WO2022168610A1 - 銅ペースト - Google Patents

銅ペースト Download PDF

Info

Publication number
WO2022168610A1
WO2022168610A1 PCT/JP2022/001846 JP2022001846W WO2022168610A1 WO 2022168610 A1 WO2022168610 A1 WO 2022168610A1 JP 2022001846 W JP2022001846 W JP 2022001846W WO 2022168610 A1 WO2022168610 A1 WO 2022168610A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
copper
copper paste
mass
viscosity
Prior art date
Application number
PCT/JP2022/001846
Other languages
English (en)
French (fr)
Inventor
淳一 小池
Original Assignee
株式会社マテリアル・コンセプト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マテリアル・コンセプト filed Critical 株式会社マテリアル・コンセプト
Priority to EP22749486.1A priority Critical patent/EP4275816A4/en
Priority to CN202280013320.3A priority patent/CN116964689A/zh
Priority to US18/275,898 priority patent/US20240116105A1/en
Publication of WO2022168610A1 publication Critical patent/WO2022168610A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/627Copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a new copper paste.
  • Conductive paste is used to form wiring in electronic components such as chip resistors, chip capacitors, and solar cells, as well as electronic components such as printed wiring boards and boards with through holes. It can also be used as a power module for operating electrodes and wiring connected to transistors for controlling pixel switching of a display and electric motors with high power efficiency.
  • a power module semiconductor chips made of silicon, silicon carbide, gallium nitride, etc. are bonded to a heat dissipation substrate. If solder is used as the bonding material, the heat generated from the power module is dissipated to the outside due to its low thermal conductivity. This makes it difficult to perform high-efficiency operation at high temperatures. Therefore, the use of conductive paste is particularly important in power modules.
  • Patent Literature 1 discloses copper nanoparticles coated with collagen peptide, and reports that these copper nanoparticles are excellent in oxidation resistance and dispersion stability.
  • Patent Document 2 describes a technique for improving the dispersibility of fine metal particles by using a mixture of an amide-based organic solvent, an amine-based organic solvent, and an alcohol as a solvent component of a paste.
  • Patent Document 3 discloses a copper paste containing copper powder having an average particle size of 0.1 to 1 ⁇ m and an alcoholic solvent.
  • Non-Patent Document 1 the surface of fine copper particles is coated with a gelatin layer to prepare a paste, and oxidative firing in the atmosphere and reduction firing in N 2 and 3% H 2 gas are performed to reduce the Forming a sintered body of resistor is described.
  • the copper particles may not be sufficiently sintered due to the coating of collagen peptide and gelatin on the surfaces of the copper particles.
  • the bonding between the copper particles after sintering is weak, and there arises a problem that the mechanical strength as wiring cannot be maintained.
  • the conductive paste is required to be sintered at a low temperature and in a short time and have a high bonding strength.
  • the amide-based organic solvent which is the main solvent, remains in the wiring after firing, which may reduce the electrical conductivity.
  • Patent Document 3 cannot sufficiently prevent oxidation of the copper powder during firing, and may cause problems such as viscosity change during storage due to volatilization of the low boiling point solvent and residual high boiling point solvent.
  • the present invention provides a copper paste that exhibits good oxidation resistance, has high electrical conductivity and thermal conductivity, and has excellent storage stability and workability.
  • An object of the present invention is to provide a copper paste that exhibits bonding strength.
  • the inventors of the present invention have found that the combined use of two or more alcohols of different types as a dispersion medium in the copper paste suppresses the oxidation of the copper powder during firing and causes a change in viscosity during storage.
  • the present inventors have found that a copper paste having excellent workability can be obtained without any defects, and have completed the present invention. That is, the present invention provides the following copper pastes (1) to (7).
  • a copper paste containing copper powder and an organic solvent is one or more first alcohols selected from the group consisting of monohydric and dihydric alcohols having a viscosity at 20° C. of 3 mPa ⁇ s or more and 70 mPa ⁇ s or less;
  • the boiling point of the first alcohol at atmospheric pressure is 150° C. or higher and 240° C. or lower, and the boiling point of the second alcohol at atmospheric pressure is 190° C. or higher and 320° C. or lower,
  • the first alcohol is 1-hexanol, 1-heptanol, 2-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, hexylene glycol, 1,2-propanediol; , 1,3-propanediol, and ethylene glycol
  • the second alcohol is selected from the group consisting of 2-ethyl-1,3-hexanediol and glycerol.
  • the copper paste according to any one of (1) to (3) above, which is one or more alcohols.
  • the copper powder having a coating layer contains 0.05% by mass or more and 0.8% by mass or less of carbon and 0.05% by mass or more and 1.5% by mass or less of oxygen with respect to 100% by mass of the copper powder
  • the copper paste according to (6) comprising:
  • a copper paste that exhibits good oxidation resistance, has high electrical and thermal conductivity, and is excellent in storage stability and workability.
  • the copper paste of the present invention can also be fired at a low temperature for a short period of time, and can exhibit high bonding strength.
  • the copper paste of the present invention is a copper paste containing copper powder and an organic solvent
  • the organic solvent is one or more first alcohols selected from the group consisting of monohydric and dihydric alcohols having a viscosity at 20° C. of 3 mPa ⁇ s or more and 70 mPa ⁇ s or less;
  • a copper paste that is an alcohol-based solvent containing one or more second alcohols selected from the group consisting of dihydric and trihydric alcohols having a viscosity of 300 mPa ⁇ s or more and 1000 mPa ⁇ s or less at 20°C. is.
  • the present invention it is an important requirement of the present invention to use two or more alcohols of different types in combination as the organic solvent of the dispersion medium. As a result, the oxidation of the copper powder during firing is suppressed, and a copper paste that does not change in viscosity during storage and has excellent workability is provided.
  • the "viscosity” means the viscosity at an arbitrary shear rate because the organic solvent is a Newtonian viscous material and the viscosity does not depend on the shear rate.
  • the organic solvent in the copper paste of the present invention is an alcoholic solvent in which two or more monovalent to trihydric alcohols having different viscosities are combined as described above.
  • a tetravalent or higher polyhydric alcohol is used as a solvent, it remains in the sintered body, especially when the firing is performed at a low temperature of about 300 ° C or less and in a reducing atmosphere or a nitrogen atmosphere, resulting in a decrease in electrical conductivity and bonding strength. may cause If only the monohydric alcohol is used as a solvent, there is a problem that the copper paste tends to volatilize during storage and printing, and the viscosity of the copper paste changes to deteriorate the workability.
  • a problem can be avoided, and by using an alcohol having the viscosity as described above, a copper paste in which the copper powder is uniformly dispersed and which has excellent workability is provided.
  • a copper paste in which the copper powder is uniformly dispersed and which has excellent workability is provided.
  • the viscosity of the copper paste can be adjusted appropriately even without a binder component such as a resin. can be adjusted to any value. If the copper paste does not contain a resin component, there is no need to consider the generation of carbon residue derived from the resin component, and it is possible to perform firing at a relatively low temperature in a non-oxidizing atmosphere.
  • the "alcohol-based solvent” means a mixed solvent mainly composed of alcohol, and a small amount of water or an organic solvent other than alcohol, such as about 1 to 20% by mass, particularly about 5 to 10% by mass of ether, Mixed solvents containing ketones, esters, etc. may also be included.
  • hydrocarbon solvents, halogenated hydrocarbon solvents, etc. may be contained, but since nitrogen-containing solvents such as amines and amides tend to remain in the dry matter, they may not be contained or even contained. It is preferable to make it about 5 mass % or less.
  • the total mass of the first and second alcohols is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 95% by mass of the total solvent in the copper paste. % or more. Since alcohol, especially trihydric alcohol, has a reducing action, it is possible to more effectively suppress oxidation of the copper powder by increasing the content of the copper paste in the solvent.
  • the first and second alcohols in the present invention may be of any kind as long as they have the above valence and viscosity, but alcohols with a boiling point of 150°C or higher are preferred.
  • the boiling point means the boiling point at atmospheric pressure unless otherwise specified. If the boiling point of the alcohol is less than 150° C., the paste may undergo bumping during heating, creating voids in the paste and deteriorating the sinterability. On the other hand, if alcohol with a boiling point of 150° C. or higher is used, the copper paste can be fired without such problems, and the electrical conductivity and thermal conductivity of the sintered body can be enhanced. Also, if the boiling point of the alcohol is 150° C. or higher, even if the copper paste is stored at room temperature, the solvent will not volatilize and the viscosity will not change in a short period of time. This eliminates the need for refrigeration or freezing storage, and can reduce storage costs.
  • the second alcohol one having a boiling point higher than that of the first alcohol.
  • the copper paste of the present invention has an appropriate viscosity and good workability, but there is no need to adjust the viscosity after the paste is applied, and the copper paste is prevented from dripping. From the point of view, it is preferable that the first alcohol disappears.
  • dihydric and trihydric alcohols, particularly trihydric alcohols have a high reducing action, so the second alcohol containing these is preferably present at a high concentration during firing.
  • the boiling point of the first alcohol is 150°C or higher and 250°C or lower, particularly 240°C or lower
  • the boiling point of the second alcohol is preferably 190°C or higher and 320°C or lower.
  • the content of the first alcohol and the second alcohol is not particularly limited, but the mass (X) of the first alcohol and the mass (Y) of the second alcohol in the organic solvent ratio (X/Y) is preferably 0.2 or more and 8.0 or less, particularly 0.5 or more and 5.0 or less.
  • a sufficient bonding strength of the copper paste for example, a die shear strength between the chip and the substrate, it is necessary to print a copper paste layer with a substantially uniform thickness on the interface between the chip and the substrate.
  • the above ratio is 0.2 or more, an appropriate viscosity can be easily obtained, and sufficient bonding strength can be obtained.
  • the content of the organic solvent (alcoholic solvent) is not particularly limited, and can be set arbitrarily according to the desired viscosity of the copper paste. 40% by mass or less, particularly 8% by mass or more and 20% by mass or less, is preferable for the viscosity of a general copper paste.
  • the solvent concentration is about 5% by mass or more, the copper paste can be spread over the entire interface with a uniform layer thickness, and good bonding strength is exhibited. Further, when the solvent concentration is about 40% by mass or less, the solvent does not remain at the time of firing, and the electric conductivity and bonding strength are not lowered.
  • the first alcohol in the present invention is one or more alcohols selected from the group consisting of monohydric and dihydric alcohols having a viscosity of 3 mPa ⁇ s or more and 70 mPa ⁇ s or less as described above. If the viscosity of the first alcohol is within this range, the copper paste can be easily applied, ensuring good workability.
  • the boiling point of the first alcohol is preferably 150° C. or higher. More preferably, an alcohol with a boiling point more than 50° C. lower than the firing temperature of the copper paste is used.
  • the firing temperature of the copper paste is not particularly limited, it is around 250 to 300° C. in general bonding applications. More preferably, the temperature is 150° C. or higher and 240° C.
  • the vapor pressure at around room temperature for example, at 20°C is 0.1 Pa or more and 100 Pa or less, further 1 Pa or more and 50 Pa or less, particularly 3 Pa or more and 30 Pa or less, the storage stability and workability become better, preferable.
  • first alcohols include 1-hexanol (viscosity 4.58 mPa s, boiling point 158° C., vapor pressure 80 Pa), 1-heptanol (viscosity 5.81 mPa s, boiling point 176° C., vapor pressure 44 Pa), 2-heptanol (viscosity 3.96 mPa s, boiling point 159 ° C., vapor pressure 78 Pa), 1-octanol (viscosity 7.29 mPa s, boiling point 195 ° C., vapor pressure 24 Pa), 2-octanol (viscosity 6.49 mPa s , boiling point 180 ° C., vapor pressure 42 Pa), 2-ethyl-1-hexanol (viscosity 6.27 mPa s, boiling point 185 ° C., vapor pressure 35 Pa), benzyl alcohol (viscosity 5.47 mPa s, boiling point 205 ° C., vapor
  • the second alcohol in the present invention is one or more alcohols selected from the group consisting of dihydric and trihydric alcohols having a viscosity of 300 mPa ⁇ s or more and 1000 mPa ⁇ s or less as described above. If the viscosity of the second alcohol is within this range, it is possible to prevent the copper paste before sintering from sagging and making it impossible to form a desired shape, and the workability of the copper paste is not impaired.
  • the boiling point of the second alcohol is preferably 190° C. or higher, but more preferably the boiling point of the copper paste is reduced by 50° C. or higher. Considering the firing temperature of general copper paste, it is preferably 200° C. or higher, particularly 240° C. or higher.
  • the upper limit of the boiling point is not particularly limited, it is preferably 320.degree. If the alcohol has a boiling point within this range, it will not remain in the interstices of the copper particles in the sintered body even after low-temperature firing, so that the electrical conductivity will not be lowered.
  • the vapor pressure at about room temperature for example, 20° C. is 1 mPa or more and 5 Pa or less, further 1.5 Pa or less, particularly 1 Pa or less, the storage stability is improved and the oxidation suppressing effect during firing is improved. is preferable because it further increases This effect is particularly pronounced when the vapor pressure of the second alcohol is lower than that of the first alcohol.
  • Such second alcohols include dihydric alcohols such as 2-ethyl-1,3-hexanediol (viscosity 323 mPa s, boiling point 244° C., vapor pressure ⁇ 1.4 Pa), and glycerol (viscosity 934 mPa s , a boiling point of 290° C., and a vapor pressure of 0.01 Pa), but are not limited thereto.
  • dihydric alcohols such as 2-ethyl-1,3-hexanediol (viscosity 323 mPa s, boiling point 244° C., vapor pressure ⁇ 1.4 Pa)
  • glycerol viscosity 934 mPa s , a boiling point of 290° C., and a vapor pressure of 0.01 Pa
  • a mixture of these alcohols may also be used.
  • the copper powder contained in the copper paste of the present invention is not particularly limited, and may be any of various commercially available products. However, in the present invention, it is preferable that the total content of elements other than copper in the copper powder is 1% by mass or less with respect to 100% by mass of the copper powder. Components other than copper, especially metal elements, degrade sinterability by segregating on the surface of the copper powder or forming oxides. may reduce sexuality. If the content of elements other than copper, especially As, Co, Cr, Fe, Ir, P, S, Sb, Se, Te, Ti, V, Zr, etc.
  • the electrical resistivity of the body can be reduced to about 5 ⁇ cm or less, and the thermal conductivity of about 130 W/m ⁇ K or more is exhibited. With such thermal conductivity, for example, heat generated from the power module can be efficiently radiated to the outside. If the content of impurities, especially the above elements, is 0.5% by mass or less, the electrical resistivity is about 4 ⁇ cm or less and the thermal conductivity is about 167 W/m ⁇ K or more, which is more preferable.
  • Such copper powder can be produced using a method such as the high-pressure water atomization method described in International Publication No. 99/11407 or the wet reduction deposition method described in International Publication No. 2014/80662. can.
  • the high-pressure water atomization method is a method of producing metal powder (for example, copper) from molten metal.
  • the split molten metal is further finely split by the conically ejected liquid.
  • the metal powder e.g., copper
  • the metal powder e.g., copper
  • the metal powder e.g., copper
  • the metal powder with a fine particle size, a spherical or granular shape, and a low oxygen content is industrially produced by causing the splitting by the gas and the splitting by the liquid to act continuously on the molten metal. It can be manufactured on a large scale and at low cost.
  • the wet reduction deposition method is a method of using an organic solvent that is compatible with water and capable of lowering the surface tension of water as a solvent in the wet reduction of copper ions using a reducing agent such as hydrazine. .
  • it is a method of mixing a reaction solution containing monovalent or divalent copper ions with a reducing agent, using water and the organic solvent as a liquid medium, and reducing the copper ions to produce copper particles.
  • particles of 0.7 ⁇ m or more can be produced by the high-pressure water atomization method.
  • a wet reduction deposition method is suitable for producing fine particles of less than that.
  • the copper powder (copper particles) preferably has an average particle size of 0.05 ⁇ m or more and 2.0 ⁇ m or less.
  • the average particle size of the copper particles By setting the average particle size of the copper particles to 2.0 ⁇ m or less, the surface area of the copper particles relatively increases, and sintering at a low temperature tends to be facilitated.
  • the average particle size of the copper particles is less than 0.05 ⁇ m, the price of the copper particles as a raw material rises, and the copper wiring formed by the method of the present invention tends not to be a low-cost alternative to silver wiring. It is in.
  • the average particle size is less than 0.05 ⁇ m, there is a tendency that a large number of particles agglomerate and exhibit only sinterability equivalent to that of a paste composed of substantially coarse particles.
  • the average particle size is the 50% particle size (d 50 ), which is the median value in the distribution of particle diameters measured using a laser particle size distribution analyzer or the like. More preferably, copper powder having an average particle size of 0.08 ⁇ m or more and 1.0 ⁇ m or less, particularly preferably 0.3 ⁇ m or more and 0.7 ⁇ m or less, is used.
  • the copper powder may have a substance that coats the surface to the extent that it does not affect the sinterability.
  • the copper powder in the present invention preferably excludes the coating of the gelatin layer.
  • the copper powder preferably has a coating layer made of a polysaccharide or fatty acid compound on at least part of the surface. Since the polysaccharide molecule becomes hydrophilic on the outside (the side in contact with the solvent) when the copper powder is coated, it interacts with the hydroxyl groups of the organic solvent in the copper paste to bring about moderate viscosity.
  • the carboxyl group of the fatty acid binds to the surface of the copper particles, and the terminal on the opposite side of the fatty acid becomes hydrophobic, thereby increasing the dispersibility of the copper particles and suppressing the aggregation of the particles.
  • the copper paste can spread over the entire interface with a uniform layer thickness, and good bonding strength is exhibited.
  • polysaccharides include, but are not limited to, gum arabic, carboxymethylcellulose, hydroxyethylcellulose, cellulose nanofibers, starch, glycogen, agarose (agar), pectin, and alginic acid, and salts thereof.
  • fatty acids include medium-chain fatty acids such as pentanoic acid, octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid and tetradecanoic acid, and among these, octanoic acid, nonanoic acid and decanoic acid are particularly preferred.
  • the carbon content of 0.05% by mass or more and 0.8% by mass or less and 0.05% by mass with respect to 100% by mass of the copper powder having the coating layer % or more and 1.5% by mass or less of oxygen content If the carbon content or oxygen content is less than 0.05% by mass, it is difficult for the polysaccharide molecules on the surface of the copper powder to exhibit sufficient hydrophilicity, and the viscosity of the copper paste decreases, making it difficult to form a uniform paste layer. Bonding strength may decrease.
  • the carbon content exceeds 0.8% by mass and the oxygen content exceeds 1.5% by mass, for example, carbon-oxygen-containing components remain inside the sintered body during firing in a nitrogen atmosphere, and electrical conductivity and bonding strength are reduced. may decrease. More preferably, the carbon content is 0.1 to 0.5% by mass and the oxygen content is 0.1 to 1.0% by mass.
  • the surface coverage ratio, carbon content, and oxygen content of fatty acids are also the same as those of polysaccharides.
  • the copper paste of the present invention can be produced by mixing the above-mentioned copper powder and a solvent and, if desired, kneading the mixture using a device such as a planetary mixer. It is also preferable to improve the dispersibility of the copper powder by using a three-roll mill, if necessary.
  • the viscosity of the copper paste is not particularly limited, and can be arbitrarily set according to the intended use.
  • the viscosity of the copper paste at a shear rate of 1 sec ⁇ 1 near room temperature, for example, at 25 ° C. is 30 Pa s or more and 2000 Pa s or less, or 100 Pa s or more and 1000 Pa s or less, particularly 150 Pa s.
  • the thickness to 800 Pa ⁇ s or less, the copper paste can be easily applied uniformly to a substrate or the like, and the thermal conductivity and bonding strength of the obtained copper sintered body can be further enhanced.
  • the copper paste of the present invention contains a dispersant made of amines, a surfactant, an antioxidant, a reducing agent such as hydrazine, a glass frit, a binder such as a resin component, and the like.
  • a resin component for example, cellulose resins such as methyl cellulose, ethyl cellulose, carboxymethyl cellulose, acrylic resins, butyral resins, alkyd resins, epoxy resins, phenol resins, etc. are used in an amount of about 0.05 to 5% by mass based on the mass of the copper particles. can also be included.
  • the copper paste of the present invention preferably contains substantially no resin component. If the copper paste contains a resin component, the sinterability, particularly at 350° C. or less, may deteriorate.
  • a thermosetting resin such as an epoxy resin tends to remain in the copper paste sintered body even after sintering. Even when cellulose resins are used, thermal decomposition starts at around 300°C, but a temperature of 400°C or higher is required for complete thermal decomposition. Firing in an oxygen atmosphere is required for the first time, and a problem arises that the copper powder is oxidized.
  • the copper paste of the present invention contains the second alcohol having a high viscosity, it is possible to adjust the viscosity to an appropriate value without using a resin component.
  • the copper paste of the present invention has high electrical conductivity and thermal conductivity, and is excellent in terms of storage stability and workability.
  • the copper paste of the present invention can also be fired at a low temperature for a short period of time, and can exhibit high bonding strength. Therefore, it is suitable for use in forming wiring in electronic components such as power modules, chip resistors, chip capacitors and solar cells, as well as electronic mounted products such as printed wiring boards and substrates with through holes.
  • the copper paste of the present invention can be applied to a power module, a substrate for a solar cell, a substrate on which electronic components are mounted, a printed wiring board, a substrate having through holes, and the like, and then fired.
  • substrate materials include silicon substrates, oxide substrates such as silicate glass, alumina and quartz, nitride substrates such as silicon nitride and aluminum nitride, carbide substrates such as silicon carbide and titanium carbide, polyimide, and polyethylene terephthalate. , a resin substrate such as polyethylene naphthalate, and a substrate provided with a transparent conductive film (TCO) or a metal film on its surface can be used.
  • oxide substrates such as silicate glass, alumina and quartz
  • nitride substrates such as silicon nitride and aluminum nitride
  • carbide substrates such as silicon carbide and titanium carbide
  • polyimide polyimide
  • polyethylene terephthalate polyethylene terephthalate
  • a resin substrate such as polyethylene naphthalate
  • a substrate provided with a transparent conductive film (TCO) or a metal film on its surface can be used.
  • the method and conditions are not particularly limited, and any method can be used depending on the target product and the target material to which the paste is applied. However, it is preferred to dry off the first alcohol prior to firing the copper paste of the present invention. As a result, the existence ratio of the second alcohol around the copper powder during firing is increased, so that the oxidation of the copper powder during firing can be more effectively prevented.
  • the drying conditions are not particularly limited, and can be arbitrarily set according to the boiling point of the first alcohol used and the desired product. Heating for 60 minutes is preferred. Drying can be carried out under reduced pressure and the heating temperature can be further reduced. Heat drying can also be performed in a reducing atmosphere.
  • the firing conditions can be set within various ranges.
  • an inert gas atmosphere such as nitrogen or argon gas, or in a reducing atmosphere containing about 0.1% by volume to 30% by volume of hydrogen, ammonia, carbon monoxide, alcohol, etc., 150 ° C. or higher and 400 ° C. or 200° C. to 350° C., especially 250° C. to 300° C. for 10 seconds to 60 minutes, especially 2 minutes to 30 minutes
  • a sintered body having excellent conductivity and high strength can be obtained.
  • Example 1 Copper powder surface-coated with polysaccharide gum arabic (50% particle size: about 0.4 ⁇ m, carbon content: 0.3 mass%, oxygen content: 0.7 mass%, amount of metal elements other than copper : 0.2% by mass), ethylene glycol as the first alcohol, and glycerol as the second alcohol were prepared and kneaded at a mass ratio of 87.0: 6.5: 6.5 to obtain copper A paste was made.
  • the mass ratio means the mass of each component when the weight of the copper paste is 100.
  • the prepared paste was measured for viscosity ( ⁇ 0) within 2 hours after preparation using a dynamic viscoelasticity meter (Rheometer manufactured by Brookfield). Furthermore, the viscosity ( ⁇ 7) was measured after storage at 10° C. in the atmosphere for 7 days, and the rate of change in viscosity over time was calculated. The viscosity change rate (%) was defined as ( ⁇ 7 ⁇ 0)/ ⁇ 0 ⁇ 100.
  • This paste is applied to a glass substrate using a metal mask to form a square with a side of 20 mm, dried in the atmosphere at 60 ° C. for 5 minutes, and then subjected to a load of 20 MPa using a high temperature press in a nitrogen atmosphere. was loaded, and pressure firing was performed at 280° C. for 2 minutes to obtain a copper paste sintered body having a thickness of about 20 ⁇ m.
  • the electrical resistivity of this sintered body was measured using a DC 4-probe electrical resistance measuring device with a probe spacing of 1 mm.
  • a copper plate having a thickness of 1 mm was used as a substrate, and a copper paste was applied thereon so as to have a thickness of 100 ⁇ m.
  • a semiconductor chip made of silicon carbide (SiC) and having a size of 2 mm ⁇ 2 mm ⁇ 0.4 mm was arranged.
  • a Ti layer with a thickness of 500 nm and a Cu layer with a thickness of 500 nm were formed by sputtering on the surface of the SiC chip in contact with the copper paste.
  • a load of 20 MPa was applied to the laminated body thus obtained using a high-temperature press in a nitrogen atmosphere, and pressure firing was performed at a firing temperature of 280° C. for 2 minutes.
  • the adhesion strength between the SiC chip and the copper substrate was measured with a die shear tester (Nordson DAGE4000).
  • a viscosity change rate of 10% or less, an electrical resistivity of 5 ⁇ cm or less, and a die shear strength of 40 MPa or more are evaluated as acceptable. was judged B, and judgment C was made when one item passed or all items failed. Furthermore, when the die shear strength was 70 MPa or more in the result of judgment A, it was judged AA.
  • the measurement results and determination results are shown in the column of Example 1 in Table 1. The judgment result was AA.
  • Examples 2 to 7, Comparative Examples 1 to 3 A copper paste was prepared and tested in the same manner as in Example 1, except that the type of the first alcohol was changed. The results of measurement and judgment are shown in Table 1 together with the type of the first alcohol.
  • Example 1 to 7 in which the first alcohol having a viscosity in the range of 3 mPa s or more and 70 mPa s or less was used in combination with the second alcohol, the above criteria gave AA, A, or B gave favorable results. Furthermore, in Examples 1, 3 to 5, and 7 in which the first alcohol used had a boiling point of 150° C. or higher and 240° C. or lower and a vapor pressure of 3 Pa or higher and 30 Pa or lower at 20° C., the judgment was AA or A. , gave more favorable results.
  • Example 8 In the experiment of Table 1, when the surface coating layer of the copper powder was changed from gum arabic, which is a polysaccharide, to decanoic acid, which is one of fatty acids, the same experiment was conducted. The same results as those determined in Table 1 were obtained, except that the viscosity of the copper paste was reduced by about 8-25% within 2 hours and the applied thickness of the copper paste was about 60-85 ⁇ m. From this, it became clear that the surface coating layer of the copper powder is not limited to polysaccharides, and medium-chain fatty acids may be used.
  • Example 9 Comparative Examples 4 and 5
  • a copper paste was prepared and tested under the same conditions as in Example 1, except that ethylene glycol was used as the first alcohol and the type of the second alcohol was changed. Table 2 shows the results.
  • Example 1 and 9 in which a dihydric or trihydric alcohol having a viscosity of 300 mPa ⁇ s or more and 1000 mPa or less was used as the second alcohol, a favorable result of AA or A was obtained.
  • Comparative Examples 4 and 5 using alcohols having viscosities outside the above range the judgment was C.
  • the boiling point of the second alcohol was 240°C or higher, which is considered to have resulted in more favorable determination results.
  • Example 1 using glycerol having a vapor pressure of 1 Pa or less at 20° C. a particularly good result of AA was obtained.
  • Examples 10 to 13, Comparative Examples 6 and 7 A copper paste was prepared and tested under the same conditions as in Example 1 except that the first alcohol was ethylene glycol and the second alcohol was glycerol, and the mass ratio (X/Y) was changed. Table 3 shows the results. In Table 3, the acceptance criteria are the same as in Tables 1 and 2. However, since there are two evaluation items this time, the judgment A is given when both of the two are acceptable, and the judgment C is given when one or both of them are unacceptable. The criteria for determining AA are the same as in Tables 1 and 2.
  • Example 14-17 Comparative Examples 8-11
  • Example 4 The same operation as in Example 1 was performed, except that the carbon content and oxygen content in the gum arabic-coated copper powder were changed as shown in Table 4, and the metal impurity content in the copper powder was changed to 0.2% by mass.
  • Table 4 shows the composition and test results of each copper paste sample.
  • a die shear strength of more than 30 MPa was developed in any copper paste, but the paste viscosity tends to soften with copper powder having a low carbon content and oxygen content. On the other hand, the paste viscosity tends to harden as the carbon content and oxygen content increase.
  • Examples 14 to 17 using coated copper powder with a carbon content of 0.05 to 0.8% by mass and an oxygen content of 0.05 to 1.5% by mass low electrical resistivity of less than 4 ⁇ cm and over 40 MPa It was shown that high die shear strength was developed.
  • the copper paste of the present invention has high electrical conductivity, excellent storage stability, and exhibits high bonding strength.
  • the copper paste of the present invention also exhibits good oxidation resistance, has high thermal conductivity, and can be fired at low temperatures in a short period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

銅粉と有機溶剤とを含有する銅ペーストであって、前記有機溶剤は、20℃における粘度が3mPa・s以上、70mPa・s以下である1価及び2価のアルコールからなる群より選択される一つ以上の第1のアルコールと、20℃における粘度が300mPa・s以上、1000mPa・s以下である2価及び3価のアルコールからなる群より選択される一つ以上の第2のアルコールとを含有するアルコール系溶剤である、銅ペースト。

Description

銅ペースト
 本発明は、新規銅ペーストに関するものである。
 導電性ペーストは、チップ抵抗器、チップコンデンサ、太陽電池などの電子部品、並びにプリント配線基板、スルーホールが形成された基板などの電子実装品に配線を形成するために用いられる。また、ディスプレイの画素スイッチングを制御するためのトランジスタに接続する電極や配線、さらには電動モーターなどを高電力効率で動作するためのパワーモジュールにも用いることができる。パワーモジュールでは、シリコン、炭化珪素、窒化ガリウムなどの半導体チップが放熱基板に接着されるが、この接着材料としてハンダを用いると、熱伝導率が低いためにパワーモジュールから発生する熱を外部に放熱することが困難となり、高温での高効率動作ができない。そのため、パワーモジュールにおいては、導電性ペーストの使用が特に重要となる。
 現状の導電性ペーストの多くは、耐酸化性に優れた銀ペーストが用いられているが、銀は高価であるとともにファインピッチ配線においてマイグレーション不良が発生し易いという課題がある。そのため、近年では低コストで熱伝導性が良好な銅ペーストの使用が試みられている。しかしながら、銅は銀に比べて安価である一方、酸化されやすい性質があり、銅ペーストを焼成するときは水素やギ酸などの還元性ガスや窒素などの不活性ガスを利用しないと、銅が酸化して分散安定性や導電性が低下するという課題がある。ペーストの印刷性や配線の緻密性等の観点から、成分として含まれる銅粉として粒子径の細かいものが求められるが、そうした銅粉では酸化の問題が特に顕著になる。また、製造工程を簡略化しコストを下げるための比較的低温・短時間の条件での焼成や、接合強度の向上も課題とされている。こうした課題を解決するために、銅粉の酸化防止や、分散性改善のための種々の技術が検討されている。
 例えば特許文献1には、コラーゲンペプチドで被覆した銅ナノ粒子が開示されており、これら銅ナノ粒子は耐酸化性及び分散安定性に優れると報告されている。特許文献2には、ペーストの溶媒成分としてアミド系有機溶媒にアミン系有機溶媒及びアルコールを混合したものを用いることにより、金属微粒子の分散性を改善する技術が記載されている。特許文献3においては、平均粒径0.1~1μmの銅粉とアルコール系溶媒を含む銅ペーストが開示されている。また、非特許文献1には、ゼラチン層で微細銅粒子の表面をコーティングしペーストを作製し、大気中の酸化焼成とN及び3%Hガス中の還元焼成を実施することで、低抵抗の焼結体を形成することが記載されている。
特許第5450725号公報 特許第6097477号公報 特開2016-53216号公報
Yonezawa et al., RSC Advances, 2015, 5, 61290-61297(2015)
 しかしながら、特許文献1や非特許文献1記載の銅ペーストにおいては、銅粒子表面のコラーゲンペプチドやゼラチンのコーティングのために、銅粒子の焼結が十分になされないことがある。その結果、焼結後の銅粒子間の結合が弱く、配線としての力学的強度を維持できなくなる問題が生じる。上記のように、導電性ペーストに対しては近年、低温・短時間での焼結と高い接合強度が求められ、例えば300℃以下で10分間以下の条件で焼成し、接合強度を40MPa程度以上に高めることが要求されているが、特許文献1や非特許文献1記載の銅ペーストでこうした要求を満たすことは困難である。特許文献2に記載された銅ペーストでは、主溶媒であるアミド系の有機溶媒が焼成後の配線に残存し、導電性を低下させる場合がある。また、アミン系有機溶剤に起因する臭気による、作業環境の悪化も問題となる。特許文献3記載のペーストでは、焼成時の銅粉の酸化が十分には防止できず、また、低沸点溶剤の揮発による保管時の粘度変化や高沸点溶剤の残存といった問題が生じる場合がある。
 上記課題を鑑み、本発明は、良好な耐酸化性を示し、高い電気伝導性及び熱伝導性を備え、保管安定性や作業性に優れる銅ペースト、特に、低温・短時間で焼成でき、高い接合強度を発現する銅ペーストを提供することを目的とする。
 本発明者らは鋭意検討の結果、銅ペースト中の分散媒としてタイプの異なる2種以上のアルコールを併用することにより、焼成時の銅粉の酸化が抑制され、保管時に粘度変化を来すことがなく、作業性に優れる銅ペーストが得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下の(1)~(7)の銅ペーストである。
 (1)銅粉と有機溶剤とを含有する銅ペーストであって、
 該有機溶剤は、
 20℃における粘度が3mPa・s以上70mPa・s以下である1価及び2価のアルコールからなる群より選択される一つ以上の第1のアルコールと、
 20℃における粘度が300mPa・s以上1000mPa・s以下である2価及び3価のアルコールからなる群より選択される一つ以上の第2のアルコールと
を含有するアルコール系溶剤である、銅ペースト。
 (2)アルコール系溶剤において、
 第1のアルコールの大気圧における沸点が150℃以上240℃以下であり、
 かつ
 第2のアルコールの大気圧における沸点が190℃以上320℃以下であり、
 かつ
第1のアルコールの沸点は第2のアルコールの沸点より低いことを特徴とする
上記(1)に記載の銅ペースト。
 (3)有機溶剤中の第1のアルコールの質量(X)と第2のアルコールの質量(Y)との比率(X/Y)が、0.2以上8.0以下である、上記(1)乃至(2)のいずれかに記載の銅ペースト。
 (4)第1のアルコールは、1-ヘキサノール、1-ヘプタノール、2-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、ヘキシレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、及びエチレングリコールから成る群より選択される1種以上のアルコールであり、かつ
 第2のアルコールは、2-エチル-1,3-ヘキサンジオール及びグリセロールから成る群より選択される1種以上のアルコールである、上記(1)~(3)のいずれかに記載の銅ペースト。
 (5)実質的に樹脂成分を含有しない、上記(1)~(4)のいずれかに記載の銅ペースト。
 (6)銅粉が、表面の少なくとも一部に、多糖類及び脂肪酸から選択される少なくとも一つの化合物からなる被覆層を有している、上記(1)~(5)のいずれかに記載の銅ペースト。
 (7)被覆層を有する銅粉が、該銅粉100質量%に対して0.05質量%以上0.8質量%以下の炭素、及び0.05質量%以上1.5質量%以下の酸素を含む、(6)に記載の銅ペースト。
 本発明によれば、良好な耐酸化性を示し、高い電気伝導性及び熱伝導性を備え、保管安定性や作業性に優れる銅ペーストが提供される。本発明の銅ペーストはまた、低温・短時間で焼成でき、高い接合強度を発現することが可能である。
 以下、本発明の実施形態について説明する。なお、本発明は実施形態の記載によって限定されるものではない。
 本発明の銅ペーストは、銅粉と有機溶剤とを含有する銅ペーストであって、
 前記有機溶剤は、
 20℃における粘度が3mPa・s以上かつ70mPa・s以下である1価及び2価のアルコールからなる群より選択される一つ以上の第1のアルコールと、
 20℃における粘度が300mPa・s以上かつ1000mPa・s以下である2価及び3価のアルコールからなる群より選択される一つ以上の第2のアルコールと
を含有するアルコール系溶剤である、銅ペーストである。
 ここで、分散媒の有機溶剤として、タイプの異なる2種以上のアルコールを併用することが、本発明の重要な要件である。このことによって、焼成時の銅粉の酸化が抑制されると共に、保管中に粘度が変化せず、作業性に優れる銅ペーストが提供される。尚、本明細書において、「粘度」とは、前記有機溶剤の場合はニュートニアン粘性体であって粘度がせん断速度に依存しないので、任意のせん断速度における粘度を意味する。一方で銅ペーストの場合は非ニュートニアン粘性体であるので、コーンプレート型の動的粘弾性装置(例えばBrookfield社製、RSTコーンプレートRheometer)を用いて測定し、せん断速度が1sec-1のときの銅ペーストの粘度を意味する。以下、本発明の銅ペースト中の各成分について、詳細に説明する。
(アルコール系溶剤)
 本発明の銅ペースト中の有機溶剤は、上記のように粘度の異なる1~3価の2種以上のアルコールを組み合わせたアルコール系溶剤である。4価以上の多価アルコールを溶剤に用いると、特に焼成が300℃程度以下の低温かつ還元雰囲気または窒素雰囲気で行われる場合に、焼結体中に残存し、電気伝導性や接合強度を低下させる場合がある。1価アルコールのみを溶剤として用いると、銅ペーストの保管・印刷時に揮発し易く、銅ペーストの粘度が変化して作業性を悪化させる問題がある。本発明においては、そうした問題が回避できる上、上記のような粘度のアルコールを併用することにより、銅粉が均一に分散した物性及び作業性に優れる銅ペーストが提供される。特に、粘度の高い第2のアルコールを含有するため、塗布後のペーストのダレによる所望の形状からの変化が抑制される上、後記するように樹脂等のバインダー成分なしでも銅ペーストの粘度を適切な値に調整することができる。樹脂成分を含有しない銅ペーストであれば、樹脂成分由来の炭素残渣の発生を考慮する必要がなく、焼成を非酸化的雰囲気下にて、比較的低温で行うことも可能となる。
 本発明において「アルコール系溶剤」とは、アルコールを主体とする混合溶剤を意味し、少量の水やアルコール以外の有機溶剤、例えば1~20質量%程度、特に5~10質量%程度のエーテル、ケトン、エステル等を含有する混合溶剤をも包含しても良い。他に、炭化水素溶剤やハロゲン化炭化水素溶剤等を含有しても良いが、アミン、アミド等の含窒素溶剤は乾固物中に残存し易い傾向があるため、含有しないか、たとえ含んでも5質量%程度以下とすることが好ましい。第1及び第2のアルコールの合計質量は、銅ペースト中の全溶剤の70質量%以上であることが好ましく、より好ましくは80質量%以上、さらに好ましくは90質量%以上、特に好ましくは95質量%以上である。アルコール、特に3価のアルコールには還元作用があるため、銅ペーストの溶剤中での含有率を高めることにより、銅粉の酸化をより効果的に抑制することができる。
 本発明における第1及び第2のアルコールは、上記の価数及び粘度を有するものであればどのようなものであっても良いが、沸点が150℃以上のアルコールが好ましい。尚、本明細書中で沸点とは、特に明記しない限り大気圧における沸点を意味する。アルコールの沸点が150℃未満だと、加熱時に突沸してペースト中に空隙が発生し、焼結性が悪化する場合がある。一方、沸点が150℃以上のアルコールを用いれば、そうした問題を伴わずに銅ペーストを焼成することができ、焼結体の電気伝導性及び熱伝導性を高めることが可能となる。また、アルコールの沸点が150℃以上であれば、銅ペーストを室温で保管しても、溶剤が揮発して短期間で粘度変化を来すことがない。そのため、冷蔵または冷凍で保管する必要がなくなり、保管コストを低減することもできる。
 本発明における銅粉の酸化防止効果を、さらに顕著なものとするために、第2のアルコールとして、第1のアルコールよりも沸点の高いものを選択することが好ましい。低粘度の第1のアルコールの含有により、本発明の銅ペーストは粘度が適切で作業性が良好なものとなるが、ペースト塗布後には粘度を調整する必要はなく、銅ペーストのダレを防止する観点からは、第1のアルコールはむしろ消失している方が好ましい。一方、アルコールの中でも、2価及び3価、特に3価のアルコールは高い還元作用を有するため、これらを含有する第2のアルコールは、焼成時に高い濃度で存在することが好ましい。そのため、第2のアルコールとして、第1のアルコールよりも沸点の高く、銅ペーストの焼成温度近くで蒸発するものを用いることにより、良好な作業性を保持すると共に、銅粉の酸化をさらに効果的に抑制することができる。本発明のより好ましい態様において、これら第1のアルコールの沸点が150℃以上、250℃以下、特に240℃以下であり、第2のアルコールの沸点は190℃以上、320℃以下であることが好ましい。
 本発明の銅ペーストにおいて、第1のアルコールと第2のアルコールの含有率に特に制限はないが、有機溶剤中の第1のアルコールの質量(X)と第2のアルコールの質量(Y)との比率(X/Y)が、0.2以上かつ8.0以下、特に0.5以上かつ5.0以下であることが好ましい。銅ペーストの接合強度、例えばチップと基板とのダイシェア強度を十分な値とするためには、銅ペースト層がほぼ均一な厚さでチップと基板との界面に印刷される必要がある。上記比率が0.2以上であれば、適正な粘性が得易く、十分な接合強度が得られる。8.0以下であれば、還元作用が十分に発現して焼結性が特に良好となり、高い電気伝導性及び接合強度が得られる。また、有機溶剤(アルコール系溶剤)の含有率にも特に制限はなく、目的とする銅ペーストの粘度に応じて任意に設定できるが、銅ペーストの全量100質量%に対して5質量%以上かつ40質量%以下、特に8質量%以上かつ20質量%以下とすることが、一般的な銅ペーストの粘度とする上で好ましい。溶剤濃度が5質量%程度以上であれば、銅ペーストを均一な層厚で界面全体にいきわたらせることができ、良好な接合強度が発現する。また、溶剤濃度が40質量%程度以下であれば、焼成時に溶剤が残存することなく、電気伝導性や接合強度の低下を来すことがない。
(第1のアルコール)
 本発明における第1のアルコールは、上記のように粘度が3mPa・s以上かつ70mPa・s以下である1価及び2価のアルコールからなる群より選択される一つ以上のアルコールである。第1のアルコールの粘度がこの範囲内であれば、銅ペーストの塗布が容易となり、良好な作業性が確保される。また、第1のアルコールの沸点は、150℃以上であることが好ましい。さらに好ましくは、銅ペーストの焼成温度よりも50℃超低い沸点のアルコールを使用する。尚、銅ペーストの焼成温度は、特に制限はないものの、一般的な接合用途の場合には250~300℃前後なので、本発明における第1のアルコールの沸点は、150℃以上かつ250℃以下、さらには150℃以上かつ240℃以下、中でも150℃超かつ230℃以下、特に170℃以上かつ200℃以下であることが好ましい。また、室温付近、例えば20℃での蒸気圧が0.1Pa以上かつ100Pa以下、さらには1Pa以上かつ50Pa以下、特に3Pa以上かつ30Pa以下であると、貯蔵安定性と作業性がより良好となり、好ましい。こうした第1のアルコールの具体例として、1-ヘキサノール(粘度4.58mPa・s、沸点158℃、蒸気圧80Pa)、1-ヘプタノール(粘度5.81mPa・s、沸点176℃、蒸気圧44Pa)、2-ヘプタノール(粘度3.96mPa・s、沸点159℃、蒸気圧78Pa)、1-オクタノール(粘度7.29mPa・s、沸点195℃、蒸気圧24Pa)、2-オクタノール(粘度6.49mPa・s、沸点180℃、蒸気圧42Pa)、2-エチル-1-ヘキサノール(粘度6.27mPa・s、沸点185℃、蒸気圧35Pa)、ベンジルアルコール(粘度5.47mPa・s、沸点205℃、蒸気圧18Pa)等の1価アルコール;エチレングリコール(粘度16.1mPa・s、沸点197℃、蒸気圧20Pa)、1,2-プロパンジオール(粘度40.4mPa・s、沸点188℃、蒸気圧28Pa)、1,3-プロパンジオール(粘度47mPa・s、沸点214℃、蒸気圧5Pa)、2,3-ブタンジオール(粘度45mPa・s、沸点182℃、蒸気圧<100Pa)、へキシレングリコール(粘度34.4mPa・s、沸点197℃、蒸気圧19Pa)等の2価アルコールが挙げられるが、これらに限定されない。これらアルコールの、2種以上の混合物であっても良い。尚、上記の粘度及び蒸気圧は、いずれも20℃または25℃での値である。本発明においては特に、第1のアルコールとして1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、エチレングリコール、1,2-プロパンジオールへキシレングリコールを使用するのが好ましい。上記のようにこれらの第1のアルコールは、低粘度なので、より少量の添加で銅ペーストの粘度を適正値に調整することができる。そのため、銅ペースト中の全有機溶剤量を低減し、焼成時の有機溶剤成分の残存を抑制することが可能となる。
(第2のアルコール)
 本発明における第2のアルコールは、上記のように粘度が300mPa・s以上かつ1000mPa・s以下である2価及び3価のアルコールからなる群より選択される一つ以上のアルコールである。第2のアルコールの粘度がこの範囲内であれば、焼結前の銅ペーストがダレて所望の形状が形成できなくなるのを防ぐことができ、また、銅ペーストの作業性を損なうこともない。また、第2のアルコールの沸点は、190℃以上であることが好ましいが、より好ましくは、銅ペーストの焼成温度から50℃減じた値以上の温度のものを使用する。一般的な銅ペーストの焼成温度を考慮すると、200℃以上、特に240℃以上であることが好ましい。沸点の上限にも特に制限はないが、作業性や基板等の塗布対象の耐熱温度等を考慮すると、320℃以下、さらには300℃以下であることが好ましい。沸点がこの範囲のアルコールであれば、低温焼成後にも焼結体中の銅粒子の間隙に残存することがないので、電気伝導性を低下させることがない。また、室温付近、例えば20℃での蒸気圧が1mPa以上かつ5Pa以下、さらには1.5Pa以下、特に1Pa以下であると、貯蔵安定性がより良好になる上、焼成の際の酸化抑制効果がさらに高まるために、好ましい。この効果は、第2のアルコールの蒸気圧が第1のアルコールに比べて低いと、特に顕著となる。こうした第2のアルコールの具体例として、2-エチル-1,3-ヘキサンジオール(粘度323mPa・s、沸点244℃、蒸気圧<1.4Pa)等の2価アルコール、及びグリセロール(粘度934mPa・s、沸点290℃、蒸気圧0.01Pa)等の3価アルコールが挙げられるが、これらに限定されない。これらアルコールの混合物であっても良い。
(銅粉)
 本発明の銅ペーストに含有される銅粉に特に制限はなく、種々の市販品等、いずれのものであってもよい。しかしながら本発明においては、銅粉中の銅以外の元素の含有率が、総量にして銅粉100質量%に対して1質量%以下であることが好ましい。銅以外の成分、特に金属元素は、銅粉の表面に偏析したり、酸化物を形成したりすることで焼結性を悪化させると共に、銅粉内部に固溶して焼結体の電気伝導性を低下させる場合がある。銅以外の元素、特にAs、Co、Cr、Fe、Ir、P、S、Sb、Se、Te、Ti、V、Zr等の元素の含有率が1質量%以下であれば、銅ペースト焼結体の電気抵抗率を5μΩcm程度以下にすることができる上、130W/m・K程度以上の熱伝導率が発現する。こうした熱伝導率であれば、例えばパワーモジュールから発生する熱を効率的に外部に放熱することが可能となる。不純物、特に上記元素の含有率が0.5質量%以下であれば、電気抵抗率は4μΩcm程度以下、熱伝導率は167W/m・K程度以上となるので、さらに好ましい。
 こうした銅粉は、例えば国際公開第99/11407号に記載されている高圧水アトマイズ法や、国際公開第2014/80662号に記載されている湿式還元析出法などの方法を用いて作製することができる。高圧水アトマイズ法は、溶融金属から金属粉末(例えば銅)を製造する方法において、溶融金属の垂下流を気体が流れるノズルの中心部を通してノズルの出口近傍で気体により溶融金属を分裂させ、次いで逆円錐状に噴出する液体により上記分裂させた溶融金属をさらに細かく分裂させる方法である。当該方法によれば、気体による分裂と液体による分裂を溶融金属に連続的に作用させることにより、粒子径が微細で形状が球状ないし粒状となり、酸素含有量が少ない金属粉末(例えば銅)を工業的に大規模、かつ低コストで製造することが可能である。また、湿式還元析出法は、ヒドラジンなどの還元剤を用いた湿式での銅イオンの還元において、溶媒として水と相溶性を有しかつ水の表面張力を低下させ得る有機溶媒を用いる方法である。具体的には、水と該有機溶媒を液媒体とし、一価又は二価の銅イオンを含む反応液と還元剤とを混合し、銅イオンを還元して銅粒子を生成する方法である。一般に高圧水アトマイズ法によれば0.7μm以上の粒子を作製することができる。それ以下の微細粒子を作製するには湿式還元析出法が適している。
 銅粉(銅粒子)は、平均粒子径が0.05μm以上2.0μm以下であることが好ましい。銅粒子の平均粒子径を2.0μm以下とすることで、銅粒子の表面積が相対的に増加し、低温での焼結が容易となる傾向にある。一方、銅粒子の平均粒子径が0.05μm未満になると、原料となる銅粒子の価格が高騰し、本発明の方法により形成される銅配線が、銀配線の低価格代替品にならなくなる傾向にある。また、平均粒子径が0.05μm未満であると、多数の粒子が凝集して実質的に粗大粒子からなるペーストと同等の焼結性しか発現しない傾向にある。ここで平均粒子径とは50%粒子径(d50)であり、レーザー粒度分布計などを用いて測定した粒子直径の分布における中央値である。より好ましくは、平均粒子径が0.08μm以上かつ1.0μm以下、特に好ましくは0.3μm以上かつ0.7μm以下の銅粉を使用する。
 銅粉(銅粒子)は、焼結性に影響を与えない範囲で表面に被覆する物質を有していてもよい。しかし、非特許文献1に記載のようなゼラチン層は、焼結を不充分にする傾向があることから、本発明における銅粉はゼラチン層のコーティングを除いたものであることが好ましい。本発明においては、銅粉が、表面の少なくとも一部に、多糖類または脂肪酸の化合物からなる被覆層を有していることが好ましい。多糖類分子は、銅粉を被覆した際に外側(溶剤と接する側)が親水性となるため、銅ペースト中の有機溶剤の水酸基と相互作用して適度な粘性をもたらす。一方、脂肪酸はカルボキシル基が銅粒子表面と結合し、脂肪酸の反対側の末端が疎水性となることで銅粒子の分散性を高めて粒子の凝集を抑制することができる。多糖類及び脂肪酸が有するこれらの作用の結果、銅ペーストが均一な層厚で界面全体にいきわたることが可能となり、良好な接合強度が発現する。多糖類の例としては、アラビアガム、カルボキシメチルセルロース、ヒドロキシエチルセルロース、セルロースナノファイバー、デンプン、グリコーゲン、アガロース(寒天)、ペクチン、及びアルギン酸、並びにそれらの塩等が挙げられるが、これらに限定されず、カラギーナンのような含硫黄多糖類であっても良い。これらの内でも、アラビアガムやアルギン酸ナトリウムが特に好ましい。脂肪酸の例としては、ペンタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸の中鎖脂肪酸が挙げられるが、これらの内でもオクタン酸、ノナン酸、デカン酸が特に好ましい。
 これら被覆層の表面被覆面積率に特に制限はないが、被覆層を有する銅粉100質量%に対して、0.05質量%以上かつ0.8質量%以下の炭素量、及び0.05質量%以上かつ1.5質量%以下の酸素量となるような比率で銅粉が被覆されていることが好ましい。炭素量や酸素量が0.05質量%未満だと、銅粉表面の多糖類分子による親水性が十分に発現し難く、銅ペーストの粘度が低下して均一なペースト層を形成し難くなって接合強度が低下する場合がある。炭素量が0.8質量%超、酸素量が1.5質量%超になると、例えば窒素雰囲気での焼成時に炭素・酸素含有成分が焼結体内部に残存し、電気伝導性や接合強度を低下させる場合がある。より好ましくは、炭素量が0.1~0.5質量%、酸素量が0.1~1.0質量%となるような比率で被覆する。脂肪酸の表面被覆面積率および炭素量、酸素量も多糖類と同様である。
(銅ペーストの作製)
 本発明の銅ペーストは、上記のような銅粉と溶媒を混合し、所望により遊星ミキサーなどの装置を用いて混練することにより作製することができる。また、必要に応じて三本ロールミルを用い銅粉の分散性を高めることも好ましい。尚、銅ペーストの粘度に特に制限はなく、目的とする用途に応じて任意に設定できる。例えば、せん断速度が1sec-1のときの銅ペーストの室温付近、例えば25℃での粘度を、30Pa・s以上、2000Pa・s以下、あるいは100Pa・s以上、1000Pa・s以下、特に150Pa・s以上、800Pa・s以下とすることにより、銅ペーストを基板等に均一に塗布することが容易となり、得られる銅焼結体の熱伝導性及び接合強度をより高めることができる。
(他成分)
 本発明の銅ペーストは、上記した成分以外に、アミン類からなる分散剤や界面活性剤、酸化防止剤、ヒドラジンなどの還元剤、ガラスフリット、樹脂成分を始めとするバインダー等を含有していてもよい。樹脂成分として、例えば、メチルセルロース、エチルセルロース、カルボキシメチルセルロースなどのセルロース系樹脂、アクリル樹脂、ブチラール樹脂、アルキド樹脂、エポキシ樹脂、フェノール樹脂などを、銅粒子の質量に対して0.05~5質量%程度含有させることもできる。
 しかしながら本発明の銅ペーストは、実質的に樹脂成分を含有しないことが好ましい。銅ペーストが樹脂成分を含有すると、焼結性、特に350℃以下での焼結性が悪化する場合がある。例えばエポキシ樹脂のような熱硬化型の樹脂は、焼結後も銅ペースト焼結体中に残存する傾向にある。セルロース樹脂類を用いた場合も、300℃前後で熱分解が開始するものの、完全に熱分解するには400℃以上の温度とする必要があり、しかも熱分解によって生成する炭素残渣を除去するために酸素雰囲気での焼成が必要となって、銅粉が酸化される問題が生じる。樹脂成分不含の銅ペーストであれば、焼成を非酸化的雰囲気下にて、比較的低温で行うこともできるため、高密度の銅焼結体を形成することができ、銅粉の酸化による導電性の低下を来すことがない。本発明の銅ペーストにおいては、粘度の高い第2のアルコールを含有するため、樹脂成分なしでも粘度を適切な値に調整することが可能である。
(銅ペーストの用途)
 本発明の銅ペーストは、上記のように、高い電気伝導性及び熱伝導性を備え、保管安定性や作業性の点でも優れている。本発明の銅ペーストはまた、低温・短時間で焼成でき、高い接合強度を発現することが可能である。そのため、パワーモジュール、チップ抵抗器、チップコンデンサ、太陽電池などの電子部品、ならびにプリント配線基板、スルーホールが形成された基板などの電子実装品における配線形成の用途に好適である。例えば、パワーモジュール、太陽電池用基板や電子実装品を搭載する基板、プリント配線基板、スルーホールを有する基板などに、本発明の銅ペーストを塗布し、焼成することができる。ここで、基板材料としては、シリコン基板、珪酸ガラス、アルミナ、クォーツなどの酸化物基板、シリコン窒化物、アルミニウム窒化物などの窒化物基板、シリコン炭化物、チタン炭化物などの炭化物基板、ポリイミド、ポリエチレンテレフタレート、ポリエチレンナフタレートなどの樹脂基板、さらには透明性導電膜(TCO)や金属膜を表面に備える基板などが使用できる。
(銅ペーストの焼成)
 本発明の銅ペーストを焼成する場合、その方法及び条件に特に制限はなく、目的とする製品やペーストを塗布する相手材に応じて任意の手法で行うことができる。しかしながら、本発明の銅ペーストの焼成に先立ち、第1のアルコールを乾燥除去することが好ましい。このことによって、焼成時における銅粉周辺の第2のアルコールの存在比が高まるため、焼成中における銅粉の酸化をより有効に防止することができる。乾燥条件に特に制限はなく、用いた第1のアルコールの沸点や目的とする製品に応じて任意に設定できるが、大気雰囲気下において50~200℃、特に60~150℃の温度に、1~60分間加熱するのが好ましい。乾燥を減圧下で行い、加熱温度をさらに低下させることもできる。加熱乾燥を還元雰囲気下で行うことも可能である。
 本発明の銅ペーストは低温・短時間での焼成が可能なので、焼成条件も種々の範囲に設定できる。例えば、窒素、アルゴンガスなどの不活性ガス雰囲気下、あるいは、水素、アンモニア、一酸化炭素、アルコール等を0.1体積%~30体積%程度含有する還元雰囲気下で、150℃以上かつ400℃以下、あるいは200℃以上かつ350℃以下、特に250℃以上かつ300℃以下の温度で10秒間以上かつ60分間以下、特に2分間以上かつ30分間以下の時間焼成することにより、電気伝導性及び熱伝導性の優れた、高強度の焼結体とすることができる。
 以下、本発明について実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
(実施例1)
 多糖類であるアラビアガムで表面を被覆した銅粉(50%粒子径:約0.4μm、炭素含有率:0.3質量%、酸素含有率:0.7質量%、銅以外の金属元素量:0.2質量%)、第1のアルコールとしてのエチレングリコール、及び第2のアルコールとしてのグリセロールを用意し、これらを質量比87.0:6.5:6.5で混練して、銅ペーストを作製した。ここで、質量比とは銅ペーストの重量を100としたときの、それぞれの成分の質量を意味する。
 作製したペーストは、動的粘弾性計(Brookfield社製Rheometer)を用いて、作製後2時間以内の粘度(η0)を測定した。さらに大気中10℃に7日間保管した後の粘度(η7)を測定し、粘度の経時変化率を算出した。粘度変化率(%)は、(η7-η0)/η0×100と定義した。
 このペーストを、メタルマスクを用いて一辺が20mmの正方形となるようにガラス基板上に塗布し、大気中において60℃で5分間の乾燥後に、窒素雰囲気中において高温プレス機を用いて20MPaの荷重を負荷し、280℃、2分間の加圧焼成を行って、厚さが約20μmの銅ペースト焼結体とした。この焼結体について、プローブ間隔を1mmに設定した直流4探針法電気抵抗測定装置を使用し、電気抵抗率を測定した。
 また、ガラス基板に替えて厚さが1mmの銅板を基板として、その上に厚さが100μmとなるように銅ペーストを塗布した。さらにその上に、炭化珪素(SiC)からなる、大きさが2mm×2mm×0.4mmの半導体チップを配置した。SiCチップが銅ペーストに接する面には、スパッタ法を用いてTi層を500nm、Cu層を500nmの厚さに成膜した。このようにしてできた積層体に対して窒素雰囲気中で高温プレス機を用いて20MPaの荷重を負荷し、焼成温度を280℃として、2分間の加圧焼成を行った。室温まで冷却したサンプルにおいて、SiCチップと銅基板との密着強度をダイシェア試験機(Nordson社製DAGE4000)でダイシェア強度を測定した。
 上記測定結果について、粘度変化率は10%以下、電気抵抗率は5μΩcm以下、ダイシェア強度は40MPa以上をそれぞれ合格と評価し、全ての項目が合格の場合を判定A、2つの項目が合格の場合を判定B、1つの項目が合格あるいは全項目不合格の場合を判定Cとした。さらに、判定Aの結果においてダイシェア強度が70MPa以上の場合を判定AAとした。
 測定結果及び判定結果を、表1中の実施例1の欄に示す。判定結果はAAであった。
(実施例2~7、比較例1~3)
 第1のアルコールの種類を変えた以外は、実施例1と同様の方法で銅ペーストを作製し、実験を行った。測定及び判定の結果を、第1のアルコールの種類と共に表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明に従い、粘度が3mPa・s以上、70mPa・s以下の範囲にある第1のアルコールを第2のアルコールと組み合わせて用いた実施例1~7では、上記の基準による判定がAA、A、またはBと、好ましい結果が得られた。さらに、第1のアルコールとして沸点が150℃以上240℃以下、20℃での蒸気圧が3Pa以上30Pa以下のものを用いた実施例1、3~5、及び7では、判定がAAまたはAとなり、より好ましい結果となった。
(実施例8)
 表1の実験において、銅粉の表面被覆層を多糖類のアラビアガムから脂肪酸の一つであるデカン酸に替えて同じ実験をしたところ、アラビアガム被覆銅粉の場合と比較して、作製後2時間以内の銅ペーストの粘度が約8~25%小さくなり、銅ペーストの塗布厚が約60~85μmとなった以外は、表1における判定と同じ結果が得られた。
 これより、銅粉の表面被覆層は多糖類に限定されず、中鎖脂肪酸でも良いことが明らかとなった。
(実施例9、比較例4、5)
 上記実施例1において、第1のアルコールをエチレングリコールとし、第2のアルコールの種類を変えた以外は、同じ条件で銅ペーストを作製し実験を行った。表2に結果を示す。
Figure JPOXMLDOC01-appb-T000002
 本発明に従い、第2のアルコールとして粘度が300mPa・s以上、1000mPa以下の2価または3価アルコールを用いた実施例1及び9では、判定がAAまたはAと、好ましい結果が得られた。一方、粘度が上記範囲から外れるアルコールを用いた比較例4及び5では、判定がCとなった。実施例1及び9においては、第2のアルコールの沸点が240℃以上であることで、判定がさらに好ましい結果になったと考えられる。また、20℃での蒸気圧が1Pa以下であるグリセロールを用いた実施例1では、判定がAAと、特に良好な結果が得られた。
(実施例10~13、比較例6,7)
 上記実施例1において第1のアルコールをエチレングリコールとし、第2のアルコールをグリセロールとし、それぞれの質量比(X/Y)を変化した以外は、同じ条件で銅ペーストを作製し実験を実施した。表3に結果を示す。表3において、合格の基準は表1及び2と同じである。但し、今回は評価項目が2つなので、それら2つがいずれも合格の場合を判定A、その一方または両方が不合格の場合を判定Cとした。判定AAとする基準は表1及び2と同一である。
Figure JPOXMLDOC01-appb-T000003
 X/Yが0.2(1/5)以上、8(8/1)以下であれば電気抵抗率ならびにダイシェア強度がAAまたはAとなり、好ましい結果が得られることが判明した。特に、X/Yが0.5(1/2)以上、5(5/1)以下の場合は、ダイシェア強度が70MPa以上の非常に高い値を示し、判定はAAであり、より好ましい結果となった。
(実施例14~17、比較例8~11)
 アラビアガム被覆銅粉における炭素量及び酸素量を表4のように変動させ、かつ銅粉中の金属不純物量を0.2質量%とした以外は、実施例1と同様の操作を行った。各銅ペースト試料の組成及び試験結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 いずれの銅ペーストにおいても、30MPaを超えるダイシェア強度が発現したが、炭素量と酸素量が少ない銅粉はペースト粘度が軟化する傾向にある。一方で炭素量と酸素量が増加するに伴ってペースト粘度が硬化する傾向にある。炭素量が0.05~0.8質量%、酸素量が0.05~1.5質量%の被覆銅粉を使用した実施例14~17では、4μΩcm未満の低い電気抵抗率と40MPaを超える高いダイシェア強度とが発現することが示された。
 以上のように、本発明の銅ペーストは、高い電気伝導性を備え、保管安定性に優れ、高い接合強度を発現する。本発明の銅ペーストはまた、良好な耐酸化性を示し、高い熱伝導性を備え、低温・短時間で焼成することが可能である。

Claims (7)

  1.  銅粉と有機溶剤とを含有する銅ペーストであって、
     前記有機溶剤は、
     20℃における粘度が3mPa・s以上70mPa・s以下である1価及び2価のアルコールからなる群より選択される一つ以上の第1のアルコールと、
     20℃における粘度が300mPa・s以上1000mPa・s以下である2価及び3価のアルコールからなる群より選択される一つ以上の第2のアルコールと
    を含有するアルコール系溶剤である、銅ペースト。
  2.  前記アルコール系溶剤において、
     第1のアルコールの大気圧における沸点が150℃以上240℃以下であり、
     かつ
     第2のアルコールの大気圧における沸点が190℃以上320℃以下であり、
     かつ
    第1のアルコールの沸点は第2のアルコールの沸点より低いことを特徴とする
    請求項1に記載の銅ペースト。
  3.  前記有機溶剤中の前記第1のアルコールの質量(X)と前記第2のアルコールの質量(Y)との比率(X/Y)が、0.2以上8.0以下である、請求項1または2に記載の銅ペースト。
  4.  前記第1のアルコールは、1-ヘキサノール、1-ヘプタノール、2-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、ベンジルアルコール、ヘキシレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、及びエチレングリコールから成る群より選択される1種以上のアルコールであり、かつ
     前記第2のアルコールは、2-エチル-1,3-ヘキサンジオール及びグリセロールから成る群より選択される1種以上のアルコールである、請求項1~3のいずれか1項に記載の銅ペースト。
  5.  実質的に樹脂成分を含有しない、請求項1~4のいずれか1項に記載の銅ペースト。
  6.  前記銅粉が、表面の少なくとも一部に、多糖類及び脂肪酸から選択される少なくとも一つの化合物からなる被覆層を有している、請求項1~5のいずれか1項に記載の銅ペースト。
  7.  前記被覆層を有する銅粉が、該銅粉100質量%に対して0.05質量%以上0.8質量%以下の炭素、及び0.05質量%以上1.5質量%以下の酸素を含む、請求項6に記載の銅ペースト。
PCT/JP2022/001846 2021-02-05 2022-01-19 銅ペースト WO2022168610A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22749486.1A EP4275816A4 (en) 2021-02-05 2022-01-19 COPPER PASTE
CN202280013320.3A CN116964689A (zh) 2021-02-05 2022-01-19 铜糊剂
US18/275,898 US20240116105A1 (en) 2021-02-05 2022-01-19 Copper paste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017286A JP2022120411A (ja) 2021-02-05 2021-02-05 銅ペースト
JP2021-017286 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168610A1 true WO2022168610A1 (ja) 2022-08-11

Family

ID=82740596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001846 WO2022168610A1 (ja) 2021-02-05 2022-01-19 銅ペースト

Country Status (5)

Country Link
US (1) US20240116105A1 (ja)
EP (1) EP4275816A4 (ja)
JP (1) JP2022120411A (ja)
CN (1) CN116964689A (ja)
WO (1) WO2022168610A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011407A1 (fr) 1997-08-29 1999-03-11 Pacific Metals Co., Ltd. Procede de production de poudre metallique par atomisation et son appareil
JP5450725B2 (ja) 2011-08-30 2014-03-26 富士フイルム株式会社 コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線
WO2014080662A1 (ja) 2012-11-26 2014-05-30 三井金属鉱業株式会社 銅粉及びその製造方法
JP2016053216A (ja) 2014-09-01 2016-04-14 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP6097477B2 (ja) 2010-12-06 2017-03-15 古河電気工業株式会社 導電パターン形成方法
JP2017123253A (ja) * 2016-01-06 2017-07-13 日立化成株式会社 導体形成組成物、導体の製造方法、導体及び装置
WO2018179838A1 (ja) * 2017-03-30 2018-10-04 ハリマ化成株式会社 導電性ペースト
JP2020020015A (ja) * 2018-08-02 2020-02-06 日立化成株式会社 接合用金属ペースト、接合体及び接合体の製造方法
JP2020164649A (ja) * 2019-03-29 2020-10-08 学校法人 関西大学 導電性インキ組成物及び導電性積層体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9190188B2 (en) * 2013-06-13 2015-11-17 E I Du Pont De Nemours And Company Photonic sintering of polymer thick film copper conductor compositions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999011407A1 (fr) 1997-08-29 1999-03-11 Pacific Metals Co., Ltd. Procede de production de poudre metallique par atomisation et son appareil
JP6097477B2 (ja) 2010-12-06 2017-03-15 古河電気工業株式会社 導電パターン形成方法
JP5450725B2 (ja) 2011-08-30 2014-03-26 富士フイルム株式会社 コラーゲンペプチド被覆銅ナノ粒子、コラーゲンペプチド被覆銅ナノ粒子分散物、コラーゲンペプチド被覆銅ナノ粒子の製造方法、導電性インク、導電膜の製造方法、及び導体配線
WO2014080662A1 (ja) 2012-11-26 2014-05-30 三井金属鉱業株式会社 銅粉及びその製造方法
JP2016053216A (ja) 2014-09-01 2016-04-14 Dowaエレクトロニクス株式会社 接合材およびそれを用いた接合方法
JP2017123253A (ja) * 2016-01-06 2017-07-13 日立化成株式会社 導体形成組成物、導体の製造方法、導体及び装置
WO2018179838A1 (ja) * 2017-03-30 2018-10-04 ハリマ化成株式会社 導電性ペースト
JP2020020015A (ja) * 2018-08-02 2020-02-06 日立化成株式会社 接合用金属ペースト、接合体及び接合体の製造方法
JP2020164649A (ja) * 2019-03-29 2020-10-08 学校法人 関西大学 導電性インキ組成物及び導電性積層体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4275816A4
YONEZAWA ET AL., RSC ADVANCES, vol. 5, 2015, pages 61290 - 61297

Also Published As

Publication number Publication date
CN116964689A (zh) 2023-10-27
JP2022120411A (ja) 2022-08-18
EP4275816A4 (en) 2024-03-13
EP4275816A1 (en) 2023-11-15
US20240116105A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
EP3348338B1 (en) Copper paste for joining, method for producing joined body, and method for producing semiconductor device
JP4870223B1 (ja) ペースト状銀粒子組成物、金属製部材接合体の製造方法および金属製部材接合体
ES2382527T3 (es) Composición de electrodo de plata de película gruesa de polímero para uso en células fotovoltaicas de película fina
WO2015060173A1 (ja) 銀ペースト及びそれを用いた半導体装置
JP2016525495A (ja) 焼結が難しい貴金属表面および非貴金属表面上に酸化銀が被覆された焼結ペースト
JP6659026B2 (ja) 銅粒子を用いた低温接合方法
TWI729373B (zh) 導電性膠及燒結體
JP2016004671A (ja) 銅ペーストの焼成方法
JP2013004309A (ja) 金属ナノ粒子ペースト
US9034417B2 (en) Photonic sintering of polymer thick film conductor compositions
US20230068210A1 (en) Brazing material, method for producing the same, and method for producing metal-ceramics bonded substrate
JP2014503614A (ja) 薄膜光電池およびその他の用途に使用するためのはんだ付け可能なポリマー厚膜銀電極組成物
JP2019087553A (ja) 接合用の導電性ペーストおよびこれを用いた電子デバイスの製造方法
TWI785319B (zh) 加壓接合用組合物、以及導電體之接合構造及其製造方法
JP5733638B2 (ja) 接合材料およびそれを用いた半導体装置、ならびに配線材料およびそれを用いた電子素子用配線
WO2022168610A1 (ja) 銅ペースト
WO2024034662A1 (ja) 銅ペースト
US20240033860A1 (en) Sintering paste and use thereof for connecting components
EP3763464A1 (en) Metal particle aggregates, method for producing same, paste-like metal particle aggregate composition, and method for producing composite body using said paste-like metal particle aggregate composition
JP2006278936A (ja) 金属層を備えた基板の製造方法。
US11149161B2 (en) Metal ink
TWI789698B (zh) 氧化銅糊料及電子零件之製造方法
JP7332128B2 (ja) 電子部品及びその製造方法
JP7487011B2 (ja) 接合材、接合材の製造方法及び接合方法
JP2014065971A (ja) 金属ナノ粒子ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013320.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18275898

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022749486

Country of ref document: EP

Effective date: 20230808

NENP Non-entry into the national phase

Ref country code: DE