WO2022168787A1 - 半導体装置用Alボンディングワイヤ - Google Patents

半導体装置用Alボンディングワイヤ Download PDF

Info

Publication number
WO2022168787A1
WO2022168787A1 PCT/JP2022/003575 JP2022003575W WO2022168787A1 WO 2022168787 A1 WO2022168787 A1 WO 2022168787A1 JP 2022003575 W JP2022003575 W JP 2022003575W WO 2022168787 A1 WO2022168787 A1 WO 2022168787A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
less
bonding wire
bonding
mass
Prior art date
Application number
PCT/JP2022/003575
Other languages
English (en)
French (fr)
Inventor
裕弥 須藤
智裕 宇野
哲哉 小山田
大造 小田
基稀 江藤
佑仁 栗原
Original Assignee
日鉄マイクロメタル株式会社
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄マイクロメタル株式会社, 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄マイクロメタル株式会社
Priority to CN202280013190.3A priority Critical patent/CN116918049A/zh
Priority to US18/275,177 priority patent/US20240071978A1/en
Priority to EP22749659.3A priority patent/EP4289983A1/en
Priority to JP2022579524A priority patent/JPWO2022168787A1/ja
Publication of WO2022168787A1 publication Critical patent/WO2022168787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges

Definitions

  • the present invention relates to Al bonding wires for semiconductor devices.
  • bonding wires are used as wiring materials that are responsible for electrical connection between semiconductor elements and external substrates.
  • Aluminum (Al) is mainly used as a material for bonding wires used in power devices because of the requirements for excellent bonding with electrodes on semiconductor elements and external substrates, electrical conductivity, and low cost.
  • the Al bonding wire is required to have mechanical properties such as breaking strength and elongation, thermal conductivity, and the like depending on the purpose of use.
  • bonding wires are used to connect the electrodes formed on the semiconductor chip with the electrodes on the lead frame or substrate.
  • Bonding wires made mainly of aluminum (Al) are used in power devices.
  • Al bonding wires wedge bonding is used for both the first connection with the electrodes on the semiconductor chip and the second connection with the electrodes on the lead frame and the substrate as the bonding method.
  • Patent Document 1 discloses a bonding wire containing one or more of Pd and Pt in the range of 0.001 to 0.08% in Al
  • Patent Document 2 discloses one or more of Rh and Pd. Bonding wires containing a total of 10 to 200 mass ppm are described, respectively, and these bonding wires are good at high temperature and high temperature in an accelerated evaluation test called PCT (Pressure Cooker Test) at a temperature of 121 ° C. and a relative humidity of 100%. It is disclosed to exhibit wet life.
  • PCT Pressure Cooker Test
  • Patent Document 1 does not disclose heat treatment conditions
  • Patent Document 2 discloses that heat treatment is performed as necessary with a wire diameter before reaching the final wire diameter. and heat treatment for 1 hour at a temperature range of 200 to 300° C. at the final wire diameter.
  • Bonding wires used in power devices are required to satisfy basic properties such as wedge bondability, electrical conductivity, and heat resistance, and to achieve good high-temperature, high-humidity life.
  • HAST Highly Accelerated
  • RH Relative Humidity
  • unbiased-HAST (unbiased-HAST ( hereinafter also referred to as uHAST) test was performed.
  • unbiased-HAST hereinafter also referred to as uHAST
  • uHAST unbiased-HAST
  • uHAST has a higher test temperature than PCT, which accelerates the formation rate of the above-mentioned corrosion products, and uHAST is required to have a high-temperature, high-humidity life that is more than twice that of PCT. A demand for improved high temperature and high humidity life in motion aware uHAST is anticipated.
  • An object of the present invention is to provide an Al bonding wire that exhibits a good high-temperature, high-humidity life in the high-temperature, high-humidity environment required for next-generation in-vehicle power devices.
  • the present inventors have found that the total content of one or more of Pd and Pt is 3 mass ppm or more and 500 mass ppm or less, and in a cross section parallel to the wire axial direction, found that an Al bonding wire having an orientation ratio of ⁇ 100> crystal orientation in a specific range with an angle difference of 15 degrees or less can solve the above problems, and based on such findings, the present invention was completed by further studies. did.
  • the present invention includes the following contents.
  • the Al bonding wire for a semiconductor device has an orientation ratio of 30% or more and 90% or less of ⁇ 100> crystal orientation with an angle difference of 15 degrees or less with respect to the wire axis direction.
  • the Al bonding wire for semiconductor devices according to [1] which has a tensile strength of 25 MPa or more and 85 MPa or less.
  • an Al bonding wire that exhibits a good high-temperature, high-humidity life in the high-temperature, high-humidity environment required for next-generation in-vehicle power devices.
  • the present invention can improve properties such as loop straightness when forming a long-span loop and shear strength of the wedge joint.
  • FIG. 1 is a schematic diagram for explaining a measurement target surface (inspection surface) when measuring the orientation ratio of the ⁇ 100> crystal orientation of an Al bonding wire.
  • the Al bonding wire for a semiconductor device of the present invention is an Al bonding wire for a semiconductor device containing one or more of Pd and Pt in a total of 3 ppm by mass or more and 500 ppm by mass or less, and including the wire axis of the bonding wire
  • the orientation ratio of ⁇ 100> crystal orientation with an angle difference of 15 degrees or less with respect to the wire axis direction is 30% or more and 90% or less.
  • the aluminum bonding wires used in cutting-edge power devices, especially next-generation automotive power devices require uHAST at a temperature of 150°C and 85% RH, which are accelerated evaluation conditions for operation in higher temperature environments.
  • Demand for improved high temperature and high humidity life is expected in the accelerated evaluation test called. It has been difficult to improve the high-temperature, high-humidity life of such uHAST only by the effects of additive elements. It was confirmed that the life of the Al bonding wire is more strongly affected by temperature in a high humidity environment. For example, as an accelerated evaluation test in a high-temperature environment, there is also a PCT at a temperature of 121 ° C.
  • the present inventors have found that the total amount of one or more of Pd and Pt is 3 mass ppm or more and 500 mass ppm or less, and in a cross section parallel to the wire axis direction including the wire axis, Al bonding wires with an orientation ratio of 30% or more and 90% or less of ⁇ 100> crystal orientation with an angle difference of 15 degrees or less exhibit good high-temperature and high-humidity life even in uHAST. It was found that even after 2000 hours had passed, wire corrosion could be suppressed and good electrical connection could be maintained.
  • the higher the temperature the higher the effect of suppressing corrosion.
  • controlling the crystal orientation is effective for suppressing corrosion in environments exceeding 140°C.
  • the above-described effects are sufficiently effective not only in unbiased-HAST, in which no bias voltage is applied to the junction, but also in biased-HAST, in which bias voltage is applied to the junction.
  • the wire axis means an axis passing through the center of the wire and parallel to the longitudinal direction of the wire.
  • the Al bonding wire for semiconductor devices of the present invention (hereinafter also simply referred to as “bonding wire” or “wire”) can withstand high temperatures and high temperatures required for state-of-the-art power devices, especially next-generation automotive power devices. It can exhibit a good high-temperature, high-humidity life even in a humid environment, and significantly contributes to the improvement of the high-temperature, high-humidity resistance of power devices.
  • the bonding wire of the present invention can provide a good high-temperature, high-humidity life in uHAST.
  • Al oxide and Al hydroxide were formed and corroded on the surface of the bonding wire in a high temperature and high humidity environment as a cause of the deterioration of the high temperature and high humidity life.
  • the formation of Al oxide and Al hydroxide is presumed to be due to chemical reaction between Al and H2O .
  • the bonding wire of the present invention contains a predetermined amount of one or more of Pd and Pt, and further has a ⁇ 100> crystal orientation ratio of Al in a cross section parallel to the wire axis direction. It is presumed that the orientation acted synergistically and suppressed the corrosion in uHAST.
  • the total concentration of one or more of Pd and Pt in the bonding wire of the present invention is 3 ppm by mass or more, more preferably 5 ppm by mass or more, and still more preferably 10 ppm by mass.
  • the total concentration of one or more of Pd and Pt is 500 mass ppm or less, preferably less than 500 mass ppm or 450 mass ppm or less, more preferably 400 mass ppm or less, 350 mass ppm or less, 300 mass ppm or less , 250 mass ppm or less, or 200 mass ppm or less.
  • An ICP (Inductively Coupled Plasma) emission spectrometer or an ICP mass spectrometer can be used to analyze the concentration of the elements contained in the bonding wire. If elements originating from atmospheric contaminants such as oxygen and carbon are adsorbed on the surface of the bonding wire, it is effective to wash it with an acid or alkali before analysis.
  • ICP Inductively Coupled Plasma
  • the angle difference with respect to the wire axis direction is 15 degrees or less ⁇ 100>
  • the orientation ratio of crystal orientation is 30% or more, preferably 40% or more, more preferably 50% or more, and still more preferably 55% or more or 60% or more.
  • uHAST tends to fail to provide a sufficient high-temperature, high-humidity life.
  • the orientation ratio of the ⁇ 100> crystal orientation is 90% or less, preferably less than 90% or 88% or less, more preferably 86% or less, 85% or less, 84% or less, 82% or less or 80% It is below.
  • Electron backscattered diffraction can be used as a technique for measuring crystal orientation.
  • An apparatus used for the EBSD method consists of a scanning electron microscope and a detector attached thereto.
  • the EBSD method is a technique for determining the crystal orientation at each measurement point by projecting a diffraction pattern of backscattered electrons generated when a sample is irradiated with an electron beam onto a detector and analyzing the diffraction pattern.
  • Dedicated software (such as OIM analysis manufactured by TSL Solutions Co., Ltd.) can be used to analyze the data obtained by the EBSD method.
  • the cross section including the wire axis and parallel to the wire axis direction (the cross section parallel to the longitudinal direction of the bonding wire) is used as the inspection surface, and the analysis software attached to the device is used to calculate the orientation ratio of a specific crystal orientation.
  • the wire axis of the bonding wire and the cross section including the wire axis and parallel to the wire axis direction refer to FIG. It is as described below.
  • the orientation ratio of ⁇ 100> crystal orientation is defined as the area ratio of ⁇ 100> crystal orientation when the measured area is the population.
  • the area ratio of the ⁇ 100> crystal orientation which is calculated as a population of the area of only the crystal orientations that can be identified based on a certain degree of reliability, is calculated as the orientation ratio of the ⁇ 100> crystal orientation. and In the process of obtaining the orientation ratio, calculation was performed by excluding portions where the crystal orientation could not be measured, or portions where the crystal orientation could be measured but the reliability of the orientation analysis was low.
  • the orientation ratio of the ⁇ 100> crystal orientation is the arithmetic mean of the orientation ratio values obtained by measuring five or more locations.
  • the crystal orientation measurement region by the EBSD method has a length of 300 ⁇ m or more and less than 600 ⁇ m in the wire axial direction, and the length in the direction perpendicular to the wire axial direction is the entire wire.
  • wire- Bonding wires used in power devices are required to exhibit good loop straightness when a long-span loop is formed.
  • the wire bonding portion that is, the first bonding portion with the electrode on the semiconductor chip
  • the wire bent in the direction perpendicular to the straight line connecting the lead frame and the second joint with the electrode on the substrate, and the required performance could not be satisfied.
  • the present inventors have found that the total amount of one or more of Pd and Pt is 3 mass ppm or more and 500 mass ppm or less, and the cross section parallel to the wire axis direction including the wire axis has an angle difference of 15 with respect to the wire axis direction. degree or less, the orientation ratio of the ⁇ 100> crystal orientation is 30% or more and 90% or less. It was found that the straightness of the loop was improved when the was formed.
  • the reason why the wire tensile strength of the bonding wire of the present invention is 25 MPa or more and 85 MPa or less improves the straightness of the loop when a long-span loop is formed is presumed as follows. That is, the effect of increasing the yield stress in the wire axial direction by including a predetermined amount of one or more of Pd and Pt is that the orientation ratio of the ⁇ 100> crystal orientation in the cross section parallel to the wire axial direction is controlled within a predetermined range. The effect of reducing the variation in mechanical strength in the axial direction of the wire, and the effect of increasing the yield stress in the axial direction of the wire by controlling the tensile strength of the wire within a predetermined range. It is presumed that the
  • the tensile strength of the bonding wire of the present invention is preferably 25 MPa or more, more preferably 26 MPa or more or 28 MPa or more, and still more preferably 30 MPa or more. 32 MPa or more, 34 MPa or more, 36 MPa or more, 38 MPa or more, or 40 MPa or more. If the tensile strength of the wire of the bonding wire of the present invention is less than 25 MPa, there is a tendency that sufficient loop straightness cannot be obtained when a long-span loop is formed. This is believed to be due to excessive softening of the wire.
  • the tensile strength of the wire is preferably 85 MPa or less, more preferably 84 MPa or less, 82 MPa or less, 80 MPa or less, 78 MPa or less, 76 MPa or less or 75 MPa or less.
  • the tensile strength of bonding wires can be measured using a tensile test.
  • a commercially available tensile tester (TENSILON RTF-1225 manufactured by A&D) can be used for the tensile test. Measurement can be performed with a gauge length of 100 mm, a tensile speed of 10 mm/min, and a load cell rated load of 250 N.
  • tensile strength means maximum stress in a tensile test.
  • the bonding wire of the present invention may further contain one or more of Si, Au and Ag in a total amount of 3 ppm by mass or more and 10000 ppm by mass or less. As a result, even better high-temperature, high-humidity life can be achieved.
  • the reason why the high-temperature and high-humidity life is further improved by containing a total of 3 mass ppm or more and 10000 mass ppm or less of one or more of Si, Au, and Ag is as follows. It is conceivable that the addition of one or more of Si, Au, and Ag, that is, the combined addition of Pd, Pt and one or more of Si, Au, and Ag developed the catalytic action.
  • the total concentration of one or more of Si, Au, and Ag contained in the bonding wire of the present invention is preferably 3 mass ppm or more, more preferably 5 mass ppm or more. , more preferably 6 mass ppm or more, 8 mass ppm or more, 10 mass ppm or more, 12 mass ppm or more, 14 mass ppm or more, or 15 mass ppm or more.
  • the total concentration of one or more of Si, Au, and Ag is preferably 1000 mass ppm or less, more preferably less than 1000 mass ppm, 950 mass ppm or less, 900 mass ppm or less, 850 mass ppm or less, and 800 mass ppm. ppm or less, 750 mass ppm or less, 700 mass ppm or less, 650 mass ppm or less, or 600 mass ppm or less.
  • the bonding wire of the present invention further contains one or more of Si, Au, and Ag in the above preferred range, thereby suppressing corrosion of the wire and maintaining good electrical connection even after 3000 hours in uHAST. I found what I can do.
  • the bonding wire of the present invention may further contain one or more of Fe and Mg in a total amount of 3 ppm by mass or more and 700 ppm by mass or less. This can further improve the shear strength of the wedge joint.
  • the reason why the shear strength of the wedge joint portion is improved by further containing a predetermined amount of one or more of Fe and Mg is that the yield stress in the wire axial direction is increased mainly by solid solution strengthening. It is speculated that
  • the total concentration of one or more of Fe and Mg contained in the bonding wire of the present invention is preferably 3 ppm by mass or more, more preferably 5 ppm by mass or more, and still more preferably 6 mass ppm or more, 8 mass ppm or more, 10 mass ppm or more, 12 mass ppm or more, 14 mass ppm or more, or 15 mass ppm or more.
  • the total concentration of one or more of Fe and Mg is preferably 700 mass ppm or less, more preferably less than 700 mass ppm, 650 mass ppm or less, 600 mass ppm or less, 550 mass ppm or less, 500 mass ppm or less. , 450 mass ppm or less, or 400 mass ppm or less.
  • the balance of the bonding wire of the present invention contains Al.
  • Al having a purity of 4N Al: 99.99% by mass or more
  • Al Al having a purity of 4N (Al: 99.99% by mass or more)
  • Al Al: 99.999% by mass or more
  • the remainder of the bonding wire of the present invention may contain elements other than Al as long as the effects of the present invention are not impaired.
  • the Al content is not particularly limited as long as it does not inhibit the effects of the present invention, but is preferably 95% by mass or more, 96% by mass or more, or 97% by mass or more, and more preferably 98% by mass or more, 98.5% by mass or more, 98.6% by mass or more, 98.8% by mass or more, or 99% by mass or more.
  • the balance of the bonding wire of the present invention consists of Al and unavoidable impurities.
  • the bonding wire of the present invention does not have a coating mainly composed of a metal other than Al on the outer circumference of the wire.
  • coating containing a metal other than Al as a main component refers to a coating containing 50% by mass or more of a metal other than Al.
  • the bonding wire of the present invention satisfies basic properties such as wedge bondability, electrical conductivity, and heat resistance, and has a good high-temperature, high-humidity life in the high-temperature, high-humidity environment required for next-generation automotive power devices. can bring. Therefore, the bonding wire of the present invention can be suitably used as an Al bonding wire for semiconductor devices, particularly for power semiconductor devices (especially for power semiconductor devices for vehicles).
  • the wire diameter of the bonding wire of the present invention is not particularly limited, and may be, for example, 50 to 600 ⁇ m.
  • the method for manufacturing the Al wiring material of the present invention is not particularly limited, and for example, it may be manufactured using known processing methods such as extrusion, swaging, wire drawing, and rolling.
  • processing methods such as extrusion, swaging, wire drawing, and rolling.
  • wire drawing When the wire diameter becomes small to some extent, it is preferable to perform wire drawing using a diamond die.
  • Cold working in which wire drawing is performed at room temperature, requires a relatively simple configuration, such as a manufacturing apparatus, and is excellent in workability.
  • hot working in which wire is drawn by heating may be used.
  • Al and pure metals of each additive element are weighed as starting materials so that the content of each additive element is within a specific range, and then mixed, melted and solidified to produce an ingot.
  • a master alloy containing the additive element at a high concentration may be used as a raw material for each additive element.
  • Batch type and continuous casting type can be used in the melting process for making this ingot.
  • the diameter of the cylindrical ingot is preferably ⁇ 8 mm or less (for example, ⁇ 3 mm or more and 8 mm or less) in consideration of workability in subsequent processing steps.
  • Wire drawing or the like can be performed on the obtained cylindrical ingot to manufacture a wire with a predetermined wire diameter. It is preferable to perform the refining heat treatment at the wire diameter before reaching the final wire diameter (hereinafter referred to as "intermediate wire diameter") or at the final wire diameter. Refining heat treatment can remove processing strain and cause recrystallization. Conditions for the refining heat treatment include, for example, heating in a temperature range of 300° C. or higher and 600° C. or lower for 1 second or longer and shorter than 600 seconds.
  • the orientation ratio of ⁇ 100> crystal orientation with an angle difference of 15 degrees or less with respect to the wire axis direction is 30% or more and 90%
  • a method of continuously sweeping the wire can be used for the intermediate heat treatment.
  • it is effective to perform intermediate heat treatment multiple times in the temperature range of 300° C. or higher and 550° C. or lower with an intermediate wire diameter. It is effective to set the heat treatment time during the intermediate heat treatment to 1 second or more and less than 600 seconds. It is effective to perform the intermediate heat treatment once each with a wire diameter of 1.3 to 2.0 times and 2.3 to 4.0 times the final wire diameter.
  • the heat treatment atmosphere is preferably an inert atmosphere such as an Ar gas atmosphere in order to prevent oxidation.
  • the reason why this method is effective for controlling the orientation ratio of the ⁇ 100> crystal orientation to 30% or more and 90% or less will be explained.
  • the crystal grains having the ⁇ 100> crystal orientation are formed by recrystallization in the intermediate heat treatment or the heat treatment process at the final wire diameter. Therefore, it is important to control the grain growth by performing the intermediate heat treatment process with a predetermined wire diameter.
  • the growth of crystal grains is driven by the strain energy accumulated in the material during wire drawing, so it is important to perform an intermediate heat treatment with a predetermined wire diameter to control the growth of crystal grains. be.
  • the growth rate of crystal grains increases as the heat treatment temperature increases, it is important to control the heat treatment temperature and heat treatment time.
  • the growth of crystal grains can be controlled by performing the intermediate heat treatment step with a predetermined wire diameter, heat treatment temperature, and heat treatment time, and the ⁇ 100> crystal orientation of the wire manufactured through the final heat treatment step can be controlled. It is considered that the azimuth ratio can be controlled within the target range.
  • a semiconductor device can be manufactured by connecting electrodes on a semiconductor chip to external electrodes on a lead frame or a substrate using the bonding wires of the present invention.
  • a semiconductor device of the present invention includes a circuit board, a semiconductor chip, and a bonding wire for electrically connecting the circuit board and the semiconductor chip, wherein the bonding wire is the bonding wire of the present invention. do.
  • the circuit board and semiconductor chip are not particularly limited, and known circuit boards and semiconductor chips that can be used to configure the semiconductor device may be used.
  • a lead frame may be used instead of the circuit board.
  • the configuration of the semiconductor device may include a lead frame and a semiconductor chip mounted on the lead frame.
  • Semiconductor devices are used in electrical products (e.g., computers, mobile phones, digital cameras, televisions, air conditioners, solar power generation systems, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.).
  • electrical products e.g., computers, mobile phones, digital cameras, televisions, air conditioners, solar power generation systems, etc.
  • vehicles e.g., motorcycles, automobiles, trains, ships, aircraft, etc.
  • power semiconductor devices power semiconductor devices
  • power semiconductor devices especially power semiconductor devices for in-vehicle use, are suitable.
  • Al used as a raw material had a purity of 4N (99.99% by mass or more) and the balance was composed of unavoidable impurities.
  • Pd, Pt, Si, Au, Ag, Fe, and Mg used had a purity of 99.9% by mass or more and the balance was composed of unavoidable impurities.
  • the Al alloy used for the bonding wire was manufactured by charging an alumina crucible with an inner diameter of ⁇ 40 mm or more and less than 70 mm with raw materials to be alloyed with the Al raw materials and melting them using a high-frequency melting furnace.
  • the atmosphere in the furnace during melting was an Ar atmosphere, and the maximum temperature reached during melting was in the range of 1050°C or more and less than 1300°C.
  • a batch-type high-frequency melting furnace was used in the melting process for making this ingot. Cooling after dissolution was air cooling. If organic matter or the like adhered to the surface of the melted ingot, it was polished, degreased, and pickled as necessary.
  • a cylindrical ingot with a diameter of 3 mm or more and 8 mm or less was obtained by melting, and wire drawing or the like was performed on the ingot using a die to produce a wire of ⁇ 300 ⁇ m.
  • a commercially available lubricating liquid was used during wire drawing to ensure lubricity at the contact interface between the wire and the die.
  • the area reduction rate per die during wire drawing was set to 10% or more and less than 15%.
  • the area reduction rate is a value expressed as a percentage of the ratio of the cross-sectional area of the wire reduced by the wire drawing to the cross-sectional area of the wire before the wire drawing.
  • the wire feed speed during wire drawing was 10 m/min or more and less than 300 m/min.
  • the intermediate heat treatment at the intermediate wire diameter and the final heat treatment at the final wire diameter were performed under the conditions described below.
  • the intermediate heat treatment was performed while continuously sweeping the wire.
  • the atmosphere during the intermediate heat treatment was an Ar gas atmosphere.
  • the heat treatment temperature of the intermediate heat treatment was 300° C. or more and 550° C. or less, and the heat treatment time was 1 second or more and less than 600 seconds.
  • the intermediate heat treatment was performed once each with a wire diameter of 1.3 to 2.0 times and 2.3 to 4.0 times the final wire diameter.
  • the drawn wire was subjected to a final heat treatment so that the final tensile strength was 25 MPa or more and 85 MPa or less and the breaking elongation was 15% or more and less than 25%.
  • the final heat treatment was performed while sweeping the wire continuously.
  • the atmosphere during the final heat treatment was an Ar gas atmosphere.
  • the heat treatment temperature of the final heat treatment was 400° C. or more and 600° C. or less, and the heat treatment time was 1 second or more and less than 600 seconds.
  • the intermediate heat treatment temperature was 250°C and the heat treatment time was 5 seconds.
  • the intermediate heat treatment was performed once each with wire diameters of 500 ⁇ m and 900 ⁇ m.
  • the final heat treatment temperature was less than 400° C., and the heat treatment time was less than 1 second.
  • the intermediate heat treatment temperature was 350° C., and the heat treatment time was 8 seconds.
  • the intermediate heat treatment was performed once each with wire diameters of 450 ⁇ m and 1100 ⁇ m.
  • the final heat treatment temperature was 450° C., and the heat treatment time was 4 seconds.
  • the intermediate heat treatment temperature was set to 570° C., and the heat treatment time was set to 400 seconds.
  • the intermediate heat treatment was performed once each with wire diameters of 600 ⁇ m and 1000 ⁇ m.
  • the final heat treatment temperature was 600° C. or higher, and the heat treatment time was 600 seconds or longer.
  • the content of elements in the bonding wire is measured by ICP-OES ("PS3520UVDDII” manufactured by Hitachi High-Tech Science Co., Ltd.) or ICP-MS ("Agilent 7700x ICP-MS” manufactured by Agilent Technologies) as an analyzer. was measured using ICP-OES ("PS3520UVDDII” manufactured by Hitachi High-Tech Science Co., Ltd.) or ICP-MS ("Agilent 7700x ICP-MS” manufactured by Agilent Technologies) as an analyzer. was measured using ICP-OES ("PS3520UVDDII” manufactured by Hitachi High-Tech Science Co., Ltd.) or ICP-MS ("Agilent 7700x ICP-MS” manufactured by Agilent Technologies) as an analyzer. was measured using ICP-OES ("PS3520UVDDII” manufactured by Hitachi High-Tech Science Co., Ltd.) or ICP-MS ("Agilent 7700x ICP-MS” manufactured by Agilent Technologies) as an analyzer. was
  • a cross section including the wire axis of the bonding wire and parallel to the wire axis was used as an inspection plane, and the orientation ratio of the ⁇ 100> crystal orientation was measured.
  • the wire axis means the axis A shown in FIG. 1, that is, the central axis of the bonding wire.
  • a cross section parallel to the wire axial direction means a plane B shown in FIG. 1, that is, a cross section including the central axis of the bonding wire and parallel to the wire axial direction (wire longitudinal direction).
  • the value of the orientation ratio of the ⁇ 100> crystal orientation was the arithmetic mean of the values obtained in the five measurement regions.
  • measurement samples were obtained at intervals of 1 m or more in the wire axial direction and used for measurement.
  • the measurement area had a length of 300 ⁇ m or more and less than 600 ⁇ m in the axial direction of the wire, and the entire length of the wire in a direction perpendicular to the axial direction of the wire.
  • the EBSD method was used as a method for measuring the crystal orientation.
  • Dedicated software (such as OIM analysis manufactured by TSL Solutions Co., Ltd.) was used to analyze the data obtained by the EBSD method.
  • the measurement results are shown in the column of "orientation ratio of ⁇ 100> crystal orientation" in Tables 1-1, 1-2, 1-3, 1-4 and 2-1.
  • the tensile strength of the bonding wire was measured by a tensile test.
  • the tensile test was performed using a commercially available tensile tester (TENSILON RTF-1225 manufactured by A&D) under the conditions of a gauge length of 100 mm, a tensile speed of 10 mm/min, and a load cell rated load of 250 N.
  • the maximum stress in the tensile test was taken as the tensile strength.
  • the arithmetic mean value of the tensile strength of ten bonding wires is shown in the "Tensile Strength" column of Tables 1-1, 1-2, 1-3, 1-4 and 2-1.
  • the wire diameter of the bonding wire used for evaluation was set to ⁇ 300 ⁇ m.
  • a Ni-plated Al substrate was used as the substrate.
  • a commercially available wire bonder (REBO-7 manufactured by Ultrasonic Industry Co., Ltd.) was used for joining the bonding wires.
  • the temperature during bonding was normal temperature, and the atmosphere during bonding was an air atmosphere.
  • the high-temperature, high-humidity life was evaluated by uHAST, which is an accelerated evaluation test under a high-temperature, high-humidity environment. Considering operation in a higher temperature environment, the uHAST conditions were set to 150° C. and 85% RH, which are higher than usual.
  • the location to check the presence or absence of corrosion was the entire field of view to be observed. After 2000 hours, the entire cross section of the five wires was observed at a magnification of 200 times, and if even one wire was found to have corrosion of 10% or more in terms of area ratio, it was judged that there was a problem in practical use. In both cases, when the area ratio of wire corrosion was less than 10%, it was judged that there was no practical problem and was evaluated as "good".
  • the area ratio is a value calculated by dividing the corroded area in the field of view to be observed by the cross-sectional area of the wire. Furthermore, when corrosion of all five wires was less than 10% in terms of area ratio after 3000 hours, it was judged to be excellent and was evaluated as "A".
  • the evaluation results are shown in the column of "high temperature and high humidity life" in Tables 1-1, 1-2, 1-3, 1-4 and 2-1. x is unacceptable, and o and ⁇ are acceptable.
  • the shear strength of the wedge joints was evaluated by performing wedge joints at 10 locations under general joining conditions and measuring the shear strength of the wedge joints.
  • a commercially available microshear strength tester was used to measure the shear strength.
  • the shear rate was 200 ⁇ m/sec, and the height of the shear tool from the substrate was 10 ⁇ m.
  • the shear strength was measured by fixing the wire-bonded substrate with a jig. If there is even one place where the shear strength value obtained by the shear strength test of the wedge joint is less than 9 N, it is judged to be unacceptable, and all 10 places are obtained by the shear strength test of the wedge joint.
  • Tables 1-1, 1-2, 1-3 and 1-4 summarize the composition, orientation ratio (%) of ⁇ 100> crystal orientation, tensile strength, and evaluation results of the bonding wires according to the examples.
  • Table 2-1 shows the composition of the bonding wire according to the comparative example.
  • Example no. All of the bonding wires 1 to 96 contain at least one type of Pd and Pt in total of 3 ppm by mass or more and 500 ppm by mass or less, and in a cross section parallel to the wire axial direction including the wire axis, with respect to the wire axial direction The orientation ratio of the ⁇ 100> crystal orientation with an angle difference of 15 degrees or less is 30% or more and 90% or less. did.
  • Example No. 1 in which the tensile strength of the wire is 25 MPa or more and 85 MPa or less. It was confirmed that the bonding wires of 1 to 38 and 45 to 96 can obtain excellent loop straightness when forming long-span loops.
  • Example No. 1 containing at least one of Si, Au, and Ag in total of 3 ppm by mass or more and 10000 ppm by mass or less. It was confirmed that bonding wires of 45 to 64 and 74 to 96 can realize even better high temperature and high humidity life in the high temperature and high humidity environment required for power devices. Furthermore, Example No. 1 containing at least one of Fe and Mg in total of 3 mass ppm or more and 700 mass ppm or less. It was confirmed that the bonding wires Nos. 74 to 89 are excellent in shear strength of the wedge joint. On the other hand, Comparative Example No.
  • Bonding wires 1 to 12 have a total concentration of one or more of Pd and Pt and an orientation ratio of ⁇ 100> crystal orientation outside the scope of the present invention, and corrosion progresses in a high temperature and high humidity environment required for power devices. It was confirmed that sufficient high-temperature and high-humidity life could not be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wire Bonding (AREA)

Abstract

次世代の車載向けパワーデバイスに要求される高温高湿環境において、良好な高温高湿寿命を呈するAlボンディングワイヤを提供する。Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含む半導体装置用Alボンディングワイヤであって、前記ボンディングワイヤのワイヤ軸を含みワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下である、半導体装置用Alボンディングワイヤ。

Description

半導体装置用Alボンディングワイヤ
 本発明は、半導体装置用Alボンディングワイヤに関する。
 電気自動車、ハイブリッド自動車、産業機器等に搭載されるパワーデバイスでは、半導体素子と外部基板の電気的接続を担う配線材料としてボンディングワイヤが使用されている。パワーデバイスに用いられるボンディングワイヤの材料には、半導体素子上の電極や外部基板との優れた接合性、電気伝導性、低コストの要求から、アルミニウム(Al)が主に使用されている。Alボンディングワイヤでは、使用目的に応じて破断強度、伸びなどの機械的特性や熱伝導性などが要求される。
 パワーデバイスでは、半導体チップ上に形成された電極と、リードフレームや基板上の電極との間をボンディングワイヤによって接続している。パワーデバイスにおいては主にアルミニウム(Al)を材質とするボンディングワイヤが用いられている。また、Alボンディングワイヤを用いたパワーデバイスにおいて、ボンディング方法としては、半導体チップ上電極との第1接続と、リードフレームや基板上の電極との第2接続のいずれも、ウェッジ接合が用いられている。
 Alボンディングワイヤとして、高純度のAlのみからなる材料を用いた場合、装置動作時の高温高湿環境において短時間でAlボンディングワイヤの腐食が進行し、電気的な接続が損なわれるため、高温高湿環境で使用することが困難であった。高温高湿環境における寿命(以下、「高温高湿寿命」ともいう。)を高める方法として、Alに特定の元素を添加した材料からなるAlボンディングワイヤが提案されている。例えば、特許文献1には、AlにPd、Ptの1種以上を0.001~0.08%の範囲で含むボンディングワイヤが、また、特許文献2には、Rh、Pdの1種以上を総計で10~200質量ppmの範囲にて含むボンディングワイヤがそれぞれ記載されており、これらボンディングワイヤが温度121℃、相対湿度100%のPCT(Pressure Cooker Test)と呼ばれる加速評価試験において良好な高温高湿寿命を呈することが開示されている。
 なお、Alボンディングワイヤを製造する際の熱処理条件について、特許文献1に熱処理条件の開示はなく、特許文献2には、最終線径に到達する前の線径で必要に応じて熱処理を実施すること、及び最終線径で200~300℃の温度範囲で1時間の熱処理を実施することが開示されている。
特開昭61-032444号公報 特開2014-224283号公報
 パワーデバイスに使用するボンディングワイヤには、ウェッジ接合性、電気伝導性、耐熱性等の基本特性を満足した上で、良好な高温高湿寿命を達成することが求められる。
 近年、最先端のパワーデバイスに使用されるAlボンディングワイヤでは、高温高湿寿命への要求が厳しくなっている。特に次世代の車載向けパワーデバイスに使用するAlボンディングワイヤには、より高温環境での動作を意識した加速評価条件である温度150℃、85%RH(Relative Humidity:相対湿度)のHAST(Highly Accelerated Stress Test)と呼ばれる加速評価試験において高温高湿寿命の改善の要求が見込まれている。本発明者らは、上述の将来的な高温高湿寿命への要求が高まっていることから、温度150℃、85%RHの加速評価条件で、接合部にバイアス電圧を印加しないunbiased-HAST(以下、uHASTともいう)試験を実行した。例えば、純度99.99質量%以上のAlからなるAlボンディングワイヤを使用した場合、2000時間未満で高温高湿寿命が著しく低下し、次世代の車載向けパワーデバイスに要求される性能を満足することはできなかった。これは、ボンディングワイヤ全体に腐食が進行し、Alよりも電気抵抗の高いAl酸化物、Al水酸化物が腐食生成物として生じることで、ボンディングワイヤの電気抵抗が上昇してしまうためであった。uHASTはPCTに比べて試験温度が高く、上述した腐食生成物の形成速度を加速させること、uHASTにおける高温高湿寿命はPCTの2倍以上の寿命が求められることなどから、より高温環境での動作を意識したuHASTにおける高温高湿寿命の改善の要求が見込まれている。
 uHASTにおける高温高湿寿命を添加元素の効果だけで改善することは困難である。例えば、先述の特許文献1及び2に開示される、貴金属元素を1種以上含有するAlボンディングワイヤであってもuHASTにおける高温高湿寿命は十分ではなく、次世代の車載向けパワーデバイスに要求される高温高湿寿命は十分に得られなかった。
 本発明は、次世代の車載向けパワーデバイスに要求される高温高湿環境において、良好な高温高湿寿命を呈するAlボンディングワイヤを提供することを目的とする。
 本発明者らは、上記課題につき鋭意検討した結果、Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含むと共に、そのワイヤ軸方向に平行な断面において、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が特定範囲にあるAlボンディングワイヤが上記課題を解決できることを見出し、斯かる知見に基づいて更に検討を重ねることによって本発明を完成した。
 すなわち、本発明は以下の内容を含む。
[1] Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含む半導体装置用Alボンディングワイヤであって、前記ボンディングワイヤのワイヤ軸を含みワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下である、半導体装置用Alボンディングワイヤ。
[2] 引張強度が25MPa以上85MPa以下である、[1]に記載の半導体装置用Alボンディングワイヤ。
[3] さらにSi、Au、Agの1種以上を総計で3質量ppm以上10000質量ppm以下含む、[1]又は[2]に記載の半導体装置用Alボンディングワイヤ。
[4] さらにFe、Mgの1種以上を総計で3質量ppm以上700質量ppm以下含む、[1]~[3]の何れかに記載の半導体装置用Alボンディングワイヤ。
[5] Alの含有量が98質量%以上である、[1]~[4]の何れかに記載の半導体装置用Alボンディングワイヤ。
[6] 残部がAl及び不可避不純物からなる、[1]~[5]の何れかに記載の半導体装置用Alボンディングワイヤ。
[7] [1]~[6]の何れかに記載の半導体装置用Alボンディングワイヤを含む半導体装置。
 本発明によれば、次世代の車載向けパワーデバイスに要求される高温高湿環境において、良好な高温高湿寿命を呈するAlボンディングワイヤを提供することができる。
 本発明はさらに、長スパンのループを形成した時のループ直進性、ウェッジ接合部のせん断強度等の特性を向上させることができる。
図1は、Alボンディングワイヤについて<100>結晶方位の方位比率を測定する際の測定対象面(検査面)を説明するための概略図である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施され得る。
 [半導体装置用Alボンディングワイヤ]
 本発明の半導体装置用Alボンディングワイヤは、Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含む半導体装置用Alボンディングワイヤであって、該ボンディングワイヤのワイヤ軸を含みワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下であることを特徴とする。
 先述のとおり、最先端のパワーデバイス、特に次世代の車載向けパワーデバイスに使用するAlボンディングワイヤには、より高温環境での動作を意識した加速評価条件である温度150℃、85%RHのuHASTと呼ばれる加速評価試験において高温高湿寿命の改善の要求が見込まれている。斯かるuHASTにおける高温高湿寿命を添加元素の効果だけで改善することは困難であった。Alボンディングワイヤの寿命には、高湿環境での温度の影響がより強いことが確認された。例えば、高温環境での加速評価試験として、温度121℃、100%RHのPCTもあるが、該PCTにおいて良好な高温高湿寿命を呈するとされる、貴金属元素を1種以上含有するAlボンディングワイヤであっても、該PCTよりも高温環境で実行したuHASTにおける高温高湿寿命は十分でない場合があった。
 これに対し、本発明者らは、Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含むと共に、そのワイヤ軸を含むワイヤ軸方向に平行な断面において、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下であるAlボンディングワイヤが、uHASTにおいても良好な高温高湿寿命を呈すること、詳細には、uHASTにおいて2000時間経過後もワイヤの腐食を抑制して良好な電気的接続を維持できることを見出した。<100>結晶方位の方位比率の制御とPd、Ptの元素添加の相乗作用について、高温になるほど腐食を抑制する効果が高いことを確認した。例えば140℃を超えた環境での腐食の抑制には、結晶方位の制御が有効である。さらに上述した効果は接合部にバイアス電圧を印加しないunbiased-HASTだけでなく、接合部にバイアス電圧を印加するbiased-HASTにおいても十分な効果を発揮する。ここで、ワイヤ軸とは、ワイヤの中心を通り、ワイヤ長手方向に平行な軸を意味する。このように本発明の半導体装置用Alボンディングワイヤ(以下、単に「ボンディングワイヤ」、「ワイヤ」ともいう。)は、最先端のパワーデバイス、特に次世代の車載向けパワーデバイスで要求される高温高湿環境においても良好な高温高湿寿命を呈することができ、パワーデバイスの高温高湿耐性の向上に著しく寄与するものである。
 本発明のボンディングワイヤがuHASTにおいて良好な高温高湿寿命をもたらすことができる理由に関しては、以下のとおり推察される。まず、高温高湿寿命が損なわれる原因として、高温高湿環境下でボンディングワイヤ表面においてAl酸化物、Al水酸化物が形成し腐食されたものと考えられる。Al酸化物、Al水酸化物の形成は、AlとHOとの化学反応によるものと推定される。詳細な機構は不明であるが、本発明のボンディングワイヤにおいては、Pd、Ptの1種以上を所定量含み、さらにワイヤ軸方向に平行な断面におけるAlの<100>結晶方位の比率を所定の方位とすることが相乗的に作用し、uHASTにおける腐食を抑制できたと推察される。
 良好な高温高湿寿命を得る観点から、本発明のボンディングワイヤにおけるPd、Ptの1種以上の総計濃度は、3質量ppm以上であり、より好ましくは5質量ppm以上、さらに好ましくは10質量ppm以上、12質量ppm以上、14質量ppm以上、15質量ppm以上、16質量ppm以上、18質量ppm以上又は20質量ppm以上である。また、Pd、Ptを複合添加した場合はPd、Ptを単独添加した場合に比べてより良好な高温高湿寿命が得られる。他方、Pd、Ptの含有量が過大であると、良好な接合状態を得る超音波、荷重の条件が狭くなる(以下、「ウェッジ接合性が低下する」ともいう。)傾向にある。これは、Pd、Ptの含有量が過大であるとワイヤが過剰に硬くなり、一般的に用いる超音波、荷重の条件ではウェッジ接合時のワイヤ変形量が不十分となることが原因と考えられる。ウェッジ接合性への要求は、次世代の車載向けパワーデバイスだからこそ満足することが難しい。これは、従来のパワーデバイスに要求されたウェッジ接合性では、次世代の車載向けパワーデバイスで要求される耐熱性等の基本特性を満足できない場合があるためである。よって、Pd、Ptの1種以上の総計濃度は、500質量ppm以下であり、好ましくは500質量ppm未満又は450質量ppm以下、より好ましくは400質量ppm以下、350質量ppm以下、300質量ppm以下、250質量ppm以下又は200質量ppm以下である。
 ボンディングワイヤに含まれる元素の濃度分析には、ICP(Inductively Coupled Plasma)発光分光分析装置、またはICP質量分析装置を利用することができる。ボンディングワイヤの表面に酸素や炭素等の大気中からの汚染物由来の元素が吸着している場合には、分析を行う前に酸やアルカリにより洗浄を行うことが有効である。
 良好な高温高湿寿命を得る観点から、ボンディングワイヤのワイヤ軸を含むワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率は、30%以上であり、好ましくは40%以上、より好ましくは50%以上、さらに好ましくは55%以上又は60%以上である。該<100>結晶方位の方位比率が30%未満であると、uHASTにおいて十分な高温高湿寿命は得られない傾向にある。これは、<100>結晶方位の方位比率が低いと、AlとHOの化学反応による腐食感受性を低減する効果が十分に得られなかったことが原因と考えられる。他方、該<100>結晶方位の方位比率が高すぎると、ウェッジ接合性が低下する傾向にあることを見出した。これは、<100>結晶方位の方位比率が高すぎると、ウェッジ接合時のワイヤ変形量が不十分となることが原因と考えられる。よって、該<100>結晶方位の方位比率は、90%以下であり、好ましくは90%未満又は88%以下、より好ましくは86%以下、85%以下、84%以下、82%以下又は80%以下である。
 本発明におけるボンディングワイヤのワイヤ軸を含むワイヤ軸方向に平行な断面の結晶方位の測定方法について説明する。結晶方位を測定する手法には、後方散乱電子線回折(EBSD:Electron BackScattered Diffraction)法を利用することができる。EBSD法に用いる装置は、走査型電子顕微鏡とそれに備え付けた検出器によって構成される。EBSD法は、試料に電子線を照射したときに発生する反射電子の回折パターンを検出器上に投影し、その回折パターンを解析することによって、各測定点の結晶方位を決定する手法である。EBSD法によって得られたデータの解析には専用ソフト(株式会社TSLソリューションズ製 OIM analysis等)を用いることができる。ワイヤ軸を含み、ワイヤ軸方向に平行な断面(ボンディングワイヤ長手方向に平行な断面)を検査面とし、装置に付属している解析ソフトを利用することにより、特定の結晶方位の方位比率を算出できる。本発明において、ボンディングワイヤのワイヤ軸、及び、該ワイヤ軸を含みワイヤ軸方向に平行な断面とは、後記「(<100>結晶方位の方位比率の測定)」欄にて図1を参照しつつ説明するとおりである。
 本発明において、<100>結晶方位の方位比率は、測定面積を母集団としたときの<100>結晶方位の面積割合と定義する。方位比率の算出にあたっては、測定エリア内で、ある信頼度を基準に同定できた結晶方位のみの面積を母集団として算出した<100>結晶方位の面積割合を、<100>結晶方位の方位比率とした。方位比率を求める過程では、結晶方位が測定できない部位、あるいは測定できても方位解析の信頼度が低い部位等は除外して計算した。
 本発明において、<100>結晶方位の方位比率は、5箇所以上を測定して得られた方位比率の各値の算術平均とした。測定領域の選択にあたっては、測定データの客観性を確保する観点から、測定対象のボンディングワイヤから、測定用の試料を、ワイヤ軸方向に対して1m以上の間隔で取得し、測定に供することが好ましい。また本発明において、EBSD法による結晶方位の測定領域は、ワイヤ軸方向の長さが300μm以上600μm未満、ワイヤ軸方向と垂直な方向の長さはワイヤ全体が入るようにした。
 -ワイヤの引張強度-
 パワーデバイスに使用するボンディングワイヤには、長スパンのループを形成した際に良好なループ直進性を呈することが求められる。例えば、純度99.99質量%以上のAlを原料に用いたAlボンディングワイヤを使用した場合、長スパンのループを形成する際にワイヤ接合部、すなわち半導体チップ上電極との第1接合部と、リードフレームや基板上の電極との第2接合部を結んだ直線に対して垂直方向にワイヤが曲がってしまい、要求性能を満足できなかった。
 本発明者らは、Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含み、そのワイヤ軸を含むワイヤ軸方向に平行な断面において、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下であるAlボンディングワイヤについて検討を進める過程で、さらにワイヤの引張強度が25MPa以上85MPa以下であることにより、長スパンのループを形成した時のループ直進性が向上することを見出した。
 本発明のボンディングワイヤにおいてワイヤの引張強度が25MPa以上85MPa以下であることにより長スパンのループを形成した時のループ直進性が向上する理由に関しては、以下のとおり推察される。すなわち、Pd、Ptの1種以上を所定量含むことによりワイヤ軸方向の降伏応力が高められる効果が、ワイヤ軸方向に平行な断面における<100>結晶方位の方位比率を所定範囲に制御することによりワイヤ軸方向における機械的強度のばらつきを低減する効果が、また、ワイヤの引張強度を所定範囲に制御することによりワイヤ軸方向の降伏応力が高められる効果がそれぞれ奏され、それらの効果が相乗的に作用したためと推察される。
 長スパンのループを形成した時のループ直進性を向上させる観点から、本発明のボンディングワイヤにおいてワイヤの引張強度は、好ましくは25MPa以上、より好ましくは26MPa以上又は28MPa以上、さらに好ましくは30MPa以上、32MPa以上、34MPa以上、36MPa以上、38MPa以上又は40MPa以上である。本発明のボンディングワイヤにおいてワイヤの引張強度が25MPa未満であると、長スパンのループを形成した時のループ直進性が十分に得られない傾向にある。これは、ワイヤが過度に軟らかくなったことが原因であると考えられる。他方、ワイヤの引張強度が高すぎると、ウェッジ接合性が低下する傾向にある。これは、ワイヤが過度に硬くなり、ウェッジ接合時のワイヤ変形量が不十分となることが原因と考えられる。よって、ワイヤの引張強度は、好ましくは85MPa以下、より好ましくは84MPa以下、82MPa以下、80MPa以下、78MPa以下、76MPa以下又は75MPa以下である。
 ボンディングワイヤの引張強度は、引張試験を利用して測定することができる。引張試験には、市販の引張試験機(A&D社製TENSILON RTF-1225)を用いることができる。標点間距離は100mm、引張速度は10mm/分、ロードセル定格荷重は250Nとして測定することができる。本発明において、引張強度とは、引張試験における最大応力を意味する。
 -Si、Au、Ag-
 本発明のボンディングワイヤは、さらにSi、Au、Agの1種以上を総計で3質量ppm以上10000質量ppm以下含んでもよい。これにより、よりいっそう良好な高温高湿寿命を実現することができる。
 本発明のボンディングワイヤにおいて、さらにSi、Au、Agの1種以上を総計で3質量ppm以上10000質量ppm以下含むことにより高温高湿寿命がさらに改善される理由に関しては、Pd、Ptの存在下においてSi、Au、Agの1種以上を添加、すなわち、Pd、PtとSi、Au、Agの1種以上とを複合的に添加することによって触媒作用が発現したことが考えられる。
 よりいっそう良好な高温高湿寿命を実現する観点から、本発明のボンディングワイヤに含まれるSi、Au、Agの1種以上の総計濃度は、好ましくは3質量ppm以上、より好ましくは5質量ppm以上、さらに好ましくは6質量ppm以上、8質量ppm以上、10質量ppm以上、12質量ppm以上、14質量ppm以上又は15質量ppm以上である。また、Si、Au、Agの1種以上の総計濃度は、好ましくは1000質量ppm以下であり、より好ましくは1000質量ppm未満、950質量ppm以下、900質量ppm以下、850質量ppm以下、800質量ppm以下、750質量ppm以下、700質量ppm以下、650質量ppm以下又は600質量ppm以下である。本発明のボンディングワイヤにおいて、さらにSi、Au、Agの1種以上を上記の好適範囲にて含むことにより、uHASTにおいて3000時間経過後においてもワイヤの腐食を抑制して良好な電気的接続を維持できることを見出した。
 -Fe、Mg-
 本発明のボンディングワイヤは、さらにFe、Mgの1種以上を総計で3質量ppm以上700質量ppm以下含んでもよい。これにより、ウェッジ接合部のせん断強度をさらに向上させることができる。
 本発明のボンディングワイヤにおいて、さらにFe、Mgの1種以上を所定量含むことによりウェッジ接合部のせん断強度が向上する理由に関しては、主に固溶強化によってワイヤ軸方向の降伏応力が高められるためと推察される。
 ウェッジ接合部のせん断強度を向上させる観点から、本発明のボンディングワイヤに含まれるFe、Mgの1種以上の総計濃度は、好ましくは3質量ppm以上、より好ましくは5質量ppm以上、さらに好ましくは6質量ppm以上、8質量ppm以上、10質量ppm以上、12質量ppm以上、14質量ppm以上又は15質量ppm以上である。また、Fe、Mgの1種以上の総計濃度は、好ましくは700質量ppm以下であり、より好ましくは700質量ppm未満、650質量ppm以下、600質量ppm以下、550質量ppm以下、500質量ppm以下、450質量ppm以下又は400質量ppm以下である。
 本発明のボンディングワイヤの残部は、Alを含む。ボンディングワイヤを製造する際のアルミニウム原料としては、純度が4N(Al:99.99質量%以上)のAlを使用することができる。さらに不純物量の少ない5N(Al:99.999質量%以上)以上のAlを用いることがより好適である。本発明の効果を阻害しない範囲において、本発明のボンディングワイヤの残部は、Al以外の元素を含有してよい。本発明のボンディングワイヤにおいて、Alの含有量は、本発明の効果を阻害しない限りにおいて特に限定されないが、好ましくは95質量%以上、96質量%以上、又は97質量%以上であり、より好ましくは98質量%以上、98.5質量%以上、98.6質量%以上、98.8質量%以上、又は99質量%以上である。好適な一実施形態において、本発明のボンディングワイヤの残部は、Al及び不可避不純物からなる。
 好適な一実施形態において、本発明のボンディングワイヤは、該ワイヤの外周に、Al以外の金属を主成分とする被覆を有していない。ここで、「Al以外の金属を主成分とする被覆」とは、Al以外の金属の含有量が50質量%以上である被覆をいう。
 本発明のボンディングワイヤは、ウェッジ接合性、電気伝導性、耐熱性等の基本特性を満足した上で、次世代の車載向けパワーデバイスに要求される高温高湿環境において良好な高温高湿寿命をもたらすことができる。したがって本発明のボンディングワイヤは、半導体装置用、特にパワー半導体装置用(中でも車載向けパワー半導体装置用)のAlボンディングワイヤとして好適に使用することができる。
 本発明のボンディングワイヤの線径は特に限定されず、例えば、50~600μmであってよい。
 (ボンディングワイヤの製造方法)
 本発明のAl配線材の製造方法は特に限定されず、例えば、押し出し加工、スエージング加工、伸線加工、圧延加工等の公知の加工方法を用いて製造してよい。ある程度線径が細くなると、ダイヤモンドダイスを用いた伸線加工を施すことが好ましい。伸線を室温で行う冷間加工が、製造装置など比較的簡単な構成であり、作業性に優れている。また伸線時の抵抗を下げて生産性を高める場合には、加熱して伸線する熱間加工を用いてもよい。
 各添加元素の含有量が特定範囲となるように、Alおよび各添加元素の純金属を出発原料として秤量した後、これを混合して溶解凝固することでインゴットを作製する。または、各添加元素の原料としては、添加元素を高濃度に含む母合金を用いてもよい。このインゴットを作る溶解過程では、バッチ式、連続鋳造式が使用できる。円柱状のインゴットの直径はその後の加工工程における加工性を考慮してφ8mm以下(例えばφ3mm以上8mm以下)とすることが好ましい。
 得られた円柱状のインゴットに対し、伸線加工等を行い、所定の線径のワイヤを製造することができる。最終線径に到達する前の線径(以下、「中間線径」という。)あるいは最終線径で調質熱処理を実施することが好ましい。調質熱処理により、加工ひずみの除去や再結晶などを起こすことができる。調質熱処理の条件としては、例えば、300℃以上600℃以下の温度範囲で1秒間以上600秒間未満での加熱が挙げられる。
 ボンディングワイヤのワイヤ軸を含むワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率を30%以上90%以下に制御するためには、例えば、中間線径での熱処理(以下、「中間熱処理」ともいう。)を実施することが有効である。
 中間熱処理はワイヤを連続的に掃引する方法を用いることができる。この方法を用いる場合、中間線径で、300℃以上550℃以下の温度範囲で中間熱処理を複数回行うことが有効である。中間熱処理時の熱処理時間は1秒間以上600秒間未満とすることが有効である。中間熱処理を行う回数は、最終線径の1.3~2.0倍、2.3~4.0倍の線径で、それぞれ1回実施することが有効である。熱処理の雰囲気は酸化を防ぐためにArガス雰囲気等の不活性雰囲気とすることが好ましい。
 この手法が上記<100>結晶方位の方位比率を30%以上90%以下に制御することに対して有効である理由について説明する。上記<100>結晶方位を有する結晶粒は、中間熱処理あるいは最終線径での熱処理工程で、再結晶が起こることで形成される。したがって、中間熱処理工程を所定の線径で実施することで結晶粒の成長を制御することが重要である。ここで、結晶粒の成長は、伸線加工により材料に蓄積されたひずみエネルギーを駆動力として成長するため、所定の線径で中間熱処理を実施し、結晶粒の成長を制御することが重要である。また、結晶粒の成長速度は熱処理温度が高いほど速くなるため、熱処理温度や熱処理時間の制御が重要となる。本発明では、中間熱処理工程を所定の線径、熱処理温度及び熱処理時間で実施することで結晶粒の成長を制御することができ、最終熱処理工程を経て製造されたワイヤの<100>結晶方位の方位比率を目的とする範囲に制御できると考えられる。
 [半導体装置]
 本発明のボンディングワイヤを用いて、半導体チップ上の電極と、リードフレームや基板上の外部電極とを接続することによって、半導体装置を製造することができる。
 一実施形態において、本発明の半導体装置は、回路基板、半導体チップ、及び回路基板と半導体チップとを導通させるためのボンディングワイヤを含み、該ボンディングワイヤが本発明のボンディングワイヤであることを特徴とする。
 本発明の半導体装置において、回路基板及び半導体チップは特に限定されず、半導体装置を構成するために使用し得る公知の回路基板及び半導体チップを用いてよい。あるいはまた、回路基板に代えてリードフレームを用いてもよい。例えば、特開2002-246542号公報に記載される半導体装置のように、リードフレームと、該リードフレームに実装された半導体チップとを含む半導体装置の構成としてよい。
 半導体装置としては、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ、テレビ、エアコン、太陽光発電システム等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられ、特に電力用半導体装置(パワー半導体装置)、中でも車載向けパワー半導体装置が好適である。
 以下、本発明について、実施例を示して具体的に説明する。ただし、本発明は、以下に示す実施例に限定されるものではない。
 (サンプル)
 まずサンプルの製造方法について説明する。原材料となるAlは純度が4N(99.99質量%以上)で、残部が不可避不純物から構成されるものを用いた。Pd、Pt、Si、Au、Ag、Fe、Mgは、純度が99.9質量%以上で残部が不可避不純物から構成されるものを用いた。ボンディングワイヤに用いるAl合金は、内径がφ40mm以上70mm未満であるアルミナるつぼに、Al原料と合金化したい原料を装填し、高周波溶解炉を用いて溶解することにより製造した。溶解時の炉内の雰囲気はAr雰囲気とし、溶解時の最高到達温度は1050℃以上1300℃未満の範囲とした。なお、このインゴットを作る溶解過程には、バッチ式の高周波溶解炉を使用した。溶解後の冷却は空冷とした。溶解後のインゴットの表面に有機物等が付着していた場合は、必要に応じて研磨、脱脂、酸洗を行った。
 溶解によりφ3mm以上8mm以下の円柱状のインゴットを得、該インゴットに対し、ダイスを用いて伸線加工等を行い、φ300μmのワイヤを作製した。伸線加工時には、ワイヤとダイスとの接触界面における潤滑性を確保するため、市販の潤滑液を使用した。伸線加工時のダイス1個当たりの減面率は、10%以上15%未満とした。ここで、減面率とは、伸線加工を行う前のワイヤの断面積に対する、伸線加工によって減少したワイヤの断面積の比率を百分率で表した値である。伸線加工時のワイヤ送り速度は10m/分以上300m/分未満とした。中間線径における中間熱処理および最終線径における最終熱処理は、後述の条件で実施した。
 中間熱処理はワイヤを連続的に掃引しながら行った。中間熱処理時の雰囲気はArガス雰囲気とした。中間熱処理の熱処理温度は300℃以上550℃以下、熱処理時間は1秒間以上600秒間未満とした。中間熱処理は、最終線径の1.3~2.0倍、2.3~4.0倍の線径で、それぞれ1回ずつ実施した。
 伸線加工後のワイヤは、最終的に引張強度が25MPa以上85MPa以下、破断伸びが15%以上25%未満となるように最終熱処理を実施した。最終熱処理はワイヤを連続的に掃引しながら行った。最終熱処理時の雰囲気はArガス雰囲気とした。最終熱処理の熱処理温度は、400℃以上600℃以下、熱処理時間は1秒間以上600秒間未満とした。
 なお、比較例7~11のワイヤを製造するにあたっては、中間熱処理温度は250℃、熱処理時間は5秒間とした。中間熱処理は500μm、900μmの線径で、それぞれ1回ずつ実施した。最終熱処理温度は400℃未満、熱処理時間は1秒間未満とした。また、比較例12のワイヤを製造するにあたっては、中間熱処理温度は350℃、熱処理時間は8秒間とした。中間熱処理は450μm、1100μmの線径で、それぞれ1回ずつ実施した。最終熱処理温度は450℃、熱処理時間は4秒間とした。さらに、実施例39~44のワイヤを製造するにあたっては、中間熱処理温度を570℃、熱処理時間は400秒間とした。中間熱処理は600μm、1000μmの線径で、それぞれ一回ずつ実施した。最終熱処理温度は600℃以上、熱処理時間は600秒間以上とした。
 (元素含有量の測定)
 ボンディングワイヤ中の元素の含有量は、分析装置として、ICP-OES((株)日立ハイテクサイエンス製「PS3520UVDDII」)又はICP-MS(アジレント・テクノロジーズ(株)製「Agilent 7700x ICP-MS」)を用いて測定した。
 (<100>結晶方位の方位比率の測定)
 ボンディングワイヤのワイヤ軸を含み、ワイヤ軸に平行な断面を検査面とし、<100>結晶方位の方位比率を測定した。本発明において、ワイヤ軸とは、図1に示す軸A、すなわちボンディングワイヤの中心軸を意味する。また、ワイヤ軸方向に平行な断面とは、図1に示す平面B、すなわちボンディングワイヤの中心軸を含み、ワイヤ軸方向(ワイヤ長手方向)に平行な断面を意味する。<100>結晶方位の方位比率の値は5箇所の測定領域で得られた各値の算術平均とした。測定対象のボンディングワイヤは、測定用の試料をワイヤ軸方向に対して、1m以上の間隔で取得し、測定に供した。測定領域は、ワイヤ軸方向の長さが300μm以上600μm未満、ワイヤ軸方向と垂直な方向の長さはワイヤ全体が入るようにした。結晶方位を測定する手法には、EBSD法を利用した。EBSD法によって得られたデータの解析には専用ソフト(株式会社TSLソリューションズ製 OIM analysis等)を用いた。測定結果は、表1-1、表1-2、表1-3、表1-4及び表2-1の「<100>結晶方位の方位比率」の欄に示した。
 (引張強度の測定)
 ボンディングワイヤの引張強度は、引張試験により測定した。引張試験には、市販の引張試験機(A&D社製TENSILON RTF-1225)を用い、標点間距離100mm、引張速度10mm/分、ロードセル定格荷重250Nの条件で測定した。引張試験における最大応力を引張強度とした。10本のボンディングワイヤの引張強度の算術平均値を、表1-1、表1-2、表1-3、表1-4及び表2-1の「引張強度」の欄に示した。
 (ボンディングワイヤの評価方法)
 次にボンディングワイヤの評価方法について説明する。評価に用いたボンディングワイヤの線径はφ300μmとした。基板にはNiめっきされたAl基板を用いた。ボンディングワイヤの接合には市販のワイヤボンダー(超音波工業製REBO-7)を用いた。接合時の温度は常温とし、接合時の雰囲気は大気雰囲気とした。
 (高温高湿寿命の評価方法)
 高温高湿寿命の評価方法について説明する。高温高湿寿命は、高温高湿環境下における加速評価試験であるuHASTにより評価した。uHASTの条件はより高温環境での動作を意識して、通常よりも高温の150℃、85%RHとした。
 一般的なAlワイヤの接合条件で、基板上に5本、ウェッジ接合を行った。次いで、作製したサンプルを高温高湿炉内に放置した。uHASTの条件は150℃、85%RHとし、高温高湿炉内の雰囲気は大気雰囲気とした。uHAST終了後のサンプルについて、ワイヤループ部分についてワイヤ軸を含みワイヤ軸方向に平行な断面を機械研磨によって露出させ、ワイヤに腐食が発生しているかどうかを調べた。腐食の有無の確認には走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いた。観察する視野は、線径の99%以上、ワイヤ軸方向の長さは1mm以上とした。腐食の有無を確認する箇所は観察する視野内全体とした。2000時間経過後に倍率200倍で5本のワイヤの断面全体を観察し、1本でもワイヤの腐食が面積率で10%以上認められた場合は実用上問題があると判断し「×」、5本ともワイヤの腐食が面積率で10%未満であった場合は実用上問題ないと判断し「○」と評価した。ここで面積率とは、観察する視野内において腐食している領域をワイヤの断面積で除して算出した値である。さらに、3000時間経過した時点で5本ともワイヤの腐食が面積率で10%未満であった場合は、優れていると判断し「◎」と評価した。評価結果は、表1-1、表1-2、表1-3、表1-4及び表2-1の「高温高湿寿命」の欄に表記した。×が不合格であり、○及び◎は合格である。
 (長スパンのループ形成時のループ直進性の評価方法)
 長スパンのループ形成時のループ直進性の評価方法について説明する。ループの形成条件は、長スパンのループを意識して、通常のループ形成条件よりも厳しい条件であるワイヤ接合部間の距離30.0mm、ループ高さ6mmとした。ワイヤ接合部間の距離をa、基板を真上から光学顕微鏡で観察した際のワイヤ軸を通る線の長さをbとしたとき、接合した10本のボンディングワイヤについてbをaで除した値(すなわち、b/a)が1.02≦b/aとなる箇所が1箇所でもあれば不良と判定し「×」、1.02≦b/aとなる箇所が1箇所もなければ良好と判定し「○」と評価した。評価結果は、表1-1、表1-2、表1-3、表1-4及び表2-1の「ループ直進性」の欄に示した。×が不合格であり、○は合格である。
 (ウェッジ接合部のせん断強度の評価方法)
 ウェッジ接合部のせん断強度の評価方法について説明する。ウェッジ接合部のせん断強度の評価は、一般的な接合条件で10箇所ウェッジ接合を行い、ウェッジ接合部のせん断強度を測定して評価した。せん断強度の測定には、市販の微小せん断強度試験機を用いた。せん断速度は200μm/秒、せん断ツールの基板からの高さは10μmとした。せん断強度の測定は、ワイヤを接合した基板を治具で固定して行った。ウェッジ接合部のせん断強度試験によって得られたせん断強度の値が9N未満となる箇所が1箇所でもあれば不合格と判断し「×」、10箇所ともウェッジ接合部のせん断強度試験によって得られたせん断強度が9N以上14N未満である場合は実用上問題ないと判断し「○」と評価した。さらに、10箇所ともウェッジ接合部のせん断強度試験によって得られたせん断強度が14N以上である場合は、優れていると判断し「◎」と評価した。評価結果は表1-1、表1-2、表1-3、表1-4及び表2-1の「ウェッジ接合部のせん断強度」の欄に示した。×が不合格であり、○及び◎は合格である。
 実施例に係るボンディングワイヤの組成、<100>結晶方位の方位比率(%)、引張強度、及び評価結果を、表1-1、1-2、1-3及び1-4にまとめて示す。また、比較例に係るボンディングワイヤの組成等は表2-1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例No.1~96のボンディングワイヤはいずれも、Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含むと共に、そのワイヤ軸を含むワイヤ軸方向に平行な断面において、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下であり、パワーデバイスに要求される高温高湿環境において、良好な高温高湿寿命を呈することを確認した。
 加えて、ワイヤの引張強度が25MPa以上85MPa以下である実施例No.1~38、45~96のボンディングワイヤは、長スパンのループを形成した際に優れたループ直進性が得られることを確認した。
 また、Si、Au、Agの1種以上を総計で3質量ppm以上10000質量ppm以下含む実施例No.45~64、74~96のボンディングワイヤは、パワーデバイスに要求される高温高湿環境において、よりいっそう良好な高温高湿寿命を実現できることを確認した。
 さらに、Fe、Mgの1種以上を総計で3質量ppm以上700質量ppm以下含む実施例No.74~89のボンディングワイヤは、ウェッジ接合部のせん断強度に優れることを確認した。
 他方、比較例No.1~12のボンディングワイヤは、Pd、Ptの1種以上の総計濃度、<100>結晶方位の方位比率が本発明範囲外であり、パワーデバイスに要求される高温高湿環境においては腐食が進行し、十分な高温高湿寿命を得られないことを確認した。

Claims (7)

  1.  Pd、Ptの1種以上を総計で3質量ppm以上500質量ppm以下含む半導体装置用Alボンディングワイヤであって、前記ボンディングワイヤのワイヤ軸を含みワイヤ軸方向に平行な断面の結晶方位を測定した結果、ワイヤ軸方向に対して角度差が15度以下である<100>結晶方位の方位比率が30%以上90%以下である、半導体装置用Alボンディングワイヤ。
  2.  引張強度が25MPa以上85MPa以下である、請求項1に記載の半導体装置用Alボンディングワイヤ。
  3.  さらにSi、Au、Agの1種以上を総計で3質量ppm以上10000質量ppm以下含む、請求項1又は2に記載の半導体装置用Alボンディングワイヤ。
  4.  さらにFe、Mgの1種以上を総計で3質量ppm以上700質量ppm以下含む、請求項1~3の何れか1項に記載の半導体装置用Alボンディングワイヤ。
  5.  Alの含有量が98質量%以上である、請求項1~4の何れか1項に記載の半導体装置用Alボンディングワイヤ。
  6.  残部がAl及び不可避不純物からなる、請求項1~5の何れか1項に記載の半導体装置用Alボンディングワイヤ。
  7.  請求項1~6の何れか1項に記載の半導体装置用Alボンディングワイヤを含む半導体装置。
PCT/JP2022/003575 2021-02-05 2022-01-31 半導体装置用Alボンディングワイヤ WO2022168787A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280013190.3A CN116918049A (zh) 2021-02-05 2022-01-31 半导体装置用Al接合线
US18/275,177 US20240071978A1 (en) 2021-02-05 2022-01-31 Al BONDING WIRE FOR SEMICONDUCTOR DEVICES
EP22749659.3A EP4289983A1 (en) 2021-02-05 2022-01-31 Al bonding wire for semiconductor devices
JP2022579524A JPWO2022168787A1 (ja) 2021-02-05 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017610 2021-02-05
JP2021-017610 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168787A1 true WO2022168787A1 (ja) 2022-08-11

Family

ID=82741431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003575 WO2022168787A1 (ja) 2021-02-05 2022-01-31 半導体装置用Alボンディングワイヤ

Country Status (6)

Country Link
US (1) US20240071978A1 (ja)
EP (1) EP4289983A1 (ja)
JP (1) JPWO2022168787A1 (ja)
CN (1) CN116918049A (ja)
TW (1) TW202235634A (ja)
WO (1) WO2022168787A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095948A (ja) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk 半導体素子のボンデイング用Al線
JPS60177667A (ja) * 1984-02-24 1985-09-11 Hitachi Ltd 半導体装置
JPS6132444A (ja) 1984-07-24 1986-02-15 Hitachi Ltd 集積回路装置
JP2002246542A (ja) 2001-02-15 2002-08-30 Matsushita Electric Ind Co Ltd パワーモジュール及びその製造方法
JP2008311383A (ja) * 2007-06-14 2008-12-25 Ibaraki Univ ボンディングワイヤ、それを使用したボンディング方法及び半導体装置並びに接続部構造
JP2014224283A (ja) 2013-05-15 2014-12-04 田中電子工業株式会社 耐食性アルミニウム合金ボンディングワイヤ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095948A (ja) * 1983-10-31 1985-05-29 Tanaka Denshi Kogyo Kk 半導体素子のボンデイング用Al線
JPS60177667A (ja) * 1984-02-24 1985-09-11 Hitachi Ltd 半導体装置
JPS6132444A (ja) 1984-07-24 1986-02-15 Hitachi Ltd 集積回路装置
JP2002246542A (ja) 2001-02-15 2002-08-30 Matsushita Electric Ind Co Ltd パワーモジュール及びその製造方法
JP2008311383A (ja) * 2007-06-14 2008-12-25 Ibaraki Univ ボンディングワイヤ、それを使用したボンディング方法及び半導体装置並びに接続部構造
JP2014224283A (ja) 2013-05-15 2014-12-04 田中電子工業株式会社 耐食性アルミニウム合金ボンディングワイヤ

Also Published As

Publication number Publication date
JPWO2022168787A1 (ja) 2022-08-11
TW202235634A (zh) 2022-09-16
CN116918049A (zh) 2023-10-20
US20240071978A1 (en) 2024-02-29
EP4289983A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
JP6420015B2 (ja) 半導体装置用ボンディングワイヤ
KR102155463B1 (ko) 반도체 장치용 구리 합금 본딩 와이어
JP7126321B2 (ja) Alボンディングワイヤ
TW202146672A (zh) 半導體裝置用接合線
WO2022168787A1 (ja) 半導体装置用Alボンディングワイヤ
JP7217393B1 (ja) 半導体装置用ボンディングワイヤ
EP4174202A1 (en) Bonding wire for semiconductor devices
JP2020059886A (ja) Alボンディングワイヤ
JP5937770B1 (ja) 半導体装置用ボンディングワイヤ
WO2022168794A1 (ja) 半導体装置用Alボンディングワイヤ
WO2024122089A1 (ja) Al合金ボンディングワイヤ
EP4361299A1 (en) Bonding wire for semiconductor device
WO2022270440A1 (ja) 半導体装置用ボンディングワイヤ
EP4361298A1 (en) Bonding wire for semiconductor device
KR101451361B1 (ko) 반도체 패키지용 동 합금 본딩 와이어
WO2024122381A1 (ja) Al接続材
WO2024122380A1 (ja) Al接続材
WO2022270050A1 (ja) 半導体装置用ボンディングワイヤ
WO2022168789A1 (ja) Al配線材
WO2021205931A1 (ja) 半導体装置用Ag合金ボンディングワイヤ及び半導体装置
CN115315793A (zh) Al接合线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579524

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18275177

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280013190.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749659

Country of ref document: EP

Effective date: 20230905

WWE Wipo information: entry into national phase

Ref document number: 11202305820R

Country of ref document: SG