WO2022227961A1 - 圆柱电池单体、电池及用电装置 - Google Patents

圆柱电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2022227961A1
WO2022227961A1 PCT/CN2022/082756 CN2022082756W WO2022227961A1 WO 2022227961 A1 WO2022227961 A1 WO 2022227961A1 CN 2022082756 W CN2022082756 W CN 2022082756W WO 2022227961 A1 WO2022227961 A1 WO 2022227961A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
welding
battery cell
electrode assembly
crease
Prior art date
Application number
PCT/CN2022/082756
Other languages
English (en)
French (fr)
Inventor
苏华圣
邢承友
覃炎运
李全坤
史恺悦
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22773586.7A priority Critical patent/EP4113732A1/en
Publication of WO2022227961A1 publication Critical patent/WO2022227961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular to a cylindrical battery cell, a battery and an electrical device.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry. Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages of energy saving and environmental protection. Battery technology is an important factor in the development of electric vehicles.
  • the electrode terminals of the battery cells are connected with the electrode assemblies through adapters, so that the electrical energy of the electrode assemblies can be led out through the electrode terminals.
  • the welding of the adapter and the electrode assembly is complicated, and the production efficiency needs to be improved.
  • the purpose of the present application is to provide a cylindrical battery cell, the welding of the adapter and the electrode assembly is simple, the operation is convenient, and the production efficiency is improved.
  • the present application provides a cylindrical battery cell, comprising:
  • the adapter is used to electrically connect the electrode assembly and the electrode terminal, the adapter includes a first adapter part and a second adapter part, and there is a connection between the first adapter part and the second adapter part A first crease, the first transition part includes a welding area for welding with the electrode assembly, the welding area extending in a direction parallel to the first crease.
  • the extending direction of the welding area of the first adapter part is parallel to the first crease, that is, the welding area extends in a straight line, so that the adapter and the electrode assembly can be welded along a straight path,
  • the welding operation is simple and convenient, saving time and improving production efficiency.
  • both ends of the welding area extend to the edge of the first transition portion.
  • the welding area is arranged in such a way that the welding area has a longer length, which ensures a larger contact area between the welding area and the electrode assembly, ensures the connection stability, and improves the overcurrent capability.
  • the first transition part further includes a non-welding area, the non-welding area has a first surface facing the electrode assembly and a second surface facing away from the electrode assembly, the The bonding pad protrudes from the first surface.
  • the welding area protrudes from the first surface to ensure the contact between the welding area and the tab of the electrode assembly, so as to facilitate the connection and fixation of the first adapter portion and the electrode assembly.
  • the height of the bonding area protruding from the first surface is 0.3-0.7 mm.
  • the protruding height of the welding area is selected to ensure the welding quality with the tabs, and to avoid occupying more assembly space; if the protruding height of the welding area is low, the welding area and the tabs are not in good contact. , affecting the welding quality of the welding area and the tabs; if the protruding height of the welding area is high, the first adapter part occupies more assembly space, affecting the energy density of the cylindrical battery cell.
  • the bonding pad is recessed in the second surface.
  • the structural form of the welding area defines the welding contour, which facilitates the welding operation.
  • the welding area includes a plurality of sub-welding areas spaced along a direction perpendicular to the first crease.
  • the arrangement of the plurality of sub-welding areas ensures the stability of the connection between the first transition portion and the electrode assembly.
  • the plurality of sub-welding areas include adjacent first sub-welding areas and second sub-welding areas, and the first sub-welding areas and the second sub-welding areas are respectively located in the On both sides of the winding axis of the electrode assembly, the distance between the first sub-welding area and the second sub-welding area is smaller than the diameter of the winding center hole of the electrode assembly.
  • the distance between the first sub-welding area and the second sub-welding area is smaller than the diameter of the winding center hole, during welding, the distance between the first sub-welding area and the second sub-welding area can be prevented from being too large.
  • the welding area cannot be welded with the tabs of the electrode assembly close to the winding center hole, which ensures that the adapter is in contact with more tabs and improves the overcurrent capability of the adapter.
  • the width of the first transition portion at the first crease is equal to the width of the second transition portion at the first crease, and the first transition portion has a width at the first crease.
  • the dimension of the connecting portion along the direction parallel to the first crease is the width of the first transition portion, and the dimension of the second transition portion along the direction parallel to the first crease is the width of the second transition portion.
  • the width of the second adapter part at the first crease is equal to the width of the first adapter part at the first crease, which increases the current flow capacity of the adapter part at the first crease.
  • the width of the second transition portion at other positions is not less than the width of the second transition portion at the first crease.
  • the structural form of the second adapter portion is such that the second adapter portion has a wider width, so as to ensure that the adapter piece has a larger flow area and improve the flow capacity of the adapter piece.
  • the adapter further includes a third adapter for connecting with the electrode terminal, and a third adapter is formed between the third adapter and the second adapter. Two creases.
  • the present application also provides a battery, including the above cylindrical battery cell.
  • the present application also provides an electrical device, including the aforementioned battery.
  • FIG. 1 is a schematic structural diagram of a vehicle according to an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a battery provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of a cylindrical battery cell according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a connection between an adapter of a cylindrical battery cell and an end cover before bending, according to an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a cylindrical battery cell adapter after bending according to an embodiment of the present application
  • FIG. 6 is a partial schematic diagram of an adapter of a cylindrical battery cell provided by an embodiment of the present application before bending;
  • FIG. 7 is a schematic structural diagram of a cylindrical battery cell adapter before bending according to another embodiment of the present application.
  • FIG. 8 shows a partially exploded view of a cylindrical battery cell according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a first adapter portion of an adapter for a cylindrical battery cell according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a first adapter portion of an adapter for a cylindrical battery cell according to another embodiment of the present application.
  • Marking description 100-battery; 11-box body; 111-first part; 112-second part; 12-cylindrical battery cell; 120-shell; 1201-end opening; 121-end cap; 122-electrode terminal 123-electrode assembly; 1231-winding center hole; 1232-winding axis; 124-adapter; 1241-first adapter; 1242-second adapter; 1243-third adapter; - first crease; 1245 - second crease; 1246 - welding area; 1246a - first sub-welding area; 1246b - second sub-welding area; 1247 - non-welding area; 12471 - first surface; 12472 - second Surface; 1248-positioning hole; 1249-rib; 200-motor; 300-controller; 1000-vehicle.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft pack battery cells.
  • the battery cells mentioned in the embodiments of the present application are cylindrical battery cells.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer was used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative pole piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector without the negative electrode active material layer is protruded from the current collector that has been coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), and the like.
  • the electrode assembly may be a wound structure or a laminated structure. The electrode assembly mentioned in the embodiments of the present application is a wound structure.
  • the battery cell further includes an adapter and an electrode terminal, and the adapter is used to connect the electrode assembly and the electrode terminal, so as to conduct electric energy of the electrode assembly through the electrode terminal.
  • the electrode terminal connected to the positive electrode tab is the positive electrode terminal
  • the electrode terminal connected to the negative electrode tab is the negative electrode terminal.
  • the adapter is generally bent to reduce the assembly height.
  • the reason why the welding operation of the adapter and the electrode assembly is complicated is that the welding path is complicated. Since the electrode assembly of the cylindrical battery cell is of a winding structure, in the battery production process, in order to ensure that the adapter sheet can be welded with most of the electrodes of the electrode assembly, the welding path between the adapter and the electrode assembly is usually set. It is V-shaped or U-shaped, which makes the welding operation more complicated, takes a long time, and affects the production efficiency.
  • the present application provides a cylindrical battery cell
  • the adapter of the cylindrical battery cell includes a first adapter portion and a second adapter portion, and there is a connection between the first adapter portion and the second adapter portion.
  • the first crease, the first transition part includes a welding area for welding with the electrode assembly, the extending direction of the welding area is parallel to the first crease, so that the welding path is straight, the welding operation is simple and convenient, and the welding time is saved, Improved production efficiency.
  • FIG. 1 shows a schematic structural diagram of a vehicle 1000 according to an embodiment of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended range vehicle car etc.
  • the battery 100 is provided inside the vehicle 1000 .
  • the battery 100 may be provided at the bottom or the front or rear of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as the operating power source of the vehicle 1000 , for the circuit system of the vehicle 1000 , such as for starting, navigating and running of the vehicle 1000 .
  • the battery 100 can not only be used as the operating power source of the vehicle 1000 , but also can be used as the driving power source of the vehicle 1000 to provide driving force for the vehicle 1000 instead of or partially instead of fuel or natural gas.
  • the interior of the vehicle 1000 may also be provided with a motor 200 and a controller 300 , and the controller 300 is used to control the battery 100 to supply power to the motor 200 , for example, for starting, navigating, and running the vehicle 1000 for working electricity requirements.
  • the battery 100 may include a plurality of battery cells, wherein the plurality of battery cells may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connection.
  • the battery 100 may also be referred to as a battery pack.
  • a plurality of battery cells can be connected in series or in parallel or in a mixed connection to form a battery module, and then a plurality of battery modules can be connected in series, in parallel or in a mixed connection to form the battery 100 . That is, a plurality of battery cells may directly form the battery 100 , or may form a battery module first, and then the battery module may form the battery 100 .
  • FIG. 2 shows a schematic structural diagram of a battery 100 according to an embodiment of the present application.
  • the battery 100 may include a case body 11 and a plurality of cylindrical battery cells 12 , the interior of the case body 11 is a hollow structure, and the plurality of cylindrical battery cells 12 are accommodated in the interior of the case body 11 .
  • the box body 11 includes a first part 111 and a second part 112.
  • the first part 111 includes an accommodating space with an opening. accommodating cavity for each cylindrical battery cell 12 .
  • FIG. 3 shows an exploded view of the cylindrical battery cell 12 according to an embodiment of the present application.
  • the cylindrical battery cell 12 includes two electrode terminals 122 , an electrode assembly 123 and two adapters 124 .
  • the two electrode terminals 122 are respectively a positive electrode terminal and a negative electrode terminal, the positive electrode terminal is used for connecting with the positive electrode tab of the electrode assembly 123, the negative electrode terminal is used for connecting with the negative electrode tab of the electrode assembly 123, and the adapter 124 is provided There are two, the positive electrode terminal corresponds to one adapter 124 , and the negative electrode terminal corresponds to the other adapter 124 .
  • the adapter 124 is used for connecting the electrode assembly 123 and the electrode terminal 122 , and is used for conducting the electric energy of the electrode assembly 123 through the electrode terminal 122 .
  • the cylindrical battery cell 12 further includes a casing 120 and an end cap 121 .
  • the casing 120 has an end opening 1201 , and the electrode assembly 123 and the adapter 124 are arranged in the casing 120 ; the end cap 121 is used to cover the end opening 1201 and is connected to the casing 120 to form a closed cavity for placing the electrode assembly 123 body.
  • the casing 120 is filled with an electrolyte, such as an electrolytic solution.
  • the casing 120 has two opposite end openings 1201, and the two end openings 1201 correspond to the positive electrode tabs and the negative electrode tabs of the electrode assembly 123 respectively; two end caps 121 are provided, and each end cap 121 corresponds to one end In the opening 1201 , the two electrode terminals 122 are in one-to-one correspondence with the two end caps 121 , the positive electrode terminal is arranged on one end cap 121 , and the negative electrode terminal is arranged on the other end cap 121 .
  • the positive pole piece, the separator, and the negative pole piece are stacked on each other and wound around the winding axis 1232 to form the wound electrode assembly 123 , the positive pole piece and the negative pole piece are separated by the separator, and are wound on the electrode assembly 123 After the winding is completed, the electrode assembly 123 has a winding center hole 1231 .
  • FIG. 4 shows a schematic diagram of the connection between the adapter 124 of the cylindrical battery cell 12 and the end cover 121 before bending according to an embodiment of the present application.
  • the adapter 124 includes a first adapter portion 1241 and a second adapter portion 1242, a first crease 1244 is formed between the first adapter portion 1241 and the second adapter portion 1242, and the first adapter portion 1241 includes a The welding area 1246 welded with the electrode assembly 123 (please refer to FIG. 3 ), the welding area 1246 extends in a direction parallel to the first crease 1244 .
  • the first adaptor 1241 and the second adaptor 1242 are sequentially distributed along the Y direction of the adaptor 124; after the adaptor 124 is bent, the second adaptor 1242 is opposite to After the first transfer portion 1241 is bent, a first crease 1244 is formed between the first transfer portion 1241 and the second transfer portion 1242 .
  • the X direction in the figure indicates the direction parallel to the first crease 1244 , that is, the width direction of the adapter 124 ; the Y direction indicates the direction perpendicular to the first crease 1244 , that is, the direction of the adapter 124 Longitudinal direction.
  • the welding area 1246 is an area of the first adapter portion 1241 for welding with the tabs of the electrode assembly 123 .
  • the extending direction of the welding area 1246 is parallel to the extending direction of the first crease 1244 , that is, the welding area 1246 extends in a straight line along the X direction.
  • the first adapter portion 1241 is approximately a disk-shaped structure, the outline of the first adapter portion 1241 is close to a circle, and the size of the first adapter portion 1241 is close to a circle.
  • the size of the end face of the electrode assembly 123 is basically the same, so as to ensure the connection area between the first adapter portion 1241 and the electrode assembly 123 and to ensure the overcurrent capability.
  • the first crease 1244 is a chord line of the circular contour where the first transition portion 1241 is located.
  • the second adapter portion 1242 is provided with a reinforcing rib 1249 to increase the strength of the second adapter portion 1242 and facilitate the rotation of the second adapter portion 1242 relative to the first adapter.
  • the connecting portion 1241 is bent.
  • the reinforcing rib 1249 can be integrally formed on the second adapter portion 1242 , or can be welded or bonded to the second adapter portion 1242 by means of conductive glue.
  • the reinforcing rib 1249 may be integrally formed with the second adapter portion 1242 .
  • the reinforcing rib 1249 extends along the Y direction to increase the strength of the second adapter portion 1242 in the Y direction, so as to facilitate the bending of the second adapter portion 1242 relative to the first adapter portion 1241 . .
  • a plurality of reinforcing ribs 1249 are provided, and the plurality of reinforcing ribs 1249 are arranged at intervals along the X direction.
  • the adapter 124 further includes a third adapter portion 1243 for connecting with the electrode terminal 122 , the third adapter portion 1243 and the second adapter portion 1242 There is a second crease 1245 between. Before the adapter 124 is bent, along the Y direction, the second adapter 1242 is located between the first adapter 1241 and the third adapter 1243 . The first adapter 1241 , the second adapter 1242 and the The third switching parts 1243 are connected in sequence.
  • the second adapter portion 1242 is folded relative to the first adapter portion 1241 to form a first crease 1244
  • the third adapter portion 1243 is folded relative to the second adapter portion 1242 to form a first fold 1244 .
  • Two creases 1245 By bending twice, the total thickness of the adapter 124 can be adapted to the assembly of the cylindrical battery cells 12 to avoid interference between the adapter 124 and other components.
  • FIG. 5 shows a schematic diagram of the adaptor 124 of the cylindrical battery cell 12 after bending according to an embodiment of the present application.
  • the first adaptor The portion 1241 and the third transfer portion 1243 are located on both sides of the second transfer portion 1242 .
  • the Z direction is the thickness direction of the second adapter portion 1242 , that is, the thickness direction of the adapter member 124 in the unfolded state.
  • the second crease 1245 and the first crease 1244 are arranged in parallel to reduce the space occupied by the adapter 124 after bending, save assembly space, and ensure the energy density of the cylindrical battery cell.
  • the first adapter portion 1241 , the second adapter portion 1242 and the third adapter portion 1243 are integrally formed to facilitate processing.
  • FIG. 6 is a partial schematic view of the adapter 124 of the cylindrical battery cell 12 before bending according to an embodiment of the present application.
  • the width of the second transition portion 1242 at the first crease 1244 may be smaller than the width of the first transition portion 1241 at the first crease 1244 , that is, The width of the second transition portion 1242 at the first crease 1244 is smaller than the length of the chord line of the circular contour where the first transition portion 1241 is located.
  • the dimension of the second transfer portion 1242 along the X direction is the width of the second transfer portion 1242 .
  • Fig. 7 shows a schematic structural diagram of the adapter 124 of the cylindrical battery cell 12 before bending according to another embodiment of the present application.
  • the width of the first transfer portion 1241 at the first crease 1244 is equal to the width of the second transfer portion 1242 at the first crease 1244 , that is, the first The width of the second transition portion 1242 at the first crease 1244 is equal to the length of the chord line of the circular outline where the first transition portion 1241 is located.
  • the dimension of the first adapter portion 1241 along the X direction is the width of the first adapter portion 1241 .
  • the width of the second adapter portion 1242 at the first crease 1244 is larger, and the adapter 124 is located at the first crease 1244 The overcurrent capability is stronger, and the internal resistance of the adapter 124 is smaller.
  • the width direction of the second adapter portion 1242 is parallel to the extension direction of the welding area 1246
  • the width of the second adapter portion 1242 at the first crease 1244 is not limited by the welding area 1246
  • the second adapter portion 1242 can be widened as much as possible.
  • the width of the second adapter portion 1242 at the first crease 1244 is equal to the length of the chord line of the circular outline where the first adapter portion 1241 is located, it can ensure that the adapter 124
  • the first crease 1244 has a larger overcurrent capability, so that the internal resistance of the adapter 124 is reduced.
  • the width of the second adapter portion 1242 at other positions is not less than the width of the second adapter portion 1242 at the first crease 1244, so as to further improve the overcurrent capability of the adapter member 124, The internal resistance of the adapter 124 is reduced.
  • the second transition portion 1242 may be any suitable shape, for example, a rectangle, a trapezoid, a hexagon, and the like. In some embodiments of the present application, as shown in FIG. 7 , the second adapter portion 1242 is rectangular, and the width of the second adapter portion 1242 is equal everywhere.
  • both ends of the welding area 1246 extend to the edge of the first transition portion 1241 , so as to increase the length of the welding area 1246 as much as possible, and ensure the welding area 1246 and the electrode assembly 123 It has a large contact area to ensure the stability of the connection between the two and improve the overcurrent capability.
  • the welding area 1246 is parallel to the first crease 1244, after the welding area 1246 and the electrode assembly 123 are welded, the strength of the first adapting part 1241 in the extending direction of the welding area 1246 is strengthened, which is convenient for The second transfer portion 1242 is guided to be bent at the first crease 1244 relative to the first transfer portion 1241 .
  • the bonding area 1246 includes a plurality of sub-bonding areas spaced along the Y direction. Along the Y direction, a region of the first transition portion 1241 between two adjacent sub-welding regions is a non-welding region.
  • FIG. 8 shows a partially exploded view of a cylindrical battery cell 12 according to an embodiment of the present application.
  • the plurality of sub-welding areas include the adjacent first sub-welding areas 1246a and the second sub-welding areas
  • the sub-welding area 1246b, the first sub-welding area 1246a and the second sub-welding area 1246b are respectively located on both sides of the winding axis 1232 of the electrode assembly 123, and the distance between the first sub-welding area 1246a and the second sub-welding area 1246b is less than The diameter of the winding center hole 1231 of the electrode assembly 123 .
  • the electrode assembly 123 has a winding structure, the electrode assembly 123 has a winding center hole 1231 , and the first sub-welding area 1246a and the second sub-welding area 1246b are respectively located on both sides of the winding axis 1232 of the electrode assembly 123, that is, the winding axis 1232 passes through the non-bonding area 1247 between the first sub-bonding area 1246a and the second sub-bonding area 1246b.
  • the welding area 1246 can connect the welding area 1246 to each round of the tabs formed by winding the electrode assembly 123 , reducing some tabs that do not participate in overcurrent, causing polarization problems, and ensuring that the adapter 124 is connected to the More tab connections improve the overcurrent capability of the adapter 124 .
  • the first adapter 1241 is provided with a positioning hole 1248 , and the positioning hole 1248 corresponds to the winding center hole 1231 of the electrode assembly 123 .
  • the positioning hole 1248 is aligned with the winding center hole 1231 of the electrode assembly 123 to achieve the positioning of the first adapter 1241 and the electrode assembly 123.
  • FIG. 9 shows a schematic structural diagram of the first adapter portion 1241 of the adapter 124 of the cylindrical battery cell 12 according to an embodiment of the present application
  • FIG. 10 shows the cylindrical battery cell 12 according to another embodiment of the present application.
  • the first adapter portion 1241 further includes a non-welding area 1247 , and the non-welding area 1247 has a first surface 12471 facing the electrode assembly 123 and facing away from the electrode assembly 123 .
  • the bonding area 1246 protrudes from the first surface 12471.
  • the regions of the first transition portion 1241 except the welding region 1246 are all non-welding regions 1247 .
  • the first surface 12471 and the second surface 12472 are disposed opposite to each other along the Z direction.
  • the welding area 1246 protrudes from the first surface 12471.
  • the welding area 1246 can abut against the tabs of the electrode assembly 123, so that the first adapter 1241 and the electrode assembly can be in contact with each other.
  • the connection of the first adapter 1241 and the electrode assembly 123 is secured, thereby ensuring the welding quality of the first adapter 1241 and the electrode assembly 123 .
  • the non-welding area 1247 can facilitate the positioning of the first adapter portion 1241 by the positioning jig, so as to ensure the welding quality of the first adapter portion 1241 and the electrode assembly 123 .
  • the positioning hole 1248 is located in the non-welding area 1247 corresponding to the winding center hole 1231 .
  • the height H of the bonding area 1246 protruding from the first surface 12471 is 0.3-0.7 mm.
  • the welding area 1246 is the welding area between the first adapter portion 1241 and the tab of the electrode assembly 123.
  • the protruding height of the welding area 1246 is selected to ensure the welding quality with the tab of the electrode assembly 123, and to avoid occupying a lot of space. assembly space. If the protruding height of the welding area 1246 is low, the welding area 1246 is in poor contact with the tab, which affects the welding quality of the welding area 1246 and the tab; More assembly space is required, which affects the energy density of the cylindrical battery cells 12 .
  • the height H of the welding area 1246 protruding from the first surface 12471 to 0.3-0.7 mm, the welding quality with the tabs of the electrode assembly 123 can be ensured, and a large assembly space can be avoided.
  • the bonding pads 1246 are recessed in the second surface 12472 . Since the welding operation is performed on the side of the first adapter portion 1241 away from the electrode assembly 123, the welding area 1246 is recessed in the second surface 12472, so that the welding area 1246 and the non-welding area 1247 have a clear outline boundary, that is, in the first A side of the adapter portion 1241 facing away from the electrode assembly 123 defines a welding profile to facilitate welding operations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种圆柱电池单体、电池及用电装置,属于电池技术领域。圆柱电池单体(12)包括转接件(124),转接件(124)用于电连接电极组件(123)和电极端子(122),转接件(124)包括第一转接部(1241)和第二转接部(1242),第一转接部(1241)和第二转接部(1242)之间具有第一折痕(1244),第一转接部(1241)包括用于与电极组件(123)焊接的焊接区(1246),焊接区(1246)沿平行于第一折痕(1244)的方向延伸。圆柱电池单体的转接件与电极组件的焊接简单,操作便捷,提高了生产效率。

Description

圆柱电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有于2021年04月26日提交的名称为“圆柱电池单体、电池及用电装置”的中国专利申请202120877288.6的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种圆柱电池单体、电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键。电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术是关乎其发展的一项重要因素。
电池单体的电极端子与电极组件通过转接件连接,以将电极组件的电能通过电极端子导出。现有技术中,在电池生产过程中,转接件与电极组件的焊接较为复杂,生产效率有待提高。
发明内容
本申请的目的在于提供一种圆柱电池单体,转接件与电极组件的焊接简单,操作便捷,提高了生产效率。
本申请是通过下述技术方案实现的:
第一方面,本申请提供了一种圆柱电池单体,包括:
转接件,用于电连接电极组件和电极端子,所述转接件包括第一转接部和第二转接部,所述第一转接部和所述第二转接部之间具有第一折痕,所述第一转接部包括用于与所述电极组件焊接的焊接区,所述焊接区沿平行于所述第一折痕的方向延伸。
根据本申请实施例的圆柱电池单体,第一转接部的焊接区的延伸方向与第一折痕平行,即,焊接区呈直线延伸,使得可以沿直线路径焊接转接件和电极组件,焊接操作简单且便捷,节省时间,提高了生产效率。
在本申请的一些实施例中,所述焊接区的两端延伸至所述第一转接部的边缘。
在上述方案中,焊接区的设置形式,使得焊接区具有较长的长度,保证焊接区与电极组件具有较大的接触面积,保证连接稳定性,提高过流能力。
在本申请的一些实施例中,所述第一转接部还包括非焊接区,所述非焊接区具有面向所述电极组件的第一表面和背离所述电极组件的第二表面,所述焊接区凸出于 所述第一表面。
在上述方案中,焊接区凸出于第一表面,保证焊接区与电极组件的极耳的接触,以便于第一转接部与电极组件的连接固定。
在本申请的一些实施例中,所述焊接区凸出于所述第一表面的高度为0.3-0.7mm。
在上述方案中,焊接区的凸出高度选取,既要保证与极耳的焊接质量,又要避免占用较多的装配空间;如果焊接区的凸出高度较低,焊接区与极耳接触不良,影响焊接区与极耳的焊接质量;如果焊接区的凸出高度较高,第一转接部占用较多的装配空间,影响圆柱电池单体的能量密度。
在本申请的一些实施例中,所述焊接区凹陷于所述第二表面。
在上述方案中,焊接区的结构形式,限定焊接轮廓,便于焊接操作。
在本申请的一些实施例中,所述焊接区包括沿垂直于所述第一折痕的方向间隔排布的多个子焊接区。
在上述方案中,多个子焊接区的设置,保证第一转接部与电极组件的连接稳定性。
在本申请的一些实施例中,所述多个子焊接区包括相邻的第一子焊接区和第二子焊接区,所述第一子焊接区和所述第二子焊接区分别位于所述电极组件的卷绕轴线的两侧,所述第一子焊接区和所述第二子焊接区之间的距离小于所述电极组件的卷绕中心孔的直径。
在上述方案中,通过将第一子焊接区和第二子焊接区的距离设定小于卷绕中心孔的直径,焊接时可以防止因第一子焊接区和第二子焊接区间距过大,导致焊接区无法与电极组件的靠近卷绕中心孔的极耳焊接,保证转接件与更多的极耳接触,提高转接件的过流能力。
在本申请的一些实施例中,所述第一转接部在所述第一折痕处的宽度等于所述第二转接部在所述第一折痕处的宽度,所述第一转接部的沿平行于所述第一折痕的方向的尺寸为所述第一转接部的宽度,所述第二转接部的沿平行于所述第一折痕的方向的尺寸为所述第二转接部的宽度。
在上述方案中,第二转接部在第一折痕处的宽度等于第一转接部在第一折痕处的宽度,增加了转接件在第一折痕处的过流能力。
在本申请的一些实施例中,所述第二转接部在其他位置的宽度不小于所述第二转接部在所述第一折痕处的宽度。
在上述方案中,第二转接部的结构形式,使得第二转接部具有较宽的宽度,以保证转接件具有较大的过流面积,提高了转接件的过流能力。
在本申请的一些实施例中,所述转接件还包括用于与所述电极端子连接的第三转接部,所述第三转接部与所述第二转接部之间具有第二折痕。
第二方面,本申请还提供了一种电池,包括上述的圆柱电池单体。
第三方面,本申请还提供了一种用电装置,包括上述的电池。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中 变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的一种车辆的结构示意图;
图2为本申请一实施例提供的电池的结构示意图;
图3为本申请一实施例提供的圆柱电池单体的分解图;
图4为本申请一实施例提供的圆柱电池单体的转接件折弯前与端盖的连接示意图;
图5为本申请一实施例提供的圆柱电池单体的转接件折弯后的示意图;
图6为本申请一实施例提供的圆柱电池单体的转接件折弯前的局部示意图;
图7为本申请另一实施例提供的圆柱电池单体的转接件折弯前的结构示意图;
图8示出了本申请一实施例的圆柱电池单体的部分分解图;
图9为本申请一实施例提供的圆柱电池单体的转接件的第一转接部的结构示意图;
图10为本申请另一实施例提供的圆柱电池单体的转接件的第一转接部的结构示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;11-箱体;111-第一部分;112-第二部分;12-圆柱电池单体;120-壳体;1201-端部开口;121-端盖;122-电极端子;123-电极组件;1231-卷绕中心孔;1232-卷绕轴线;124-转接件;1241-第一转接部;1242-第二转接部;1243-第三转接部;1244-第一折痕;1245-第二折痕;1246-焊接区;1246a-第一子焊接区;1246b-第二子焊接区;1247-非焊接区;12471-第一表面;12472-第二表面;1248-定位孔;1249-加强筋;200-马达;300-控制器;1000-车辆。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上 述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“底”、“内”、“外”、“周向”等指示的方位或者位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:圆柱电池单体、方形电池单体和软包电池单体。本申请实施例提及的电池单体为圆柱电池单体。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作 为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构。本申请实施例提及的电极组件为卷绕式结构。
电池单体还包括转接件和电极端子,转接件用于连接电极组件和电极端子,以将电极组件的电能通过电极端子导出。对应地,与正极极耳连接的电极端子为正电极端子,与负极极耳连接的电极端子为负电极端子。为了便于电池单体的装配、节省转接件的占用空间,转接件一般采用折弯的形式以降低装配高度。
现有技术中,在电池生产过程中,转接件与电极组件的焊接操作较为复杂,导致电池单体的装配效率低。
发明人发现,转接件与电极组件的焊接操作复杂的原因,主要是焊接路径复杂。由于圆柱电池单体的电极组件为卷绕结构,在电池生产过程中,为了保证转接片能够与电极组件的大部分圈层的极耳焊接,通常将转接件与电极组件的焊接路径设置为V形或U形,使得焊接操作较为复杂,花费较长的时间,影响生产效率。
鉴于此,本申请提供了一种圆柱电池单体,该圆柱电池单体的转接件包括第一转接部和第二转接部,第一转接部与第二转接部之间具有第一折痕,第一转接部包括用于与电极组件焊接的焊接区,该焊接区的延伸方向与第一折痕平行,使得焊接路径呈直线,焊接操作简单且便捷,节省焊接时间,提高了生产效率。
本申请实施例描述的技术方案均适用于各种使用电池的用电装置,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,图1示出了本申请一实施例的一种车辆1000的结构示意图,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置电池100。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分替代燃油或天然气为车辆1000提供驱动力。
车辆1000的内部还可以设置马达200以及控制器300,控制器300用来控制电池100为马达200的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
为了满足不同的使用电力需求,电池100可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池100也可以 称为电池包。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池100。也就是说,多个电池单体可以直接组成电池100,也可以先组成电池模块,电池模块再组成电池100。
图2示出了本申请一实施例的电池100的结构示意图。图2中,电池100可以包括箱体11和多个圆柱电池单体12,箱体11内部为中空结构,多个圆柱电池单体12容纳于箱体11内部。箱体11包括第一部分111和第二部分112,第一部分111包括带有开口的容纳空间,第二部分112用于盖设于容纳空间的开口处,以与第一部分111连接形成用于容纳多个圆柱电池单体12的容纳腔体。
图3示出了本申请一实施例的圆柱电池单体12的分解图。如图3所示,圆柱电池单体12包括两个电极端子122、电极组件123和两个转接件124。两个电极端子122分别为正电极端子和负电极端子,正电极端子用于与电极组件123的正极极耳连接,负电极端子用于与电极组件123的负极极耳连接,转接件124设置有两个,正电极端子对应一个转接件124,负电极端子对应另一个转接件124。转接件124用于连接电极组件123和电极端子122,用于将电极组件123的电能经由电极端子122导出。
如图3所示,圆柱电池单体12还包括壳体120和端盖121。壳体120具有端部开口1201,电极组件123和转接件124设于壳体120内;端盖121用于覆盖端部开口1201且与壳体120连接,以形成放置电极组件123的密闭腔体。壳体120内填充有电解质,例如电解液。
壳体120具有相对的两个端部开口1201,两个端部开口1201分别对应电极组件123的正极极耳和负极极耳;端盖121设置有两个,每个端盖121对应一个端部开口1201,两个电极端子122与两个端盖121一一对应,正电极端子设置于一个端盖121,负电极端子设置于另一个端盖121。
本申请中,正极极片、隔离膜、负极极片相互层叠并绕卷绕轴线1232卷绕后形成卷绕式电极组件123,正极极片与负极极片由隔离膜隔离,在电极组件123卷绕完成后,电极组件123具有卷绕中心孔1231。
图4示出了本申请一实施例的圆柱电池单体12的转接件124折弯前与端盖121的连接示意图。如图4所示,转接件124折弯前,转接件124呈展开状态。转接件124包括第一转接部1241和第二转接部1242,第一转接部1241和第二转接部1242之间具有第一折痕1244,第一转接部1241包括用于与电极组件123(请参见图3)焊接的焊接区1246,焊接区1246沿平行于第一折痕1244的方向延伸。转接件124折弯前,第一转接部1241和第二转接部1242沿转接件124的Y方向依次分布;当转接件124折弯后,也即第二转接部1242相对于第一转接部1241折弯后,在第一转接部1241和第二转接部1242之间形成第一折痕1244。需要指出的是,图中X方向指示平行于第一折痕1244的方向,即,转接件124的宽度方向;Y方向指示垂直于第一折痕1244的方向,即,转接件124的长度方向。
焊接区1246为第一转接部1241的用于与电极组件123的极耳焊接的区域。焊接区1246的延伸方向与第一折痕1244的延伸方向平行,也即,焊接区1246沿X方向呈直线延伸。当转接件124与电极组件123焊接时,在焊接区1246进行焊接操作,焊 接路径呈直线状,操作简单便捷,焊接难度低,节省时间,提高了生产效率。
需要指出的是,为了与电极组件123的端面形状相匹配,第一转接部1241近似为圆盘状结构,第一转接部1241的轮廓接近于圆形,第一转接部1241的尺寸与电极组件123的端面尺寸基本一致,以便于保证第一转接部1241与电极组件123的连接面积,保证过流能力。可以理解为,第一折痕1244为第一转接部1241所在的圆形轮廓的一条弦线。
在本申请的一些实施例中,如图4所示,第二转接部1242设置有加强筋1249,以增加第二转接部1242的强度,便于第二转接部1242相对于第一转接部1241折弯。加强筋1249可以一体成型于第二转接部1242,也可以焊接或通过导电胶粘接于第二转接部1242。可选地,为了便于加工,加强筋1249可以一体成型于第二转接部1242。
在本申请的一些实施例中,加强筋1249沿Y方向延伸,以增加第二转接部1242在Y方向上的强度,便于引导第二转接部1242相对于第一转接部1241折弯。
在本申请的一些实施例中,加强筋1249设置有多个,多个加强筋1249沿X方向间隔排布。通过设置多个加强筋1249,可以有效增加第二转接部1242的强度,以便于第二转接部1242和第一转接部1241在第一折痕1244处折弯。
在本申请的一些实施例中,如图4所示,转接件124还包括用于与电极端子122连接的第三转接部1243,第三转接部1243与第二转接部1242之间具有第二折痕1245。在转接件124折弯前,沿Y方向,第二转接部1242位于第一转接部1241和第三转接部1243之间,第一转接部1241、第二转接部1242及第三转接部1243依次连接。在转接件124折弯时,第二转接部1242相对于第一转接部1241折弯形成第一折痕1244,第三转接部1243相对于第二转接部1242折弯形成第二折痕1245。通过两次折弯可以使转接件124的总厚度适应圆柱电池单体12的装配,避免转接件124与其他部件干涉。
图5示出了本申请一实施例的圆柱电池单体12的转接件124折弯后的示意图,如图5所示,在转接件124折弯后,沿Z方向,第一转接部1241和第三转接部1243位于第二转接部1242的两侧。需要指出的是,图中,Z方向为第二转接部1242的厚度方向,也即转接件124在展开状态时的厚度方向。
在本申请的一些实施例中,第二折痕1245与第一折痕1244平行设置,减小折弯后的转接件124的空间占用,节省装配空间,保证圆柱电池单体的能量密度。
在本申请的一些实施例中,第一转接部1241、第二转接部1242及第三转接部1243一体成型,便于加工。
图6为本申请一实施例的圆柱电池单体12的转接件124折弯前的局部示意图。在本申请的一些实施例中,如图6所示,第二转接部1242在第一折痕1244处的宽度可以小于第一转接部1241在第一折痕1244处的宽度,即,第二转接部1242在第一折痕1244处的宽度小于第一转接部1241所在的圆形轮廓的弦线的长度。这里,第二转接部1242的沿X方向的尺寸为第二转接部1242的宽度。
图7示出了本申请另一实施例的圆柱电池单体12的转接件124折弯前的结构 示意图。在本申请的一些实施例中,如图7所示,第一转接部1241在第一折痕1244处的宽度等于第二转接部1242在第一折痕1244处的宽度,即,第二转接部1242在第一折痕1244处的宽度等于第一转接部1241所在的圆形轮廓的弦线的长度。这里,第一转接部1241的沿X方向的尺寸为第一转接部1241的宽度。与图6所示的实施例相比,在图7所示的实施例中,第二转接部1242在第一折痕1244处的宽度更大,转接件124在第一折痕1244处的过流能力更强,转接件124的内阻更小。
本申请中,第二转接部1242的宽度方向与焊接区1246的延伸方向平行,第二转接部1242在第一折痕1244处的宽度不受焊接区1246限制,第二转接部1242的宽度可以尽可能地加宽,当第二转接部1242在第一折痕1244处的宽度等于第一转接部1241所在的圆形轮廓的弦线的长度时,能够保证转接件124在第一折痕1244处具有较大的过流能力,使得转接件124的内阻减小。
在本申请的一些实施例中,第二转接部1242在其他位置的宽度不小于第二转接部1242在第一折痕1244处的宽度,以进一步提高转接件124的过流能力,减小转接件124的内阻。
第二转接部1242可以为任意适当的形状,例如,矩形、梯形、六边形等。在本申请的一些实施例中,如图7所示,第二转接部1242呈矩形,第二转接部1242的宽度处处相等。
在本申请的一些实施例中,如图7所示,焊接区1246的两端延伸至第一转接部1241的边缘,以尽可能增加焊接区1246的长度,保证焊接区1246与电极组件123具有较大的接触面积,保证两者的连接稳定性,提高过流能力。同时,由于焊接区1246与第一折痕1244平行,第一转接部1241在焊接区1246与电极组件123焊接后,第一转接部1241在焊接区1246的延伸方向上强度得到加强,便于引导第二转接部1242相对于第一转接部1241在第一折痕1244处折弯。
在本申请的一些实施例中,如图7所示,焊接区1246包括沿Y方向间隔排布的多个子焊接区。沿Y方向,第一转接部1241在相邻的两个子焊接区之间的区域为非焊接区域。
通过设置多个子焊接区,使得能够在多个位置实现第一转接部1241与电极组件123的焊接,增加第一转接部1241与电极组件123的焊接面积,保证第一转接部1241与电极组件123的连接稳定性,进而保证过流能力。
图8示出了本申请一实施例的圆柱电池单体12的部分分解图。在本申请的一些实施例中,如图7和图8所示,当第一转接部1241设置有多个子焊接区时,多个子焊接区包括相邻的第一子焊接区1246a和第二子焊接区1246b,第一子焊接区1246a和第二子焊接区1246b分别位于电极组件123的卷绕轴线1232的两侧,第一子焊接区1246a和第二子焊接区1246b之间的距离小于电极组件123的卷绕中心孔1231的直径。
电极组件123为卷绕结构,电极组件123具有卷绕中心孔1231,第一子焊接区1246a和第二子焊接区1246b分别位于电极组件123的卷绕轴线1232的两侧,即,卷绕轴线1232穿过第一子焊接区1246a和第二子焊接区1246b之间的非焊接区1247。当 第一子焊接区1246a和第二子焊接区1246b之间的距离小于电极组件123的卷绕中心孔1231的直径时,第一子焊接区1246a和第二子焊接区1246b中至少部分区域覆盖电极组件123的卷绕中心孔1231。通过这种方式,焊接区1246可以使得焊接区1246与电极组件123卷绕形成的每圈极耳都有连接,减少有部分极耳不参与过流,造成极化问题,保证转接件124与更多的极耳连接,提高转接件124的过流能力。
如图7和图8所示,为了便于实现转接件124与电极组件123的安装定位,第一转接部1241设置有定位孔1248,定位孔1248与电极组件123的卷绕中心孔1231对应;当转接件124与电极组件123装配时,通过定位孔1248与电极组件123的卷绕中心孔1231对齐来实现第一转接部1241与电极组件123的定位。
图9示出了本申请一实施例的圆柱电池单体12的转接件124的第一转接部1241的结构示意图;图10示出了本申请另一实施例的圆柱电池单体12的转接件124的第一转接部1241的结构示意图。在本申请的一些实施例中,如图7-图10所示,第一转接部1241还包括非焊接区1247,非焊接区1247具有面向电极组件123的第一表面12471和背离电极组件123的第二表面12472,焊接区1246凸出于第一表面12471。第一转接部1241的除了焊接区1246外的区域均为非焊接区1247。
可以理解为,如图9和图10所示,第一表面12471和第二表面12472沿Z方向相对设置。焊接区1246凸出于第一表面12471,在第一转接部1241与电极组件123装配时,焊接区1246能够与电极组件123的极耳抵接,以便于第一转接部1241与电极组件123的连接固定,进而保证第一转接部1241与电极组件123的焊接质量。非焊接区1247能够便于实现定位夹具对第一转接部1241的定位,以便于保证第一转接部1241与电极组件123的焊接质量。例如,当第一转接部1241设置有定位孔1248时,定位孔1248位于与卷绕中心孔1231对应的非焊接区1247。
在本申请的一些实施例中,焊接区1246凸出于第一表面12471的高度H为0.3-0.7mm。
焊接区1246为第一转接部1241与电极组件123的极耳的焊接区域,焊接区1246的凸出高度选取,既要保证与电极组件123的极耳的焊接质量,又要避免占用较多的装配空间。如果焊接区1246的凸出高度较低,焊接区1246与极耳接触不良,影响焊接区1246与极耳的焊接质量;如果焊接区1246的凸出高度较高,第一转接部1241占用较多的装配空间,影响圆柱电池单体12的能量密度。通过将焊接区1246凸出于第一表面12471的高度H设定为0.3-0.7mm,既可以保证与电极组件123的极耳的焊接质量,又可以避免占用较多的装配空间。
在本申请的一些实施例中,如图10所示,焊接区1246凹陷于第二表面12472。由于焊接操作是在第一转接部1241的背离电极组件123的一侧进行,焊接区1246凹陷于第二表面12472,使得焊接区1246与非焊接区1247具有明显的轮廓界线,也即在第一转接部1241的背离电极组件123的一侧限定出焊接轮廓,以便于焊接操作。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种圆柱电池单体,包括:
    转接件,用于电连接电极组件和电极端子,所述转接件包括第一转接部和第二转接部,所述第一转接部和所述第二转接部之间具有第一折痕,所述第一转接部包括用于与所述电极组件焊接的焊接区,所述焊接区沿平行于所述第一折痕的方向延伸。
  2. 根据权利要求1所述的圆柱电池单体,其中,所述焊接区的两端延伸至所述第一转接部的边缘。
  3. 根据权利要求1或2所述的圆柱电池单体,其中,所述第一转接部还包括非焊接区,所述非焊接区具有面向所述电极组件的第一表面和背离所述电极组件的第二表面,所述焊接区凸出于所述第一表面。
  4. 根据权利要求3所述的圆柱电池单体,其中,所述焊接区凸出于所述第一表面的高度为0.3-0.7mm。
  5. 根据权利要求3或4所述的圆柱电池单体,其中,所述焊接区凹陷于所述第二表面。
  6. 根据权利要求1-5中任一项所述的圆柱电池单体,其中,所述焊接区包括沿垂直于所述第一折痕的方向间隔排布的多个子焊接区。
  7. 根据权利要求6所述的圆柱电池单体,其中,所述多个子焊接区包括相邻的第一子焊接区和第二子焊接区,所述第一子焊接区和所述第二子焊接区分别位于所述电极组件的卷绕轴线的两侧,所述第一子焊接区和所述第二子焊接区之间的距离小于所述电极组件的卷绕中心孔的直径。
  8. 根据权利要求1-7中任一项所述的圆柱电池单体,其中,所述第一转接部在所述第一折痕处的宽度等于所述第二转接部在所述第一折痕处的宽度,所述第一转接部的沿平行于所述第一折痕的方向的尺寸为所述第一转接部的宽度,所述第二转接部的沿平行于所述第一折痕的方向的尺寸为所述第二转接部的宽度。
  9. 根据权利要求8所述的圆柱电池单体,其中,所述第二转接部在其他位置的宽度不小于所述第二转接部在所述第一折痕处的宽度。
  10. 根据权利要求1-9中任一项所述的圆柱电池单体,其中,所述转接件还包括用于与所述电极端子连接的第三转接部,所述第三转接部与所述第二转接部之间具有第二折痕。
  11. 一种电池,包括如权利要求1-10中任一项所述的圆柱电池单体。
  12. 一种用电装置,包括如权利要求11所述的电池。
PCT/CN2022/082756 2021-04-26 2022-03-24 圆柱电池单体、电池及用电装置 WO2022227961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22773586.7A EP4113732A1 (en) 2021-04-26 2022-03-24 Cylindrical battery cell, battery, and power consuming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120877288.6U CN214411277U (zh) 2021-04-26 2021-04-26 圆柱电池单体、电池及用电装置
CN202120877288.6 2021-04-26

Publications (1)

Publication Number Publication Date
WO2022227961A1 true WO2022227961A1 (zh) 2022-11-03

Family

ID=78032601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082756 WO2022227961A1 (zh) 2021-04-26 2022-03-24 圆柱电池单体、电池及用电装置

Country Status (3)

Country Link
EP (1) EP4113732A1 (zh)
CN (1) CN214411277U (zh)
WO (1) WO2022227961A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214411277U (zh) * 2021-04-26 2021-10-15 宁德时代新能源科技股份有限公司 圆柱电池单体、电池及用电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260418A (ja) * 1999-03-12 2000-09-22 Furukawa Battery Co Ltd:The 円筒型蓄電池用集電体並びに円筒型蓄電池
JP2004273288A (ja) * 2003-03-10 2004-09-30 Sanyo Electric Co Ltd 筒型二次電池
CN202549959U (zh) * 2012-03-23 2012-11-21 长宜电通科技股份有限公司 一种陶瓷绝缘密封圆柱形锂电池
CN102867936A (zh) * 2011-07-05 2013-01-09 珠海银通新能源有限公司 高容量电池及其装配方法
CN205882057U (zh) * 2016-04-08 2017-01-11 深圳市沃特玛电池有限公司 一种二次电池结构
CN206619636U (zh) * 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
CN214411277U (zh) * 2021-04-26 2021-10-15 宁德时代新能源科技股份有限公司 圆柱电池单体、电池及用电装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260418A (ja) * 1999-03-12 2000-09-22 Furukawa Battery Co Ltd:The 円筒型蓄電池用集電体並びに円筒型蓄電池
JP2004273288A (ja) * 2003-03-10 2004-09-30 Sanyo Electric Co Ltd 筒型二次電池
CN102867936A (zh) * 2011-07-05 2013-01-09 珠海银通新能源有限公司 高容量电池及其装配方法
CN202549959U (zh) * 2012-03-23 2012-11-21 长宜电通科技股份有限公司 一种陶瓷绝缘密封圆柱形锂电池
CN205882057U (zh) * 2016-04-08 2017-01-11 深圳市沃特玛电池有限公司 一种二次电池结构
CN206619636U (zh) * 2017-03-30 2017-11-07 陕西沃特玛新能源有限公司 一种电池
CN214411277U (zh) * 2021-04-26 2021-10-15 宁德时代新能源科技股份有限公司 圆柱电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN214411277U (zh) 2021-10-15
EP4113732A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2022199129A1 (zh) 电池单体、电池及用电设备
WO2022156478A1 (zh) 电池单体、电池以及用电装置
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
US20230395952A1 (en) Battery cell, battery and electrical device
WO2022127403A1 (zh) 电极组件、电池单体、电池以及用电装置
US20230216077A1 (en) Spirally wound electrode assembly, battery cell, battery and electric apparatus
US20230216154A1 (en) Current collecting member, battery cell, battery, and power consuming device
US20230387558A1 (en) Battery cell, battery, and electrical apparatus
WO2024104110A1 (zh) 一种电极构件、电池单体、电池及用电装置
WO2022227961A1 (zh) 圆柱电池单体、电池及用电装置
WO2023236346A1 (zh) 电极组件、电池单体、电池及用电装置
US20220367985A1 (en) Electrode assembly, battery cell, battery, electrical apparatus, and manufacturing method and device
WO2022160296A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2022170493A1 (zh) 电池、用电装置、制备电池的方法和设备
CN116249652A (zh) 连接部件、电池单体、电池及用电设备
WO2023092459A1 (zh) 电极组件、电池单体、电池以及用电装置
US20240154251A1 (en) Current collecting component, battery cell, battery, and electric device
WO2023206083A1 (zh) 电池单体、电池及用电装置
WO2023225903A1 (zh) 电池单体、电池以及用电装置
US20230055271A1 (en) Battery cell, method and system for manufacturing a battery cell, battery and electrical device
CN218215488U (zh) 端盖组件、电池单体、电池及用电设备
WO2024036612A1 (zh) 电池单体、电池和用电设备
US20240097287A1 (en) Battery cell, method and system for manufacture same, battery, and power consuming device
WO2023231457A1 (zh) 电极组件、电池单体、电池及用电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022773586

Country of ref document: EP

Effective date: 20220930

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE