WO2021253770A1 - 一种基于dlp的大幅面3d打印方法和装置 - Google Patents

一种基于dlp的大幅面3d打印方法和装置 Download PDF

Info

Publication number
WO2021253770A1
WO2021253770A1 PCT/CN2020/137599 CN2020137599W WO2021253770A1 WO 2021253770 A1 WO2021253770 A1 WO 2021253770A1 CN 2020137599 W CN2020137599 W CN 2020137599W WO 2021253770 A1 WO2021253770 A1 WO 2021253770A1
Authority
WO
WIPO (PCT)
Prior art keywords
bitmap
information
unit
slice
curing
Prior art date
Application number
PCT/CN2020/137599
Other languages
English (en)
French (fr)
Inventor
王宜怀
张雯
王进
施连敏
徐昕
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021253770A1 publication Critical patent/WO2021253770A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • This application relates to the field of data processing technology, and in particular to a large-format 3D printing method and device based on DLP.
  • 3D printing is a technology that uses a three-dimensional model file as a blueprint to construct a three-dimensional model entity by adding discrete materials layer by layer based on the principle of layered manufacturing.
  • 3D printing technology based on Digital Light Processing (DLP) is widely used in precision casting and biomedical applications due to its high printing accuracy and good surface finish. It has become the current 3D The focus of printing industry research.
  • DLP Digital Light Processing
  • the embodiment of the application provides a large-format 3D printing method and device based on DLP, which solves the problem that in the prior art, multiple projection devices are used to complete large-size model forming, but one projection device cannot be used to print large-size models, resulting in projection equipment Increased, adjacent projection surfaces are prone to seams, affecting the quality of the model, and the technical problem of high equipment costs. It is achieved that without adding projection equipment, using mobile splicing to move one projection equipment horizontally to complete large-format model printing, improving The quality of the finished model, the technical effect of improving the mechanical strength of the model and reducing the cost.
  • an embodiment of the present application provides a DLP-based large-format 3D printing method.
  • the method includes: obtaining first slice bitmap information; and judging the first slice bitmap information Whether it meets the preset projection size; when the first slice bitmap information exceeds the preset projection size, the first slice bitmap is segmented to obtain a series unit bitmap, wherein the series unit
  • the bitmap contains the first unit bitmap and the second unit bitmap; obtains the first connection information of the first 3D printer; determines the first preprocessing information according to the first connection information; controls the station according to the first preprocessing information
  • the DLP light engine and the liquid tank of the first 3D printer are moved horizontally to the first unit bitmap for projection exposure to obtain first curing bitmap information; and the DLP light engine and the liquid tank are removed from the first unit bitmap.
  • the unit bitmap is moved horizontally to the second unit bitmap for projection exposure to obtain second solidified bitmap information; the first solidified layer is obtained according to the first solidified bitmap information and the second solidified bitmap information, where ,
  • the first cured layer has a first thickness; the first cured layer is demolded, and the first cured layer is vertically moved up to the first thickness, and the first cured layer is superimposed on the first thickness according to the first thickness.
  • the solidified layer obtains the first model entity.
  • the obtaining the first slice bitmap information includes: obtaining a first STL model; setting a second thickness; and performing equal thickness on a cross section of the first STL model perpendicular to the Z axis according to the second thickness Divide to obtain a series of slice bitmap information, where the series of slice bitmap information includes the first slice bitmap information and the second slice bitmap information.
  • the method further includes: splicing the first slice bitmap information and the second slice bitmap information to determine the first splicing bitmap information; judging the misalignment of the first splicing bitmap Whether the parameter is equal to zero; when the misalignment parameter of the first splicing bitmap is not equal to zero, perform misalignment segmentation on the first slice bitmap and the second slice bitmap to obtain a misalignment segmentation pattern; Displacement splitting the pattern to fill the pattern pixels to obtain the third unit bitmap; determine whether the third unit bitmap meets the preset condition; when the third unit bitmap meets the preset condition, determine the first projection exposure information .
  • the first pre-processing information includes: determining the first initialization information of the first 3D printer according to the first connection information; determining the forming table of the first 3D printer according to the first initialization information Whether there is a first object on the computer; when there is a first object on the molding table of the first 3D printer, determine the first reminder information, and send the first reminder information to the first user; according to the first reminder information Determine the first detox information.
  • the method further includes: setting a first limit position of the first solidified layer; obtaining a first height of the first model entity; judging whether the first height reaches the first limit position; When the first height reaches the first limit position, first instruction information is obtained, where the first instruction information is the first 3D printer interruption information.
  • the method further includes: determining a first moving distance according to the DLP light engine and the liquid tank horizontally moving to the first unit bitmap; according to the DLP light engine and the liquid tank horizontally moving to The second unit bitmap determines the second moving distance; judging whether the first moving distance and the second moving distance are the same; when the first moving distance is the same as the second moving distance, according to the The sum of the first movement distance and the second movement distance obtains the final movement distance; it is determined whether the final movement distance reaches the preset target movement distance; when the final movement distance reaches the preset target movement distance, the second movement distance is obtained.
  • Instruction information where the second instruction information is interrupt information of the first 3D printer.
  • the method further includes: obtaining a first exposure time of the first cured layer; setting a preset threshold according to the first exposure time; obtaining a second exposure time of the underlying cured layer; determining the second exposure Whether the time meets the preset threshold; when the second exposure time does not meet the preset threshold, the third exposure time of the bottom cured layer is determined.
  • an embodiment of the present application also provides a DLP-based large-format 3D printing device, the device includes: a first obtaining unit, the first obtaining unit is configured to obtain first slice bitmap information; A judging unit, the first judging unit is used to judge whether the first slice bitmap information meets the preset projection size; the second obtaining unit, the second obtaining unit is used for when the first slice bitmap When the image information exceeds the preset projection size, the first slice bitmap is divided to obtain a series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; The third obtaining unit, the third obtaining unit is used to obtain the first connection information of the first 3D printer; the first determining unit, the first determining unit is used to determine the first preprocessing information according to the first connection information ; A fourth obtaining unit, the fourth obtaining unit is used to control the DLP light engine and liquid tank of the first 3D printer to move horizontally to the first unit bitmap for projection exposure according to the
  • the device further includes: an eighth obtaining unit, the eighth obtaining unit is used to obtain the first STL model; a first setting unit, the first setting unit is used to set the second thickness; a ninth obtaining unit , The ninth obtaining unit is configured to perform equal-thickness segmentation on the cross-section of the first STL model perpendicular to the Z axis according to the second thickness, to obtain serial slice bitmap information, wherein the series slice bitmap The information includes the first slice bitmap information and the second slice bitmap information.
  • the device further includes: a second determining unit configured to splice the first slice bitmap information and the second slice bitmap information to determine the first splicing position Image information; a second judgment unit, the second judgment unit is used to judge whether the misalignment parameter of the first splicing bitmap is equal to zero; a tenth obtaining unit, the tenth obtaining unit is used when the first splicing bitmap When the misalignment parameter of the image is not equal to zero, perform misalignment segmentation on the first slice bitmap and the second slice bitmap to obtain a misalignment segmentation pattern; the eleventh obtaining unit is used for the eleventh obtaining unit Performing pattern pixel filling on the misaligned segmentation pattern to obtain a third unit bitmap; a third determining unit, the third determining unit is used to determine whether the third unit bitmap meets a preset condition; third determining Unit, the third determining unit is configured to determine the first projection exposure information when the third unit bitmap meets a preset condition
  • the device further includes: a fourth determining unit configured to determine the first initialization information of the first 3D printer according to the first connection information; a fourth determining unit, the first The fourth determining unit is used to determine whether there is a first object on the forming table of the first 3D printer according to the first initialization information; the fifth determining unit, the fifth determining unit is used to act as the first 3D printer When there is a first object on the forming table, the first reminder information is determined, and the first reminder information is sent to the first user; the sixth determining unit, the sixth determining unit is configured to determine the first reminder information according to the first reminder information One in addition to sleepy information.
  • the device further includes: a second setting unit for setting the first limit position of the first cured layer; a twelfth obtaining unit, the twelfth obtaining unit for Obtain the first height of the first model entity; a fifth judging unit, the fifth judging unit is used to judge whether the first height reaches the first limit position; the thirteenth obtaining unit, the tenth
  • the third obtaining unit is configured to obtain first instruction information when the first height reaches the first limit position, where the first instruction information is the first 3D printer interruption information.
  • the device further includes: a seventh determining unit configured to determine the first moving distance according to the horizontal movement of the DLP light engine and the liquid tank to the first unit bitmap; An eight determining unit, the eighth determining unit is configured to determine a second moving distance according to the horizontal movement of the DLP light engine and the liquid tank to the second unit bitmap; a sixth determining unit, the sixth determining unit Used for judging whether the first moving distance and the second moving distance are the same; a fourteenth obtaining unit, the fourteenth obtaining unit is used for when the first moving distance is the same as the second moving distance , Obtaining a final moving distance according to the sum of the first moving distance and the second moving distance; a seventh judging unit, the seventh judging unit is used to judge whether the final moving distance reaches a preset target moving distance; A fifteenth obtaining unit, the fifteenth obtaining unit is configured to obtain second instruction information when the final movement distance reaches a preset target movement distance, where the second instruction information is the first 3D printer Interrupt information.
  • the device further includes: a sixteenth obtaining unit, the sixteenth obtaining unit is used to obtain the first exposure time of the first cured layer; a third setting unit, the third setting unit is used to Setting a preset threshold according to the first exposure time; a seventeenth obtaining unit, the seventeenth obtaining unit is used to obtain the second exposure time of the bottom cured layer;
  • An eighth determining unit configured to determine whether the second exposure time meets the preset threshold; a ninth determining unit, the ninth determining unit is configured to determine whether the second exposure time does not meet the When the preset threshold is used, the third exposure time of the bottom cured layer is determined.
  • the embodiments of the present application also provide a DLP-based large-format 3D printing device, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes the The program implements the following steps: obtain the first slice bitmap information; determine whether the first slice bitmap information meets the preset projection size; when the first slice bitmap information exceeds the preset projection size , Split the first slice bitmap to obtain a series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; and obtain the first connection information of the first 3D printer Determine the first preprocessing information according to the first connection information; control the DLP light engine and the liquid tank of the first 3D printer to move horizontally to the first unit bitmap for projection exposure according to the first preprocessing information , Obtain the first curing bitmap information; move the DLP light engine and the liquid tank horizontally from the first unit bitmap to the second unit bitmap for projection exposure, and obtain the second curing bit
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, the following steps are implemented: obtain first slice bitmap information; determine the first slice bitmap information; Whether a slice bitmap information meets a preset projection size; when the first slice bitmap information exceeds the preset projection size, the first slice bitmap is segmented to obtain a series of unit bitmaps, Wherein, the series of unit bitmaps include a first unit bitmap and a second unit bitmap; first connection information of the first 3D printer is obtained; first preprocessing information is determined according to the first connection information; A pre-processing information controls the DLP light engine and liquid tank of the first 3D printer to move horizontally to the first unit bitmap for projection exposure, to obtain first curing bitmap information; combine the DLP light engine and the liquid The trough moves horizontally from the first unit bitmap to the second unit bitmap for projection exposure to obtain second solidification bitmap information; obtains according to the first solid
  • the embodiments of the present application provide a DLP-based large-format 3D printing method and device, and the method includes: First slice bitmap information; determine whether the first slice bitmap information meets the preset projection size; when the first slice bitmap information exceeds the preset projection size, the first slice The slice bitmap is segmented to obtain a series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; the first connection information of the first 3D printer is obtained; according to the first connection The information determines the first pre-processing information; according to the first pre-processing information, the DLP light engine and the liquid tank of the first 3D printer are controlled to move horizontally to the first unit bitmap for projection exposure to obtain the first curing bitmap Information; horizontally move the DLP light engine and the liquid tank from the first unit bitmap to the second unit bitmap for projection exposure to obtain second curing bit
  • FIG. 1 is a schematic flowchart of a large-format 3D printing method based on DLP in an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a large-format 3D printing device based on DLP in an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of another large-format 3D printing device based on DLP in an embodiment of the present invention.
  • first obtaining unit 11 first judging unit 12, second obtaining unit 13, third obtaining unit 14, first determining unit 15, fourth obtaining unit 16, fifth obtaining unit 17, sixth obtaining Unit 18, seventh obtaining unit 19, bus 300, receiver 301, processor 302, transmitter 303, memory 304, bus interface 306.
  • the embodiment of the application provides a large-format 3D printing method and device based on DLP, which solves the problem that in the prior art, multiple projection devices are used to complete large-size model forming, but one projection device cannot be used to print large-size models, resulting in projection equipment Increased, adjacent projection surfaces are prone to seams, affecting the quality of the model, and the technical problem of high equipment costs. It is achieved that without adding projection equipment, using mobile splicing to move one projection equipment horizontally to complete large-format model printing, improving The quality of the finished model, the technical effect of improving the mechanical strength of the model and reducing the cost.
  • the DLP-based 3D printing technology uses DLP projection equipment to project the digital image of the cross-sectional mask of the three-dimensional model onto the liquid photosensitive resin with ultraviolet light, so that the irradiated part is cured.
  • DLP projection equipment There are two common installation methods for DLP projection equipment, which are classified according to the position of the projection equipment compared to the liquid tank, mainly including the upper exposure type 3D printing system and the lower exposure type 3D printing system.
  • Top exposure 3D printing system The projection device is located above the photosensitive resin liquid, and the cross-sectional view of the three-dimensional model is projected onto the liquid material from top to bottom. Its working method is as follows: fill the liquid tank with liquid photosensitive resin raw material, the initial position of the forming table is below the liquid level, and the distance from the liquid level to a solidified layer; when forming a solidified layer, the cross-sectional position of the three-dimensional model of the layer The image is projected onto the liquid surface, so that part of the irradiated photosensitive resin polymerizes to form a solid thin layer corresponding to the cross-sectional bitmap of the layer, and then the molding table is controlled to move downwards, so that the cured model and the top of the liquid surface are solidified. Use a squeegee to scrape the resin liquid surface level; then start the printing of the next cured layer, and repeat this process until the entire model is constructed.
  • Bottom exposure 3D printing system The projection device is located under the photosensitive resin liquid, and the cross-sectional view of the three-dimensional model is projected onto the liquid raw material from bottom to top.
  • the bottom of the tank containing the liquid raw material is a transparent window.
  • the working method is: pour the liquid photosensitive resin raw material into the liquid tank, the initial position of the forming table is close to the bottom of the liquid tank, and the distance to a solidified layer at the bottom of the liquid tank; when forming a solidified layer, the cross-sectional position of the three-dimensional model of the layer
  • the image is projected onto the transparent window at the bottom of the liquid tank, so that the irradiated part of the photosensitive resin polymerizes to form a solid thin layer of the corresponding cross-sectional view, and then controls the upward movement of the forming table to make the cured model and the bottom of the liquid tank For the distance of one cured layer, prepare for the curing of the next layer.
  • a release film such as polydimethylsiloxane (PDMS) film, will be attached to the bottom of the liquid tank; then the printing of the next solidified layer will start, so Repeat until the entire model is constructed.
  • PDMS polydimethylsiloxane
  • a large-format 3D printing method based on DLP comprising: obtaining first slice bitmap information; judging whether the first slice bitmap information meets a preset projection size; when the first slice bitmap When the image information exceeds the preset projection size, the first slice bitmap is divided to obtain a series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; Obtain the first connection information of the first 3D printer; determine the first preprocessing information according to the first connection information; control the DLP light engine and the liquid tank of the first 3D printer to move horizontally according to the first preprocessing information Perform projection exposure of the first unit bitmap to obtain first curing bitmap information; move the DLP light engine and the liquid tank horizontally from the first unit bitmap to the second unit bitmap for projection Exposure to obtain second curing bitmap information; obtain a first curing layer according to the first curing bitmap information and the second curing bitmap information, wherein the first curing layer has a first thickness; The first cured
  • An embodiment of the present invention provides a large-format 3D printing method based on DLP.
  • the method is applied to a low-exposure 3D printing system.
  • the printing system includes a first 3D printer and a PC.
  • the first 3D printer includes a main controller.
  • a transparent projection window is arranged at the bottom middle of the liquid tank, the projection device is installed under the liquid tank, and the pattern is projected to the bottom of the liquid tank. , Projecting onto the molding table through the transparent projection window; photosensitive resin is contained in the liquid tank, and the molding table is used for attaching a cured model.
  • the X-axis motor can drive the liquid tank and the DLP projection device to move horizontally for a predetermined distance, so as to realize the splicing and forming in the X-axis direction.
  • the Z-axis motor can drive the molding table to move vertically, and move upward once a piece of solidified layer is printed, thereby realizing orderly stacking of solidified layers.
  • the main controller is in communication connection with the X-axis motor, the Y-axis motor, and the projection device, controls the movement of the X-axis motor and the Y-axis motor, and controls the exposure time of the projection device.
  • the PC machine has the functions of STL model slice preprocessing and 3D printing process control, that is, the PC machine can preprocess the first slice bitmap and control the 3D printer to print the first slice bitmap.
  • the PC is in communication with the main controller, the PC sends a printing command to the main controller, and the main controller controls the first 3D printer to perform according to the printing command. 3D printing.
  • the method includes: step S110: obtaining first slice bitmap information; further, the obtaining first slice bitmap information includes: obtaining a first STL model; setting a second thickness; according to the second thickness
  • the cross section of the first STL model perpendicular to the Z axis is sliced with equal thickness to obtain a series of slice bitmap information, wherein the series of slice bitmap information includes the first slice bitmap information and the second slice Bitmap information.
  • three-dimensional modeling software such as CAD is used to draw a model of the object to be printed to obtain three-dimensional model data.
  • STL model data format is simple and the spatial positioning is convenient, it is a general three-dimensional model data file format of the current 3D printing system, so the three-dimensional model data is approximately processed into an STL model to obtain the first STL model.
  • the X axis and the Y axis are perpendicular to each other to form a first plane, and the first plane coincides with the bottom surface of the first STL model.
  • the Z axis is perpendicular to the X axis and the Y axis and parallel to the height direction of the first STL model.
  • the first STL model is uniformly cut from the bottom of the first STL model upwards in the Z-axis direction to obtain a series of ordered three-dimensional model cross-sectional bitmaps, namely The series of slice bitmap information.
  • first slice bitmap information and the second slice bitmap information are any group of adjacent slice bitmaps in the series of slice bitmap information, and the second thickness may be based on the first slice bitmap.
  • the accuracy of the STL model and the surface finish need to be set. The smaller the second thickness, the higher the accuracy of the first STL model and the higher the surface finish.
  • Step S120 Determine whether the first slice bitmap information meets the preset projection size; specifically, when performing 3D printing, the slice bitmap information needs to be projected onto the surface of the liquid photosensitive resin with ultraviolet rays through the projection device,
  • the preset projection size is the projection size of the projection device, the size information of the first slice bitmap information is obtained, that is, the first size information, and it is determined whether the first size information is larger than the preset projection size When the first size information is not greater than the preset projection size, directly project the first slice bitmap.
  • Step S130 When the first slice bitmap information exceeds the preset projection size, the first slice bitmap is segmented to obtain a series of unit bitmaps, wherein the series of unit bitmaps includes the first A unit bitmap and a second unit bitmap; specifically, when the first size information is greater than the preset projection size, according to the preset projection size and the first size information, the second unit bitmap A slice bitmap is segmented to obtain the series of unit bitmaps.
  • the series of unit bitmaps include at least the first unit bitmap and the second unit bitmap.
  • the second unit bitmap is a different unit bitmap.
  • Step S140 Obtain the first connection information of the first 3D printer; specifically, after loading the series of slice information on the PC, connect the first 3D printer and the PC with a serial cable, when After the first 3D printer and the PC are successfully connected, the PC generates the first connection information, and the first connection information indicates that the first 3D printer is successfully connected to the PC, which can be realized Data communication, the first 3D printer can perform printing work.
  • Step S150 Determine the first pre-processing information according to the first connection information; specifically, after the PC is successfully connected to the first 3D printer, the printer needs to perform some preparations for 3D printing. Preparation.
  • the first preprocessing information is used to control the printer to make preparations before printing.
  • the first pre-processing information includes: determining the first initialization information of the first 3D printer according to the first connection information; determining the molding table of the first 3D printer according to the first initialization information Whether there is a first object on the computer; when there is a first object on the molding table of the first 3D printer, determine the first reminder information, and send the first reminder information to the first user; according to the first reminder information Determine the first detox information.
  • the PC After the PC is successfully connected to the first 3D printer, the PC generates the first initialization information, and the first initialization information is used to control the first 3D printer to complete the initialization action
  • the initialization action is a preparatory action before the first 3D printer starts printing, and the preparatory action includes clearing foreign objects on the forming table and removing trapped air. It is determined whether there is a first object on the forming table according to the first initialization information, wherein the first object is a foreign object on the forming table.
  • the PC When there is a foreign object on the molding table, the PC generates the first reminder information, and displays the first reminder information on the user interface of the PC to remind the user to remove the foreign object from the molding table.
  • the table surface is cleaned to ensure the cleanliness of the molding table, ensure the tightness of the bottom solidified layer and the molding table, and avoid the technical effect of the model falling off the molding table during the printing process.
  • the air trapping operation needs to be performed before printing.
  • the first reminder message is sent to the first user through the PC, and after the first user cleans up the first object
  • the first confirmation message is returned to the PC, and the first confirmation The information indicates that the molding table has been cleaned.
  • the PC determines that the first reminder information has been completed according to the first confirmation information.
  • the PC controls the molding table to perform air trapping operations, that is, press the molding platform into the liquid tank, press into the liquid resin, and close to the projection window; and then control the
  • the X-axis motor drives the projection window to move from the far left to the right, and then returns to the far left after moving to the far right.
  • the air in the liquid resin is driven out to avoid 3D printing.
  • the model has a cavity to avoid printing failure and improve the technical effect of the success rate of 3D printing.
  • Step S160 Control the DLP light engine and liquid tank of the first 3D printer to move horizontally to the first unit bitmap according to the first preprocessing information to perform projection exposure, to obtain first curing bitmap information; specifically
  • the DLP light engine is a projection device manufactured based on a DMD chip, and the function of the DLP light engine is to selectively project each slice after it is patterned onto the resin and solidify the resin.
  • the first solidification bitmap is a graphic after solidification of the first unit bitmap
  • the first position is a position required by the light engine and the liquid tank when the first unit bitmap is projected.
  • Step S170 Move the DLP light engine and the liquid tank horizontally from the first unit bitmap to the second unit bitmap for projection exposure to obtain second curing bitmap information; specifically, the After the first solidification bitmap is formed, move the DLP light engine and the liquid channel horizontally to a second position, and the light engine projects the preprocessed second unit bitmap for the first time, and then obtains the The second solidification bitmap, the second solidification bitmap is the figure after the second unit bitmap is solidified, and the second position is when the second unit bitmap is projected, the light engine and the liquid For the position of the groove, the first time is the exposure time, and the exposure time of the first unit bitmap is the same as the exposure time of the second unit bitmap.
  • Step S180 Obtain a first cured layer according to the first cured bitmap information and the second cured bitmap information, wherein the first cured layer has a first thickness; specifically, the series of After the unit bitmap is projected and exposed, a first cured layer is formed.
  • the first cured layer is the cured layer of the first slice bitmap.
  • the first thickness is determined by the first time. The longer, the thicker the first thickness.
  • Step S190 demold the first cured layer, and move the first cured layer vertically upward by the first thickness, and superimpose the first cured layer according to the first thickness to obtain a first model entity.
  • the Z-axis motor moves vertically upwards to the first thickness
  • the molding table moves vertically upwards to the first thickness to make the first cured layer and The distance between the bottom of the liquid tank is the first thickness; and then continue to solidify the adjacent slice bitmaps of the first slice bitmap.
  • the Z-axis motor vertically moves the first slice bitmap upward.
  • the method of moving splicing molding is used to realize the printing of large-size models, and the technical effect of low cost is low.
  • the method further includes: splicing the first slice bitmap information and the second slice bitmap information to determine the first splicing bitmap information; determining the misalignment of the first splicing bitmap Whether the parameter is equal to zero; when the misalignment parameter of the first splicing bitmap is not equal to zero, perform misalignment segmentation on the first slice bitmap and the second slice bitmap to obtain a misalignment segmentation pattern; Displacement splitting the pattern to fill the pattern pixels to obtain the third unit bitmap; determine whether the third unit bitmap meets the preset condition; when the third unit bitmap meets the preset condition, determine the first projection exposure information .
  • the seam there are two reasons for the seam.
  • One is: when moving the projection device for splicing projection, a large pattern is divided into multiple projections, which involves splicing of the projection surface, and the splicing of the projection surface expands the projection format while also bringing the connection. Seam problem.
  • the second is: when the projection surface of the projection device is not completely parallel to the bottom of the liquid tank, the projected pattern will show distortion in the form of trapezoid or irregular quadrilateral. At this time, the spliced printed model will be produced in the area where the two projection surfaces meet seam.
  • the embodiment of this application proposes a solution to eliminate the joints by dislocation and equalization.
  • the core idea of dislocation and equalization is to spread the errors evenly.
  • the joint areas of each layer are staggered so that the errors at the joints are evenly spread to different positions on each layer.
  • the gaps in the forming process can also be handled in a dislocation and equalization method.
  • the first slice bitmap information is formed by splicing at least two unit bitmaps
  • the second slice bitmap is also formed by splicing at least two unit bitmaps
  • the first slice bitmap has a first Seams
  • the second slice bitmap has a second seam
  • the first splicing bitmap information includes the first seam and the second seam.
  • the first slice bitmap and the second slice bitmap are adjacent slice bitmaps, and the distance between the first seam and the second seam is the misalignment parameter.
  • the misalignment parameter is set according to user needs. When the misalignment parameter is zero, it indicates that the user does not need to perform misalignment segmentation on the series of slice bitmaps, and at this time, the series of slice bitmaps will not be misaligned segmentation; When the misalignment parameter is not equal to zero, it indicates that the user needs to perform misalignment segmentation on the series of slice bitmaps, and perform misalignment segmentation on the series of slice bitmaps according to the misalignment parameter, so that one of the two adjacent slice bitmaps
  • the distance of the indirect seam is the dislocation parameter.
  • Performing pattern pixel filling of the misaligned segmentation pattern specifically includes: re-slicing the first slice bitmap into a fourth unit bitmap and a fifth unit bitmap, and if the fourth unit bitmap is located in the fourth unit bitmap, On the left side of a slice bitmap, the length of the fourth unit bitmap is X, the projection length of the projection device is A, A>X, and the width of the fourth unit bitmap is the same as that of the projection device If the projection width is the same, the width range of AX on the left side of the fourth unit bitmap is filled with black, and the range on the right side of the fourth bitmap whose length is X is the original image, thereby obtaining the third bitmap unit, The length of the third unit bitmap is A, and the width of the third unit bitmap is equal to the width of the projection device, ensuring that the size of the third unit bitmap is consistent with the size and resolution of the projection device Consistently, when the projection device performs full-screen projection of the third unit bitmap, the
  • the width range of the right side AX of the fourth unit bitmap is filled with black, and the left side of the fourth bitmap
  • the range of length X is the original image, thereby obtaining the third bitmap unit, the length of the third unit bitmap is A, and the width of the third unit bitmap is equal to the width of the projection device.
  • the third unit bitmap is obtained, and then it is judged whether the third unit bitmap is a completely black picture, if it is For a completely black picture, there is no need to perform exposure, and the projection device is directly moved to the next unit bitmap, and the next unit bitmap is exposed; if the third unit bitmap is not a completely black image, follow the The three-unit bitmap display is exposed to achieve the technical effect of optimizing the printing process and speeding up the printing process.
  • the preset condition is a completely black image
  • the first projection exposure information is that no projection exposure operation is performed on the third unit bitmap.
  • the method includes: obtaining a first training model, wherein the first training model includes the preset projection size as supervision data; and inputting the first slice information and the second slice information
  • the first training model obtains the first series of dislocation unit bitmaps, the second series of dislocation unit bitmaps, and the first series of dislocation unit bitmaps are the dislocation unit bits of the first slice bitmap
  • the bitmap of the second series of dislocation units is the bitmap of the dislocation units of the second slice bitmap.
  • the first training model is the neural network model in machine learning.
  • Neural Networks is a complex network system formed by a large number of simple processing units (called neurons) widely connected to each other. , It reflects many basic characteristics of human brain function, and is a highly complex nonlinear dynamic learning system. Neural networks have large-scale parallelism, distributed storage and processing, self-organization, self-adaptation, and self-learning capabilities. They are particularly suitable for processing inaccurate and fuzzy information processing problems that require consideration of many factors and conditions at the same time.
  • the neural network model is described based on the mathematical model of neurons.
  • Artificial neural network Neural Networks abbreviated as ANNs
  • ANNs is a description of the first-order characteristics of the human brain system. Simply put, it is a mathematical model.
  • the neural network model is represented by the network topology, node characteristics and learning rules.
  • a large number of slice bitmaps that need to be divided are divided according to the dislocation division method to form a series of dislocation unit bitmaps, and the slice bitmap and the series of dislocation unit bitmaps of the slice bitmap are divided
  • the image is input into the first training model for training, wherein the preset projection size is used as supervision data, so that the first training model has the ability to perform misalignment and segmentation of the slice bitmap according to the preset projection size.
  • the first slice bitmap and the second slice bitmap are two adjacent slice bitmaps, and the first slice bitmap, the second slice bitmap, and the preset projection size Input into the first training model, and the first training model divides the first slice bitmap into a first series of dislocation unit bitmaps according to the misalignment segmentation method according to the preset projection size;
  • the second slice bitmap is divided into a second series of dislocation unit bitmaps, and there is a dislocation relationship between the first series of dislocation unit bitmaps and the second series of dislocation unit bitmaps. Achieve the technical effect of intelligently displacing and segmenting the slice bitmap according to the preset projection size, simplifying the user's operation process.
  • the first unit bitmap and the second unit bitmap are two adjacent unit bitmaps.
  • the first unit bitmap and the second unit bitmap are similar to each other.
  • There is an overlap area in the adjacent part that is, the first area and the second area overlap each other to form the overlap area, and the first area and the second area display the same image content. If the gray values of the first area and the second area are not reduced, the overlapping area will be irradiated twice during projection irradiation, and the sum of the ultraviolet light intensity of the overlapping area is greater than that of the remaining positions, resulting in the overlap
  • the curing depth of the area is greater than the rest of the position, which affects the molding accuracy of the model.
  • the gray value + the second gray value achieves that the curing depth of the overlapping area is equal to the curing depth of the remaining parts, when the curing depth of the first slice bitmap is uniform, and the technical effect of improving the accuracy of the model.
  • the method further includes: setting a first limit position of the first solidified layer; obtaining a first height of the first model entity; judging whether the first height reaches the first limit position; when When the first height reaches the first limit position, first instruction information is obtained, where the first instruction information is the first 3D printer interruption information.
  • the first 3D printer is provided with two position sensors in the Z axis direction, which are respectively used to monitor the lowest limit position and the highest limit position of the Z axis motor in the Z axis direction.
  • the first limit position is the highest limit position that the Z-axis motor can reach in the Z-axis direction
  • the first height is the real-time height information of the model entity, when the first height is equal to the first height
  • the limit position indicates that the printer has reached the maximum printing height, and printing should be stopped immediately, otherwise the printer will be damaged, and the PC will issue the first command message to instruct the first 3D printer to terminate the printing task to prevent The technical effect that the printer exceeds the operating range in the vertical direction to avoid damage to the printer.
  • the method further includes: determining a first moving distance according to the DLP light engine and the liquid tank horizontally moving to the first unit bitmap; according to the DLP light engine and the liquid tank horizontally moving to The second unit bitmap determines the second moving distance; judging whether the first moving distance and the second moving distance are the same; when the first moving distance is the same as the second moving distance, according to the The sum of the first movement distance and the second movement distance obtains the final movement distance; it is determined whether the final movement distance reaches the preset target movement distance; when the final movement distance reaches the preset target movement distance, the second movement distance is obtained.
  • Instruction information where the second instruction information is interrupt information of the first 3D printer.
  • the first moving distance is equal to the width of the first unit bitmap.
  • the first moving distance is equal to the width of the first unit bitmap.
  • the irradiation of the unit bitmap; after the irradiation of the first unit bitmap is completed, move to the right a second distance to complete the irradiation of the second unit bitmap, and the second movement distance is equal to the second bitmap Width, because the width of the first unit bitmap is equal to the width of the second unit bitmap.
  • the sixth unit bitmap, the first unit bitmap, and the second unit bitmap are three adjacent unit bitmaps of the first slice bitmap, and they are all in order from left to right.
  • the first moving distance and the second moving distance By judging whether the first moving distance and the second moving distance are equal, it can be judged whether the projection positions of the first unit bitmap and the second unit bitmap are accurate.
  • the first moving distance is the same as the second moving distance, it means that the projection positions of the first unit bitmap and the second unit bitmap are accurate.
  • the preset target moving distance is the distance required to move the X-axis motor to theoretically complete the projection of the first slice bitmap, and when the final moving distance is equal to the preset target moving distance, it means completion The projection of the first slice bitmap is obtained, and the second instruction information is obtained.
  • the second command information is used to instruct the first 3D printer to interrupt printing and return to the printing origin, in order to print the next slice bitmap prepare for. It is achieved whether the printing of a slice bitmap of one layer is completed according to the moving distance of the X-axis motor, so as to achieve the technical effect of controlling the interruption of the printer and preparing for printing the next slice bitmap.
  • the method further includes: obtaining a first exposure time of the first cured layer; setting a preset threshold according to the first exposure time;
  • the first cured layer is any cured layer that is not the bottom cured layer
  • the bottom cured layer is a cured layer directly in contact with the molding table
  • the first exposure time is the first The exposure time of a cured layer. That is, except for the bottom cured layer, the exposure time of each layer is the same to ensure that the thickness of each cured layer except for the bottom cured layer is consistent.
  • the preset threshold is greater than the first exposure time
  • the second exposure time is the real-time exposure time of the cured layer of the bottom layer
  • the second exposure time is less than the preset threshold value, it indicates that the bottom layer is cured
  • the exposure time of the layer is insufficient, and it is necessary to continue to expose the bottom cured layer.
  • the third exposure time the preset threshold-the second exposure time, so that the exposure time of the bottom cured layer reaches the preset
  • a threshold is set to extend the exposure time of the cured layer of the bottom layer, enhance the firmness of the bond between the cured layer of the bottom layer and the molding table, and ensure that the model will not fall off the molding table during the printing process Technical effect.
  • the preset threshold and the first exposure time are set in the PC.
  • the preset threshold and the first exposure time can be applied to the printing process of other models of the same material. The technical effect of simplifying the parameter adjustment process and improving the reusability of the system.
  • the present invention also provides a DLP-based large-format 3D printing device.
  • the device includes: Unit 11, the first obtaining unit 11 is used to obtain first slice bitmap information; the first judging unit 12, the first judgment unit 12 is used to judge whether the first slice bitmap information conforms to a preset Projection size; a second obtaining unit 13, the second obtaining unit 13 is configured to divide the first slice bitmap into pieces when the first slice bitmap information exceeds the preset projection size to obtain A series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; the third obtaining unit 14 is used to obtain the first connection of the first 3D printer Information; a first determining unit 15, the first determining unit 15 is used to determine the first pre-processing information according to the first connection information; the fourth obtaining unit 16, the fourth obtaining unit 16 is used to determine the first A pre-processing information controls the
  • the sixth obtaining unit 18 is configured to obtain a first solidified layer according to the first solidified bitmap information and the second solidified bitmap information, wherein the first solidified layer has a first thickness; and the seventh Obtaining unit 19, the seventh obtaining unit 19 is used to demold the first cured layer, and move the first cured layer vertically upwards by the first thickness, and stack the first cured layer according to the first thickness A solidified layer obtains the first model entity.
  • the device further includes: an eighth obtaining unit, the eighth obtaining unit is used to obtain the first STL model; a first setting unit, the first setting unit is used to set the second thickness; a ninth obtaining unit , The ninth obtaining unit is configured to perform equal-thickness segmentation on the cross-section of the first STL model perpendicular to the Z axis according to the second thickness, to obtain serial slice bitmap information, wherein the series slice bitmap The information includes the first slice bitmap information and the second slice bitmap information.
  • the device further includes: a second determining unit configured to splice the first slice bitmap information and the second slice bitmap information to determine the first splicing position Image information; a second judgment unit, the second judgment unit is used to judge whether the misalignment parameter of the first splicing bitmap is equal to zero; a tenth obtaining unit, the tenth obtaining unit is used when the first splicing bitmap When the misalignment parameter of the image is not equal to zero, perform misalignment segmentation on the first slice bitmap and the second slice bitmap to obtain a misalignment segmentation pattern; the eleventh obtaining unit is used for the eleventh obtaining unit Performing pattern pixel filling on the misaligned segmentation pattern to obtain a third unit bitmap; a third determining unit, the third determining unit is used to determine whether the third unit bitmap meets a preset condition; third determining Unit, the third determining unit is configured to determine the first projection exposure information when the third unit bitmap meets a preset condition
  • the device further includes: a fourth determining unit configured to determine the first initialization information of the first 3D printer according to the first connection information; a fourth determining unit, the first The fourth determining unit is used to determine whether there is a first object on the forming table of the first 3D printer according to the first initialization information; the fifth determining unit, the fifth determining unit is used to act as the first 3D printer When there is a first object on the forming table, the first reminder information is determined, and the first reminder information is sent to the first user; the sixth determining unit, the sixth determining unit is configured to determine the first reminder information according to the first reminder information One in addition to sleepy information.
  • the device further includes: a second setting unit for setting the first limit position of the first cured layer; a twelfth obtaining unit, the twelfth obtaining unit for Obtain the first height of the first model entity; a fifth judging unit, the fifth judging unit is used to judge whether the first height reaches the first limit position; the thirteenth obtaining unit, the tenth
  • the third obtaining unit is configured to obtain first instruction information when the first height reaches the first limit position, where the first instruction information is the first 3D printer interruption information.
  • the device further includes: a seventh determining unit configured to determine the first moving distance according to the horizontal movement of the DLP light engine and the liquid tank to the first unit bitmap; An eight determining unit, the eighth determining unit is configured to determine a second moving distance according to the horizontal movement of the DLP light engine and the liquid tank to the second unit bitmap; a sixth determining unit, the sixth determining unit Used for judging whether the first moving distance and the second moving distance are the same; a fourteenth obtaining unit, the fourteenth obtaining unit is used for when the first moving distance is the same as the second moving distance , Obtaining a final moving distance according to the sum of the first moving distance and the second moving distance; a seventh judging unit, the seventh judging unit is used to judge whether the final moving distance reaches a preset target moving distance; A fifteenth obtaining unit, the fifteenth obtaining unit is configured to obtain second instruction information when the final movement distance reaches a preset target movement distance, where the second instruction information is the first 3D printer Interrupt information.
  • the device further includes: a sixteenth obtaining unit, the sixteenth obtaining unit is used to obtain the first exposure time of the first cured layer; a third setting unit, the third setting unit is used to A preset threshold is set according to the first exposure time; a seventeenth obtaining unit, the seventeenth obtaining unit is used to obtain the second exposure time of the underlying cured layer; an eighth judging unit, the eighth judging unit is used to Determine whether the second exposure time meets the preset threshold; a ninth determining unit, the ninth determining unit is configured to determine the bottom cured layer when the second exposure time does not meet the preset threshold The third exposure time.
  • the various changes and specific examples of the large-format 3D printing method based on DLP in the first embodiment of FIG. 1 are also applicable to the large-format 3D printing device based on DLP of this embodiment.
  • the large-format 3D printing method of DLP those skilled in the art can clearly know the implementation method of a large-format 3D printing device based on DLP in this embodiment, so for the sake of brevity of the description, it will not be described in detail here.
  • the present invention also provides a DLP-based large-format 3D printing device, on which a computer program is stored, and when the program is executed by the processor The steps of any method of the large-format 3D printing method based on DLP described above are realized.
  • the bus architecture (represented by a bus 300), the bus 300 can include any number of interconnected buses and bridges, and the bus 300 will include one or more processors represented by the processor 302 and a memory 304 representing The various circuits of the memory are linked together.
  • the bus 300 may also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface 306 provides an interface between the bus 300 and the receiver 301 and transmitter 303.
  • the receiver 301 and the transmitter 303 may be the same element, that is, a transceiver, which provides a unit for communicating with various other devices on the transmission medium.
  • the processor 302 is responsible for managing the bus 300 and general processing, and the memory 304 may be used to store data used by the processor 302 when performing operations.
  • the present invention also provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the following steps : Obtain the first slice bitmap information; determine whether the first slice bitmap information meets the preset projection size; when the first slice bitmap information exceeds the preset projection size, change the first slice bitmap information A slice bitmap is divided to obtain a series of unit bitmaps, where the series of unit bitmaps include a first unit bitmap and a second unit bitmap; the first connection information of the first 3D printer is obtained; A connection information determines the first preprocessing information; according to the first preprocessing information, the DLP light engine and the liquid tank of the first 3D printer are controlled to move horizontally to the first unit bitmap for projection exposure to obtain the first curing Bitmap information; horizontally move the DLP light engine and the liquid tank from the first unit bitmap to the second unit bitmap for projection exposure to obtain second curing
  • any method step in the first embodiment can also be implemented.
  • the embodiment of the present application provides the method including: obtaining first slice bitmap information; judging whether the first slice bitmap information meets a preset projection size; when the first slice bitmap information exceeds the When the projection size is preset, the first slice bitmap is segmented to obtain a series of unit bitmaps, where the series of unit bitmaps include the first unit bitmap and the second unit bitmap; the first 3D printer is obtained
  • the first connection information; the first preprocessing information is determined according to the first connection information; the DLP light engine and the liquid tank of the first 3D printer are controlled to move horizontally to the first unit according to the first preprocessing information
  • the bitmap is projected and exposed to obtain the first curing bitmap information; the DLP light engine and the liquid tank are horizontally moved from the first unit bitmap to the second unit bitmap for projection exposure, and the second unit bitmap is obtained Curing bitmap information; obtaining a first curing layer according to the first curing bitmap information and the second curing bitmap information, wherein the first curing layer has
  • the embodiments of the present invention can be provided as a method, a system, or a computer program product. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

一种基于DLP的大幅面3D打印方法和装置,涉及数据处理技术领域,获得第一切片位图信息;判断第一切片位图信息是否符合预设投影尺寸;当第一切片位图信息超出预设投影尺寸时,将第一切片位图切分,获得系列单元位图;获得第一3D打印机的第一连接信息;根据第一连接信息确定第一预处理信息;控制DLP光引擎和液槽水平移动至第一单元位图进行投影曝光,获得第一固化位图信息、第二固化位图信息;根据第一固化位图信息与第二固化位图信息获得第一固化层;将第一固化层脱模,且垂直上移第一厚度,叠加第一固化层获得第一模型实体。达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印的技术效果。

Description

一种基于DLP的大幅面3D打印方法和装置 技术领域
本申请涉及数据处理技术领域,尤其涉及一种基于DLP的大幅面3D打印方法和装置。
背景技术
3D打印是以三维模型文件为蓝图,依据分层制造的原理,逐层添加离散原料从而构造三维模型实体的技术。多3D打印技术的细分方向中,基于数字光处理(Digital Light Processing, DLP)的3D打印技术因打印精度高、成品表面光洁度较好,在精密铸造、生物医疗等方面应用广泛,成为当前3D打印行业研究的重点。
但本申请发明人在实现本申请实施例中技术方案的过程中,发现上述现有技术至少存在如下技术问题:
现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题。
技术解决方案
本申请实施例通过提供一种基于DLP的大幅面3D打印方法和装置,解决了现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题,达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印,提高模型成品质量,提高模型机械强度,降低成本的技术效果。
为了解决上述问题,第一方面,本申请实施例提供了一种基于DLP的大幅面3D打印方法,所述方法包括:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
优选的,所述获得第一切片位图信息,包括:获得第一STL模型;设置第二厚度;根据所述第二厚度对所述第一STL模型垂直于Z轴的横切面进行等厚切分,获得系列切片位图信息,其中,所述系列切片位图信息包含所述第一切片位图信息与第二切片位图信息。
优选的,所述方法还包括:将所述第一切片位图信息与所述第二切片位图信息的拼接成型,确定第一拼接位图信息;判断所述第一拼接位图的错位参数是否等于零;当所述第一拼接位图的错位参数不等于零时,对所述第一切片位图与所述第二切片位图进行错位切分,获得错位切分图案;将所述错位切分图案进行图案像素填充,获得第三单元位图;判断所述第三单元位图是否符合预设条件;当所述第三单元位图符合预设条件时,确定第一投影曝光信息。
优选的,所述第一预处理信息,包括:根据所述第一连接信息确定所述第一3D打印机的第一初始化信息;根据所述第一初始化信息判断所述第一3D打印机的成型台面上是否有第一物体;当所述第一3D打印机的成型台面上有第一物体时,确定第一提醒信息,将所述第一提醒信息发送给第一用户;根据所述第一提醒信息确定第一除困气信息。
优选的,所述方法还包括:设置所述第一固化层的第一极限位置;获得所述第一模型实体的第一高度;判断所述第一高度是否达到所述第一极限位置;当所述第一高度达到所述第一极限位置时,获得第一指令信息,其中,所述第一指令信息为所述第一3D打印机中断信息。
优选的,所述方法还包括:根据所述DLP光引擎和所述液槽水平移动至所述第一单元位图确定第一移动距离;根据所述DLP光引擎和所述液槽水平移动至所述第二单元位图确定第二移动距离;判断所述第一移动距离与所述第二移动距离是否相同;当所述第一移动距离与所述第二移动距离相同时,根据所述第一移动距离与所述第二移动距离之和,获得最终移动距离;判断所述最终移动距离是否达到预设目标移动距离;当所述最终移动距离达到预设目标移动距离时,获得第二指令信息,其中,所述第二指令信息为所述第一3D打印机中断信息。
优选的,所述方法还包括:获得所述第一固化层的第一曝光时间;根据所述第一曝光时间设置预设阈值;获得底层固化层的第二曝光时间;判断所述第二曝光时间是否满足所述预设阈值;当所述第二曝光时间不满足所述预设阈值时,确定所述底层固化层的第三曝光时间。
第二方面,本申请实施例还提供了一种基于DLP的大幅面3D打印装置,所述装置包括:第一获得单元,所述第一获得单元用于获得第一切片位图信息;第一判断单元,所述第一判断单元用于判断所述第一切片位图信息是否符合预设投影尺寸;第二获得单元,所述第二获得单元用于当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;第三获得单元,所述第三获得单元用于获得第一3D打印机的第一连接信息;第一确定单元,所述第一确定单元用于根据所述第一连接信息确定第一预处理信息;第四获得单元,所述第四获得单元用于根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;第五获得单元,所述第五获得单元用于将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;第六获得单元,所述第六获得单元用于根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;第七获得单元,所述第七获得单元用于将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
优选的,所述装置还包括:第八获得单元,所述第八获得单元用于获得第一STL模型;第一设置单元,所述第一设置单元用于设置第二厚度;第九获得单元,所述第九获得单元用于根据所述第二厚度对所述第一STL模型垂直于Z轴的横切面进行等厚切分,获得系列切片位图信息,其中,所述系列切片位图信息包含所述第一切片位图信息与第二切片位图信息。
优选的,所述装置还包括:第二确定单元,所述第二确定单元用于将所述第一切片位图信息与所述第二切片位图信息的拼接成型,确定第一拼接位图信息;第二判断单元,所述第二判断单元用于判断所述第一拼接位图的错位参数是否等于零;第十获得单元,所述第十获得单元用于当所述第一拼接位图的错位参数不等于零时,对所述第一切片位图与所述第二切片位图进行错位切分,获得错位切分图案;第十一获得单元,所述第十一获得单元用于将所述错位切分图案进行图案像素填充,获得第三单元位图;第三判断单元,所述第三判断单元用于判断所述第三单元位图是否符合预设条件;第三确定单元,所述第三确定单元用于当所述第三单元位图符合预设条件时,确定第一投影曝光信息。
优选的,所述装置还包括:第四确定单元,所述第四确定单元用于根据所述第一连接信息确定所述第一3D打印机的第一初始化信息;第四判断单元,所述第四判断单元用于根据所述第一初始化信息判断所述第一3D打印机的成型台面上是否有第一物体;第五确定单元,所述第五确定单元用于当所述第一3D打印机的成型台面上有第一物体时,确定第一提醒信息,将所述第一提醒信息发送给第一用户;第六确定单元,所述第六确定单元用于根据所述第一提醒信息确定第一除困气信息。
优选的,所述装置还包括:第二设置单元,所述第二设置单元用于设置所述第一固化层的第一极限位置;第十二获得单元,所述第十二获得单元用于获得所述第一模型实体的第一高度;第五判断单元,所述第五判断单元用于判断所述第一高度是否达到所述第一极限位置;第十三获得单元,所述第十三获得单元用于当所述第一高度达到所述第一极限位置时,获得第一指令信息,其中,所述第一指令信息为所述第一3D打印机中断信息。
优选的,所述装置还包括:第七确定单元,所述第七确定单元用于根据所述DLP光引擎和所述液槽水平移动至所述第一单元位图确定第一移动距离;第八确定单元,所述第八确定单元用于根据所述DLP光引擎和所述液槽水平移动至所述第二单元位图确定第二移动距离;第六判断单元,所述第六判断单元用于判断所述第一移动距离与所述第二移动距离是否相同;第十四获得单元,所述第十四获得单元用于当所述第一移动距离与所述第二移动距离相同时,根据所述第一移动距离与所述第二移动距离之和,获得最终移动距离;第七判断单元,所述第七判断单元用于判断所述最终移动距离是否达到预设目标移动距离;第十五获得单元,所述第十五获得单元用于当所述最终移动距离达到预设目标移动距离时,获得第二指令信息,其中,所述第二指令信息为所述第一3D打印机中断信息。
优选的,所述装置还包括:第十六获得单元,所述第十六获得单元用于获得所述第一固化层的第一曝光时间;第三设置单元,所述第三设置单元用于根据所述第一曝光时间设置预设阈值;第十七获得单元,所述第十七获得单元用于获得底层固化层的第二曝光时间;
第八判断单元,所述第八判断单元用于判断所述第二曝光时间是否满足所述预设阈值;第九确定单元,所述第九确定单元用于当所述第二曝光时间不满足所述预设阈值时,确定所述底层固化层的第三曝光时间。
第三方面,本申请实施例还提供了一种基于DLP的大幅面3D打印装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下步骤:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤: 获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
有益效果
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:本申请实施例通过提供一种基于DLP的大幅面3D打印方法和装置,所述方法包括:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。解决了现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题,达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印,提高模型成品质量,提高模型机械强度,降低成本的技术效果。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
图1为本发明实施例中一种基于DLP的大幅面3D打印方法的流程示意图;
图2为本发明实施例中一种基于DLP的大幅面3D打印装置的结构示意图;
图3为本发明实施例中另一种基于DLP的大幅面3D打印装置的结构示意图。
附图标记说明:第一获得单元11,第一判断单元12,第二获得单元13,第三获得单元14,第一确定单元15,第四获得单元16,第五获得单元17,第六获得单元18,第七获得单元19,总线300,接收器301,处理器302,发送器303,存储器304,总线接口306。
本发明的实施方式
本申请实施例提供了一种基于DLP的大幅面3D打印方法和装置,解决了现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题,达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印,提高模型成品质量,提高模型机械强度,降低成本的技术效果。
申请概述
基于DLP的3D打印技术使用DLP投影设备将三维模型的横截面掩膜的数字图像用紫外光投影到液态光敏树脂上,使得被照射的部分固化。DLP投影设备有两种常见的安装方式,根据投影设备相较于液槽的位置分类,主要包括上曝光型3D打印系统以及下曝光型3D打印系统。
上曝光3D打印系统:投影设备位于光敏树脂液体上方,自上而下将三维模型的横截面位图投影到液体原料上。其工作方法为:在液槽内盛满液态光敏树脂原材料,成型台面初始位置位于液面下方,距离液面一个固化层的距离;成型一个固化层时,将该层的三维模型的横截面位图投影到液面上,使得被照射的部分光敏树脂发生聚合反应,形成对应层横截面位图的固态薄层,然后控制成型台面向下运动,使得已固化的模型与液面顶部为一个固化层的距离,使用刮板将树脂液面刮平;然后开始下一个固化层的打印,如此反复直到整个模型构造完毕。
下曝光3D打印系统:投影设备位于光敏树脂液体下方,自下而上将三维模型的横截面位图投影到液体原料上,其中盛放液体原材料的槽底部为透明窗。其工作方法为:在液槽内倒入液态光敏树脂原材料,成型台面初始位置贴近液槽底部,到液槽底部一个固化层的距离;成型一个固化层时,将该层三维模型的横截面位图投影到液槽底部的透明窗上,使得光敏树脂被照射的部分发生聚合反应,形成相应层横截面位图的固态薄层,然后控制成型台面向上运动,使得已固化的模型与液槽底部为一个固化层的距离,为下一层的固化做准备。为了减小固化层与液槽底部的吸附力,会在液槽底部附着一层离型膜,例如聚二甲基硅氧烷(polydimethylsiloxane,PDMS)薄膜;然后开始下一个固化层的打印,如此反复直到整个模型构造完毕。
为了解决上述技术问题,本申请提供的技术方案总体思路如下:
一种基于DLP的大幅面3D打印方法,所述方法包括:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。解决了现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题,达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印,提高模型成品质量,提高模型机械强度,降低成本的技术效果。
下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
实施例一
本发明实施例提供的一种基于DLP的大幅面3D打印方法,所述方法应用于一下曝光3D打印系统,所述打印系统包括第一3D打印机、PC机,所述第一3D打印机包括主控器、投影设备、液槽、成型台面、X轴电机、Z轴电机,所述液槽的底部中间位置设置透明投影窗,所述投影设备安装于液槽下方,向所述液槽底部投射图案,通过所述透明投影窗投射到所述成型台面上;所述液槽内盛放光敏树脂,所述成型台面用于附着已固化模型。所述X轴电机可带动液槽、DLP投影设备水平移动制定距离,实现X轴方向的拼接成型。所述Z轴电机可带动所述成型台面垂直运动,每打印一片固化层向上移动一次,从而实现固化层的有序堆叠。所述主控器与所述X轴电机、所述Y轴电机、投影设备通讯连接,控制所述X轴电机、所述Y轴电机的运动,控制所述投影设备的曝光时间。所述PC机具备STL模型切片预处理、3D打印流程控制的功能,即所述PC机可对所述第一切片位图进行预处理,并控制所述3D打印机打印所述第一切片位图。在打印3D模型时,PC机与所述主控器通讯连接,所述PC机将打印命令发送给所述主控器,所述主控器根据所述打印命令控制所述第一3D打印机进行3D打印。
所述方法包括:步骤S110:获得第一切片位图信息;进一步的,所述获得第一切片位图信息,包括:获得第一STL模型;设置第二厚度;根据所述第二厚度对所述第一STL模型垂直于Z轴的横切面进行等厚切分,获得系列切片位图信息,其中,所述系列切片位图信息包含所述第一切片位图信息与第二切片位图信息。
具体而言,使用CAD等三维建模软件绘制待打印物体的模型,得到三维模型数据。因为STL模型数据格式简单、空间定位方便,是目前3D打印系统通用的三维模型数据文件格式,因此将所述三维模型数据近似处理为STL模型,获得所述第一STL模型。
X轴、Y轴相互垂直,组成第一平面,所述第一平面与所述第一STL模型的底面重合。Z轴与所述X轴、Y轴垂直,与所述第一STL模型的高度方向平行。按照所述第二厚度对所述第一STL模型在Z轴方向,从所述第一STL模型底部向上均匀切割所述第一STL模型,得到一系列有序的三维模型横截面位图,即所述系列切片位图信息。其中,所述第一切片位图信息、第二切片位图信息均为所述系列切片位图信息中的任一组相邻的切片位图,所述第二厚度可根据所述第一STL模型的精度、表面光洁度的需要进行设定,所述第二厚度越小,所述第一STL模型的精度越高,表面光洁度越高。
步骤S120:判断所述第一切片位图信息是否符合预设投影尺寸;具体而言,在进行3D打印时,需要将切片位图信息通过所述投影设备以紫外线投影到液态光敏树脂表面,所述预设投影尺寸为所述投影设备的投影尺寸,获得所述第一切片位图信息的尺寸信息,即第一尺寸信息,判断所述第一尺寸信息是否大于所述预设投影尺寸,当所述第一尺寸信息不大于所述预设投影尺寸时,直接对所述第一切片位图进行投影。
步骤S130:当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;具体而言,当所述第一尺寸信息大于所述预设投影尺寸时,按照所述预设投影尺寸、所述第一尺寸信息,对所述第一切片位图进行切分,获得所述系列单元位图,所述系列单元位图至少包括所述第一单元位图和所述第二单元位图,所述第一单元位图、所述第二单元位图为不同的单元位图。
步骤S140:获得第一3D打印机的第一连接信息;具体而言,将所述系列切片信息加载到所述PC机上后,用串口线将所述第一3D打印机和所述PC机相连,当所述第一3D打印机和所述PC机相连成功后,所述PC机产生所述第一连接信息,所述第一连接信息表明所述第一3D打印机与所述PC机连接成功,可实现数据通讯,所述第一3D打印机可进行打印工作。
步骤S150:根据所述第一连接信息确定第一预处理信息;具体而言,当所述PC机与所述第一3D打印机连接成功后,所述打印机需要进行一些准备工作,为3D打印做准备,所述第一预处理信息用于控制所述打印机做打印前的准备工作。
进一步的,所述第一预处理信息,包括:根据所述第一连接信息确定所述第一3D打印机的第一初始化信息;根据所述第一初始化信息判断所述第一3D打印机的成型台面上是否有第一物体;当所述第一3D打印机的成型台面上有第一物体时,确定第一提醒信息,将所述第一提醒信息发送给第一用户;根据所述第一提醒信息确定第一除困气信息。
具体而言,当所述PC机与所述第一3D打印机连接成功后,所述PC机产生所述第一初始化信息,所述第一初始化信息用于控制所述第一3D打印机完成初始化动作,所述初始化动作为所述第一3D打印机开始打印之前的准备动作,所述准备动作包括清楚所述成型台面上的异物和除困气操作。根据所述第一初始化信息判断所述成型台面上是否有第一物体,其中,所述第一物体为所述成型台面上的异物。当所述成型台面上有异物时,所述PC机产生所述第一提醒信息,并将所述第一提醒信息在所述PC机的用户界面上进行显示,提醒用户将异物从所述成型台面上清除,保证所述成型台面洁净,保证底层固化层与所述成型台面粘接的紧密性,避免打印过程中模型从所述成型台面上脱落的技术效果。
在初期试验阶段发现:所述成型台面压入液态树脂时易混入空气,导致模型出现空腔,导致打印失败。为了解决这一问题,在所述成型台面压入液态树脂后、在打印之前需要进行除困气操作。在所述第一提醒信息通过所述PC机发送给所述第一用户,所述第一用户清理掉所述第一物体后,向所述PC机回复第一确认信息,所述第一确认信息表明所述成型台面已被清理完毕。所述PC机根据所述第一确认信息确定所述第一提醒信息已被完成。此时,所述PC机控制所述成型台面进行除困气操作,即将所述成型平台压入所述液槽内,压入所述液态树脂内,并贴近所述投影窗;然后控制所述X轴电机带动所述投影窗从最左侧向右运动,运动到最右侧后再返回到最左侧,如此操作之后,所述液态树脂内的空气被赶出,达到避免打印出的3D模型出现空腔,避免打印失败,提高3D打印的成功率的技术效果。
步骤S160:根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;具体而言,所述DLP光引擎为基于DMD芯片制造的投影设备,所述DLP光引擎的作用是将每一个切片图案化后,有选择性地投射到树脂上,并使树脂凝固。将所述光引擎和所述液槽水平移动到第一位置进行投影曝光,所述光引擎投射预处理后的所述第一单元位图第一时间后,获得所述第一固化位图,所述第一固化位图为所述第一单元位图固化后的图形,所述第一位置为投影所述第一单元位图时,所述光引擎和所述液槽需要的位置。
步骤S170:将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;具体而言,所述第一固化位图形成后,水平移动所述DLP光引擎和所述液槽道到第二位置,所述光引擎投射预处理后的所述第二单元位图第一时间后,获得所述第二固化位图,所述第二固化位图为所述第二单元位图固化后的图形,所述第二位置为投影所述第二单元位图时,所述光引擎和所述液槽需要的位置,所述第一时间为曝光时间,所述第一单元位图与所述第二单元位图的曝光时间相同。
步骤S180:根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;具体而言,按照顺序对所述系列单元位图投影曝光后,形成第一固化层,所述第一固化层为所述第一切片位图的固化层,所述第一厚度由所述第一时间决定,所述第一时间越长,所述第一厚度越厚。
步骤S190:将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。具体而言,完成所述第一固化层后,所述Z轴电机垂直向上移动所述第一厚度,所述成型台面随之垂直向上移动所述第一厚度,使所述第一固化层与所述液槽槽底之间距离所述第一厚度;然后继续对所述第一切片位图的相邻切片位图进行固化,固化完成后,所述Z轴电机垂直向上移动所述第一厚度,如此反复,直至完成所述系列切片位图的所有固化,获得所述第一模型实体,所述第一模型实体为所述第一STL模型的实体,也为所述待打印物体的模型。
本发明实施例不增加投影设备的情况下,利用移动拼接成型的方法实现大尺寸模型的打印,成本低的技术效果。
进一步的,所述方法还包括:将所述第一切片位图信息与所述第二切片位图信息的拼接成型,确定第一拼接位图信息;判断所述第一拼接位图的错位参数是否等于零;当所述第一拼接位图的错位参数不等于零时,对所述第一切片位图与所述第二切片位图进行错位切分,获得错位切分图案;将所述错位切分图案进行图案像素填充,获得第三单元位图;判断所述第三单元位图是否符合预设条件;当所述第三单元位图符合预设条件时,确定第一投影曝光信息。
具体而言,接缝产生的原因有两个,一是:移动投影设备进行拼接投影时,将大幅的图案分多次投影,涉及投影面拼接,投影面拼接扩大投影幅面的同时也带来接缝问题。二是:当投影设备的投影面与液槽底部不完全平行时,则投影的图案将呈现梯形或不规则四边形等形式的畸变,此时拼接打印的模型在两个投影面交界的区域会产生接缝。
相邻两个单元位图之间容易形成接缝,接缝区域是误差集中堆积体现的地方。本申请实施例提出错位均摊消除接缝的方案,错位均摊的核心思想是误差平摊,将每一层的接缝区域错开,使接缝处的误差被均摊到各层的不同位置上,拼接成型过程的缝隙也可以用错位均摊的方式处理。
所述第一切片位图信息至少有两个单元位图拼接而成,所述第二切片位图也至少有两个单元位图拼接而成,所述第一切片位图具有第一接缝,所述第二切片位图具有第二接缝,所述第一拼接位图信息包括所述第一接缝、所述第二接缝。所述第一切片位图、所述第二切片位图为相邻的切片位图,所述第一接缝、所述第二接缝之间的距离为所述错位参数。
所述错位参数根据用户需要进行设定,当所述错位参数为零时,表明用户不需要对所述系列切片位图进行错位切分,此时不对所述系列切片位图进行错位切分;当所述错位参数不等于零时,表明用户需要对所述系列切片位图进行错位切分,按照所述错位参数对所述系列切片位图进行错位切分,使相邻两片切片位图之间接缝的距离为所述错位参数。
将所述错位切分图案进行图案像素填充具体为:将所述第一切片位图重新切分成第四单元位图、第五单元位图,若所述第四单元位图位于所述第一切片位图的左侧,所述第四单元位图的长度为X,所述投影设备的投影长度为A,A>X,所述第四单元位图的宽度与所述投影设备的投影宽度相同,则将所述第四单元位图左侧A-X的宽度范围填充成黑色,所述第四位图右侧长度为X的范围为原图像,从而获得所述第三位图单元,所述第三单元位图的长度为A,所述第三单元位图的宽度等于所述投射设备的宽度,保证所述第三单元位图的大小与所述投影设备的大小一致、分辨率一致,所述投影设备对所述第三单元位图进行全屏投影时,不拉伸所述第三单元位图,保证了打印的精确度。
同理,若所述第四位图位于所述第一切片位图的右侧时,将所述第四单元位图右侧A-X的宽度范围填充成黑色,所述第四位图左侧长度为X的范围为原图像,从而获得所述第三位图单元,所述第三单元位图的长度为A,所述第三单元位图的宽度等于所述投射设备的宽度。
对所述第一切片位图、所述第二切片位图进行错位切分后,获得所述第三单元位图,然后,判断所述第三单元位图是否为全黑图片,若为全黑图片则无需进行曝光,直接将所述投影设备移至下一个单元位图,对下一个单元位图进行曝光;若所述第三单元位图不是全黑图像,则按照按照所述第三单元位图的显示进行曝光,达到优化打印流程、加快打印流程的技术效果。所述预设条件为全黑图像,所述第一投影曝光信息为不对所述第三单元位图进行投影曝光操作。
进一步的,所述方法包括:获得第一训练模型,其中,所述第一训练模型中包括所述预设投影尺寸作为监督数据;将所述第一切片信息、所述第二切片信息输入所述第一训练模型,获得所述第一系列错位单元位图,所述第二系列错位单元位图,所述第一系列错位单元位图为所述第一切片位图的错位单元位图,所述第二系列错位单元位图为所述第二切片位图的错位单元位图。
具体而言,第一训练模型即机器学习中的神经网络模型,神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(Artificial Neural Networks,简写为ANNs),是对人类大脑系统的一阶特性的一种描述。简单地讲,它是一个数学模型。神经网络模型由网络拓扑、节点特点和学习规则来表示。在本申请实施例中,将大量需要切分的切片位图按照错位切分法进行切分后,形成系列错位单元位图,将所述切片位图、所述切片位图的系列错位单元位图输入到所述第一训练模型中进行训练,其中所述预设投影尺寸作为监督数据,使所述第一训练模型具备按照所述预设投影尺寸对切片位图进行错位切分的能力。
所述第一切片位图、所述第二切片位图为相邻的两个切片位图,将所述第一切片位图、所述第二切片位图、所述预设投影尺寸输入到所述第一训练模型中,所述第一训练模型按照错位切分法,根据所述预设投影尺寸将所述第一切片位图切分为第一系列错位单元位图;同理,将所述第二切片位图切分为第二系列错位单元位图,所述第一系列错位单元位图与所述第二系列错位单元位图存在错位关系。达到根据预设投影尺寸对切片位图进行智能化错位切分,简化用户的操作流程的技术效果。
进一步的,对所述第一单元位图、所述第二单元位图进行投影曝光之前,所述方法还包括:获得第一区域,所述第一单元位图包括所述第一区域;获得第二区域,所述第二单元位图包括所述第二区域,其中所述第一区域的面积等于所述第二区域,投影时,所述第一区域与所述第二区域重合;获得所述第一区域的原始灰度值;将所述第一区域的灰度设置为第一灰度值;将所述第二区域的灰度值设置为第二灰度值,其中,所述原始灰度值=所述第一灰度值+所述第二灰度值。
具体而言,所述第一单元位图、所述第二单元位图为两个相邻的单元位图,在投影照射时,所述第一单元位图、所述第二单元位图相邻的部分存在重叠区域,即所述第一区域、所述第二区域相互重叠形成所述重叠区域,所述第一区域、所述第二区域显示的图像内容相同。若不降低所述第一区域、所述第二区域的灰度值,投影照射时,所述重叠区域会被照射两次,所述重叠区域的紫外线光照强度总和大于其余位置,导致所述重叠区域的固化深度大于其余位置,影响模型的成型精度。根据DLP投影的原理降低某一点像素的灰度值实际上是减少了该像素点单位时间内投影时间的占比,从而降低重叠部分的曝光时长。因此将所述第一区域的灰度值降低为所述第一灰度值、将所述第二区域的灰度设置为第二灰度值,使所述原始灰度值=所述第一灰度值+所述第二灰度值,达到所述重叠区域的固化深度与其余部位的固化深度相等,时所述第一切片位图的固化深度均匀,提高模型精度的技术效果。
进一步的,所述方法还包括:设置所述第一固化层的第一极限位置;获得所述第一模型实体的第一高度;判断所述第一高度是否达到所述第一极限位置;当所述第一高度达到所述第一极限位置时,获得第一指令信息,其中,所述第一指令信息为所述第一3D打印机中断信息。
具体而言,所述第一3D打印机在Z轴方向设置两个位置传感器,分别用于监测所述Z轴电机在Z轴方向的最低极限位置和最高极限位置。所述第一极限位置为所述Z轴电机在Z轴方向所能达到的最高极限位置,所述第一高度为所述模型实体实时的高度信息,当所述第一高度等于所述第一极限位置,说明所述打印机达到了最大打印高度,应立即停止打印,否则将损坏所述打印机,所述PC机发出所述第一指令信息,指令所述第一3D打印机终止打印任务,达到防止打印机在竖直方向超出运行范围,避免打印机被损坏的技术效果。
进一步的,所述方法还包括:根据所述DLP光引擎和所述液槽水平移动至所述第一单元位图确定第一移动距离;根据所述DLP光引擎和所述液槽水平移动至所述第二单元位图确定第二移动距离;判断所述第一移动距离与所述第二移动距离是否相同;当所述第一移动距离与所述第二移动距离相同时,根据所述第一移动距离与所述第二移动距离之和,获得最终移动距离;判断所述最终移动距离是否达到预设目标移动距离;当所述最终移动距离达到预设目标移动距离时,获得第二指令信息,其中,所述第二指令信息为所述第一3D打印机中断信息。
具体而言,所述第一移动距离等于所述第一单元位图的宽度,当所述光引擎对所述第六单元位图完成照射后,需要移动第一移动距离完成对所述第一单元位图的照射;在完成对第一单元位图的照射后,向右移动第二距离完成对所述第二单元位图的照射,所述第二移动距离等于所述第二位图的宽度,因为所述第一单元位图的宽度等于所述第二单元位图的宽度。其中所述第六单元位图、所述第一单元位图、所述第二单元位图为所述第一切片位图相邻的三个单元位图,且从左到右依次为所述第六单元位图、所述第一单元位图、所述第二单元位图。
通过判断所述第一移动距离与所述第二移动距离是否相等,可以判断对所述第一单元位图、所述第二单元位图的投影位置是否准确。当所述第一移动距离与所述第二移动距离相同时,说明对所述第一单元位图、所述第二单元位图的投影位置准确。将所述第一切片位图的各个单元位图的移动距离相加,得到所述最终移动距离。所述预设目标移动距离为理论上完成所述第一切片位图的投影所述X轴电机所需要移动的距离,当所述最终移动距离等于所述预设目标移动距离时,说明完成了所述第一切片位图的投影,获得所述第二指令信息,所述第二指令信息用于指令所述第一3D打印机中断打印,回到打印原点,为打印下一切片位图做准备。达到根据所述X轴电机的移动距离确定的一层切片位图是否完成打印,从而达到控制打印机中断,为打印下一切片位图做准备的技术效果。
进一步的,所述方法还包括:获得所述第一固化层的第一曝光时间;根据所述第一曝光时间设置预设阈值;
获得底层固化层的第二曝光时间;判断所述第二曝光时间是否满足所述预设阈值;当所述第二曝光时间不满足所述预设阈值时,确定所述底层固化层的第三曝光时间。
具体而言,所述第一固化层为不是所述底层固化层的任一固化层,所述底层固化层为直接与所述成型台面接触的固化层,所述第一曝光时间为所述第一固化层的曝光时间。即除所述底层固化层外,每一层的曝光时间是一样的,确保除所述底层固化层外的各个固化层的层厚一致。所述预设阈值大于所述第一曝光时间,所述第二曝光时间为所述底层固化层的实时曝光时间,当所述第二曝光时间小于所述预设阈值时,说明所述底层固化层的曝光时间不足,需要继续对所述底层固化层进行曝光,所述第三曝光时间=所述预设阈值-所述第二曝光时间,使所述底层固化层的曝光时间达到所述预设阈值,达到延长所述底层固化层的曝光时间,增强所述底层固化层与所述成型台面之间粘结的牢固性,保证在打印过程中模型不会从所述所述成型台面上脱落的技术效果。在所述PC机内设置所述预设阈值、所述第一曝光时间,所述预设阈值、所述第一曝光时间可适用于其他同材质模型的打印过程,达到了在打印其他同材质的模型时,简化参数调整过程,提高系统的可复用性的技术效果。
实施例二
基于与前述实施例中一种基于DLP的大幅面3D打印方法同样的发明构思,本发明还提供一种基于DLP的大幅面3D打印装置,如图2所示,所述装置包括:第一获得单元11,所述第一获得单元11用于获得第一切片位图信息;第一判断单元12,所述第一判断单元12用于判断所述第一切片位图信息是否符合预设投影尺寸;第二获得单元13,所述第二获得单元13用于当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;第三获得单元14,所述第三获得单元14用于获得第一3D打印机的第一连接信息;第一确定单元15,所述第一确定单元15用于根据所述第一连接信息确定第一预处理信息;第四获得单元16,所述第四获得单元16用于根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;第五获得单元17,所述第五获得单元17用于将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;第六获得单元18,所述第六获得单元18用于根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;第七获得单元19,所述第七获得单元19用于将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
优选的,所述装置还包括:第八获得单元,所述第八获得单元用于获得第一STL模型;第一设置单元,所述第一设置单元用于设置第二厚度;第九获得单元,所述第九获得单元用于根据所述第二厚度对所述第一STL模型垂直于Z轴的横切面进行等厚切分,获得系列切片位图信息,其中,所述系列切片位图信息包含所述第一切片位图信息与第二切片位图信息。
优选的,所述装置还包括:第二确定单元,所述第二确定单元用于将所述第一切片位图信息与所述第二切片位图信息的拼接成型,确定第一拼接位图信息;第二判断单元,所述第二判断单元用于判断所述第一拼接位图的错位参数是否等于零;第十获得单元,所述第十获得单元用于当所述第一拼接位图的错位参数不等于零时,对所述第一切片位图与所述第二切片位图进行错位切分,获得错位切分图案;第十一获得单元,所述第十一获得单元用于将所述错位切分图案进行图案像素填充,获得第三单元位图;第三判断单元,所述第三判断单元用于判断所述第三单元位图是否符合预设条件;第三确定单元,所述第三确定单元用于当所述第三单元位图符合预设条件时,确定第一投影曝光信息。
优选的,所述装置还包括:第四确定单元,所述第四确定单元用于根据所述第一连接信息确定所述第一3D打印机的第一初始化信息;第四判断单元,所述第四判断单元用于根据所述第一初始化信息判断所述第一3D打印机的成型台面上是否有第一物体;第五确定单元,所述第五确定单元用于当所述第一3D打印机的成型台面上有第一物体时,确定第一提醒信息,将所述第一提醒信息发送给第一用户;第六确定单元,所述第六确定单元用于根据所述第一提醒信息确定第一除困气信息。
优选的,所述装置还包括:第二设置单元,所述第二设置单元用于设置所述第一固化层的第一极限位置;第十二获得单元,所述第十二获得单元用于获得所述第一模型实体的第一高度;第五判断单元,所述第五判断单元用于判断所述第一高度是否达到所述第一极限位置;第十三获得单元,所述第十三获得单元用于当所述第一高度达到所述第一极限位置时,获得第一指令信息,其中,所述第一指令信息为所述第一3D打印机中断信息。
优选的,所述装置还包括:第七确定单元,所述第七确定单元用于根据所述DLP光引擎和所述液槽水平移动至所述第一单元位图确定第一移动距离;第八确定单元,所述第八确定单元用于根据所述DLP光引擎和所述液槽水平移动至所述第二单元位图确定第二移动距离;第六判断单元,所述第六判断单元用于判断所述第一移动距离与所述第二移动距离是否相同;第十四获得单元,所述第十四获得单元用于当所述第一移动距离与所述第二移动距离相同时,根据所述第一移动距离与所述第二移动距离之和,获得最终移动距离;第七判断单元,所述第七判断单元用于判断所述最终移动距离是否达到预设目标移动距离;第十五获得单元,所述第十五获得单元用于当所述最终移动距离达到预设目标移动距离时,获得第二指令信息,其中,所述第二指令信息为所述第一3D打印机中断信息。
优选的,所述装置还包括:第十六获得单元,所述第十六获得单元用于获得所述第一固化层的第一曝光时间;第三设置单元,所述第三设置单元用于根据所述第一曝光时间设置预设阈值;第十七获得单元,所述第十七获得单元用于获得底层固化层的第二曝光时间;第八判断单元,所述第八判断单元用于判断所述第二曝光时间是否满足所述预设阈值;第九确定单元,所述第九确定单元用于当所述第二曝光时间不满足所述预设阈值时,确定所述底层固化层的第三曝光时间。
前述图1实施例一中的一种基于DLP的大幅面3D打印方法的各种变化方式和具体实例同样适用于本实施例的一种基于DLP的大幅面3D打印装置,通过前述对一种基于DLP的大幅面3D打印方法的详细描述,本领域技术人员可以清楚的知道本实施例中一种基于DLP的大幅面3D打印装置的实施方法,所以为了说明书的简洁,在此不再详述。
实施例三
基于与前述实施例中一种基于DLP的大幅面3D打印方法同样的发明构思,本发明还提供一种基于DLP的大幅面3D打印装置,其上存储有计算机程序,该程序被处理器执行时实现前文所述一种基于DLP的大幅面3D打印方法的任一方法的步骤。
其中,在图3中,总线架构(用总线300来代表),总线300可以包括任意数量的互联的总线和桥,总线300将包括由处理器302代表的一个或多个处理器和存储器304代表的存储器的各种电路链接在一起。总线300还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口306在总线300和接收器301和发送器303之间提供接口。接收器301和发送器303可以是同一个元件,即收发机,提供用于在传输介质上与各种其他装置通信的单元。
处理器302负责管理总线300和通常的处理,而存储器304可以被用于存储处理器302在执行操作时所使用的数据。
实施例四
基于与前述实施例中一种基于DLP的大幅面3D打印方法同样的发明构思,本发明还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
在具体实施过程中,该程序被处理器执行时,还可以实现实施例一中的任一方法步骤。
本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
本申请实施例通过提供所述方法包括:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。解决了现有技术中采用多个投影设备完成大尺寸模型成型,而无法使用一个投影设备打印大尺寸模型,造成投影设备增加,相邻投影面易产生接缝,影响模型质量,且设备成本高的技术问题,达到了在不增加投影设备的情况下,采用移动拼接成型水平移动一个投影设备完成大幅面模型打印,提高模型成品质量,提高模型机械强度,降低成本的技术效果。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (10)

  1. 一种基于DLP的大幅面3D打印方法,其特征在于,所述方法包括:获得第一切片位图信息;判断所述第一切片位图信息是否符合预设投影尺寸;当所述第一切片位图信息超出所述预设投影尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;获得第一3D打印机的第一连接信息;根据所述第一连接信息确定第一预处理信息;根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
  2. 如权利要求1所述的方法,其特征在于,所述获得第一切片位图信息,包括:获得第一STL模型;设置第二厚度;根据所述第二厚度对所述第一STL模型垂直于Z轴的横切面进行等厚切分,获得系列切片位图信息,其中,所述系列切片位图信息包含所述第一切片位图信息与第二切片位图信息。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:将所述第一切片位图信息与所述第二切片位图信息的拼接成型,确定第一拼接位图信息;判断所述第一拼接位图的错位参数是否等于零;当所述第一拼接位图的错位参数不等于零时,对所述第一切片位图与所述第二切片位图进行错位切分,获得错位切分图案;将所述错位切分图案进行图案像素填充,获得第三单元位图;判断所述第三单元位图是否符合预设条件;当所述第三单元位图符合预设条件时,确定第一投影曝光信息。
  4. 如权利要求1所述的方法,其特征在于,所述第一预处理信息,包括:根据所述第一连接信息确定所述第一3D打印机的第一初始化信息;根据所述第一初始化信息判断所述第一3D打印机的成型台面上是否有第一物体;当所述第一3D打印机的成型台面上有第一物体时,确定第一提醒信息,将所述第一提醒信息发送给第一用户;根据所述第一提醒信息确定第一除困气信息。
  5. 如权利要求1所述的方法,其特征在于,所述方法还包括:设置所述第一固化层的第一极限位置;获得所述第一模型实体的第一高度;判断所述第一高度是否达到所述第一极限位置;当所述第一高度达到所述第一极限位置时,获得第一指令信息,其中,所述第一指令信息为所述第一3D打印机中断信息。
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:根据所述DLP光引擎和所述液槽水平移动至所述第一单元位图确定第一移动距离;根据所述DLP光引擎和所述液槽水平移动至所述第二单元位图确定第二移动距离;判断所述第一移动距离与所述第二移动距离是否相同;当所述第一移动距离与所述第二移动距离相同时,根据所述第一移动距离与所述第二移动距离之和,获得最终移动距离;判断所述最终移动距离是否达到预设目标移动距离;当所述最终移动距离达到预设目标移动距离时,获得第二指令信息,其中,所述第二指令信息为所述第一3D打印机中断信息。
  7. 如权利要求1所述的方法,其特征在于,所述方法还包括:获得所述第一固化层的第一曝光时间;根据所述第一曝光时间设置预设阈值;获得底层固化层的第二曝光时间;判断所述第二曝光时间是否满足所述预设阈值;当所述第二曝光时间不满足所述预设阈值时,确定所述底层固化层的第三曝光时间。
  8. 一种基于DLP的大幅面3D打印装置,其特征在于,所述装置包括:第一获得单元,所述第一获得单元用于获得第一切片位图信息;第一判断单元,所述第一判断单元用于判断所述第一切片位图信息是否符合预设投影尺寸和预设模型尺寸;第二获得单元,所述第二获得单元用于当所述第一切片位图信息超出所述预设投影尺寸和所述预设模型尺寸时,将所述第一切片位图切分,获得系列单元位图,其中,所述系列单元位图包含第一单元位图与第二单元位图;第三获得单元,所述第三获得单元用于获得第一3D打印机的第一连接信息;第一确定单元,所述第一确定单元用于根据所述第一连接信息确定第一预处理信息;第四获得单元,所述第四获得单元用于根据所述第一预处理信息控制所述第一3D打印机的DLP光引擎和液槽水平移动至所述第一单元位图进行投影曝光,获得第一固化位图信息;第五获得单元,所述第五获得单元用于将所述DLP光引擎和所述液槽从所述第一单元位图水平移动至所述第二单元位图进行投影曝光,获得第二固化位图信息;第六获得单元,所述第六获得单元用于根据所述第一固化位图信息与所述第二固化位图信息获得第一固化层,其中,所述第一固化层具有第一厚度;第七获得单元,所述第七获得单元用于将所述第一固化层脱模,且将所述第一固化层垂直上移所述第一厚度,根据所述第一厚度叠加所述第一固化层获得第一模型实体。
  9. 一种基于DLP的大幅面3D打印装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1-7任一项所述方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1-7任一项所述方法的步骤。
PCT/CN2020/137599 2020-06-15 2020-12-18 一种基于dlp的大幅面3d打印方法和装置 WO2021253770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010543577.2A CN111761817B (zh) 2020-06-15 2020-06-15 一种基于dlp的大幅面3d打印方法和装置
CN202010543577.2 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021253770A1 true WO2021253770A1 (zh) 2021-12-23

Family

ID=72721113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137599 WO2021253770A1 (zh) 2020-06-15 2020-12-18 一种基于dlp的大幅面3d打印方法和装置

Country Status (2)

Country Link
CN (1) CN111761817B (zh)
WO (1) WO2021253770A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407368A (zh) * 2021-12-31 2022-04-29 深圳市纵维立方科技有限公司 三维打印控制方法、打印设备及存储介质
CN115122641A (zh) * 2022-05-31 2022-09-30 深圳市纵维立方科技有限公司 控制方法、控制系统、可读存储介质和3d打印设备
CN115195129A (zh) * 2022-08-22 2022-10-18 珠海横琴美加澳光电技术有限公司 一种用于3d打印多曝光面图像的拼接方法
RU2810712C1 (ru) * 2023-03-22 2023-12-28 Общество с ограниченной ответственностью "3Д-Медуза" (ООО "3Д-Медуза") Способ векторно-матричной фотополимерной 3Д-печати (варианты)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111761817B (zh) * 2020-06-15 2022-03-22 苏州大学 一种基于dlp的大幅面3d打印方法和装置
CN114770696A (zh) * 2022-05-14 2022-07-22 苏州大学 陶瓷器件3d动态成型优化设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795113A (zh) * 2019-02-20 2019-05-24 广州黑格智造信息科技有限公司 3d打印机及三维模型打印方法
EP3508330A1 (en) * 2016-09-01 2019-07-10 Khalip, Oleg Yurevich Device and method for forming a three-dimensional object from a liquid polymer
US20200001531A1 (en) * 2018-06-27 2020-01-02 Lawrence Livermore National Security, Llc Dual wavelength negative imaging dlp-sla system
CN110722799A (zh) * 2019-11-09 2020-01-24 苏州大学 大幅面dlp型3d打印机错位均摊接缝消除方法及系统
CN111761817A (zh) * 2020-06-15 2020-10-13 苏州大学 一种基于dlp的大幅面3d打印方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109968663A (zh) * 2019-04-23 2019-07-05 上海幻嘉信息科技有限公司 一种投影拼合式3d打印方法和3d打印装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3508330A1 (en) * 2016-09-01 2019-07-10 Khalip, Oleg Yurevich Device and method for forming a three-dimensional object from a liquid polymer
US20200001531A1 (en) * 2018-06-27 2020-01-02 Lawrence Livermore National Security, Llc Dual wavelength negative imaging dlp-sla system
CN109795113A (zh) * 2019-02-20 2019-05-24 广州黑格智造信息科技有限公司 3d打印机及三维模型打印方法
CN110722799A (zh) * 2019-11-09 2020-01-24 苏州大学 大幅面dlp型3d打印机错位均摊接缝消除方法及系统
CN111761817A (zh) * 2020-06-15 2020-10-13 苏州大学 一种基于dlp的大幅面3d打印方法和装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407368A (zh) * 2021-12-31 2022-04-29 深圳市纵维立方科技有限公司 三维打印控制方法、打印设备及存储介质
CN114407368B (zh) * 2021-12-31 2023-12-08 深圳市纵维立方科技有限公司 三维打印控制方法、打印设备及存储介质
CN115122641A (zh) * 2022-05-31 2022-09-30 深圳市纵维立方科技有限公司 控制方法、控制系统、可读存储介质和3d打印设备
CN115122641B (zh) * 2022-05-31 2023-08-08 深圳市纵维立方科技有限公司 控制方法、控制系统、可读存储介质和3d打印设备
US12023868B1 (en) 2022-05-31 2024-07-02 Shenzhen Anycubic Technology Co., Ltd. Control method, control system, readable storage medium and 3D printing equipment
CN115195129A (zh) * 2022-08-22 2022-10-18 珠海横琴美加澳光电技术有限公司 一种用于3d打印多曝光面图像的拼接方法
RU2810712C1 (ru) * 2023-03-22 2023-12-28 Общество с ограниченной ответственностью "3Д-Медуза" (ООО "3Д-Медуза") Способ векторно-матричной фотополимерной 3Д-печати (варианты)

Also Published As

Publication number Publication date
CN111761817B (zh) 2022-03-22
CN111761817A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2021253770A1 (zh) 一种基于dlp的大幅面3d打印方法和装置
US8326024B2 (en) Method of reducing the force required to separate a solidified object from a substrate
CN107073814B (zh) 持续拉动三维打印
EP1710625B1 (en) Improved edge smoothness with low resolution projected images for use in solid imaging
US7906061B2 (en) Bubble-free cross-sections for use in solid imaging
CN105635705A (zh) 增强的数字光处理面曝光快速成型的方法及装置
CN103029301B (zh) 一种光固化快速成型装置及其方法
US20160332368A1 (en) Wall Smoothness, Feature Accuracy and Resolution in Projected Images via Exposure Levels in Solid Imaging
CN105666885A (zh) 基于dlp的可分区光固化3d打印成型方法、系统及设备
EP3386705A1 (en) Method and apparatus for concurrently making multiple three-dimensional objects from multiple solidifiable materials
CN107877851B (zh) 立体打印装置与立体打印方法
CN110722799B (zh) 大幅面dlp型3d打印机错位均摊接缝消除方法及系统
CN108422660A (zh) 一种基于dlp投影光固化三维打印方法及设备
CN107263862A (zh) 一种制件强度可控的面成型光固化三维打印方法
WO2021253769A1 (zh) 一种 stl 模型切片方法和装置
CN111805895A (zh) 一种大尺寸光固化3d打印方法和打印机
CN108248020A (zh) 一种水平式dlp投影技术面曝光成型装置及方法
CN106696296A (zh) 一种快速提拉成型3d打印系统及其打印方法
EP4275898A1 (en) A method for efficient optimization and generation of rapid dlp 3d printing parameters
US20190381730A1 (en) Three-dimensional printing device
CN206690537U (zh) 一种自然流动连续补充dlp光固化装置
JPS63145016A (ja) 立体形状形成装置
CN206230878U (zh) 一种基于dlp投影技术的快速面曝光成型装置
CN113290845A (zh) 一种高粘度及多材料3d打印设备
CN113498382A (zh) 使用增材制造技术由可固化材料制造光学体积元素的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940956

Country of ref document: EP

Kind code of ref document: A1