功率,是电池技术中一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池、用电设备、电池单体的制造方法及设备,电池单体具有较小的内阻,能够提高电池单体的输出功率,满足功率型电池的需求。
本申请是通过下述技术方案实现的:
一方面,本申请提供了一种电池单体,包括:
转接件,包括用于连接电极端子的第一连接部和用于连接电极组件的第二连接部,第一连接部与第二连接部分体设置且相互连接,第一连接部为多层结构且包括层叠设置的多层导电片,第二连接部为单层结构,第一连接部的最小厚度大于第二连接部的最大厚度。
根据本申请实施例的电池单体,第一连接部的多层设置,便于实现第一连接部的折弯,在满足方便折弯和工艺焊接需求下,增大第一连接部的厚度,转接件具有较大的过流面积,转接件的过流能力高,转接件的电阻小,提高了电池单体的输出功率,满足功率型电池的需求。
在本申请的一些实施例中,第二连接部的最小厚度大于多层导电片中任意一层导电片的最大厚度。
在上述方案中,第二连接部的厚度大于多层导电片任意一层导电片的厚度,使得每层导电片的厚度较薄,降低了第一连接部的折弯难度,便于实现第一连接部的折 弯。
在本申请的一些实施例中,多层导电片中的各层导电片的厚度均相等。
在上述方案中,各层导电片的厚度相等,便于加工,模块化生产,减少了加工成本;同时,便于实现第一连接部的折弯,第一连接部的折弯效果好。
在本申请的一些实施例中,多层导电片中的相邻两层导电片焊接或通过导电胶连接。
在上述方案中,相邻两层导电片的连接方式,能够保证连接强度,同时还能够保证电流的通过。
在本申请的一些实施例中,第一连接部与第二连接部焊接或通过导电胶连接。
在上述方案中,采用焊接或导电胶连接的方式能够保证连接强度,同时还能够保证电流的通过。
在本申请的一些实施例中,第二连接部包括面向电极组件的第一表面和背向电极组件的第二表面,第一连接部连接于第二表面。
在上述方案中,第二连接部的背向电极组件第二表面与第一连接部连接,能够避免干涉第二连接部与电极组件的焊接,保证第二连接部与电极组件连接稳定。
在本申请的一些实施例中,第一连接部包括第一段、第二段和第三段,第一段用于与第二连接部连接,第三段用于与电极端子连接,第二段连接第一段和第三段,第一段和第三段分别位于第二端的厚度方向的两侧。
在上述方案中,第一连接部呈S型折弯,使得各层导电片的折弯延伸量相同,即各层导电片的两端边缘齐平,进而一方面使得第一连接部的各层导电片受力均匀,不易发生断裂,另一方面控制第一连接部折弯后的高度,保证了电池单体的能量密度,避免多层结构出现分层现象,并且内层容易出现褶皱,进而导致折弯后高度增加,占用安装空间且不便于电池单体的装配的问题。
在本申请的一些实施例中,多层导电片中的相邻两层导电片在第三段处焊接或通过导电胶连接,以使第三段的硬度大于第二段的硬度。
在上述方案中,第三段的硬度较第二段大,便于实现第三段相对于第二段的折弯,降低了折弯难度。
在本申请的一些实施例中,多层导电片中的相邻两层导电片在第一段处焊接或通过导电胶连接,以使第一段的硬度大于第二段的硬度。
在上述方案中,第一段的硬度较第二段大,便于实现第二段相对于第一段的折弯,降低了折弯难度。
在本申请的一些实施例中,第二连接部包括用于与第一连接部连接的第一连接区和用于与电极组件连接的两个第二连接区,第一连接区位于两个第二连接区之间。
在上述方案中,第一连接区位于两个第二连接区之间,保证第二连接部与电极组件的连接稳定性。
在本申请的一些实施例中,第二连接部包括主体区、用于与第一连接部连接的第一连接区和用于与电极组件连接的两个第二连接区,第一连接区位于两个第二连接区之间,第一连接区的最大厚度小于主体区的最小厚度,且第一连接区的最大厚度小 于两个第二连接区中厚度较小一者的最小厚度。
在上述方案中,第一连接区的厚度设置,降低了第一连接部与第二连接部的装配高度,降低了空间占用,提高了电池单体的能量密度。
在本申请的一些实施例中,电极端子包括第一连接件和两个第二连接件,电池单体还包括:壳体,具有端部开口,电极组件和转接件设于壳体内;端盖,用于覆盖端部开口,两个第二连接件安装于端盖且沿第一方向间隔排布,两个第二连接件均与第一连接部连接,第一连接件位于端盖的背离壳体内部的一侧且与两个第二连接件连接;第一绝缘件,设置于第一连接件和端盖之间,用于隔绝第一连接件和端盖。
在上述方案中,第一绝缘件隔绝第一连接件和端盖,实现第一连接件与端盖之间的绝缘。
在本申请的一些实施例中,第一连接件包括第一侧面、第二侧面、第三侧面和第四侧面,第二侧面和第三侧面沿第一方向相对设置,第一侧面和第四侧面沿第二方向相对设置,第二方向、第一方向和端盖的厚度方向两两垂直,第一侧面、第二侧面和第三侧面均为平面,第四侧面为以端盖的中心为圆心的圆弧面。
在上述方案中,第一连接件的设置方式,能够增大过流,还能够防止第一绝缘件在焊接装配时变形损坏。
另一方面,本申请还提供了一种电池,包括上述的电池单体。
又一方面,本申请还提供了一种用电设备,包括上述的电池。
又一方面,本申请还提供了一种电池单体的制造方法,该制造方法包括:
提供电极端子;
提供电极组件;
提供转接件,转接件包括第一连接部和第二连接部,第一连接部与第二连接部分体设置且相互连接,第一连接部为多层结构且包括层叠设置的多层导电片,第二连接部为单层结构,第一连接部的最小厚度大于第二连接部的最大厚度;
将第一连接部连接于电极端子,将第二连接部连接于电极组件。
又一方面,本申请还提供了一种电池单体的制造设备,包括:
提供模块,用于:
提供电极端子;
提供电极组件;
提供转接件,转接件包括第一连接部和第二连接部,第一连接部与第二连接部分体设置且相互连接,第一连接部为多层结构且包括层叠设置的多层导电片,第二连接部为单层结构,第一连接部的最小厚度大于第二连接部的最大厚度;
安装模块,用于将第一连接部连接于电极端子,用于将第二连接部连接于电极组件。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其他目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一实施例的一种车辆的结构示意图;
图2为本申请一实施例的电池的结构示意图;
图3为本申请一实施例的电池单体的分解图;
图4为本申请一实施例的转接件的展开状态示意图;
图5为本申请一实施例的转接件的折弯状态示意图;
图6为本申请一实施例的转接件的俯视图;
图7为图6的A-A方向的剖视图;
图8为图7的B处放大图;
图9为本申请一实施例的第一连接部折弯后的示意图;
图10为本申请一实施例的第二连接部的结构示意图;
图11为本申请一实施例的第一连接部与第一连接区的连接位置的局部放大图;
图12为本申请一实施例的电池单体的部分部件的结构示意图;
图13为本申请一实施例的第一连接件的结构示意图;
图14为本申请一实施例的第一绝缘件的结构示意图;
图15为本申请一实施例的端盖组件的结构示意图;
图16为本申请一实施例的电池单体的制造方法的示意性流程图;
图17为本申请一实施例的电池单体的制造设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;101-电池单体;11-转接件;110- 导电片;111-第一连接部;1111-第一段;1112-第二段;1113-第三段;1114-第一连接孔;1115-第二连接孔;112-第二连接部;1120-主体区;1121-第一连接区;1122-第二连接区;1123-通孔;1124-第一表面;1125-第二表面;113-第一弯折区;114-第二弯折区;115-第一折弯轴线;116-第二折弯轴线;12-电极端子;121-第一连接件;1211-第一侧面;1212-第二侧面;1213-第三侧面;1214-第四侧面;1215-第三连接孔;1216-第四连接孔;122-第二连接件;13-电极组件;14-壳体;141-端部开口;150-端盖组件;151-端盖;153-第一绝缘件;1531-底壁;1532-周壁;1533-第五连接孔;1534-第六连接孔;154-密封圈;155-第二绝缘件;102-箱体;1021-第一部分;1022-第二部分;200-马达;300-控制器。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一 步定义和解释。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“底”、“内”、“外”、“周向”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性 物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还包括转接件和电极端子,转接件用于连接电极组件和电极端子,以将电极组件的电能通过电极端子导出。对应地,与正极极耳连接的电极端子为正电极端子,与负极极耳连接的电极端子为负电极端子。为了便于电池单体的装配、节省转接件的占用空间,转接件一般采用折弯的形式以降低装配高度。
发明人发现,导致电池单体的输出功率较低的原因,主要是热损失,而引起电池单体的热损失的原因有很多,例如热管理效果较差、电池单体的内阻较大等。发明人通过研究,进一步发现转接件作为电池单体中连接电极组件和电极端子的部件,其电阻大小直接影响整个电池单体的内阻,进而影响电池单体的输出功率;而在生产加工中为了方便折弯和工艺焊接,转接件的厚度通常较小,导致转接件的过流面积很小,转接件的电阻较大,存在压降损失,导致电池单体的内阻较大,输出功率较低。
鉴于此,本申请提供了一种技术方案,在满足方便折弯和工艺焊接的前提下,通过局部增加转接件的厚度,以增加过流面积,提高转接件的过流能力和降低转接件的电阻,提高电池单体的输出功率,满足功率型电池的需求。
本申请实施例描述的技术方案均适用于各种使用电池的设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车 辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,图1示出了本申请一实施例的一种车辆1000的结构示意图,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置电池100。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分替代燃油或天然气为车辆1000提供驱动力。
车辆1000的内部还可以设置马达200以及控制器300,控制器300用来控制电池100为马达200的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
为了满足不同的使用电力需求,电池100可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池100也可以称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池100。也就是说,多个电池单体可以直接组成电池100,也可以先组成电池模块,电池模块再组成电池100。
图2示出了本申请一实施例的电池100的结构示意图。图2中,电池100可以包括多个电池单体101和箱体102,箱体102内部为中空结构,多个电池单体101容纳于箱体102内部。箱体102包括第一部分1021和第二部分1022,第一部分1021包括带有开口的容纳空间,第二部分1022用于盖设于容纳空间的开口处,以与第一部分1021连接形成用于容纳多个电池单体101的容纳腔体。
图3示出了本申请一实施例的电池单体101的分解图。如图3所示,电池单体101包括两个电极端子12、电极组件13和转接件11。两个电极端子12包括正电极端子和负电极端子,正电极端子用于与电极组件13的正极极耳连接,负电极端子用于与电极组件13的负极极耳连接,正电极端子对应一个转接件11,负电极端子对应一个转接件11。
图4示出了本申请一实施例的转接件11的折弯前的示意图;图5示出了本申请一实施例的转接件11的折弯后的示意图;图6示出了本申请一实施例的转接件11的俯视图;图7为图6的A-A方向的剖视图,图8为图7的B处放大图。
图4-图8中,转接件11包括用于连接电极端子12(图3所示)的第一连接部111和用于连接电极组件13(图3所示)的第二连接部112,第一连接部111与第二连接部112分体设置且相互连接。第一连接部111为多层结构且包括层叠设置的多层导电片110,第二连接部112为单层结构,第一连接部111的最小厚度大于第二连接部112的最大厚度。
该电池单体101,第一连接部111的多层设置,便于实现第一连接部111的折弯;在满足方便折弯和工艺焊接需求下,增大第一连接部111的厚度,转接件11具有较大的过流面积,转接件11的过流能力强,转接件11的电阻小,提高了电池单体101的输出功率,满足功率型电池的需求。同时,第一连接部111的多层结构还可吸收、分散折弯时的应力,减小转接件11在折弯处的疲劳情况。
需要指出的是,导电片110可以为金属片(例如铜片、铝片或其他导电金属片),具有较好的导电性能,以便于将电极组件13的电能导出。导电片110也可以为非金属导电片,例如石墨片、导电陶瓷片。第一连接部111的最小厚度是指,当第一连接部111为不规则厚度的结构时,例如导电片110为非等厚度的片状结构时,第一连接部111作为一个整体的厚度最小处的厚度值即为第一连接部111的最小厚度;当第一连接部111为规则厚度的结构时,例如导电片110为等厚度的片状结构时,多个导电片110的总厚度值即为第一连接部111的最小厚度。第二连接部112的最大厚度是指,当第二连接部112为非等厚度结构时,第二连接部112 的厚度最大处的厚度值即为第二连接部112的最大厚度;当第二连接部112为等厚度结构时,第二连接部112的任意位置的厚度值即为第二连接部112的最大厚度。
在本申请的一些实施例中,第二连接部112的最小厚度大于多层导电片110中任意一层导电片110的最大厚度。可以理解为,第二连接部112的厚度大于任意一层导电片110的厚度,也即导电片110的厚度可以较薄,降低第一连接部111的折弯难度,便于实现第一连接部111的折弯,进而保证转接件11的折弯后的高度较低,减少空间占用,保证电池单体101的能量密度。例如,图7和图8中,第二连接部112的厚度大于多层导电片110中任意一层导电片110的厚度。
在本申请的一些实施例中,如图3所示,第二连接部112为圆盘状,第二连接部112的尺寸与电极组件13的端面尺寸基本一致,第二连接部112与电极组件13具有较大的接触面积,具有较好的过流能力,因此,第二连接部112的厚度可以小于多层导电片110的最小厚度,第二连接部112无需加厚或者设置成多层结构。
第二连接部112与电极组件13采用穿透焊接的方式连接固定,如果转接件11整体都采用多层结构,即第二连接部112也采用多层结构,则转接件11无法从多层墩薄到工艺焊接的厚度,墩薄时多层结构容易开裂;另外,用于与负极极耳连接的转接件11需要在与负极极耳焊接的区域进行电镀,在电镀时,电镀液会残留在多层结构的间隙中,导致腐蚀,影响使用。为了便于第二连接部112与电极组件13的焊接,第二连接部112的厚度不宜过厚,例如,第二连接部112的厚度可以为0.3-0.4mm。为了便于第一连接部111折弯,多层导电片110中任意一层导电片110的厚度小于第二连接部112的最小厚度,例如,每层导电片110的厚度可以为0.05-0.1mm,第一连接部111可以包括8-10层导电片110。
在本申请的一些实施例中,多层导电片110中的各层导电片110的厚度均相等。多层导电片110采用相同的厚度,便于加工,模块化生产,减少了加工成本。
在本申请的其他实施例中,多层导电片110中各层导电片110的厚 度也可以不相等,根据不同的使用需求,多层导电片110设计成不同厚度规格的导电片110。
在本申请的一些实施例中,多层导电片110中的相邻两层导电片110焊接或通过导电胶连接。采用焊接或导电胶的连接方式,能够保证多层导电片110之间的导电性,以保证电流的通过,同时还能够保证连接强度。例如,相邻的两层导电片110激光焊接,使得相邻的两层导电片110具有较好的连接稳定性,还可以保证电流的通过。在本申请的其他实施例中,相邻两层导电片110的连接方式还可以为其他能够实现金属连接的方式,例如铆接、螺栓连接等。
在本申请的一些实施例中,如图4所示,第一连接部111包括第一段1111、第二段1112和第三段1113,第一段1111用于与第二连接部112连接,第三段1113用于与电极端子12连接,第二段1112连接第一段1111和第三段1113;在转接件11折弯前,如图4所示,沿转接件11的长度方向,第一段1111和第三段1113位于第二段1112的两端;在转接件11折弯后,如图5所示,第一段1111和第三段1113分别位于第二段1112的厚度方向的两侧。
如图4和图5所示,第一段1111和第二段1112之间具有第一弯折区113,第二段1112与第三段1113之间具有第二弯折区114,第一连接部111折弯后呈S型;可以理解为,第二段1112相对于第一段1111绕第一折弯轴线115折弯后形成第一弯折区113,第三段1113相对于第二段1112绕第二折弯轴线116折弯后形成第二弯折区114。第一连接部111具有相对的第一面(图中未示出)和第二面(图中未示出),第一连接部111的折弯形式,在第一弯折区113处,第一面位于第一弯折区113的内圈,第二面位于第一弯折区113的外圈,靠近第一面的导电片110的折弯半径较小,靠近第二面的导电片110的折弯半径较大;在第二弯折区114处,第一面位于第二弯折区114的外圈,第二面位于第二弯折区114的内圈,靠近第一面的导电片110的折弯半径较大,靠近第二面的导电片110的折弯半径较小;图9示出了本申请一实施例的第一连接部111折弯后的示意图,图9中,第一连接部111经过上述两次折弯后,使得各层导电片 110的折弯延伸量相同,即各层导电片110的两端边缘齐平,进而一方面使得第一连接部111的各层导电片110受力均匀,不易发生断裂,另一方面控制了第一连接部111折弯后的高度,保证了电池单体101的能量密度,避免多层结构出现分层现象,并且内层容易出现褶皱,进而导致折弯后高度增加,占用安装空间且不便于电池单体101的装配的问题。
在本申请的一些实施例中,多层导电片110中的相邻两层导电片110在第三段1113处焊接或通过导电胶连接,以使第三段1113的硬度大于第二段1112的硬度。可以理解为,当相邻两层导电片110在第三段1113处焊接或通过导电胶连接后,增大了第三段1113处的硬度,当第三段1113相对于第二段1112折弯时,容易引导第一连接部111在第三段1113与第二段1112的连接处变形,降低了折弯难度。
在本申请的一些实施例中,多层导电片110中的相邻两层导电片110在第一段1111处焊接或通过导电胶连接,以使第一段1111的硬度大于第二段1112的硬度。可以理解为,当相邻两层导电片110在第一段1111处焊接或通过导电胶连接后,增大了第一段1111处的硬度,当第一段1111相对于第二段1112折弯时,容易引导第一连接部111在第一段1111与第二段1112的连接处变形,降低了折弯难度。
需要指出的是,图4中示出了第一连接部111的第一段1111、第二段1112、第三段1113的区域划分,图中,第一段1111处的斜线表示对多层导电片110在第一段1111处的连接区域的示意,第三段1113处的斜线表示对多层导电片110在第三段1113处的连接区域的示意,并非多层导电片110连接后的形貌。
在本申请的一些实施例中,第一连接部111与第二连接部112焊接或通过导电胶连接。采用焊接或导电胶连接的方式能够保证连接强度,同时还能够保证电流的通过。例如,第一连接部111与第二连接部112采用激光焊接,使得第一连接部111和第二连接部112具有较好的连接稳定性,还可以保证电流的通过。在本申请的其他实施例中,第一连接部111和第二连接部112的连接方式还可以为其他能够实现金属连接的方式,例如铆接、螺栓连接等。
需要指出的是,第一连接部111与第二连接部112的焊接可以为多层导电片110同时与第二连接部112焊接;也可以为多层导电片110中相邻两层导电片110焊接后,多层导电片110整体再与第二连接部112焊接;还可以为多层导电片110中一层导电片110与第二连接部112焊接后,多层导电片110中相邻两层导电片110焊接。
在本申请的一些实施例中,如图3、图4和图7所示,第二连接部112包括面向电极组件13的第一表面1124和背向电极组件13的第二表面1125,第一连接部111连接于第二表面1125。由于第一表面1124与电极组件13焊接,第一连接部111与第二表面1125的连接,能够避免干涉第二连接部112与电极组件13的焊接,保证第二连接部112与电极组件13的连接面积,进而保证两者的稳定性。
图10示出了本申请一实施例的第二连接部112的结构示意图。在本申请的一些实施例中,如图4和图10所示,第二连接部112包括用于与第一连接部111连接的第一连接区1121和用于与电极组件13连接的第二连接区1122,第一连接区1121位于两个第二连接区1122之间。第一连接区1121位于两个第二连接区1122之间,合理分配装配空间,保证第二连接部112与电极组件13的连接受力均衡,保证第一连接部111与第二连接部112连接稳定。
在本申请的一些实施例中,如图3、图4和图10所示,第二连接部112包括主体区1120、用于与第一连接部111连接的第一连接区1121和用于与电极组件13连接的两个第二连接区1122,第一连接区1121位于两个第二连接区1122之间,第一连接区1121的最大厚度小于主体区1120的最小厚度,且第一连接区1121的最大厚度小于两个第二连接区1122中厚度较小一者的最小厚度。
第一连接区1121可以通过减薄第二连接部112的厚度形成,在保证第一连接部111与第一连接区1121的连接条件下,尽可能减小第一连接区1121的厚度,可以理解为,第一连接区1121为第二连接部112的厚度最薄处。第一连接部111与第一连接区1121连接后的装配厚度相对于第一连接部111与主体区1120和第二连接区1122的装配厚度较薄,第 一连接部111与第二连接部112装配后的空间占用较小,提高了电池单体101的能量密度。例如,图11示出了本申请一实施例的第一连接部111与第一连接区1121的连接位置的局部放大图,如图11所示,第一连接区1121的厚度小于主体区1120和第二连接区1122的厚度,第二连接部112的第二表面1125在第一连接区1121与主体区1120之间形成台阶面。
如图3和图11所示,为了保证第二连接区1122与电极组件13的接触、保证第二连接区1122与电极组件13的焊接质量,第二连接区1122相对于主体区1120朝向电极组件13凸出。可以理解为,主体区1120的厚度方向上相对的两个面分别为第一表面1124和第二表面1125,第二连接区1122沿第二表面1125指向第一表面1124的方向凸出于第一表面1124。
在上述实施例中,为了保证第二连接区1122与电极组件13的卷绕结构的内外圈极片均连接,如图4和图10所示,第二连接区1122为V型结构,并且V型结构指向第二连接部112的中心,两个第二连接区1122相对设置,保证第二连接部112与电极组件13的连接受力均衡。第一连接区1121位于两个第二连接区1122之间,并且第一连接区1121的轮廓与两个第二连接区1122的轮廓匹配,以保证第一连接部111与第二连接部112具有较大的接触面积,便于保证第一连接部111与第二连接部112的连接稳定性。例如,第一连接部111的与第二连接部112连接的部分(即第一段1111)为梯形结构。
为了便于实现第二连接部112与电极组件13的连接定位,如图4和图10所示,第二连接部112设置有通孔1123,例如,通孔1123可以位于第二连接部112的中部,在第二连接部112与电极组件13装配时,通过通孔1123与电极组件13的卷绕中心孔对齐,实现第二连接部112与电极组件13的装配定位;同时,在注入电解液时便于电解液通过通孔1123后与电极组件13接触,以浸润电极组件13,还可以通过通孔1123排出电极组件13内的空气或者电解液发生化学反应后的气体。在本申请的其他实施例中,通孔1123还可以设置多个,除了设置于第二连接部112的中部,还可以分布于主体区1120的其他区域。
图12示出了本申请一实施例的电池单体101的部分部件的结构示意图。在本申请的一些实施例中,如图3和图12所示,电极端子12包括第一连接件121和两个第二连接件122;电池单体101还包括壳体14、端盖151及第一绝缘件153。壳体14具有端部开口141,电极组件13和转接件11设于壳体14内;端盖151用于覆盖端部开口141,两个第二连接件122安装于端盖151且沿第一方向X间隔排布,两个第二连接件122均与第一连接部111连接,第一连接件121位于端盖151的背离壳体14内部的一侧且与两个第二连接件122连接,以将电极组件13的电能从壳体14的内部导出,第一连接件121还用于与其他电池单体101电连接或其他集流构件电连接;第一绝缘件153设置于第一连接件121和端盖151之间,用于隔绝第一连接件121和端盖151,实现第一连接件121与端盖151之间的绝缘。需要指出的是,第一方向是指图12中示出的X所指示的方向,可以理解为转接件11的宽度方向。
壳体14的形状根据一个或多个电极组件13组合后的形状而定,例如壳体14可以为中空的长方体或正方体或圆柱体,且壳体14的至少一个面具有端部开口141以便一个或多个电极组件13以及转接件11可以放置于壳体14内。例如,如图3所示,壳体14为圆柱体,壳体14的端面设置有端部开口141。端盖151覆盖于端部开口141且与壳体14连接,以形成放置电极组件13的封闭的腔体。壳体14内填充有电解质,例如电解液。
需要指出的是,如图3所示,壳体14具有相对的两个端部开口141,两个端部开口141分别对应电极组件13的正极极耳和负极极耳,每个端部开口141对应一个端盖组件150,如图12所示,端盖组件150包括端盖151、第一绝缘件153、第一连接件121、第二连接件122。
在本申请的一些实施例中,如图12所示,第一连接部111设置有用于与两个第二连接件122对应的第一连接孔1114和第二连接孔1115,一个第二连接件122穿过第一连接孔1114、端盖151和第一绝缘件153后与第一连接件121相连,另一个第二连接件122穿过第二连接孔1115、端盖151和第一绝缘件153后与第一连接件121相连,以便于保证 第一连接部111与第一连接件121的连接稳定性。例如,第一连接件121设置有用于与两个第二连接件122对应的第三连接孔1215和第四连接孔1216,一个第二连接件122穿过第一连接孔1114、端盖151和第一绝缘件153后插入第三连接孔1215内且与第一连接件121铆接,另一个第二连接件122穿过第二连接孔1115、端盖151和第一绝缘件153后插入第四连接孔1216内且与第一连接件121铆接。
需要指出的是,每个第二连接件122与端盖151的连接处均设置有密封圈154(如图12所示),以实现电极端子12与端盖151之间的绝缘隔离。第二连接件122的数量可以根据实际情况选取,例如第二连接件122的数量可以为一个,也可以为三个及以上。
在本申请的一些实施例中,第一连接部111与电极端子12焊接,以保证第一连接部111与电极端子12的连接强度。
图13示出了本申请一实施例的第一连接件121的结构示意图;图14示出了本申请一实施例的第一绝缘件153的结构示意图;图15示出了本申请一实施例的端盖组件150的结构示意图。
在本申请的一些实施例中,如图12和图13所示,第一连接件121包括第一侧面1211、第二侧面1212、第三侧面1213和第四侧面1214。第二侧面1212和第三侧面1213沿第一方向X相对设置,第一侧面1211和第四侧面1214沿第二方向Y相对设置,第二方向Y、第一方向X和端盖151的厚度方向Z两两垂直,第一侧面1211、第二侧面1212和第三侧面1213均为平面,第四侧面1214为以端盖151的中心为圆心的圆弧面。
如图13所示,第二侧面1212的沿第二方向Y的两端分别与第一侧面1211和第四侧面1214连接,第三侧面1213的沿第二方向Y的两端分别与第一侧面1211和第四侧面1214连接。可以理解为,第一侧面1211、第二侧面1212、第三侧面1213和第四侧面1214构成第一连接件121的侧面,第一连接件121还具有面向和背离端盖151的两个端面(图中未示出),第一连接件121的面向端盖151的端面与第一绝缘件153接触。图14中,第一绝缘件153包括底壁1531和形成于底壁1531周围的 周壁1532,底壁1531位于第一连接件121和端盖151之间,底壁1531上开设有第五连接孔1533和第六连接孔1534,第五连接孔1533与第三连接孔1215对应,第六连接孔1534与第四连接孔1216对应,以供两个第二连接件122穿设;周壁1532的轮廓与第一连接件121的侧面对应,如图15所示,周壁1532将第一连接件121的上述侧面包裹,进一步保证端盖151与第一连接件121之间的绝缘隔离。
本申请实施例的第一连接件121的结构形式,具有较大的过流面积,提高了过流能力,提高电池单体101的输出功率。如图15所示,第四侧面1214为圆弧面,第四侧面1214相对于其他侧面靠近端盖151的边缘,第四侧面1214上各点沿端盖151的径向到端盖151的边缘的距离相等,能够防止第一绝缘件153在焊接装配时变形损坏,影响外形美观。这里的焊接装配可以包括但不限于端盖151与壳体14的焊接装配。
为了保证绝缘效果,如图12所示,端盖组件150还包括第二绝缘件155,第二绝缘件155设置于端盖151与第一连接部111之间,第二绝缘件155将端盖151与第一连接部111隔离。
本申请一实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池100。在一些实施例中,用电设备可以为车辆1000、船舶或航天器。
上文描述了本申请实施例的电池单体101、电池100和用电设备,下面将描述本申请实施例的电池单体101的制造方法及设备,其中未详细描述的部分可参见前述各实施例。
图16示出了本申请一实施例的电池单体101的制造方法的示意性流程图。如图16所示,该方法可以包括:
410,提供电极端子12;
420,提供电极组件13;
430,提供转接件11,转接件11包括第一连接部111和第二连接部112,第一连接部111与第二连接部112分体设置且相互连接,第一连接部111为多层结构且包括层叠设置的多层导电片110,第二连接部112为单层结构,第一连接部111的最小厚度大于第二连接部112的最大 厚度;
440,将第一连接部111连接于电极端子12,将第二连接部112连接于电极组件13。
需要指出的是,上述步骤示出了本申请实施提供的一种电池单体101的制造方法,其中,步骤“410,提供电极端子12”、“420,提供电极组件13”和“430,提供转接件11”的顺序并不唯一,可以调整,例如步骤“420,提供电极组件13”、“410,提供电极端子12”及“430,提供转接件11”依次进行;或者,“430,提供转接件11”、“410,提供电极端子12”及“420,提供电极组件13”依次进行;又或者,“430,提供转接件11”、“420,提供电极组件13”及“410,提供电极端子12”依次进行。
图17示出了本申请一实施例的电池单体的制造设备500的示意性框图。如图17所示,电池单体的制造设备500可以包括:提供模块510和安装模块520。
提供模块510,用于:提供电极端子12;提供电极组件13;提供转接件11,转接件11包括第一连接部111和第二连接部112,第一连接部111与第二连接部112分体设置且相互连接,第一连接部111为多层结构且包括层叠设置的多层导电片110,第二连接部112为单层结构,第一连接部111的最小厚度大于第二连接部112的最大厚度;
安装模块520,用于将第一连接部111连接于电极端子12,用于将第二连接部112连接于电极组件13。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (17)

  1. 一种电池单体,包括:
    转接件,包括用于连接电极端子的第一连接部和用于连接电极组件的第二连接部,所述第一连接部与所述第二连接部分体设置且相互连接,所述第一连接部为多层结构且包括层叠设置的多层导电片,所述第二连接部为单层结构,所述第一连接部的最小厚度大于所述第二连接部的最大厚度。
  2. 根据权利要求1所述的电池单体,其中,所述第二连接部的最小厚度大于所述多层导电片中任意一层导电片的最大厚度。
  3. 根据权利要求1或2所述的电池单体,其中,所述多层导电片中的各层导电片的厚度均相等。
  4. 根据权利要求1-3任一项所述的电池单体,其中,所述多层导电片中的相邻两层导电片焊接或通过导电胶连接。
  5. 根据权利要求1-4任一项所述的电池单体,其中,所述第一连接部与所述第二连接部焊接或通过导电胶连接。
  6. 根据权利要求1-5任一项所述的电池单体,其中,所述第二连接部包括面向所述电极组件的第一表面和背向所述电极组件的第二表面,所述第一连接部连接于所述第二表面。
  7. 根据权利要求1-6任一项所述的电池单体,其中,所述第一连接部包括第一段、第二段和第三段,所述第一段用于与所述第二连接部连接,所述第三段用于与所述电极端子连接,所述第二段连接所述第一段和所述第三段,所述第一段和所述第三段分别位于所述第二段的厚度方向的两侧。
  8. 根据权利要求7所述的电池单体,其中,所述多层导电片中的相邻两层导电片在所述第三段处焊接或通过导电胶连接,以使所述第三段的硬度大于所述第二段的硬度。
  9. 根据权利要求7所述的电池单体,其中,所述多层导电片中的相邻两层导电片在所述第一段处焊接或通过导电胶连接,以使所述第一段的硬度大于所述第二段的硬度。
  10. 根据权利要求1-9任一项所述的电池单体,其中,所述第二连接部包括用于与所述第一连接部连接的第一连接区和用于与所述电极组件连接的两个第二连接区,所述第一连接区位于所述两个第二连接区之间。
  11. 根据权利要求1-9任一项所述的电池单体,其中,所述第二连接部包括主体区、用于与所述第一连接部连接的第一连接区和用于与所述电极组件连接的两个第二连接区,所述第一连接区位于所述两个第二连接区之间,所述第一连接区的最大厚度小于所述主体区的最小厚度,且所述第一连接区的最大厚度小于所述两个第二连接区中厚度较小一者的最小厚度。
  12. 根据权利要求1-11任一项所述的电池单体,其中,所述电极端子包括第一连接 件和两个第二连接件,所述电池单体还包括:
    壳体,具有端部开口,所述电极组件和所述转接件设于所述壳体内;
    端盖,用于覆盖所述端部开口,两个所述第二连接件安装于所述端盖且沿第一方向间隔排布,两个所述第二连接件均与所述第一连接部连接,所述第一连接件位于所述端盖的背离所述壳体内部的一侧且与两个所述第二连接件连接;
    第一绝缘件,设置于所述第一连接件和所述端盖之间,用于隔绝所述第一连接件和端盖。
  13. 根据权利要求12所述的电池单体,其中,所述第一连接件包括第一侧面、第二侧面、第三侧面和第四侧面,所述第二侧面和所述第三侧面沿所述第一方向相对设置,所述第一侧面和所述第四侧面沿第二方向相对设置,所述第二方向、所述第一方向和所述端盖的厚度方向两两垂直,所述第一侧面、所述第二侧面和所述第三侧面均为平面,所述第四侧面为以所述端盖的中心为圆心的圆弧面。
  14. 一种电池,包括如权利要求1-13任一项所述的电池单体。
  15. 一种用电设备,包括如权利要求14所述的电池。
  16. 一种电池单体的制造方法,所述制造方法包括:
    提供电极端子;
    提供电极组件;
    提供转接件,所述转接件包括第一连接部和第二连接部,所述第一连接部与所述第二连接部分体设置且相互连接,所述第一连接部为多层结构且包括层叠设置的多层导电片,所述第二连接部为单层结构,所述第一连接部的最小厚度大于所述第二连接部的最大厚度;
    将所述第一连接部连接于所述电极端子,将所述第二连接部连接于所述电极组件。
  17. 一种电池单体的制造设备,包括:
    提供模块,用于:
    提供电极端子;
    提供电极组件;
    提供转接件,所述转接件包括第一连接部和第二连接部,所述第一连接部与所述第二连接部分体设置且相互连接,所述第一连接部为多层结构且包括层叠设置的多层导电片,所述第二连接部为单层结构,所述第一连接部的最小厚度大于所述第二连接部的最大厚度;
    安装模块,用于将所述第一连接部连接于所述电极端子,用于将所述第二连接部连接于所述电极组件。
PCT/CN2021/074514 2021-01-29 2021-01-29 电池单体、电池、用电设备、电池单体的制造方法及设备 WO2022160296A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180049154.8A CN115836438A (zh) 2021-01-29 2021-01-29 电池单体、电池、用电设备、电池单体的制造方法及设备
EP21820071.5A EP4068490A4 (en) 2021-01-29 2021-01-29 BATTERY CELL, BATTERY, ELECTRICAL DEVICE, AND METHOD AND DEVICE OF MAKING THE BATTERY CELL
PCT/CN2021/074514 WO2022160296A1 (zh) 2021-01-29 2021-01-29 电池单体、电池、用电设备、电池单体的制造方法及设备
US17/554,412 US20220247043A1 (en) 2021-01-29 2021-12-17 Battery cell, battery, power consumption device and battery cell manufaturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/074514 WO2022160296A1 (zh) 2021-01-29 2021-01-29 电池单体、电池、用电设备、电池单体的制造方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/554,412 Continuation US20220247043A1 (en) 2021-01-29 2021-12-17 Battery cell, battery, power consumption device and battery cell manufaturing method and device

Publications (1)

Publication Number Publication Date
WO2022160296A1 true WO2022160296A1 (zh) 2022-08-04

Family

ID=82613114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074514 WO2022160296A1 (zh) 2021-01-29 2021-01-29 电池单体、电池、用电设备、电池单体的制造方法及设备

Country Status (4)

Country Link
US (1) US20220247043A1 (zh)
EP (1) EP4068490A4 (zh)
CN (1) CN115836438A (zh)
WO (1) WO2022160296A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024036554A1 (zh) * 2022-08-18 2024-02-22 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池以及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038650A (ja) * 2010-08-10 2012-02-23 Hitachi Vehicle Energy Ltd 二次電池の密封構造
CN203377303U (zh) * 2013-07-08 2014-01-01 中航锂电(洛阳)有限公司 锂电池极耳与极柱的连接件及使用该连接件的锂电池
CN106688123A (zh) * 2014-09-26 2017-05-17 日立汽车系统株式会社 矩形二次电池
CN206236738U (zh) * 2016-12-13 2017-06-09 芜湖天量电池系统有限公司 一种锂电池的电连接组件
CN209312879U (zh) * 2018-12-07 2019-08-27 东莞塔菲尔新能源科技有限公司 一种动力电池转接片结构及动力电池
CN112242593A (zh) * 2020-12-10 2021-01-19 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制造方法及其设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966496A (en) * 1972-08-07 1976-06-29 Gould Inc. Electrode assembly for air depolarized cells
DE102011076624A1 (de) * 2011-05-27 2012-11-29 Elringklinger Ag Zellverbinder
US8721368B2 (en) * 2011-10-06 2014-05-13 Tyco Electronics Corporation Power terminal connector and system
US10790495B2 (en) * 2015-10-16 2020-09-29 Robert Bosch Gmbh Terminal arrangement for an energy storage device
US10547042B2 (en) * 2016-10-14 2020-01-28 Tiveni Mergeco, Inc. Hybrid contact plate arrangement configured to establish electrical bonds to battery cells in a battery module
CN110224099B (zh) * 2018-03-01 2020-09-01 宁德时代新能源科技股份有限公司 二次电池及汽车
CN207967151U (zh) * 2018-03-30 2018-10-12 宁德时代新能源科技股份有限公司 电连接组件及电池模组
CN208507745U (zh) * 2018-07-13 2019-02-15 宁德时代新能源科技股份有限公司 二次电池
CN110265618A (zh) * 2019-06-21 2019-09-20 比亚迪股份有限公司 单体电池、动力电池包和车辆
CN112072058B (zh) * 2020-11-11 2021-04-06 江苏时代新能源科技有限公司 电池单体、电池、用电设备及电池制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038650A (ja) * 2010-08-10 2012-02-23 Hitachi Vehicle Energy Ltd 二次電池の密封構造
CN203377303U (zh) * 2013-07-08 2014-01-01 中航锂电(洛阳)有限公司 锂电池极耳与极柱的连接件及使用该连接件的锂电池
CN106688123A (zh) * 2014-09-26 2017-05-17 日立汽车系统株式会社 矩形二次电池
CN206236738U (zh) * 2016-12-13 2017-06-09 芜湖天量电池系统有限公司 一种锂电池的电连接组件
CN209312879U (zh) * 2018-12-07 2019-08-27 东莞塔菲尔新能源科技有限公司 一种动力电池转接片结构及动力电池
CN112242593A (zh) * 2020-12-10 2021-01-19 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制造方法及其设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068490A4 *

Also Published As

Publication number Publication date
CN115836438A (zh) 2023-03-21
EP4068490A1 (en) 2022-10-05
EP4068490A4 (en) 2023-05-03
US20220247043A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2022199129A1 (zh) 电池单体、电池及用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
EP4131631A1 (en) Electrode assembly, battery cell, battery and power-consuming apparatus
EP4333172A1 (en) Battery cell, battery, electrical device, and method and device for fabricating battery cell
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
US20230395952A1 (en) Battery cell, battery and electrical device
EP4102606A1 (en) Electrode assembly, battery cell, battery, and power-consuming device
WO2023070677A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备
WO2024104110A1 (zh) 一种电极构件、电池单体、电池及用电装置
EP4250439A1 (en) Battery
WO2022160296A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
US20230327264A1 (en) Battery module, battery, power consumption device, and method and device for producing battery
CN219123419U (zh) 电池单体、电池以及用电装置
WO2022227961A1 (zh) 圆柱电池单体、电池及用电装置
US20220085465A1 (en) Current collecting member and manufacturing method thereof, secondary battery and manufacturing method thereof, battery module, and apparatus
EP4106096A1 (en) Connection member, battery cell, battery, and electrical device
WO2023133854A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
US20240088447A1 (en) Electrode assembly, battery cell, battery and electrical device
CN217788494U (zh) 电极组件、电池单体、电池和用电设备
CN221328042U (zh) 电池单体、电池、用电设备、电池单体的制造设备
EP4258445A1 (en) Battery, electrical device, and method and device for preparing battery
EP4250406A1 (en) Electrode assembly and manufacturing method and system, battery cell, battery, and power utilization apparatus
WO2024045058A1 (zh) 电池单体、电池及用电设备
WO2024082448A1 (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021820071

Country of ref document: EP

Effective date: 20211216

NENP Non-entry into the national phase

Ref country code: DE