WO2022166076A1 - 光固化3d打印多套切片参数的打印执行控制方法及装置 - Google Patents

光固化3d打印多套切片参数的打印执行控制方法及装置 Download PDF

Info

Publication number
WO2022166076A1
WO2022166076A1 PCT/CN2021/101309 CN2021101309W WO2022166076A1 WO 2022166076 A1 WO2022166076 A1 WO 2022166076A1 CN 2021101309 W CN2021101309 W CN 2021101309W WO 2022166076 A1 WO2022166076 A1 WO 2022166076A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
layer
parameters
mask
slice
Prior art date
Application number
PCT/CN2021/101309
Other languages
English (en)
French (fr)
Inventor
易瑜
谢信福
刘醴
凌少华
Original Assignee
深圳市创必得科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创必得科技有限公司 filed Critical 深圳市创必得科技有限公司
Publication of WO2022166076A1 publication Critical patent/WO2022166076A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present application relates to the technical field of 3D (3-dimension, three-dimensional) printing, and in particular, to a printing execution control method and device for light-curing 3D printing of multiple sets of slicing parameters.
  • the present invention provides two types of photocuring 3D printing implementations with multiple sets of slice parameters for the situation where there are multiple different model mask images and their different exposure time parameters and image optimization parameters in the same slice.
  • the control method and device after processing the slice preprocessing link of multiple different models, after setting different parameters to obtain multiple sets of slice printing parameters, the same slice can have multiple different model masks in the same slice generated after slicing
  • the picture and its different exposure time parameters and image optimization parameters correspondingly, provide two feasible control methods for the execution of photocuring 3D printing with multiple sets of slicing parameters.
  • Method 1 a printing execution control method for light-curing 3D printing multiple sets of slice parameters, based on LCD (Liquid Crystal Display, liquid crystal display) light-curing 3D printing technology, comprising the following steps:
  • the user sets the model slicing printing parameters for each/each group of models through the slicing software according to the number/group of the loaded 3D models to be printed;
  • the user stacks the slice printing layer parameters and the image printing page parameters in the layer generated after slicing and imports them into the storage unit of the photocuring printing device;
  • control unit reads and executes the Nth layer slice printing layer parameters in sequence and controls the motor to drive the forming platform to move to the preparatory mask exposure printing position and control the light source to light up after being stationary for X seconds;
  • control unit controls the image printing page parameters of the Mth page in the loading layer of the LCD screen and performs mask exposure on it according to the exposure time parameter;
  • control unit determines whether all the images in the layer have completed the mask exposure; if it is determined that all the images in the layer have completed the mask exposure, then go to step S08; if it is determined that the images in the layer have not all completed the mask exposure, then go to step S07;
  • control unit controls the image printing page parameters of the M+1th page in the loading layer of the LCD screen and performs mask exposure on it, and then enters and executes step S06;
  • control unit controls the light source to turn off the light and waits for Y seconds, controls the motor to drive the molding platform to lift/lower the preset distance L1 mm and drives the curing molding model to release the film;
  • the control unit controls the motor-driven forming platform to raise/lower L1 mm, then stand still for Z seconds, and then lower/raise L2 mm to move to the preparatory mask exposure printing position and stand still for X seconds;
  • control unit judges whether the in-layer images of all the slice layers have all completed the mask exposure; if it is judged that the in-layer images of all slice layers have all completed the mask exposure, then proceed to step S12; if it is judged that the in-layer images of all slice layers are not all After the mask exposure is completed, go to step S11;
  • control unit reads and executes the N+1 th layer slice printing layer parameters in sequence and controls the light source to light up, and then enters and executes step S05;
  • control unit controls the light source to turn off the light and waits for Y seconds, and then controls the motor to drive the forming platform to lift the preset distance L3 mm to realize the film removal;
  • Method 2 a printing execution control method for light-curing 3D printing multiple sets of slicing parameters, is based on the projection type light-curing 3D printing technology, and includes the following steps:
  • the user sets the model slicing printing parameters for each/each group of models through the slicing software according to the number/group of the loaded 3D models to be printed;
  • the user stacks the slice printing layer parameters and the image printing page parameters in the layer generated after slicing and imports them into the storage unit of the photocuring printing device;
  • control unit reads and executes the Nth slice printing layer parameters in sequence and controls the motor-driven forming platform to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit controls the projection device to load the image printing page parameters of the Mth page in the layer to turn on the screen and perform mask projection on it according to the exposure time parameter;
  • control unit judges whether the images in the layer have all completed the mask projection; if it is judged that the images in the layer have all completed the mask projection, then proceed to step SS08; if it is judged that the images in the layer have not all completed the mask projection, then proceed to step SS07;
  • control unit controls the projection device to load the image printing page parameters of the M+1th page in the layer and perform mask projection on it, and then enter and execute step SS06;
  • the control unit controls the projection device to turn off the screen and waits for Y seconds, then controls the motor to drive the molding platform to lift/lower the preset distance L1 mm and drive the cured molding model to release the film;
  • the control unit controls the motor-driven forming platform to raise/lower L1 mm, then stand still for Z seconds, and then lower/raise L2 mm to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit judges whether all the intra-layer images of all slice layers have completed the mask projection; if it is judged that all the intra-layer images of all slice layers have completed the mask projection, then proceed to step SS12; if it is judged that the in-layer images of all slice layers are not all After completing the mask projection, proceed to step SS11;
  • control unit reads and executes the N+1th layer slice printing layer parameters in sequence, and then enters and executes step SS05;
  • the control unit controls the projection device to turn off the screen and waits for Y seconds, and then controls the motor to drive the forming platform to lift the preset distance L3 mm to realize the film extraction;
  • the model slice printing parameters include: a mask image, and/or a mask image exposure time parameter, and/or a moving speed parameter of the forming platform, and/or a moving distance parameter of the forming platform, and/or a static time of the forming platform parameter, and/or light source light-on time parameter, and/or light-off delay time parameter, and/or projection screen-on time parameter, and/or projection screen-off delay time parameter, and/or slice layer thickness parameter, and/or bottom layer number specification parameters, and/or slice bottom layer optimization settings parameters, and/or mask image edge optimization settings parameters, and/or mask image antialiasing optimization parameters, and/or mask image tolerance compensation parameters, and/or mask image Image uniformity optimization compensation parameters, and/or print support setting parameters, and/or resin characteristic parameters.
  • the slicing printing layer parameters include: the moving speed parameter of the forming platform, the moving distance parameter of the forming platform, the static time parameter of the forming platform, or the light source lamp on time parameter, or the lamp off delay time parameter
  • the in-layer image printing page parameters include: mask image, mask image exposure time parameter, and/or mask image edge optimization setting parameter, and/or mask image resistance Aliasing optimization parameters, and/or mask image tolerance compensation parameters, and/or mask image uniformity optimization compensation parameters, and/or print support setting parameters.
  • the slice of the Nth layer includes one mask image, or includes two mask images, or includes a plurality of mask images; the slice of the Nth layer includes one in-layer image printing page parameter, Or include 2 in-layer image printing page parameters, or include multiple in-layer image printing page parameters.
  • the N and M are positive integers increasing from 1; the X, Y, Z, L1, L2, and L3 are natural numbers or decimals.
  • the number/group of the 3D models to be printed includes one/group, or two/group, or multiple/group.
  • the light-curing printing device in the step 3 adopts an ascending LCD light-curing 3D printer, or a sunken LCD light-curing 3D printer, or an ascending projection light-curing 3D printer, or a descending projection light-curing 3D printer .
  • the user sets the model slicing printing parameters for each/each group of models through the slicing software according to the number/group of the loaded 3D models to be printed, including:
  • step S05 includes: opening at least one of the mask image channels corresponding to the plurality of 3D models to achieve light transmission and exposure.
  • step SS05 includes: the projection device emits ultraviolet light and visible light through the image mask to project the liquid surface of the photosensitive resin, so that the liquid surface of the resin corresponding to the image position of the mask is photocured and reacted to form.
  • the device 1 based on LCD photocuring 3D printing technology
  • the printing execution control device used in the printing execution control method of the photocuring 3D printing multiple sets of slicing parameters includes: a control unit, a storage unit, an LCD screen , light source, motor, lifting column, liquid tank, or bottom film, photosensitive resin, forming platform, base; the control unit, storage unit, LCD screen, light source, liquid tank are arranged and connected to the base; the motor is connected to the forming platform; The lifting column is fixedly connected to the base; the motor is installed on the lifting column to realize electric drive lifting and drive the forming platform to lift or descend with it; the bottom film is arranged at the bottom of the liquid tank for light transmission; the liquid tank contains The photosensitive resin liquid is released; the control unit is electrically connected to the storage unit, the LCD screen, the light source, and the motor; the storage unit stores the 3D printing slicing software to slice the 3D model to generate slice printing layer parameters and intra-layer image printing page parameters; The control unit reads the slice
  • the device 2 based on projection type photocuring 3D printing technology, a printing execution control device 2 used in a printing execution control method for photocuring 3D printing multiple sets of slicing parameters, includes: a control unit, a storage unit, a projection device, Motor, lifting column, liquid tank, or bottom film, photosensitive resin, forming platform, base; the control unit, storage unit, projection device, liquid tank are arranged and connected to the base; the motor is connected to the forming platform; the lifting column is fixed connected to the base; the motor is installed on the lifting column to realize electric drive up and down and drives the forming platform to rise or fall with it; the bottom film is arranged at the bottom of the liquid tank for light transmission; the liquid tank is filled with photosensitive resin liquid;
  • the control unit is electrically connected to the storage unit, the projection device and the motor; the storage unit stores the 3D printing slicing software after slicing the 3D model to generate slice printing layer parameters and in-layer image printing page parameters; the control unit reads the storage unit The slice printing layer
  • Method 3 a printing execution control method for light-curing 3D printing multiple sets of slicing parameters, comprising:
  • the slice printing layer parameters and the in-layer image printing page parameters are generated after slicing the 3D model according to the model slice printing parameters;
  • the model slice printing parameters are It is set for each or each group of models according to the number or group of the loaded 3D models to be printed; at least one slice printing layer includes a multi-page image printing page in the layer; multiple pages of the image printing page in the layer corresponding to multiple sets of parameters of the in-layer image printing page respectively; each of the in-layer image printing pages includes mask images of a plurality of 3D models;
  • the photosensitive resin is irradiated to cure the photosensitive resin until 3D printing is completed for all the in-layer image printing pages of the slice printing layer.
  • the photosensitive resin is irradiated to cure the photosensitive resin until the in-layer image printing pages of all the sliced printing layers are completed.
  • 3D printing including:
  • control unit reads and executes the Nth layer slice printing layer parameters in sequence and controls the motor to drive the forming platform to move to the preparatory mask exposure printing position and control the light source to light up after being stationary for X seconds;
  • control unit controls the image printing page parameters of the Mth page in the loading layer of the LCD screen and performs mask exposure on it according to the exposure time parameter;
  • control unit determines whether all the images in the layer have completed the mask exposure; if it is determined that all the images in the layer have completed the mask exposure, then go to step S08; if it is determined that the images in the layer have not all completed the mask exposure, then go to step S07;
  • control unit controls the image printing page parameters of the M+1th page in the loading layer of the LCD screen and performs mask exposure on it, and then enters and executes step S06;
  • control unit controls the light source to turn off the light and waits for Y seconds, controls the motor to drive the molding platform to lift/lower the preset distance L1 mm and drives the curing molding model to release the film;
  • the control unit controls the motor-driven forming platform to raise/lower L1 mm, then stand still for Z seconds, and then lower/raise L2 mm to move to the preparatory mask exposure printing position and stand still for X seconds;
  • control unit judges whether the in-layer images of all slice layers have all completed the mask exposure; if it is determined that the in-layer images of all slice layers have all completed the mask exposure, then proceed to step S12; if it is judged that the in-layer images of all slice layers are not fully exposed After the mask exposure is completed, go to step S11;
  • control unit reads and executes the N+1 th layer slice printing layer parameters in sequence and controls the light source to light up, and then enters and executes step S05;
  • control unit controls the light source to turn off the light and waits for Y seconds, and then controls the motor to drive the forming platform to lift the preset distance L3 mm to realize the film removal;
  • control unit reads and executes the Nth slice printing layer parameters in sequence and controls the motor-driven forming platform to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit controls the projection device to load the image printing page parameters of the Mth page in the layer to turn on the screen and perform mask projection on it according to the exposure time parameter;
  • control unit judges whether the images in the layer have all completed the mask projection; if it is judged that the images in the layer have all completed the mask projection, then proceed to step SS08; if it is judged that the images in the layer have not all completed the mask projection, then proceed to step SS07;
  • control unit controls the projection device to load the image printing page parameters of the M+1th page in the layer and perform mask projection on it, and then enter and execute step SS06;
  • the control unit controls the projection device to turn off the screen and waits for Y seconds, then controls the motor to drive the molding platform to lift/lower the preset distance L1 mm and drive the cured molding model to release the film;
  • the control unit controls the motor-driven forming platform to raise/lower L1 mm, then stand still for Z seconds, and then lower/raise L2 mm to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit judges whether the in-layer images of all slice layers have all completed the mask projection; if it is judged that the in-layer images of all slice layers have all completed the mask projection, then proceed to step SS12; if it is judged that the in-layer images of all slice layers are not all After completing the mask projection, proceed to step SS11;
  • control unit reads and executes the N+1th layer slice printing layer parameters in sequence, and then enters and executes step SS05;
  • the control unit controls the projection device to turn off the screen and waits for Y seconds, and then controls the motor to drive the forming platform to lift the preset distance L3 mm to realize the film removal;
  • the photosensitive resin is irradiated to cure the photosensitive resin until the in-layer image printing pages of all the sliced printing layers are completed.
  • 3D printing including:
  • A04. Read and execute the Nth layer slice printing layer parameters and drive the forming platform to move to the preparatory printing position;
  • A05 Load the image printing page parameters of the Mth page in the layer and irradiate the photosensitive resin according to the exposure time parameter;
  • step A06 If all the images in the layer have finished irradiating the photosensitive resin, then go to step A08; if all the images in the layer have not finished irradiating the photosensitive resin, go to step A07;
  • step A07 load the image printing page parameters of the M+1th page in the layer and irradiate the photosensitive resin, and then proceed to execute step A06;
  • step A10 If all the in-layer images of all slice layers have completed irradiating the photosensitive resin, then go to step A12; if all the in-layer images of all slice layers have not completed irradiating the photosensitive resin, then go to step A11;
  • the step A04 includes: the control unit reads and executes the Nth layer slice printing layer parameters in sequence and controls the motor-driven forming platform to move to the preparatory mask exposure printing position and control the light source to light up after being stationary for X seconds;
  • step A05 includes: the control unit controls the LCD screen to load the image printing page parameters of the Mth page in the layer and perform mask exposure on it according to the exposure time parameter;
  • step A06 includes: the control unit determines whether all the images in the layer have completed the mask exposure; if it is determined that all the images in the layer have completed the mask exposure, then step A08 is performed; if it is determined that the images in the layer have not all completed the mask exposure, then perform Step A07;
  • step A07 includes: the control unit controls the LCD screen loading layer M+1 image printing page parameter and carries out mask exposure to it, then enters and executes step A06;
  • step A08 includes: the control unit controls the light source to turn off the light and waits for Y seconds, controls the motor to drive the forming platform to lift/lower the preset distance L1 mm and drives the curing forming model to release the film;
  • step A09 includes: the control unit controls the motor-driven forming platform to stand still for Z seconds after lifting/lowering L1 mm, and then lower/lift L2 mm to move to the preparatory mask exposure printing position and be stationary for X seconds;
  • step A10 includes: the control unit judges whether the in-layer images of all slice layers have all completed mask exposure; if it is judged that the in-layer images of all slice layers have all completed mask exposure, then step A12 is performed; If the image in the layer is not completely exposed by the mask, then go to step A11;
  • step A11 includes: the control unit reads and executes the N+1th layer slice printing layer parameters in sequence and controls the light source to light up, and then proceeds to execute step A05;
  • step A12 includes: the control unit controls the light source to turn off the light, and after waiting for Y seconds, controls the motor to drive the forming platform to lift up by a preset distance L3 mm to realize pulling out the film.
  • step A04 includes: the control unit reads and executes the Nth layer slice printing layer parameters in sequence and controls the motor-driven forming platform to move to the preparatory mask projection printing position and stand still for X seconds;
  • step A05 includes: the control unit controls the projection device to load the image printing page parameters of the Mth page in the layer to turn on the screen and perform mask projection on it according to the exposure time parameter;
  • step A06 includes: the control unit determines whether all the images in the layer have completed the mask projection; if it is determined that all the images in the layer have completed the mask projection, then step A08 is performed; if it is determined that the images in the layer have not all completed the mask projection, then perform Step A07;
  • step A07 includes: the control unit controls the projection device to load the image printing page parameters of the M+1th page in the layer and perform mask projection on it, and then proceed to execute step A06;
  • step A08 includes: the control unit controls the projection device to turn off the screen and waits for Y seconds, controls the motor to drive the forming platform to raise/lower a preset distance L1 mm and drives the cured forming model to release the film;
  • step A09 includes: the control unit controls the motor-driven forming platform to stand still for Z seconds after lifting/lowering L1 mm, and then lower/lift L2 mm to move to the preparatory mask projection printing position and be stationary for X seconds;
  • step A10 includes: the control unit judges whether all the intra-layer images of all slice layers have completed mask projection; If the image in the layer has not completely completed the mask projection, then go to step A11;
  • step A11 includes: the control unit reads and executes the N+1th layer slice printing layer parameters in sequence, and then enters and executes step A05;
  • step A12 includes: the control unit controls the projection device to turn off the screen and waits for Y seconds to control the motor to drive the forming platform to lift up by a preset distance L3 mm to realize pulling out the film.
  • the photosensitive resin is irradiated to make the photosensitive resin solidify and form, until the printing pages of the images in the layers of all the slicing printing layers are completed.
  • 3D printing including:
  • switching to the designated image printing page in the layer is realized by switching the parameters of the image printing page in the layer;
  • At least one mask image corresponding to the 3D model is exposed for the designated in-layer image print.
  • the present invention provides two printing execution control methods for light-curing 3D printing with multiple sets of slicing parameters.
  • the slicing preprocessing link of processing multiple different models after setting different parameters to obtain multiple sets of slicing printing parameters, you can After slicing, there are multiple different model mask images and their different exposure time parameters and image optimization parameters in the same slice.
  • photocuring 3D 3D models with multiple sets of slicing parameters.
  • the user can print a batch of dozens of the same models/print a batch of multiple sets of different models, and at the same time, according to the number/group of 3D models Set different precise and dense stepped model slice printing parameters respectively; it can be that the user selects the best effect of the same model in a printing batch to print the finished product, or simultaneously selects the best results of each set of different models in a printing batch.
  • the finished product can be printed with excellent effect and the corresponding optimal parameters of resin characteristics and other optimal printing setting parameters can be obtained, and the printing test and batch printing efficiency are high;
  • the printing execution control method 1 of the present invention can be generally applied to general ascending or descending LCD light-curing printers. While realizing the printing of multiple sets of parameters and models, there is no need to equip a special machine for printing multiple sets of parameters, and the method is applicable high sex;
  • the printing execution control method 2 of the present invention can be generally applied to general ascending or descending projection type photocuring printers. While realizing the printing of multiple sets of parameters and models, there is no need to equip a special machine for printing multiple sets of parameters, and the method is applicable high.
  • FIG. 1 is a flowchart of a printing execution control method 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 2 is a flow chart of a printing execution control method 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • Fig. 3 is the flow chart of applying for the method 1 of setting multiple slice printing parameters of the light-curing 3D printing model on the same day;
  • Fig. 4 is the flow chart of applying for the setting method 2 of the multi-slice printing parameters of the light-curing 3D printing model on the same day;
  • Fig. 5 is the embodiment 1 of the method 1 of applying for multiple sets of slice printing parameters of the light-curing 3D printing model on the same day;
  • Fig. 6 is the embodiment 1 of applying for multiple sets of slice printing parameter setting method 2 of the light-curing 3D printing model on the same day;
  • Fig. 7 is the embodiment 2 of the method 1 for applying multiple sets of slice printing parameters for a photocuring 3D printing model on the same day;
  • Fig. 8 is the embodiment 2 of the method 2 of applying for multiple sets of slice printing parameters of the light-curing 3D printing model on the same day;
  • Embodiment 9 is Embodiment 1 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • FIG. 10 is Embodiment 2 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • FIG. 12 is Embodiment 4 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • Embodiment 6 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • Embodiment 7 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • Embodiment 8 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention
  • FIG. 18 is Embodiment 2 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 19 is Embodiment 1 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 20 is Embodiment 2 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 22 is Embodiment 3 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 23 is Embodiment 4 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention
  • FIG. 24 is Embodiment 4 of the printing execution control device 2 for light-curing 3D printing multiple sets of slicing parameters according to the present invention.
  • Control unit 1 storage unit 11; LCD screen 2; mask image channel 21; light source 3; motor 4; ; projection device 230; first model parameter setting module 1A; first parameter generation module 2A; first parameter import module 3A; first parameter control module 4A; first mask exposure module 5A; 6A; the first demoulding module 7A; the first slice layer judgment module 10A; the first film pulling module 12A; the first end module 13A; the second model parameter setting module 1B; the second parameter generation module 2B; The second parameter import module 3B; the second parameter control module 4B; the second mask projection module 5B; the second inner image judgment module 6B; the second demolding module 7B; Piece module 12B; second end module 13B.
  • Method 1 adopted in "Method for Setting Multiple Slice Printing Parameters for Light-curing 3D Printing Models”
  • the user can set the model slice printing parameters for each model according to the number of 3D models. , can print a batch of dozens of the same model and set different precise and dense step-by-step parameters, it is easy to select the best effect of the same model in a printing batch to print the finished product and obtain the corresponding resin with the best properties.
  • the optimal parameters and other optimal printing setting parameters can also be observed and compared at the same time as the molding differences between the printed products; in method 2, the user can set the model slice printing for each group of models according to the different groups of multiple 3D models.
  • method 1 the user sets the model slice printing parameters for each model according to the number of 3D models; in method 2, the user sets the model slice printing parameters for each group of models according to different groups; After slicing, the exposure time parameters of pictures under different models in the same slice are different. Therefore, the exposure time parameter cannot be printed according to the method of assigning only one set of printing parameters for each slice.
  • the commonly adopted method is to import the model into the slicing software in the slicing preprocessing stage.
  • a layer image and a set of printing parameters including mask image, exposure time, platform movement speed, platform movement distance, platform stationary time, lamp off delay time and other parameters; so that the control unit of the light curing printer only needs
  • control the corresponding actuator to execute the corresponding parameters
  • control the LCD screen to load the mask image and switch the mask image in the layer one by one with the layer-by-layer printing of the slice, and control the UV lamp to light up Expose the mask image, control the delay waiting time for the UV lamp to turn off, control the movement speed, movement distance, and static time of the platform drive motor; or, control the projection device to load the image printing page parameters in the layer and mask it.
  • the image is projected on a mask, and the photosensitive resin in the liquid tank is exposed to make it solidify and form; the movement speed, movement distance and stationary time of the platform driving motor are controlled, and
  • the models of method 1 and method 2 are used in the slice preprocessing link.
  • the model slicing software processes the multiple sets of slicing printing parameters obtained after slicing, and there is no corresponding and feasible multi-set slicing parameter execution control method for light-curing 3D printing.
  • the invention provides two printing execution control methods for light-curing 3D printing with multiple sets of slicing parameters.
  • the slicing parameters can be The generated situation that there are multiple different model mask images and their different exposure time parameters and image optimization parameters in the same slice, correspondingly, two feasible multi-sets of slice parameters are provided for the execution of photocuring 3D printing. Control Method.
  • FIG. 1 is a flow chart of a printing execution control method 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention. As shown in the figure, based on LCD light-curing 3D printing technology, it includes the following steps:
  • the user sets the model slicing printing parameters for each/each group of models through the slicing software according to the number/group of the loaded 3D models to be printed;
  • the user stacks the slice printing layer parameters and the image printing page parameters in the layer generated after slicing and imports them into the storage unit 11 of the photocuring printing device;
  • control unit 1 reads and executes the Nth slice printing layer parameters in sequence and controls the motor 4 to drive the forming platform 7 to move to the preparatory mask exposure printing position and control the light source 3 to light up after being stationary for X seconds;
  • control unit 1 controls the LCD screen 2 to load the M-th image printing page parameters in the layer and perform mask exposure on it according to the exposure time parameter;
  • control unit 1 judges whether all the images in the layer have completed the mask exposure; if it is judged that all the images in the layer have completed the mask exposure, then go to step S08; if it is judged that the images in the layer have not all completed the mask exposure, then go to step S07;
  • control unit 1 controls the LCD screen 2 to load the image printing page parameters of the M+1th page in the layer and perform mask exposure on it, and then enters and executes step S06;
  • control unit 1 controls the light source 3 to turn off the lights and waits for Y seconds and then controls the motor 4 to drive the forming platform 7 to lift/decrease a preset distance L1 mm and drive the curing and forming model to release the film;
  • control unit 1 controls the motor 4 to drive the forming platform 7 to stand still for Z seconds after lifting/lowering L1 mm and then lowering/lifting L2 mm to move to the preparatory mask exposure printing position and stand still for X seconds;
  • control unit 1 judges whether the in-layer images of all slice layers have all completed the mask exposure; if it is judged that the in-layer images of all slice layers have all completed the mask exposure, then proceed to step S12; if it is judged that the in-layer images of all slice layers have not been After all the mask exposure is completed, go to step S11;
  • control unit 1 reads and executes the N+1th layer slice printing layer parameters in sequence, and then controls the light source 3 to light up, and then enters and executes step S05;
  • control unit 1 controls the light source 3 to turn off the lights and waits for Y seconds, and then controls the motor 4 to drive the forming platform 7 to lift the preset distance L3 mm to realize the film removal;
  • FIG. 2 is a flow chart of a printing execution control method 2 of multiple sets of slicing parameters for photocuring 3D printing according to the present invention. As shown in the figure, based on projection light curing 3D printing technology, it includes the following steps:
  • the user sets the model slicing printing parameters for each/each group of models through the slicing software according to the number/group of the loaded 3D models to be printed;
  • the user stacks the slice printing layer parameters and the image printing page parameters in the layer generated after slicing and imports them into the storage unit 11 of the photocuring printing device;
  • control unit 1 reads and executes the Nth layer slice printing layer parameter in order and controls the motor 4 to drive the forming platform 7 to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit 1 controls the projection device 230 to load the image printing page parameters of the Mth page in the layer, then turn on the screen and perform mask projection on it according to the exposure time parameter;
  • control unit 1 judges whether the images in the layer all complete the mask projection; if it is judged that the images in the layer all complete the mask projection, then proceed to step SS08; if it is judged that the images in the layer do not all complete the mask projection, then proceed to step SS07;
  • control unit 1 controls the projection device 230 to load the image printing page parameters of the M+1th page in the layer and perform mask projection on it, and then enter and execute step SS06;
  • control unit 1 controls the projection device 230 to turn off the screen and waits for Y seconds, then controls the motor 4 to drive the molding platform 7 to lift/lower the preset distance L1 mm and drive the cured molding model to release the film;
  • control unit 1 controls the motor 4 to drive the forming platform 7 to stand still for Z seconds after lifting/lowering L1 mm, and then lowering/lifting L2 mm to move to the preparatory mask projection printing position and stand still for X seconds;
  • control unit 1 judges whether the in-layer images of all slice layers have all completed mask projection; if it is judged that the in-layer images of all slice layers have all completed mask projection, then proceed to step SS12; if it is judged that the in-layer images of all slice layers have not been After all the mask projections are completed, go to step SS11;
  • control unit 1 reads and executes the N+1th layer slice printing layer parameters in sequence, and then enters and executes step SS05;
  • control unit 1 controls the projection device 230 to turn off the screen and waits for Y seconds, and then controls the motor 4 to drive the forming platform 7 to lift the preset distance L3 mm to realize the film extraction;
  • Figure 3 is a flow chart of the method 1 of applying for multiple sets of slice printing parameters for a light-curing 3D printing model on the same day. As shown in the figure, it includes the following steps:
  • step SA02 the user judges whether it is necessary to set the model slice printing parameters for each model according to the number of 3D models; if it is judged that it is not necessary to set the model slice printing parameters for each model according to the number of 3D models, then proceed to step SA04; Judging that it is necessary to set the model slice printing parameters for each model according to the number of 3D models, then proceed to step SA03;
  • step SA03 the user sets the model slice printing parameters for each model according to the number of 3D models, and then enters and executes step SA05;
  • the user sets the model slice printing parameters and imports the 3D model printing data after slicing into the photo-curing printer for photo-curing printing;
  • Figure 4 is a flow chart of the method 2 of applying for multiple sets of slice printing parameters for a light-curing 3D printing model on the same day. As shown in the figure, it includes the following steps:
  • step SB02 the user judges whether it is necessary to group multiple 3D models; if it is judged that it is not necessary to group multiple 3D models, then go to step SB05; if it is judged that multiple 3D models need to be grouped, then go to step SB03;
  • the user groups multiple 3D models according to different selection requirements
  • SB04 the user sets the model slice printing parameters for each group of models according to different groups, and then enters and executes step SB06;
  • the user sets the model slice printing parameters and imports the 3D model printing data after slicing into the light-curing printer for light-curing printing;
  • FIG. 5 is the embodiment 1 of the method 1 for applying multiple sets of slice printing parameters for a light-curing 3D printing model on the same day.
  • the model slice printing parameters need to be debugged in advance.
  • the prior art method is to print multiple models one by one and set different stepped slice printing parameters, and then select the corresponding one from the optimal printed product. Optimal resin characteristic parameters; however, the test printing time is too long in this way.
  • FIG. 6 is the embodiment 1 of the method 2 of applying for multiple sets of slice printing parameters for a photocuring 3D printing model on the same day.
  • users need to print different models in large quantities, they also need to debug the model slice printing parameters in advance.
  • the existing technology is to print nearly ten or more models for each model one by one and set Only with different stepped slice printing parameters, the corresponding optimal resin characteristic parameters can be selected from the optimal printed products of each model; this way, the test printing time is longer.
  • FIG. 7 shows Embodiment 2 of Method 1 for setting multiple sets of slice printing parameters for a photocuring 3D printing model on the same day.
  • the user sets the model slicing printing parameters for each of the 4 models through the 3D slicing preprocessing software, and slices to obtain 4-layer slices; because generally in actual printing, it is necessary to default or Manually specify the first layer or the first several layers as the bottom slice.
  • the exposure time of the bottom slice is generally the same slice printing parameter, so each layer in the bottom slice generally has only one set of slice printing layer parameters, and there is only one set of images in the layer.
  • Print page parameters that is, there is only one uniform mask image and its exposure time parameters and image optimization parameters in the same slice;
  • the exposure time of the four models on the bottom layer is 5 seconds; here, the exposure time of 5 seconds is taken.
  • the resin formed at the molding resin 61 in FIG. 17 needs to be attached to the bottom of the forming platform 7 when it is cured into a slice, so the exposure reaction time required is slightly longer than that of the non-bottom layer.
  • the parameters of the printing layer include: the moving speed parameter of the forming platform, the moving distance parameter of the forming platform, the static time parameter of the forming platform, the light source light on time parameter, the light off delay time parameter, the slice layer thickness parameter, or the projection screen bright time parameter, or the projection screen off delay parameter Time parameters, etc.
  • each layer slice has 4 models with different exposure time parameters, so each slice layer has 4 sets of image printing page parameters within the layer; generally
  • the parameters of the printed pages of the images in the layer include: mask image parameters, and mask image exposure time parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization parameters, mask image tolerance compensation parameters, mask image
  • the parameters related to the mask image related information such as the uniform light optimization compensation parameters and the printing support setting parameters; the numbers 11, 21, 22, 31, and 41 in the figure are the cache data of the image print page in the layer generated by the 3D slicing preprocessing software Flag bit, the first digit of the number represents the layer where it is located, and the second digit of the number represents the page where the mask image in the layer is located; therefore, in the control method of the present invention, the control unit 1 can judge and execute accordingly when reading the cache data flag bit.
  • models M1-M4 are exposed for 1s-4s in each layer slice respectively, so model M1 only exposes 1s in page 21 in the second layer slice, and in pages 22-24, by switching the image printing page parameters in the layer, After making the mask image in LCD screen 2 in Fig. 17 or switching to page 2, after the mask image channel 21 at model M1 is closed, it will not be exposed in the second layer slice until the next layer; In the second layer slicing, by switching the image printing page parameters in the layer, after the mask image in LCD screen 2 in Fig.
  • the mask image channel 21 at the model M4 is opened 4 times, each time The exposure time is 1 s, that is, the control unit 1 controls the LCD screen 2 to switch quickly to display the mask image on each page for 1 s. After 4 times in total, the mask image at the model M4 is exposed for 4 s.
  • FIG. 8 is Embodiment 2 of the method 2 for setting multiple slice printing parameters of a light-curing 3D printing model applied for on the same day.
  • the user divides the 4 models into 2 groups through the 3D slicing preprocessing software, sets the 4 models as 2 groups of model slicing printing parameters, and slices to obtain 4 layers Slicing; generally in actual printing, it is necessary to specify the first layer or the first several layers as the bottom slice by default or manually.
  • Slice printing layer parameters there is only one set of image printing page parameters in the layer, that is, there is only one unified mask image and its exposure time parameters and image optimization parameters in the same slice;
  • the exposure time of the four models in the bottom layer is 3 seconds; here, the exposure time of 3 seconds is taken.
  • the parameters of the printing layer include: the moving speed parameter of the forming platform, the moving distance parameter of the forming platform, the static time parameter of the forming platform, the light source light on time parameter, the light off delay time parameter, the slice layer thickness parameter, or the projection screen bright time parameter, or the projection screen off delay parameter Time parameters, etc.
  • each layer slice has 2 sets of models with different exposure time parameters, so each slice layer has 2 sets of intra-layer image printing page parameters;
  • the parameters of the printed pages of the images in the layer include: mask image parameters, and mask image exposure time parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization parameters, mask image tolerance compensation parameters, mask image
  • the parameters related to the mask image related information such as the uniform light optimization compensation parameters and the printing support setting parameters; the numbers 11, 21, 22, 31, and 41 in the figure are the cache data of the image print page in the layer generated by the 3D slicing preprocessing software Flag bit, the first digit of the number represents the layer where it is located, and the second digit of the number represents the page where the mask image in the layer is located; therefore, in the control method of the present invention, the control unit 1 can judge and execute accordingly when reading the cache data flag bit.
  • models M1 and N1 are exposed for 1 s in each slice, and M2 and N2 are exposed for 2 s in each slice, so models M1 and N1 are only exposed for 1 s in page 21 in the second slice, and in In page 22, by switching the image printing page parameters in the layer, after the mask image in LCD screen 2 in Fig.
  • FIG. 9 is Embodiment 1 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention. As shown in the figure, this figure corresponds to Fig. 2 using its method for slicing to generate a layer of model slices as shown in the figure, and the thickness of the slice corresponds to the thickness of the cured sheet of the molding resin 61 formed each time in Fig. 17; The different times in the four white boxes in the figure represent the total exposure time at the four models when each layer of slices is printed.
  • FIG. 10 is Embodiment 2 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the shaded part in the figure is the opaque part of each page of the mask image in the layer, and the one in the 4 white boxes on the first page in the figure time, corresponding to page 21, page 31 or page 41 in Figure 6, when exposing the mask image on page 1 as shown in this figure, the mask image channels 21 of the 4 models are all turned on, and the exposure time is 1s;
  • the so-called mask image channels 21 are all turned on, which means that after switching and loading the mask page image on the LCD screen 2, the pixel grayscales of the mask image channels 21 in the four graphic positions of M1, M2, M3, and M4 are all 255 for light transmission and exposure.
  • FIG. 11 is Embodiment 3 of the printing execution control method for two kinds of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the time in the 4 white boxes on page 2 in the figure corresponds to page 22, page 32 or page 42 in Figure 6, when exposing the mask image of page 2 as shown in this figure,
  • the mask image channels 21 at the model M1 are all closed, and the closing time is 1s;
  • the mask image channels 21 at the models M2, M3, and M4 are all open, and the exposure time is also 1s;
  • the so-called mask image channels 21 are all open, referring to After switching and loading the mask page image of this page in the LCD screen 2, the pixel grayscale of the mask image channel 21 in the four graphic positions of M2, M3, and M4 is all 255, which realizes light transmission and exposure;
  • the so-called mask The image channel 21 is closed, which means that after switching and loading the mask page image on the LCD screen 2, the pixel grayscale of the mask image channel 21 at the graphic position at M1 is
  • FIG. 12 is Embodiment 4 of the printing execution control method for two kinds of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the time in the 4 white boxes on page 3 in the figure corresponds to page 23, page 33 or page 43 in Figure 6, when exposing the mask image of page 3 as shown in this figure,
  • the mask image channels 21 at the models M1 and M2 are all closed, and the closing time is 1s;
  • the mask image channels 21 at the models M3 and M4 are all open, and the exposure time is also 1s;
  • the so-called mask image channels 21 are all open, which means After switching and loading the mask page image of this page in LCD screen 2, the pixel grayscale of mask image channel 21 in the four graphic positions of M3 and M4 is all 255, which realizes light transmission and exposure;
  • the so-called mask image channel 21 is off, which means that after switching and loading the mask page image on the LCD screen 2, the pixel grayscale of the mask image channel 21 at the graphic positions at M1 and M2 is all 0,
  • FIG. 13 is Embodiment 5 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention. As shown in the figure, this figure corresponds to the method shown in FIG. 3 after slicing to generate a layer of model slices as shown in the figure, and the thickness of the slices corresponds to the thickness of the cured sheet of the molding resin 61 formed each time in FIG. 17 ; The different times in the four white boxes in the figure represent the total exposure time at the four models when each layer of slices is printed.
  • FIG. 14 is Embodiment 6 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the figure shows the mask image on page 1 on the basis of the slice in Figure 12, the shaded part in the figure is the opaque part of the mask image on page 1 in the layer, and the 4 white squares on page 1 in the figure
  • the frame part is the light-transmitting part; since the slices of this figure are preprocessed by the method of Figure 3, M1 and N1 are a group, M2 and N2 are a group, so M1 and N1, M2 and N2 are on each page
  • the exposure time is the same, i.e. simultaneous exposure, or simultaneous non-exposure.
  • FIG. 15 is Embodiment 7 of the printing execution control method for two kinds of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the time in the 4 white boxes on page 1 in the figure corresponds to page 21, page 31 or page 41 in Figure 7, when exposing the mask image of page 1 as shown in this figure,
  • the mask image channels 21 of the 4 models are all turned on, and the exposure time is 1s; the so-called mask image channels 21 are all turned on, which means that after switching and loading the mask page image in LCD screen 2, M1, N1,
  • the pixel grayscales of the mask image channels 21 in the four graphic positions of M2 and N2 are all 255 to achieve light transmission and exposure; in addition, the bottom vertical projection virtual box represents the next layer of slices, which can be ignored.
  • FIG. 16 is Embodiment 8 of the printing execution control method for two types of photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the time in the 4 white boxes on page 2 in the figure corresponds to page 22, page 32 or page 42 in Figure 7, when exposing the mask image of page 2 as shown in this figure,
  • the mask image channels 21 at the models M1 and N1 are all closed, and the closing time is 1s;
  • the mask image channels 21 at the models M2 and N2 are all open, and the exposure time is also 1s;
  • the so-called mask image channels 21 are all open, which means After switching and loading the mask page image of this page in the LCD screen 2, the pixel grayscale of the mask image channel 21 in the four graphic positions of M2 and N2 is all 255, which realizes light transmission and exposure;
  • the so-called mask image channel 21 is off, which means that after switching and loading the mask page image of this page in the LCD screen 2, the pixel grayscales of the mask image channels 21 at the graphic positions at M1
  • FIG. 17 is Embodiment 1 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the rising type LCD light curing 3D printer is used in this picture.
  • Its printing execution control device includes: a control unit 1, a storage unit 11, an LCD screen 2, a light source 3, a motor 4, a lifting column 41, a liquid tank 5, a bottom film 51, a photosensitive resin 6, a molding platform 7, and a base 8;
  • the control unit 1, the storage unit 11, the LCD screen 2, the light source 3, and the liquid tank 5 are arranged and connected to the base 8;
  • the motor 4 is connected to the forming platform 7;
  • the lifting column 41 is fixedly connected to the base 8;
  • the motor 4 is installed
  • the lifting column 41 is electrically driven to lift and drive the forming platform 7 to rise or fall with it;
  • the bottom film 51 is arranged at the bottom of the liquid tank 5 for light transmission;
  • the liquid tank 5 contains the photosensitive resin 6 liquid;
  • FIG. 18 is Embodiment 2 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the control unit 1 controls the LCD screen 2 to switch and load the mask image on the first page as shown in Figure 9, then the mask image channels 21 of the 4 models are all turned on , the pixel grayscales of the mask image channels 21 at the four graphic positions of M1, M2, M3, and M4 are all 255; the ultraviolet light and visible light emitted by the light source 3 pass through the mask image channels 21 in the LCD screen 2 to irradiate the photosensitive resin 6 , make it photocuring reaction molding to form layer by layer molding resin 61; the molding platform 7 is used to attach the cured and molded photosensitive resin 6 during the curing molding process to continuously improve and grow until the 3D printing is completed.
  • FIG. 19 is Embodiment 1 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the upward projection type light curing 3D printer is used in this picture.
  • Its printing execution control device includes: a control unit 1, a storage unit 11, a projection device 230, a motor 4, a lifting column 41, a liquid tank 5, a bottom film 51, a photosensitive resin 6, a molding platform 7, and a base 8; the control unit 1.
  • the storage unit 11, the projection device 230, and the liquid tank 5 are arranged and connected to the base 8; the motor 4 is connected to the forming platform 7; the lifting column 41 is fixedly connected to the base 8; Drive up and down and drive the forming platform 7 to rise or fall with it; the bottom film 51 is arranged at the bottom of the liquid tank 5 for light transmission; the liquid tank 5 contains the photosensitive resin 6 liquid; the control unit 1 is electrically connected to the storage Unit 11, projection device 230, motor 4; the storage unit 11 stores the 3D printing slicing software after slicing the 3D model to generate slice printing layer parameters and intra-layer image printing page parameters; the control unit 1 reads the storage unit 11.
  • the photosensitive resin 6 inside is exposed and irradiated to make it solidify and form; the forming platform 7 is used for attaching the photosensitive resin 6 after curing and forming during the solidification and forming process to make it continue to grow and grow until the 3D printing is completed; the projection device 230 adopts an LCD. projector, or DLP projector based on DMD digital micromirror technology.
  • FIG. 20 is Embodiment 2 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the control unit 1 controls the projection device 230 to switch and load the mask image on the first page as shown in FIG.
  • the projection device 230 emits ultraviolet light and visible light through the image mask to project through the bottom film 51 to expose the photosensitive resin 6 in the liquid tank 5 to make it solidify and form, forming a layer-by-layer molding resin 61;
  • the middle positions of the four figures of the models M1, M2, M3, and M4 are not cured and printed, so from the side view angle, the middle part of the two projected shadows in this figure does not produce ultraviolet light and visible light projection;
  • the molding platform 7 uses During the curing and molding process, the cured and molded photosensitive resin 6 is attached to make it grow continuously until the 3D printing is completed.
  • FIG. 21 is Embodiment 3 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the sunken LCD light-curing 3D printer is used in this picture.
  • the components of the printing execution control device are reduced by the base film 51. Since the sunken printing is used, the ultraviolet light and visible light emitted by the light source 3 pass through the mask image channel in the LCD screen 2.
  • the liquid level of the photosensitive resin 6 can be directly irradiated without passing through the bottom film 51, so that the liquid level of the resin at the corresponding position of the mask image position is photocured and formed to form a layer-by-layer molding resin 61; the molding The platform 7 is used to attach the cured photosensitive resin 6 during the curing and molding process to make it continue to sink and grow until the 3D printing is completed.
  • the movement distance is the slice layer thickness
  • L2 The movement distance of L3 is 0, and the movement distance of L3 can be set to a larger parameter such as 20 mm to facilitate the extraction of the film.
  • FIG. 22 is Embodiment 3 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the sunken projection type light curing 3D printer is used in this picture.
  • the components of the printing execution control device are reduced by the base film 51.
  • the projection device 230 emits ultraviolet light and visible light through the image mask without passing through the base film. 51, the liquid surface of the photosensitive resin 6 can be directly irradiated, so that the resin liquid surface at the corresponding position of the mask image position is photo-cured and shaped to form a layer-by-layer molding resin 61; the molding platform 7 is used in the curing molding process.
  • the photosensitive resin 6 after curing and molding is attached to the middle to make it continue to sink and grow until the 3D printing is completed; when the sinking projection type photocuring 3D printer of this embodiment is used, because it does not need to be like the rising projection type photocuring 3D printing, it needs to be
  • the bottom molding resin after curing is peeled off each time, so there is no need to make the molding platform 7 drive the molding slice layer to reciprocate; so the corresponding parameter L1 is the moving distance of the slice layer thickness, and the moving distance of L2 is 0, and the moving distance of L3 is 0.
  • the movement distance can be set to a larger parameter such as 20 mm to facilitate the film extraction.
  • FIG. 23 shows Embodiment 4 of the printing execution control device 1 for photocuring 3D printing multiple sets of slicing parameters of the present invention.
  • the device includes a first model parameter setting module 1A, a first parameter generation module 2A, a first parameter import module 3A, a first parameter control module 4A, a first mask exposure module 5A, a first layer image judgment module 6A, The first demolding module 7A, the first slice layer judgment module 10A, the first film pulling module 12A, and the first end module 13A.
  • the first model parameter setting module 1A is used for: setting model slice printing parameters for each/each group of models according to the number/group of the loaded 3D models to be printed;
  • the first parameter generation module 2A is configured to: after slicing the 3D model according to the model slice printing parameters, generate slice printing layer parameters and in-layer image printing page parameters.
  • the first parameter import module 3A is used for: stacking the slice print layer parameters and the image print page parameters in the layer generated after slicing and importing them into the storage unit of the photocuring printing device.
  • the first parameter control module 4A is used to read and execute the Nth layer slice printing layer parameters in sequence and control the motor-driven forming platform to move to the preparatory mask exposure printing position and control the light source to turn on after being stationary for X seconds.
  • the first mask exposure module 5A is used for: controlling the parameters of the M-th image printing page in the loading layer of the LCD screen and performing mask exposure on it according to the exposure time parameter.
  • the first in-layer image judging module 6A is used for: judging whether all the images in the layer have completed the mask exposure; if it is determined that all the images in the layer have completed the mask exposure, then run the first demolding module 7A; After the mask exposure is completed, the first mask exposure module 5A is operated.
  • the first mask exposure module 5A is also used to: control the image printing page parameters of the M+1 th page in the loading layer of the LCD screen and perform mask exposure on it, and then run the image judgment module 6A in the first layer.
  • the first demoulding module 7A is used to: control the light source to turn off and wait for Y seconds, control the motor to drive the molding platform to lift/lower the preset distance L1 mm, and drive the curing molding model to release the film.
  • the first parameter control module 4A is also used to: control the motor-driven forming platform to stand still for Z seconds after raising/lowering L1 mm, and then lower/lift L2 mm to move to the preparatory mask exposure printing position and stand still for X seconds.
  • the first slicing layer judgment module 10A is used for: judging whether the in-layer images of all slicing layers have completed the mask exposure; Module 12A; if it is judged that the in-layer images of all slice layers have not all completed the mask exposure, run the first parameter control module 4A.
  • the first parameter control module 4A is further configured to: sequentially read and execute the N+1 th slice printing layer parameters, control the light source to light up, and then run the first mask exposure module 5A.
  • the first film pulling module 12A is used to: control the light source to turn off the light and control the motor to drive the forming platform to lift a preset distance L3 mm after waiting for Y seconds to realize pulling the film and taking the parts.
  • the first end module 13A is used for: the process ends.
  • FIG. 24 shows Embodiment 4 of the printing execution control device 2 for photocuring 3D printing multiple sets of slicing parameters according to the present invention.
  • the device includes a second model parameter setting module 1B, a second parameter generation module 2B, a second parameter import module 3B, a second parameter control module 4B, a second mask projection module 5B, a second layer image judgment module 6B, The second demolding module 7B, the second slicing layer judgment module 10B, the second film pulling module 12B, and the second finishing module 13B.
  • the second model parameter setting module 1B is used for: setting model slice printing parameters for each/each group of models according to the number/group of the loaded 3D models to be printed.
  • the second parameter generation module 2B is configured to: after slicing the 3D model according to the model slice printing parameters, generate slice printing layer parameters and in-layer image printing page parameters.
  • the second parameter importing module 3B is used for: stacking and importing the sliced printing layer parameters and the in-layer image printing page parameters generated after slicing into the storage unit of the photocuring printing device.
  • the second parameter control module 4B is used to read and execute the Nth layer slice printing layer parameters in sequence and control the motor-driven forming platform to move to the preparatory mask projection printing position and stand still for X seconds.
  • the second mask projection module 5B is used to: control the projection device to load the image printing page parameters of the Mth page in the layer to brighten the screen and perform mask projection on it according to the exposure time parameter.
  • the second in-layer image judging module 6B is used for: judging whether all the in-layer images have completed the mask projection; if it is determined that all the in-layer images have completed the mask projection, then run the second demolding module 7B; After the mask projection is completed, the second mask projection module 5B is run.
  • the second mask projection module 5B is further configured to: control the projection device to load the image printing page parameters of the M+1th page in the layer and perform mask projection on it, and then run the image determination module 6B in the second layer.
  • the second demoulding module 7B is used to: control the projection device to turn off the screen and wait for Y seconds to control the motor to drive the molding platform to lift/lower the preset distance L1 mm and drive the cured molding model to release the film.
  • the second parameter control module 4B is also used to: control the motor-driven forming platform to stand still for Z seconds after raising/lowering L1 mm, and then lower/lift L2 mm to move to the preparatory mask projection printing position and stay still for X seconds.
  • the second slice layer judging module 10B is used for: judging whether all the intra-layer images of all slice layers have completed the mask projection; if it is judged that all the in-layer images of all slice layers have completed the mask projection, then run the second pull-out module 12B; if it is determined that the intra-layer images of all slice layers have not all completed the mask projection, run the second parameter control module 4B.
  • the second parameter control module 4B is further configured to read and execute the N+1 th slice printing layer parameters in sequence, and then run the second mask projection module 5B.
  • the second film pulling module 12B is used for: controlling the projection device to turn off the screen and after waiting for Y seconds, control the motor to drive the forming platform to lift the preset distance L3 mm to realize pulling the film.
  • the second end module 13B is configured to: end the process.
  • Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

针对同一个切片里具有多个不同模型掩膜图片及其不同曝光时间参数和图像优化参数的情况,提供两种多套切片参数的光固化3D打印执行控制方法及装置;通过对不同层切片参数的读取,以及对同层不同页的掩膜图像进行切换和曝光,实现对不同模型不同参数在同层切片下的打印;两种装置分别采用LCD光固化3D打印机或投影式光固化3D打印机;其中,第一种装置的控制单元(1)通过控制LCD屏(2)载入层内图像打印页参数并对其进行掩膜曝光,使光源发光透过掩膜图像对光敏树脂(6)进行曝光使其固化成型;第二种装置的控制单元(1)通过控制投影装置(230)载入层内图像打印页参数并对其掩膜图像进行掩膜投影,对液槽(5)内的光敏树脂(6)进行投影使其固化成型。

Description

光固化3D打印多套切片参数的打印执行控制方法及装置
本申请要求于2021年02月05日在中国国家专利局提交的、申请号为202110162368.8、发明名称为“光固化3D打印多套切片参数的打印执行控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D(3-dimension,三维)打印技术领域,具体涉及光固化3D打印多套切片参数的打印执行控制方法及装置。
背景技术
目前在现有的光固化3D打印中,不同的光敏树脂成型反应曝光时间参数一般采用的是各个光固化整机厂指定树脂品牌的树脂特性参数推荐值,但是如果用户自己选择选配其他品牌树脂时,需要经过多次打印测试才能得出合适的推荐值,此时容易遇到以下问题:选配不同树脂时,在现有技术中需要逐个打印近十个乃至更多个模型并设定不同的阶梯化切片打印参数,才能在最优打印成品中选出相应的最优树脂特性参数,而某些特性树脂,树脂成型反应时间要求特别精准,有时反应时间需要精确到小数点后1位,导致测试工作量巨大,且无法在同一时间看出时间差异引起的成型差异。
技术问题
为了解决上述背景技术中的问题,本发明针对同一个切片里具有多个不同模型掩膜图片及其不同曝光时间参数和图像优化参数的情况,提供两种多套切片参数的光固化3D打印执行控制方法及装置;在处理多个不同模型的切片预处理环节,设定不同参数后得到多套切片打印参数后,可以针对其切片后所生成的,同一个切片里具有多个不同模型掩膜图片及其不同曝光时间参数和图像优化参数的情况,与之相应的,提供两种切实可行的多套切片参数的光固化3D打印执行控制方法。
技术解决方案
本发明所采用的技术方法如下:
方法1,一种光固化3D打印多套切片参数的打印执行控制方法,基于LCD(Liquid Crystal Display,液晶显示器)光固化3D打印技术,包括以下步骤:
S01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
S02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
S03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元;
S04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
S05、控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
S06、控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤S08;如果判断层内图像未全部完成掩膜曝光,则进行步骤S07;
S07、控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤S06;
S08、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
S09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
S10、控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤S12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤S11;
S11、控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤S05;
S12、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
S13、流程结束。
方法2,一种光固化3D打印多套切片参数的打印执行控制方法,基于投影式光固化3D打印技术,包括以下步骤:
SS01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
SS02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
SS03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元;
SS04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
SS05、控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
SS06、控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤SS08;如果判断层内图像未全部完成掩膜投影,则进行步骤SS07;
SS07、控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤SS06;
SS08、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
SS09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
SS10、控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤SS12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤SS11;
SS11、控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤SS05;
SS12、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
SS13、流程结束。
作为优选,所述模型切片打印参数包括:掩膜图像、和/或掩膜图像曝光时间参数、和/或成型平台运动速度参数、和/或成型平台运动距离参数、和/或成型平台静止时间参数、和/或光源灯亮时间参数、和/或灯灭延迟时间参数、和/或投影亮屏时间参数、和/或投影熄屏延迟时间参数、和/或切片层厚参数、和/或底层数指定参数、和/或切片底层优化设置参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数、和/或树脂特性参数。
作为优选,所述切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、或光源灯亮时间参数、或灯灭延迟时间参数切片层厚参数、或投影亮屏时间参数、或投影熄屏延迟时间参数;所述层内图像打印页参数包括:掩膜图像、掩膜图像曝光时间参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数。
作为优选,所述第N层切片中包括1张掩膜图像、或包括2张掩膜图像、或包括多张掩膜图像;所述第N层切片中包括1个层内图像打印页参数、或包括2个层内图像打印页参数、或包括多个层内图像打印页参数。
作为优选,所述N、M为从1开始递增的正整数;所述X、Y、Z、L1、L2、L3为自然数或小数。
作为优选,所述待打印3D模型的个数/组别包括一个/组、或两个/组、或多个/组。
作为优选,所述步骤3中的光固化打印装置采用上升式LCD光固化3D打印机、或下沉式LCD光固化3D打印机、或上升式投影光固化3D打印机、或下沉投影式光固化3D打印机。
作为优选,所述用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数,包括:
根据3D模型的个数对各个模型各自设定模型切片打印参数;
或者,将多个3D模型进行分组,并根据不同分组对各组模型各自设定模型切片打印参数。
作为优选,步骤S05包括:开启多个3D模型对应的掩膜图像通道中的至少一者,实现透光和曝光。
作为优选,步骤SS05包括:投影装置发出经过图像掩膜的紫外光及可见光投影照射光敏树脂的液面,使相应掩膜图像位置的树脂液面光固化反应成型。
作为优选,基于LCD光固化3D打印技术的装置1,所述的一种光固化3D打印多套切片参数的打印执行控制方法所采用的打印执行控制装置,包括:控制单元、存储单元、LCD屏、光源、电机、升降柱、液槽、或底膜、光敏树脂、成型平台、底座;所述控制单元、存储单元、LCD屏、光源、液槽设置连接于底座;所述电机连接成型平台;所述升降柱固定连接于底座;所述电机安装于升降柱实现电驱动升降并带动成型平台随其抬升或下降;所述底膜设置于液槽底部用于透光;所述液槽内盛放光敏树脂液体;所述控制单元电连接存储单元、LCD屏、光源、电机;所述存储单元存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元读取存储单元中的切片打印层参数和层内图像打印页参数;所述控制单元控制LCD屏载入层内图像打印页参数并对其进行掩膜曝光;所述控制单元控制电机驱动成型平台按切片打印层参数进行升降运动;所述控制单元控制光源点亮或灭灯;所述光源发出紫外光及可见光透过LCD屏中的掩膜图像和底膜对液槽内的光敏树脂进行曝光照射使其固化成型;所述成型平台用于在固化成型过程中附着固化成型后的光敏树脂使其不断提升生长直至3D打印完成。
作为优选,基于投影式光固化3D打印技术的装置2,一种光固化3D打印多套切片参数的打印执行控制方法所采用的打印执行控制装置2,包括:控制单元、存储单元、投影装置、电机、升降柱、液槽、或底膜、光敏树脂、成型平台、底座;所述控制单元、存储单元、投影装置、液槽设置连接于底座;所述电机连接成型平台;所述升降柱固定连接于底座;所述电机安装于升降柱实现电驱动升降并带动成型平台随其抬升或下降;所述底膜设置于液槽底部用于透光;所述液槽内盛放光敏树脂液体;所述控制单元电连接存储单元、投影装置、电机;所述存储单元存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元读取存储单元中的切片打印层参数和层内图像打印页参数;所述控制单元控制投影装置载入层内图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影,以及控制投影装置的熄屏;所述控制单元控制电机驱动成型平台按切片打印层参数进行升降运动;所述投影装置发出经过图像掩膜的紫外光及可见光投影透过底膜对液槽内的光敏树脂进行曝光照射使其固化成型;所述成型平台用于在固化成型过程中附着固化成型后的光敏树脂使其不断提升生长直至3D打印完成;所述投影装置采用LCD式投影仪、或基于DMD(Digital Micromirror Device,数字微镜器件)数字微镜技术的DLP(Digital Light Processing,数字光处理)投影仪。
方法3,一种光固化3D打印多套切片参数的打印执行控制方法,包括:
导入切片打印层参数和层内图像打印页参数;所述切片打印层参数和所述层内图像打印页参数是根据模型切片打印参数对3D模型进行切片后生成的;所述模型切片打印参数是根据所载入的待打印3D模型的个数或组别对各个或各组模型各自设定的;至少有一层切片打印层包括多页层内图像打印页;多页所述层内图像打印页分别对应多套所述层内图像打印页参数;各所述层内图像打印页包括多个3D模型的掩膜图像;
根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印。
作为优选,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
S04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
S05、控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
S06、控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤S08;如果判断层内图像未全部完成掩膜曝光,则进行步骤S07;
S07、控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤S06;
S08、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
S09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
S10、控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤S12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤S11;
S11、控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤S05;
S12、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
S13、流程结束。
或者包括:
SS04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
SS05、控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
SS06、控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤SS08;如果判断层内图像未全部完成掩膜投影,则进行步骤SS07;
SS07、控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤SS06;
SS08、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
SS09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
SS10、控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤SS12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤SS11;
SS11、控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤SS05;
SS12、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
SS13、流程结束。
作为优选,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
A04、读取执行第N层切片打印层参数并驱动成型平台运动到预备打印位置;
A05、载入层内第M页图像打印页参数并根据曝光时间参数对光敏树脂进行照射;
A06、如果层内图像全部完成对光敏树脂进行照射,则进行步骤A08;如果层内图像未全部完成对光敏树脂进行照射,则进行步骤A07;
A07、载入层内第M+1页图像打印页参数并对光敏树脂进行照射,之后进入执行步骤A06;
A08、驱动成型平台带动固化成型模型脱膜;
A09、驱动成型平台再运动到预备打印位置;
A10、如果所有切片层的层内图像全部完成对光敏树脂进行照射,则进行步骤A12;如果所有切片层的层内图像未全部完成对光敏树脂进行照射,则进行步骤A11;
A11、读取执行第N+1层切片打印层参数,之后进入执行步骤A05;
A12、驱动成型平台实现拔膜取件;
A13、流程结束。
作为优选,所述步骤A04包括:控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
相应的,步骤A05包括:控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
相应的,步骤A06包括:控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤A08;如果判断层内图像未全部完成掩膜曝光,则进行步骤A07;
相应的,步骤A07包括:控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行 掩膜曝光,之后进入执行步骤A06;
相应的,步骤A08包括:控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
相应的,步骤A09包括:控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
相应的,步骤A10包括:控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤A12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤A11;
相应的,步骤A11包括:控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤A05;
相应的,步骤A12包括:控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
作为优选,步骤A04包括:控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
相应的,步骤A05包括:控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
相应的,步骤A06包括:控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤A08;如果判断层内图像未全部完成掩膜投影,则进行步骤A07;
相应的,步骤A07包括:控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤A06;
相应的,步骤A08包括:控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
相应的,步骤A09包括:控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
相应的,步骤A10包括:控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤A12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤A11;
相应的,步骤A11包括:控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤A05;
相应的,步骤A12包括:控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
作为优选,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
对于包括多页层内图像打印页的所述切片打印层,通过切换层内图像打印页参数,实现切换至指定的所述层内图像打印页;
对于指定的所述层内图像打印页,使至少一个所述3D模型对应的掩膜图像实现曝光。有益效果
1、本发明提供了两种光固化3D打印多套切片参数的打印执行控制方法,在处理多个不同模型的切片预处理环节,设定不同参数后得到多套切片打印参数后,可以针对其切片后所生成的,同一个切片里具有多个不同模型掩膜图片及其不同曝光时间参数和图像优化参数的情况,与之相应的,提供两种切实可行的多套切片参数的光固化3D打印执行控制方法;
2、本发明的两种打印执行控制方法中用户能够在打印一批数十个相同模型/打印一批多套不同模型的同时,可根据3D模型的个数/组别对各个/各组模型各自设定不同精确密集的阶梯化模型切片打印参数;能够是用户在一个打印批次中选出相同模型中最优效果打印成品,或者在一个打印批次中同时选出各套不同模型的最优效果打印成品并获得相应的树脂特性最优参数及其他最优打印设置参数,打印测试和批量打印效率高;
3、本发明打印执行控制方法1能够普遍适用于一般的上升式或下沉式LCD光固化打印机,在实现多套参数及模型打印的同时,不需要配备多套参数打印的专用机器,方法适用性高;
4、本发明打印执行控制方法2能够普遍适用于一般的上升或下沉投影式光固化打印机,在实现多套参数及模型打印的同时,不需要配备多套参数打印的专用机器,方法适用性高。
附图说明
图1为本发明光固化3D打印多套切片参数的打印执行控制方法1的流程图;
图2为本发明光固化3D打印多套切片参数的打印执行控制方法2的流程图;
图3为同日申请光固化3D打印模型多套切片打印参数设置方法1的流程图;
图4为同日申请光固化3D打印模型多套切片打印参数设置方法2的流程图;
图5为同日申请光固化3D打印模型多套切片打印参数设置方法1的实施例1;
图6为同日申请光固化3D打印模型多套切片打印参数设置方法2的实施例1;
图7为同日申请光固化3D打印模型多套切片打印参数设置方法1的实施例2;
图8为同日申请光固化3D打印模型多套切片打印参数设置方法2的实施例2;
图9为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例1;
图10为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例2;
图11为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例3;
图12为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例4;
图13为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例5;
图14为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例6;
图15为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例7;
图16为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例8;
图17为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例1;
图18为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例2;
图19为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例1;
图20为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例2;
图21为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例3;
图22为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例3;
图23为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例4;
图24为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例4。
附图说明:
控制单元1;存储单元11;LCD屏2;掩膜图像通道21;光源3;电机4;升降柱41;液槽5;底膜51;光敏树脂6;成型树脂61;成型平台7;底座8;投影装置230;第一模型参数设定模块1A;第一参数生成模块2A;第一参数导入模块3A;第一参数控制模块4A;第一掩膜曝光模块5A;第一层内图像判断模块6A;第一脱模模块7A;第一切片层判断模块10A;第一拔膜取件模块12A;第一结束模块13A;第二模型参数设定模块1B;第二参数生成模块2B;第二参数导入模块3B;第二参数控制模块4B;第二掩膜投影模块5B;第二层内图像判断模块6B;第二脱模模块7B;第二切片层判断模块10B;第二拔膜取件模块12B;第二结束模块13B。
本发明的实施方式
下面结合附图对本发明实施例作进一步说明。
本申请人同日提交的另一个发明申请,《光固化3D打印模型多套切片打印参数设置方法》中所采用的方法1中用户可根据3D模型的个数对各个模型各自设定模型切片打印参数,能够在打印一批数十个相同模型的同时还能各自设定不同精确密集的阶梯化参数,容易在一个打印批次中选出相同模型中最优效果打印成品并获得相应的树脂特性最优参数及其他最优打印设置参数,同时还能在同一时间观察比较打印成品之间的成型差异;其方法2中用户可根据多个3D模型的不同分组对各组模型各自设定模型切片打印参数,能够在打印一批多套不同模型的同时还能将每套中的多个相同模型各自设定不同的模型切片打印参数,容易在一个打印批次中同时选出各套不同模型的最优效果打印成品并获得相应的树脂特性最优参数及其他最优打印设置参数。
但是,由于其方法1中用户根据3D模型的个数对各个模型各自设定模型切片打印参数;其方法2中用户根据不同分组对各组模型各自设定模型切片打印参数;导致两种方法下其进行切片后,同一个切片里不同模型下的图片的曝光时间参数是各不相同的,因此曝光时间这一参数无法按照上述每个切片下只对应分配一套打印参数的方法来进行打印。
而在目前现有光固化3D打印中,普遍采取的办法是在切片预处理环节,将模型导入切片软件,在设定完成切片打印参数设定完成并进行切片后,每层切片下只对应分配一张层内图像和一套打印参数,包括掩膜图像、曝光时间、平台运动速度、平台运动距离、平台静止时间、灯灭延迟时间等参数;使光固化打印机的控制单元在打印环节只需要按照每层切片中分配好的参数,控制相应执行机 构执行相应的参数,控制LCD屏载入掩膜图像并随着切片的逐层打印来逐一切换层内掩膜图像,控制UV紫外灯点亮并对掩膜图像进行曝光,控制UV紫外灯灭灯延迟等待时间,控制平台驱动电机的运动速度、运动距离、静止时间;或者,控制投影装置载入层内图像打印页参数并对其掩膜图像进行掩膜投影,对液槽内的光敏树脂进行曝光使其固化成型;控制平台驱动电机的运动速度、运动距离、静止时间,控制平台驱动电机的运动速度、运动距离、静止时间。
所以在上述方法1和方法2下,如果还采用目前每层切片下只对应分配一张层内图像和一套打印参数来进行打印,那么方法1和方法2的模型在切片预处理环节,利用模型切片软件进行处理切片后所得到的多套切片打印参数,就没有与之相应的、切实可行的多套切片参数的光固化3D打印执行控制方法。
本发明提供了两种光固化3D打印多套切片参数的打印执行控制方法,在处理多个不同模型的切片预处理环节,设定不同参数后得到多套切片打印参数后,可以针对其切片后所生成的,同一个切片里具有多个不同模型掩膜图片及其不同曝光时间参数和图像优化参数的情况,与之相应的,提供两种切实可行的多套切片参数的光固化3D打印执行控制方法。
图1为本发明光固化3D打印多套切片参数的打印执行控制方法1的流程图。如图所示,基于LCD光固化3D打印技术,其包括以下步骤:
S01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
S02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
S03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元11;
S04、控制单元1按序读取执行第N层切片打印层参数并控制电机4驱动成型平台7运动到预备掩膜曝光打印位置且静止X秒后控制光源3点亮;
S05、控制单元1控制LCD屏2载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
S06、控制单元1判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤S08;如果判断层内图像未全部完成掩膜曝光,则进行步骤S07;
S07、控制单元1控制LCD屏2载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤S06;
S08、控制单元1控制光源3灭灯且等待Y秒后控制电机4驱动成型平台7抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
S09、控制单元1控制电机4驱动成型平台7在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
S10、控制单元1判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤S12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤S11;
S11、控制单元1按序读取执行第N+1层切片打印层参数后控制光源3点亮,之后进入执行步骤S05;
S12、控制单元1控制光源3灭灯且等待Y秒后控制电机4驱动成型平台7抬升预设距离L3毫米以实现拔膜取件;
S13、流程结束。
图2为本发明光固化3D打印多套切片参数的打印执行控制方法2的流程图。如图所示,基于投影式光固化3D打印技术,其包括以下步骤:
SS01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
SS02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
SS03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元11;
SS04、控制单元1按序读取执行第N层切片打印层参数并控制电机4驱动成型平台7运动到 预备掩膜投影打印位置且静止X秒;
SS05、控制单元1控制投影装置230载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
SS06、控制单元1判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤SS08;如果判断层内图像未全部完成掩膜投影,则进行步骤SS07;
SS07、控制单元1控制投影装置230载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤SS06;
SS08、控制单元1控制投影装置230熄屏且等待Y秒后控制电机4驱动成型平台7抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
SS09、控制单元1控制电机4驱动成型平台7在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
SS10、控制单元1判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤SS12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤SS11;
SS11、控制单元1按序读取执行第N+1层切片打印层参数,之后进入执行步骤SS05;
SS12、控制单元1控制投影装置230熄屏且等待Y秒后控制电机4驱动成型平台7抬升预设距离L3毫米以实现拔膜取件;
SS13、流程结束。
图3为同日申请光固化3D打印模型多套切片打印参数设置方法1的流程图。如图所示,其包括以下步骤:
SA01、用户通过3D打印切片软件载入并打开3D模型;
SA02、用户判断是否需要根据3D模型的个数对各个模型各自设定模型切片打印参数;如果判断不需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA04;如果判断需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA03;
SA03、用户根据3D模型的个数对各个模型各自设定模型切片打印参数,之后进入执行步骤SA05;
SA04、用户设定统一的模型切片打印参数;
SA05、用户将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SA06、流程结束。
图4为同日申请光固化3D打印模型多套切片打印参数设置方法2的流程图。如图所示,其包括以下步骤:
SB01、用户通过3D打印切片软件载入并打开多个3D模型;
SB02、用户判断是否需要对多个3D模型进行分组;如果判断不需要对多个3D模型进行分组,则进行步骤SB05;如果判断需要对多个3D模型进行分组,则进行步骤SB03;
SB03、用户根据不同选择需求将多个3D模型进行分组;
SB04、用户根据不同分组对各组模型各自设定模型切片打印参数,之后进入执行步骤SB06;
SB05、用户设定统一的模型切片打印参数;
SB06、用户将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SB07、流程结束。
图5为同日申请光固化3D打印模型多套切片打印参数设置方法1的实施例1。当用户在选用新的非指定品牌型号的光敏树脂6时,由于不同厂家不同树脂型号之间光敏固化特性不同,且没有统一的适配标准,所以在对某个模型进行大批量模型打印时,需要预先对模型切片打印参数进行调试,在此过程中,以现有技术的做法是需要逐个打印多个模型并设定不同的阶梯化切片打印参数,然后在最优打印成品中选出相应的最优树脂特性参数;但是这种方式测试打印时间过长。
而采用同日申请图2中方法流程图1,则可以如图4所示导入或复制4个相同的打印模型,然后对这4个打印模型设置4套切片打印参数,例如将4个打印模型的曝光时间阶梯化设置为1.0s、2.0s、3.0s、4.0s;使4个打印模型能够一个批次完成打印,在打印结束后,用户再通过比较打印品的打印效果,例如观察各个打印品纹理清晰度、打印表面光滑度、打印完成度、尺寸准确性、打印 品结构强度,从中来选出效果最好的打印模型并以其相对应的切片打印设定参数,来作为本次所用光敏树脂6的最优切片打印参数;这种方法下,一个批次同时完成多个测试模型的打印,有利于节省大量测试打印时间和工作量。
图6为同日申请光固化3D打印模型多套切片打印参数设置方法2的实施例1。当用户需要大批量打印不同模型时,也需要预先对模型切片打印参数进行调试,在此过程中,以现有技术的做法是将每种模型逐个打印近十个乃至更多个模型并设定不同的阶梯化切片打印参数,才能在每种模型的最优打印成品中选出相应的最优树脂特性参数;这种方式测试打印时间更长。
而采用同日申请图3中方法流程图2,则可以如图5所示导入或复制4个两种不同的打印模型,其中每种模型同时打印2个,然后将两种打印模型两两配对分为2组,然后对这2组打印模型设置2组切片打印参数,例如将5组打印模型的曝光时间阶梯化设置为1.0s、2.0s;使2组打印模型能够一个批次完成打印,在打印结束后,用户再通过比较打印品的打印效果,从中来选出效果最好的1组打印模型并以其相对应的切片打印设定参数,来作为本次打印两种模型时所用光敏树脂6的最优切片打印参数;这种方法下,一个批次同时完成多个不同测试模型的打印,有利于节省大量测试打印时间和工作量。
图7为同日申请光固化3D打印模型多套切片打印参数设置方法1的实施例2。如图所示,在图4的基础上,用户通过3D切片预处理软件将4个模型各自设定模型切片打印参数,并进行切片后得到4层切片;由于一般在实际打印中,需要默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;
例如,图中只有最下面阴影部分的一层作为底层切片,底层的4个模型共用一张掩膜图片进行曝光,所以4个模型在底层的曝光时间均为5秒;这里取5秒曝光时间是因为一般在实际打印中,底层切片在曝光打印时,对应于图17中成型树脂61处成型的树脂固化成切片时需要附着于成型平台7的底部,所以需要的曝光反应时间略长于非底层切片相互间的光固化附着时间;回到图6中,从下往上第2、3、4层切片为非底层切片,其每层切片的各自有一套切片打印层参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数切片层厚参数、或投影亮屏时间参数、或投影熄屏延迟时间参数等涉及到光固化打印设备的执行和运动机构的运动参数;各层切片由于有4个曝光时间参数不同的模型,所以每层切片层内又具有4套层内图像打印页参数;一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、22、31、41这些数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页;所以在本发明的控制方法中,控制单元1读取缓存数据标志位时能够由此判断执行第几层的切片打印层参数和执行第几页的层内图像打印页参数;
此外模型M1-M4由于在每一层切片中分别曝光1s-4s,所以模型M1在第2层切片中只在页21中曝光1s,在页22-24中通过切换层内图像打印页参数,使图17中LCD屏2中掩膜图像或切换为第2页后,模型M1处的掩膜图像通道21关闭后,在第2层切片中不再曝光,直至下一层;而模型M4在第2层切片中通过切换层内图像打印页参数,使图17中LCD屏2中掩膜图像连续切换4页掩膜图像页后,模型M4处的掩膜图像通道21开启4次,每次曝光时间1s,即控制单元1控制LCD屏2快速切换使每页掩膜图像显示1s,累计进行4次后,模型M4处的掩膜图像实现曝光4s。
图8为同日申请光固化3D打印模型多套切片打印参数设置方法2的实施例2。如图所示,在图5的基础上,用户通过3D切片预处理软件将4个模型分为2组后,将4个模型设定为2组模型切片打印参数,并进行切片后得到4层切片;由于一般在实际打印中,需要默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;
例如,图中只有最下面阴影部分的一层作为底层切片,底层的4个模型共用一张掩膜图片进行曝光,所以4个模型在底层的曝光时间均为3秒;这里取3秒曝光时间是因为一般在实际打印中,底层切片在曝光打印时,对应于图17中成型树脂61处成型的树脂固化成切片时需要附着于成型平 台7的底部,所以需要的曝光反应时间略长于非底层切片相互间的光固化附着时间;回到图6中,从下往上第2、3、4层切片为非底层切片,其每层切片的各自有一套切片打印层参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数切片层厚参数、或投影亮屏时间参数、或投影熄屏延迟时间参数等涉及到光固化打印设备的执行和运动机构的运动参数;各层切片由于有2组曝光时间参数不同的模型,所以每层切片层内又具有2套层内图像打印页参数;一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、22、31、41这些数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页;所以在本发明的控制方法中,控制单元1读取缓存数据标志位时能够由此判断执行第几层的切片打印层参数和执行第几页的层内图像打印页参数;
此外模型M1与N1由于在每一层切片中分别曝光1s,M2与N2由于在每一层切片中分别曝光2s,所以模型M1与N1在第2层切片中只在页21中曝光1s,在页22中通过切换层内图像打印页参数,使图17中LCD屏2中掩膜图像切换为第2页后,模型M1与N1处的掩膜图像通道21关闭后,在第2层切片中不再曝光,直至下一层;而模型M2与N2在第2层切片中通过切换层内图像打印页参数,使图17中LCD屏2中掩膜图像连续切换2页掩膜图像页后,模型M2与N2处的掩膜图像通道21开启2次,每次曝光时间2s,即控制单元1控制LCD屏2快速切换使每页掩膜图像显示1s,累计进行2次后,模型M2与N2处的掩膜图像实现曝光2s。
图9为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例1。如图所示,该图对应于图2采用其方法进行切片后生成如图所示的一层模型切片,切片的厚度对应为图17中每次成型的成型树脂61的固化后的薄片厚度;图中4个白色方框中的不同时间,表示为每层切片打印时四个模型处各自的总的曝光时长。
图10为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例2。在图8展示的切片中,具有如本图所示的4页掩膜图片,图中阴影部分为层内每页掩膜图像不透光部分,图中第1页4个白色方框中的时间,对应于图6中的页21、页31或页41,在曝光如本图所示的第1页掩膜图像时,4个模型的掩膜图像通道21全部开启,曝光时间为1s;所谓的掩膜图像通道21全部开启,指的是LCD屏2中切换并载入本页掩膜页图像后,M1、M2、M3、M4四处图形位置的掩膜图像通道21的像素灰度全部为255,以实现透光和曝光。
图11为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例3。如图所示,图中第2页4个白色方框中的时间,对应于图6中的页22、页32或页42,在曝光如本图所示的第2页掩膜图像时,模型M1处的掩膜图像通道21全部关闭,关闭时间为1s;模型M2、M3、M4处的掩膜图像通道21全部开启,曝光时间也为1s;所谓的掩膜图像通道21全部开启,指的是LCD屏2中切换并载入本页掩膜页图像后,M2、M3、M4四处图形位置的掩膜图像通道21的像素灰度全部为255,实现透光和曝光;所谓的掩膜图像通道21关闭,指的是LCD屏2中切换并载入本页掩膜页图像后,M1处图形位置的掩膜图像通道21的像素灰度全部为0,以实现停止透光和曝光。
图12为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例4。如图所示,图中第3页4个白色方框中的时间,对应于图6中的页23、页33或页43,在曝光如本图所示的第3页掩膜图像时,模型M1、M2处的掩膜图像通道21全部关闭,关闭时间为1s;模型M3、M4处的掩膜图像通道21全部开启,曝光时间也为1s;所谓的掩膜图像通道21全部开启,指的是LCD屏2中切换并载入本页掩膜页图像后,M3、M4四处图形位置的掩膜图像通道21的像素灰度全部为255,实现透光和曝光;所谓的掩膜图像通道21关闭,指的是LCD屏2中切换并载入本页掩膜页图像后,M1、M2处图形位置的掩膜图像通道21的像素灰度全部为0,以实现停止透光和曝光。
图13为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例5。如图所示,该图对应于图3采用其方法进行切片后生成如图所示的一层模型切片,切片的厚度对应为图17中每次成型的成型树脂61的固化后的薄片厚度;图中4个白色方框中的不同时间,表示为每层切片打印时四个模型处各自的总的曝光时长。
图14为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例6。如图所示,该图在图12的切片基础上显示了第1页掩膜图像,图中阴影部分为层内第1页掩膜图像不透光部分,图中第1页4个白色方框部分为透光部分;由于本图的切片是经过图3的方法的预处理,M1和N1 为一组,M2和N2为一组,所以在M1和N1、M2和N2在每一页上的曝光时间是相同的,即同时曝光,或同时不曝光。
图15为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例7。如图所示,图中第1页4个白色方框中的时间,对应于图7中的页21、页31或页41,在曝光如本图所示的第1页掩膜图像时,4个模型的掩膜图像通道21全部开启,曝光时间为1s;所谓的掩膜图像通道21全部开启,指的是LCD屏2中切换并载入本页掩膜页图像后,M1、N1、M2、N2四处图形位置的掩膜图像通道21的像素灰度全部为255,以实现透光和曝光;此外最底层垂直投影虚框表示的是下一层切片,可忽略。
图16为本发明两种光固化3D打印多套切片参数的打印执行控制方法实施例8。如图所示,图中第2页4个白色方框中的时间,对应于图7中的页22、页32或页42,在曝光如本图所示的第2页掩膜图像时,模型M1、N1处的掩膜图像通道21全部关闭,关闭时间为1s;模型M2、N2处的掩膜图像通道21全部开启,曝光时间也为1s;所谓的掩膜图像通道21全部开启,指的是LCD屏2中切换并载入本页掩膜页图像后,M2、N2四处图形位置的掩膜图像通道21的像素灰度全部为255,实现透光和曝光;所谓的掩膜图像通道21关闭,指的是LCD屏2中切换并载入本页掩膜页图像后,M1、N1处图形位置的掩膜图像通道21的像素灰度全部为0,以实现停止透光和曝光;此外最底层垂直投影虚框表示的是下一层切片,可忽略。
图17为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例1。如图所示,本图中采用的是上升式LCD光固化3D打印机。其打印执行控制装置,包括:控制单元1、存储单元11、LCD屏2、光源3、电机4、升降柱41、液槽5、底膜51、光敏树脂6、成型平台7、底座8;所述控制单元1、存储单元11、LCD屏2、光源3、液槽5设置连接于底座8;所述电机4连接成型平台7;所述升降柱41固定连接于底座8;所述电机4安装于升降柱41实现电驱动升降并带动成型平台7随其抬升或下降;所述底膜51设置于液槽5底部用于透光;所述液槽5内盛放光敏树脂6液体;所述控制单元1电连接存储单元11、LCD屏2、光源3、电机4;所述存储单元11存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元1读取存储单元11中的切片打印层参数和层内图像打印页参数;所述控制单元1控制LCD屏2载入层内图像打印页参数并对其进行掩膜曝光;所述控制单元1控制电机4驱动成型平台7按切片打印层参数进行升降运动;所述控制单元1控制光源3点亮或灭灯;所述光源3发出紫外光及可见光透过LCD屏2中的掩膜图像和底膜51对液槽5内的光敏树脂6进行曝光照射使其固化成型;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断提升生长直至3D打印完成。
图18为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例2。如图所示,在图16的基础上,所述控制单元1控制LCD屏2切换并载入如图9中的第1页掩膜图像时,则4个模型的掩膜图像通道21全部开启,M1、M2、M3、M4四处图形位置的掩膜图像通道21的像素灰度全部为255;光源3发出的紫外光和可见光透过LCD屏2中的掩膜图像通道21对光敏树脂6照射,使其光固化反应成型,形成一层一层的成型树脂61;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断提升生长直至3D打印完成。
图19为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例1。如图所示,本图中采用的是上升投影式光固化3D打印机。其打印执行控制装置,包括:控制单元1、存储单元11、投影装置230、电机4、升降柱41、液槽5、底膜51、光敏树脂6、成型平台7、底座8;所述控制单元1、存储单元11、投影装置230、液槽5设置连接于底座8;所述电机4连接成型平台7;所述升降柱41固定连接于底座8;所述电机4安装于升降柱41实现电驱动升降并带动成型平台7随其抬升或下降;所述底膜51设置于液槽5底部用于透光;所述液槽5内盛放光敏树脂6液体;所述控制单元1电连接存储单元11、投影装置230、电机4;所述存储单元11存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元1读取存储单元11中的切片打印层参数和层内图像打印页参数;所述控制单元1控制投影装置230载入层内图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影,以及控制投影装置230的熄屏;所述控制单元1控制电机4驱动成型平台7按切片打印层参数进行升降运动;所述投影装置230发出经过图像掩膜的紫外光及可见光投影透过底膜51对液槽5内的光敏树脂6进行曝光照射使其固化成型;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断提升生长直至3D打印完成;所述投影装置230采用LCD式投影仪、或基于DMD数字微镜技术的DLP投影仪。
图20为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例2。如图所示,在图19的基础上,所述控制单元1控制投影装置230切换并载入如图9中的第1页掩膜图像,在亮屏并向液槽5中的光敏树脂6投影后,投影装置230发出经过图像掩膜的紫外光及可见光投影透过底膜51对液槽5内的光敏树脂6进行曝光照射使其固化成型,形成一层一层的成型树脂61;由于模型M1、M2、M3、M4四处图形的中间位置是不进行固化打印的,所以侧视视角下,本图中两个投影阴影的中间部分不产生紫外光及可见光投影;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断提升生长直至3D打印完成。
图21为本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例3。如图所示,本图中采用的是下沉式LCD光固化3D打印机。其打印执行控制装置组成部分相比图17和图18减少了底膜51,由于是采用的是下沉式打印,所以光源3发出的紫外光和可见光透过LCD屏2中的掩膜图像通道21后,无需透过底膜51,即可直接照射光敏树脂6的液面,使相应位置掩膜图像位置的树脂液面光固化反应成型,形成一层一层的成型树脂61;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断下沉生长直至3D打印完成;采用本实施例的下沉式LCD光固化3D打印机时,由于其无需像上升式LCD光固化3D打印一样,需要将每次固化后的底部成型树脂进行脱膜,所以也就无需使成型平台7带动成型切片层进行往复运动;所以对应的参数L1的运动距离为切片层厚,L2的运动距离为0,L3的运动距离可以设置为20毫米这样的较大参数以利于拔膜取件。
图22为本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例3。如图所示,本图中采用的是下沉投影式光固化3D打印机。其打印执行控制装置组成部分相比图19和图20减少了底膜51,由于是采用的是下沉式打印,所以投影装置230发出经过图像掩膜的紫外光及可见光投影无需透过底膜51,即可直接照射光敏树脂6的液面,使相应位置掩膜图像位置的树脂液面光固化反应成型,形成一层一层的成型树脂61;所述成型平台7用于在固化成型过程中附着固化成型后的光敏树脂6使其不断下沉生长直至3D打印完成;采用本实施例的下沉投影式光固化3D打印机时,由于其无需像上升投影式光固化3D打印一样,需要将每次固化后的底部成型树脂进行脱膜,所以也就无需使成型平台7带动成型切片层进行往复运动;所以对应的参数L1的运动距离为切片层厚,L2的运动距离为0,L3的运动距离可以设置为20毫米这样的较大参数以利于拔膜取件。
对应于上文实施例所述方法,图23示出本发明光固化3D打印多套切片参数的打印执行控制装置1的实施例4。为了便于说明,仅示出与本发明实施例相关的部分。该装置包括第一模型参数设定模块1A、第一参数生成模块2A、第一参数导入模块3A、第一参数控制模块4A、第一掩膜曝光模块5A、第一层内图像判断模块6A、第一脱模模块7A、第一切片层判断模块10A、第一拔膜取件模块12A、第一结束模块13A。
第一模型参数设定模块1A,用于:根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
第一参数生成模块2A,用于:根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数。
第一参数导入模块3A,用于:将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元。
第一参数控制模块4A,用于:按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮。
第一掩膜曝光模块5A,用于:控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光。
第一层内图像判断模块6A,用于:判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则运行第一脱模模块7A;如果判断层内图像未全部完成掩膜曝光,则运行第一掩膜曝光模块5A。
第一掩膜曝光模块5A还用于:控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后运行第一层内图像判断模块6A。
第一脱模模块7A,用于:控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜。
第一参数控制模块4A还用于:控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒。
第一切片层判断模块10A,用于:判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则运行第一拔膜取件模块12A;如果判断所有切片层的层内图像未全部完成掩膜曝光,则运行第一参数控制模块4A。
第一参数控制模块4A还用于:按序读取执行第N+1层切片打印层参数后控制光源点亮,之后运行第一掩膜曝光模块5A。
第一拔膜取件模块12A,用于:控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
第一结束模块13A,用于:流程结束。
对应于上文实施例所述方法,图24示出本发明光固化3D打印多套切片参数的打印执行控制装置2的实施例4。为了便于说明,仅示出与本发明实施例相关的部分。该装置包括第二模型参数设定模块1B、第二参数生成模块2B、第二参数导入模块3B、第二参数控制模块4B、第二掩膜投影模块5B、第二层内图像判断模块6B、第二脱模模块7B、第二切片层判断模块10B、第二拔膜取件模块12B、以及第二结束模块13B。
第二模型参数设定模块1B,用于:根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数。
第二参数生成模块2B,用于:根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数。
第二参数导入模块3B,用于:将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元。
第二参数控制模块4B,用于:按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒。
第二掩膜投影模块5B,用于:控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影。
第二层内图像判断模块6B,用于:判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则运行第二脱模模块7B;如果判断层内图像未全部完成掩膜投影,则运行第二掩膜投影模块5B。
第二掩膜投影模块5B还用于:控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后运行第二层内图像判断模块6B。
第二脱模模块7B,用于:控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜。
第二参数控制模块4B还用于:控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒。
第二切片层判断模块10B,用于:判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则运行第二拔膜取件模块12B;如果判断所有切片层的层内图像未全部完成掩膜投影,则运行第二参数控制模块4B。
第二参数控制模块4B还用于:按序读取执行第N+1层切片打印层参数,之后运行第二掩膜投影模块5B。
第二拔膜取件模块12B,用于:控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
第二结束模块13B,用于:流程结束。
本发明的实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
以上的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (20)

  1. 一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,包括以下步骤:
    S01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
    S02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
    S03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元;
    S04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
    S05、控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
    S06、控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤S08;如果判断层内图像未全部完成掩膜曝光,则进行步骤S07;
    S07、控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤S06;
    S08、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    S09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
    S10、控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤S12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤S11;
    S11、控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤S05;
    S12、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
    S13、流程结束。
  2. 一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,包括以下步骤:
    SS01、用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数;
    SS02、用户根据模型切片打印参数对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;
    SS03、用户将切片后生成的切片打印层参数和层内图像打印页参数堆栈并导入光固化打印装置的存储单元;
    SS04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
    SS05、控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
    SS06、控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤SS08;如果判断层内图像未全部完成掩膜投影,则进行步骤SS07;
    SS07、控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤SS06;
    SS08、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    SS09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
    SS10、控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤SS12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤SS11;
    SS11、控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤SS05;
    SS12、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
    SS13、流程结束。
  3. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述模型切片打印参数包括:掩膜图像、和/或掩膜图像曝光时间参数、和/或成型平台运动速度参数、和/或成型平台运动距离参数、和/或成型平台静止时间参数、和/或光源灯亮时间参数、和/或灯灭延迟时间参数、和/或投影亮屏时间参数、和/或投影熄屏延迟时间参数、和/或切片层厚参数、和/或底层数指定参数、和/或切片底层优化设置参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数、和/或树脂特性参数。
  4. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、或光源灯亮时间参数、或灯灭延迟时间参数切片层厚参数、或投影亮屏时间参数、或投影熄屏延迟时间参数;所述层内图像打印页参数包括:掩膜图像、掩膜图像曝光时间参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数。
  5. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述第N层切片中包括1张掩膜图像、或包括2张掩膜图像、或包括多张掩膜图像;所述第N层切片中包括1个层内图像打印页参数、或包括2个层内图像打印页参数、或包括多个层内图像打印页参数。
  6. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述N、M为从1开始递增的正整数;所述X、Y、Z、L1、L2、L3为自然数或小数。
  7. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述待打印3D模型的个数/组别包括一个/组、或两个/组、或多个/组。
  8. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述步骤3中的光固化打印装置采用上升式LCD光固化3D打印机、或下沉式LCD光固化3D打印机、或上升式投影光固化3D打印机、或下沉投影式光固化3D打印机。
  9. 根据权利要求1或2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,所述用户通过切片软件根据所载入的待打印3D模型的个数/组别对各个/各组模型各自设定模型切片打印参数,包括:
    根据3D模型的个数对各个模型各自设定模型切片打印参数;
    或者,将多个3D模型进行分组,并根据不同分组对各组模型各自设定模型切片打印参数。
  10. 根据权利要求1所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,步骤S05包括:开启多个3D模型对应的掩膜图像通道中的至少一者,实现透光和曝光。
  11. 根据权利要求2所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,步骤SS05包括:投影装置发出经过图像掩膜的紫外光及可见光投影照射光敏树脂的液面,使相应掩膜图像位置的树脂液面光固化反应成型。
  12. 根据权利要求1所述的一种光固化3D打印多套切片参数的打印执行控制方法所采用的打印执行控制装置,其特征在于,包括:控制单元、存储单元、LCD屏、光源、电机、升降柱、液槽、或底膜、光敏树脂、成型平台、底座;所述控制单元、存储单元、LCD屏、光源、液槽设置连接于底座;所述电机连接成型平台;所述升降柱固定连接于底座;所述电机安装于升降柱实现电驱动升降并带动成型平台随其抬升或下降;所述底膜设置于液槽底部用于透光;所述液槽内盛放光敏树脂液体;所述控制单元电连接存储单元、LCD屏、光源、电机;所述存储单元存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元读取存储单元中的切片打印层参数和层内图像打印页参数;所述控制单元控制LCD屏载入层内图像打印页参数并对其进行掩膜曝光;所述控制单元控制电机驱动成型平台按切片打印层参数进行升降运动;所述控制单元控制光源点亮或灭灯;所述光源发出紫外光及可见光透过LCD屏中的掩膜图像和底膜对液槽内的光敏树脂进行曝光照射使其固化成型;所述成型平台用于在固化成型过程中附着固化成型后的光敏树脂使其不断提升生长直至3D打印完成。
  13. 根据权利要求2所述的一种光固化3D打印多套切片参数的打印执行控制方法所采用的打 印执行控制装置,其特征在于,包括:控制单元、存储单元、投影装置、电机、升降柱、液槽、或底膜、光敏树脂、成型平台、底座;所述控制单元、存储单元、投影装置、液槽设置连接于底座;所述电机连接成型平台;所述升降柱固定连接于底座;所述电机安装于升降柱实现电驱动升降并带动成型平台随其抬升或下降;所述底膜设置于液槽底部用于透光;所述液槽内盛放光敏树脂液体;所述控制单元电连接存储单元、投影装置、电机;所述存储单元存储3D打印切片软件对3D模型进行切片后生成切片打印层参数和层内图像打印页参数;所述控制单元读取存储单元中的切片打印层参数和层内图像打印页参数;所述控制单元控制投影装置载入层内图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影,以及控制投影装置的熄屏;所述控制单元控制电机驱动成型平台按切片打印层参数进行升降运动;所述投影装置发出经过图像掩膜的紫外光及可见光投影透过底膜对液槽内的光敏树脂进行曝光照射使其固化成型;所述成型平台用于在固化成型过程中附着固化成型后的光敏树脂使其不断提升生长直至3D打印完成;所述投影装置采用LCD式投影仪、或基于DMD数字微镜技术的DLP投影仪。
  14. 一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,包括:
    导入切片打印层参数和层内图像打印页参数;所述切片打印层参数和所述层内图像打印页参数是根据模型切片打印参数对3D模型进行切片后生成的;所述模型切片打印参数是根据所载入的待打印3D模型的个数或组别对各个或各组模型各自设定的;至少有一层切片打印层包括多页层内图像打印页;多页所述层内图像打印页分别对应多套所述层内图像打印页参数;各所述层内图像打印页包括多个3D模型的掩膜图像;
    根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印。
  15. 根据权利要求14所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
    S04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
    S05、控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
    S06、控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤S08;如果判断层内图像未全部完成掩膜曝光,则进行步骤S07;
    S07、控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤S06;
    S08、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    S09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
    S10、控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤S12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤S11;
    S11、控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤S05;
    S12、控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
    S13、流程结束;
    或者包括:
    SS04、控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
    SS05、控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
    SS06、控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤SS08;如果判断层内图像未全部完成掩膜投影,则进行步骤SS07;
    SS07、控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进 入执行步骤SS06;
    SS08、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    SS09、控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
    SS10、控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤SS12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤SS11;
    SS11、控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤SS05;
    SS12、控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件;
    SS13、流程结束。
  16. 根据权利要求14所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
    A04、读取执行第N层切片打印层参数并驱动成型平台运动到预备打印位置;
    A05、载入层内第M页图像打印页参数并根据曝光时间参数对光敏树脂进行照射;
    A06、如果层内图像全部完成对光敏树脂进行照射,则进行步骤A08;如果层内图像未全部完成对光敏树脂进行照射,则进行步骤A07;
    A07、载入层内第M+1页图像打印页参数并对光敏树脂进行照射,之后进入执行步骤A06;
    A08、驱动成型平台带动固化成型模型脱膜;
    A09、驱动成型平台再运动到预备打印位置;
    A10、如果所有切片层的层内图像全部完成对光敏树脂进行照射,则进行步骤A12;如果所有切片层的层内图像未全部完成对光敏树脂进行照射,则进行步骤A11;
    A11、读取执行第N+1层切片打印层参数,之后进入执行步骤A05;
    A12、驱动成型平台实现拔膜取件;
    A13、流程结束。
  17. 根据权利要求16所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,步骤A04包括:控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜曝光打印位置且静止X秒后控制光源点亮;
    相应的,步骤A05包括:控制单元控制LCD屏载入层内第M页图像打印页参数并根据曝光时间参数对其进行掩膜曝光;
    相应的,步骤A06包括:控制单元判断层内图像是否全部完成掩膜曝光;如果判断层内图像全部完成掩膜曝光,则进行步骤A08;如果判断层内图像未全部完成掩膜曝光,则进行步骤A07;
    相应的,步骤A07包括:控制单元控制LCD屏载入层内第M+1页图像打印页参数并对其进行掩膜曝光,之后进入执行步骤A06;
    相应的,步骤A08包括:控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    相应的,步骤A09包括:控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜曝光打印位置且静止X秒;
    相应的,步骤A10包括:控制单元判断所有切片层的层内图像是否全部完成掩膜曝光;如果判断所有切片层的层内图像全部完成掩膜曝光,则进行步骤A12;如果判断所有切片层的层内图像未全部完成掩膜曝光,则进行步骤A11;
    相应的,步骤A11包括:控制单元按序读取执行第N+1层切片打印层参数后控制光源点亮,之后进入执行步骤A05;
    相应的,步骤A12包括:控制单元控制光源灭灯且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
  18. 根据权利要求16所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,步骤A04包括:控制单元按序读取执行第N层切片打印层参数并控制电机驱动成型平台运动到预备掩膜投影打印位置且静止X秒;
    相应的,步骤A05包括:控制单元控制投影装置载入层内第M页图像打印页参数后亮屏并根据曝光时间参数对其进行掩膜投影;
    相应的,步骤A06包括:控制单元判断层内图像是否全部完成掩膜投影;如果判断层内图像全部完成掩膜投影,则进行步骤A08;如果判断层内图像未全部完成掩膜投影,则进行步骤A07;
    相应的,步骤A07包括:控制单元控制投影装置载入层内第M+1页图像打印页参数并对其进行掩膜投影,之后进入执行步骤A06;
    相应的,步骤A08包括:控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升/下降预设距离L1毫米并带动固化成型模型脱膜;
    相应的,步骤A09包括:控制单元控制电机驱动成型平台在抬升/下降L1毫米后再静止Z秒然后再下降/抬升L2毫米运动到预备掩膜投影打印位置且静止X秒;
    相应的,步骤A10包括:控制单元判断所有切片层的层内图像是否全部完成掩膜投影;如果判断所有切片层的层内图像全部完成掩膜投影,则进行步骤A12;如果判断所有切片层的层内图像未全部完成掩膜投影,则进行步骤A11;
    相应的,步骤A11包括:控制单元按序读取执行第N+1层切片打印层参数,之后进入执行步骤A05;
    相应的,步骤A12包括:控制单元控制投影装置熄屏且等待Y秒后控制电机驱动成型平台抬升预设距离L3毫米以实现拔膜取件。
  19. 根据权利要求14所述的一种光固化3D打印多套切片参数的打印执行控制方法,其特征在于,根据所述切片打印层参数,通过切换所述层内图像打印页参数,对光敏树脂进行照射使所述光敏树脂固化成型,直至对所有所述切片打印层的层内图像打印页完成3D打印,包括:
    对于包括多页层内图像打印页的所述切片打印层,通过切换层内图像打印页参数,实现切换至指定的所述层内图像打印页;
    对于指定的所述层内图像打印页,使至少一个所述3D模型对应的掩膜图像实现曝光。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至11、14至19任一项所述的方法。
PCT/CN2021/101309 2021-02-05 2021-06-21 光固化3d打印多套切片参数的打印执行控制方法及装置 WO2022166076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110162368.8A CN112976582B (zh) 2021-02-05 2021-02-05 光固化3d打印多套切片参数的打印执行控制方法及装置
CN202110162368.8 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022166076A1 true WO2022166076A1 (zh) 2022-08-11

Family

ID=76348167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101309 WO2022166076A1 (zh) 2021-02-05 2021-06-21 光固化3d打印多套切片参数的打印执行控制方法及装置

Country Status (2)

Country Link
CN (1) CN112976582B (zh)
WO (1) WO2022166076A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403390A (zh) * 2022-09-20 2022-11-29 吉林大学 一种利用高固含量/低透光度碳基浆料通过光固化3d打印制备多孔碳骨架的方法
CN116198128A (zh) * 2023-03-01 2023-06-02 诺丁汉大学卓越灯塔计划(宁波)创新研究院 一种全息3d打印机及3d打印方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112976582B (zh) * 2021-02-05 2023-09-01 深圳市创必得科技有限公司 光固化3d打印多套切片参数的打印执行控制方法及装置
CN115592953B (zh) * 2021-06-28 2024-03-12 广州黑格智造信息科技有限公司 用于3d打印的固化处理方法、系统、装置及存储介质
CN114274514A (zh) * 2021-12-22 2022-04-05 深圳市创必得科技有限公司 模型打印环形纹理全消隐方法、装置、设备及存储介质
CN114442968B (zh) * 2022-02-10 2023-09-22 中交第一公路勘察设计研究院有限公司 一种3d打印工程参数匹配方法
CN114683539A (zh) * 2022-03-07 2022-07-01 深圳市创必得科技有限公司 Lcd三维打印均光方法和装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105034370A (zh) * 2015-07-13 2015-11-11 苏州大学 基于掩膜固化的快速成型方法
CN108127913A (zh) * 2017-12-22 2018-06-08 珠海天威飞马打印耗材有限公司 智能3d打印系统及其打印方法
CN108367493A (zh) * 2015-12-22 2018-08-03 瑞尼斯豪公司 增材制造设备和方法
JP2018199320A (ja) * 2017-05-27 2018-12-20 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. バイナリ光硬化3dプリンタの3d印刷方法
CN109228314A (zh) * 2018-11-20 2019-01-18 广州捷和电子科技有限公司 一种用于3d光固化打印的多参数快速打印方法及设备
CN111497231A (zh) * 2020-04-15 2020-08-07 广州黑格智造信息科技有限公司 一种3d打印方法、装置、存储介质及3d打印系统
CN112976582A (zh) * 2021-02-05 2021-06-18 深圳市创必得科技有限公司 光固化3d打印多套切片参数的打印执行控制方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834063A (ja) * 1994-07-25 1996-02-06 Toshiba Corp 光造形方法及びその装置及び樹脂成形体
JP3685639B2 (ja) * 1999-03-08 2005-08-24 株式会社キングジム 光造形装置
JP4519274B2 (ja) * 2000-06-06 2010-08-04 ナブテスコ株式会社 光造形装置および光造形方法
US10538074B2 (en) * 2014-01-16 2020-01-21 Hewlett-Packard Development Company, L.P. Processing slice data
EP3094472B1 (en) * 2014-01-16 2020-04-01 Hewlett-Packard Development Company, L.P. Processing slice data for an additive manufacturing system
CN106881862A (zh) * 2015-12-11 2017-06-23 上海联泰科技股份有限公司 面曝光成型的3d打印方法及3d打印装置
DE102016000967A1 (de) * 2016-01-29 2017-08-03 Hendrik John Pixelgenaue Steuerung des selektiven Energieeintrags über die Zeit bei additiven Fertigungsprozessen mittels digitaler Maskenbelichtung.
US11353845B2 (en) * 2016-11-17 2022-06-07 Beijing University Of Technology Model-adaptive multi-source large-scale mask projection 3D printing system
CN107263862A (zh) * 2017-07-03 2017-10-20 南京航空航天大学 一种制件强度可控的面成型光固化三维打印方法
CN108381910B (zh) * 2018-02-09 2019-05-28 山东大学 基于掩膜图像灰度调节的变速连续液面制造方法和装置
CN110920055A (zh) * 2018-09-04 2020-03-27 三纬国际立体列印科技股份有限公司 提升材料注入效率的3d打印方法
CN111531875B (zh) * 2020-02-29 2021-10-22 湖南大学 一种可调光源波长的高精度大面积快速3d打印装置及方法
CN112265263A (zh) * 2020-11-06 2021-01-26 上海梓域材料科技有限公司 低离型力3d打印装置及其打印方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105034370A (zh) * 2015-07-13 2015-11-11 苏州大学 基于掩膜固化的快速成型方法
CN108367493A (zh) * 2015-12-22 2018-08-03 瑞尼斯豪公司 增材制造设备和方法
JP2018199320A (ja) * 2017-05-27 2018-12-20 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. バイナリ光硬化3dプリンタの3d印刷方法
CN108127913A (zh) * 2017-12-22 2018-06-08 珠海天威飞马打印耗材有限公司 智能3d打印系统及其打印方法
CN109228314A (zh) * 2018-11-20 2019-01-18 广州捷和电子科技有限公司 一种用于3d光固化打印的多参数快速打印方法及设备
CN111497231A (zh) * 2020-04-15 2020-08-07 广州黑格智造信息科技有限公司 一种3d打印方法、装置、存储介质及3d打印系统
CN112976582A (zh) * 2021-02-05 2021-06-18 深圳市创必得科技有限公司 光固化3d打印多套切片参数的打印执行控制方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115403390A (zh) * 2022-09-20 2022-11-29 吉林大学 一种利用高固含量/低透光度碳基浆料通过光固化3d打印制备多孔碳骨架的方法
CN115403390B (zh) * 2022-09-20 2023-03-31 吉林大学 一种利用高固含量/低透光度碳基浆料通过光固化3d打印制备多孔碳骨架的方法
CN116198128A (zh) * 2023-03-01 2023-06-02 诺丁汉大学卓越灯塔计划(宁波)创新研究院 一种全息3d打印机及3d打印方法

Also Published As

Publication number Publication date
CN112976582A (zh) 2021-06-18
CN112976582B (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2022166076A1 (zh) 光固化3d打印多套切片参数的打印执行控制方法及装置
CN104626586B (zh) 基于dmd的光固化成型方法
US20180141268A1 (en) Method for Making an Object
WO2017219618A1 (zh) 一种成型方法
EP3204217B1 (en) Shifting a curing location during 3d printing
JP2009298023A (ja) 光造形方法、光造形装置および同光造形装置に適用される光造形用コンピュータプログラム
JP6058819B2 (ja) 3次元物体の作製
CN104085106A (zh) 一种基于dlp原理的3d打印机
WO2022166077A1 (zh) 光固化3d打印模型多套切片打印参数设置方法
KR20190142425A (ko) 3차원 물체 데이터의 레이어링 방법 및 3d 프린팅 방법 및 장치
US11597140B2 (en) Apparatus for photo-curing photo-sensitive materials for the formation of three-dimensional objects using extraction plate with continuous motion
WO2022198847A1 (zh) 提高光固化3d打印模型表面指定区域精细度的方法
US20210260819A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JP4828028B2 (ja) 立体造形装置および立体造形方法
KR20180095419A (ko) 3d 프린트 장치 및 이의 프린트 방법
CN116252485A (zh) 3d打印设备及打印方法、三维模型的数据处理方法及系统
US11370165B2 (en) Method for improving resolution in LCD screen based 3D printers
CN107486985B (zh) 一种单侧变速脱模快速成型控制系统及快速成型方法
JP4049654B2 (ja) 3次元造形装置および3次元造形方法
JP7409603B2 (ja) 光造形装置、及び該装置を用いた光造形方法
CN209775556U (zh) 3d打印设备
CN219381646U (zh) 3d打印设备
JP2002103457A (ja) 光造形装置及び光造形品の制作方法
CN111497241A (zh) Dlp型3d打印系统
JPS6299753A (ja) 立体形状の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924083

Country of ref document: EP

Kind code of ref document: A1