WO2022168838A1 - 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 - Google Patents

電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 Download PDF

Info

Publication number
WO2022168838A1
WO2022168838A1 PCT/JP2022/003871 JP2022003871W WO2022168838A1 WO 2022168838 A1 WO2022168838 A1 WO 2022168838A1 JP 2022003871 W JP2022003871 W JP 2022003871W WO 2022168838 A1 WO2022168838 A1 WO 2022168838A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
wave absorbing
resin
particle dispersion
absorbing particles
Prior art date
Application number
PCT/JP2022/003871
Other languages
English (en)
French (fr)
Inventor
裕史 常松
佳輔 町田
正男 若林
健治 足立
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN202280011299.3A priority Critical patent/CN116783146A/zh
Priority to EP22749710.4A priority patent/EP4289789A1/en
Priority to MX2023008842A priority patent/MX2023008842A/es
Priority to US18/262,105 priority patent/US20240052135A1/en
Priority to JP2022579556A priority patent/JPWO2022168838A1/ja
Publication of WO2022168838A1 publication Critical patent/WO2022168838A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/02Antimonates; Antimonites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/221Oxides; Hydroxides of metals of rare earth metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter

Definitions

  • the present invention relates to electromagnetic wave absorbing particles, electromagnetic wave absorbing particle dispersions, electromagnetic wave absorbing particle dispersions, and electromagnetic wave absorbing laminates.
  • light is defined as an electromagnetic wave with a wavelength in the range of about 1 nm to 1 mm.” This wavelength range includes the visible light region and the infrared region.
  • the near-infrared rays contained in the sun's rays pass through the window materials, etc., enter the room, enter the room, and raise the surface temperature of the walls and floors of the room, as well as the indoor air temperature.
  • a light shielding member is used as a window material or the like to block near-infrared rays entering through a window, thereby preventing the indoor temperature from rising.
  • Patent Document 1 proposes a light-shielding film containing black fine powder containing inorganic pigments such as carbon black and titanium black, organic pigments such as aniline black, and the like. .
  • Patent Document 2 discloses a heat-retaining sheet made of a woven or woven fabric using a band-shaped film having infrared reflectivity and a band-shaped film having infrared absorptivity as warp or weft, respectively. It also describes the use of a strip-shaped film having infrared reflectivity, which is obtained by subjecting a synthetic resin film to aluminum vapor deposition processing and further laminating a synthetic resin film.
  • Patent Document 3 an infrared shielding material fine particle dispersion in which infrared material fine particles are dispersed in a medium, wherein the infrared material fine particles are tungsten oxide fine particles or/and composite tungsten oxide fine particles.
  • the present inventors have proposed an infrared shielding material fine particle dispersion in which the dispersed particle diameter of the infrared material fine particles is 1 nm or more and 800 nm or less.
  • electromagnetic wave absorbing particles that can absorb electromagnetic waves such as infrared rays have come to be used in various applications, and new electromagnetic wave absorbing particles have been required so that the optimum material can be selected according to the application.
  • an object of one aspect of the present invention is to provide novel electromagnetic wave absorbing particles.
  • electromagnetic wave absorbing particles containing a composite oxide is an element A that is one or more elements selected from H, alkali metals, Mg, and alkaline earth metals; and a B element that is one or more elements selected from V, Nb, and Ta,
  • electromagnetic wave absorbing particles that satisfy the relationship of 0.001 ⁇ x/y ⁇ 1.5, where x is the amount of the element A contained in the composite oxide, and y is the amount of the element B contained in the composite oxide. do.
  • One aspect of the present invention can provide novel electromagnetic wave absorbing particles.
  • FIG. 1 is a graph of the transmitted light profile of the electromagnetic wave absorbing particle dispersion liquid according to Example 1.
  • FIG. FIG. 2 is a schematic diagram of an electromagnetic wave absorbing particle dispersion.
  • FIG. 3 is a schematic diagram of an electromagnetic wave absorbing particle dispersion.
  • FIG. 4 is a schematic diagram of an electromagnetic wave absorbing substrate.
  • FIG. 5 is a schematic diagram of an electromagnetic wave absorbing laminate.
  • Electromagnetic wave absorbing particles [2] Electromagnetic wave absorbing particle production method, [3] Electromagnetic wave absorbing particle dispersion, [4] Electromagnetic wave absorbing particle dispersion, [5] Electromagnetic wave absorbing laminate, in this order. explain. [1] Electromagnetic Wave Absorbing Particles
  • the inventors of the present invention have studied novel electromagnetic wave absorbing particles.
  • the type of electromagnetic waves absorbed by the electromagnetic wave absorbing particles is not particularly limited, as described above, electromagnetic wave absorbing particles that particularly absorb infrared rays and near-infrared rays are desired. Therefore, the electromagnetic-wave-absorbing particles of the present embodiment are preferably infrared-absorbing particles that absorb infrared rays, and more preferably near-infrared-absorbing particles that absorb near-infrared rays.
  • the inventors of the present invention focused on oxides of group V elements in studying new electromagnetic wave absorbing particles.
  • the pentoxides V 2 O 5 , Nb 2 O 5 , Ta 2 O 5
  • absorption and reflection characteristics in the infrared region are poor. and is not effective as an infrared absorbing material.
  • a composite oxide is formed by adding a positive element to the above oxide, free electrons or holes are generated in the composite oxide, so that absorption characteristics derived from free electrons or holes appear in the infrared region. . Therefore, the inventors have found that new electromagnetic wave absorbing particles can be obtained.
  • composition range of the composite oxide has a particularly effective range as electromagnetic wave absorbing particles.
  • the present inventors have found that the composite oxide is transparent in the visible light region and has absorption in the infrared region, and completed the present invention.
  • the electromagnetic wave absorbing particles of this embodiment can contain a composite oxide.
  • the composite oxide is composed of element A, which is one or more elements selected from H, alkali metals, Mg, and alkaline earth metals, and element B, which is one or more elements selected from V, Nb, and Ta. and
  • the electromagnetic wave absorbing particles of the present embodiment may be composed only of the composite oxide. However, even in this case, the case where the electromagnetic wave absorbing particles of the present embodiment contain unavoidable impurities mixed in the manufacturing process or the like is not excluded.
  • the A element is preferably one or more elements selected from H, alkali metals, Mg, and alkaline earth metals, as described above.
  • the A element is preferably one or more elements selected from alkaline earth metals, that is, Ca, Sr, Ba, and Ra. Ca, Sr, More preferably, it is one or more elements selected from Ba.
  • the B element can be one or more elements selected from V, Nb, and Ta as described above, and preferably one or more elements selected from Nb and Ta. It is more preferable to have
  • x/y which indicates the content ratio of the substance amount of the A element to the B element in the composite oxide
  • x/y is preferably 0.001 ⁇ x/y ⁇ 1.5, more preferably 0.5 ⁇ x/y ⁇ 1.0, and 0.7 ⁇ More preferably, x/y ⁇ 1.0.
  • the composite oxide can be represented by the general formula A x B y O z , for example.
  • A represents the A element
  • B represents the B element
  • O represents oxygen. It is preferably composed of
  • the composite oxide contains The amount of oxygen is not particularly limited. However, by setting the amount of oxygen in a predetermined range, the amount of free electrons or holes in the composite oxide can be set in a particularly suitable range from the viewpoint of improving electromagnetic wave absorption characteristics. Therefore, z/y, which corresponds to the content ratio of oxygen to element B in the composite oxide, is preferably 1.0 ⁇ z/y ⁇ 3.5, more preferably 2.0 ⁇ z/ y ⁇ 3.5, more preferably 2.0 ⁇ z/y ⁇ 3.0, most preferably 2.4 ⁇ z/y ⁇ 3.0.
  • z/y corresponds to the content ratio of oxygen to the B element in the composite oxide with respect to the amount of substance, and is a value that affects the amount of oxygen deficiency or the amount of oxygen excess in the composite oxide.
  • the amount of free electrons or holes in the composite oxide can also be controlled by the amount of oxygen. Therefore, it is preferable to control the value of z/y according to the required electromagnetic wave absorption characteristics and the like.
  • the value of z/y can be easily controlled by the conditions for synthesizing the electromagnetic wave absorbing particles.
  • the A element is divalent, for example, when the A element is one or more elements selected from Ca, Sr, Ba, and Ra, x, y, and z in the general formula A x B y O z are ⁇ It is preferable to satisfy 1 ⁇ (2x + 5y-2z) / y ⁇ 5, more preferably 0 ⁇ (2x + 5y-2z) / y ⁇ 3.5, 0.5 ⁇ (2x + 5y-2z) / y ⁇ 2 .5, and particularly preferably 1 ⁇ (2x+5y-2z)/y ⁇ 2.5.
  • the composite oxide in order to improve the transmission of light in the visible light region and the effect of improving the absorption of light in the infrared region, a unit structure of a cubic, tetragonal, or orthorhombic crystal structure is required in the composite oxide. and the composite oxide may partially contain amorphous or other structures.
  • the crystal structure of the composite oxide is a cubic perovskite structure.
  • SrNbO 3 , BaNbO 3 and the like have a cubic perovskite structure.
  • a cubic perovskite structure having an element A deficiency may be obtained.
  • a cubic perovskite structure having oxygen defects may be formed.
  • the crystal structure may be a tetragonal or orthorhombic crystal structure in which ABO 3 blocks and BO blocks are regularly stacked.
  • the crystal structure may be cubic, tetragonal, or orthorhombic.
  • electromagnetic wave absorbing particles materials with high electromagnetic wave absorption in the infrared region and low electromagnetic wave absorption in the visible light region are often required. Whether it is preferable or not cannot be decided indiscriminately.
  • the absorption wavelength of the electromagnetic wave absorbing particles of this embodiment is often around 780 nm, which is the boundary between the visible light region and the infrared region.
  • the absorption wavelength of electromagnetic waves may shift to the short wavelength side, or the absorption of electromagnetic waves may increase, resulting in a decrease in visible light transparency.
  • the heat shielding property means a property determined by a balance between visible light transparency and near-infrared absorptivity.
  • the lattice constant of the composite oxide is not particularly limited, but the lattice constant of the a-axis based on the cubic perovskite structure is preferably 3.965 ⁇ or more and 4.045 ⁇ or less, more preferably 3.975 ⁇ or more and 4.035 ⁇ . Below, more preferably 3.983 ⁇ or more and 4.029 ⁇ or less.
  • the lattice constant can be calculated by Rietveld analysis. (Regarding particle characteristics of electromagnetic wave absorbing particles) Particle characteristics such as particle size of the electromagnetic wave absorbing particles of the present embodiment are not particularly limited, and can be arbitrarily selected according to required electromagnetic wave absorbing characteristics.
  • the electromagnetic wave-absorbing particles of the present embodiment preferably have a volume-based cumulative 50% particle diameter of 1 nm or more and 50 nm or less, and a volume-based cumulative 95% particle diameter of 5 nm or more and 100 nm or less, measured by a particle size distribution analyzer.
  • materials containing free electrons or holes are known to exhibit a reflection absorption response to electromagnetic waves around the solar ray region with a wavelength of 200 nm or more and 2600 nm or less due to plasma oscillation. It is known that when the powder particles of such a material are particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength of 380 nm or more and 780 nm or less) is reduced and transparency in the visible light region is obtained. ing.
  • transparency is used in the sense of “low scattering and high transmittance of light in the visible light region.”
  • the volume-based cumulative 95% particle diameter measured by a particle size distribution analyzer should be 100 nm or less. preferable. This is because particles with a cumulative 95% particle diameter of 100 nm or less do not completely block light due to scattering, and can maintain visibility in the visible light region and at the same time efficiently maintain transparency. be. In particular, when the transparency in the visible light region is emphasized, it is preferable to consider the scattering due to the particles.
  • the cumulative 95% particle size is more preferably 70 nm or less, even more preferably 50 nm or less. If the particle size of the electromagnetic wave absorbing particles is small, the scattering of light in the visible light region with a wavelength of 380 nm or more and 780 nm or less due to geometric scattering or Mie scattering is reduced. Therefore, by setting the cumulative 95% particle diameter of the electromagnetic wave-absorbing particles within the above range, for example, the electromagnetic wave-absorbing particle dispersion using the electromagnetic wave-absorbing particles becomes like frosted glass, and clear transparency cannot be obtained. can be more reliably avoided.
  • the cumulative 95% particle diameter is 70 nm or less
  • the above geometric scattering or Mie scattering is reduced, resulting in a Rayleigh scattering region. This is because, in the Rayleigh scattering region, scattered light is proportional to the sixth power of the particle diameter, so scattering decreases and transparency improves as the particle diameter decreases.
  • the cumulative 95% particle size is 50 nm or less, the scattered light is extremely small, which is preferable.
  • the cumulative 95% particle size is preferably as small as possible, so the lower limit of the cumulative 95% particle size is not particularly limited, but the cumulative 95% particle size is preferably 5 nm or more. This is because industrial production is easy if the cumulative 95% particle size is 5 nm or more.
  • the haze value of the electromagnetic wave absorbing particle dispersion obtained by dispersing the electromagnetic wave absorbing particles of the present embodiment in a solid medium can be reduced to a visible light transmittance of 85. % or less and 30% or less.
  • a visible light transmittance 85. % or less and 30% or less.
  • the volume-based cumulative 50% particle diameter of the electromagnetic wave absorbing particles measured by a particle size distribution analyzer is preferably 1 nm or more.
  • the cumulative 50% particle size is preferably 50 nm or less for the same reason as the cumulative 95% particle size.
  • the cumulative 50% particle size and cumulative 95% particle size of the electromagnetic wave absorbing particles are measured using a particle size distribution measuring device (for example, UPA-150 manufactured by Nikkiso Co., Ltd.) based on the dynamic light scattering method that analyzes by frequency analysis. can be measured.
  • a particle size distribution measuring device for example, UPA-150 manufactured by Nikkiso Co., Ltd.
  • Particle size distribution data is expressed as cumulative % or frequency % with respect to the particle diameter scale, but conversely, it may be expressed as particle diameter with respect to the cumulative % scale.
  • the 50% particle size is also called median size and is very commonly used.
  • the electromagnetic wave absorbing particles of this embodiment can be produced by a solid phase reaction method.
  • an A element compound and a B element compound can be used as raw materials.
  • the method for producing electromagnetic wave absorbing particles of the present embodiment includes a mixed powder preparation step (first mixed powder preparation step) of preparing a mixed powder of an A element compound or an element A alone and a B element compound or an element B alone.
  • first mixed powder preparation step of preparing a mixed powder of an A element compound or an element A alone and a B element compound or an element B alone.
  • an A element compound or an A element alone can be used as the A element source.
  • the A element compound used as a raw material is preferably one or more selected from oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, organic compounds, sulfides, and chlorides of the A element. .
  • the B element compound or the B element alone as the B element source pentoxides (V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 ) and dioxides (VO 2 , NbO 2 , TaO 2 ) of the B element are used. ), trioxide (V 2 O 3 , Nb 2 O 3 ), elemental metals (V, Nb, Ta), sulfates, ammonium salts, organic compounds, sulfides, chlorides, chlorides into liquids such as alcohol It is preferably one or more selected from hydrates of oxides obtained by adding water for hydrolysis after dissolution and evaporating the solvent. Since the preferred B element has already been explained, the explanation is omitted here.
  • the specific procedure for obtaining the mixed powder of the A element compound or A element alone and the B element compound or B element alone is not particularly limited.
  • the mixed powder can be obtained by dissolving the A element compound or the like in water, wet mixing it with the B element compound or the like, and then drying it.
  • mixing can be performed so that the ratio of the substance amounts of the A element and the B element in the mixed powder to be obtained becomes the ratio of the A element and the B element in the desired composite oxide.
  • x and y are preferably 0.001 ⁇ x/y ⁇ 1.5, more preferably 0.5 ⁇ x/y ⁇ 1.0, as described above, More preferably, 0.7 ⁇ x/y ⁇ 1.0. For this reason, it is preferable to mix the A element compound and the like with the B element compound and the like so as to fall within the above preferred range.
  • the electromagnetic wave absorbing particles of the present embodiment can also be synthesized in multiple stages in order to obtain electromagnetic wave absorbing particles containing a composite oxide with a target composition.
  • the A element compound and the like and the B element compound and the like can be mixed so as to have the composition of the intermediate product.
  • the method for producing electromagnetic wave absorbing particles of the present embodiment can have a firing step (first firing step) of firing the mixed powder obtained in the mixed powder preparation step.
  • the conditions for the firing process are not particularly limited.
  • the mixed powder is selected from an inert gas atmosphere, a reducing gas atmosphere, a vacuum atmosphere, a mixed gas atmosphere of an inert gas and a reducing gas, and an oxidizing atmosphere containing oxygen. It can be fired under any atmosphere.
  • the firing atmosphere is a mixed gas atmosphere of an inert gas and a reducing gas.
  • a reducing gas is preferred.
  • the reducing gas is not particularly limited, it is preferably hydrogen gas, for example.
  • the volume ratio of hydrogen gas is preferably 1% or more, more preferably 3% or more.
  • the upper limit of the volume ratio of the hydrogen gas is not particularly limited, and since the reducing gas can be used alone, the maximum can be 100%.
  • the inert gas is not particularly limited, but one or more selected from nitrogen gas, rare gas, etc. can be used.
  • the oxidizing atmosphere may be any atmosphere containing oxygen.
  • an atmosphere containing 18% or more and 100% or less of oxygen in volume ratio can be used.
  • it can be an air atmosphere.
  • the firing temperature conditions in the firing step are not particularly limited, but the firing temperature is preferably at least the temperature at which the formed composite oxide begins to crystallize and at most the melting point of the composite oxide. Specifically, for example, it is preferable to set the firing temperature to 1000° C. or higher and 2100° C. or lower.
  • the electromagnetic wave absorbing particles of the present embodiment are electromagnetic wave absorbing particles containing a composite oxide having a target composition, they can be synthesized in multiple steps.
  • the intermediate product obtained in the firing step (first firing step) can be further added and mixed with a B element compound or a single element of B (second mixed powder preparation process).
  • the B element compound or the like used at this time is not particularly limited, but for example, the compound described above in the first mixed powder preparation step can be used.
  • mixing is performed so that the ratio of the amounts of the A element and the B element in the mixed powder to be obtained becomes the ratio of the A element and the B element in the target composite oxide. is preferred.
  • Mixing can be carried out in the same manner as in the mixed powder preparation step, and thus the description is omitted here.
  • the obtained mixed powder can be subjected to a firing step (second firing step) to prepare the electromagnetic wave absorbing particles of the present embodiment.
  • the conditions of the second firing step are not particularly limited, but the firing atmosphere and the firing temperature can be performed in the same manner as described in the firing step (first firing step), so the description is omitted here. .
  • the firing conditions may be the same or different between the first firing step and the second firing step.
  • the electromagnetic wave absorbing particles of the present embodiment can be obtained. After the firing step, the obtained electromagnetic wave absorbing particles can be crushed, pulverized, sieved, etc. as necessary to obtain a desired particle size distribution.
  • the electromagnetic wave absorbing particle dispersion of the present embodiment will be described.
  • the electromagnetic wave absorbing particle dispersion of the present embodiment can contain a liquid medium and the electromagnetic wave absorbing particles contained in the liquid medium. That is, for example, as shown in FIG. 2, the electromagnetic wave absorbing particle dispersion liquid 20 of the present embodiment can contain the electromagnetic wave absorbing particles 21 and the liquid medium 22 described above. The electromagnetic wave absorbing particles 21 are preferably dispersed in the liquid medium 22 .
  • FIG. 2 is a schematic diagram, and the electromagnetic wave absorbing particle dispersion liquid of the present embodiment is not limited to such a form.
  • the electromagnetic wave absorbing particles 21 are described as spherical particles in FIG. 2, the shape of the electromagnetic wave absorbing particles 21 is not limited to such a form, and can have any shape.
  • the electromagnetic wave absorbing particle dispersion liquid 20 can also contain other additives, if necessary, in addition to the electromagnetic wave absorbing particles 21 and the liquid medium 22 .
  • the electromagnetic wave absorbing particle dispersion liquid of the present embodiment can be obtained using the electromagnetic wave absorbing particles described above, in other words, the electromagnetic wave absorbing particles obtained by the method for producing the electromagnetic wave absorbing particles described above. .
  • the electromagnetic wave absorbing particle dispersion may further contain a dispersant and other additives as desired.
  • the electromagnetic wave absorbing particle dispersion can be used as an intermediate product of the electromagnetic wave absorbing particle dispersion or as a coating liquid.
  • a liquid medium means a medium that is liquid at the temperature of use, and is preferably a medium that is liquid at room temperature (27°C).
  • the liquid medium is not particularly limited and can be arbitrarily selected according to the application, etc., but the liquid medium is one or more selected from water, organic solvents, liquid plasticizers, oils and fats, and compounds that are polymerized by curing. can be preferably used.
  • the electromagnetic wave absorbing particle dispersion liquid of the present embodiment can contain the electromagnetic wave absorbing particles described above. Since the electromagnetic wave absorbing particles have already been explained, the explanation is omitted here.
  • the organic solvent used as the liquid medium is selected from, for example, alcohols, ketones, esters, glycol derivatives, amides, aromatic hydrocarbons, and the like. can be used.
  • alcohol-based materials such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol, diacetone alcohol; Ketone-based materials such as acetone, methyl ethyl ketone, dimethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone, isophorone; ester-based materials such as 3-methyl-methoxy-propionate, n-butyl acetate; Glycol derivatives such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate; Amides such as formamide, N-methylformamide, dimethylformamide, dimethylacetamide
  • one or more selected from dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like can be used more preferably.
  • Oils and Fats Fats and oils used as the liquid medium are not particularly limited, but vegetable oils or compounds derived from vegetable oils can be preferably used.
  • Vegetable oils include dry oils such as linseed oil, sunflower oil, tung oil, and perilla oil; semi-dry oils such as sesame oil, cottonseed oil, rapeseed oil, soybean oil, rice bran oil, and poppy oil; olive oil, coconut oil, palm oil, and dehydrated castor oil.
  • non-drying oils such as oil can be preferably used.
  • the vegetable oil-derived compound one or more selected from fatty acid monoesters, ethers, etc., which are obtained by directly esterifying vegetable oil fatty acids and monoalcohols, can be preferably used.
  • Liquid plasticizers used as liquid media include, for example, plasticizers that are compounds of monohydric alcohols and organic acid esters, and esters such as polyhydric alcohol organic acid ester compounds.
  • plasticizers that are compounds of monohydric alcohols and organic acid esters, and esters such as polyhydric alcohol organic acid ester compounds.
  • phosphoric acid-based plasticizers such as organic phosphoric acid-based plasticizers, and the like. In addition, all of them are preferably liquid at room temperature.
  • a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid can be preferably used.
  • the ester compound synthesized from the polyhydric alcohol and fatty acid is not particularly limited, for example, a glycol-based ester compound obtained by reacting a glycol with a monobasic organic acid can be suitably used.
  • the glycol one or more selected from triethylene glycol, tetraethylene glycol, tripropylene glycol and the like can be preferably used.
  • the monobasic organic acids include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptylic acid, n-octylic acid, 2-ethylhexylic acid, pelargonic acid (n-nonylic acid), decylic acid, and the like.
  • One or more selected types can be preferably used.
  • Ester compounds of tetraethylene glycol, tripropylene glycol, and monobasic organic compounds, etc. can also be suitably used.
  • triethylene glycol fatty acid esters such as triethylene glycol dihexanate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethylhexanonate, etc.
  • One or more selected types can be preferably used.
  • fatty acid esters of triethylene glycol can also be preferably used.
  • Compound polymerized by curing The compound polymerized by curing used in the electromagnetic wave absorbing particle dispersion of the present embodiment includes a polymerization reaction induced by heat, light, or water. Monomers and oligomers that form polymers can be preferably used.
  • Specific examples of compounds that are polymerized by curing include methyl methacrylate monomers, acrylate monomers, styrene resin monomers, and the like.
  • the liquid media described above Two or more of the liquid media described above can be used in combination. Furthermore, if necessary, acid or alkali may be added to these liquid media to adjust the pH.
  • (1-3) Dispersant In the electromagnetic wave-absorbing particle dispersion liquid of the present embodiment, in order to further improve the dispersion stability of the electromagnetic wave-absorbing particles and avoid coarsening of the particle size due to reaggregation, the electromagnetic wave-absorbing agent of the present embodiment is used.
  • the particle dispersion may also contain various dispersing agents, surfactants, coupling agents, and the like.
  • Dispersants, coupling agents, and surfactants can be selected according to the application, but have one or more functional groups selected from amine-containing groups, hydroxyl groups, carboxyl groups, phosphoric acid groups, and epoxy groups. Materials are preferred. These functional groups have the effect of being adsorbed on the surface of the electromagnetic wave absorbing particles to prevent aggregation and dispersing them uniformly. A polymeric dispersant having one or more selected from these functional groups in its molecule can be more preferably used as the dispersant.
  • Preferred specific examples of commercially available dispersants include SOLSPERSE (registered trademark) (hereinafter the same) manufactured by Nippon Lubrizol Co., Ltd. 3000, 5000, 9000, 11200, 12000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000 ⁇ 21000 ⁇ 24000SC ⁇ 24000GR ⁇ 26000 ⁇ 27000 ⁇ 28000 ⁇ 31845 ⁇ 32000 ⁇ 32500 ⁇ 32550 ⁇ 32600 ⁇ 33000 ⁇ 33500 ⁇ 34750 ⁇ 35100 ⁇ 35200 ⁇ 36600 ⁇ 37500 ⁇ 38500 ⁇ 39000 ⁇ 41000 ⁇ 41090 ⁇ 53095 ⁇ 55000 ⁇ 56000 , 71000, 76500, J180, J200, M387, etc.; SOLPLUS (registered trademark) (hereinafter the same) D510, D520, D530, D540, DP310, K500, L300, L400, R700, etc.; Disperbyk (registered trademark) manufactured by BYK-Chemie Japan (same
  • JONCRYL registered trademark
  • TERPLUS registered trademark
  • Ajisper registered trademark
  • Disparlon (registered trademark) (hereinafter the same) 1751N , 1831, 1850, 1860, 1934, DA-400N, DA-703-50, DA-325, DA-375, DA-550, DA-705, DA-725, DA-1401, DA-7301, DN-900 , NS-5210, NVI-8514L, etc.; Alphon (registered trademark) manufactured by Toagosei Co., Ltd.
  • a liquid dispersant having a glass transition temperature lower than room temperature can be used instead of the liquid medium. That is, the electromagnetic wave absorbing particle dispersion liquid of the present embodiment can contain the electromagnetic wave absorbing particles and the liquid dispersing agent, or can be composed of the electromagnetic wave absorbing particles and the liquid dispersing agent.
  • Preferred specific examples of commercially available liquid dispersants include SOLSPERSE (registered trademark) 20000 manufactured by Nippon Lubrizol Co., Ltd., and Disparlon (registered trademark) manufactured by Kusumoto Kasei (hereinafter the same) DA234, DA325, DA375, and the like.
  • the electromagnetic wave-absorbing particle dispersion liquid of the present embodiment may contain additives such as various surfactants and resin components for control of coating properties, leveling properties, and drying properties. .
  • the electromagnetic wave absorbing particle dispersion liquid preferably contains a small amount of the additive in the range of 5% by mass or less of the dispersion liquid.
  • Surfactants include anionic, cationic, nonionic, or amphoteric.
  • the dispersion contains silicone resin, acrylic resin, polyester resin, polyurethane resin, and polyoxyalkylene group. It can also contain one or more organic resins selected from hydrophilic organic resins, epoxy resins, and the like.
  • the electromagnetic wave absorbing particle dispersion preferably contains a small amount of the organic resin in the range of 5% by mass or less of the electromagnetic wave absorbing particle dispersion.
  • the electromagnetic wave absorbing particle dispersion may be a thermosetting resin, a thermoplastic resin, an ultraviolet curable resin, or the like. It can also contain one or more resins selected from When the resin is added, the electromagnetic wave absorbing particle dispersion liquid preferably contains the resin in an amount of 20% by mass or less of the dispersion liquid. More specifically, examples of the resin include acrylic resin, epoxy resin, polyester resin, amino resin, urethane resin, furan resin, silicone resin, and modified products of these resins.
  • the method for producing the electromagnetic wave absorbing particle dispersion of the present embodiment is not particularly limited.
  • the electromagnetic wave absorbing particle dispersion liquid of the present embodiment can be prepared, for example, by adding and dispersing the electromagnetic wave absorbing particles described above and, if necessary, a dispersant and other additives into the liquid medium described above.
  • a liquid dispersant can be used instead of the liquid medium as described above.
  • the method of dispersing the electromagnetic wave absorbing particles in the liquid medium is not particularly limited, but examples include pulverization and dispersion treatment methods using devices such as bead mills, ball mills, sand mills, paint shakers, and ultrasonic homogenizers.
  • devices such as bead mills, ball mills, sand mills, paint shakers, and ultrasonic homogenizers.
  • medium stirring mills such as bead mills, ball mills, sand mills, and paint shakers using medium media such as beads, balls, and Ottawa sand are suitable for electromagnetic wave absorbing particles because they can make the desired particle size in a short time. can be used for
  • the electromagnetic wave absorbing particles are dispersed in the liquid medium, and at the same time, the electromagnetic wave absorbing particles collide with each other and the medium medium collides with the electromagnetic wave absorbing particles.
  • Absorbing particles can be made finer and dispersed. That is, it is pulverized and dispersed.
  • the dispersion concentration of the electromagnetic wave absorbing particles in the electromagnetic wave absorbing particle dispersion is preferably 0.01% by mass or more and 80% by mass or less. This is because sufficient electromagnetic wave absorbing properties can be exhibited by setting the content of the electromagnetic wave absorbing particles to 0.01% by mass or more. Also, by setting the content to 80% by mass or less, the electromagnetic wave absorbing particles can be uniformly dispersed in the liquid medium. By selecting a liquid medium, a combination of a dispersing agent, a coupling agent, and a surfactant, the electromagnetic wave absorbing particle dispersion of the present embodiment can be maintained for 6 months or more even when placed in a constant temperature bath at a temperature of 40° C., for example.
  • the electromagnetic wave absorbing particle dispersion liquid of the present embodiment can be used as an electromagnetic wave absorbing substrate by forming a dispersed film, for example, by coating it on the surface of an appropriate substrate.
  • the dispersion film is also a kind of electromagnetic wave absorbing particle dispersion and a kind of dried and solidified electromagnetic wave absorbing particle dispersion liquid.
  • the electromagnetic wave absorbing particle dispersion liquid of the present embodiment is dried and, if necessary, pulverized to obtain a powdery electromagnetic wave absorbing particle dispersion (in this specification, sometimes referred to as "dispersed powder").
  • the dispersed powder is also a kind of electromagnetic wave absorbing particle dispersion and a kind of dried and solidified electromagnetic wave absorbing particle dispersion liquid.
  • the dispersed powder is a powdery dispersion in which electromagnetic wave absorbing particles are dispersed in a solid medium such as a dispersant. Since the dispersion powder contains a dispersing agent, it is possible to easily redisperse the electromagnetic wave absorbing particles in the medium by mixing it with an appropriate medium.
  • the dispersion powder can also be used as a raw material for adding electromagnetic wave absorbing particles in a dispersed state to electromagnetic wave absorbing products. That is, the dispersion powder obtained by dispersing the electromagnetic wave absorbing particles of the present embodiment in a solid medium may be dispersed again in a liquid medium and used as a dispersion liquid for infrared absorbing products. Dispersed powder may be kneaded into resin and used as an electromagnetic wave absorbing particle dispersion.
  • the electromagnetic wave-absorbing particle dispersion liquid of the present embodiment can be used for various applications utilizing photothermal conversion.
  • a curable ink composition can be obtained by adding an electromagnetic wave absorbing particle dispersion to an uncured thermosetting resin or by adding an uncured thermosetting resin to an electromagnetic wave absorbing particle dispersion.
  • the curable ink composition contains the electromagnetic wave absorbing particles described above, and the electromagnetic wave absorbing particles function as an auxiliary agent for increasing the amount of heat generated by irradiation of electromagnetic waves such as infrared rays. Since the curable ink composition contains a thermosetting resin, by irradiating the curable ink composition with electromagnetic waves such as infrared rays, the electromagnetic wave absorbing particles function as an auxiliary agent for increasing the amount of heat generated as described above. Thermosetting resins can be cured.
  • the curable ink composition on, for example, a substrate, it is possible to increase the adhesion between the cured product of the curable ink composition and the substrate when irradiated with electromagnetic waves such as infrared rays.
  • the curable ink composition can be used, for example, in a stereolithography method in which a three-dimensional object is formed by repeating application and curing by irradiation with electromagnetic waves such as infrared rays. It can be suitably used for
  • the electromagnetic wave absorbing particles of the present embodiment may be added to a heat-melted thermoplastic resin, or after dispersing the electromagnetic wave absorbing particles of the present embodiment in an appropriate solvent, a heat having high solubility in the solvent may be added.
  • a thermoplastic resin By adding a thermoplastic resin, a thermoplastic resin-containing ink composition is obtained.
  • thermoplastic resin-containing ink composition is provided on a substrate, for example, and is irradiated with electromagnetic waves such as infrared rays to remove the solvent and heat-fuse the resin to form a cured product of the thermoplastic resin-containing ink composition. It can be adhered to the substrate.
  • the electromagnetic wave absorbing particles function as an auxiliary agent for increasing the amount of heat generated by irradiation of electromagnetic waves such as infrared rays, as in the case of the curable ink composition.
  • thermoplastic resin-containing ink composition can be used in addition to the conventional ink composition, for example, by repeatedly applying, removing the solvent by irradiation with electromagnetic waves such as infrared rays, and heating and fusing the resin. It can be suitably used for stereolithography for modeling a dimensional object.
  • the curable ink composition and the thermoplastic resin-containing ink composition described so far are also examples of the electromagnetic wave absorbing particle dispersion liquid of the present embodiment.
  • Electromagnetic Wave Absorbing Particle Dispersion Next, the electromagnetic wave absorbing particle dispersion of the present embodiment will be described.
  • the electromagnetic wave-absorbing particle dispersion of the present embodiment can contain a solid medium and the electromagnetic wave-absorbing particles contained in the solid medium.
  • the electromagnetic wave absorbing particle dispersion 30 can contain the electromagnetic wave absorbing particles 31 described above and a solid medium 32, and the electromagnetic wave absorbing particles 31 are It can be placed in a solid medium 32 .
  • the electromagnetic wave absorbing particles 31 are preferably dispersed in the solid medium 32 .
  • FIG. 3 is a schematic diagram, and the electromagnetic wave absorbing particle dispersion of the present embodiment is not limited to such a form.
  • the electromagnetic wave absorbing particles 31 are described as spherical particles in FIG.
  • the shape of the electromagnetic wave absorbing particles 31 is not limited to such a form, and can have any shape.
  • the electromagnetic wave absorbing particle dispersion 30 can also contain other additives, if necessary, in addition to the electromagnetic wave absorbing particles 31 and the solid medium 32 .
  • a solid medium means a medium that is solid at the temperature used, and is preferably a medium that is solid at room temperature (27°C).
  • a resin, glass, or the like can be used as the solid medium.
  • a resin can be particularly preferably used from the viewpoint of ease of handling.
  • the type of resin is not particularly limited.
  • the electromagnetic wave absorbing particle dispersion preferably contains the electromagnetic wave absorbing particles at a rate of 0.001% by mass or more and 80% by mass or less. This is because a sufficient infrared shielding function can be exhibited by containing 0.001% by mass or more of the electromagnetic wave absorbing particles. Further, by setting the content ratio of the electromagnetic wave absorbing particles to 80% by mass or less, it is possible to suppress granulation of the electromagnetic wave absorbing particles in the solid medium, so that particularly good transparency can be maintained. In addition, since the amount of electromagnetic wave absorbing particles used can be suppressed, it is also advantageous in terms of cost. Furthermore, by setting the content ratio of the electromagnetic wave absorbing particles to 80% by mass or less, the ratio of the solid medium contained in the electromagnetic wave absorbing particle dispersion can be increased, and the strength of the dispersion can be increased.
  • the shape and the like of the electromagnetic wave-absorbing particle dispersion of this embodiment are not particularly limited, and can be arbitrarily selected according to the application.
  • the electromagnetic wave absorbing particle dispersion of the present embodiment preferably has a sheet shape, a board shape, or a film shape.
  • the electromagnetic wave absorbing particle dispersion (1) a method for producing the electromagnetic wave absorbing particle dispersion, (2) an electromagnetic wave absorbing substrate, and (3) a method for using the electromagnetic wave absorbing particle dispersion and an article using the same. I will explain in order.
  • (1) Method for producing electromagnetic wave absorbing particle dispersion The method for producing the electromagnetic wave absorbing particle dispersion is not particularly limited.
  • the electromagnetic wave absorbing particle dispersion can be produced, for example, by kneading the electromagnetic wave absorbing particles described above into a solid medium such as a resin and molding it into a desired shape such as a film or board.
  • the electromagnetic wave absorbing particle dispersion can also be produced by mixing the electromagnetic wave absorbing particle dispersion described above and a solid medium such as a resin.
  • a powdery dispersion in which electromagnetic wave absorbing particles are dispersed in a solid medium that is, the dispersion powder described above is added to a liquid medium and mixed with a solid medium such as a resin to produce an electromagnetic wave absorbing particle dispersion. It is also possible to
  • the shape of the electromagnetic wave-absorbing particle dispersion of the present embodiment is not particularly limited, but when resin is used as the solid medium, for example, it may be in the form of a sheet, a board, or a film having a thickness of 0.1 ⁇ m or more and 50 mm or less. can also
  • the electromagnetic wave absorbing particles are kneaded into a solid medium such as a resin to prepare an electromagnetic wave absorbing particle dispersion, the temperature near the melting point of the solid medium, such as the resin (for example, 200° C. or higher and 300° C. or lower) degree), the electromagnetic wave absorbing particles and the solid medium are heat-mixed and kneaded.
  • a solid medium such as a resin to prepare an electromagnetic wave absorbing particle dispersion
  • the material obtained by kneading the electromagnetic wave absorbing particles into a solid medium can be molded into a desired shape. However, once pelletized, the pellets are molded into a desired shape such as a film or board by various methods. is also possible.
  • the molding method is not particularly limited, and for example, an extrusion molding method, an inflation molding method, a solution casting method, a casting method, or the like can be used.
  • the thickness is not particularly limited and can be selected according to the application.
  • the amount of filler in the electromagnetic wave absorbing particle dispersion relative to the solid medium depends on the thickness of the electromagnetic wave absorbing particle dispersion and the optical properties, mechanical properties, etc. required for the electromagnetic wave absorbing particle dispersion. It can be selected arbitrarily. For example, 80 mass % or less is generally preferable with respect to a solid medium such as resin.
  • the amount of filler relative to the solid medium is 80% by mass or less, granulation of the electromagnetic wave absorbing particles in the solid medium can be suppressed, so that particularly good transparency can be maintained.
  • the amount of electromagnetic wave absorbing particles used can be suppressed, it is also advantageous in terms of cost.
  • the lower limit of the amount of filler in the solid medium is not particularly limited, it is preferably 0.001% by mass or more, for example, from the viewpoint that the electromagnetic wave absorbing particle dispersion exhibits a sufficient infrared shielding function.
  • the electromagnetic wave absorbing particle dispersion can also be used in a powdered state by further pulverizing the electromagnetic wave absorbing particle dispersion in which the electromagnetic wave absorbing particles are dispersed in a solid medium.
  • the electromagnetic wave absorbing particles are sufficiently dispersed in the solid medium in the powdery electromagnetic wave absorbing particle dispersion. Therefore, by dissolving the powdery electromagnetic wave absorbing particle dispersion as a so-called masterbatch in an appropriate liquid medium or kneading with resin pellets or the like, the liquid or solid electromagnetic wave absorbing particle dispersion can be easily obtained. can be manufactured.
  • the above-described sheet, board, or solid medium that serves as the matrix of the film is not particularly limited and can be selected according to the application.
  • a resin can be preferably used from the viewpoint of handleability.
  • polyester resin, polycarbonate resin, acrylic resin, styrene resin, polyamide resin, polyethylene resin, vinyl chloride resin, olefin resin, epoxy resin, polyimide resin, fluorine resin, ethylene/vinyl acetate copolymer One type of resin selected from the group of resins consisting of polyvinyl acetal resins and UV-curable resins, or a mixture of two or more types of resins selected from the group of resins can be preferably used.
  • Electromagnetic wave absorbing substrate is an electromagnetic wave absorbing substrate having a substrate and a dispersion film containing the above-described electromagnetic wave absorbing particles disposed on the surface of the substrate. Also includes morphology. Specifically, as shown in FIG.
  • the electromagnetic wave absorbing substrate 40 includes a substrate 41 and a dispersion film containing electromagnetic wave absorbing particles. 42.
  • a dispersion film 42 containing electromagnetic wave absorbing particles can be arranged on at least one surface 41A of the substrate 41 .
  • Such an electromagnetic wave absorbing substrate can be manufactured, for example, by the following procedure.
  • An electromagnetic wave absorbing particle dispersion is prepared by mixing the electromagnetic wave absorbing particles described above, an organic solvent such as alcohol or a liquid medium such as water, a resin binder, and optionally a dispersant (dispersion liquid preparation step).
  • the electromagnetic wave absorbing particle dispersion liquid is applied to a suitable base material surface (coating step).
  • the liquid medium is removed or the resin binder is cured to form an electromagnetic wave absorbing particle dispersion (dispersion preparation process). It should be noted that both the removal of the liquid medium and the curing of the resin binder can be carried out.
  • the above resin binder can be selected according to the application, and examples include ultraviolet curable resins, thermosetting resins, normal temperature curable resins, thermoplastic resins, and the like.
  • an electromagnetic wave absorbing particle dispersion containing no resin binder may be applied, and the electromagnetic wave absorbing particle dispersion may be laminated on the substrate surface.
  • a liquid medium containing a binder component may be applied on the layer of the electromagnetic wave absorbing particle dispersion.
  • an electromagnetic wave absorbing substrate first, for example, an organic solvent, an organic solvent in which a resin is dissolved, an organic solvent in which a resin is dispersed, or water is added to an electromagnetic wave.
  • a liquid dispersion of electromagnetic wave absorbing particles in which absorbing particles are dispersed can be applied to the substrate surface. Then, by solidifying the obtained coating film by an appropriate method, an electromagnetic wave absorbing base material can be obtained.
  • a resin binder can be used as the resin.
  • a liquid dispersion of electromagnetic wave absorbing particles containing a resin binder is applied to the substrate surface, and the resulting coating film is solidified by an appropriate method to absorb electromagnetic waves. It can also be used as a base material.
  • a coating film obtained by coating the substrate surface with a liquid electromagnetic wave absorbing particle dispersion obtained by mixing an electromagnetic wave absorbing particle dispersion, in which electromagnetic wave absorbing particles are dispersed in a powdery solid medium, in a predetermined medium. can be solidified by an appropriate method to obtain an electromagnetic wave absorbing base material.
  • liquid electromagnetic wave absorbing particle dispersions two or more types of solid media are added and mixed, and the electromagnetic wave absorbing particle dispersion is applied to the surface of the substrate, and the resulting coating film is solidified by an appropriate method.
  • the electromagnetic wave absorbing particle dispersion is applied to the surface of the substrate, and the resulting coating film is solidified by an appropriate method.
  • the material of the base material used for the electromagnetic wave absorbing base material is not particularly limited as long as it is transparent, but one or more selected from glass, resin sheet, resin board, resin film, etc. is preferably used.
  • the transparent body is a material that transmits light in the visible light region, and the degree of transmission of light in the visible light region can be arbitrarily selected according to the use of the electromagnetic wave absorbing substrate.
  • the resin used for the resin sheet, resin board, and resin film is not particularly limited, and can be selected according to the required properties such as the surface state and durability of the sheet, board, and film.
  • the resin include polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate polymers, acrylic polymers such as polymethyl methacrylate, polystyrene, and acrylonitrile/styrene.
  • Styrene-based polymers such as polymers, polyethylene, polypropylene, polyolefins having a cyclic or norbornene structure, olefin-based polymers such as ethylene/propylene copolymers, vinyl chloride-based polymers, amide-based polymers such as aromatic polyamides, imide-based polymers, Sulfone-based polymer, polyethersulfone-based polymer, polyetheretherketone-based polymer, polyphenylene sulfide-based polymer, vinyl alcohol-based polymer, vinylidene chloride-based polymer, vinyl butyral-based polymer, arylate-based polymer, polyoxymethylene-based polymer, epoxy-based polymer and one or more selected from transparent polymers such as these binary and ternary copolymers, graft copolymers, and blends.
  • polyester-based biaxially oriented films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene-2,6-naphthalate are preferable from the viewpoint of mechanical properties, optical properties, heat resistance and economy.
  • the polyester-based biaxially oriented film may be a copolyester-based film.
  • the window material for the purpose of suppressing the temperature rise in the room while maintaining the brightness by shielding the light in the infrared region while sufficiently taking in visible light. be able to.
  • it can be suitably used as a filter or the like for shielding infrared rays emitted forward from a PDP (Plasma Display Panel).
  • the electromagnetic wave absorbing particles of the present embodiment have absorption in the infrared region, infrared rays having a specific wavelength are absorbed when a printed surface containing the electromagnetic wave absorbing particles is irradiated with an infrared laser. Therefore, an anti-counterfeit printed matter obtained by printing an anti-counterfeit ink containing the electromagnetic wave absorbing particles on one side or both sides of a substrate to be printed is irradiated with infrared rays having a specific wavelength, and by reading the reflection or transmission, The authenticity of the printed matter can be determined from the difference in the amount of reflection or the amount of transmission.
  • the anti-counterfeit printed matter is an example of the electromagnetic wave absorbing particle dispersion of the present embodiment.
  • the light-to-heat conversion layer can be formed by applying the ink obtained by mixing the electromagnetic wave absorbing particle dispersion described above and the binder component onto the substrate, drying the applied ink, and then curing the dried ink. .
  • the photothermal conversion layer generates heat at a portion irradiated with an electromagnetic wave laser such as infrared rays, and can heat an adjacent material. Therefore, the photothermal conversion layer can generate heat only at desired locations with high positional accuracy by irradiation with an electromagnetic wave laser such as infrared rays. Therefore, the photothermal conversion layer can be applied as a local heating medium in a wide range of fields such as electronics, medicine, agriculture, and machinery.
  • a material containing the photothermal conversion layer can be suitably used, for example, as a donor sheet used when forming an organic electroluminescence element by a laser transfer method, thermal paper for a thermal printer, or an ink ribbon for a thermal transfer printer.
  • the photothermal conversion layer is an example of the electromagnetic wave absorbing particle dispersion of the present embodiment.
  • an infrared absorbing fiber can be obtained by dispersing the electromagnetic wave absorbing particles described above in an appropriate medium and containing the dispersion in one or more locations selected from the surface and inside of the fiber. Since the infrared-absorbing fiber contains electromagnetic wave-absorbing particles, it efficiently absorbs near-infrared rays from sunlight and the like, and becomes an infrared-absorbing fiber excellent in heat retention. Since the infrared absorbing fiber transmits light in the visible light region, it becomes an infrared absorbing fiber excellent in design.
  • the infrared absorbing fiber can be used in various applications such as cold weather clothing, sports clothing, stockings, curtains and other textile products that require heat retention, and other industrial textile products.
  • the infrared absorbing fiber is an example of the electromagnetic wave absorbing particle dispersion of this embodiment.
  • the electromagnetic wave absorbing particle dispersion of the present embodiment can also be applied to materials such as roofs and exterior wall materials of agricultural and horticultural greenhouses. Since the electromagnetic wave absorbing particle dispersion of the present embodiment transmits visible light, it is possible to ensure light necessary for photosynthesis of plants in a greenhouse for agriculture and horticulture. Since the electromagnetic wave-absorbing particles of the present embodiment can efficiently absorb light such as near-infrared light contained in sunlight other than visible light, the electromagnetic wave-absorbing particle dispersion of the present embodiment has heat insulation properties. It can be used as a heat insulating material for agricultural and horticultural facilities. The thermal insulation material for agricultural and horticultural facilities is an example of the electromagnetic wave absorbing particle dispersion of the present embodiment.
  • Electromagnetic-wave-absorbing laminate The electromagnetic-wave-absorbing laminate of the present embodiment can have a laminate structure including the electromagnetic-wave-absorbing particle dispersion described above and a transparent substrate.
  • an electromagnetic wave absorbing laminate for example, there is an example in which two or more transparent base materials and the electromagnetic wave absorbing particle dispersion described above are laminated.
  • the electromagnetic wave absorbing particle dispersion can be used as an electromagnetic wave absorbing intermediate film, for example, by placing it between transparent substrates.
  • the electromagnetic wave absorbing laminate 50 includes a plurality of transparent substrates. 511 , 512 and an electromagnetic wave absorbing particle dispersion 52 .
  • the electromagnetic wave absorbing particle dispersion 52 can be placed between the plurality of transparent substrates 511 and 512 .
  • FIG. 5 shows an example in which two transparent substrates 511 and 512 are provided, the present invention is not limited to such a form.
  • the electromagnetic-wave-absorbing intermediate film preferably has a sheet shape, a board shape, or a film shape.
  • the transparent substrate one or more selected from plate glass, plate-shaped plastic, film-shaped plastic, etc., which are transparent in the visible light region, can be suitably used.
  • the fact that the transparent base material is transparent in the visible light region means that the base material transmits light in the visible light region.
  • the degree of transmission of light in the visible light region of the transparent base material can be arbitrarily selected according to the use of the electromagnetic wave absorbing laminate.
  • the material of the plastic is not particularly limited and can be selected according to the application.
  • examples include polycarbonate resin, acrylic resin, polyester resin, polyamide resin, vinyl chloride resin, and olefin resin. , epoxy resins, polyimide resins, ionomer resins, fluorine resins, and the like.
  • polyester resin polyethylene terephthalate resin can be preferably used.
  • the transparent base material may contain particles having an electromagnetic wave absorbing function.
  • the particles having an electromagnetic wave absorbing function for example, the electromagnetic wave absorbing particles described above can be used.
  • a seed solar shading laminated structure can be obtained.
  • the above-described electromagnetic wave absorbing laminate can also be obtained by bonding and integrating a plurality of transparent substrates facing each other with the electromagnetic wave absorbing particle dispersion sandwiched therebetween by a known method.
  • the solid medium described in the electromagnetic wave-absorbing particle dispersion can be used.
  • the solid medium is preferably polyvinyl acetal resin.
  • the electromagnetic wave absorbing intermediate film can be produced by the method for producing the electromagnetic wave absorbing particle dispersion described above. .
  • the electromagnetic wave absorbing intermediate film does not have sufficient flexibility or adhesion to the transparent substrate, it is preferable to add a liquid plasticizer for the medium resin.
  • the medium resin which is a solid medium used in the electromagnetic wave absorbing intermediate film
  • the addition of a liquid plasticizer for the polyacetal resin is beneficial for improving the adhesion to the transparent substrate.
  • plasticizers used for infrared shielding films made of polyvinyl acetal resin include plasticizers that are compounds of monohydric alcohols and organic acid esters, ester plasticizers such as polyhydric alcohol organic acid ester compounds, Phosphoric acid-based plasticizers such as organic phosphoric acid-based plasticizers are included. Any plasticizer is preferably liquid at room temperature. Among them, a plasticizer that is an ester compound synthesized from a polyhydric alcohol and a fatty acid is preferable.
  • At least one selected from the group consisting of silane coupling agents, metal salts of carboxylic acids, metal hydroxides, and metal carbonates can also be added to the electromagnetic wave absorbing intermediate film.
  • Metals constituting metal salts of carboxylic acids, metal hydroxides, and metal carbonates are not particularly limited, but at least one selected from sodium, potassium, magnesium, calcium, manganese, cesium, lithium, rubidium, and zinc. is preferably In the electromagnetic wave absorbing intermediate film, the content of at least one selected from the group consisting of metal salts of carboxylic acids, metal hydroxides, and metal carbonates is 1% by mass or more and 100% by mass relative to the electromagnetic wave absorbing particles. % or less.
  • the electromagnetic wave absorbing intermediate film may contain Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru in addition to the electromagnetic wave absorbing particles described above, if necessary.
  • at least one kind of particles selected from oxide particles containing two or more elements, composite oxide particles, and boride particles can be contained.
  • the intermediate film for electromagnetic wave absorption can contain such particles in the range of 5% by mass or more and 95% by mass or less when the total of such particles and electromagnetic wave absorbing particles is 100% by mass.
  • At least one layer of the intermediate film disposed between the transparent substrates may contain an ultraviolet absorber.
  • UV absorbers include compounds having a malonic acid ester structure, compounds having an oxalic acid anilide structure, compounds having a benzotriazole structure, compounds having a benzophenone structure, compounds having a triazine structure, compounds having a benzoate structure, and hindered amine structures. one or more selected from compounds having
  • the intermediate layer of the electromagnetic wave absorbing laminate may be composed only of the electromagnetic wave absorbing intermediate film.
  • the electromagnetic wave absorbing intermediate film described here is also an example of an electromagnetic wave absorbing particle dispersion.
  • the electromagnetic wave absorbing laminate of the present embodiment is not limited to the form in which the electromagnetic wave absorbing particle dispersion is arranged between the transparent substrates as described above, and the electromagnetic wave absorbing particle dispersion and the transparent substrate. Any configuration can be adopted as long as it has a laminated structure including
  • the cumulative 50% particle size and the cumulative 95% particle size were obtained from the obtained particle size distribution.
  • crystal structure, lattice constant Using the electromagnetic wave absorbing particles obtained by removing the solvent from the electromagnetic wave absorbing particle dispersion, the crystal structure and lattice constant of the composite oxide contained in the electromagnetic wave absorbing particles were measured.
  • the X-ray diffraction pattern of the electromagnetic wave absorbing particles was analyzed using a powder X-ray diffractometer (X'Pert-PRO/MPD manufactured by PANalytical, Spectris Co., Ltd.). It was measured by a diffraction method ( ⁇ -2 ⁇ method).
  • the crystal structure of the composite oxide contained in the particles was specified from the obtained X-ray diffraction pattern, and the lattice constant was calculated by Rietveld analysis. The external standard method was adopted for the Rietveld analysis.
  • optical properties of dispersion liquid The optical properties of the electromagnetic wave absorbing particle dispersions in Examples and Reference Examples were measured as follows. First, an electromagnetic wave absorbing particle dispersion liquid was diluted with methyl isobutyl ketone as a solvent in a measurement glass cell of a spectrophotometer. At this time, the dilution ratio was set such that the visible light transmittance after dilution was 70%.
  • the transmitted light profile is measured at intervals of 5 nm in the wavelength range of 200 nm or more and 2600 nm or less with a spectrophotometer (UH4150 manufactured by Hitachi High-Tech Science), and the visible light transmittance and solar transmittance are measured according to JIS R 3106 (2019). Based on this, calculation was performed in the wavelength range of 300 nm or more and 2100 nm or less.
  • the incident direction of the light of the spectrophotometer was the direction perpendicular to the measuring glass cell.
  • a blank solution containing only methyl isobutyl ketone as a solvent in the glass cell for measurement was used as a baseline for light transmittance.
  • optical properties of electromagnetic wave absorbing base material The optical properties of the electromagnetic wave absorbing substrates in Examples and Reference Examples were measured with a spectrophotometer (UH4150 manufactured by Hitachi High-Tech Science Co., Ltd.). The transmitted light profile was measured at intervals of 5 nm in the wavelength range of 200 nm or more and 2600 nm or less, and the visible light transmittance and solar transmittance were calculated in the wavelength range of 300 nm or more and 2100 nm or less based on JIS R 3106 (2019).
  • the optical properties of the electromagnetic wave absorbing substrate were evaluated after manufacturing the electromagnetic wave absorbing substrate and after irradiating the electromagnetic wave absorbing substrate with ultraviolet rays for 20 minutes using a UV conveyor device (ECS-401GX manufactured by Eyegraphic). .
  • a mercury lamp having a dominant wavelength of 365 nm was used as the UV source in the UV conveyor device, and the UV irradiation intensity was set at 100 mW/cm 2 .
  • two samples were produced under the same conditions in order to evaluate the optical characteristics.
  • “Initial” is the result of evaluation after production
  • "After ultraviolet irradiation” is the result of evaluation after ultraviolet irradiation using a UV conveyor device.
  • Example 1 (Electromagnetic wave absorbing particles) 13.86 g of strontium carbonate (SrCO 3 , manufactured by Kanto Chemical Co., Ltd., purity 99.5%) and 6.21 g of niobium oxide (Nb 2 O 5 , manufactured by Kanto Chemical Co., Ltd., purity 100.0%) were uniformly mixed. Mix well. The obtained mixed powder was placed in an alumina boat and fired at a temperature of 1400° C. for 2 hours in an air atmosphere to obtain strontium niobate having a composition formula of Sr 4 Nb 2 O 9 as an intermediate product.
  • the subscript of O in the above composition formula is z.
  • the Nb concentration in the obtained strontium niobate was analyzed by an ICP emission spectrometer (manufactured by Shimadzu Corporation, model: ICPE-9000), it was found to be 40% by mass.
  • the oxygen concentration was determined by melting the sample in He gas using a light element analyzer (manufactured by LECO, model: ON-836), and quantifying the CO gas generated by the reaction with carbon in the analysis crucible by IR absorption spectroscopy. It was found to be 17% by mass when analyzed by the method of Each concentration was analyzed three times and the average value was obtained. When these results were converted into a substance amount ratio, the atomic ratio O/Nb was found to be 2.5, and it was found that z in the composition formula SrNbOz was 2.5.
  • the cumulative 50% particle size was 34 nm and the cumulative 95% particle size was 48 nm.
  • FIG. 1 shows the transmitted light profile of the electromagnetic wave absorbing particle dispersion.
  • the electromagnetic wave absorbing particle dispersion liquid according to Example 1 and the ultraviolet curable resin are weighed so that the mass ratio is 1:1, mixed and stirred to form an electromagnetic wave absorbing base material. was prepared. And bar no. No.
  • the electromagnetic wave absorbing base material is an example of the electromagnetic wave absorbing particle dispersion.
  • the visible light transmittance of the manufactured electromagnetic wave absorbing substrate before ultraviolet irradiation was 68%, and the solar radiation transmittance was 39%. rice field. Moreover, when the haze was measured, it was 0.3%.
  • Sr:Nb which is the material amount ratio of Sr and Nb after mixing Sr 4 Nb 2 O 9 , Nb 2 O 5 and niobium powder, was 0.9:1.0 (Example 2); It was changed to 8:1.0 (Example 3) and 0.7:1.0 (Example 4). Electromagnetic wave absorbing particles according to Examples 2 to 4 were prepared in the same manner as in Example 1 except for the above points.
  • Example 3 the composition formula Sr 0.9 NbO z (1.0 ⁇ z ⁇ 3.5) (Example 2) and Sr 0.8 NbO z (1.0 ⁇ z ⁇ 3), which are electromagnetic wave absorbing particles, were obtained. .5) Sr 0.7 NbO z (1.0 ⁇ z ⁇ 3.5) (Example 4) (Example 3) was prepared. Further, an electromagnetic wave absorbing particle dispersion liquid and an electromagnetic wave absorbing substrate were prepared in the same manner as in Example 1 except that the electromagnetic wave absorbing particles were used, and the same evaluation as in Example 1 was performed. Tables 1 and 2 show the evaluation results in Examples 2 to 4.
  • Example 5 Barium niobate having a composition formula of Ba 4 Nb 2 O 9 was obtained by using barium carbonate (BaCO 3 , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., purity 99.9%) instead of strontium carbonate in Example 1. Then, using Ba 4 Nb 2 O 9 instead of Sr 4 Nb 2 O 9 and mixing Ba 4 Nb 2 O 9 , Nb 2 O 5 and niobium powder, the ratio of the amount of Ba and Nb Ba:Nb was set to 1.0:1.0 (Example 5), 0.8:1.0 (Example 6), and 0.6:1.0 (Example 7). Electromagnetic wave absorbing particles according to Examples 5 to 7 were prepared in the same manner as in Example 1 except for the above points.
  • electromagnetic wave absorbing particles composition formula BaNbO z (1.0 ⁇ z ⁇ 3.5) (Example 5), Ba 0.8 NbO z (1.0 ⁇ z ⁇ 3.5) ( Example 6) and barium niobate of Ba 0.6 NbO z (1.0 ⁇ z ⁇ 3.5) (Example 7) were prepared. Further, an electromagnetic wave absorbing particle dispersion liquid and an electromagnetic wave absorbing substrate were prepared in the same manner as in Example 1 except that the electromagnetic wave absorbing particles were used, and the same evaluation as in Example 1 was performed. Tables 1 and 2 show the evaluation results in Examples 5 to 7. [Example 8] A composition formula of Ba 4 Ta 2 O 9 was obtained by using tantalum oxide (Ta 2 O 5 , manufactured by Kanto Chemical Co., Ltd., purity 99.978%) instead of niobium oxide in Example 5.
  • strontium barium niobate having a composition formula of Sr 0.5 Ba 0.5 NbO z (1.0 ⁇ z ⁇ 3.5), which is electromagnetic wave absorbing particles was prepared. Further, an electromagnetic wave absorbing particle dispersion liquid and an electromagnetic wave absorbing substrate were obtained in the same manner as in Example 1 except that the electromagnetic wave absorbing particles were used, and the same evaluation as in Example 1 was performed. Evaluation results are shown in Tables 1 and 2. [Example 10] Calcium carbonate (CaCO 3 , manufactured by Kanto Kagaku Co., Ltd., purity 99.5%) was used instead of strontium carbonate in Example 1 to obtain calcium niobate of composition formula Ca 4 Nb 2 O 9 .
  • Electromagnetic wave absorbing particles according to Example 10 were prepared in the same manner as in Example 1 except for the above points.
  • the amount of the antimony compound added to the tin compound solution was 9.5 parts by mass in terms of antimony element per 100 parts by mass of tin (IV) oxide. With this addition amount, ATO electromagnetic wave absorbing particles having about 68% by mass of Sn element and about 8% by mass of Sb element can be produced.
  • aqueous ammonia is used as the alkaline solution used as the precipitant, and the alkaline concentration is 16%, which is 1.6 times the chemical equivalent required for the tin compound and the antimony compound to become hydroxides. did.
  • the parallel dropping time of the methanol solution and the alkaline solution was set to 25 minutes, and parallel dropping was performed until the pH of the solution obtained by the dropping reached 7.5. Even after the dropwise addition, the solution was continuously stirred for 10 minutes in order to homogenize the system.
  • the temperature of the solution at that time was set to 65° C., which was the same temperature as the temperature during parallel dropping.
  • the precipitate was washed by repeatedly decanting it. It was thoroughly washed until the conductivity of the supernatant liquid of the washing liquid in the decantation was 1 mS/cm or less, and filtered.
  • the washed sediment was wet-treated with an anhydrous ethyl alcohol solution (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd. purity of 99.5% or higher).
  • anhydrous ethyl alcohol solution (reagent special grade manufactured by Wako Pure Chemical Industries, Ltd. purity of 99.5% or higher).
  • the mass ratio of [filtered precipitate: anhydrous ethyl alcohol solution] is set to a ratio of 1:4 (alcohol proportion is 80%), and the filtered precipitate and anhydrous ethyl alcohol solution are mixed.
  • was wet-treated by stirring at room temperature for 1 hour to obtain a precursor.
  • the precursor was dried at 90° C. for 10 hours to obtain a dry product.
  • the wet-treated ATO electromagnetic wave-absorbing particle precursor was heated to 700° C. in an air atmosphere and baked for 2 hours to produce the ATO electromagnetic wave-absorbing particles according to Reference Example 1.
  • Example 1 In the same manner as in Example 1 except that the ATO electromagnetic wave absorbing particles according to Reference Example 1 were used as the electromagnetic wave absorbing particles instead of the strontium niobate particles, the electromagnetic wave absorbing particle dispersion liquid according to Reference Example 1 and the electromagnetic wave absorbing base were prepared. A material was prepared and the same evaluation as in Example 1 was performed. Tables 1 and 2 show the evaluation results in Reference Example 1.
  • the electromagnetic wave absorbing particle dispersion and the electromagnetic wave absorbing base material, which are electromagnetic wave absorbing particle dispersions, using the electromagnetic wave absorbing particles obtained in Examples 1 to 10 are visible. It was confirmed that the light transmittance was high and the solar transmittance could be suppressed. That is, it was confirmed that the electromagnetic wave-absorbing particle dispersions and the electromagnetic wave-absorbing substrates obtained in Examples 1 to 10 had high transmittance in the visible light region and suppressed transmittance in the infrared region.
  • the optical properties of the electromagnetic wave-absorbing substrates which are the electromagnetic wave-absorbing particle dispersions obtained in Examples 1 to 10, after UV irradiation shown in the column "After UV irradiation” in Table 2 are "initial". It has also been confirmed that there is almost no change from the optical properties after production shown in the column. Therefore, it was confirmed that the electromagnetic wave-absorbing substrates obtained in Examples 1 to 10 had excellent durability with no significant change in optical properties even under an environment in which they were irradiated with ultraviolet rays for a long period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

複合酸化物を含有する電磁波吸収粒子であって、 前記複合酸化物は、H、アルカリ金属、Mg、アルカリ土類金属から選択される1種類以上の元素であるA元素と、 V、Nb、Taから選択される1種類以上の元素であるB元素と、を含有し、 前記複合酸化物が含有する前記A元素の物質量をx、前記B元素の物質量をyとした場合に、0.001≦x/y≦1.5の関係を充足する電磁波吸収粒子を提供する。

Description

電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
 本発明は、電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体に関する。
 理化学辞典第5版によれば、「波長が約1nm~1mmの範囲にある電磁波を光と呼ぶ。」と定義される。この波長の範囲には、可視光領域や赤外線領域が含まれる。
 太陽光線に含まれる近赤外線は、窓材等を透過して室内に入り込み、室内へ侵入し、室内の壁や床の表面温度を上昇させ、室内気温も上昇させる。室内の温熱環境を快適にするために、窓材等に遮光部材を用いるなどして、窓から侵入する近赤外線を遮ることで、室内気温を上昇させないことが従来からなされていた。
 窓材等に使用される遮光部材として、特許文献1には、カーボンブラック、チタンブラック等の無機顔料や、アニリンブラック等の有機顔料等を含む黒色微粉末を含有する遮光フィルムが提案されている。
 また、特許文献2には、赤外線反射性を有する帯状のフィルムと、赤外線吸収性を有する帯状のフィルムとを、それぞれ経糸あるいは緯糸として編織物としてなる保温用シートが開示されている。そして、赤外線反射性を有する帯状のフィルムとして、合成樹脂フィルムにアルミ蒸着加工を施し、さらに合成樹脂フィルムを積層したものを用いることも記載されている。
 本出願人は、特許文献3に、赤外線材料微粒子が媒体中に分散してなる赤外線遮蔽材料微粒子分散体であって、当該赤外線材料微粒子は、タングステン酸化物微粒子または/及び複合タングステン酸化物微粒子を含有し、当該赤外線材料微粒子の分散粒子径が1nm以上800nm以下である赤外線遮蔽材料微粒子分散体を提案した。
日本国特開2003-029314号公報 日本国特開平9-107815号公報 国際公開第2005/037932号
 ところで、近年では赤外線等の電磁波を吸収できる電磁波吸収粒子が各種用途で用いられるようになっており、用途に応じた最適材料を選択できるように、新たな電磁波吸収粒子が求められるようになっている。
 そこで、本発明の一側面では、新規の電磁波吸収粒子を提供することを目的とする。
 本発明の一側面では、複合酸化物を含有する電磁波吸収粒子であって、
 前記複合酸化物は、H、アルカリ金属、Mg、アルカリ土類金属から選択される1種類以上の元素であるA元素と、
 V、Nb、Taから選択される1種類以上の元素であるB元素と、を含有し、
 前記複合酸化物が含有する前記A元素の物質量をx、前記B元素の物質量をyとした場合に、0.001≦x/y≦1.5の関係を充足する電磁波吸収粒子を提供する。
 本発明の一側面では、新規の電磁波吸収粒子を提供できる。
図1は、実施例1に係る電磁波吸収粒子分散液の透過光プロファイルのグラフである。 図2は、電磁波吸収粒子分散液の模式図である。 図3は、電磁波吸収粒子分散体の模式図である。 図4は、電磁波吸収基材の模式図である。 図5は、電磁波吸収積層体の模式図である。
 以下、[1]電磁波吸収粒子、[2]電磁波吸収粒子の製造方法、[3]電磁波吸収粒子分散液、[4]電磁波吸収粒子分散体、[5]電磁波吸収積層体、の順で詳細に説明する。
[1]電磁波吸収粒子
 本発明の発明者は、新規な電磁波吸収粒子について検討を行った。なお、電磁波吸収粒子が吸収する電磁波の種類は特に限定されないが、既述のように特に赤外線や近赤外線を吸収する電磁波吸収粒子が求められている。そこで、本実施形態の電磁波吸収粒子は、赤外線を吸収する赤外線吸収粒子であることが好ましく、中でも近赤外線を吸収する近赤外線吸収粒子であることがより好ましい。
 本発明の発明者は新たな電磁波吸収粒子を検討するに当たって、5族元素の酸化物に着目した。しかし、5族元素の五酸化物(V、Nb、Ta)中には有効な自由電子または正孔(ホール)が存在しないため、赤外線領域の吸収反射特性が少なく、赤外線吸収材料としては有効ではない。ところが、上記酸化物に陽性元素を添加した複合酸化物とした場合、該複合酸化物中に自由電子または正孔が生成されるため、赤外線領域に自由電子または正孔由来の吸収特性が発現する。このため、新たな電磁波吸収粒子とすることができることを見出した。
 さらに、本発明の発明者らは、当該複合酸化物の組成範囲の特定部分において、電磁波吸収粒子として特に有効な範囲があることを見出した。具体的には、当該複合酸化物の組成範囲を所定の範囲とすることで、可視光領域においては透明で、赤外線領域においては吸収をもつことを見出し、本発明を完成させた。
(複合酸化物の組成について)
 本実施形態の電磁波吸収粒子は、複合酸化物を含有できる。該複合酸化物は、H、アルカリ金属、Mg、アルカリ土類金属から選択される1種類以上の元素であるA元素と、V、Nb、Taから選択される1種類以上の元素であるB元素と、を含有できる。
 そして、上記複合酸化物が含有するA元素の物質量をx、上記複合酸化物が含有するB元素の物質量をyとした場合に、0.001≦x/y≦1.5の関係を充足することが好ましい。
 なお、本実施形態の電磁波吸収粒子は、上記複合酸化物のみから構成されていても良い。ただし、この場合でも、本実施形態の電磁波吸収粒子が製造工程等で混入する不可避不純物を含有する場合を排除するものではない。
 既述のように、B元素を含む酸化物に対して、陽性元素であるA元素を添加し、上記複合酸化物とすることで、電磁波吸収特性を発揮できる。A元素は、上述のようにH、アルカリ金属、Mg、アルカリ土類金属から選択される1種類以上の元素であることが好ましい。特に上記複合酸化物における安定性を向上する観点から、A元素は、アルカリ土類金属、すなわちCa、Sr、Ba、Raから選択される1種類以上の元素であることが好ましく、Ca、Sr、Baから選択される1種類以上の元素であることがより好ましい。
 また、B元素は、上述のようにV、Nb、Taから選択される1種類以上の元素とすることができ、Nb、Taから選択される1種類以上の元素とすることが好ましく、Nbであることがより好ましい。
 複合酸化物における、B元素に対するA元素の物質量についての含有割合を示すx/yの値については、上述のように0.001以上であれば、複合酸化物において十分な量の自由電子または正孔が生成され、目的とする電磁波吸収効果を得ることができる。そして、A元素の含有量が多いほど、自由電子の供給量が増加し、電磁波吸収効率も上昇するが、x/yの値が1.5程度で当該効果も飽和する。また、x/yの値が1.5以下であれば、当該電磁波吸収粒子中に不純物相が生成されるのを回避できる。このため、上述のようにx/yは0.001≦x/y≦1.5であることが好ましく、0.5≦x/y≦1.0であることがより好ましく、0.7≦x/y≦1.0であることがさらに好ましい。
 なお、上記複合酸化物は、例えば一般式Aと表記できる。係る一般式中のAはA元素を、BはB元素を、Oは酸素をそれぞれ示しており、上記複合酸化物は、上記一般式で示すように、例えばA元素と、B元素と、酸素とから構成されることが好ましい。
 上述のように、B元素を含む酸化物に対して、A元素を添加することで、複合酸化物に自由電子または正孔が供給され、電磁波吸収特性を発揮できるため、複合酸化物が含有する酸素量は特に限定されない。ただし、酸素量についても所定の範囲とすることで、複合酸化物の自由電子または正孔の量を、電磁波吸収特性を高める観点から特に好適な範囲とすることができる。そこで、複合酸化物における、B元素に対する酸素の、物質量についての含有割合に相当するz/yは、1.0<z/y<3.5が好ましく、より好ましくは2.0<z/y<3.5、さらに好ましくは2.0<z/y≦3.0、最も好ましくは2.4≦z/y<3.0である。
 z/yは、上述のように、複合酸化物における、B元素に対する酸素の、物質量についての含有割合に相当し、複合酸化物の酸素欠損量あるいは酸素過剰量に影響する値である。上述のように、酸素量によっても複合酸化物の自由電子または正孔の量を制御できる。このため、要求される電磁波吸収特性等に応じて、上記z/yの値も制御することが好ましい。z/yの値は、電磁波吸収粒子の合成条件等により容易に制御できる。
 A元素が2価の場合、例えばA元素がCa、Sr、Ba、Raから選択される1種類以上の元素の場合、上記一般式A中のx、y、zは、-1≦(2x+5y-2z)/y≦5を満たすことが好ましく、0≦(2x+5y-2z)/y≦3.5を満たすことがより好ましく、0.5≦(2x+5y-2z)/y≦2.5を満たすことがさらに好ましく、1≦(2x+5y-2z)/y≦2.5を満たすことが特に好ましい。上記(2x+5y-2z)/yは、A元素が2価の場合のB元素1個当たりの電子の過不足量の目安を示しており、上記範囲を充足する場合、特に高い電磁波吸収効果を発揮できるからである。
(複合酸化物の結晶構造、格子定数について)
 本発明の発明者の検討によれば、複合酸化物が立方晶、正方晶、および斜方晶から選択されたいずれかの結晶構造を有する場合、特に可視光領域の光の透過が向上し、赤外線領域の光の吸収が向上する。ただし、可視光領域における光の透過を向上させ、赤外線領域における光の吸収を向上させる効果を得る為には、複合酸化物中に立方晶や、正方晶、斜方晶の結晶構造の単位構造が含まれていれば良く、当該複合酸化物が部分的に非晶質や他の構造を含んでいても構わない。
 複合酸化物における、B元素に対するA元素の物質量についての含有割合を示すx/yが1.0であり、複合酸化物における、B元素に対する酸素の物質量についての含有割合を示すz/yが3.0の場合、複合酸化物の結晶構造は立方晶ペロブスカイト構造となる。具体的には、SrNbO、BaNbO等は立方晶ペロブスカイト構造となる。これを基本構造として、x/yの値が1.0未満となるとき、A元素の欠損を有する立方晶ペロブスカイト構造となる場合がある。また、z/yの値が3.0未満となるとき、酸素欠損を有する立方晶ペロブスカイト構造となる場合がある。更には、各元素の欠損状態によっては、ABOブロックとBOブロックが規則的に積み重なった正方晶や斜方晶の結晶構造となる場合もある。他にもz/yの値が3.0より大きく3.5未満となるとき、立方晶や、正方晶、斜方晶の結晶構造となる場合もある。
 電磁波吸収粒子として、赤外線領域の電磁波吸収が大きく、可視光領域の電磁波吸収が小さい材料が求められることが多いが、用途等により要求される性能が異なるため、上述の結晶構造のうち、どれが好ましいかは一概に決められるものではない。
 本実施形態の電磁波吸収粒子の吸収波長は可視光領域と赤外線領域の境目である780nm前後となる場合が多い。しかし、含有する複合酸化物の結晶構造や元素欠損の有無によって電磁波の吸収波長が短波長側にシフトする場合や、電磁波吸収が増加する場合があり、結果的に可視光透明性が低下する場合がある。
 例えば、SrNbO(2.0<z≦3.0)の場合、例えばxの値が0.8以上0.9以下のときにSrの欠損と場合によってはさらに酸素欠損とを有する立方晶ペロブスカイト構造や、SrNbOブロックとNbOブロックが規則的に積み重なった正方晶や斜方晶の結晶構造となる。このとき窓材等で重視される遮熱特性は高くなる傾向にある。なお、遮熱特性とは、可視光透明性と近赤外線吸収性のバランスで決定される特性を意味する。
 これに対して、SrNbO(2.0<z≦3.0)について、xの値が1.0のときには、酸素欠損を有する立方晶ペロブスカイト構造や、SrNbOブロックとNbOブロックが規則的に積み重なり、Nbの欠損と酸素欠損を有する正方晶や斜方晶の結晶構造となり電磁波吸収は増加する傾向にある。ただし、同時に吸収波長が短波長側にシフトして可視光透明性が低下し、遮熱特性も低下する傾向にある。しかし、Sr、Nb、酸素の全てが欠損し、巨大な単位格子を有するポリニオブ酸ストロンチウムとなる場合もあり、上記傾向と合致しないものもある。また、Nbの欠損量が多くなると、xの値は1.0を超えることもある。
 このように、複合酸化物の組成により、結晶構造と電磁波吸収特性との関係も変化するため、本実施形態の電磁波吸収粒子が含有する複合酸化物の結晶構造は特に限定されず、複合酸化物の組成や、要求される電磁波吸収特性等に応じて選択できる。
 複合酸化物の格子定数は特に限定されないが、立方晶ペロブスカイト構造を基準とした場合のa軸の格子定数は、3.965Å以上4.045Å以下が好ましく、より好ましくは3.975Å以上4.035Å以下、さらに好ましくは3.983Å以上4.029Å以下である。格子定数は、リートベルト解析により算出できる。
(電磁波吸収粒子の粒子特性について)
 本実施形態の電磁波吸収粒子の粒子径等の粒子特性は特に限定されず、要求される電磁波吸収特性等に応じて任意に選択できる。
 本実施形態の電磁波吸収粒子は、粒度分布測定装置により測定した体積基準の累積50%粒子径が1nm以上50nm以下、累積95%粒子径が5nm以上100nm以下であることが好ましい。
 一般に、自由電子または正孔を含む材料は、プラズマ振動によって波長200nm以上2600nm以下の太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。そして、このような材料の粉末粒子を光の波長より小さい粒子とすると、可視光領域(波長380nm以上780nm以下)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。
 なお、本明細書において「透明性」とは、「可視光領域の光に対して散乱が少なく透過性が高い。」という意味で用いている。
 そこで、本実施形態の電磁波吸収粒子を、可視光領域の透明性が要求される用途で使用する場合は、粒度分布測定装置により測定した体積基準の累積95%粒子径が100nm以下であることが好ましい。これは、累積95%粒子径が100nm以下の粒子は、散乱により光を完全に遮蔽することが無く、可視光領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
 電磁波吸収粒子による散乱のさらなる低減が要求される場合、累積95%粒子径は70nm以下であることがより好ましく、50nm以下であることがさらに好ましい。電磁波吸収粒子の粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長380nm以上780nm以下の可視光領域の光の散乱が低減される。このため、電磁波吸収粒子の累積95%粒子径を上記範囲とすることで、例えば該電磁波吸収粒子を用いた電磁波吸収粒子分散体が曇りガラスのようになり、鮮明な透明性が得られなくなることをより確実に回避できる。累積95%粒子径が70nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。そして、レイリー散乱領域では、散乱光は粒子径の6乗に比例しているため、粒子径の減少に伴い散乱が低減し透明性が向上するからである。
 さらに累積95%粒子径が50nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、累積95%粒子径は小さい方が好ましいため、累積95%粒子径の下限値は特に限定されないが、累積95%粒子径は5nm以上であることが好ましい。累積95%粒子径が5nm以上あれば工業的な製造が容易なためである。
 ここまで説明したように累積95%粒子径を100nm以下とすることにより、例えば本実施形態の電磁波吸収粒子を固体媒体中に分散させた電磁波吸収粒子分散体のヘイズ値を、可視光透過率85%以下で30%以下とすることができる。ヘイズを30%以下とすることで、特に鮮明な透明性を得ることができる。
 特に優れた電磁波吸収特性を得る観点から、粒度分布測定装置により測定した体積基準の電磁波吸収粒子の累積50%粒子径は1nm以上であることが好ましい。ただし、可視光領域の透明性を高める観点から、累積95%粒子径と同様の理由で、累積50%粒子径は50nm以下とすることが好ましい。
 電磁波吸収粒子の累積50%粒子径や累積95%粒子径は、周波数解析法で解析する動的光散乱法を原理とした粒度分布測定装置(例えば日機装株式会社製UPA-150等)を用いて測定することができる。
 粒度分布データは粒子径スケールに対する積算%や頻度%として表現されるが、逆に、積算%のスケールに対する粒子径として表現される場合もある。積算%のスケールに対する粒子径として表現された分布曲線が、例えば10%の横軸と交差するポイントの粒子径を累積10%粒子径、50%の横軸と交差するポイントの粒子径を累積50%粒子径、更に95%の横軸と交差するポイントの粒子径を累積95%粒子径という。10%、50%、95%に特に固定されているわけではなく、必要に応じて、任意の積算%が用いられる。50%粒子径はメディアン径とも呼ばれ、ごく一般的に用いられている。複数のサンプルの粒度分布の大きさを比較するとき、測定対象の大きさを一つの数値で代表する必要があるため、このメディアン径がよく用いられる。このため、メディアン径は、平均粒径とよく混同されることがあるが、定義が異なり、通常この2つの径は一致しない。中心(50%径)に対して粒度分布が左右対称である場合に限って、これ等2つの径は一致する。
[2]電磁波吸収粒子の製造方法
 次に、本実施形態の電磁波吸収粒子の製造方法について説明する。本実施形態の電磁波吸収粒子の製造方法により、既述の電磁波吸収粒子を製造できるため、既に説明した事項については一部説明を省略する。
 本実施形態の電磁波吸収粒子は、固相反応法により製造できる。固相反応法で合成する際には、原料としてA元素化合物とB元素化合物を用いることができる。
 本実施形態の電磁波吸収粒子の製造方法は、A元素化合物またはA元素単体と、B元素化合物またはB元素単体との混合粉体を調製する混合粉体調製工程(第1混合粉体調製工程)を有することができる。
 A元素源としては、A元素化合物またはA元素単体を用いることができる。原料となるA元素化合物としては、A元素の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、有機化合物、硫化物、塩化物、から選ばれる1種類以上であることが好ましい。
 なお、好適なA元素については既に説明したので、ここでは説明を省略する。
 B元素源となるB元素化合物またはB元素単体としては、B元素の、五酸化物(V、Nb、Ta)、二酸化物(VO、NbO、TaO)、三二酸化物(V、Nb)、単体金属(V、Nb、Ta)、硫酸塩、アンモニウム塩、有機化合物、硫化物、塩化物、塩化物をアルコール等の液体に溶解させた後に水を添加して加水分解し、溶媒を蒸発させて得られる酸化物の水和物、から選ばれる1種類以上であることが好ましい。なお、好適なB元素については既に説明したので、ここでは説明を省略する。
 混合粉体調製工程において、A元素化合物またはA元素単体とB元素化合物またはB元素単体との混合粉体を得るための具体的な手順は特に限定されない。例えば、上記A元素化合物等とB元素化合物等とを粉末状態で乾式混合して混合粉体を得る方法が挙げられる。また、A元素化合物等を水に溶解させてB元素化合物等と湿式混合した後、乾燥することによって混合粉体を得ることもできる。
 混合粉体調製工程において、得られる混合粉体中のA元素と、B元素との物質量の比が、目的とする複合酸化物におけるA元素とB元素の比となるように混合することが好ましい。すなわち、複合酸化物におけるA元素の物質量(A)と、B元素の物質量(B)との比であるA:B=x:yを充足するように混合することが好ましい。x、yは、既述のようにx/yが、0.001≦x/y≦1.5であることが好ましく、0.5≦x/y≦1.0であることがより好ましく、0.7≦x/y≦1.0であることがさらに好ましい。このため、上記好適な範囲となるよう、A元素化合物等と、B元素化合物等とを混合することが好ましい。
 なお、本実施形態の電磁波吸収粒子は、目的組成の複合酸化物を含有する電磁波吸収粒子とするために、多段階で合成することもできる。この場合、第1混合粉体調製工程では、上記A元素化合物等と、B元素化合物等とを、中間生成物の組成となるように混合できる。
 そして、本実施形態の電磁波吸収粒子の製造方法は、混合粉体調製工程で得られた混合粉体を焼成する焼成工程(第1焼成工程)を有することができる。
 焼成工程の条件は特に限定されない。焼成工程では、例えば上記混合粉体を、不活性ガス単独雰囲気、還元性ガス単独雰囲気、真空雰囲気、不活性ガスと還元性ガスとの混合ガス雰囲気、酸素を含有する酸化性雰囲気から選択されたいずれかの雰囲気下で焼成できる。
 例えば複合酸化物について、酸素欠損を導入し、既述の一般式におけるz/yを量論比よりも小さくする場合には、焼成雰囲気は不活性ガスと還元性ガスとの混合ガス雰囲気であることが好ましい。還元性ガスは特に限定されないが、例えば水素ガスであることが好ましい。また、還元性ガスとして水素ガスを用いる場合、水素ガスの体積比率は1%以上であることが好ましく、3%以上であることがより好ましい。水素ガスの体積比率の上限は特に限定されず、還元性ガス単独とすることもできるため、最高100%にできる。
 不活性ガスとしては特に限定されないが、窒素ガスや、希ガス等から選択された1種類以上を用いることができる。
 酸化性雰囲気としては、酸素を含有する雰囲気であればよく、例えば体積比率で酸素を18%以上100%以下含有する雰囲気を用いることができる。例えば大気雰囲気とすることができる。
 焼成工程における焼成温度の条件は特に限定されないが、焼成温度は生成した複合酸化物が結晶化し始める温度以上で、かつ該複合酸化物の融点以下が好ましい。具体的には例えば焼成温度を1000℃以上2100℃以下とすることが好ましい。
 本実施形態の電磁波吸収粒子は、目的組成の複合酸化物を含有する電磁波吸収粒子とするため、多段階で合成を行うこともできる。多段階で合成を行う場合、上記焼成工程(第1焼成工程)で得られた中間生成物にさらに、B元素化合物や、B元素単体を添加、混合することができる(第2混合粉体調製工程)。この際に用いるB元素化合物等としては、特に限定されないが、例えば第1混合粉体調製工程で既述の化合物を用いることができる。第2混合粉体調製工程では、得られる混合粉体中のA元素と、B元素との物質量の比が、目的とする複合酸化物におけるA元素とB元素の比となるように混合することが好ましい。すなわち、複合酸化物におけるA元素の物質量(A)と、B元素の物質量(B)との比であるA:B=x:yを充足するように混合することが好ましい。混合は、混合粉体調製工程の場合と同様にして実施できるため、ここでは説明を省略する。
 そして、得られた混合粉体について、焼成工程(第2焼成工程)に供して、本実施形態の電磁波吸収粒子を調製できる。第2焼成工程の条件は特に限定されないが、焼成雰囲気や、焼成温度は、例えば既述の焼成工程(第1焼成工程)で説明した場合と同様にして実施できるため、ここでは説明を省略する。なお、第1焼成工程と、第2焼成工程とは、焼成条件が同じであってもよく、異なっていても良い。
 以上に説明した工程を行うことで、本実施形態の電磁波吸収粒子を得ることができる。なお、焼成工程終了後、必要に応じて得られた電磁波吸収粒子の解砕や、粉砕、篩かけ等を行い、所望の粒度分布とすることもできる。
[3]電磁波吸収粒子分散液
 次に、本実施形態の電磁波吸収粒子分散液について説明する。
 本実施形態の電磁波吸収粒子分散液は、液体媒体と、液体媒体中に含まれる既述の電磁波吸収粒子と、を含有できる。すなわち、例えば図2に示した様に、本実施形態の電磁波吸収粒子分散液20は、既述の電磁波吸収粒子21と、液体媒体22とを含むことができる。電磁波吸収粒子21は、上記液体媒体22中に分散していることが好ましい。
 なお、図2は模式的に示した図であり、本実施形態の電磁波吸収粒子分散液は、係る形態に限定されるものではない。例えば図2において電磁波吸収粒子21を球状の粒子として記載しているが、電磁波吸収粒子21の形状は係る形態に限定されるものではなく、任意の形状を有することができる。電磁波吸収粒子分散液20は、電磁波吸収粒子21、液体媒体22以外に、必要に応じてその他添加剤を含むこともできる。
 本実施形態の電磁波吸収粒子分散液は、既述の電磁波吸収粒子を用いて、別の言い方をすれば既述の電磁波吸収粒子の製造方法により得られた電磁波吸収粒子を用いて得ることができる。
 電磁波吸収粒子分散液は、上記電磁波吸収粒子、液体媒体に加えて、さらに所望により分散剤、その他添加剤を含むこともできる。電磁波吸収粒子分散液は、電磁波吸収粒子分散体の中間生成物あるいはコーティング液として用いることができる。
 液体媒体とは、使用する温度において液体状の媒体を意味し、特に室温(27℃)において液体状の媒体であることが好ましい。液体媒体としては特に限定されず、用途等に応じて任意に選択できるが、液体媒体は、水、有機溶媒、液状可塑剤、油脂、硬化により高分子化される化合物から選択される1種類以上を好ましく用いることができる。
 以下、本実施形態の電磁波吸収粒子分散液について、(1)含有する材料について、(2)電磁波吸収粒子分散液の製造方法、(3)電磁波吸収粒子分散液の使用方法および電磁波吸収粒子分散液を用いた物品の順に説明する。
(1)含有する材料について
(1-1)電磁波吸収粒子
 本実施形態の電磁波吸収粒子分散液は、既述の電磁波吸収粒子を含有できる。電磁波吸収粒子については、既に説明したので、ここでは説明を省略する。
(1-2)液体媒体
(1-2-1)有機溶媒
 液体媒体として使用する有機溶媒としては、例えばアルコール系、ケトン系、エステル系、グリコール誘導体、アミド類、芳香族炭化水素類等から選択された1種類以上を使用できる。
 具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系材料;
 アセトン、メチルエチルケトン、ジメチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系材料;
 3-メチル-メトキシ-プロピオネート、酢酸n-ブチルなどのエステル系材料;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどのグリコール誘導体;
 フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;
 トルエン、キシレンなどの芳香族炭化水素類;
 エチレンクロライド、クロルベンゼン、等から選択された1種類以上を有機溶媒としてできる。
 上記有機溶媒中でも、特に、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチル等から選択された1種類以上をより好ましく使用できる。
(1-2-2)油脂
 液体媒体として使用する油脂としては、特に限定されないが、植物油または植物油由来の化合物を好ましく用いることができる。
 植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油、等から選択された1種類以上を好ましく用いることができる。
 植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類、等から選択された1種類以上を好ましく用いることができる。
 また、市販の石油系溶剤も油脂として用いることが出来る。
 市販の石油系溶剤として、アイソパー(登録商標)E、エクソール(登録商標)(以下同じ)Hexane、Heptane、E、D30、D40、D60、D80、D95、D110、D130(以上、エクソンモービル製)、等を使用できる。
(1-2-3)液状可塑剤
 液体媒体として使用する液状可塑剤としては、例えば、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤、等から選択された1種類以上が挙げられる。なお、いずれも室温で液状であるものが好ましい。
 なかでも、多価アルコールと脂肪酸とから合成されたエステル化合物である可塑剤を好ましく使用できる。当該多価アルコールと脂肪酸とから合成されたエステル化合物は特に限定されないが、例えば、グリコールと、一塩基性有機酸との反応により得られたグリコール系エステル化合物、等を好適に使用できる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等から選択された1種類以上を好ましく用いることができる。また、上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等から選択された1種類以上を好ましく用いることができる。
 また、テトラエチレングリコール、トリプロピレングリコールと、一塩基性有機とのエステル化合物等も好適に使用できる。なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステル、等から選択された1種類以上を好ましく使用できる。さらに、トリエチレングリコールの脂肪酸エステルも好ましく使用できる。
(1-2-4)硬化により高分子化される化合物
 本実施形態の電磁波吸収粒子分散液に使用する硬化により高分子化される化合物としては、熱、光、水により引き起こされる重合反応等で高分子を形成する単量体やオリゴマーを好適に用いることができる。
 硬化により高分子化される化合物としては、具体的には例えば、メチルメタクリレート単量体、アクレリート単量体、スチレン樹脂単量体、等を使用することができる。
 以上、説明した液体媒体は、2種類以上を組み合わせて用いることもできる。さらに、必要に応じて、これらの液体媒体へ酸やアルカリを添加してpH調整してもよい。
(1-3)分散剤
 本実施形態の電磁波吸収粒子分散液において、電磁波吸収粒子の分散安定性を一層向上させ、再凝集による粒子径の粗大化を回避する為に、本実施形態の電磁波吸収粒子分散液は各種の分散剤、界面活性剤、カップリング剤などを含有することもできる。
 分散剤、カップリング剤、界面活性剤は用途に合わせて選択可能であるが、アミンを含有する基、水酸基、カルボキシル基、リン酸基、エポキシ基から選択された1種類以上を官能基として有する材料であることが好ましい。これらの官能基は、電磁波吸収粒子の表面に吸着して凝集を防ぎ、均一に分散させる効果を有する。これらの官能基から選択された1種類以上を分子中にもつ高分子系分散剤は、上記分散剤としてより好ましく用いることができる。
 市販の分散剤における好ましい具体例としては、日本ルーブリゾール社製SOLSPERSE(登録商標)(以下同じ)3000、5000、9000、11200、12000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000SC、24000GR、26000、27000、28000、31845、32000、32500、32550、32600、33000、33500、34750、35100、35200、36600、37500、38500、39000、41000、41090、53095、55000、56000、71000、76500、J180、J200、M387等;SOLPLUS(登録商標)(以下同じ)D510、D520、D530、D540、DP310、K500、L300、L400、R700等;ビックケミー・ジャパン社製Disperbyk(登録商標)(以下同じ)-101、102、103、106、107、108、109、110、111、112、116、130、140、142、145、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、191、192、2000、2001、2009、2020、2025、2050、2070、2095、2096、2150、2151、2152、2155、2163、2164、Anti-Terra(登録商標)(以下同じ)-U、203、204等;BYK(登録商標)(以下同じ)-P104、P104S、P105、P9050、P9051、P9060、P9065、P9080、051、052、053、054、055、057、063、065、066N、067A、077、088、141、220S、300、302、306、307、310、315、320、322、323、325、330、331、333、337、340、345、346、347、348、350、354、355、358N、361N、370、375、377、378、380N、381、392、410、425、430、1752、4510、6919、9076、9077、W909、W935、W940、W961、W966、W969、W972、W980、W985、W995、W996、W9010、Dynwet800、Siclean3700、UV3500、UV3510、UV3570等;エフカアディティブズ社製EFKA(登録商標)(以下同じ)2020、2025、3030、3031、3236、4008、4009、4010、4015、4020、4046、4047、4050、4055、4060、4080、4300、4310、4320、4330、4340、4400、4401、4402、4403、4500、5066、5220、6220、6225、6230、6700、6780、6782、7462、8503等;BASFジャパン社製JONCRYL(登録商標)(以下同じ)67、678、586、611、680、682、690、819、-JDX5050等;大塚化学社製TERPLUS(登録商標)(以下同じ) MD1000、D 1180、D 1130等;味の素ファインテクノ社製アジスパー(登録商標)(以下同じ)PB-711、PB-821、PB-822等;楠本化成社製ディスパロン(登録商標)(以下同じ)1751N、1831、1850、1860、1934、DA-400N、DA-703-50、DA-325、DA-375、DA-550、DA-705、DA-725、DA-1401、DA-7301、DN-900、NS-5210、NVI-8514L等;東亞合成社製アルフォン(登録商標)(以下同じ)UH-2170、UC-3000、UC-3910、UC-3920、UF-5022、UG-4010、UG-4035、UG-4040、UG-4070、レゼダ(登録商標)(以下同じ)GS-1015、GP-301、GP-301S等;三菱化学社製ダイヤナール(登録商標)(以下同じ)BR-50、BR-52、BR-60、BR-73、BR-77、BR80、BR-83、BR-85、BR-87、BR-88、BR-90、BR-96、BR-102、BR-113、BR-116等が挙げられる。
 なお、ガラス転移温度が室温未満の液体分散剤を、前記液体媒体の代わりに用いることもできる。すなわち、本実施形態の電磁波吸収粒子分散液は、電磁波吸収粒子と液体分散剤を含有することもでき、電磁波吸収粒子と液体分散剤とから構成することもできる。市販の液体分散剤における好ましい具体例としては、日本ルーブリゾール社製SOLSPERSE(登録商標)20000、楠本化成製Disparlon(登録商標)(以下同じ)DA234、DA325、DA375等が挙げられる。
(1-4)その他添加剤
 本実施形態の電磁波吸収粒子分散液は、塗布性やレベリング性、乾燥性の制御のために、各種界面活性剤や樹脂成分等の添加剤を含有することもできる。当該添加剤を添加する場合、電磁波吸収粒子分散液は、当該添加剤を、該分散液の5質量%以下の範囲で少量含有することが好ましい。界面活性剤としてはアニオン性、カチオン性、非イオン性、または両性のものが挙げられる。
 また、電磁波吸収粒子分散液を用いて得られる電磁波吸収粒子分散体に可撓性を付与するために、当該分散液は、シリコーン樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオキシアルキレン基を含む親水性有機樹脂、エポキシ樹脂等から選択された1種類以上の有機樹脂を含有することもできる。当該有機樹脂を添加する場合、電磁波吸収粒子分散液は、当該有機樹脂を、該電磁波吸収粒子分散液の5質量%以下の範囲で少量含有することが好ましい。
 また、電磁波吸収粒子分散液を用いて調製される電磁波吸収粒子分散体へのクラック防止性を付与するために、電磁波吸収粒子分散液は、熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂等から選択された1種類以上の樹脂を含有することもできる。該樹脂を添加する場合、電磁波吸収粒子分散液は、当該樹脂を、当該分散液の20質量%以下の範囲で含有することが好ましい。上記樹脂としては、より具体的には例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、アミノ樹脂、ウレタン樹脂、フラン樹脂、シリコーン樹脂およびこれらの樹脂の変性品を挙げることができる。
(2)電磁波吸収粒子分散液の製造方法
 本実施形態の電磁波吸収粒子分散液の製造方法は特に限定されない。本実施形態の電磁波吸収粒子分散液は、例えば既述の電磁波吸収粒子と、必要に応じて分散剤やその他添加剤とを、既述の液体媒体中に添加して分散することで調製できる。なお、既述のように液体媒体に替えて、液体分散剤を用いることもできる。
 液体媒体中に電磁波吸収粒子等を分散させる方法としては特に限定されないが、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルは、電磁波吸収粒子について、短時間で所望の粒子径とすることができるため、好適に用いることができる。
 媒体攪拌ミルを用いた粉砕-分散処理によって、電磁波吸収粒子の液体媒体中への分散と同時に、電磁波吸収粒子同士の衝突や媒体メディアの電磁波吸収粒子への衝突などによる微粒子化も進行し、電磁波吸収粒子をより微粒子化して分散させることができる。すなわち、粉砕・分散処理される。
 電磁波吸収粒子分散液における、電磁波吸収粒子の分散濃度としては、0.01質量%以上80質量%以下であることが好ましい。これは電磁波吸収粒子の含有量を0.01質量%以上とすることで十分な電磁波吸収特性を発揮できるからである。また、80質量%以下とすることで、電磁波吸収粒子を液体媒体中に均一に分散させることができるからである。本実施形態の電磁波吸収粒子分散液は、液体媒体や、分散剤、カップリング剤、界面活性剤の組み合わせを選択することで、例えば温度40℃の恒温槽に入れたときでも6ヶ月以上分散液のゲル化や粒子の沈降が発生せず、粒子径の増大を抑制できる。
(3)電磁波吸収粒子分散液の使用方法、および電磁波吸収粒子分散液を用いた物品
 本実施形態の電磁波吸収粒子分散液の用途等は特に限定されず、各種用途に用いることができる。
 本実施形態の電磁波吸収粒子分散液は、例えば適宜な基材の表面に塗布することで分散膜を形成して電磁波吸収基材として利用できる。当該分散膜は、電磁波吸収粒子分散体の一種でもあり、電磁波吸収粒子分散液の乾燥固化物の一種でもある。
 また、本実施形態の電磁波吸収粒子分散液を乾燥し、必要に応じて粉砕処理を行い、粉末状の電磁波吸収粒子分散体(本明細書において「分散粉」と記載する場合もある。)とすることもできる。つまり、当該分散粉は、電磁波吸収粒子分散体の一種でもあり、電磁波吸収粒子分散液の乾燥固化物の一種でもある。当該分散粉は電磁波吸収粒子が、分散剤等の固体媒体中に分散された粉末状の分散体である。当該分散粉は分散剤を含んでいるため、適宜な媒体と混合することで電磁波吸収粒子を媒体中へ容易に再分散させることが可能である。
 上記分散粉は、電磁波吸収製品へ電磁波吸収粒子を分散状態で添加する原料として用いることもできる。すなわち、本実施形態の電磁波吸収粒子が固体媒体中に分散された当該分散粉を、再度液体媒体中に分散させ、赤外線吸収製品用の分散液として使用しても良いし、後述するように当該分散粉を樹脂中に練り込んで電磁波吸収粒子分散体として使用しても良い。
 本実施形態の電磁波吸収粒子分散液は、光熱変換を利用する様々な用途に用いることができる。
 例えば、電磁波吸収粒子分散液を未硬化の熱硬化性樹脂へ添加するか、電磁波吸収粒子分散液に未硬化の熱硬化性樹脂を添加することにより、硬化型インク組成物とすることができる。上記硬化型インク組成物は、既述の電磁波吸収粒子を含んでおり、該電磁波吸収粒子は赤外線等の電磁波照射による発熱量を高める助剤として機能する。硬化型インク組成物は熱硬化性樹脂を含有するため、硬化型インク組成物に赤外線等の電磁波を照射することで、上述のように電磁波吸収粒子が発熱量を高める助剤として機能し、該熱硬化性樹脂を硬化できる。硬化型インク組成物を例えば基材上に設けておくことで、赤外線等の電磁波を照射した際に、硬化型インク組成物の硬化物と、基材との密着性を高めることもできる。
 従って、当該硬化型インク組成物は、従来のインクとしての用途に加え、例えば塗布と、赤外線などの電磁波の照射による硬化とを繰り返し実施して積み上げ、3次元物体を造形する光造形法の用途に好適に用いることができる。
 それ以外にも、本実施形態の電磁波吸収粒子を加熱溶融された熱可塑性樹脂へ添加するか、本実施形態の電磁波吸収粒子を適宜な溶媒中に分散した後、溶媒への溶解性の高い熱可塑性樹脂を添加することにより、熱可塑性樹脂含有インク組成物が得られる。
 熱可塑性樹脂含有インク組成物を例えば基材上に設け、赤外線等の電磁波を照射することで、溶媒除去と、樹脂の加熱融着とを経て、熱可塑性樹脂含有インク組成物の硬化物を、基材へ密着させることができる。この際、係る熱可塑性樹脂含有インク組成物においても、上記硬化型インク組成物の場合と同様に、電磁波吸収粒子は赤外線等の電磁波照射による発熱量を高める助剤として機能する。
 従って、当該熱可塑性樹脂含有インク組成物は、従来のインクとしての用途に加え、例えば塗布と、赤外線などの電磁波の照射による溶媒除去と、樹脂の加熱融着とを繰り返し実施して積み上げ、3次元物体を造形する光造形法の用途に好適に用いることができる。
 ここまで説明した、上記硬化型インク組成物や、熱可塑性樹脂含有インク組成物は、本実施形態の電磁波吸収粒子分散液の一例でもある。
[4]電磁波吸収粒子分散体
 次に、本実施形態の電磁波吸収粒子分散体について説明する。
 本実施形態の電磁波吸収粒子分散体は、固体媒体と、固体媒体中に含まれる既述の電磁波吸収粒子と、を含有できる。具体的には例えば、図3に模式的に示すように、電磁波吸収粒子分散体30は、既述の電磁波吸収粒子31と、固体媒体32と、を含むことができ、電磁波吸収粒子31は、固体媒体32中に配置できる。電磁波吸収粒子31は、上記固体媒体32中に分散していることが好ましい。なお、図3は模式的に示した図であり、本実施形態の電磁波吸収粒子分散体は、係る形態に限定されるものではない。例えば図3において電磁波吸収粒子31を球状の粒子として記載しているが、電磁波吸収粒子31の形状は係る形態に限定されるものではなく、任意の形状を有することができる。電磁波吸収粒子分散体30は、電磁波吸収粒子31、固体媒体32以外に、必要に応じてその他添加剤を含むこともできる。
 固体媒体とは、使用する温度において固体状の媒体を意味し、特に室温(27℃)において固体状の媒体であることが好ましい。固体媒体としては、樹脂、ガラス等を用いることができる。
 固体媒体としては、取り扱い性の容易さ等の観点から樹脂を特に好適に用いることができる。
 固体媒体として樹脂を用いる場合、樹脂の種類は特に限定されないが、樹脂は、例えば、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂、および紫外線硬化性樹脂からなる樹脂群から選択される1種類の樹脂、または上記樹脂群から選択される2種類以上の樹脂の混合物とすることができる。
 電磁波吸収粒子分散体の、電磁波吸収粒子の含有割合は特に限定されないが、電磁波吸収粒子分散体は、電磁波吸収粒子を、0.001質量%以上80質量%以下の割合で含有することが好ましい。これは電磁波吸収粒子を0.001質量%以上含むことで、十分な赤外線遮蔽機能を発揮できるからである。また、電磁波吸収粒子の含有割合を80質量%以下とすることで、固体媒体中で電磁波吸収粒子同士が造粒することを抑制できるので、特に良好な透明性を保てる。また、電磁波吸収粒子の使用量も抑制できるのでコスト的にも有利である。さらに電磁波吸収粒子の含有割合を80質量%以下とすることで、電磁波吸収粒子分散体が含有する固体媒体の割合を多くし、該分散体の強度を高めることができるからである。
 本実施形態の電磁波吸収粒子分散体の形状等は特に限定されず、用途等に応じて任意に選択できる。例えば、本実施形態の電磁波吸収粒子分散体は、シート形状、ボード形状、フィルム形状のいずれかであることが好ましい。
 本実施形態の電磁波吸収粒子分散体について、(1)電磁波吸収粒子分散体の製造方法、(2)電磁波吸収基材、(3)電磁波吸収粒子分散体の使用方法およびそれを用いた物品、の順に説明する。
(1)電磁波吸収粒子分散体の製造方法
 電磁波吸収粒子分散体の製造方法は特に限定されない。電磁波吸収粒子分散体は、例えば既述の電磁波吸収粒子を樹脂等の固体媒体に練り込み、フィルムやボード等の所望の形状に成形することで製造できる。
 電磁波吸収粒子分散体は、既述の電磁波吸収粒子分散液と樹脂等の固体媒体とを混合することで製造することもできる。また、電磁波吸収粒子が固体媒体に分散された粉末状の分散体、すなわち既述の分散粉を液体媒体に添加し、かつ樹脂等の固体媒体と混合することで、電磁波吸収粒子分散体を製造することも可能である。
 本実施形態の電磁波吸収粒子分散体の形状は特に限定されないが、例えば固体媒体として樹脂を用いた場合、例えば、厚さ0.1μm以上50mm以下のシート形状や、ボード形状、フィルム形状とすることもできる。
 上述のように、既述の電磁波吸収粒子を樹脂等の固体媒体に練り込み、電磁波吸収粒子分散体を調製する場合、固体媒体である例えば樹脂の融点付近の温度(例えば200℃以上300℃以下程度)で、電磁波吸収粒子と、固体媒体とを加熱混合して練り込むことになる。
 なお、電磁波吸収粒子を固体媒体に練り込んで得られた材料について、所望の形状に成形することもできるが、一旦ペレット化し、当該ペレットを各方式でフィルムやボード等の所望の形状に成形することも可能である。
 成形方法は特に限定されず、例えば押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法等を用いることができる。
 既述のように電磁波吸収粒子分散体を、シート形状や、ボード形状、フィルム形状とする場合、その厚さは特に限定されず、用途等に応じて選択できる。
 また、電磁波吸収粒子分散体における、固体媒体に対するフィラー量、すなわち電磁波吸収粒子の配合量は、電磁波吸収粒子分散体の厚さや、電磁波吸収粒子分散体に要求される光学特性、機械的特性等に応じて任意に選択できる。例えば一般的に樹脂等の固体媒体に対して80質量%以下が好ましい。
 固体媒体に対するフィラー量が80質量%以下であれば、固体媒体中での電磁波吸収粒子同士が造粒することを抑制できるので、特に良好な透明性を保てる。また、電磁波吸収粒子の使用量も抑制できるのでコスト的にも有利である。
 なお、固体媒体に対するフィラー量の下限値は特に限定されないが、電磁波吸収粒子分散体が十分な赤外線遮蔽機能を発揮する観点から、例えば0.001質量%以上とすることが好ましい。
 電磁波吸収粒子分散体は、電磁波吸収粒子を固体媒体に分散させた電磁波吸収粒子分散体を、さらに粉砕し、粉末とした状態でも利用することができる。当該構成を採る場合、粉末状の電磁波吸収粒子分散体において、電磁波吸収粒子が固体媒体中で十分に分散している。従って、当該粉末状の電磁波吸収粒子分散体を所謂マスターバッチとして、適宜な液体媒体に溶解させることや、樹脂ペレット等と混練することで、容易に、液体状または固体状の電磁波吸収粒子分散体を製造できる。
 上述したシートや、ボード、フィルムのマトリクスとなる固体媒体は、特に限定されるものではなく用途に合わせて選択可能である。既述のように取り扱い性の観点から樹脂を好適に用いることができる。固体媒体として樹脂を用いる場合、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂、および紫外線硬化性樹脂からなる樹脂群から選択される1種類の樹脂、または、前記樹脂群から選択される2種類以上の樹脂の混合物を好適に用いることができる。特に、低コストで透明性が高く汎用性の広い樹脂として、ポリエチレンテレフタレート樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、等から選択された1種類以上の樹脂を好適に用いることができる。また、耐候性を考慮してフッ素樹脂を使用することもできる。
(2)電磁波吸収基材
 本実施形態の電磁波吸収粒子分散体は、基材と、該基材の表面に配置された既述の電磁波吸収粒子を含有する分散膜とを有する電磁波吸収基材の形態も含む。具体的には、基材と、分散膜との積層方向に沿った断面模式図である図4に示すように、電磁波吸収基材40は、基材41と、電磁波吸収粒子を含有する分散膜42とを有することができる。電磁波吸収粒子を含有する分散膜42は、基材41少なくとも一方の面41Aに配置できる。
 係る電磁波吸収基材は、例えば以下の手順により製造できる。
 既述の電磁波吸収粒子と、アルコール等の有機溶媒や水等の液体媒体と、樹脂バインダーと、所望により分散剤とを混合した電磁波吸収粒子分散液を調製する(分散液調製工程)。
 次いで、上記電磁波吸収粒子分散液を、適宜な基材表面に塗布する(塗布工程)。
 液体媒体を除去するか、樹脂バインダーを硬化させ、電磁波吸収粒子分散体とする(分散体調製工程)。なお、液体媒体の除去と、樹脂バインダーの硬化の両方を実施することもできる。
 以上の工程により、電磁波吸収粒子分散体が基材表面に直接積層された電磁波吸収基材が得られる。
 上記樹脂バインダーは用途に合わせて選択可能であり、紫外線硬化性樹脂、熱硬化性樹脂、常温硬化性樹脂、熱可塑性樹脂、等が挙げられる。
 一方、樹脂バインダーを含まない電磁波吸収粒子分散液を塗布し、基材表面に電磁波吸収粒子分散体を積層しても良い。また、上記樹脂バインダーを含まない電磁波吸収粒子分散液を塗布した後に、バインダー成分を含む液体媒体を当該電磁波吸収粒子分散体の層上に塗布しても良い。
 従って、電磁波吸収基材の製造方法は、具体的にはまず、例えば有機溶媒、樹脂を溶解させた有機溶媒、樹脂を分散させた有機溶媒、水、から選ばれる1種類以上の液体媒体に電磁波吸収粒子が分散している液状の電磁波吸収粒子分散液を基材表面に塗布できる。そして、得られた塗布膜を適宜な方法で固めることで、電磁波吸収基材とすることができる。
 上記樹脂として例えば樹脂バインダーを用いることができ、上述のように樹脂バインダーを含む液状の電磁波吸収粒子分散液を基材表面に塗布し、得られた塗布膜を適宜な方法で固めることで電磁波吸収基材とすることもできる。
 また、粉末状である固体媒体中に電磁波吸収粒子が分散している電磁波吸収粒子分散体を所定媒体に混合した液状の電磁波吸収粒子分散液を、基材表面に塗布し、得られた塗布膜を適宜な方法で固めることで電磁波吸収基材を得ることもできる。
 勿論、上記液状の電磁波吸収粒子分散液のうち、固体媒体等について2種類以上を添加、混合した電磁波吸収粒子分散液を基材表面に塗布し、得られた塗布膜を適宜な方法で固めることで電磁波吸収基材とすることもできる。
 電磁波吸収基材に用いる基材の材質は、透明体であれば特に限定されないが、ガラス、樹脂シート、樹脂ボード、樹脂フィルム等から選択された1種類以上を好ましく用いられる。なお、透明体とは可視光領域の光を透過する材料であり、可視光領域の光の透過の程度は電磁波吸収基材の用途等に応じて任意に選択できる。
 樹脂シート、樹脂ボード、樹脂フィルムに用いる樹脂としては、特に限定されず、シート、ボード、フィルムの表面状態や耐久性等要求される特性に応じて選択できる。上記樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや、さらにこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物等の透明ポリマーから選択された1種類以上が挙げられる。特に、ポリエチレンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン-2,6-ナフタレート等のポリエステル系2軸配向フィルムが、機械的特性、光学特性、耐熱性および経済性の点より好適である。当該ポリエステル系2軸配向フィルムは共重合ポリエステル系であっても良い。
(3)電磁波吸収粒子分散体の使用方法およびそれを用いた物品
 ここまで説明した本実施形態の電磁波吸収粒子分散体や電磁波吸収基材は、可視光領域の光を透過させ、赤外線領域の光を遮蔽できる。このため、例えば、各種建築物や車両において、可視光線を十分に取り入れながら赤外線領域の光を遮蔽し、明るさを維持しながら室内の温度上昇を抑制することを目的とした窓材等に用いることができる。また、PDP(プラズマディスプレイパネル)から前方に放射される赤外線を遮蔽するフィルター等、に好適に使用することができる。
 また、本実施形態の電磁波吸収粒子は赤外線領域に吸収を有する為、当該電磁波吸収粒子を含む印刷面へ赤外線レーザーを照射したとき、特定の波長を有する赤外線を吸収する。従って、この電磁波吸収粒子を含む偽造防止インクを被印刷基材の片面または両面に印刷して得た偽造防止用印刷物は、特定波長を有する赤外線を照射し、その反射若しくは透過を読み取ることによって、反射量または透過量の違いから、印刷物の真贋を判定することができる。当該偽造防止用印刷物は、本実施形態の電磁波吸収粒子分散体の一例である。
 また、既述の電磁波吸収粒子分散液とバインダー成分とを混合したインクを基材上に塗布し、塗布したインクを乾燥させた後、乾燥させたインクを硬化させることにより光熱変換層を形成できる。当該光熱変換層は、赤外線などの電磁波レーザーを照射した箇所について発熱し、隣接する材料を加熱できる。従って、当該光熱変換層は、赤外線などの電磁波レーザーの照射により、高い位置の精度をもって所望の箇所のみで発熱させることが可能である。このため、光熱変換層は、エレクトロニクス、医療、農業、機械、等の広い範囲の分野において局所加熱媒体として適用可能である。当該光熱変換層を含む材料は、例えば、有機エレクトロルミネッセンス素子をレーザー転写法で形成する際に用いるドナーシートや、感熱式プリンタ用の感熱紙や熱転写プリンタ用のインクリボンとして好適に用いることができる。当該光熱変換層は本実施形態の電磁波吸収粒子分散体の一例である。
 また、既述の電磁波吸収粒子を適宜な媒体中に分散させて、当該分散物を繊維の表面および内部から選択された1か所以上に含有させることにより、赤外線吸収繊維とすることができる。当該赤外線吸収繊維は、電磁波吸収粒子を含有するため、太陽光などからの近赤外線等を効率良く吸収し、保温性に優れた赤外線吸収繊維となる。当該赤外線吸収繊維は、可視光領域の光は透過させるので意匠性に優れた赤外線吸収繊維となる。
 その結果、当該赤外線吸収繊維は、保温性を必要とする防寒用衣料、スポーツ用衣料、ストッキング、カーテン等の繊維製品やその他産業用繊維製品等の種々の用途に使用することができる。当該赤外線吸収繊維は本実施形態の電磁波吸収粒子分散体の一例である。
 また、本実施形態の電磁波吸収粒子分散体は、農園芸用ハウスの屋根や外壁材等の資材に適用することもできる。本実施形態の電磁波吸収粒子分散体は、可視光を透過するため、農園芸用ハウス内の植物の光合成に必要な光を確保できる。そして、本実施形態の電磁波吸収粒子は、可視光以外の太陽光に含まれる近赤外光等の光を効率よく吸収するできるため、本実施形態の電磁波吸収粒子分散体は、断熱性を備えた農園芸施設用断熱資材として使用できる。当該農園芸施設用断熱資材は、本実施形態の電磁波吸収粒子分散体の一例である。
[5]電磁波吸収積層体
 本実施形態の電磁波吸収積層体は、既述の電磁波吸収粒子分散体と、透明基材と、を含む積層構造を備えることができる。電磁波吸収積層体として、例えば2枚以上の複数枚の透明基材と、上述の電磁波吸収粒子分散体とを積層した例が挙げられる。この場合、電磁波吸収粒子分散体は、例えば透明基材の間に配置し、電磁波吸収用中間膜として用いることができる。
 この場合、具体的には、透明基材と、電磁波吸収粒子分散体との積層方向に沿った断面模式図である図5に示すように、電磁波吸収積層体50は、複数枚の透明基材511、512と、電磁波吸収粒子分散体52とを有することができる。そして、電磁波吸収粒子分散体52は複数枚の透明基材511、512の間に配置できる。図5においては、透明基材511、512を2枚有する例を示したが、係る形態に限定されるものではない。
 この場合、電磁波吸収用中間膜は、シート形状、ボード形状、およびフィルム形状のいずれかの形状を有することが好ましい。
 透明基材は、可視光領域において透明な板ガラス、板状のプラスチック、フィルム状のプラスチック等から選択された1種類以上を好適に用いることができる。なお、透明基材が、可視光領域において透明であるとは、可視光領域の光を透過する基材であることを意味する。透明基材の可視光領域の光の透過の程度は電磁波吸収積層体の用途等に応じて任意に選択できる。
 透明基材として、プラスチックを用いる場合、プラスチックの材質は、特に限定されるものではなく用途に応じて選択可能であり、例えばポリカーボネート樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、アイオノマー樹脂、フッ素樹脂等から選択された1種類以上を使用可能である。なお、ポリエステル樹脂としては、ポリエチレンテレフタレート樹脂を好適に用いることができる。
 透明基材は、電磁波吸収機能を有する粒子を含有していてもよい。電磁波吸収機能を有する粒子としては、例えば既述の電磁波吸収粒子を用いることができる。
 複数枚の透明基材間に挟持される中間層の構成部材として、既述の電磁波吸収粒子分散体を用いることで、可視光線を透過し、かつ電磁波吸収機能を備えた電磁波吸収積層体の1種である日射遮蔽合わせ構造体を得ることができる。
 なお、電磁波吸収粒子分散体を挟持して対向する複数枚の透明基材を、公知の方法で貼り合わせ、一体化することで、上述の電磁波吸収積層体とすることもできる。
 既述の電磁波吸収粒子分散体を電磁波吸収用中間膜として用いる場合、固体媒体としては、電磁波吸収粒子分散体で説明したものを用いることができる。ただし、電磁波吸収用中間膜と、透明基材との密着強度を高める観点からは、固体媒体はポリビニルアセタール樹脂であることが好ましい。
 上記電磁波吸収用中間膜は、既述の電磁波吸収粒子分散体の製造方法により製造でき、例えばシート形状、ボード形状、またはフィルム形状のいずれかの形状を有する電磁波吸収用中間膜とすることができる。
 なお、電磁波吸収用中間膜が、柔軟性や透明基材との密着性を十分に有しない場合は、媒体樹脂用の液状可塑剤を添加することが好ましい。例えば、電磁波吸収用中間膜に用いた固体媒体である媒体樹脂がポリビニルアセタール樹脂である場合は、ポリアセタール樹脂用の液状可塑剤の添加は、透明基材との密着性向上に有益である。
 可塑剤としては、媒体樹脂に対して可塑剤として用いられる物質を用いることができる。例えばポリビニルアセタール樹脂で構成された赤外線遮蔽フィルムに用いられる可塑剤としては、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤が挙げられる。いずれの可塑剤も、室温で液状であることが好ましい。なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤が好ましい。
 また、電磁波吸収用中間膜には、シランカップリング剤、カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩から成る群から選択される少なくとも1種を添加することもできる。カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩を構成する金属は特に限定されないが、ナトリウム、カリウム、マグネシウム、カルシウム、マンガン、セシウム、リチウム、ルビジウム、亜鉛から選択される少なくとも1種であることが好ましい。電磁波吸収用中間膜において、カルボン酸の金属塩、金属の水酸化物、金属の炭酸塩から成る群から選択される少なくとも1種の含有量が、電磁波吸収粒子に対して1質量%以上100質量%以下であることが好ましい。
 さらに、電磁波吸収用中間膜は、必要に応じて既述の電磁波吸収粒子に加えて、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、P、Ge、In、Sn、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Lu、Sr、Caから成る群から選択される1種類、または2種類以上の元素を含む酸化物粒子、複合酸化物粒子、ホウ化物粒子のうちの少なくとも1種類以上の粒子を含有することもできる。電磁波吸収用中間膜は、係る粒子を、係る粒子と電磁波吸収粒子との合計を100質量%とした場合に、5質量%以上95質量%以下の範囲で含有できる。
 電磁波吸収積層体は、透明基材間に配置された中間膜の少なくとも1層が、紫外線吸収剤を含有してもよい。紫外線吸収剤としては、マロン酸エステル構造を有する化合物、シュウ酸アニリド構造を有する化合物、ベンゾトリアゾール構造を有する化合物、ベンゾフェノン構造を有する化合物、トリアジン構造を有する化合物、ベンゾエート構造を有する化合物、ヒンダードアミン構造を有する化合物等から選択された1種類以上が挙げられる。
 なお、電磁波吸収積層体の中間層は、電磁波吸収用中間膜のみで構成して良いのは勿論である。
 ここで説明した電磁波吸収用中間膜は、電磁波吸収粒子分散体の一例でもある。また、本実施形態の電磁波吸収積層体は、上述のような、透明基材間に電磁波吸収粒子分散体を配置した形態に限定されるものではなく、電磁波吸収粒子分散体と、透明基材とを含む積層構造を有するものであれば、任意の構成を採ることができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれに限定されるものではない。
(評価方法)
 まず、以下の実施例、参考例における評価方法について説明する。
(累積50%粒子径、累積95%粒子径)
 実施例および参考例における電磁波吸収粒子の粒度分布は、周波数解析法で解析する動的光散乱法を原理とした粒度分布測定装置(日機装株式会社製UPA-150)により測定した。測定条件として、粒子屈折率は1.81とし、粒子形状は非球形を用いた。また、バックグラウンドはメチルイソブチルケトンで測定し、溶媒屈折率は1.40とした。そして、得られた粒度分布から累積50%粒子径、および累積95%粒子径を求めた。
(結晶構造、格子定数)
 電磁波吸収粒子分散液から溶媒を除去して得られる電磁波吸収粒子を用いて、該電磁波吸収粒子が含有する複合酸化物の結晶構造、格子定数の測定を行った。
 複合酸化物の結晶構造、格子定数の測定に当たっては、当該電磁波吸収粒子のX線回折パターンを、粉末X線回折装置(スペクトリス株式会社PANalytical製X'Pert-PRO/MPD)を用いて粉末X線回折法(θ-2θ法)により測定した。得られたX線回折パターンから当該粒子に含まれる複合酸化物の結晶構造を特定し、さらにリートベルト解析により格子定数を算出した。なお、リートベルト解析には外部標準法を採用した。同じ時期に測定したSi標準粉末(NIST640c)のX線回折パターンのリートベルト解析を最初に行い、その際に得られたゼロシフト値および半価幅パラメータを装置パラメータと決め、目的である電磁波吸収粒子のリートベルト解析を精密化した。
(分散液の光学特性)
 実施例および参考例における電磁波吸収粒子分散液の光学特性は、以下のように測定した。まず、分光光度計の測定用ガラスセルにて電磁波吸収粒子分散液を溶媒のメチルイソブチルケトンで希釈した。このとき、希釈後の可視光透過率が70%となるような希釈倍率とした。次に、分光光度計(日立ハイテクサイエンス製UH4150)により波長200nm以上2600nm以下の範囲において5nmの間隔で透過光プロファイルを測定し、可視光透過率と日射透過率とをJIS R 3106(2019)に基づき、波長300nm以上2100nm以下の範囲で算出した。このとき、当該測定において、分光光度計の光の入射方向は測定用ガラスセルに垂直な方向とした。また、当該測定用ガラスセルに溶媒のメチルイソブチルケトンのみを入れたブランク液を光の透過率のベースラインとした。
(電磁波吸収基材の光学特性)
 実施例および参考例における電磁波吸収基材の光学特性は、分光光度計(株式会社日立ハイテクサイエンス製UH4150)により測定した。波長200nm以上2600nm以下の範囲において5nmの間隔で透過光プロファイルを測定し、可視光透過率と日射透過率とをJIS R 3106(2019)に基づき、波長300nm以上2100nm以下の範囲で算出した。
 電磁波吸収基材の光学特性は、電磁波吸収基材の製造後と、電磁波吸収基材に対してUVコンベア装置(アイグラフィック製ECS-401GX)により紫外線を20分間照射した後とで評価を行った。このとき、UVコンベア装置中のUV源には365nmに主波長を有する水銀ランプを用い、UV照射強度は100mW/cmとした。このため、各実施例、参考例では光学特性を評価するために同じ条件で2つの試料を製造している。表2中、「初期」が製造後に評価を行った結果であり、「紫外線照射後」が、UVコンベア装置を用いた紫外線照射の後で評価を行った場合の結果である。
(ヘイズ)
 電磁波吸収基材のヘイズ値は、ヘイズメーター(株式会社村上色彩技術研究所製HM-150N)を用いて測定し、JIS K 7136(2000)に基づき算出した。
[実施例1]
(電磁波吸収粒子)
 炭酸ストロンチウム(SrCO、関東化学株式会社製、純度99.5%)13.86gと酸化ニオブ(Nb、関東化学株式会社製、純度100.0%)6.21gを均一になるよう十分混合した。得られた混合粉をアルミナボートに入れ、大気雰囲気下において温度1400℃で2時間焼成し、中間生成物として組成式SrNbのニオブ酸ストロンチウムを得た。
 得られたSrNb6.33gとNb1.48gとニオブ粉末(Nb、富士フィルム和光純薬株式会社製、純度99.5%)0.69gとを均一になるよう十分混合した。このとき、混合した後のSrとNbとの物質量の比であるSr:Nbは1.0:1.0となっている。得られた混合粉を4g分取し、アルミナ坩堝に入れ、Arガスをキャリアーとした3体積%のHガス気流下において温度1600℃で3時間焼成し、実施例1に係る電磁波吸収粒子である、組成式SrNbO(1.0<z<3.5)のニオブ酸ストロンチウムを得た。なお、上記組成式中のOの添え字がzになっている。得られたニオブ酸ストロンチウム中のNb濃度をICP発光分光分析装置(島津製作所製 型式:ICPE-9000)により分析したところ、40質量%であることが分かった。また、酸素濃度については、軽元素分析装置(LECO社製 型式:ON-836)によりHeガス中で試料を融解し、分析坩堝のカーボンとの反応で生成したCOガスをIR吸収分光法で定量する方法で分析したところ、17質量%であることが分かった。なお、各濃度、3回分析してその平均値を求めた。これらの結果を物質量比に変換したところ、原子比O/Nb=2.5となり、組成式SrNbOのz=2.5であることが分かった。
(電磁波吸収粒子分散液)
 実施例1に係るニオブ酸ストロンチウム6質量%と官能基としてアミンを含有する基を有するアクリル系高分子分散剤(アミン価48mgKOH/g、分解温度250℃のアクリル系分散剤)6質量%とメチルイソブチルケトン88質量%とを混合して得られた混合液(スラリー)を、φ0.3mmのZrOビーズと共にガラス瓶に入れ、ペイントシェーカーに装填して5時間粉砕・分散処理することによって実施例1に係る電磁波吸収粒子分散液を得た。このとき、ニオブ酸ストロンチウム粒子が電磁波吸収粒子となる。
 実施例1に係る電磁波吸収粒子分散液の粒度分布を測定したところ、累積50%粒子径が34nm、累積95%粒子径が48nmであった。
 また、電磁波吸収粒子分散液から、溶媒(分散媒)を除去し、実施例1に係るニオブ酸ストロンチウムの粉末X線回折パターンを測定したところ、立方晶ペロブスカイト構造の結晶相に帰属される回折ピークが確認された。また、立方晶ペロブスカイト構造を基準にリートベルト解析を実施したところ、格子定数aは4.0284Åと算出された。
 実施例1に係る電磁波吸収粒子分散液を溶媒のメチルイソブチルケトンで希釈し、光学特性を測定したところ、可視光透過率は70%、日射透過率は38%であった。また、該電磁波吸収粒子分散液の透過光プロファイルを図1に示す。
(電磁波吸収粒子分散体)
 実施例1に係る電磁波吸収粒子分散液と紫外線硬化性樹脂(東亜合成株式会社製アロニックスUV-3701)とを質量比が1:1となるよう秤量し、混合・攪拌して電磁波吸収基材形成用分散液を調製した。そして、バーNo.10のバーコーターを用い、厚さ3mmのクリアガラス上へ電磁波吸収基材形成用分散液を塗布した後、70℃1分間の条件で乾燥させ、高圧水銀ランプを照射し、実施例1に係る電磁波吸収基材を得た。なお、電磁波吸収基材は、電磁波吸収粒子分散体の一例である。
 得られた実施例1に係る電磁波吸収基材の光学特性を測定したところ、紫外線照射前である製造後の電磁波吸収基材について、可視光透過率は68%、日射透過率は39%であった。また、ヘイズを測定したところ、0.3%であった。
 評価結果を表1および表2に示す。
[実施例2~実施例4]
 SrNbとNbとニオブ粉末とを混合した後のSrとNbとの物質量の比であるSr:Nbを0.9:1.0(実施例2)、0.8:1.0(実施例3)、0.7:1.0(実施例4)に変更した。以上の点以外は実施例1と同様にして、実施例2~実施例4に係る電磁波吸収粒子を調製した。
 以上の手順により、電磁波吸収粒子である、組成式Sr0.9NbO(1.0<z<3.5)(実施例2)、Sr0.8NbO(1.0<z<3.5)(実施例3)、Sr0.7NbO(1.0<z<3.5)(実施例4)のニオブ酸ストロンチウムを調製した。また、該電磁波吸収粒子を用いた点以外は、実施例1と同様にして、電磁波吸収粒子分散液、電磁波吸収基材を調製し、実施例1と同様の評価を実施した。実施例2~実施例4における評価結果を表1、表2に示す。
[実施例5~実施例7]
 実施例1における炭酸ストロンチウムの代わりに炭酸バリウム(BaCO、富士フィルム和光純薬株式会社製、純度99.9%)を用いて組成式BaNbのニオブ酸バリウムを得た。そして、SrNbに替えて、BaNbを用い、BaNbとNbとニオブ粉末とを混合した後のBaとNbとの物質量の比であるBa:Nbを1.0:1.0(実施例5)、0.8:1.0(実施例6)、0.6:1.0(実施例7)とした。以上の点以外は実施例1と同様にして、実施例5~実施例7に係る電磁波吸収粒子を調製した。
 以上の手順により、電磁波吸収粒子である、組成式BaNbO(1.0<z<3.5)(実施例5)、Ba0.8NbO(1.0<z<3.5)(実施例6)、Ba0.6NbO(1.0<z<3.5)(実施例7)のニオブ酸バリウムを調製した。また、該電磁波吸収粒子を用いた点以外は、実施例1と同様にして、電磁波吸収粒子分散液、電磁波吸収基材を調製し、実施例1と同様の評価を実施した。実施例5~実施例7における評価結果を表1、表2に示す。
[実施例8]
 実施例5における酸化ニオブの代わりに酸化タンタル(Ta、関東化学株式会社製、純度99.978%)を用いて組成式BaTaを得た。
 そして、上記BaTaと、酸化タンタル(Ta、関東化学株式会社製、純度99.978%)とタンタル粉末(Ta、関東化学株式会社製、純度99.9%)とを混合した。この際、混合後のBaとTaとの物質量の比であるBa:Taを1.0:1.0となるようにした。以上の点以外は実施例5と同様にして、実施例8に係る電磁波吸収粒子を調製した。
 以上の手順により、電磁波吸収粒子である、組成式BaTaO(1.0<z<3.5)のタンタル酸バリウムを調製した。また、該電磁波吸収粒子を用いた点以外は、実施例1と同様にして、電磁波吸収粒子分散液、電磁波吸収基材を得て、実施例1と同様の評価を実施した。評価結果を表1、表2に示す。
[実施例9]
 実施例1で得られたSrNbと、実施例5~7で得られたBaNbと、Nbと、ニオブ粉末とを混合した。この際、混合後のSrとBaとNbとの物質量の比であるSr:Ba:Nbを0.5:0.5:1.0となるようにした。以上の点以外は実施例1と同様にして、実施例9に係る電磁波吸収粒子を調製した。
 以上の手順により、電磁波吸収粒子である、組成式Sr0.5Ba0.5NbO(1.0<z<3.5)のニオブ酸ストロンチウムバリウムを調製した。また、該電磁波吸収粒子を用いた点以外は、実施例1と同様にして、電磁波吸収粒子分散液、電磁波吸収基材を得て、実施例1と同様の評価を実施した。評価結果を表1、表2に示す。
[実施例10]
 実施例1における炭酸ストロンチウムの代わりに炭酸カルシウム(CaCO、関東化学株式会社製、純度99.5%)を用いて組成式CaNbのニオブ酸カルシウムを得た。
 そして、上記CaNbとNbとニオブ粉末とを混合した。この際、混合後のCaとNbとの物質量の比であるCa:Nbを1.0:1.0となるようにした。以上の点以外は実施例1と同様にして、実施例10に係る電磁波吸収粒子を調製した。
 以上の手順により、電磁波吸収粒子である、組成式CaNbO(1.0<z<3.5)のニオブ酸カルシウムを調製した。また、該電磁波吸収粒子を用いた点以外は、実施例1と同様にして、電磁波吸収粒子分散液、電磁波吸収基材を得て、実施例1と同様の評価を実施した。評価結果を表1、表2に示す。
[参考例1]
 25℃の水340gにSnCl・5HO(和光純薬工業製 和光特級 純度98%以上)を54.9g溶解し、錫化合物溶液とした。当該錫化合物溶液へ、アンチモン化合物であるSbCl(和光純薬工業製 JIS特級 純度98%以上)を4.2g溶解したメタノール溶液12.7ml(米山薬品工業製 試薬特級 純度99.8%以上)と、濃度16%に希釈したアルカリ溶液であるNHOH水溶液(和光純薬工業製 試薬特級 濃度30%)とを並行滴下した。そして、当該並行滴下により、アンチモンドープ酸化錫(以下、ATOと略す)電磁波吸収粒子の前駆体である錫とアンチモンとを含む水酸化物を、生成沈殿させた。
 上記錫化合物溶液へのアンチモン化合物の添加量は、所望とする光学特性の観点から、酸化錫(IV)100質量部に対して、アンチモンの元素換算で9.5質量部とした。当該添加量とすることで、Sn元素が約68質量%、Sb元素が約8質量%となるATO電磁波吸収粒子が作製できる。
 上述のように、沈殿剤として用いるアルカリ溶液としてアンモニア水を用い、アルカリ濃度は、錫化合物とアンチモン化合物とが水酸化物となるのに必要な化学当量の1.6倍当量である16%とした。
 上記メタノール溶液とアルカリ溶液との並行滴下時間は25分間とし、滴下することで得られる溶液のpHが7.5となるまで並行滴下を行った。滴下終了後も系内の均一化を図るために、当該溶液の攪拌を10分間継続して行った。そのときの溶液の温度は、並行滴下の際の温度と同温とし、65℃とした。
 次に、上記沈殿物へデカンテーションを繰り返し行い洗浄した。当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄し、濾過した。
 次に、洗浄された沈殿物を無水のエチルアルコール溶液(和光純薬工業製 試薬特級 純度99.5%以上)で湿潤処理した。当該湿潤処理の際、[濾過した沈殿物:無水のエチルアルコール溶液]の質量比を、1:4の割合(アルコールの割合が80%相当)とし、濾過した沈殿物と無水のエチルアルコール溶液とを室温下で1時間攪拌することで湿潤処理して前駆体を得た。当該湿潤処理の完了後に、当該前駆体を90℃で10時間乾燥させ、乾燥物を得た。
 そして、当該湿潤処理を受けたATO電磁波吸収粒子前駆体を、大気雰囲気下にて700℃に加熱し、2時間焼成することで、参考例1に係るATO電磁波吸収粒子を製造した。
 電磁波吸収粒子として、ニオブ酸ストロンチウム粒子の代わりに、参考例1に係るATO電磁波吸収粒子を用いたこと以外は実施例1と同様にして、参考例1に係る電磁波吸収粒子分散液、電磁波吸収基材を調製し、実施例1と同様の評価を実施した。参考例1における評価結果を表1、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示した結果によると、実施例1~実施例10で得られた電磁波吸収粒子を用いた、電磁波吸収粒子分散液、電磁波吸収粒子分散体である電磁波吸収基材は、可視光透過率が高く、日射透過率を抑制できていることを確認できた。すなわち、実施例1~実施例10で得られた電磁波吸収粒子分散液、電磁波吸収基材は、可視光領域の透過率が高く、赤外線領域の透過率を抑制できていることを確認できた。
 また、実施例1~実施例10で得られた電磁波吸収粒子分散体である電磁波吸収基材についての、表2の「紫外線照射後」欄に示した紫外線照射後の光学特性は、「初期」の欄に示した製造後の光学特性からほとんど変化しないことも確認できた。従って、実施例1~実施例10で得られた電磁波吸収基材は、長期間紫外線が照射される環境下でも光学特性に大きな変化がなく、耐久性にも優れることを確認できた。
 そして、係る可視光透過率、日射透過率は、従来から電磁波吸収粒子として用いられているATOと同様、あるいはATOよりも優れていることも確認できた。従って、実施例1~実施例10で得られた電磁波吸収粒子は、実用可能な新規な電磁波吸収粒子であることを確認できた。
 本出願は、2021年2月2日に日本国特許庁に出願された特願2021-015182号に基づく優先権を主張するものであり、特願2021-015182号の全内容を本国際出願に援用する。

Claims (11)

  1.  複合酸化物を含有する電磁波吸収粒子であって、
     前記複合酸化物は、H、アルカリ金属、Mg、アルカリ土類金属から選択される1種類以上の元素であるA元素と、
     V、Nb、Taから選択される1種類以上の元素であるB元素と、を含有し、
     前記複合酸化物が含有する前記A元素の物質量をx、前記B元素の物質量をyとした場合に、0.001≦x/y≦1.5の関係を充足する電磁波吸収粒子。
  2.  粒度分布測定装置により測定した体積基準の累積50%粒子径が1nm以上50nm以下、累積95%粒子径が5nm以上100nm以下である請求項1に記載の電磁波吸収粒子。
  3.  前記A元素は、Ca、Sr、Ba、Raから選択される1種類以上の元素である請求項1または請求項2に記載の電磁波吸収粒子。
  4.  前記A元素は、Ca、Sr、Baから選択される1種類以上の元素であり、
     前記B元素はNbであり、
     0.7≦x/y≦1.0を満たす請求項1から請求項3のいずれか1項に記載の電磁波吸収粒子。
  5.  液体媒体と、
     前記液体媒体中に含まれる請求項1から請求項4のいずれか1項に記載の電磁波吸収粒子と、を含む電磁波吸収粒子分散液。
  6.  前記液体媒体が水、有機溶媒、液状可塑剤、油脂、硬化により高分子化される化合物から選択される1種類以上を含む、請求項5に記載の電磁波吸収粒子分散液。
  7.  固体媒体と、
     前記固体媒体中に含まれる請求項1から請求項4のいずれか1項に記載の電磁波吸収粒子と、を含む電磁波吸収粒子分散体。
  8.  前記固体媒体が樹脂である請求項7に記載の電磁波吸収粒子分散体。
  9.  前記樹脂が、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂、ポリアミド樹脂、ポリエチレン樹脂、塩化ビニル樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、エチレン・酢酸ビニル共重合体、ポリビニルアセタール樹脂、および紫外線硬化性樹脂からなる樹脂群から選択される1種類の樹脂、または前記樹脂群から選択される2種類以上の樹脂の混合物である請求項8に記載の電磁波吸収粒子分散体。
  10.  シート形状、ボード形状、またはフィルム形状を備えた請求項7から請求項9のいずれか1項に記載の電磁波吸収粒子分散体。
  11.  請求項7から請求項10のいずれか1項に記載の電磁波吸収粒子分散体と、
     透明基材と、を含む積層構造を備えた電磁波吸収積層体。
PCT/JP2022/003871 2021-02-02 2022-02-01 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体 WO2022168838A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280011299.3A CN116783146A (zh) 2021-02-02 2022-02-01 电磁波吸收粒子、电磁波吸收粒子分散液、电磁波吸收粒子分散体、电磁波吸收层叠体
EP22749710.4A EP4289789A1 (en) 2021-02-02 2022-02-01 Electromagnetic wave absorbing particles, electromagnetic wave absorbing particle disperse solution, electromagnetic wave absorbing particle dispersion, and electromagnetic wave absorbing laminate
MX2023008842A MX2023008842A (es) 2021-02-02 2022-02-01 Particulas absorbentes de ondas electromagneticas, solucion dispersa de particulas absorbentes de ondas electromagneticas, dispersion de particulas absorbentes de ondas electromagneticas y material laminado absorbente de ondas electromagneticas.
US18/262,105 US20240052135A1 (en) 2021-02-02 2022-02-01 Electromagnetic wave absorbing particles, electromagnetic wave absorbing particle dispersion liquid, electromagnetic wave absorbing particle dispersion, and electromagnetic wave absorbing laminate
JP2022579556A JPWO2022168838A1 (ja) 2021-02-02 2022-02-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015182 2021-02-02
JP2021015182 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022168838A1 true WO2022168838A1 (ja) 2022-08-11

Family

ID=82741495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003871 WO2022168838A1 (ja) 2021-02-02 2022-02-01 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体

Country Status (6)

Country Link
US (1) US20240052135A1 (ja)
EP (1) EP4289789A1 (ja)
JP (1) JPWO2022168838A1 (ja)
CN (1) CN116783146A (ja)
MX (1) MX2023008842A (ja)
WO (1) WO2022168838A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
JP2003029314A (ja) 2001-07-17 2003-01-29 Somar Corp 遮光フィルム
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2018077301A (ja) * 2016-11-08 2018-05-17 住友金属鉱山株式会社 近赤外線吸収性光学部材、およびこれを用いた画像表示デバイス
JP2021015182A (ja) 2019-07-11 2021-02-12 京セラドキュメントソリューションズ株式会社 現像装置、画像形成装置及び現像装置の製造方法
WO2021153693A1 (ja) * 2020-01-31 2021-08-05 住友金属鉱山株式会社 電磁波吸収粒子分散体、電磁波吸収積層体、電磁波吸収透明基材
WO2021153692A1 (ja) * 2020-01-31 2021-08-05 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107815A (ja) 1995-10-16 1997-04-28 Kanebo Ltd 保温用シート
JP2003029314A (ja) 2001-07-17 2003-01-29 Somar Corp 遮光フィルム
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2018077301A (ja) * 2016-11-08 2018-05-17 住友金属鉱山株式会社 近赤外線吸収性光学部材、およびこれを用いた画像表示デバイス
JP2021015182A (ja) 2019-07-11 2021-02-12 京セラドキュメントソリューションズ株式会社 現像装置、画像形成装置及び現像装置の製造方法
WO2021153693A1 (ja) * 2020-01-31 2021-08-05 住友金属鉱山株式会社 電磁波吸収粒子分散体、電磁波吸収積層体、電磁波吸収透明基材
WO2021153692A1 (ja) * 2020-01-31 2021-08-05 住友金属鉱山株式会社 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Physical and Chemical Dictionary", article "Electromagnetic waves with wavelengths in the range of about 1 nm to 1 mm are called light"
LIU CHUYANG, CHEN YUJIE, YUE YANGYU, TANG YU, WANG ZONGRONG, MA NING, DU PIYI: "Formation of BaFe 12− x Nb x O 19 and its high electromagnetic wave absorption properties in millimeter wave frequency range", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 100, no. 9, 1 September 2017 (2017-09-01), US , pages 3999 - 4010, XP055956092, ISSN: 0002-7820, DOI: 10.1111/jace.14925 *
RATNAKAR R , NEURGAONKAR , WARREN K CORY: "Electrooptic devices for millimeter waves using cooled ferroelectrics", PROCEEDINGS OF SPIE- THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, vol. 545, 28 October 1985 (1985-10-28), pages 35 - 38, XP055956099, DOI: 10.1117/12.948342 *
ZHU YINGTAO, DAI YING, LAI KANGRONG, LI ZHUJIE, HUANG BAIBIAO: "Optical Transition and Photocatalytic Performance of d 1 Metallic Perovskites", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 117, no. 11, 21 March 2013 (2013-03-21), US , pages 5593 - 5598, XP055956089, ISSN: 1932-7447, DOI: 10.1021/jp3121116 *

Also Published As

Publication number Publication date
EP4289789A1 (en) 2023-12-13
US20240052135A1 (en) 2024-02-15
CN116783146A (zh) 2023-09-19
MX2023008842A (es) 2023-08-14
JPWO2022168838A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
KR102263303B1 (ko) 표면 처리 적외선 흡수 미립자, 표면 처리 적외선 흡수 미립자 분말, 당해 표면 처리 적외선 흡수 미립자를 사용한 적외선 흡수 미립자 분산액, 적외선 흡수 미립자 분산체 및 그들의 제조 방법
WO2017104854A1 (ja) 近赤外線遮蔽超微粒子分散体、日射遮蔽用中間膜、赤外線遮蔽合わせ構造体、および近赤外線遮蔽超微粒子分散体の製造方法
WO2021153693A1 (ja) 電磁波吸収粒子分散体、電磁波吸収積層体、電磁波吸収透明基材
CN113316560B (zh) 表面处理红外线吸收微粒、粉末、分散液、分散体及基材
JP7275792B2 (ja) 高温安定性に優れる微粒子分散液および微粒子分散体
KR102553348B1 (ko) 적외선 흡수 미립자 및 이를 사용한 분산액, 분산체, 적층된 투명 기재, 필름, 유리, 및 이의 제조 방법
WO2022168838A1 (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
WO2022168837A1 (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
WO2019054477A1 (ja) 農園芸用覆土フィルムおよびその製造方法
JP2022118574A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118577A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118576A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118578A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118573A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118579A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
JP2022118582A (ja) 電磁波吸収粒子、電磁波吸収粒子分散液、電磁波吸収粒子分散体、電磁波吸収積層体
WO2023145737A1 (ja) 近赤外線吸収粒子、近赤外線吸収粒子の製造方法、近赤外線吸収粒子分散液、近赤外線吸収粒子分散体、近赤外線吸収積層体、近赤外線吸収透明基材
JP2023034390A (ja) 赤外線吸収粒子、赤外線吸収粒子分散液、赤外線吸収粒子分散体
JP7282326B2 (ja) 光吸収透明基材、光吸収粒子分散体、および光吸収合わせ透明基材
EP4234495A1 (en) Surface-treated infrared-absorbing microparticles and method for producing same, infrared-absorbing microparticle disperse solution, and infrared-absorbing microparticle dispersion
WO2022080420A1 (ja) 近赤外線吸収粒子、近赤外線吸収粒子の製造方法、近赤外線吸収粒子分散体、近赤外線吸収積層体、近赤外線吸収透明基材
JP2022034636A (ja) 赤外線吸収微粒子分散液
JP2021116212A (ja) 赤外線吸収微粒子粉末、赤外線吸収微粒子粉末分散液、赤外線吸収微粒子分散体、および、それらの製造方法
TW202311164A (zh) 紅外線吸收複合微粒子、紅外線吸收微粒子分散液及紅外線吸收微粒子分散體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749710

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18262105

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022579556

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011299.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/008842

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749710

Country of ref document: EP

Effective date: 20230904