WO2022166077A1 - 光固化3d打印模型多套切片打印参数设置方法 - Google Patents

光固化3d打印模型多套切片打印参数设置方法 Download PDF

Info

Publication number
WO2022166077A1
WO2022166077A1 PCT/CN2021/101311 CN2021101311W WO2022166077A1 WO 2022166077 A1 WO2022166077 A1 WO 2022166077A1 CN 2021101311 W CN2021101311 W CN 2021101311W WO 2022166077 A1 WO2022166077 A1 WO 2022166077A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
model
slice
parameters
models
Prior art date
Application number
PCT/CN2021/101311
Other languages
English (en)
French (fr)
Inventor
易瑜
谢信福
刘醴
凌少华
Original Assignee
深圳市创必得科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创必得科技有限公司 filed Critical 深圳市创必得科技有限公司
Publication of WO2022166077A1 publication Critical patent/WO2022166077A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing

Definitions

  • the present application relates to the technical field of 3D (3-dimension, three-dimensional) printing, and in particular to a method for setting multiple slice printing parameters of a light-curing 3D printing model.
  • the slices of the printed model are generally sliced according to the set uniform layer thickness.
  • the appearance of the printed model is relatively smooth and complete, it can be printed with thicker model slices. , to improve the printing speed; when encountering small feature details in the appearance of the printed model, it is necessary to print with thinner model slices to ensure the smoothness of the details; at this time, the following problems are easily encountered: 1.
  • the appearance of the printed model is large When the part is smooth, if there are several small feature details at the same time, if a thicker layer thickness is used for uniform slicing, the details of several small feature details are likely to be rough after printing, and the smoothness is poor; 2. Printing When the appearance of the model is mostly smooth, if there are several small feature details at the same time, if a thinner layer thickness is used for uniform slicing, the parts other than the feature details will consume a lot of printing time;
  • the model slice is generally a single exposure of the single-layer slice image as a whole, and during the entire printing process, the movement strategy of the forming platform is relatively simple, and it is directly lifted or lowered at a fixed speed.
  • This method can meet the basic printing needs, but it is easy to encounter the following problems: 1. For models with large changes in the slice layer area, if a lower lifting speed is used during printing, the printing success rate of large areas and extremely small areas will be improved.
  • the overall printing time will be much longer; if the whole printing process adopts a higher lifting speed, the overall printing time of the model can be shortened, but the sliced image with a large area or the sliced image with a small area, because the larger release speed will cause The instant release force increases and the vibration of the instant release can easily lead to the failure of printing; 2.
  • the large area of the layer is exposed to a single overall, and the heat emitted by the resin reaction is large, which is easy to cause the resin to produce a performance change with higher activity, which in turn causes excessive
  • the stress generated is also large.
  • the upper and lower layers where the cross-sectional area has a sudden change, because the stress generated when the large-area and small-area layers are cured are different, it is easy to cause deformation in the transition stage.
  • the present invention provides four methods for setting multiple slice printing parameters of light-curing 3D printing models, which can be used for different printing requirements or different structural characteristics of the multiple sets of printing models.
  • the parameters enable the printing model to expose the resin at different times or make the forming platform move at different speeds according to different printing parameters in the same period of time, so as to achieve better printing results.
  • Method 1 a method for setting multiple slice printing parameters of a light-curing 3D printing model, comprising the following steps:
  • step SA02 judge whether it is necessary to set the model slice printing parameters for each model according to the number of 3D models; if it is judged that it is not necessary to set the model slice printing parameters for each model according to the number of 3D models, then proceed to step SA04; It is necessary to set the model slice printing parameters for each model according to the number of 3D models, then go to step SA03;
  • the model slice printing parameters are respectively set for each model, and then enter the execution step SA05;
  • model slice printing parameters are set for each model according to the number of 3D models, including:
  • the model slice printing parameters of multiple 3D models are set in steps, so that multiple 3D models can be printed in one batch.
  • Method 2 a method for setting multiple sets of slice printing parameters for a light-curing 3D printing model, comprising the following steps:
  • SB02 judge whether it is necessary to group a plurality of 3D models; if it is judged that it is not necessary to group a plurality of 3D models, then go to step SB05; if it is judged that a plurality of 3D models need to be grouped, go to step SB03;
  • SB04 set model slice printing parameters for each group of models according to different groupings, and then enter and execute step SB06;
  • model slice printing parameters are set for each group of models according to different groups, including:
  • the model slice printing parameters of multiple groups of models are set in steps, so that multiple groups of models can be printed in one batch.
  • Method 3 a method for setting multiple slice printing parameters of a light-curing 3D printing model, comprising the following steps:
  • SC02 determine whether it is necessary to divide the 3D model into different slice parameter setting areas according to different heights; if it is judged that it is not necessary to divide the 3D model into different slice parameter setting areas according to different heights, proceed to step SC05; if it is judged that the 3D model needs to be divided according to different The height is divided into different slice parameter setting areas, then step SC03 is performed;
  • the 3D model is divided into different slice parameter setting areas on the Z axis and the XY plane by height;
  • SC04 independently set the model slice printing parameters in the respective areas according to different slice parameter setting areas, and then enter and execute step SC06;
  • model slice printing parameters are independently set in the respective areas according to different slice parameter setting areas, including:
  • Method 4 a method for setting multiple slice printing parameters of a light-curing 3D printing model, comprising the following steps:
  • step SD02 judge whether it is necessary to divide the 3D model into different slice parameter setting ranges according to different cross-sectional areas; if it is judged that it is not necessary to divide the 3D model into different slice parameter setting ranges according to different cross-sectional areas, go to step SD05; The 3D model is divided into different slice parameter setting ranges according to different cross-sectional areas, then go to step SD03;
  • model slice printing parameters are individually set within their respective ranges according to different slice parameter setting ranges, including:
  • model slice printing parameters are individually set within their respective ranges according to different slice parameter setting ranges, including:
  • the method also includes:
  • the bottom slices of each of the 3D models are determined, and the same model slice printing parameters are set for each of the bottom slices.
  • the model slice printing parameters include: a mask image, and/or a mask image exposure time parameter, and/or a moving speed parameter of the forming platform, and/or a moving distance parameter of the forming platform, and/or a static time of the forming platform parameter, and/or light source light-on time parameter, and/or light-off delay time parameter, and/or projection screen-on time parameter, and/or projection screen-off delay time parameter, and/or slice layer thickness parameter, and/or bottom layer number specification parameters, and/or slice bottom layer optimization settings parameters, and/or mask image edge optimization settings parameters, and/or mask image antialiasing optimization parameters, and/or mask image tolerance compensation parameters, and/or mask image Image uniformity optimization compensation parameters, and/or print support setting parameters, and/or resin characteristic parameters.
  • the number of 3D models loaded and opened by the 3D printing slicing software includes one, or two, or more.
  • the 3D model printing data after the model slice printing parameters are set are printed by an LCD (Liquid Crystal Display, liquid crystal display) light-curing 3D printer, or a DLP (Digital Light Processing, digital light processing) light-curing 3D printer, or CLIP (Continuous Liquid Interface Production technology, continuous liquid interface extraction technology) photo-curing 3D, or SLA (StereoLithography, photo-curing molding technology) photo-curing 3D printer for photo-curing printing.
  • LCD Liquid Crystal Display, liquid crystal display
  • DLP Digital Light Processing, digital light processing
  • CLIP Continuous Liquid Interface Production technology, continuous liquid interface extraction technology
  • SLA StepoLithography, photo-curing molding technology
  • the cross-sectional area is the cross-sectional area of a single model on the same slice, or the sum of the cross-sectional areas of multiple models on the same slice.
  • a terminal device includes a memory, a processor, and a computer program stored in the memory and executable on the processor, and the processor implements any of the methods described above when the processor executes the computer program.
  • a computer-readable storage medium where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any one of the methods described above is implemented.
  • model slice printing parameters can be set for each model according to the number of 3D models, and different precise and dense stepped parameters can be set while printing a batch of dozens of identical models. It is easy to select the best effect printed product in the same model in a printing batch and obtain the corresponding optimal parameters of resin characteristics and other optimal printing setting parameters, and at the same time, it can also observe and compare the molding differences between the printed products at the same time;
  • the model slice printing parameters can be set for each group of models according to different groups of multiple 3D models, so that while printing a batch of multiple sets of different models, multiple identical models in each set can also be printed.
  • Set different model slice printing parameters respectively it is easy to select the optimal effect of each set of different models to print the finished product at the same time in a printing batch, and obtain the corresponding optimal parameters of resin characteristics and other optimal printing setting parameters;
  • the 3D model can be divided into different slice parameter setting areas on the Z axis and the XY plane according to the different structural features of the 3D model, so that the model slice printing parameters can be individually set in each area, which can be used in
  • the model is divided into different areas according to the height. It is easy to use a thicker slice layer thickness to speed up the appearance of the model when the upper part is complicated and the lower part is simple. The printing speed of the lower part of the model with less detailed features, with a thinner slice layer thickness, the upper features of the model can be printed with finer details and better results;
  • the 3D model is divided into different slice parameter setting ranges on the XY plane with different preset cross-sectional areas as the comparison criteria, so that the model slice printing parameters can be individually set within the respective ranges, which can print a batch of
  • the model is divided into different slice parameter setting ranges according to different preset cross-sectional areas according to the structural characteristics of the 3D model.
  • the exposure time of the 3D printer and the movement speed of the forming platform are correspondingly switched, so a suitable platform movement speed can shorten the overall printing time of the model; the demolding speed can also be adapted to different horizontal
  • the cross-sectional area is adjusted and executed, which can try to avoid printing failure caused by excessive stripping speed and vibration; slices with different cross-sectional areas use their own appropriate exposure times to avoid printing deformation caused by excessive exposure of sliced images.
  • Fig. 1 is a flow chart 1 of a method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention
  • Fig. 2 is the flow chart 2 of the method for setting multiple slice printing parameters of the light-curing 3D printing model of the present invention
  • FIG. 3 is a flowchart 3 of a method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention
  • FIG. 4 is a flowchart 4 of a method for setting multiple slice printing parameters of a photocuring 3D printing model of the present invention
  • FIG. 5 is Embodiment 1 of the method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention
  • FIG. 6 is Embodiment 2 of the method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention
  • FIG. 7 is Embodiment 3 of the method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention.
  • FIG. 8 is Embodiment 4 of the method for setting multi-slice printing parameters of a light-curing 3D printing model of the present invention.
  • FIG. 9 is Embodiment 5 of the method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention.
  • FIG. 10 is Embodiment 6 of the method for setting multiple slice printing parameters of the light-curing 3D printing model of the present invention.
  • FIG. 11 is Embodiment 7 of the method for setting multiple slice printing parameters of the light-curing 3D printing model of the present invention.
  • FIG. 12 is Embodiment 8 of the method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the invention provides four methods for setting multiple sets of slicing printing parameters for light-curing 3D printing models, which can set multiple sets of slicing printing parameters according to different printing requirements or different structural characteristics of the multiple sets of printing models, so that the printing models can be printed within the same period of time. According to different printing parameters, the resin is exposed at different times or the forming platform moves at different speeds, so as to achieve better printing results.
  • FIG. 1 is a flowchart 1 of a method for setting multiple slice printing parameters of a light-curing 3D printing model of the present invention. As shown in the figure, it includes the following steps:
  • step SA02 judge whether it is necessary to set the model slice printing parameters for each model according to the number of 3D models; if it is judged that it is not necessary to set the model slice printing parameters for each model according to the number of 3D models, then proceed to step SA04; It is necessary to set the model slice printing parameters for each model according to the number of 3D models, then go to step SA03;
  • the model slice printing parameters are respectively set for each model, and then enter the execution step SA05;
  • FIG. 2 is a flowchart 2 of a method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention. As shown in the figure, it includes the following steps:
  • SB02 judge whether it is necessary to group a plurality of 3D models; if it is judged that it is not necessary to group a plurality of 3D models, then go to step SB05; if it is judged that a plurality of 3D models need to be grouped, go to step SB03;
  • SB04 set model slice printing parameters for each group of models according to different groupings, and then enter and execute step SB06;
  • FIG. 3 is a flowchart 3 of a method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention. As shown in the figure, it includes the following steps:
  • SC02 determine whether it is necessary to divide the 3D model into different slice parameter setting areas according to different heights; if it is judged that it is not necessary to divide the 3D model into different slice parameter setting areas according to different heights, proceed to step SC05; if it is judged that the 3D model needs to be divided according to different The height is divided into different slice parameter setting areas, then step SC03 is performed;
  • the 3D model is divided into different slice parameter setting areas on the Z axis by the XY plane by height;
  • SC04 independently set the model slice printing parameters in the respective areas according to different slice parameter setting areas, and then enter and execute step SC06;
  • FIG. 4 is a flowchart 4 of a method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention. As shown in the figure, it includes the following steps:
  • step SD02 judge whether it is necessary to divide the 3D model into different slice parameter setting ranges according to different cross-sectional areas; if it is judged that it is not necessary to divide the 3D model into different slice parameter setting ranges according to different cross-sectional areas, go to step SD05; The 3D model is divided into different slice parameter setting ranges according to different cross-sectional areas, then go to step SD03;
  • FIG. 5 is Embodiment 1 of the method for setting the printing parameters of multiple slices of a light-curing 3D printing model according to the present invention.
  • 10 identical printing models can be imported or copied as shown in FIG. 5 , and then 10 sets of slice printing parameters can be set for the 10 printing models, for example, the exposure time of the 10 printing models can be stepped Set to 0.5s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s, 3.5s, 4.0s, 4.5s, 5.0s; so that 10 print models can be printed in one batch.
  • the best printing model is selected and corresponding to it.
  • the slice printing setting parameters of as the optimal slice printing parameters of the photosensitive resin used this time.
  • 10 identical print models can be imported or copied as shown in the figure, and then 10 sets of slice printing parameters are set for these 10 print models, for example, 10 prints of M1-M10
  • the exposure time of the model is set to 2.1s, 2.2s, 2.3s, 2.4s, 2.5s, 2.6s, 2.7s, 2.8s, 2.9s, 3.0s; 10 printing models can be printed in one batch, Select the most effective printing model and set the parameters for the corresponding slice printing as the optimal parameters of the photosensitive resin used this time; under this method, one batch can complete the printing of multiple test models at the same time , which is beneficial to save a lot of test printing time and workload.
  • FIG. 6 is Embodiment 2 of the method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention.
  • the existing technology is to print nearly ten or more models for each model one by one and set different Only by using the step-by-step slice printing parameters, the corresponding optimal resin characteristic parameters can be selected from the optimal printed products of each model; this way, the test printing time is longer.
  • 10 two different printing models can be imported or copied as shown in FIG. 6 , wherein 5 of each model are printed at the same time, and then the two printing models are paired into 5 groups. Then set 5 groups of slice printing parameters for these 5 groups of printing models, for example, set the exposure time stepwise of the 5 groups of printing models to 0.5s, 1.0s, 1.5s, 2.0s, 2.5s; After the printing is completed, compare the printing effect of the printed product, and select the best one group of printing models and set the parameters for the corresponding slice printing as the two models for this printing.
  • the optimal slice printing parameters of the photosensitive resin used at the time of use; under this method, the printing of multiple different test models can be completed in one batch at the same time, which is beneficial to save a lot of test printing time and workload.
  • FIG. 7 is Embodiment 3 of the method for setting multi-slice printing parameters of a light-curing 3D printing model of the present invention.
  • the existing technical practice is to set the model to a uniform layer thickness for slicing; if the printing effect is not high, the model is printed with a thicker model slice, for example, the slice layer thickness is set It is 0.1mm, thus sacrificing printing accuracy to improve printing speed; in the case of higher requirements on printing effect, the model is printed with thinner model slices, for example, the slice layer thickness is set to 0.025mm, which will take longer to print time to improve print accuracy and print results.
  • a puppet print model with rich head features and less detailed features of the body part can be imported, and then the neck position of the puppet print model can be selected.
  • the puppet print model is divided into H1 and H2 regions by height on the X1Y1Z1 plane on the Z axis; since the head feature details of the puppet print model in the H2 region are more detailed, the body feature details of the puppet print model in the H1 region are less detailed ; Therefore, the slice thickness of the puppet print model in the H2 area can be set to 0.025mm, and the slice thickness of the puppet print model in the H1 area can be set to 0.1mm; so after printing, the head of the puppet print model can be The texture is clear, the surface is smooth, and the size is accurate; while the body part of the doll print model has thick slices, but due to less feature details, the negative effects of slightly lower texture definition and slightly poorer surface smoothness are not easy to see; Under this method, it is not only beneficial to save the total printing time, but
  • the neck position of the puppet printing model can still be placed on the Z axis with the X1Y1Z1 plane under the condition that the models are placed at a consistent height.
  • FIG. 8 is Embodiment 4 of the method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention.
  • some models with large cross-section changes such as pyramids, axles, etc.
  • the cross-sectional area of the printed model gradually increases, or the cross-sectional area of the printed model changes alternately.
  • the existing technical practice is to set the model to a uniform layer thickness for slicing, set a uniform exposure time parameter, and then make the forming platform lift or descend according to the set uniform motion speed, and then perform an overall single-layer image of each layer of sliced images.
  • one axle printing model with a large cross-sectional area change can be imported, and then three cross-sectional area comparison parameters can be set according to the cross-sectional area change of the model; for example, if The area of S1 is 50 square millimeters, the area of S2 is 100 square millimeters, and the area of S3 is 150 square millimeters, then the first comparison range can be set to 0-60 square millimeters, the second comparison range is 60-120 square millimeters, and the second comparison range is 60-120 square millimeters.
  • the three comparison ranges are 120-180 square millimeters; the corresponding range 1 corresponds to the first set of model slice printing parameters, the range 2 corresponds to the second set of model slice printing parameters, and the range 3 corresponds to the third set of model slice printing parameters.
  • the photocuring machine executes the second set of model slicing printing parameters, such as exposure time 2s, forming platform lifting speed 30mm/min, forming platform
  • the lifting distance is 8mm, and the descending speed of the forming platform is 80mm/min
  • the first set of model slice printing parameters such as exposure time 2s, forming platform lifting speed 40mm/min
  • the lifting distance of the forming platform is 8mm, and the descending speed of the forming platform is 80mm/min
  • the light curing machine executes the third set of model slice printing parameters, such as exposure time 2s, forming platform
  • the lifting speed is 20mm/min, the lifting distance of the forming platform is 8mm, and the descending speed of the forming platform is 80mm/min;
  • the sum of the cross-sectional areas of multiple models on the same height plane that is, the sum of the image areas of multiple models in the same slice
  • the whole printing model is divided into different slice parameter setting ranges, and then the model slice printing parameters are set separately in each range; for example, if four axles as shown in Figure 8 are printed at the same time, the area of S1 is 50 square millimeters, and the area of S2 is 100 square millimeters.
  • the first comparison range can be set to 0-240 square millimeters
  • the second comparison range is 240-480 square millimeters
  • the third comparison range is 480-720 square millimeters
  • the model when printing a batch of one or more models, the model can be divided into different slice parameter setting ranges according to different preset cross-sectional areas according to the structural characteristics of the 3D model, and it is easy to encounter the upper and lower shape of the model.
  • the exposure time of the 3D printer and the movement speed of the forming platform are automatically switched, so that the total model printing time is shortened and the overall model printing effect is enhanced.
  • FIG. 9 is Embodiment 5 of the method for setting the printing parameters of multiple slices of a light-curing 3D printing model according to the present invention.
  • the 4 models are each set with the 3D slicing preprocessing software to set the model slicing printing parameters, and 4-layer slices are obtained after slicing; , you need to specify the first layer or the first several layers as the bottom slice by default or manually.
  • the exposure time of the bottom slice is generally a uniform slice printing parameter, so each layer in the bottom slice generally only has one set of slice printing layer parameters, and the layers also have There is only one set of image printing page parameters, that is, there is only one unified mask image and its exposure time parameters and image optimization parameters in the same slice;
  • the exposure time of the four models on the bottom layer is 5 seconds; here, the exposure time of 5 seconds is taken. This is because generally in actual printing, the exposure reaction time required for the bottom slice during exposure printing is slightly longer than the photocuring adhesion time between the non-bottom slices.
  • each layer of slices has a set of slice printing layer parameters;
  • the model slice printing parameters actually include two types of parameters: the slice printing layer parameters and the image printing page parameters in the layer; under normal circumstances, the slice printing layer parameters include: forming platform motion Speed parameters, moving distance parameters of the forming platform, static time parameters of the forming platform, light source light on time parameters, light off delay time parameters, slice layer thickness parameters, etc.
  • the intra-layer image printing page parameters include: mask image parameters, and mask image exposure time Parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization parameters, mask image tolerance compensation parameters, mask image uniform light optimization compensation parameters, printing support setting parameters and other parameters related to mask image related information;
  • the numbers 11, 21, 22, 31, and 41 in the middle are the cache data flag bits of the in-layer image print page generated by the 3D slicing preprocessing software. The first digit of the number indicates the layer where it is located, and the second digit of the number indicates the mask image in the layer. the page on which it is located;
  • models M1-M4 are exposed for 1s-4s in each layer slice respectively, so model M1 only exposes 1s in page 21 in the second layer slice, and in pages 22-24, by switching the image printing page parameters in the layer, After the mask image in the LCD screen of the photo-curing printing equipment is switched to the second page, after the mask image channel at the model M1 is closed, it will not be exposed in the second layer slice until the next layer; while the model M4 is in the first layer.
  • the mask image channel at the model M4 is opened 4 times, and each exposure The time is 1s, that is, the fast switching of the LCD screen makes the mask image on each page display for 1s. After 4 times in total, the mask image at the model M4 is exposed for 4s.
  • FIG. 10 is Embodiment 6 of the method for setting the printing parameters of multiple slices of a light-curing 3D printing model according to the present invention.
  • the 4 models are divided into 2 groups by the 3D slice preprocessing software, and the 4 models are set as 2 groups of model slice printing parameters, and sliced After that, 4 layers of slices are obtained; since generally in actual printing, the first layer or the first several layers need to be specified by default or manually as the bottom slice, and the exposure time of the bottom slice is generally a uniform slice printing parameter, so each layer in the bottom slice is generally There is only one set of slice printing layer parameters, and there is only one set of image printing page parameters in the layer, that is, there is only one unified mask image and its exposure time parameters and image optimization parameters in the same slice;
  • the exposure time of the four models in the bottom layer is 3 seconds; here, the exposure time of 3 seconds is taken.
  • each layer of slices has a set of slice printing layer parameters;
  • the model slice printing parameters actually include two types of parameters: the slice printing layer parameters and the image printing page parameters in the layer; under normal circumstances, the slice printing layer parameters include: forming platform motion Speed parameters, moving distance parameters of the forming platform, static time parameters of the forming platform, light source light on time parameters, light off delay time parameters, slice layer thickness parameters, etc.
  • the intra-layer image printing page parameters include: mask image parameters, and mask image exposure time Parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization parameters, mask image tolerance compensation parameters, mask image uniform light optimization compensation parameters, printing support setting parameters and other parameters related to mask image related information;
  • the numbers 11, 21, 22, 31, and 41 in the middle are the cache data flag bits of the image print page in the layer generated by the 3D slicing preprocessing software. the page on which it is located;
  • models M1 and N1 are exposed for 1 s in each slice, and M2 and N2 are exposed for 2 s in each slice, so models M1 and N1 are only exposed for 1 s in page 21 in the second slice.
  • page 22 by switching the in-layer image printing page parameters, after the mask image in the LCD screen of the photocuring printing device is switched to the second page, after the mask image channels at models M1 and N1 are closed, in the second layer slice No more exposure, until the next layer; while the models M2 and N2 switch the image printing page parameters in the layer in the second layer slicing, so that the mask image in the LCD screen of the photo-curing printing equipment continuously switches after 2 mask image pages.
  • the mask image channel 21 at the models M2 and N2 is opened twice, each exposure time is 2s, that is, the LCD screen switches quickly so that the mask image on each page is displayed for 1s. The image achieves exposure for 2s.
  • FIG. 11 is Embodiment 7 of the method for setting multiple slice printing parameters of a light-curing 3D printing model according to the present invention.
  • the neck position of the puppet model in Figure 7 is divided into H1 and H2 regions by height on the Z-axis and the X1Y1Z1 plane by the 3D slice preprocessing software, and in the A set of model slice printing parameters is set in each of the two areas, and 12 layers of slices are obtained after slicing; among them, the H2 area needs to make the head of the puppet print model have clear texture, smooth surface and accurate size, so the slice layer is thick Thinner; the negative effects of slightly lower texture definition and poorer surface smoothness in the H1 area are not easy to see, so the slice layer thickness can be thicker; generally, in actual printing, the default or manual designation will be made on this basis.
  • One layer or the first several layers are used as the bottom slice, and the exposure time of the bottom slice is generally a uniform slice printing parameter, so each layer in the bottom slice generally has only one set of slice printing layer parameters, and there is only one set of image printing page parameters in the layer. , that is, there is only one uniform mask image and its exposure time parameters and image optimization parameters in the same slice; in this figure, layers 11 and 21 are used as the bottom layer by default, so the corresponding generated 3s exposure time parameters and 15mm/min molding The motion speed parameters when the platform is lifted can be different from other layers;
  • the exposure time is set to 3 seconds because generally in actual printing, the exposure reaction time required for the bottom layer slice to be exposed and printed is slightly longer than that of the non-bottom layer slices.
  • the photo-curing adhesion time between the two layers; the slice printing layer parameters of each layer of slices in the H1 area except the bottom slice are the same; the slice printing layer parameters of each layer of slices in the H2 area are also the same; the 31st and 41st layers of slices It is a non-bottom slice.
  • the exposure time of the model slice in the H1 area based on method 3 is set to 2s, and the movement speed when the forming platform is lifted is set to 20mm/min; here is just for convenience. Therefore, only two parameters are expressed; the model slice printing parameters actually include two types of parameters: slice printing layer parameters and image printing page parameters in the layer; Distance parameters, static time parameters of the forming platform, light source light on time parameters, light off delay time parameters, slice layer thickness parameters, etc.
  • each layer of slices only includes A set of parameters for printing pages of images in layers; wherein, in general, parameters for printing pages of images in layers include: mask image parameters, mask image exposure time parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization Parameters, mask image tolerance compensation parameters, mask image uniform light optimization compensation parameters, printing support setting parameters and other parameters related to mask image related information; numbers 11, 21, 31, a1, b1, c1 in the figure are 3D
  • the cache data flag bit of the image printing page in the layer generated by the slicing preprocessing software the first digit of the number represents the layer where the image is located, and the second digit of the number represents the page where the mask image in the layer is located.
  • FIG. 12 is Embodiment 8 of the method for setting the printing parameters of multiple slices of a light-cured 3D printing model according to the present invention.
  • the wheel axle model in Figure 8 is divided into different slice parameter setting ranges according to different cross-sectional areas by the 3D slice preprocessing software; for example, if the wheel axle model S1 in Figure 8 has an area of 50 square millimeters , the area of S2 is 100 square millimeters, and the area of S3 is 150 square millimeters, then the first comparison range can be set to 0-60 square millimeters, the second comparison range is 60-120 square millimeters, and the third comparison range is 120 -180 square millimeters; the corresponding range 1 corresponds to the first set of model slice printing parameters, the range 2 corresponds to the second set of model slice printing parameters, and the range 3 corresponds to the third set of model slice printing parameters; After slicing, 8 layers of slices are obtained;
  • the first layer or the first several layers will be specified by default or manually as the bottom slice on this basis.
  • the two slice layers 11 and 21 in the bottom shaded part are designated as the bottom slices by default in the figure, and the area of the axle model S2 in Figure 8 just falls within the range 2, so the printing parameters of the slices of layers 11 and 21 at this time It can be the printing parameters of the default bottom layer slice, or it can be the second set of model slice printing parameters correspondingly set in the range 2, and the two parameters can be selected according to the preset default priority; in this embodiment, because the slice layer 11 , 21 are preset and designated as the bottom slice by default, so the parameters corresponding to the 3s exposure time and the motion speed parameter when the 15mm/min forming platform is lifted correspond to the bottom slice parameters; while the slice layer 31 is the non-bottom slice, corresponding to is the second set of model slice printing parameters set correspondingly in range 2;
  • the 41st, 51st, and 61st layer slices are non-bottom slices. Since their S1 area just falls within range 1, based on method 4, set the exposure time of model slices in range 1 to 2s, and set the time when the forming platform is lifted. The movement speed is 40mm/min; the 71st and 81st slices are non-bottom slices. Since the S3 area just falls within the range 3, the exposure time of the model slice is set to 2s in the range 3 based on method 4, and the molding is set.
  • the movement speed when the platform is lifted is 20mm/min; here is only for the convenience of an example, so only two parameters are expressed; the model slice printing parameters actually include two types of parameters: slice printing layer parameters and image printing page parameters in the layer; general
  • the parameters of the slicing printing layer include: the moving speed parameter of the forming platform, the moving distance parameter of the forming platform, the static time parameter of the forming platform, the light source light on time parameter, the light off delay time parameter, the slice layer thickness parameter, etc.
  • the intra-layer image printing page parameters include: mask image parameters, and mask image parameters Exposure time parameters, mask image edge optimization setting parameters, mask image anti-aliasing optimization parameters, mask image tolerance compensation parameters, mask image uniform light optimization compensation parameters, printing support setting parameters and other parameters related to mask image related information ;
  • the numbers 11, 21, 31, 41, 71, 81 in the figure are the cache data flag bits of the image print page in the layer generated by the 3D slicing preprocessing software. The first digit of the number indicates the layer, and the second digit of the number indicates the layer. The page where the inner mask image is located.
  • the 3D slicing preprocessing software is used to complete the model slicing printing parameter setting based on the above four methods, and after slicing, the slicing printing layer parameters of each layer of slices and the parameters of the image printing page in the layer are obtained.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device 13 of this embodiment includes: at least one processor 130 (only one is shown in FIG. 13 ), a memory 131 , and a processor 131 stored in the memory 131 and operable on the at least one processor 130
  • the computer program 132 when the processor 130 executes the computer program 132, the steps in any of the foregoing method embodiments are implemented.
  • the terminal device 13 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal device may include, but is not limited to, the processor 130 and the memory 131 .
  • FIG. 13 is only an example of a terminal device, and does not constitute a limitation to the terminal device. It may include more or less components than the one shown in the figure, or combine some components, or different components, such as It can also include input and output devices, network access devices, buses, and the like.
  • the processor 130 may be a central processing unit (Central Processing Unit, CPU), and the processor 130 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) ), off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 131 may be an internal storage unit of the terminal device 13 in some embodiments, such as a hard disk or a memory of the terminal device. In other embodiments, the memory 131 may also be an external storage device of the terminal device, such as a plug-in hard disk equipped on the terminal device, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, Flash card (Flash Card) and so on. Further, the memory 131 may also include both an internal storage unit of the terminal device and an external storage device. The memory 131 is used to store an operating system, an application program, a boot loader (Boot Loader), data, and other programs, such as program codes of computer programs, and the like. The memory 131 may also be used to temporarily store data that has been output or will be output.
  • a boot loader Boot Loader
  • the computer program 132 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 131 and executed by the processor 130 to complete the present application.
  • One or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the computer program 132 in the terminal device 13 .
  • Embodiments of the present invention further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

提供了四种光固化3D打印模型多套切片打印参数设置方法,方法1中能够在打印一批数十个相同模型的同时还能各自设定不同精确密集的阶梯化参数;方法2中能够在打印一批多套不同模型的同时还能将每套中的多个相同模型各自分组设定不同的模型切片打印参数;方法3中可按高度将3D模型划分为不同区域,能够在打印一批一个或多个相同模型时,按高度划分为不同区域并各自单独设定模型切片打印参数;方法4中在XY平面上以不同预设横截面面积为比较标准将3D模型划分为不同切片参数设定范围,能够在打印一批一个或多个模型时,将模型按不同预设横截面面积划分为不同切片参数设定范围并各自单独设定模型切片打印参数。

Description

光固化3D打印模型多套切片打印参数设置方法
本申请要求于2021年02月05日在中国国家专利局提交的、申请号为202110162372.4、发明名称为“光固化3D打印模型多套切片打印参数设置方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及3D(3-dimension,三维)打印技术领域,具体涉及光固化3D打印模型多套切片打印参数设置方法。
背景技术
目前在现有的光固化3D打印中,不同的光敏树脂成型反应曝光时间参数一般采用的是各个光固化整机厂指定树脂品牌的树脂特性参数推荐值,但是如果自己选择选配其他品牌树脂时,需要经过多次打印测试才能得出合适的推荐值,此时容易遇到以下问题:1、选配不同树脂时,在现有技术中需要逐个打印近十个乃至更多个模型并设定不同的阶梯化切片打印参数,才能在最优打印成品中选出相应的最优树脂特性参数,这种方式测试打印时间过长;2、某些特性树脂,树脂成型反应时间要求特别精准,有时反应时间需要精确到小数点后1位,导致测试工作量巨大,且无法在同一时间看出时间差异引起的成型差异;
其次,在现有的光固化3D打印中,打印模型的切片一般都是按照所设定的统一层厚进行切片,在遇到打印模型外观比较光滑完整时,可以以较厚的模型切片进行打印,来提高打印速度;在遇到打印模型外观存在较小的特征细节时,需要以较薄的模型切片进行打印,来保证细节光滑度;此时容易遇到以下问题:1、打印模型外观大部分较光滑的时如果还同时存在几处较小的特征细节时,如果采用较厚的层厚统一进行切片时,几处较小的特征细节打印后容易细节粗糙,光滑度差;2、打印模型外观大部分较光滑的时如果还同时存在几处较小的特征细节时,如果采用较薄的层厚统一进行切片时,则特征细节以外的部分就会耗费大量打印时间;
此外,在现有的光固化3D打印中,模型切片一般都是单层切片图像整体单次曝光,且整个打印过程中,成型平台运动策略较简单,直接以固定的速度进行抬升或者下降,以上做法可以满足基础的打印需求,但是容易遇到以下问题:1、切片图层面积变化较大的模型,如果打印时使用较低的抬升速度,大面积和极小区域的打印成功率会提升,但是整体打印时间会变长很多;如果整个打印过程采用较高的抬升速度,则可以缩短模型整体打印时间,但是面积大的切片图像或者面积极小的切片图像,因为较大脱膜速度会导致瞬间脱膜力增大以及瞬间脱膜的震动容易导致打印失败;2、大面积的图层单次整体曝光,树脂反应散发的热量大,容易导致树脂产生活性变高的性能变化,进而造成过度反应;同时产生的应力也大,例如处在横截面面积产生突变的上下两个图层,由于大面积和小面积图层固化时产生的应力不一样,在过渡阶段,容易造成变形。
技术问题
为了解决上述背景技术中的问题,本发明提供了四种光固化3D打印模型多套切片打印参数设置方法,可以针对多套打印模型不同的打印要求或不同的结构特点,通过设置多套切片打印参数使打印模型在同一时段内可以按照不同打印参数,使树脂进行不同时间的曝光或者使成型平台按照不同速度来运动,从而达成更好的打印效果。
技术解决方案
本发明所采用的技术方法如下:
方法1,一种光固化3D打印模型多套切片打印参数设置方法,包括以下步骤:
SA01、通过3D打印切片软件载入并打开3D模型;
SA02、判断是否需要根据3D模型的个数对各个模型各自设定模型切片打印参数;如果判断不需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA04;如果判断需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA03;
SA03、根据3D模型的个数对各个模型各自设定模型切片打印参数,之后进入执行步骤SA05;
SA04、设定统一的模型切片打印参数;
SA05、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进 行光固化打印;
SA06、流程结束。
作为优选,所述根据3D模型的个数对各个模型各自设定模型切片打印参数,包括:
将多个3D模型的模型切片打印参数按照阶梯化设置,使多个3D模型能够一个批次完成打印。
方法2,一种光固化3D打印模型多套切片打印参数设置方法,包括以下步骤:
SB01、通过3D打印切片软件载入并打开多个3D模型;
SB02、判断是否需要对多个3D模型进行分组;如果判断不需要对多个3D模型进行分组,则进行步骤SB05;如果判断需要对多个3D模型进行分组,则进行步骤SB03;
SB03、根据不同选择需求将多个3D模型进行分组;
SB04、根据不同分组对各组模型各自设定模型切片打印参数,之后进入执行步骤SB06;
SB05、设定统一的模型切片打印参数;
SB06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SB07、流程结束。
作为优选,所述根据不同分组对各组模型各自设定模型切片打印参数,包括:
将多组模型的模型切片打印参数按照阶梯化设置,使多组模型能够一个批次完成打印。
方法3,一种光固化3D打印模型多套切片打印参数设置方法,包括以下步骤:
SC01、通过3D打印切片软件载入并打开3D模型;
SC02、判断是否需要对3D模型按不同高度划分不同切片参数设定区域;如果判断不需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC05;如果判断需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC03;
SC03、根据3D模型不同的结构特征在Z轴上以XY平面按高度将3D模型划分为不同切片参数设定区域;
SC04、根据不同切片参数设定区域在各自区域内单独设定模型切片打印参数,之后进入执行步骤SC06;
SC05、根据同一切片参数设定区域设定统一的模型切片打印参数;
SC06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SC07、流程结束。
作为优选,所述根据不同切片参数设定区域在各自区域内单独设定模型切片打印参数,包括:
对不同切片参数设定区域分别设定不同的切片厚度。
方法4,一种光固化3D打印模型多套切片打印参数设置方法,包括以下步骤:
SD01、通过3D打印切片软件载入并打开3D模型;
SD02、判断是否需要对3D模型按不同横截面面积划分不同切片参数设定范围;如果判断不需要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD05;如果判断需要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD03;
SD03、在XY平面上以不同预设横截面面积为比较标准将3D模型划分为不同切片参数设定范围;
SD04、根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,之后进入执行步骤SD06;
SD05、根据同一切片参数设定范围设定统一的模型切片打印参数;
SD06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SD07、流程结束。
作为优选,所述根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,包括:
对不同的3D模型分别设定不同的成型平台运动速度。
作为优选,所述根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,包括:
设定曝光时间和成型平台运动速度,使总的模型打印时间缩短。
作为优选,所述方法还包括:
确定各所述3D模型的底层切片,对各所述底层切片设定相同的模型切片打印参数。
作为优选,所述模型切片打印参数包括:掩膜图像、和/或掩膜图像曝光时间参数、和/或成型平台运动速度参数、和/或成型平台运动距离参数、和/或成型平台静止时间参数、和/或光源灯亮时间参数、和/或灯灭延迟时间参数、和/或投影亮屏时间参数、和/或投影熄屏延迟时间参数、和/或切片层厚参数、和/或底层数指定参数、和/或切片底层优化设置参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数、和/或树脂特性参数。
作为优选,通过3D打印切片软件载入并打开3D模型的个数包括一个、或两个、或多个。
作为优选,所述模型切片打印参数设定完成后的3D模型打印数据由LCD(Liquid Crystal Display,液晶显示器)光固化3D打印机、或DLP(Digital Light Processing,数字光处理)光固化3D打印机、或CLIP(ContinuousLiquid Interface Production technology,连续液体界面提取技术)光固化3D、或SLA(StereoLithography,光固化成型技术)光固化3D打印机进行光固化打印。
作为优选,所述横截面面积为同一切片上的单个模型的横截面积、或同一切片上的多个模型横截面积之和。
一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的方法。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的方法。
有益效果
1、本发明方法1中可根据3D模型的个数对各个模型各自设定模型切片打印参数,能够在打印一批数十个相同模型的同时还能各自设定不同精确密集的阶梯化参数,容易在一个打印批次中选出相同模型中最优效果打印成品并获得相应的树脂特性最优参数及其他最优打印设置参数,同时还能在同一时间观察比较打印成品之间的成型差异;
2、本发明方法2中可根据多个3D模型的不同分组对各组模型各自设定模型切片打印参数,能够在打印一批多套不同模型的同时还能将每套中的多个相同模型各自设定不同的模型切片打印参数,容易在一个打印批次中同时选出各套不同模型的最优效果打印成品并获得相应的树脂特性最优参数及其他最优打印设置参数;
3、本发明方法3中可根据3D模型不同的结构特征在Z轴上以XY平面按高度将3D模型划分为不同切片参数设定区域从而在各自区域内单独设定模型切片打印参数,能够在打印一批一个或多个相同模型的时候,根据3D模型结构特点将模型按高度划分为不同区域,容易在遇到模型外观细节上部繁杂下部简洁的情形下,以较厚的切片层厚来加快模型下部细节特征较少区域的打印速度,以较薄的切片层厚使模型上部特征打印时外观细节更细腻效果更好;
4、本发明方法4中在XY平面上以不同预设横截面面积为比较标准将3D模型划分为不同切片参数设定范围从而在各自范围内单独设定模型切片打印参数,能够在打印一批一个或多个模型的时候,根据3D模型结构特点将模型按不同预设横截面面积划分为不同切片参数设定范围,容易在遇到模型上下切片图像截面积突变或模型横截面积变化较大的情形下,根据不同预设横截面面积触发标准,对应切换3D打印机的曝光时间和成型平台运动速度,所以快慢相宜的平台运动速度能使模型总体打印时间缩短;脱模速度也能针对不同横截面积来调整执行,能够尽量避免脱膜速度过大及震动带来的打印失败;不同横截面积的切片采用各自适用的曝光时间也能避免切片图像过度曝光导致的打印变形。
附图说明
图1为本发明光固化3D打印模型多套切片打印参数设置方法流程图1;
图2为本发明光固化3D打印模型多套切片打印参数设置方法流程图2;
图3为本发明光固化3D打印模型多套切片打印参数设置方法流程图3;
图4为本发明光固化3D打印模型多套切片打印参数设置方法流程图4;
图5为本发明光固化3D打印模型多套切片打印参数设置方法实施例1;
图6为本发明光固化3D打印模型多套切片打印参数设置方法实施例2;
图7为本发明光固化3D打印模型多套切片打印参数设置方法实施例3;
图8为本发明光固化3D打印模型多套切片打印参数设置方法实施例4;
图9为本发明光固化3D打印模型多套切片打印参数设置方法实施例5;
图10为本发明光固化3D打印模型多套切片打印参数设置方法实施例6;
图11为本发明光固化3D打印模型多套切片打印参数设置方法实施例7;
图12为本发明光固化3D打印模型多套切片打印参数设置方法实施例8;
图13为本发明一实施例提供的终端设备的结构示意图。
本发明的实施方式
下面结合附图对本发明实施例作进一步说明。
本发明提供了四种光固化3D打印模型多套切片打印参数设置方法,可以针对多套打印模型不同的打印要求或不同的结构特点,通过设置多套切片打印参数使打印模型在同一时段内可以按照不同打印参数,使树脂进行不同时间的曝光或者使成型平台按照不同速度来运动,从而达成更好的打印效果。
图1为本发明光固化3D打印模型多套切片打印参数设置方法流程图1。如图所示,其包括以下步骤:
SA01、通过3D打印切片软件载入并打开3D模型;
SA02、判断是否需要根据3D模型的个数对各个模型各自设定模型切片打印参数;如果判断不需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA04;如果判断需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA03;
SA03、根据3D模型的个数对各个模型各自设定模型切片打印参数,之后进入执行步骤SA05;
SA04、设定统一的模型切片打印参数;
SA05、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SA06、流程结束。
图2为本发明光固化3D打印模型多套切片打印参数设置方法流程图2。如图所示,其包括以下步骤:
SB01、通过3D打印切片软件载入并打开多个3D模型;
SB02、判断是否需要对多个3D模型进行分组;如果判断不需要对多个3D模型进行分组,则进行步骤SB05;如果判断需要对多个3D模型进行分组,则进行步骤SB03;
SB03、根据不同选择需求将多个3D模型进行分组;
SB04、根据不同分组对各组模型各自设定模型切片打印参数,之后进入执行步骤SB06;
SB05、设定统一的模型切片打印参数;
SB06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SB07、流程结束。
图3为本发明光固化3D打印模型多套切片打印参数设置方法流程图3。如图所示,其包括以下步骤:
SC01、通过3D打印切片软件载入并打开3D模型;
SC02、判断是否需要对3D模型按不同高度划分不同切片参数设定区域;如果判断不需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC05;如果判断需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC03;
SC03、根据3D模型不同的结构特征在Z轴上以XY平面按高度将3D模型划分为不同切片参 数设定区域;
SC04、根据不同切片参数设定区域在各自区域内单独设定模型切片打印参数,之后进入执行步骤SC06;
SC05、根据同一切片参数设定区域设定统一的模型切片打印参数;
SC06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SC07、流程结束。
图4为本发明光固化3D打印模型多套切片打印参数设置方法流程图4。如图所示,其包括以下步骤:
SD01、通过3D打印切片软件载入并打开3D模型;
SD02、判断是否需要对3D模型按不同横截面面积划分不同切片参数设定范围;如果判断不需要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD05;如果判断需要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD03;
SD03、在XY平面上以不同预设横截面面积为比较标准将3D模型划分为不同切片参数设定范围;
SD04、根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,之后进入执行步骤SD06;
SD05、根据同一切片参数设定范围设定统一的模型切片打印参数;
SD06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
SD07、流程结束。
图5为本发明光固化3D打印模型多套切片打印参数设置方法实施例1。当在选用新的非指定品牌型号的光敏树脂时,由于不同厂家不同树脂型号之间光敏固化特性不同,且没有统一的适配标准,所以在对某个模型进行大批量模型打印时,需要预先对模型切片打印参数进行调试,在此过程中,以现有技术的做法是需要逐个打印近十个乃至更多个模型并设定不同的阶梯化切片打印参数,然后在最优打印成品中选出相应的最优树脂特性参数;但是这种方式测试打印时间过长。
而采用本发明的方法1,则可以如图5所示导入或复制10个相同的打印模型,然后对这10个打印模型设置10套切片打印参数,例如将10个打印模型的曝光时间阶梯化设置为0.5s、1.0s、1.5s、2.0s、2.5s、3.0s、3.5s、4.0s、4.5s、5.0s;使10个打印模型能够一个批次完成打印,在打印结束后,再通过比较打印品的打印效果,例如观察各个打印品纹理清晰度、打印表面光滑度、打印完成度、尺寸准确性、打印品结构强度,从中来选出效果最好的打印模型并以其相对应的切片打印设定参数,来作为本次所用光敏树脂的最优切片打印参数。
同样,在选用某些高精度反应的光敏树脂时,由于树脂成型反应时间要求特别精准,有时反应时间需要精确到小数点后1位,导致测试工作量巨大,且无法在同一时间看出时间差异引起的成型差异的时候,采用本发明的方法1,则可以如图导入或复制10个相同的打印模型,然后对这10个打印模型设置10套切片打印参数,例如将M1-M10的10个打印模型的曝光时间阶梯化设置为2.1s、2.2s、2.3s、2.4s、2.5s、2.6s、2.7s、2.8s、2.9s、3.0s;使10个打印模型能够一个批次完成打印,从中来选出效果最好的打印模型并以其相对应的切片打印设定参数,来作为本次所用光敏树脂的最优参数;这种方法下,一个批次同时完成多个测试模型的打印,有利于节省大量测试打印时间和工作量。
图6为本发明光固化3D打印模型多套切片打印参数设置方法实施例2。当需要大批量打印不同模型时,也需要预先对模型切片打印参数进行调试,在此过程中,以现有技术的做法是将每种模型逐个打印近十个乃至更多个模型并设定不同的阶梯化切片打印参数,才能在每种模型的最优打印成品中选出相应的最优树脂特性参数;这种方式测试打印时间更长。
而采用本发明的方法2,则可以如图6所示导入或复制10个两种不同的打印模型,其中每种模型同时打印5个,然后将两种打印模型两两配对分为5组,然后对这5组打印模型设置5组切片打 印参数,例如将5组打印模型的曝光时间阶梯化设置为0.5s、1.0s、1.5s、2.0s、2.5s;使5组打印模型能够一个批次完成打印,在打印结束后,再通过比较打印品的打印效果,从中来选出效果最好的1组打印模型并以其相对应的切片打印设定参数,来作为本次打印两种模型时所用光敏树脂的最优切片打印参数;这种方法下,一个批次同时完成多个不同测试模型的打印,有利于节省大量测试打印时间和工作量。
图7为本发明光固化3D打印模型多套切片打印参数设置方法实施例3。当在打印某些外观细节丰富程度不一致的手办、公仔、人偶、机甲、兵人等模型时,常常会遇到模型头部特征细节较为丰富的,而躯体部分细节特征较少的情况,在此过程中,以现有的技术做法是将模型设定统一层厚进行切片;在对打印效果要求不高的情况下将模型以较厚的模型切片进行打印,例如切片层厚设定为0.1mm,从而牺牲打印精确度提高打印速度;在对打印效果要求较高的情况下将模型以较薄的模型切片进行打印,例如切片层厚设定为0.025mm,从而耗费更长的打印时间来提高打印精确度和打印效果。
而采用本发明的方法3,则可以如图7所示导入1个头部特征细节较为丰富的,而躯体部分细节特征较少的人偶打印模型,然后选择在人偶打印模型的颈部位置在Z轴上以X1Y1Z1平面按高度将人偶打印模型划分为H1和H2区域;由于H2区域内人偶打印模型的头部特征细节较多,H1区域内人偶打印模型的身躯特征细节较少;因此可以将H2区域内人偶打印模型的切片厚度设定为0.025mm,将H1区域内人偶打印模型的切片厚度设定为0.1mm;所以完成打印后,人偶打印品模型头部能够纹理清晰、表面光滑、尺寸准确;而人偶打印品模型身躯部分虽然切片层厚较厚,但由于特征细节少,其纹理清晰度稍低、表面光滑度稍差的负面效果却不易看出;这种方法下,既有利于节省总的打印时间,又能够使模型的总体打印效果良好。
此外,这种方法下,如果同时导入多个相同的人偶打印模型,那么在保证模型保持一致高度的摆放情况下,仍旧可以在人偶打印模型的颈部位置在Z轴上以X1Y1Z1平面按高度将多个人偶打印模型统一划分为H1和H2区域;再将H2区域内多个人偶打印模型的切片厚度设定为0.025mm,将H1区域内多个人偶打印模型的切片厚度设定为0.1mm;更有利于节省总的打印时间,又能够使模型的多个人偶打印模型保证良好的打印效果。
图8为本发明光固化3D打印模型多套切片打印参数设置方法实施例4。当在打印某些横截面变化较大如金字塔、轮轴等模型时,常常会遇到打印模型横截面积逐渐增大,或者打印模型横截面积大小出现交替变化的情况,在此过程中,以现有的技术做法是将模型设定为统一层厚进行切片,设定统一的曝光时间参数,然后使成型平台按照设定的统一运动速度进行抬升或下降,再对各层切片图像进行整体单次曝光,从而完成光固化打印;但是容易遇到以下问题:1、在打印横截面积由小到大连续变化较大的模型时;成型平台使用统一的较低抬升或下降速度时,模型打印成功率会提升,但是会耗费更长的打印时间;成型平台使用较高的抬升或下降速度时,模型总体打印时间会缩短,但是成型树脂脱膜时,瞬间脱膜力较大且还会导致脱模瞬间成型平台产生震动致使撕裂,尤其是模型横截面积较大的位置脱膜力过大在打印时更容易被撕裂;2、在打印横截面积由小到大突变变化较大的模型时;模型存在大面积切片图像和小面积切片图像相结合的情形,此时大面积切片图像的曝光时间被迫与小面积切片图像的曝光时间相一致,所以大面积切片图像会被过度曝光,因此结合部处大面积切片图像和小面积切片图像固化时产生的应力也会不一样,所以结合部处固化时容易出现形变。
而采用本发明的方法4,则可以如图8所示导入1个横截面积变化较大轮轴打印模型,然后根据模型的横截面积变化情况设定三个横截面面积比较参数;例如,如果S1面积为50平方毫米、S2面积为100平方毫米、S3面积为150平方毫米,那么可以设定第1个比较范围为0-60平方毫米、第2个比较范围为60-120平方毫米、第3个比较范围为120-180平方毫米;相对应的范围1内对应设定第1套模型切片打印参数、范围2内对应设定第2套模型切片打印参数、范围3内对应设定第3套模型切片打印参数;
所以进行光固化打印时,当打印下部凸台时,S2面积处于范围2内,光固化机执行第2套模型切片打印参数,例如曝光时间2s、成型平台抬升的运动速度30mm/min、成型平台抬升距离8mm、 成型平台下降速度80mm/min;当打印中部圆轴时,S1面积处于范围1内,光固化机执行第1套模型切片打印参数,例如曝光时间2s、成型平台抬升速度40mm/min、成型平台抬升距离8mm、成型平台下降速度80mm/min;当打印上部圆形凸台时,S3面积处于范围3内,光固化机执行第3套模型切片打印参数,例如曝光时间2s、成型平台抬升速度20mm/min、成型平台抬升距离8mm、成型平台下降速度80mm/min;
这种方法下,如图8所示上部圆形凸台与中部圆轴的结合部处,中部圆轴与下部圆形凸台的结合部处,由于上下大小切片各自采用了合适的模型切片打印参数,所以快慢相宜的平台运动速度能使模型总体打印时间缩短;脱模速度也能针对不同横截面积来调整执行,能够尽量避免脱膜速度过大及震动带来的打印失败;不同横截面积的切片采用各自适用的曝光时间也能避免切片图像过度曝光导致的打印变形。
此外,这种方法下,如果同时导入多个打印模型,那么按照同一高度平面上的多个模型横截面积之和,即同一切片内多个模型图像面积之和作为比较标准,依旧可以将多个打印模型整体划分为不同切片参数设定范围,然后在各自范围内单独设定模型切片打印参数;例如如果同时打印4个图8所示的轮轴,S1面积为50平方毫米、S2面积为100平方毫米、S3面积为150平方毫米,那么可以设定第1个比较范围为0-240平方毫米、第2个比较范围为240-480平方毫米、第3个比较范围为480-720平方毫米;然后在范围1内对应设定第1套模型切片打印参数、范围2内对应设定第2套模型切片打印参数、范围3内对应设定第3套模型切片打印参数;所以进行光固化打印时,当打印下部凸台时,四个S2面积之和处于范围2内,光固化机执行第2套模型切片打印参数;当打印中部圆轴时,四个S1面积之和处于范围1内,光固化机执行第1套模型切片打印参数;当打印上部圆形凸台时,四个S3面积之和处于范围3内,光固化机执行第3套模型切片打印参数。
所以本发明方法4中能够在打印一批一个或多个模型的时候,根据3D模型结构特点将模型按不同预设横截面面积划分为不同切片参数设定范围,容易在遇到模型上下形状截面积突变的情形下,根据不同预设横截面面积触发标准,自动切换3D打印机的曝光时间和成型平台运动速度,使总的模型打印时间缩短,使总体模型打印效果增强。
图9为本发明光固化3D打印模型多套切片打印参数设置方法实施例5。如图所示,基于方法1取4个模型为例进行说明,通过3D切片预处理软件将4个模型各自设定模型切片打印参数,并进行切片后得到4层切片;由于一般在实际打印中,需要默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;
例如,图中只有最下面阴影部分的一层作为底层切片,底层的4个模型共用一张掩膜图片进行曝光,所以4个模型在底层的曝光时间均为5秒;这里取5秒曝光时间是因为一般在实际打印中,底层切片在曝光打印时,所需要的曝光反应时间略长于非底层切片相互间的光固化附着时间;从下往上第2、3、4层切片为非底层切片,其每层切片的各自有一套切片打印层参数;模型切片打印参数实际包括了切片打印层参数和层内图像打印页参数这两类参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数、切片层厚参数等涉及到光固化打印设备的执行和运动机构的运动参数;各层切片由于有4个曝光时间参数不同的模型,所以每层切片层内又具有4套层内图像打印页参数;一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、22、31、41等数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页;
此外模型M1-M4由于在每一层切片中分别曝光1s-4s,所以模型M1在第2层切片中只在页21中曝光1s,在页22-24中通过切换层内图像打印页参数,使光固化打印设备的LCD屏中掩膜图像切换为第2页后,模型M1处的掩膜图像通道关闭后,在第2层切片中不再曝光,直至下一层;而 模型M4在第2层切片中通过切换层内图像打印页参数,使光固化打印设备的LCD屏中掩膜图像连续切换4页掩膜图像页后,模型M4处的掩膜图像通道开启4次,每次曝光时间1s,即LCD屏快速切换使每页掩膜图像显示1s,累计进行4次后,模型M4处的掩膜图像实现曝光4s。
图10为本发明光固化3D打印模型多套切片打印参数设置方法实施例6。如图所示,基于方法2取2组模型为例进行说明,通过3D切片预处理软件将4个模型分为2组后,将4个模型设定为2组模型切片打印参数,并进行切片后得到4层切片;由于一般在实际打印中,需要默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;
例如,图中只有最下面阴影部分的一层作为底层切片,底层的4个模型共用一张掩膜图片进行曝光,所以4个模型在底层的曝光时间均为3秒;这里取3秒曝光时间是因为一般在实际打印中,底层切片在曝光打印时,所需要的曝光反应时间略长于非底层切片相互间的光固化附着时间;从下往上第2、3、4层切片为非底层切片,其每层切片的各自有一套切片打印层参数;模型切片打印参数实际包括了切片打印层参数和层内图像打印页参数这两类参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数、切片层厚参数等涉及到光固化打印设备的执行和运动机构的运动参数;各层切片由于有2组曝光时间参数不同的模型,所以每层切片层内又具有2套层内图像打印页参数;一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、22、31、41等数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页;
此外模型M1与N1由于在每一层切片中分别曝光1s,M2与N2由于在每一层切片中分别曝光2s,所以模型M1与N1在第2层切片中只在页21中曝光1s,在页22中通过切换层内图像打印页参数,使光固化打印设备的LCD屏中掩膜图像切换为第2页后,模型M1与N1处的掩膜图像通道关闭后,在第2层切片中不再曝光,直至下一层;而模型M2与N2在第2层切片中通过切换层内图像打印页参数,使光固化打印设备的LCD屏中掩膜图像连续切换2页掩膜图像页后,模型M2与N2处的掩膜图像通道21开启2次,每次曝光时间2s,即LCD屏快速切换使每页掩膜图像显示1s,累计进行2次后,模型M2与N2处的掩膜图像实现曝光2s。
图11为本发明光固化3D打印模型多套切片打印参数设置方法实施例7。如图所示,基于方法3,通过3D切片预处理软件将图7中的人偶模型的颈部位置在Z轴上以X1Y1Z1平面按高度将人偶打印模型划分为H1和H2区域,并在两个区域内各自设定一套模型切片打印参数,并进行切片后得到12层切片;其中,H2区域需要使人偶打印品模型头部能够纹理清晰、表面光滑、尺寸准确,所以切片层厚更薄;H1区域其纹理清晰度稍低、表面光滑度稍差的负面效果却不易看出,所以切片层厚可以更厚;一般在实际打印中,还会在此基础上默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;本图中默认以层11、21为底层,所以其对应生成的3s曝光时间参数和15mm/min的成型平台抬起时的运动速度参数可以不同于其他层;
例如,图中最下面阴影部分的层11、21作为底层时,曝光时间定为3秒是因为一般在实际打印中,底层切片在曝光打印时,所需要的曝光反应时间略长于非底层切片相互间的光固化附着时间;H1区域内除底层切片以外的每层切片的切片打印层参数都是一致的;H2区域内的每层切片的切片打印层参数也都一致;第31、41层切片为非底层切片,由于其处于H1区域内,所以基于方法3在H1区域内设定模型切片曝光时间为2s,设定成型平台抬起时的运动速度为20mm/min;这里只是为了方便举例,所以仅仅表述了两个参数;模型切片打印参数实际包括了切片打印层参数和层内图像打印页参数这两类参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平 台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数、切片层厚参数等涉及到光固化打印设备的执行和运动机构的运动参数;基于方法3,每层切片内仅包括一套层内图像打印页参数;其中,一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、31、a1、b1、c1等数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页。
图12为本发明光固化3D打印模型多套切片打印参数设置方法实施例8。如图所示,基于方法4,通过3D切片预处理软件将图8中的轮轴模型按不同横截面面积划分不同切片参数设定范围;例如,如果图8中的轮轴模型S1面积为50平方毫米、S2面积为100平方毫米、S3面积为150平方毫米,那么可以设定第1个比较范围为0-60平方毫米、第2个比较范围为60-120平方毫米、第3个比较范围为120-180平方毫米;相对应的范围1内对应设定第1套模型切片打印参数、范围2内对应设定第2套模型切片打印参数、范围3内对应设定第3套模型切片打印参数;在进行切片后得到8层切片;
一般在实际打印中,还会在此基础上默认或手动指定第一层或开始的数层作为底层切片,底层切片的曝光时间一般为统一的切片打印参数,所以底层切片中一般各层只具有一套切片打印层参数,层内也只有一套图像打印页参数,即同一个切片里只有一个统一的掩膜图片及其曝光时间参数和图像优化参数;
例如,图中默认指定了最下面阴影部分的两层切片层11、21作为底层切片,而图8中的轮轴模型S2面积刚好又落在范围2,所以此时层11、21切片的打印参数可以是默认底层切片的打印参数,也可以是范围2内对应设定的第2套模型切片打印参数,两种参数可以根据预设默认优先级来进行选择;在本实施例中由于切片层11、21被预设默认指定为底层切片,所以其对应生成3s曝光时间参数和15mm/min的成型平台抬起时的运动速度参数对应的是底层切片参数;而切片层31作为非底层切片,对应的是范围2内对应设定的第2套模型切片打印参数;
第41、51、61层切片为非底层切片,由于其S1面积刚好又落在范围1内,所以基于方法4在范围1内设定模型切片曝光时间为2s,设定成型平台抬起时的运动速度为40mm/min;第71、81层切片为非底层切片,由于其S3面积刚好又落在范围3内,所以基于方法4在范围3内设定模型切片曝光时间为2s,设定成型平台抬起时的运动速度为20mm/min;这里只是为了方便举例,所以仅仅表述了两个参数;模型切片打印参数实际包括了切片打印层参数和层内图像打印页参数这两类参数;一般情况下,切片打印层参数包括:成型平台运动速度参数、成型平台运动距离参数、成型平台静止时间参数、光源灯亮时间参数、灯灭延迟时间参数、切片层厚参数等涉及到光固化打印设备的执行和运动机构的运动参数;基于方法4,每层切片内仅包括一套层内图像打印页参数;其中,一般情况下,层内图像打印页参数包括:掩膜图像参数、和掩膜图像曝光时间参数、掩膜图像边缘优化设置参数、掩膜图像抗锯齿优化参数、掩膜图像公差补偿参数、掩膜图像均光优化补偿参数、打印支撑设置参数等涉及到掩膜图像相关信息的参数;图中11、21、31、41、71、81等数字是3D切片预处理软件生成的层内图像打印页的缓存数据标志位,数字第一位表示所在的层,数字第二位表示层内掩膜图像所在的页。
通过3D切片预处理软件基于上述4种方法完成模型切片打印参数设定并进行切片后得到每一层切片的切片打印层参数和层内图像打印页参数,光固化打印机再根据具体的切片打印层参数和层内图像打印页参数进行逐层或逐页光固化打印。
图13为本发明一实施例提供的终端设备的结构示意图。如图13所示,该实施例的终端设备13包括:至少一个处理器130(图13中仅示出一个)处理器、存储器131以及存储在存储器131中并可在至少一个处理器130上运行的计算机程序132;处理器130执行计算机程序132时实现上述任意各个方法实施例中的步骤。
终端设备13可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。该终端设备可包括,但不仅限于,处理器130和存储器131。本领域技术人员可以理解,图13仅仅是终端设备 的举例,并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备、总线等。
处理器130可以是中央处理单元(Central Processing Unit,CPU),该处理器130还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器131在一些实施例中可以是终端设备13的内部存储单元,例如终端设备的硬盘或内存。存储器131在另一些实施例中也可以是终端设备的外部存储设备,例如终端设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器131还可以既包括终端设备的内部存储单元也包括外部存储设备。存储器131用于存储操作系统、应用程序、引导装载程序(Boot Loader)、数据以及其他程序等,例如计算机程序的程序代码等。存储器131还可以用于暂时地存储已经输出或者将要输出的数据。
示例性的,计算机程序132可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器131中,并由处理器130执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序132在终端设备13中的执行过程。
本发明的实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
以上的实施例仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (15)

  1. 一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,包括以下步骤:
    SA01、通过3D打印切片软件载入并打开3D模型;
    SA02、判断是否需要根据3D模型的个数对各个模型各自设定模型切片打印参数;如果判断不需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA04;如果判断需要根据3D模型的个数对各个模型各自设定模型切片打印参数,则进行步骤SA03;
    SA03、根据3D模型的个数对各个模型各自设定模型切片打印参数,之后进入执行步骤SA05;
    SA04、设定统一的模型切片打印参数;
    SA05、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
    SA06、流程结束。
  2. 根据权利要求1所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述根据3D模型的个数对各个模型各自设定模型切片打印参数,包括:
    将多个3D模型的模型切片打印参数按照阶梯化设置,使多个3D模型能够一个批次完成打印。
  3. 一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,包括以下步骤:
    SB01、通过3D打印切片软件载入并打开多个3D模型;
    SB02、判断是否需要对多个3D模型进行分组;如果判断不需要对多个3D模型进行分组,则进行步骤SB05;如果判断需要对多个3D模型进行分组,则进行步骤SB03;
    SB03、根据不同选择需求将多个3D模型进行分组;
    SB04、根据不同分组对各组模型各自设定模型切片打印参数,之后进入执行步骤SB06;
    SB05、设定统一的模型切片打印参数;
    SB06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
    SB07、流程结束。
  4. 根据权利要求3所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述根据不同分组对各组模型各自设定模型切片打印参数,包括:
    将多组模型的模型切片打印参数按照阶梯化设置,使多组模型能够一个批次完成打印。
  5. 一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,包括以下步骤:
    SC01、通过3D打印切片软件载入并打开3D模型;
    SC02、判断是否需要对3D模型按不同高度划分不同切片参数设定区域;如果判断不需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC05;如果判断需要对3D模型按不同高度划分不同切片参数设定区域,则进行步骤SC03;
    SC03、根据3D模型不同的结构特征在Z轴上以XY平面按高度将3D模型划分为不同切片参数设定区域;
    SC04、根据不同切片参数设定区域在各自区域内单独设定模型切片打印参数,之后进入执行步骤SC06;
    SC05、根据同一切片参数设定区域设定统一的模型切片打印参数;
    SC06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
    SC07、流程结束。
  6. 根据权利要求5所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述根据不同切片参数设定区域在各自区域内单独设定模型切片打印参数,包括:
    对不同切片参数设定区域分别设定不同的切片厚度。
  7. 一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,包括以下步骤:
    SD01、通过3D打印切片软件载入并打开3D模型;
    SD02、判断是否需要对3D模型按不同横截面面积划分不同切片参数设定范围;如果判断不需 要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD05;如果判断需要对3D模型按不同横截面面积划分不同切片参数设定范围,则进行步骤SD03;
    SD03、在XY平面上以不同预设横截面面积为比较标准将3D模型划分为不同切片参数设定范围;
    SD04、根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,之后进入执行步骤SD06;
    SD05、根据同一切片参数设定范围设定统一的模型切片打印参数;
    SD06、将模型切片打印参数设定完成并进行切片后的3D模型打印数据导入光固化打印机中进行光固化打印;
    SD07、流程结束。
  8. 根据权利要求7所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,包括:
    对不同的3D模型分别设定不同的成型平台运动速度。
  9. 根据权利要求7所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述根据不同切片参数设定范围在各自范围内单独设定模型切片打印参数,包括:
    设定曝光时间和成型平台运动速度,使总的模型打印时间缩短。
  10. 根据权利要求7所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述方法还包括:
    确定各所述3D模型的底层切片,对各所述底层切片设定相同的模型切片打印参数。
  11. 根据权利要求1-10任一所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述模型切片打印参数包括:掩膜图像、和/或掩膜图像曝光时间参数、和/或成型平台运动速度参数、和/或成型平台运动距离参数、和/或成型平台静止时间参数、和/或光源灯亮时间参数、和/或灯灭延迟时间参数、和/或投影亮屏时间参数、和/或投影熄屏延迟时间参数、和/或切片层厚参数、和/或底层数指定参数、和/或切片底层优化设置参数、和/或掩膜图像边缘优化设置参数、和/或掩膜图像抗锯齿优化参数、和/或掩膜图像公差补偿参数、和/或掩膜图像均光优化补偿参数、和/或打印支撑设置参数、和/或树脂特性参数。
  12. 根据权利要求1-10任一所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,通过3D打印切片软件载入并打开3D模型的个数包括一个、或两个、或多个。
  13. 根据权利要求1-10任一所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述模型切片打印参数设定完成后的3D模型打印数据由LCD光固化3D打印机、或DLP光固化3D打印机、或CLIP光固化3D、或SLA光固化3D打印机进行光固化打印。
  14. 根据权利要求7所述的一种光固化3D打印模型多套切片打印参数设置方法,其特征在于,所述横截面面积为同一切片上的单个模型的横截面积、或同一切片上的多个模型横截面积之和。
  15. 一种终端设备,其特征在于,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现根据权利要求1至14任一项所述的方法。
PCT/CN2021/101311 2021-02-05 2021-06-21 光固化3d打印模型多套切片打印参数设置方法 WO2022166077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110162372.4 2021-02-05
CN202110162372.4A CN112976579A (zh) 2021-02-05 2021-02-05 光固化3d打印模型多套切片打印参数设置方法

Publications (1)

Publication Number Publication Date
WO2022166077A1 true WO2022166077A1 (zh) 2022-08-11

Family

ID=76348172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101311 WO2022166077A1 (zh) 2021-02-05 2021-06-21 光固化3d打印模型多套切片打印参数设置方法

Country Status (2)

Country Link
CN (1) CN112976579A (zh)
WO (1) WO2022166077A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112976579A (zh) * 2021-02-05 2021-06-18 深圳市创必得科技有限公司 光固化3d打印模型多套切片打印参数设置方法
CN113442440B (zh) * 2021-07-19 2022-09-13 深圳市优特打印耗材有限公司 一种基于切片处理的3d打印方法
CN113681897B (zh) * 2021-08-27 2023-03-03 深圳市纵维立方科技有限公司 切片处理方法、打印方法、系统、设备和存储介质
CN114147968B (zh) * 2021-11-16 2023-09-05 深圳市创必得科技有限公司 模型打印环形纹理消隐方法、装置、设备及存储介质
CN114770696A (zh) * 2022-05-14 2022-07-22 苏州大学 陶瓷器件3d动态成型优化设计方法
CN115122641B (zh) * 2022-05-31 2023-08-08 深圳市纵维立方科技有限公司 控制方法、控制系统、可读存储介质和3d打印设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529816A1 (en) * 1991-07-29 1993-03-03 Fritz B. Prinz Method and apparatus for fabrication of three-dimensional articles by weld deposition
CN105082536A (zh) * 2015-06-26 2015-11-25 北京金达雷科技有限公司 一种光固化3d打印方法
CN108248019A (zh) * 2017-12-21 2018-07-06 北京金达雷科技有限公司 3d模型切片及打印方法、装置及设备、介质及服务器
CN109228314A (zh) * 2018-11-20 2019-01-18 广州捷和电子科技有限公司 一种用于3d光固化打印的多参数快速打印方法及设备
CN111497231A (zh) * 2020-04-15 2020-08-07 广州黑格智造信息科技有限公司 一种3d打印方法、装置、存储介质及3d打印系统
CN112976579A (zh) * 2021-02-05 2021-06-18 深圳市创必得科技有限公司 光固化3d打印模型多套切片打印参数设置方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107283846B (zh) * 2017-06-30 2020-11-27 大族激光科技产业集团股份有限公司 3d打印树脂曝光时间的测试方法
CN109435229A (zh) * 2018-11-21 2019-03-08 厦门达天电子科技有限公司 一种3d打印用光敏树脂的测试件及其打印方法
CN110524876A (zh) * 2019-09-05 2019-12-03 深圳市纵维立方科技有限公司 一种测试3d打印树脂最佳曝光时间的方法
CN110978502A (zh) * 2019-12-30 2020-04-10 深圳市纵维立方科技有限公司 一种快速光固化3d打印的装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529816A1 (en) * 1991-07-29 1993-03-03 Fritz B. Prinz Method and apparatus for fabrication of three-dimensional articles by weld deposition
CN105082536A (zh) * 2015-06-26 2015-11-25 北京金达雷科技有限公司 一种光固化3d打印方法
CN108248019A (zh) * 2017-12-21 2018-07-06 北京金达雷科技有限公司 3d模型切片及打印方法、装置及设备、介质及服务器
CN109228314A (zh) * 2018-11-20 2019-01-18 广州捷和电子科技有限公司 一种用于3d光固化打印的多参数快速打印方法及设备
CN111497231A (zh) * 2020-04-15 2020-08-07 广州黑格智造信息科技有限公司 一种3d打印方法、装置、存储介质及3d打印系统
CN112976579A (zh) * 2021-02-05 2021-06-18 深圳市创必得科技有限公司 光固化3d打印模型多套切片打印参数设置方法

Also Published As

Publication number Publication date
CN112976579A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
WO2022166077A1 (zh) 光固化3d打印模型多套切片打印参数设置方法
CN108127913B (zh) 智能3d打印系统及其打印方法
CN107067471B (zh) 一种提高悬垂体模型成型质量的自适应扫描速度方法
WO2022166076A1 (zh) 光固化3d打印多套切片参数的打印执行控制方法及装置
CN111037917B (zh) 一种基于模型拆分与拼接打印的fdm打印方法、系统及介质
CN108229085A (zh) 计算机仿真模拟分析系统及方法
KR20160110073A (ko) 3차원 인쇄 방법 및 3차원 인쇄 장치
WO2018113509A1 (zh) 一种制备生物支架的自适应直接切片方法
TWI668539B (zh) 立體列印裝置與立體列印方法
CN108381910B (zh) 基于掩膜图像灰度调节的变速连续液面制造方法和装置
CN112132943B (zh) 一种面向3d打印的过程纹理合成系统及方法
CN203317755U (zh) 立体成型装置
CN101923589B (zh) 子午线轮胎成型过程的模拟方法
CN110193942A (zh) 一种基于阿基米德坐标系的3d打印切片方法
CN108839338A (zh) 一种基于fdm设备的三维模型切片方法
CN104376152A (zh) 一种参数化建模和标注方法
Liu et al. A computational approach for knitting 3D composites preforms
Cui et al. A kind of accuracy improving method based on error analysis and feedback for DLP 3D printing
KR20180095419A (ko) 3d 프린트 장치 및 이의 프린트 방법
CN106863782A (zh) 一种义齿蜡型dlp光固化3d打印方法
CN103870633B (zh) 一种大型结构快速建模系统
CN107486985B (zh) 一种单侧变速脱模快速成型控制系统及快速成型方法
CN115107279A (zh) 上拉式面成型3d打印曝光前等待时间预测方法及系统
US10620610B2 (en) Techniques for generating motion sculpture models for three-dimensional printing
Jing et al. The impact of digital technology on footwear design and manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924084

Country of ref document: EP

Kind code of ref document: A1