WO2022168273A1 - 光合波器及び光合波方法 - Google Patents

光合波器及び光合波方法 Download PDF

Info

Publication number
WO2022168273A1
WO2022168273A1 PCT/JP2021/004387 JP2021004387W WO2022168273A1 WO 2022168273 A1 WO2022168273 A1 WO 2022168273A1 JP 2021004387 W JP2021004387 W JP 2021004387W WO 2022168273 A1 WO2022168273 A1 WO 2022168273A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
main
paths
incident
sub
Prior art date
Application number
PCT/JP2021/004387
Other languages
English (en)
French (fr)
Inventor
慧 中尾
俊夫 勝山
祥治 山田
人志 樋口
Original Assignee
国立大学法人福井大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人福井大学 filed Critical 国立大学法人福井大学
Priority to JP2021551858A priority Critical patent/JP7100930B1/ja
Priority to US17/605,871 priority patent/US20240027683A1/en
Priority to PCT/JP2021/004387 priority patent/WO2022168273A1/ja
Priority to CN202180003035.9A priority patent/CN115427854A/zh
Publication of WO2022168273A1 publication Critical patent/WO2022168273A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the present invention relates to an optical multiplexer and an optical multiplexing method.
  • Patent Literature 1 discloses an optical integrated circuit that projects laser beams corresponding to RGB colors in close proximity.
  • Patent Document 1 As described above, it is limited to proximity (multiplexing) of three colors of RGB. On the other hand, it is preferable if light of four colors (four kinds of wavelengths) or more can be combined.
  • the present invention has been made in view of the above-mentioned conventional situation, and an object of the present invention is to provide an optical multiplexer and an optical multiplexing method capable of multiplexing light of four or more wavelengths.
  • the present invention is an optical multiplexer capable of multiplexing light of a plurality of wavelengths, comprising: a pair of main incident paths; a pair of main output paths; , and a main coupler that couples the light incident on the main incident path and outputs the light to the main output path, one of the main incident paths of the couplings is connected to the other of the couplings.
  • each of said main couplers having coupling characteristics different from at least one of said other main couplers.
  • the subunit includes a pair of sub entrance paths, a pair of sub exit paths, and the a sub-combiner configured to combine light incident on the sub-incident path and output to the sub-output path
  • the sub-incident path is configured to be connectable to the main output path
  • the sub-output path comprises: It is preferably configured to be connectable to the main incident path.
  • the sub entrance path is configured to be connectable to the sub exit path of the other subunit.
  • the sub exit path is configured to be connectable to the sub entrance path of the other subunit.
  • the reference unit has three coupling portions as one set, the other of the main output paths of the first coupling portion is connected to one of the main incident paths of the third coupling portion, One of the main output paths of two of the couplings is connected to the other of the main input paths of the third of the couplings, and the main coupler of the first of the couplings and the second of the couplings and the main coupler of the third coupling section preferably have different coupling characteristics.
  • one of the light with the longest wavelength and the light with the next longest wavelength among the light with the plurality of wavelengths incident on the reference unit is incident on one of the main incident paths of the first coupling section. and the remainder of either the light with the longest wavelength or the light with the next longest wavelength out of the light with the plurality of wavelengths incident on the reference unit on the other side of the main incident path of the second coupling section is preferably incident.
  • the main coupler of the first coupling section has a coupling characteristic of emitting light incident on one of the main incident paths of the first coupling section to the other main exit path
  • the main coupler of the second coupling section has a coupling characteristic of emitting light incident on one of the main incident paths of the second coupling section to one of the main exit paths
  • the main coupler of the third coupling portion has a coupling characteristic of emitting light incident on any of the main incident paths of the third coupling portion to any of the main exit paths.
  • One of the sub-output paths of the sub-unit is connected to the other main incident path of the first coupling section, and the other of the sub-output paths of the sub-unit is connected to the second coupling section. It is preferably connected to one of the main entrance paths.
  • the sub-combiners of the sub-units have a coupling characteristic of emitting light incident on a pair of the sub-incident paths to at least one of the sub-output paths.
  • the other of the sub entrance paths of the subunit is preferably connected to one of the sub exit paths of the other subunit.
  • one of the main exit paths of the third coupling portion is preferably connected to the other of the sub entrance paths of the other subunits.
  • the sub-combiners of the sub-units have a coupling characteristic of splitting at least one of the lights incident on the pair of sub-incidence paths to the pair of sub-output paths and outputting them.
  • the present invention also provides an optical multiplexing method for multiplexing lights of a plurality of wavelengths, wherein a part of a first light and a second light are combined and the light is output as a first combined light.
  • a first combined light output stage a second combined light output stage for combining another part of the first light and the third light and outputting the second combined light; and a third combined light output stage for combining the light from and outputting as third combined light, and a fourth combined light for combining the second combined light and the third combined light and outputting as fourth combined light. and an output stage.
  • ⁇ 1 is the wavelength of the first light
  • ⁇ 2 is the wavelength of the second light
  • ⁇ 3 is the wavelength of the third light
  • ⁇ 4 is the wavelength of the fourth light.
  • the present invention also provides an optical multiplexing method for multiplexing light of a plurality of wavelengths, comprising a step of connecting an output path of a coupling section capable of multiplexing at least two lights to an incident path of another coupling section. Regarding the wave method.
  • ⁇ 1 is the wavelength of the first light
  • ⁇ 2 is the wavelength of the second light
  • ⁇ 3 is the wavelength of the third light
  • ⁇ 4 is the wavelength of the fourth light.
  • an optical multiplexer and an optical multiplexing method capable of multiplexing light of four or more wavelengths.
  • FIG. 4 is a schematic diagram showing the relationship between the coupling section of the optical multiplexer according to the first embodiment of the present invention and incident light; It is a schematic diagram showing the relationship between the coupling portion of the optical multiplexer of the first embodiment and the incident light.
  • 1 is a schematic diagram showing the configuration of an optical multiplexer according to a first embodiment
  • FIG. 4 is a schematic diagram showing the relationship between the wavelength of light incident on the optical multiplexer of the first embodiment and the coupling characteristics
  • FIG. 4 is a table showing wavelengths and multiplexing efficiencies of light incident on the optical multiplexer of the first embodiment
  • FIG. 4 is an image diagram showing a route through which first light incident on the optical multiplexer of the first embodiment has passed;
  • FIG. 4 is an image diagram showing a route through which second light incident on the optical multiplexer of the first embodiment has passed;
  • FIG. 5 is an image diagram showing a route through which third light incident on the optical multiplexer of the first embodiment has passed;
  • FIG. 4 is an image diagram showing a route through which a fourth light incident on the optical multiplexer of the first embodiment has passed; It is a schematic diagram showing the configuration of an optical multiplexer according to a second embodiment of the present invention.
  • FIG. 9 is a table showing coupling characteristics with respect to wavelengths of light incident on the optical multiplexer of the second embodiment; 9 is a table showing wavelengths of light incident on the optical multiplexer of the second embodiment and multiplexing efficiency; It is a schematic diagram showing the configuration of an optical multiplexer according to a third embodiment of the present invention.
  • FIG. 11 is a table showing coupling characteristics with respect to wavelengths of light incident on the optical multiplexer of the third embodiment;
  • FIG. 10 is a table showing wavelengths of light incident on the optical multiplexer of the third embodiment and multiplexing efficiency;
  • FIG. 1 the outline of the optical multiplexer 1 and the optical multiplexing method according to each embodiment will be described.
  • the optical multiplexer 1 is, for example, a device capable of multiplexing light of multiple wavelengths.
  • the optical multiplexer 1 is a device capable of multiplexing light with four or more different wavelengths.
  • the optical multiplexer 1 has a plurality of couplers 10 each having a pair of main incident paths 110 and 120, a pair of main exit paths 130 and 140, and a main coupler 150, for example, as shown in FIG.
  • the optical multiplexer 1 multiplexes light of multiple wavelengths using a combination of multiple coupling units 10 .
  • the optical multiplexer 1 has, for example, a structure in which a plurality of coupling sections 10 are combined.
  • the coupler 10 will be described as an example of a directional coupler. Anything else applies.
  • the coupling unit 10 is not necessarily limited to a directional coupler such as a multimode interference coupler other than a directional coupler, and light is incident from a pair of main incident paths 110 and 120 and Any type may be used as long as it is emitted from the emission paths 130 and 140 .
  • a directional coupler is a coupler having a structure in which two optical waveguides are closely arranged in parallel.
  • the light field leaked from the optical waveguide reaches the adjacent optical waveguide, and as the light propagates along the waveguide, the light is transferred to the adjacent waveguide or returns to the original waveguide again.
  • a multimode interference coupler consists of an optical waveguide (multimode optical waveguide) with a relatively wide width compared to the wavelength. It is a coupler that performs light switching by connecting a light input/output optical waveguide to an optical waveguide.
  • Multimode optical waveguides are not only simple wide optical waveguides, but also have various shapes, such as those composed of a plurality of optical waveguides, those whose waveguide widths change in the propagation direction, and the like.
  • Each of the pair of main incident paths 110 and 120 is a so-called waveguide.
  • the main entrance paths 110, 120 are preferably, for example, single mode waveguides or waveguides having the fundamental mode as the main component.
  • Each of the pair of main incident paths 110 and 120 functions as a transmission path for incident light.
  • the pair of main incident paths 110 and 120 approach each other from the incident port along the transmission direction so that the distance therebetween is small. It is approaching.
  • Each of the pair of main output paths 130, 140 is a so-called waveguide.
  • Each of the pair of main emission paths 130 and 140 functions as a transmission path for emitted light.
  • the pair of main output paths 130 and 140 are spaced apart so that the distance between them increases along the transmission direction toward the output port, and the most typical example is a shape that curves in a direction toward each other. are spaced apart.
  • the main coupler 150 is a multiplexer that actually multiplexes the light incident along the main incident paths 110 and 120 .
  • the main coupler 150 is disposed between the main incident paths 110 and 120 and the main exit paths 130 and 140, and couples the light incident on the main incident paths 110 and 120 and outputs the combined light to the main exit paths 130 and 140.
  • FIG. Main combiner 150 has predetermined coupling characteristics. For example, as shown in FIG. 1, the main coupler 150 has a coupling characteristic that substantially all of the light of a predetermined wavelength ⁇ that is incident on one main incident path 110 is emitted to the other main exit path 140.
  • the length (coupling length) of the main coupler 150 which is the coupling characteristic, is referred to as a "perfect coupling length" for a predetermined wavelength in this embodiment.
  • a perfect coupling length for a predetermined wavelength in this embodiment.
  • the length of the main coupler 150 is twice the complete coupling length, almost all of the light with a predetermined wavelength ⁇ incident on one main incident path 110 is It has a coupling characteristic of emitting to one main emission path 130 .
  • the light of wavelength ⁇ incident on one main incident path 110 is once transferred to the other main output path 140 and then to one main output path 130 in the main coupler 150 .
  • the light of the wavelength ⁇ that is incident on one main incident path 110 is once transferred to the other main exit path 140 in the main coupler 150 and then It is transmitted to the output path 130 and then to the other main output path 140 again.
  • the incident light exits from one or both of the pair of main exit paths 130 and 140 depending on the perfect coupling length determined by the wavelength ⁇ and the length of the main coupler 150 .
  • one main incident path 110 , 120 of the coupling section 10 is connected to the main exit paths 130 , 140 of the other coupling section 10 .
  • light incident on one coupling portion 10 is finally emitted from one main emission path 130 , 140 via one or a plurality of coupling portions 10 .
  • a reference unit 100 will be described in which three joints 10 are connected in a predetermined combination. Also, the connecting portion 10 that is detachably attached to the reference unit 100 will be described as a subunit 21 . In the following embodiments, by changing the connection combination of the subunits 21 with respect to the reference unit 100, light of various wavelengths can be multiplexed.
  • the optical multiplexer 1 includes a reference unit 100 and subunits 21, as shown in FIG.
  • the optical multiplexer 1 has four wavelengths: first light (wavelength ⁇ 1), second light (wavelength ⁇ 2), third light (wavelength ⁇ 3), and fourth light (wavelength ⁇ 4). combine light.
  • first light wavelength ⁇ 1
  • second light wavelength ⁇ 2
  • third light wavelength ⁇ 3
  • fourth light wavelength ⁇ 4
  • a reference unit 100 is a set of a plurality of connecting parts 10 .
  • the reference unit 100 is a set of three connecting parts 10, as shown in FIG.
  • the reference unit 100 includes a first coupling portion 11 , a second coupling portion 12 and a third coupling portion 13 .
  • the first coupling portion 11 is configured to allow the third light to enter one of the pair of main incident paths 111 and 121 .
  • the main coupler 151 of the first coupler 11 has a coupling characteristic of emitting the light incident on the main incident path 121 of the first coupler 11 to the other main exit path 141 .
  • the main coupler 151 of the first coupler 11 has a length of L/2, which is the complete coupling length of the third light, as shown in FIG.
  • L is the perfect coupling length for the wavelength ⁇ 2 of the second light.
  • the other of the main outgoing paths 131 and 141 of the first coupling portion 11 is connected to one of the main incident paths 113 and 123 of the third coupling portion 13, which will be described later.
  • the main input path 121 and the main input path 121 of the first coupling section 11 to which the third light is incident are located on the same side of the main coupler 151 as a boundary in the length direction.
  • a main exit path 141 arranged is connected to one main entrance path 113 of the third coupling portion 13 .
  • light having the second longest wavelength (third light in the present embodiment) of the light having the longest wavelength among the plurality of lights is emitted. is incident.
  • the second coupling portion 12 is configured to allow the fourth light to enter the other of the pair of main incident paths 112 and 122 .
  • the main coupler 152 of the second coupling section 12 has a coupling characteristic of emitting the light incident on the main incident paths 112 and 122 of the second coupling section 12 to one of the main exit paths 132 .
  • the main coupler 152 of the second coupler 12 has a length of L/3, which is the complete coupling length of the fourth light.
  • One main output path 132 of the second coupling portion 12 is connected to the other main incident path 123 of the third coupling portion 13, which will be described later.
  • the main output path arranged on the side opposite to the main input path 122 on which the fourth light is incident with respect to the length direction of the main coupler 152. 132 is connected to the other main entrance path 123 of the third coupling 13 . Note that the light having the longest wavelength (the fourth light in this embodiment) among the plurality of lights is incident on the other main incident path of the second coupling section 12 .
  • the third joint 13 is connected to the first joint 11 and the second joint 12 .
  • one main incident path 113 of the third coupling portion 13 is connected to the other main exit path 141 of the first coupling portion 11 .
  • the other main incident path 123 of the third coupling portion 13 is connected to one main exit path 132 of the second coupling portion 12 .
  • the main coupler 153 of the third coupling portion 13 has a coupling characteristic of emitting the light incident on the main incident paths 113 and 123 of the third coupling portion 13 to one main exit path 133 .
  • the main coupler 153 of the third coupler 13 has a length of L, which is the complete coupling length of the second light.
  • the subunit 21 is configured to be connectable to the reference unit 100.
  • the subunit 21 includes a pair of sub entrance paths 211 and 221 , a pair of sub exit paths 231 and 241 and a sub combiner 251 .
  • one subunit 21 is provided as shown in FIG.
  • the subunit 21 is coupled to the first coupling portion 11 and the second coupling portion 12 .
  • Each of the pair of sub incident paths 211 and 221 is a so-called waveguide.
  • Each of the pair of sub incident paths 211 and 221 functions as a transmission path for incident light.
  • each of the pair of sub incident paths 211 and 221 receives the first light and the second light.
  • the second light is incident on the first coupling portion 11 side with the length direction of the sub-coupler 251 as a boundary.
  • the first light is incident on the second coupling portion 12 side.
  • the sub exit paths 231 and 241 are configured to be connectable to the main entrance paths 121 and 112 .
  • the pair of sub-incident paths 211 and 221 approach each other from the entrance along the transmission direction so that the distance between them decreases, and the most typical example is a shape that curves in the direction of approaching each other. It is approaching.
  • Each of the pair of sub-output paths 231 and 241 is a so-called waveguide.
  • Each of the pair of sub emission paths 231 and 241 functions as a transmission path for emitted light.
  • the pair of sub-exit paths 231 and 241 are spaced apart so that the distance between them increases along the transmission direction toward the exit, and the most typical example is a shape that curves in a direction toward each other. are spaced apart.
  • the optical multiplexer 1 as described above operates as follows. First, the subunit 21 is combined with the reference unit 100 . Specifically, as shown in FIG. 3, sub A pair of sub exit paths 231, 241 of the unit 21 are coupled.
  • the first light (perfect coupling length 2L) and the second light (perfect coupling length L) are incident on each of the pair of sub incident paths of the subunit 21 .
  • the first light is incident on the other sub incident path 221 .
  • the second light is incident on one of the sub incident paths 211 .
  • the first light enters the sub-combiner 251 (coupling length L) from the other sub-incident path 221 .
  • the first light is split in the sub-combiner 251 and emitted to the sub-outgoing paths 231 and 241 . Thereby, the first light is branched and emitted to each of the pair of sub emission paths 231 and 241 .
  • the second light enters the sub-coupler 251 from one sub-incident path 211 .
  • the second light generally hops from one sub-input path 211 to the other sub-output path 241 at the sub-combiner 251 .
  • the second light is mostly emitted from the other sub-exit path 241 . That is, the first light having the divided light amount is emitted to one of the sub-emission paths 231 .
  • combined light of the first light having the divided light amount and the second light (hereinafter also referred to as first combined light) is emitted to the other sub-exit path 241 .
  • the third light (complete coupling length L/2) enters one main incident path 111 of the first coupling section 11 . Then, the first light emitted to one sub-emission path 231 enters the other main incident path 121 of the first coupling section 11 .
  • the third light enters the main coupler 151 (coupling length L/2) from one main incident path 111 . Also, the first light incident on the other main incident path 121 is incident on the main coupler 151 .
  • the third light generally hops from one main input path 111 to the other main output path 141 at the main coupler 151 . As a result, the third light is mostly emitted from the other main emission path 141 .
  • the first light is emitted to the other main emission path 141 without being transferred to one main emission path 131 .
  • combined light of the first light and the third light (hereinafter also referred to as second combined light) is emitted to the other main emission path 141 .
  • the fourth light (complete coupling length L/3) enters the other main incident path 122 of the second coupling portion 12 .
  • the first combined light (the first light and the second light) emitted to the other sub-emission path 241 enters the one main incident path 112 .
  • the fourth light enters the main coupler 152 (coupling length L/3) from the other main incident path 122 .
  • the first combined light enters the main coupler 152 from one of the main incident paths 112 .
  • the fourth light generally hops from the other main input path 122 to the one main output path 132 at the main coupler 152 . As a result, the fourth light is mostly emitted to one main emission path 132 .
  • the first combined light enters the main coupler 152 from one main incident path 112 .
  • the first combined light is emitted to one main emission path 132 without being transferred to the other main emission path 142 .
  • third combined light combined light of the fourth light and the first combined light
  • the second combined light enters one main incident path 113 of the third coupling section 13 from the other main output path 141 .
  • the third combined light enters from one main emission path 132 to the other main incident path 123 of the third coupling portion.
  • the second combined light enters the main coupler 153 (coupling length L) from one main incident path 113 .
  • the third combined light enters the main coupler 153 from the other main incident path 123 .
  • the first light contained in the second combined light and the third combined light are combined again into one light in the main coupler 153 . Then, the combined first light is emitted to one main emission path 133 .
  • the first light is branched into a pair of sub-output paths 231 and 241 in the sub-unit 21. At this time, the paths are output with a phase difference of 90°.
  • the first light enters the coupling portion 13 with a phase shift of 90°.
  • the first light propagates through the coupling section 13, and in the case of an optical coupler, when the phase difference between the even mode and the odd mode of the optical coupler is 90°, the first light is transmitted to one main output path 133 side. , and is emitted from one main emission path 133 .
  • the second light contained in the third combined light generally transfers from the other main incident path 123 to the one main exit path 133 in the main coupler 153 . Thereby, the second light is emitted from one main emission path 133 .
  • the third light contained in the second combined light hardly transfers from one main incident path 113 to the other main output path 143 , or even if it transfers in the main coupler 153 , the final It returns to the origin and is emitted to one main emission path 133 .
  • the fourth light contained in the third combined light generally transfers from the other main incident path 123 to the one main exit path 133 in the main coupler 153 . Thereby, the second light is emitted from one main emission path 133 . As described above, the first light, the second light, the third light, and the fourth light are combined and emitted from one main emission path 133 as the fourth combined light.
  • the optical combining method comprises a first combined optical output stage, a second combined optical output stage, a third combined optical output stage, and a fourth combined optical output stage.
  • the first combined light output stage a part of the first light and the second light are combined and output as the first combined light. Specifically, the first combined light is emitted light to the other sub emission path 241 of the subunit 21 . In addition, in the present embodiment, the first combined light output stage outputs another part of the first light to one of the sub-output paths 231 separately from the first combined light.
  • the second combined light output stage combines the other part of the first light and the third light and outputs it as the second combined light. Specifically, the second combined light output stage combines the first light and the third light emitted to one sub-exit path 231 and outputs the combined light as the second combined light. The second combined light becomes emitted light to the other main emission path 141 of the first coupling section 11 .
  • the third combined light output stage combines the first combined light and the fourth light and outputs the combined light as the third combined light.
  • the third combined light becomes emitted light to one main emission path 132 of the second coupling section 12 .
  • the fourth combined light output stage combines the output second combined light and third combined light to output as fourth combined light.
  • the fourth combined light is specifically emitted light to one main emission path 133 of the third coupling section 13 .
  • the fourth combined light is light obtained by combining four lights.
  • the first light enters from the other sub entrance path 221 and exits to a pair of sub exit paths 231 and 241, respectively.
  • the first light entered from the other main incident path 121 and exited from the other main exit path 141 at the first coupling portion 11 .
  • the first light was incident from one main incident path 112 and emitted from one main exit path 132 in the second coupling portion 12 .
  • the first light entered from the pair of main incident paths 113 and 123 at the third coupling portion 13 and exited from one of the main exit paths 133 .
  • the second light entered the sub unit 21 through one sub incident path 211 and exited through the other sub exit path 241 .
  • the second light entered from one main incident path 112 and exited from one main exit path 132 at the second coupling portion 12 .
  • the second light entered the third coupling portion 13 from the other main incident path 123 and exited from the one main exit path 133 .
  • the third light entered the first coupling portion 11 through one main incident path 111 and exited through the other main exit path 141 .
  • the third light entered from one main incident path 113 and exited from one main exit path 133 at the third coupling portion 13 .
  • the fourth light entered the second coupling section 12 from the other main incident path 122 and exited from the one sub exit path 132 .
  • the fourth light entered the third coupling portion 13 from the other main incident path 123 and exited from the one main exit path 133 .
  • the first light, the second light, the third light, and the fourth light are emitted from one main emission path 133 of the third coupling portion 13 .
  • An optical combiner 1 capable of combining light of a plurality of wavelengths, comprising a pair of main incident paths 110 and 120, a pair of main exit paths 130 and 140, main incident paths 110 and 120, and main exit and a main coupler 150 disposed between the paths 130 and 140, which couples the light incident on the main incident paths 110 and 120 and outputs the light to the main exit paths 130 and 140,
  • One main input path 110, 120 of the coupling section 10 is connected to the main output paths 130, 140 of the other coupling section 10, and each of the main couplers 150 is coupled differently from at least one of the other main couplers 150.
  • the lights combined through the plurality of coupling sections 10 can be collectively output to one of the main emission paths 130 and 140 of one of the coupling sections 10 . Therefore, four or more lights can be easily combined.
  • the optical multiplexer 1 that can flexibly cope with the input wavelengths.
  • the subunit 21 includes a pair of sub incident paths 211 and 221 and a pair of It has sub-outgoing paths 231 and 241, and a sub-combiner 251 that couples the lights incident on the sub-incident paths 211 and 221 and emits them to the sub-outgoing paths 231 and 241.
  • the sub-outgoing paths 231 and 241 are connected to the main It is configured to be connectable to incident paths 110 and 120 . Accordingly, by freely rearranging and connecting the subunits 21 to the reference unit 100, it is possible to appropriately control the emission positions of the incident light and the combined light. Therefore, flexibility of the optical multiplexer 1 can be improved.
  • the reference unit 100 has three joints 10 as one set, and the other of the main exit paths 131 and 141 of the first joint 11 is one of the main entrance paths 113 and 123 of the third joint 13. , one of the main output paths 132 and 142 of the second coupling section 12 is connected to the other of the main input paths 113 and 123 of the third coupling section 13, and the main coupler of the first coupling section 11 is connected to 151, the main coupler 152 of the second coupling section 12, and the main coupler 153 of the third coupling section 13 have different coupling characteristics.
  • the main coupler 151 of the first coupling section 11 couples light incident on one of the main incident paths 111 and 121 of the first coupling section 11 to the other of the main exit paths 131 and 141.
  • the main coupler 152 of the second coupling section 12 emits light incident on either of the main incident paths 112 and 122 of the second coupling section 12 to one of the main exit paths 132 and 142.
  • the main coupler 153 of the third coupling section 13 converts the light incident on either of the main incident paths 113 and 123 of the third coupling section 13 to either of the main output paths 133 and 133 .
  • 143 has a coupling characteristic. Thereby, the light emitted from the reference unit 100 can be collectively output to one of the main emission paths 133 and 143 of the third coupling section 13 .
  • One of the sub output paths 231 and 241 of the subunit 21 is connected to the other main input path 121 of the first coupling section 11, and the other sub output path 241 of the subunit 21 is connected to the second coupling It is connected to one main entrance path 112 of the section 12 .
  • the four incident lights can be suitably combined.
  • the sub-coupler 251 of the subunit 21 has a coupling characteristic of emitting the light incident on the pair of sub-incident paths 211 and 221 to at least one of the sub-output paths 231 and 241 . This allows the light incident on the subunits to be changed to a preferred state before entering the reference unit 100 .
  • the sub-coupler 251 of the sub-unit 21 has a coupling characteristic of splitting at least one of the light beams incident on the pair of sub-incident paths 211 and 221 to the pair of sub-output paths 231 and 241 for output.
  • An optical multiplexing method for multiplexing lights of a plurality of wavelengths wherein the first combined light is combined with a part of the first light and the second light to output the light as the first combined light.
  • a second combined light output stage for combining another part of the first light and the third light and outputting the second combined light; and a first combined light and the fourth light.
  • a third combined light output stage for combining the waves and outputting the third combined light; and a fourth combined light output stage for combining the second combined light and the third combined light and outputting the fourth combined light.
  • FIG. 10 to 12 an optical multiplexer 1 and an optical multiplexing method according to a second embodiment of the present invention will be described with reference to FIGS. 10 to 12.
  • FIG. 10 to 12 the same reference numerals are given to the same components as in the above-described embodiment, and the description thereof will be omitted or simplified.
  • the optical multiplexer 1 and the optical multiplexing method according to the second embodiment differ from those of the first embodiment in that five lights are multiplexed.
  • the optical multiplexer 1 and optical multiplexing method according to the second embodiment as shown in FIG. It differs from the first embodiment.
  • the wavelength of the first light is ⁇ 1
  • the wavelength of the second light is ⁇ 2
  • the wavelength of the third light is It differs from the first embodiment in that the wavelength of the fourth light is ⁇ 3, the wavelength of the fourth light is ⁇ 4, and the wavelength of the fifth light is ⁇ 5.
  • optical multiplexer 1 and the optical multiplexing method according to the second embodiment are different from the first embodiment in that the respective complete coupling lengths of light are 2L, L, L/2, L/3, and L/4. Different from the form. Also, the optical multiplexer 1 and the optical multiplexing method according to the second embodiment are different from those of the first embodiment in that ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5.
  • the optical multiplexer 1 has a configuration in which a further subunit (hereinafter referred to as a second subunit 22) is connected to the optical multiplexer 1 of the first embodiment.
  • a further subunit hereinafter referred to as a second subunit 22
  • one sub-incident path 211 of the sub-unit of the first embodiment (hereinafter referred to as the first sub-unit 21) is connected to another sub-unit (second sub-unit). 22) is connected to the other sub-exit path 242 .
  • the other of the sub exit paths 232, 242 of the second subunit 22 is configured to be connectable to one of the sub entrance paths 211, 221 of the other subunit (first subunit 21).
  • the fifth light is incident on one main incident path 111 of the first coupling section 11 .
  • the fourth light is incident on the other main incident path 122 of the second coupling portion 12 .
  • the complete coupling length of the first coupling portion 11 is L/4
  • the complete coupling length of the second coupling portion 12 is L/3. It is different from the first embodiment in one point. That is, each of the first coupling portion 11 and the second coupling portion 12 has a complete coupling length of the fifth light and the fourth light directly input to the first coupling portion 11 and the second coupling portion 12.
  • the second subunit 22 has a subcombiner 252 of full coupling length L. That is, the second subunit 22 has the same configuration as the first subunit 21 .
  • a second light is incident on one sub incident path 212 of the second subunit 22 .
  • the third light is incident on the other sub incident path 222 of the second subunit 22 .
  • the first light is incident and emitted in the same manner as in the first embodiment.
  • the second light is emitted from the other sub emission path 242 in the second subunit 22 .
  • the subsequent flow of the second light is the same as in the first embodiment.
  • the third light is emitted from the other sub emission path 242 in the second subunit 22 .
  • the third light enters from one sub entrance path 211 and exits from one sub exit path 231 .
  • the third light enters from the other main incident path 121 of the first coupling section 11 and exits from the other main exit path 141 .
  • the third light enters from one main incident path 113 of the third coupling portion 13 and exits from one main exit path 133 .
  • the fourth light enters from the other main incident path 122 of the second coupling section 12 and exits from one main exit path 132 .
  • the fourth light enters from the other main incident path 123 of the third coupling portion 13 and exits from one main exit path 133 .
  • the fifth light enters from one main incident path 111 of the first coupling section 11 and exits from the other main exit path 141 .
  • the fifth light enters from one main incident path 113 of the third coupling section 13 and exits from one main exit path 133 .
  • the optical multiplexer 1 and the optical multiplexing method according to the present embodiment have the following effects.
  • One of the sub entrance paths 211 and 221 is configured to be connectable to the other of the sub exit paths 232 and 242 of the other subunit 22 . Accordingly, by combining a plurality of subunits 21, light of a plurality of wavelengths can be flexibly multiplexed.
  • FIG. 13 to 15 an optical multiplexer 1 and an optical multiplexing method according to a third embodiment of the present invention will be described with reference to FIGS. 13 to 15.
  • FIG. 13 to 15 the same reference numerals are given to the same components as those of the above-described embodiment, and the description thereof will be omitted or simplified.
  • the optical multiplexer 1 and the optical multiplexing method according to the third embodiment differ from those of the first embodiment in that five lights are multiplexed.
  • the optical multiplexer 1 and optical multiplexing method according to the third embodiment as shown in FIG. It differs from the first embodiment.
  • the wavelength of the first light is ⁇ 1
  • the wavelength of the second light is ⁇ 2
  • the wavelength of the third light is It differs from the first embodiment in that the wavelength of the fourth light is ⁇ 3, the wavelength of the fourth light is ⁇ 4, and the wavelength of the fifth light is ⁇ 5.
  • the optical multiplexer 1 and the optical multiplexing method according to the third embodiment are the first and the first and the optical multiplexing method in that the respective complete coupling lengths of light are 2L, L, L/2, L/3, and L/6. It differs from the second embodiment. Also, the optical multiplexer 1 and the optical multiplexing method according to the third embodiment are different from those of the first embodiment in that ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 4 ⁇ 5. Further, in the optical multiplexer 1 and the optical multiplexing method according to the third embodiment, the other sub incident path 223 of the third subunit 23 is connected to one of the main output paths 133 and 134 of the third coupling section 13. It differs from the first and second embodiments in that the And it differs from the first embodiment in that the fifth light is incident on one of the sub incident paths 213 of the third subunit 23 . The third subunit 23 has a full bond length of L/6.
  • the third subunit 23 has a subcombiner with a full coupling length of L/6. A fifth light is incident on one sub incident path 213 of the third subunit 23 .
  • One main exit path 133 of the third coupling section 13 is connected to the other sub entrance path 223 of the third subunit 23 .
  • the relationship between the incidence and emission of the first to fourth lights is the same as in the first embodiment until they are emitted from one main emission path 133 of the third coupling section 13 .
  • the first to fourth lights are incident on the other sub entrance path 223 of the third subunit 23 and are emitted from the other sub exit path 243 .
  • the fifth light is incident on one sub incident path 213 of the third subunit and emitted from the other sub exit path 243 . Thereby, the first to fifth lights are combined.
  • the full coupling length is achieved by changing the lengths of the main coupler 150 and the sub coupler 251, but the present invention is not limited to this.
  • a full coupling length may be achieved by varying the spacing between the two waveguides.
  • the full coupling length may be achieved by changing the thickness of the waveguide.
  • the number of subunits 21 is not limited to one or two, and more subunits 21 may be used.
  • subunits 21 having various complete coupling lengths may be combined according to the wavelength of the input light.
  • the optical coupling method may include a step of connecting the output path of the coupling section 10 capable of combining at least two lights to the incident path of another coupling section 10 . Accordingly, various couplers can be flexibly coupled to combine light according to the number of lights to be combined and the wavelengths of the lights.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

4種類以上の波長の光を合波することが可能な光合波器及び光合波方法を提供すること。 複数の波長の光を合波可能な光合波器1であって、一対のメイン入射路110,120と、一対のメイン出射路130,140と、メイン入射路110,120及びメイン出射路130,140との間に配置され、メイン入射路110,120に入射した光を結合してメイン出射路130,140に出射するメイン結合器150と、を有する複数の結合部10を備え、結合部10の1つのメイン入射路110,120は、他の結合部10のメイン出射路130,140と連結され、メイン結合器150のそれぞれは、他のメイン結合器150の少なくとも1つと異なる結合特性を有する。

Description

光合波器及び光合波方法
 本発明は、光合波器及び光合波方法に関する。
 従来、レーザー光を二次元的に走査させることで使用者に画像を視認させるレーザーディスプレイが知られている。レーザーディスプレイにおいては、一般的にR(赤色)光源、G(緑色)光源、及びB(青色)光源から照射される3色の可視光が互いに近接されて、画像表示部に伝送される。画像表示部は、伝送された光を二次元的に走査することで、投影対象に映像を投影する。例えば、特許文献1には、RGBの各色に対応するレーザー光を近接させて投影する光集積回路が開示されている。
特開2019-35876号公報
 ところで、特許文献1では、上記のように、RGBの3色の近接(合波)に限定される。これに対し、4色(4種類の波長)以上の光を合波することができれば好適である。
 本発明は、上記従来の実状に鑑みてなされたものであり、4種類以上の波長の光を合波することが可能な光合波器及び光合波方法を提供することを目的とする。
 本発明は、複数の波長の光を合波可能な光合波器であって、一対のメイン入射路と、一対のメイン出射路と、前記メイン入射路及び前記メイン出射路との間に配置され、前記メイン入射路に入射した光を結合して前記メイン出射路に出射するメイン結合器と、を有する複数の結合部を備え、前記結合部の1つの前記メイン入射路は、他の前記結合部の前記メイン出射路と連結され、前記メイン結合器のそれぞれは、他の前記メイン結合器の少なくとも1つと異なる結合特性を有する光合波器に関する。
 また、前記複数の結合部を一組とする基準ユニットと、前記基準ユニットに接続可能なサブユニットと、を備え、前記サブユニットは、一対のサブ入射路と、一対のサブ出射路と、前記サブ入射路に入射した光を結合して前記サブ出射路に出射するサブ結合器と、を有し、前記サブ入射路は、前記メイン出射路に接続可能に構成され、前記サブ出射路は、前記メイン入射路に接続可能に構成されるのが好ましい。
 また、前記サブ入射路は、他の前記サブユニットの前記サブ出射路に接続可能に構成されるのが好ましい。
 また、前記サブ出射路は、他の前記サブユニットの前記サブ入射路に接続可能に構成されるのが好ましい。
 また、前記基準ユニットは、3つの前記結合部を一組とし、第1の前記結合部の前記メイン出射路の他方は、第3の前記結合部の前記メイン入射路の一方に接続され、第2の前記結合部の前記メイン出射路の一方は、第3の前記結合部の前記メイン入射路の他方に接続され、第1の前記結合部の前記メイン結合器と、第2の前記結合部の前記メイン結合器と、第3の前記結合部の前記メイン結合器とは、異なる結合特性を有するのが好ましい。
 また、第1の前記結合部の前記メイン入射路の一方には、前記基準ユニットに入射する複数の波長の光のうち最も波長の長い光及び次に波長の長い光のうちのいずれかが入射され、第2の前記結合部の前記メイン入射路の他方には、前記基準ユニットに入射する複数の波長の光のうち最も波長の長い光及び次に波長の長い光のうちのいずれかの残りが入射されるのが好ましい。
 また、第1の前記結合部の前記メイン結合器は、第1の前記結合部の前記メイン入射路のいずれかに入射される光を他方の前記メイン出射路に出射する結合特性を有し、第2の前記結合部の前記メイン結合器は、第2の前記結合部の前記メイン入射路のいずれかに入射される光を一方の前記メイン出射路に出射する結合特性を有し、第3の前記結合部の前記メイン結合器は、第3の前記結合部の前記メイン入射路のいずれかに入射される光をいずれかの前記メイン出射路に出射する結合特性を有するのが好ましい。
 また、前記サブユニットの前記サブ出射路の一方は、第1の前記結合部の他方の前記メイン入射路に接続され、前記サブユニットの前記サブ出射路の他方は、第2の前記結合部の一方の前記メイン入射路に接続されるのが好ましい。
 また、前記サブユニットの前記サブ結合器は、一対の前記サブ入射路に入射された光を少なくとも一方の前記サブ出射路に出射する結合特性を有するのが好ましい。
 また、前記サブユニットの前記サブ入射路の他方は、他の前記サブユニットの前記サブ出射路の一方に接続されるのが好ましい。
 また、前記第3の結合部の前記メイン出射路の一方は、他の前記サブユニットの前記サブ入射路の他方に接続されるのが好ましい。
 また、前記サブユニットの前記サブ結合器は、一対の前記サブ入射路に入射された光のうち少なくともいずれかを一対の前記サブ出射路に分割して出射する結合特性を有するのが好ましい。
 また、本発明は、複数の波長の光を合波する光合波方法であって、第1の光の一部と第2の光とを合波して光を第1合波光として出力する第1合波光出力段階と、第1の光の他の一部と第3の光とを合波して第2合波光として出力する第2合波光出力段階と、前記第1合波光と第4の光とを合波して第3合波光として出力する第3合波光出力段階と、前記第2合波光と第3合波光とを合波して第4合波光として出力する第4合波光出力段階と、を備える光合波方法に関する。
 また、前記第1の光の波長をλ1、前記第2の光の波長をλ2、前記第3の光の波長をλ3、前記第4の光の波長をλ4として、λ1<λ2<λ3<λ4であるのが好ましい。
 また、本発明は、複数の波長の光を合波する光合波方法であって、少なくとも2つの光を合波可能な結合部の出射路を他の結合部の入射路に接続段階を備える光合波方法に関する。
 また、前記第1の光の波長をλ1、前記第2の光の波長をλ2、前記第3の光の波長をλ3、前記第4の光の波長をλ4として、λ1<λ2<λ3<λ4であるのが好ましい。
 本開示によれば、4種類以上の波長の光を合波することが可能な光合波器及び光合波方法を提供することができる。
本発明の第1実施形態に係る光合波器の結合部と入射される光との関係を示す概略図である。 第1実施形態の光合波器の結合部と入射される光との関係を示す概略図である。 第1実施形態の光合波器の構成を示す概略図である。 第1実施形態の光合波器の入射される光の波長と、結合特性との関係を示す概略図である。 第1実施形態の光合波器に入射される光の波長と合波効率とを示す表である。 第1実施形態の光合波器に入射される第1の光の通過したルートを示すイメージ図である。 第1実施形態の光合波器に入射される第2の光の通過したルートを示すイメージ図である。 第1実施形態の光合波器に入射される第3の光の通過したルートを示すイメージ図である。 第1の実施形態の光合波器に入射される第4の光の通過したルートを示すイメージ図である。 本発明の第2実施形態に係る光合波器の構成を示す概略図である。 第2実施形態の光合波器に入射される光の波長に対する結合特性を示す表である。 第2実施形態の光合波器に入射される光の波長と合波効率とを示す表である。 本発明の第3実施形態に係る光合波器の構成を示す概略図である。 第3実施形態の光合波器に入射される光の波長に対する結合特性を示す表である。 第3実施形態の光合波器に入射される光の波長と合波効率とを示す表である。
 以下、本発明の各実施形態に係る光合波器1及び光合波方法について、図1から図15を参照して説明する。
 まず、各実施形態に係る光合波器1及び光合波方法の概要について説明する。
 光合波器1は、例えば、複数の波長の光を合波可能な装置である。特に、光合波器1は、4つ以上の波長の異なる光を合波可能な装置である。光合波器1は、例えば、図1に示すような、一対のメイン入射路110,120と、一対のメイン出射路130,140と、メイン結合器150とを有する結合部10を複数有する。光合波器1は、複数の結合部10の組み合わせを用いて、複数の波長の光を合波する。光合波器1は、例えば、複数の結合部10を組み合わせた構造を有する。
 次に、結合部10の構成について説明する。ここでは、結合部10は、方向性結合器の場合を例に説明されるが、光を一対のメイン入射路から入射し、一対のメイン出射路から出射するものであれば、方向性結合器以外のどのようなものでも当てはまる。例えば、結合部10は、方向性結合器以外の多モード干渉型結合器等必ずしも方向性結合器に限定されるものではなく、光を一対のメイン入射路110,120から入射し、一対のメイン出射路130,140から出射するものであればどのようなものであってもよい。方向性結合器とは、光導波路を2本接近して平行に配置した構造の結合器のことである。方向性結合器は、光導波路から漏れ出した光フィールドが隣の光導波路に達し、光が導波路に沿って伝搬するにつれて、隣の導波路に光が乗り移る、又は再度元の導波路に戻る現象を利用した光結合器である。
 また、多モード干渉型結合器は、波長に比べて比較的広い幅の光導波路(多モード光導波路)からなり、その中を伝搬する光のモード数が多いことを利用して、この多モード光導波路に光入出射光導波路をつなげて光のスイッチングを行う結合器である。多モード光導波路は、単純な幅広の光導波路だけでなく、複数の光導波路からなる場合や導波路幅が伝搬方向で変化するもの等、様々な形状のものが存在する。
 一対のメイン入射路110,120のそれぞれは、いわゆる導波路である。メイン入射路110,120は、例えば、単一モード導波路あるいは基本モードを主成分とする導波路であるのが好ましい。一対のメイン入射路110,120のそれぞれは、入射される光の伝送路として機能する。本実施形態において、一対のメイン入射路110,120は、入射口から伝送方向に沿って互いの間隔が小さくなるように接近し、もっとも代表的な例は、互いに近接する方向に湾曲する形状で接近するものである。
 一対のメイン出射路130,140のそれぞれは、いわゆる導波路である。一対のメイン出射路130,140のそれぞれは、出射される光の伝送路として機能する。本実施形態において、一対のメイン出射路130,140は、出射口に向かう伝送方向に沿って互いの間隔が大きくなるように離間し、もっとも代表的な例は、互いに近接する方向に湾曲する形状で離間するものである。
 メイン結合器150は、メイン入射路110,120に沿って入射された光を実際に合波する合波器である。メイン結合器150は、メイン入射路110,120及びメイン出射路130,140の間に配置され、メイン入射路110,120に入射した光を結合してメイン出射路130,140に出射する。メイン結合器150は、所定の結合特性を有する。メイン結合器150は、例えば、図1に示すように、所定の波長λの光について、一方のメイン入射路110に入射された光のほぼ全てについて、他方のメイン出射路140に出射する結合特性を有する。この結合特性となるメイン結合器150の長さ(結合長)について、本実施形態では所定の波長に対する「完全結合長」という。また、図2に示すように、メイン結合器150は、完全結合長の2倍の長さである場合に、一方のメイン入射路110に入射された所定の波長λの光のほぼ全てについて、一方のメイン出射路130に出射する結合特性を有する。なお、図2の場合、一方のメイン入射路110に入射された波長λの光は、メイン結合器150において、一旦、他方のメイン出射路140に移った後一方のメイン出射路130に移るように伝送される。メイン結合器150の長さが3Lである場合、一方のメイン入射路110に入射された波長λの光は、メイン結合器150において、一旦、他方のメイン出射路140に移った後一方のメイン出射路130に移り、再度他方のメイン出射路140に移るように伝送される。このように、入射された光は、波長λによって決まる完全結合長と、メイン結合器150の長さとによって、一対のメイン出射路130,140の両方又はいずれか一方から出射する。
 ここで、結合部10の1つのメイン入射路110,120は、他の結合部10のメイン出射路130,140と接続される。これにより、1つの結合部10に入射された光は、1又は複数の結合部10を経由して、最終的に、1つのメイン出射路130,140から出射される。
 以下の実施形態では、3つの結合部10を所定の組み合わせで接続したものを基準ユニット100として説明する。また、基準ユニット100に着脱自在に構成される結合部10をサブユニット21として説明する。そして、以下の実施形態では、基準ユニット100に対してサブユニット21の接続の組み合わせを変更することにより、種々の波長の光を合波可能にする。
[第1実施形態]
 次に、本発明の第1実施形態に係る光合波器1及び光合波方法について、図1から図9を参照して説明する。
 光合波器1は、図3に示すように、基準ユニット100と、サブユニット21と、を備える。本実施形態において、光合波器1は、第1の光(波長λ1)、第2の光(波長λ2)、第3の光(波長λ3)、及び第4の光(波長λ4)の4つの光を合波する。ここで、4つの光の波長の関係は、λ1<λ2<λ3<λ4である。また、以下の説明において、一対のメイン入射路110,120及び一対のメイン出射路130,140について、図3に示す光合波器1のうち、紙面上方側に位置する側を「一方」、紙面下方側に位置する側を「他方」として説明する。
 基準ユニット100は、複数の結合部10を一組とする。本実施形態において、基準ユニット100は、図3に示すように、3つの結合部10を一組とする。具体的には、基準ユニット100は、第1の結合部11と、第2の結合部12と、第3の結合部13と、を備える。
 第1の結合部11は、一対のメイン入射路111,121の一方に、第3の光を入射可能に構成される。第1の結合部11のメイン結合器151は、第1の結合部11のメイン入射路121に入射される光を他方のメイン出射路141に出射する結合特性を有する。具体的には、第1の結合部11のメイン結合器151は、図4に示すように、第3の光の完全結合長であるL/2の長さを有する。ここで、Lは、第2の光の波長λ2に対する完全結合長である。第1の結合部11のメイン出射路131,141の他方は、後述する第3の結合部13のメイン入射路113,123の一方に接続される。具体的には、メイン出射路131,141のうち、メイン結合器151の長さ方向を境にして、第3の光が入射される第1の結合部11のメイン入射路121と同じ側に配置されるメイン出射路141が、第3の結合部13の一方のメイン入射路113に接続される。なお、第1の結合部11の一方のメイン入射路111には、複数の光のうち、最も波長の長い光よりも次に長い波長の長い光(本実施形態では、第3の光)が入射される。
 第2の結合部12は、一対のメイン入射路112,122の他方に、第4の光を入射可能に構成される。第2の結合部12のメイン結合器152は、第2の結合部12のメイン入射路112,122に入射される光を一方のメイン出射路132に出射する結合特性を有する。具体的には、第2の結合部12のメイン結合器152は、第4の光の完全結合長であるL/3の長さを有する。第2の結合部12の一方のメイン出射路132は、後述する第3の結合部13の他方のメイン入射路123に接続される。具体的には、メイン出射路132,142のうち、メイン結合器152の長さ方向を境にして、第4の光の入射されるメイン入射路122とは逆側に配置されるメイン出射路132が、第3の結合部13の他方のメイン入射路123に接続される。なお、第2の結合部12の他方のメイン入射路には、複数の光のうち、最も波長の長い波長の光(本実施形態では、第4の光)が入射される。
 第3の結合部13は、第1の結合部11及び第2の結合部12と接続される。具体的には、第3の結合部13の一方のメイン入射路113は、第1の結合部11の他方のメイン出射路141に接続される。また、第3の結合部13の他方のメイン入射路123は、第2の結合部12の一方のメイン出射路132に接続される。第3の結合部13のメイン結合器153は、第3の結合部13のメイン入射路113,123に入射される光を一方のメイン出射路133に出射する結合特性を有する。具体的には、第3の結合部13のメイン結合器153は、第2の光の完全結合長であるLの長さを有する。
 サブユニット21は、基準ユニット100に接続可能に構成される。サブユニット21は、一対のサブ入射路211,221と、一対のサブ出射路231,241と、サブ結合器251と、を備える。本実施形態において、サブユニット21は、図3に示すように、1つ設けられる。また、本実施形態において、サブユニット21は、第1の結合部11及び第2の結合部12に結合される。
 一対のサブ入射路211,221のそれぞれは、いわゆる導波路である。一対のサブ入射路211,221のそれぞれは、入射される光の伝送路として機能する。本実施形態において、一対のサブ入射路211,221のそれぞれは、第1の光と、第2の光とを入射する。具体的には、サブ結合器251の長さ方向を境にして、第1の結合部11の側に、第2の光が入射される。また、第2の結合部12の側に第1の光が入射される。本実施例において、サブ出射路231,241は、メイン入射路121,112に接続可能に構成される。本実施形態において、一対のサブ入射路211,221は、入射口から伝送方向に沿って互いの間隔が小さくなるように接近し、もっとも代表的な例は、互いに近接する方向に湾曲する形状で接近するものである。
 一対のサブ出射路231,241のそれぞれは、いわゆる導波路である。一対のサブ出射路231,241のそれぞれは、出射される光の伝送路として機能する。本実施形態において、一対のサブ出射路231,241は、出射口に向かう伝送方向に沿って互いの間隔が大きくなるように離間し、もっとも代表的な例は、互いに近接する方向に湾曲する形状で離間するものである。
 以上のような光合波器1は、以下のように動作する。
 まず、基準ユニット100に対して、サブユニット21が結合される。具体的には、図3に示すように、基準ユニット100の第1の結合部11の他方のメイン入射路121と、第2の結合部12の一方のメイン入射路112とに対して、サブユニット21の一対のサブ出射路231,241が結合される。
 次いで、サブユニット21の一対のサブ入射路のそれぞれに、第1の光(完全結合長2L)と、第2の光(完全結合長L)とが入射される。具体的には、他方のサブ入射路221に、第1の光が入射される。そして、一方のサブ入射路211に、第2の光が入射される。第1の光は、他方のサブ入射路221からサブ結合器251(結合長L)に入射される。第1の光は、サブ結合器251において、サブ出射路231,241に分割されて出射される。これにより、第1の光は、一対のサブ出射路231,241のそれぞれに分岐して出射される。一方、第2の光は、一方のサブ入射路211からサブ結合器251に入射される。第2の光は、サブ結合器251において、一方のサブ入射路211から他方のサブ出射路241に概ね乗り移る。これにより、第2の光は、他方のサブ出射路241から概ね出射される。すなわち、一方のサブ出射路231には、分割された光量を有する第1の光が出射される。そして、他方のサブ出射路241には、分割された光量を有する第1の光と、第2の光との合波光(以下、第1合波光ともいう)が出射される。
 また、第3の光(完全結合長L/2)が第1の結合部11の一方のメイン入射路111に入射される。そして、一方のサブ出射路231に出射された第1の光が第1の結合部11の他方のメイン入射路121に入射される。第3の光は、一方のメイン入射路111からメイン結合器151(結合長L/2)に入射される。また、他方のメイン入射路121に入射された第1の光は、メイン結合器151に入射される。第3の光は、メイン結合器151において、一方のメイン入射路111から他方のメイン出射路141に概ね乗り移る。これにより、第3の光は、他方のメイン出射路141から概ね出射される。一方、第1の光は、メイン結合器151において、一方のメイン出射路131にほとんど乗り移りせずに、他方のメイン出射路141に出射される。これにより、他方のメイン出射路141には、第1の光と第3の光との合波光(以下、第2合波光ともいう)が出射される。
 また、第4の光(完全結合長L/3)が第2の結合部12の他方のメイン入射路122に入射される。そして、他方のサブ出射路241に出射された第1合波光(第1の光及び第2の光)が一方のメイン入射路112に入射される。第4の光は、他方のメイン入射路122からメイン結合器152(結合長L/3)に入射される。また、第1合波光は、一方のメイン入射路112からメイン結合器152に入射される。第4の光は、メイン結合器152において、他方のメイン入射路122から一方のメイン出射路132に概ね乗り移る。これにより、第4の光は、一方のメイン出射路132に概ね出射される。一方、第1合波光は、一方のメイン入射路112からメイン結合器152に入射される。第1合波光は、メイン結合器152において、他方のメイン出射路142にほとんど乗り移りせずに、一方のメイン出射路132に出射される。これにより、一方のメイン出射路132には、第4の光と第1合波光との合波光(以下、第3合波光ともいう)が出射される。
 そして、第2合波光が他方のメイン出射路141から第3の結合部13の一方のメイン入射路113に入射する。また、第3合波光が一方のメイン出射路132から第3結合部の他方のメイン入射路123に入射する。第2合波光は、一方のメイン入射路113からメイン結合器153(結合長L)に入射される。第3合波光は、他方のメイン入射路123からメイン結合器153に入射される。
 第2合波光及び第3合波光に含まれる第1の光は、メイン結合器153において1つの光に再度合波される。そして、合波された第1の光は、一方のメイン出射路133に出射される。ここで、第1の光は、サブユニット21において一対のサブ出射路231,241に分岐されるが、このとき、それぞれは位相が90°ずれて出射される。そして、第3の結合部13において結合される際に、第1の光は、位相が90°ずれたまま結合部13に入射する。その結果、第1の光は、結合部13を伝搬して、光結合器の場合、光結合器の偶モードと奇モードの位相差が90°ずれたときに、一方のメイン出射路133側に乗り移り、一方のメイン出射路133から出射される。
 第3合波光に含まれる第2の光は、メイン結合器153において、他方のメイン入射路123から一方のメイン出射路133に概ね乗り移る。これにより、第2の光は、一方のメイン出射路133から出射される。
 第2合波光に含まれる第3の光は、メイン結合器153において、一方のメイン入射路113から他方のメイン出射路143にほとんど乗り移りせずに、あるいはメイン結合器153中で乗り移っても最終的には元に戻って、一方のメイン出射路133に出射される。
 第3合波光に含まれる第4の光は、メイン結合器153において、他方のメイン入射路123から一方のメイン出射路133に概ね乗り移る。これにより、第2の光は、一方のメイン出射路133から出射される。以上により、第1の光、第2の光、第3の光、及び第4の光が合波されて、第4合波光として一方のメイン出射路133から出射される。
 次に、光合波方法について説明する。
 光合波方法は、第1合波光出力段階と、第2合波光出力段階と、第3合波光出力段階と、第4合波光出力段階と、を備える。
 第1合波光出力段階は、第1の光の一部と、第2の光とを合波して第1合波光として出力する。第1合波光は、具体的には、サブユニット21の他方のサブ出射路241への出射光である。なお、本実施形態において、第1合波光出力段階は、第1合波光とは別に、第1の光の他の一部について、一方のサブ出射路231に出射する。
 第2合波光出力段階は、第1の光の他の一部と第3の光とを合波して第2合波光として出力する。具体的には、第2合波光出力段階は、一方のサブ出射路231に出射された第1の光と、第3の光とを合波して第2合波光として出力する。第2合波光は、第1の結合部11の他方のメイン出射路141への出射光となる。
 第3合波光出力段階は、第1合波光と第4の光とを合波して第3合波光として出力する。第3合波光は、第2の結合部12の一方のメイン出射路132への出射光となる。
 第4合波光出力段階は、出力された第2合波光と第3合波光とを合波して第4合波光として出力する。第4合波光は、具体的には、第3の結合部13の一方のメイン出射路133への出射光である。第4合波光は、4つの光が合波された光となる。
[実施例1]
 次に、本実施形態の実施例1を説明する。
 図5に示すように、λ1=450nm、λ2=520nm、λ3=635nm、λ4=720nmとした。その結果、第3の結合部13の一方のメイン出射路133から出射された合波光の合波効率について、λ1は96.1%、λ2は92.8%、λ3は98.0%、λ4は99.9%であった。
 その結果、第1の光は、図6に示すように、サブユニット21において、他方のサブ入射路221から入射して、一対のサブ出射路231,241のそれぞれに出射する。その後、第1の光は、第1の結合部11において、他方のメイン入射路121から入射して、他方のメイン出射路141から出射した。また、第1の光は、第2の結合部12において、一方のメイン入射路112から入射して、一方のメイン出射路132から出射した。そして、第1の光は、第3の結合部13において、一対のメイン入射路113,123から入射して、一方のメイン出射路133から出射した。
 第2の光は、図7に示すように、サブユニット21において、一方のサブ入射路211から入射して、他方のサブ出射路241から出射した。第2の光は、第2の結合部12において、一方のメイン入射路112から入射して、一方のメイン出射路132から出射した。第2の光は、第3の結合部13において、他方のメイン入射路123から入射して、一方のメイン出射路133から出射した。
 第3の光は、図8に示すように、第1の結合部11において、一方のメイン入射路111から入射して、他方のメイン出射路141から出射した。第3の光は、第3の結合部13において、一方のメイン入射路113から入射して、一方のメイン出射路133から出射した。
 第4の光は、図9に示すように、第2の結合部12において、他方のメイン入射路122から入射して、一方のサブ出射路132から出射した。第4の光は、第3の結合部13において、他方のメイン入射路123から入射して、一方のメイン出射路133から出射した。
 これにより、第1の光、第2の光、第3の光、及び第4の光が第3の結合部13の一方のメイン出射路133から出射することがわかった。
 以上、本実施形態に係る光合波器1及び光合波方法によれば、以下の効果を奏する。
(1)複数の波長の光を合波可能な光合波器1であって、一対のメイン入射路110,120と、一対のメイン出射路130,140と、メイン入射路110,120及びメイン出射路130,140との間に配置され、メイン入射路110,120に入射した光を結合してメイン出射路130,140に出射するメイン結合器150と、を有する複数の結合部10を備え、結合部10の1つのメイン入射路110,120は、他の結合部10のメイン出射路130,140と連結され、メイン結合器150のそれぞれは、他のメイン結合器150の少なくとも1つと異なる結合特性を有する。これにより、複数の結合部10を通して合波される光は、いずれかの結合部10のメイン出射路130,140のいずれかにまとめて出力し得る。したがって、4つ以上の複数の光を容易に合波することができる。特に、複数の結合部10の結合関係を変化させることにより、入力される波長に対して柔軟に対応可能な光合波器1を提供することができる。
(2)複数の結合部10を一組とする基準ユニット100と、基準ユニット100に接続可能なサブユニット21と、を備え、サブユニット21は、一対のサブ入射路211,221と、一対のサブ出射路231,241と、サブ入射路211,221に入射した光を結合してサブ出射路231,241に出射するサブ結合器251と、を有し、サブ出射路231,241は、メイン入射路110,120に接続可能に構成される。これにより、基準ユニット100に対してサブユニット21を自由に組み替えて接続することにより、入射される光と合波された光の出射位置を適宜制御することができる。したがって、光合波器1の柔軟性を向上することができる。
(3)基準ユニット100は、3つの結合部10を一組とし、第1の結合部11のメイン出射路131,141の他方は、第3の結合部13のメイン入射路113,123の一方に接続され、第2の結合部12のメイン出射路132,142の一方は、第3の結合部13のメイン入射路113,123の他方に接続され、第1の結合部11のメイン結合器151と、第2の結合部12のメイン結合器152と、第3の結合部13のメイン結合器153とは、異なる結合特性を有する。これにより、波長の異なる複数の光について、それぞれの結合部10における出射位置をある程度限定することができる。したがって、基準ユニット100を元に、複数のサブユニット21を接続して調整することにより、様々な波長の光を合波することができる。
(4)第1の結合部11のメイン結合器151は、第1の結合部11のメイン入射路111,121のいずれかに入射される光をメイン出射路131,141の他方に出射する結合特性を有し、第2の結合部12のメイン結合器152は、第2の結合部12のメイン入射路112,122のいずれかに入射される光をメイン出射路132,142の一方に出射する結合特性を有し、第3の結合部13のメイン結合器153は、第3の結合部13のメイン入射路113,123のいずれかに入射される光をいずれかのメイン出射路133,143に出射する結合特性を有する。これにより、基準ユニット100から出射される光を第3の結合部13のメイン出射路133,143のいずれかにまとめて出力することができる。
(5)サブユニット21のサブ出射路231,241の一方は、第1の結合部11の他方のメイン入射路121に接続され、サブユニット21の他方のサブ出射路241は、第2の結合部12の一方のメイン入射路112に接続される。これにより、4つの入射される光を好適に合波することができる。
(6)サブユニット21のサブ結合器251は、一対のサブ入射路211,221に入射された光を少なくとも一方のサブ出射路231,241に出射する結合特性を有する。これにより、サブユニットに入射された光について、基準ユニット100に入射される前に、好ましい状態に変更することができる。
(7)サブユニット21のサブ結合器251は、一対のサブ入射路211,221に入射された光の少なくともいずれかを一対のサブ出射路231,241に分割して出射する結合特性を有する。
 
(8)複数の波長の光を合波する光合波方法であって、第1の光の一部と第2の光とを合波して光を第1合波光として出力する第1合波光出力段階と、第1の光の他の一部と第3の光とを合波して第2合波光として出力する第2合波光出力段階と、第1合波光と第4の光とを合波して第3合波光として出力する第3合波光出力段階と、第2合波光と第3合波光とを合波して第4合波光として出力する第4合波光出力段階と、を備える。これにより、4以上の波長の光を容易に合波することができる。
(9)第1の光の波長をλ1、第2の光の波長をλ2、第3の光の波長をλ3、第4の光の波長をλ4として、λ1<λ2<λ3<λ4である。これにより、4以上の波長の光を好適に合波することができる。
[第2実施形態]
 次に、本発明の第2実施形態に係る光合波器1及び光合波方法について、図10から図12を参照して説明する。第2実施形態の説明にあたって、前述の実施形態と同一の構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第2実施形態に係る光合波器1及び光合波方法は、5つの光を合波する点で第1実施形態と異なる。第2実施形態に係る光合波器1及び光合波方法は、図10に示すように、1つの基準ユニット100及び1つのサブユニット21に対して、さらなるサブユニット22を接続している点で、第1実施形態と異なる。
 また、第2実施形態に係る光合波器1及び光合波方法は、図11に示すように、第1の光の波長をλ1、第2の光の波長をλ2、第3の光の波長をλ3、第4の光の波長をλ4、第5の光の波長をλ5とする点で第1実施形態と異なる。
 また、第2実施形態に係る光合波器1及び光合波方法は、それぞれの光の完全結合長が、2L、L、L/2、L/3、及びL/4である点で第1実施形態と異なる。また、第2実施形態に係る光合波器1及び光合波方法は、λ1<λ2<λ3<λ4<λ5である点で、第1実施形態と異なる。
 光合波器1は、図10に示すように、第1の実施形態の光合波器1に対して、さらなるサブユニット(以下、第2のサブユニット22とする)を接続した構成を有する。具体的には、光合波器1は、第1の実施形態のサブユニット(以下、第1のサブユニット21とする)の一方のサブ入射路211に、他のサブユニット(第2のサブユニット22)の他方のサブ出射路242を接続した構成を有する。換言すると、第2のサブユニット22のサブ出射路232,242の他方は、他のサブユニット(第1のサブユニット21)のサブ入射路211,221の一方に接続可能に構成される。また、第2実施形態に係る光合波器1及び光合波方法では、第1の結合部11の一方のメイン入射路111に、第5の光が入射される。また、第2の結合部12の他方のメイン入射路122に、第4の光が入射される。そして、第2実施形態に係る光合波器1及び光合波方法は、第1の結合部11の完全結合長がL/4であり、第2の結合部12の完全結合長がL/3である点で第1実施形態と異なる。すなわち、第1の結合部11及び第2の結合部12のそれぞれは、第1の結合部11及び第2の結合部12に直接入力される第5の光及び第4の光の完全結合長を有する。
 第2のサブユニット22は、完全結合長Lのサブ結合器252を有する。すなわち、第2のサブユニット22は、第1のサブユニット21と同じ構成を有する。第2のサブユニット22の一方のサブ入射路212には、第2の光が入射される。第2のサブユニット22の他方のサブ入射路222には、第3の光が入射される。
 次に、本実施形態の光合波器1の動作を説明する。
 第1の光は、第1実施形態と同様に入射及び出射される。
 第2の光は、第2のサブユニット22において、他方のサブ出射路242から出射する。第2の光に関するその後の流れは、第1の実施形態と同様である。
 第3の光は、第2のサブユニット22において、他方のサブ出射路242から出射する。次いで、第3の光は、第1のサブユニット21において、一方のサブ入射路211から入射して、一方のサブ出射路231から出射する。第3の光は、第1の結合部11の他方のメイン入射路121から入射して、他方のメイン出射路141から出射する。第3の光は、第3の結合部13の一方のメイン入射路113から入射して、一方のメイン出射路133から出射する。
 第4の光は、第2の結合部12の他方のメイン入射路122から入射して、一方のメイン出射路132から出射する。第4の光は、第3の結合部13の他方のメイン入射路123から入射して、一方のメイン出射路133から出射する。
 第5の光は、第1の結合部11の一方のメイン入射路111から入射して、他方のメイン出射路141から出射する。第5の光は、第3の結合部13の一方のメイン入射路113から入射して、一方のメイン出射路133から出射する。
[実施例2]
 図12に示すように、λ1=450nm、λ2=520nm、λ3=635nm、λ4=720nm、λ5=840nmとした。その結果、合波効率は、それぞれ、97.7%、91.6%、87.3%、99.8%、96.8%となり、良好に合波できていることがわかった。
 以上、本実施形態に係る光合波器1及び光合波方法によれば、以下の効果を奏する。
(10)サブ入射路211,221の一方は、他のサブユニット22のサブ出射路232,242の他方に接続可能に構成される。これにより、サブユニット21を複数組み合わせることにより、複数の波長の光を柔軟に合波することができる。
[第3実施形態]
 次に、本発明の第3実施形態に係る光合波器1及び光合波方法について、図13から図15を参照して説明する。第3実施形態の説明にあたって、前述の実施形態と同一の構成要件については同一符号を付し、その説明を省略もしくは簡略化する。
 第3実施形態に係る光合波器1及び光合波方法は、5つの光を合波する点で第1実施形態と異なる。第3実施形態に係る光合波器1及び光合波方法は、図13に示すように、1つの基準ユニット100及び1つのサブユニット21に対して、さらなるサブユニット23を接続している点で、第1実施形態と異なる。
 また、第3実施形態に係る光合波器1及び光合波方法は、図14に示すように、第1の光の波長をλ1、第2の光の波長をλ2、第3の光の波長をλ3、第4の光の波長をλ4、第5の光の波長をλ5とする点で第1実施形態と異なる。
 また、第3実施形態に係る光合波器1及び光合波方法は、それぞれの光の完全結合長が、2L、L、L/2、L/3、及びL/6である点で第1及び第2実施形態と異なる。また、第3実施形態に係る光合波器1及び光合波方法は、λ1<λ2<λ3<λ4<λ5である点で、第1実施形態と異なる。また、第3実施形態に係る光合波器1及び光合波方法では、第3のサブユニット23の他方のサブ入射路223が、第3の結合部13のメイン出射路133,134の一方に接続される点で第1及び第2実施形態と異なる。そして、第3のサブユニット23の一方のサブ入射路213に第5の光が入射される点で、第1実施形態と異なる。第3のサブユニット23は、L/6となる完全結合長を有する。
 第3のサブユニット23は、完全結合長L/6のサブ結合器を有する。第3のサブユニット23の一方のサブ入射路213には、第5の光が入射される。また、第3のサブユニット23の他方のサブ入射路223には、第3の結合部13の一方のメイン出射路133が接続される。
 次に、本実施形態に係る光合波器1の動作を説明する。
 第1の光から第4の光の入射及び出射の関係は、第3の結合部13の一方のメイン出射路133から出射されるまでは、第1の実施形態と同様である。第1の光から第4の光は、第3のサブユニット23の他方のサブ入射路223に入射され、他方のサブ出射路243から出射される。
 第5の光は、第3のサブユニットの一方のサブ入射路213に入射され、他方のサブ出射路243から出射される。これにより、第1から第5の光は合波される。
[実施例3]
 図15に示すように、λ1=450nm、λ2=520nm、λ3=635nm、λ4=720nm、λ5=960nmとした。その結果、合波効率は、それぞれ、96.1%、92.7%、97.6%、94.8%、95.9%となり、良好に合波できていることがわかった。
 以上、本発明の光合波器及び光合波方法の好ましい各実施形態につき説明したが、本開示は、上述の実施形態に制限されるものではなく、適宜変更が可能である。
 例えば、上記実施形態において、完全結合長は、メイン結合器150及びサブ結合器251の長さを変更することで実施されるとしたが、これに制限されない。完全結合長は、2つの導波路の間の間隔を変更することで実現されてもよい。また、完全結合長は、導波路の太さを変更することで実現されてもよい。
 また、上記実施形態において、サブユニット21の数は1つ又は2つに限定されず、さらに多くのサブユニット21が用いられてもよい。この場合、入力される光の波長に応じて、種々の完全結合長を有するサブユニット21を組み合わせてもよい。
 また、上記実施形態において、光結合方法は、少なくとも2つの光を合波可能な結合部10の出射路を他の結合部10の入射路に接続段階を備えてもよい。これにより、合波する光の数及び光の波長に応じて、様々な結合器を柔軟に結合して光を合波することができる。
 1 光合波器
 10 結合部
 11 第1の結合部
 12 第2の結合部
 13 第3の結合部
 21、22、34 サブユニット
 100 基準ユニット
 110、111、112、113、120、121、122、123 メイン入射路
 130、131、132、133、140、141、142、143 メイン出射路
 150、151、152、153 メイン結合器
 211、221、212、222、213、223 サブ入射路
 231、241、232、242、233、243 サブ出射路
 251 サブ結合器

Claims (15)

  1.  複数の波長の光を合波可能な光合波器であって、
     一対のメイン入射路と、一対のメイン出射路と、前記メイン入射路及び前記メイン出射路との間に配置され、前記メイン入射路に入射した光を結合して前記メイン出射路に出射するメイン結合器と、を有する複数の結合部を備え、
     前記結合部の1つの前記メイン入射路は、他の前記結合部の前記メイン出射路と連結され、
     前記メイン結合器のそれぞれは、他の前記メイン結合器の少なくとも1つと異なる結合特性を有する光合波器。
  2.  前記複数の結合部を一組とする基準ユニットと、
     前記基準ユニットに接続可能なサブユニットと、
    を備え、
     前記サブユニットは、
     一対のサブ入射路と、
     一対のサブ出射路と、
     前記サブ入射路に入射した光を結合して前記サブ出射路に出射するサブ結合器と、
    を有し、
     前記サブ入射路は、前記メイン出射路に接続可能に構成され、
     前記サブ出射路は、前記メイン入射路に接続可能に構成される請求項1に記載の光合波器。
  3.  前記サブ入射路は、他の前記サブユニットの前記サブ出射路に接続可能に構成される請求項2に記載の光合波器。
  4.  前記サブ出射路は、他の前記サブユニットの前記サブ入射路に接続可能に構成される請求項2又は3に記載の光合波器。
  5.  前記基準ユニットは、3つの前記結合部を一組とし、
     第1の前記結合部の前記メイン出射路の他方は、第3の前記結合部の前記メイン入射路の一方に接続され、
     第2の前記結合部の前記メイン出射路の一方は、第3の前記結合部の前記メイン入射路の他方に接続され、
     第1の前記結合部の前記メイン結合器と、第2の前記結合部の前記メイン結合器と、第3の前記結合部の前記メイン結合器とは、異なる結合特性を有する請求項2又は3に記載の光合波器。
  6.  第1の前記結合部の前記メイン入射路の一方には、前記基準ユニットに入射する複数の波長の光のうち最も波長の長い光及び次に波長の長い光のうちのいずれかが入射され、
     第2の前記結合部の前記メイン入射路の他方には、前記基準ユニットに入射する複数の波長の光のうち最も波長の長い光及び次に波長の長い光のうちのいずれかの残りが入射される請求項5に記載の光合波器。
  7.  第1の前記結合部の前記メイン結合器は、第1の前記結合部の前記メイン入射路のいずれかに入射される光を他方の前記メイン出射路に出射する結合特性を有し、
     第2の前記結合部の前記メイン結合器は、第2の前記結合部の前記メイン入射路のいずれかに入射される光を一方の前記メイン出射路に出射する結合特性を有し、
     第3の前記結合部の前記メイン結合器は、第3の前記結合部の前記メイン入射路のいずれかに入射される光をいずれかの前記メイン出射路に出射する結合特性を有する請求項5又は6に記載の光合波器。
  8.  前記サブユニットの前記サブ出射路の一方は、第1の前記結合部の他方の前記メイン入射路に接続され、
     前記サブユニットの前記サブ出射路の他方は、第2の前記結合部の一方の前記メイン入射路に接続される請求項5から7のいずれかに記載の光合波器。
  9.  前記サブユニットの前記サブ結合器は、一対の前記サブ入射路に入射された光を少なくとも一方の前記サブ出射路に出射する結合特性を有する請求項5から7のいずれかに記載の光合波器。
  10.  前記サブユニットの前記サブ入射路の他方は、他の前記サブユニットの前記サブ出射路の一方に接続される請求項8に記載の光合波器。
  11.  第3の前記結合部の前記メイン出射路の一方は、他の前記サブユニットの前記サブ入射路の他方に接続される請求項8に記載の光合波器。
  12.  前記サブユニットの前記サブ結合器は、一対の前記サブ入射路に入射された光のうち少なくともいずれかを一対の前記サブ出射路に分割して出射する結合特性を有する請求項2から8のいずれかに記載の光合波器。
  13.  複数の波長の光を合波する光合波方法であって、
     第1の光の一部と第2の光とを合波して光を第1合波光として出力する第1合波光出力段階と、
     第1の光の他の一部と第3の光とを合波して第2合波光として出力する第2合波光出力段階と、
     前記第1合波光と第4の光とを合波して第3合波光として出力する第3合波光出力段階と、
     前記第2合波光と第3合波光とを合波して第4合波光として出力する第4合波光出力段階と、
    を備える光合波方法。
  14.  前記第1の光の波長をλ1、前記第2の光の波長をλ2、前記第3の光の波長をλ3、前記第4の光の波長をλ4として、λ1<λ2<λ3<λ4である請求項13に記載の光合波方法。
  15.  複数の波長の光を合波する光合波方法であって、
     少なくとも2つの光を合波可能な結合部の出射路を他の結合部の入射路に接続段階を備える光合波方法。
PCT/JP2021/004387 2021-02-05 2021-02-05 光合波器及び光合波方法 WO2022168273A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021551858A JP7100930B1 (ja) 2021-02-05 2021-02-05 光合波器及び光合波方法
US17/605,871 US20240027683A1 (en) 2021-02-05 2021-02-05 Optical multiplexer and optical multiplexing method
PCT/JP2021/004387 WO2022168273A1 (ja) 2021-02-05 2021-02-05 光合波器及び光合波方法
CN202180003035.9A CN115427854A (zh) 2021-02-05 2021-02-05 光合波器和光合波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/004387 WO2022168273A1 (ja) 2021-02-05 2021-02-05 光合波器及び光合波方法

Publications (1)

Publication Number Publication Date
WO2022168273A1 true WO2022168273A1 (ja) 2022-08-11

Family

ID=82402543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004387 WO2022168273A1 (ja) 2021-02-05 2021-02-05 光合波器及び光合波方法

Country Status (4)

Country Link
US (1) US20240027683A1 (ja)
JP (1) JP7100930B1 (ja)
CN (1) CN115427854A (ja)
WO (1) WO2022168273A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160932A (en) * 1999-02-16 2000-12-12 Wavesplitter Technologies, Inc. Expandable wavelength division multiplexer based on interferometric devices
US20020186730A1 (en) * 2001-06-08 2002-12-12 Garbuzov Dmitri Zalmanovitch Integrated multiple wavelength pump laser module
JP2003050323A (ja) * 2001-05-30 2003-02-21 Furukawa Electric Co Ltd:The 光合分波器
WO2010137661A1 (ja) * 2009-05-28 2010-12-02 シチズンホールディングス株式会社 光源装置
US20150003773A1 (en) * 2010-08-12 2015-01-01 Octrolix Bv Beam Combiner
WO2017065225A1 (ja) * 2015-10-14 2017-04-20 シャープ株式会社 光合波器及びこの光合波器を用いた画像投影装置
WO2021002254A1 (ja) * 2019-07-02 2021-01-07 セーレンKst株式会社 光合波器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4496211A (en) * 1980-12-05 1985-01-29 Maurice Daniel Lightpipe network with optical devices for distributing electromagnetic radiation
JP5817022B2 (ja) * 2012-03-19 2015-11-18 国立大学法人福井大学 光合波器及びこの光合波器を用いた画像投影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6160932A (en) * 1999-02-16 2000-12-12 Wavesplitter Technologies, Inc. Expandable wavelength division multiplexer based on interferometric devices
JP2003050323A (ja) * 2001-05-30 2003-02-21 Furukawa Electric Co Ltd:The 光合分波器
US20020186730A1 (en) * 2001-06-08 2002-12-12 Garbuzov Dmitri Zalmanovitch Integrated multiple wavelength pump laser module
WO2010137661A1 (ja) * 2009-05-28 2010-12-02 シチズンホールディングス株式会社 光源装置
US20150003773A1 (en) * 2010-08-12 2015-01-01 Octrolix Bv Beam Combiner
WO2017065225A1 (ja) * 2015-10-14 2017-04-20 シャープ株式会社 光合波器及びこの光合波器を用いた画像投影装置
WO2021002254A1 (ja) * 2019-07-02 2021-01-07 セーレンKst株式会社 光合波器

Also Published As

Publication number Publication date
US20240027683A1 (en) 2024-01-25
CN115427854A (zh) 2022-12-02
JP7100930B1 (ja) 2022-07-14
JPWO2022168273A1 (ja) 2022-08-11

Similar Documents

Publication Publication Date Title
JP6572377B2 (ja) 光合波回路
JP2018180513A (ja) モニタリング機能付き光源
JPH0869021A (ja) 光学装置
JP2000267147A (ja) マルチチャネル光学通信システム用チャネルセレクタ
JP7256422B2 (ja) モニタリング機能付き光源
JP6691518B2 (ja) 光集積回路
WO2022168273A1 (ja) 光合波器及び光合波方法
JP7201945B2 (ja) 光合波回路および光源
JP6697423B2 (ja) 光集積回路
JP7436881B2 (ja) 光合波回路
JP7189471B2 (ja) 光合波回路および光源
JP2848279B2 (ja) 光接続素子及び光接続装置
JP7201944B2 (ja) モニタリング機能付き光源
JP2011154331A (ja) 光スイッチ及び波長選択スイッチ
JP2001308422A (ja) 励起光源装置
JP7185164B2 (ja) モニタリング機能付き光源
JPH1066112A (ja) 光マトリクススイッチ
WO2023051113A1 (zh) 分波器、合波器和光通信装置
JP2002072008A (ja) 光分波器および光合波器
JP2002090572A (ja) 光合波器及び光分波器
JP2005266478A (ja) 光導波回路デバイス
JP3596328B2 (ja) 波長分散補償器
JPWO2020213066A1 (ja) 可視光光源
JP2004085953A (ja) 光ファイバカプラ
JP2001103523A (ja) 光パス・アレンジ用光回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021551858

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17605871

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924668

Country of ref document: EP

Kind code of ref document: A1