WO2022165961A1 - 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用 - Google Patents

一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用 Download PDF

Info

Publication number
WO2022165961A1
WO2022165961A1 PCT/CN2021/084381 CN2021084381W WO2022165961A1 WO 2022165961 A1 WO2022165961 A1 WO 2022165961A1 CN 2021084381 W CN2021084381 W CN 2021084381W WO 2022165961 A1 WO2022165961 A1 WO 2022165961A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
preparation
sample
arc oxidation
magnesium alloy
Prior art date
Application number
PCT/CN2021/084381
Other languages
English (en)
French (fr)
Inventor
李涛
冷中军
王西涛
周吉学
张素卿
王世芳
李航
刘洪涛
吴建华
奥玛仕奇雷萨
Original Assignee
山东省科学院新材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东省科学院新材料研究所 filed Critical 山东省科学院新材料研究所
Priority to AU2021338582A priority Critical patent/AU2021338582B2/en
Publication of WO2022165961A1 publication Critical patent/WO2022165961A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/30Anodisation of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge

Definitions

  • the invention relates to the field of material surface treatment, in particular to a magnesium alloy ultra-high porosity micro-arc oxidation coating and a preparation method and application thereof.
  • Micro-arc oxidation technology can be used to form a ceramic coating with magnesium oxide as the main phase on the surface of magnesium alloy. Wear resistance and corrosion resistance of magnesium alloy matrix.
  • the most remarkable feature of the micro-arc oxidation coating is that it is not a completely closed coating, but some microscopic pores are distributed in the outermost layer. These holes are the traces left over by the breakdown of high voltage discharge during the micro-arc oxidation process, and are unavoidable in the micro-arc oxidation technology.
  • the most commonly used technical approach to reduce the pore structure in the micro-arc oxidation coating is to control the micro-arc discharge breakdown effect by adjusting various electrical parameters during the micro-arc oxidation process, thereby optimizing the growth of holes.
  • the inventors found that when it is expected to obtain the pore structure in the developed micro-arc oxidation coating, the micro-arc oxidation treatment using the above-mentioned reverse adjustment process parameters often leads to the loose structure of the micro-arc oxidation coating, the decrease in bonding strength, and the mechanical properties. significantly reduce. It can be seen that it is of great significance to develop ultra-high porosity micro-arc oxidation coatings with excellent bonding strength and mechanical properties.
  • the present invention provides a magnesium alloy ultra-high porosity micro-arc oxidation coating and a preparation method and application thereof.
  • the method fully combines the cathode micro-arc electrodeposition treatment and the anode micro-arc oxidation treatment.
  • a high-quality target coating can be prepared and formed with only one power supply device, and an ultra-high porosity micro-arc oxidation coating with excellent bonding strength and mechanical properties is obtained, which is the ultra-high-porosity micro-arc oxidation coating for magnesium alloys.
  • the preparation of layers provides a new idea.
  • the first aspect of the present invention provides a preparation method of a magnesium alloy ultra-high porosity micro-arc oxidation coating, characterized in that the preparation method comprises the following steps:
  • step (3) the sample obtained in step (3) is placed in the catholyte, and the sample is used as the cathode, and the graphite sheet is used as the anode, and the cathode micro-arc electrodeposition is processed;
  • the second aspect of the present invention provides an ultra-high porosity micro-arc oxidation coating obtained by the above preparation method, wherein the porosity of the micro-arc oxidation coating is not less than 50%, and the micropore diameter is 0.5-3 ⁇ m.
  • the third aspect of the present invention provides the application of the above-mentioned magnesium alloy ultra-high porosity micro-arc oxidation coating in the fields of environment, catalysis, energy, military industry, aerospace, automobile, textile or machinery.
  • an ultra-high porosity microstructure with excellent bonding strength and mechanical properties can be prepared on the surface of the alloy.
  • Arc oxidation coating, the porosity of the micro-arc oxidation coating is not less than 50%, and the micropore diameter is 0.5-3 ⁇ m.
  • the present invention provides a new idea for the preparation of magnesium alloy ultra-high porosity micro-arc oxidation coating, and also has certain value for promoting the application of high specific surface area magnesium alloy in the fields of catalysis, energy and environment.
  • Fig. 1 is the surface microscopic topography of the coating prepared in Example 1 of the present invention
  • Fig. 2 is the surface topography of the coating prepared in Example 1 of the present invention after the coating adhesion test is carried out by the cross-cut method;
  • Fig. 3 is the surface microscopic topography of the coating prepared in Example 2 of the present invention.
  • Fig. 4 is the surface micrograph of the coating prepared in Comparative Example 1;
  • FIG. 5 is a surface micrograph of the coating prepared in Comparative Example 2.
  • the present invention proposes a A preparation method of a magnesium alloy ultra-high porosity micro-arc oxidation coating, characterized in that the preparation method comprises the following steps:
  • step (3) the sample obtained in step (3) is placed in the catholyte, and the sample is used as the cathode, and the graphite sheet is used as the anode, and the cathode micro-arc electrodeposition is processed;
  • the purpose of the pretreatment is to form dense pitting pits on the magnesium alloy substrate, so that the subsequent coating growth is carried out on the rough substrate, which is beneficial to improve the porosity of the coating.
  • the purpose of ultrasonic cleaning is to remove the loose corrosion products generated by the pretreatment reaction on the one hand, and to neutralize the acid solution remaining in the pretreatment in an alkaline solution environment without causing new corrosion.
  • the purpose of preparing the barrier film is to solidify a layer of insulating coating on the surface of the alloy substrate, so as to facilitate the arcing discharge during the cathode micro-arc electrodeposition process.
  • cathodic micro-arc electrodeposition is to use the active ingredients in the catholyte to grow the film layer, preventing direct anodic micro-arc oxidation treatment from causing preferential melting to the edges of the pitting pits prepared in the pretreatment process, thereby weakening the The role of pretreatment; on the other hand, it is to prevent the direct anodic micro-arc oxidation treatment from easily generating abnormal discharge locally at the microscopic tip of the alloy surface, resulting in loose coating structure and reduced mechanical properties.
  • anodic micro-arc oxidation treatment is to finally prepare an ultra-high porosity micro-arc oxidation coating with excellent bonding strength and mechanical properties through the coordination of various electrical parameters and electrolyte components.
  • the operating conditions of the pretreatment are: the temperature of the etching solution is 10-30°C, and the treatment time is 15-50s; the composition of the etching solution is: : The volume fraction of phosphoric acid is 5 to 15%, sodium fluoride is 0.5 to 3 g/L, and the rest is water.
  • the operating conditions of the ultrasonic cleaning are as follows: the temperature of the ultrasonic cleaning solution is 10-35°C, and the cleaning time is 1-5 min;
  • the composition is: sodium hydroxide 3-8g/L, ammonium citrate 0.5-3g/L, and the rest is water.
  • the ultrasonic frequency is not limited, and the commonly used ultrasonic cleaning equipment (30-100KHz) can be used.
  • the operating conditions for preparing the barrier film are: soaking time of 30-60s, drying temperature of 80-150°C, and drying time of 15-30min ;
  • composition of the barrier film preparation solution is: magnesium trisilicate 5-10 g/L, ethylene glycol 5-20 mL/L, and the rest is ethanol.
  • the operating conditions of the cathode micro-arc electrodeposition treatment are: the voltage is 100-250V, the duty cycle is 10-30%, and the frequency is 80- 150Hz, time is 2 ⁇ 4min.
  • the composition of the catholyte is: aluminum nitrate 50-100 g/L, and the rest is ethanol.
  • the operating conditions of the anode micro-arc oxidation treatment are: the voltage is 300-450V, the duty cycle is 5-30%, and the frequency is 500-1000Hz , the time is 3 ⁇ 10min.
  • the composition of the anolyte solution is: sodium hexametaphosphate 2-10 g/L, potassium fluoride dihydrate 5-15 g/L, silver nitrate 0.2-3 g/L, Glucose 0.2 ⁇ 3g/L, the rest is water, before the electrolyte is used, ammonia water should be slowly added dropwise to make the solution from clear to turbid and clear again.
  • the second aspect of the present invention provides an ultra-high porosity micro-arc oxidation coating obtained by the above preparation method, wherein the porosity of the micro-arc oxidation coating is not less than 50%, and the micropore diameter is 0.5-3 ⁇ m.
  • the third aspect of the present invention provides the application of the above-mentioned magnesium alloy ultra-high porosity micro-arc oxidation coating in the fields of environment, catalysis, energy, military industry, aerospace, automobile, textile or machinery.
  • the magnesium alloy is processed according to the following steps:
  • the cleaned magnesium alloy sample was placed in an etching solution with a composition of: phosphoric acid volume fraction 10%, sodium fluoride 1.5g/L, and the rest water for pretreatment.
  • the etching solution temperature was 20 °C, soaked 20s.
  • step (3) The sample obtained after the treatment in step (2) is placed in the barrier film preparation solution consisting of: magnesium trisilicate 8g/L, ethylene glycol 15mL/L, and the rest is ethanol for ultrasonic soaking treatment, soaking time 40s , and then take out the sample and place it in an oven for drying and curing.
  • the drying temperature is 100 °C and the drying time is 20 min.
  • the prepared sample was observed by scanning electron microscope, and its surface microstructure is shown in Figure 1. It can be observed that the surface of the coating has a well-developed pore structure. After statistical analysis, the porosity of the coating is greater than 55%, and the micropore diameter is 1.2 ⁇ m. . According to the GB/T 9286-1998 standard, the coating adhesion test was carried out by the cross-cut method. The surface morphology of the sample after the test is shown in Figure 2. The results show that the coating adhesion rating is grade 1. The microhardness of the coating was measured by a digital microhardness tester to be 813HV.
  • the magnesium alloy is processed according to the following steps:
  • the cleaned magnesium alloy samples were placed in an etching solution with a composition of: phosphoric acid volume fraction 15%, sodium fluoride 3g/L, and the rest water for pretreatment.
  • the temperature of the etching solution was 20 °C and soaked for 40s. .
  • step (3) The sample obtained after the treatment in step (2) is placed in the barrier film preparation solution consisting of: magnesium trisilicate 8g/L, ethylene glycol 15mL/L, and the rest is ethanol for ultrasonic soaking treatment, soaking time 40s , and then take out the sample and place it in an oven for drying and curing.
  • the drying temperature is 100 °C and the drying time is 20 min.
  • the sample obtained by the (4) step treatment is placed in the anolyte solution configured as follows: sodium hexametaphosphate 5g/L, potassium fluoride dihydrate 10g/L, silver nitrate 2g/L, glucose 2g/L L. The rest is water. Finally, slowly add ammonia water to make the solution from clear to turbid and clear again. Take the sample to be treated as the anode and stainless steel as the cathode, and carry out anodic micro-arc oxidation treatment. The applied voltage is 400V, and the duty ratio is 15. %, frequency 600Hz, time 10min.
  • the prepared sample was observed by scanning electron microscope, and its surface microscopic morphology is shown in Figure 3. It can be observed that the pore structure on the surface of the coating is well developed. After statistical analysis, the porosity of the coating is greater than 60%, and the micropore diameter is 1.4 ⁇ m. .
  • the coating adhesion test results show that the coating adhesion rating is 1.
  • the microhardness of the coating was measured by a digital microhardness tester to be 861HV.
  • the magnesium alloy is processed according to the following steps:
  • the cleaned magnesium alloy sample was placed in an etching solution with a composition of: phosphoric acid volume fraction 10%, sodium fluoride 1.5g/L, and the rest water for pretreatment.
  • the etching solution temperature was 20 °C, soaked 20s.
  • the prepared sample was observed by scanning electron microscope, and its surface microstructure is shown in Figure 4. It can be observed that the pore structure on the surface of the coating is less developed than that of Example 1. After statistical analysis, the porosity of the coating is less than 40%; in addition, loose tissue can be clearly seen on the coating, and its area can account for up to 50%; the coating adhesion test results show that the coating adhesion rating is grade 2, and the hardness is only 214HV.
  • the magnesium alloy is processed according to the following steps:
  • the cleaned magnesium alloy sample is placed in an electrolyte solution consisting of: sodium silicate 10g/L, sodium fluoride 5g/L, sodium hydroxide 8g/L, and the rest is water, and the sample to be treated is used as the anode , with stainless steel as the cathode, the anode micro-arc oxidation treatment is carried out, the applied voltage is 380V, the duty ratio is 8%, the frequency is 800Hz, and the time is 10min.
  • the prepared sample was observed by scanning electron microscope, and its surface microstructure is shown in Figure 5. It can be observed that the pore structure on the surface of the coating is very underdeveloped compared with Example 1. After statistical analysis, the pores of the coating are The ratio is less than 10%, and the pore size of the micropores is obviously larger than that of Example 1, up to 5 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用。镁合金依次经过预处理、超声波清洗、阻挡膜制备、阴极微弧电沉积处理和阳极微弧氧化处理后,可在合金表面制备一具有优良结合强度和机械性能的超高孔隙率微弧氧化涂层,该微弧氧化涂层孔隙率不低于50%,微孔孔径为0.5~3μm;该方法各步骤依次进行、目标明确,充分结合了阴极微弧电沉积处理和阳极微弧氧化处理的各自优势,仅用一套电源装置即可形成高质量的目标涂层。

Description

一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用 技术领域
本发明涉及材料表面处理领域,具体涉及一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
近年来,微弧氧化技术在镁合金表面处理领域内的应用愈来愈广泛。利用微弧氧化技术可以在镁合金表面制备形成一层以氧化镁为主相的陶瓷涂层,该陶瓷涂层不仅与基体结合牢固,而且具有硬度高、绝缘性好等特点,因此可以大幅增强镁合金基体的耐磨性、耐腐蚀性。
从涂层表面的微观组织结构上讲,微弧氧化涂层最显著的特点就是其并不是一层完全封闭的涂层,而是在其最外层中分布着一些显微孔洞。这些孔洞是由于微弧氧化过程中高压放电击穿所遗留下来的痕迹,是微弧氧化技术所不可避免的。之前,为了使镁合金具有更高的耐蚀性和机械性能,大量的研究均致力于如何减少甚至完全去除微弧氧化处理后涂层中的孔洞结构。
近年来,随着镁合金在各种特殊功能领域内的拓展应用,提高镁合金的比表面积对于其功能实现和表达显示出愈加重要的意义。一些研究者敏锐地认识到,镁合金表面微弧氧化涂层中的显微孔洞结构在诸如催化、能源、环境等领域内是一种有益结构。因此,在某些场合下,使微弧氧化涂层中的显微孔洞结 构更发达、涂层孔隙率更高反而成为一种新的追求目标。
先前,研究者在减少微弧氧化涂层中孔洞结构的技术途径中最常用的就是通过调节微弧氧化过程中的各种电参数,从而控制微弧放电击穿效应,进而优化孔洞的生长。然而,发明人发现在期望获得发达微弧氧化涂层中孔洞结构时,利用上述的反向调节工艺参数进行微弧氧化处理却往往导致微弧氧化涂层的结构疏松、结合强度下降、机械性能大幅降低。可见,开发具有优良结合强度和机械性能的超高孔隙率微弧氧化涂层具有重要意义。
发明内容
为了解决现有技术的不足,本发明提供了一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用,该方法充分结合了阴极微弧电沉积处理和阳极微弧氧化处理的各自优势,仅用一套电源装置即可制备形成高质量的目标涂层,得到具有优良结合强度和机械性能的超高孔隙率微弧氧化涂层,为镁合金超高孔隙率微弧氧化涂层的制备提供了一种新思路。
为实现上述技术目的,本发明第一方面提供一种镁合金超高孔隙率微弧氧化涂层的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将清洗干净的镁合金样品置于浸蚀液中进行预处理;
(2)将预处理后的镁合金样品置于超声波清洗液中进行超声波清洗,之后取出吹干待用;
(3)将超声波清洗后的样品置于阻挡膜制备液中进行超声波浸泡处理,之后取出样品置于烘箱中烘干固化,结束后取出冷却待用;
(4)将步骤(3)所得样品置于阴极电解液中,以该样品作阴极,以石墨片作阳极,进行阴极微弧电沉积处理;
(5)将阴极微弧电沉积处理后的样品置于阳极电解液中,以该样品作阳 极,以不锈钢作阴极,进行阳极微弧氧化处理;
(6)将样品依次用水和乙醇冲洗干净,吹干。
本发明第二方面提供一种上述制备方法得到的超高孔隙率微弧氧化涂层,所述微弧氧化涂层孔隙率不低于50%,微孔孔径为0.5~3μm。
本发明第三方面提供一种上述的镁合金超高孔隙率微弧氧化涂层在环境、催化、能源、军工、航天航空及汽车、纺织或机械领域的应用。
本发明的一个或多个具体实施方式至少具有以下有益效果:
(1)镁合金依次经过预处理、超声波清洗、阻挡膜制备、阴极微弧电沉积处理和阳极微弧氧化处理后,可在合金表面制备一具有优良结合强度和机械性能的超高孔隙率微弧氧化涂层,该微弧氧化涂层孔隙率不低于50%,微孔孔径为0.5~3μm。
(2)本发明所述镁合金超高孔隙率微弧氧化涂层的制备方法,各步骤压茬进行、目标明确,充分结合了阴极微弧电沉积处理和阳极微弧氧化处理的各自优势,仅用一套电源装置即可形成高质量的目标涂层。
(3)本发明为镁合金超高孔隙率微弧氧化涂层的制备提供了一种新思路,对推广高比表面积镁合金在催化、能源、环境等领域内的应用也有一定的价值。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明实施例1制备的涂层的表面显微形貌图;
图2为本发明实施例1制备的涂层经划格法进行涂层附着力测试后的表面形貌图;
图3为本发明实施例2制备的涂层的表面显微形貌图;
图4为对比例1中制备的涂层的表面显微形貌图;
图5为对比例2中制备的涂层的表面显微形貌图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
正如背景技术所介绍的,针对采用反向调节微弧氧化工艺参数来获得发达孔洞结构时会导致微弧氧化涂层的结构疏松、结合强度下降、机械性能大幅降低的问题,本发明提出了一种镁合金超高孔隙率微弧氧化涂层的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将清洗干净的镁合金样品置于浸蚀液中进行预处理;
(2)将预处理后的镁合金样品置于超声波清洗液中进行超声波清洗,之后取出吹干待用;
(3)将超声波清洗后的样品置于阻挡膜制备液中进行超声波浸泡处理,之后取出样品置于烘箱中烘干固化,结束后取出冷却待用;
(4)将步骤(3)所得样品置于阴极电解液中,以该样品作阴极,以石墨片作阳极,进行阴极微弧电沉积处理;
(5)将阴极微弧电沉积处理后的样品置于阳极电解液中,以该样品作阳 极,以不锈钢作阴极,进行阳极微弧氧化处理;
(6)将样品依次用水和乙醇冲洗干净,吹干。
其中,预处理的目的是在镁合金基体上形成密集的点蚀坑,使得后续涂层的生长在粗糙的基体上进行,有利于提高涂层的孔隙率。
超声波清洗的目的一方面是清除掉预处理反应生成的疏松腐蚀产物,另一方面是在碱性的溶液环境中中和预处理残留的酸液又不至于引起新的腐蚀。
阻挡膜制备的目的是在合金基体表面上固化一层绝缘涂层,以利于阴极微弧电沉积处理过程中的起弧放电。
阴极微弧电沉积处理的目的一方面是利用阴极电解液中的有效成分进行膜层的生长,防止直接进行阳极微弧氧化处理对预处理过程中制备的点蚀坑的边缘引发优先熔融从而削弱预处理的作用;另一方面是防止直接进行阳极微弧氧化处理容易在合金表面的显微尖端局部发生异常放电而导致涂层结构疏松、机械性能降低。
阳极微弧氧化处理的目的是通过各种电参数和电解液组分的配合最终制备一具有优良结合强度和机械性能的超高孔隙率微弧氧化涂层。
在本发明的一个或多个实施方式中,所述步骤(1)中,预处理的操作条件为:浸蚀液温度为10~30℃,处理时间为15~50s;浸蚀液的组成为:磷酸体积分数5~15%、氟化钠0.5~3g/L、其余为水。
在本发明的一个或多个实施方式中,所述步骤(2)中,超声波清洗的操作条件为:超声波清洗液温度为10~35℃,清洗时间为1~5min;所述超声波清洗液的组成为:氢氧化钠3~8g/L、柠檬酸铵0.5~3g/L、其余为水。不限定超声波频率,常用的超声波清洗设备(30-100KHz)均可。
在本发明的一个或多个实施方式中,所述步骤(3)中,阻挡膜制备的操 作条件为:浸泡时间30~60s,烘干温度为80~150℃,烘干时间为15~30min;
所述阻挡膜制备液的组成为:三硅酸镁5~10g/L、乙二醇5~20mL/L、其余为乙醇。
在本发明的一个或多个实施方式中,所述步骤(4)中,阴极微弧电沉积处理的操作条件为:电压为100~250V,占空比为10~30%,频率为80~150Hz,时间为2~4min。
在本发明的一个或多个实施方式中,所述阴极电解液的组成为:硝酸铝50~100g/L、其余为乙醇。
在本发明的一个或多个实施方式中,所述步骤(5)中,阳极微弧氧化处理的操作条件为:电压为300~450V,占空比为5~30%,频率为500~1000Hz,时间为3~10min。
在本发明的一个或多个实施方式中,所述阳极电解液的组成为:六偏磷酸钠2~10g/L、二水合氟化钾5~15g/L、硝酸银0.2~3g/L、葡萄糖0.2~3g/L、其余为水,电解液使用前需缓慢滴加氨水使溶液由澄清变浑浊并再次变澄清为止。
本发明第二方面提供一种上述制备方法得到的超高孔隙率微弧氧化涂层,所述微弧氧化涂层孔隙率不低于50%,微孔孔径为0.5~3μm。
本发明第三方面提供一种上述的镁合金超高孔隙率微弧氧化涂层在环境、催化、能源、军工、航天航空及汽车、纺织或机械领域的应用。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例与对比例详细说明本发明的技术方案。
实施例1
将镁合金按照如下步骤进行处理:
(1)将清洗干净的镁合金样品置于组成为:磷酸体积分数10%、氟化钠 1.5g/L、其余为水的浸蚀液中进行预处理,浸蚀液温度为20℃,浸泡20s。
(2)将样品从浸蚀液中取出,用水冲洗后,置于组成为:氢氧化钠5g/L、柠檬酸铵1.5g/L、其余为水的超声波清洗液中进行超声波清洗,超声波清洗液温度为25℃,清洗3min,之后取出样品吹干待用。
(3)将经过第(2)步处理所得样品置于组成为:三硅酸镁8g/L、乙二醇15mL/L、其余为乙醇的阻挡膜制备液中进行超声波浸泡处理,浸泡时间40s,之后取出样品置于烘箱中烘干固化,烘干温度100℃,烘干时间20min,结束后取出冷却待用。
(4)将经过第(3)步处理所得样品置于组成为:硝酸铝80g/L、其余为乙醇的阴极电解液中,以待处理样品作阴极,以石墨片作阳极,进行阴极微弧电沉积处理,施加电压150V,占空比15%,频率100Hz,时间3min。
(5)将经过第(4)步处理所得样品置于按如下组成配置的阳极电解液:六偏磷酸钠5g/L、二水合氟化钾10g/L、硝酸银1g/L、葡萄糖1g/L、其余为水、最后缓慢滴加氨水使溶液由澄清变浑浊并再次变澄清为止,以待处理样品作阳极,以不锈钢作阴极,进行阳极微弧氧化处理,施加电压380V,占空比8%,频率800Hz,时间6min。
(6)依次用水和乙醇冲洗干净,吹干。
将制备所得样品进行扫描电镜观察,其表面显微形貌如图1所示,可以观察到,涂层表面孔洞结构发达,经统计分析,涂层孔隙率大于55%,微孔孔径为1.2μm。按照GB/T 9286-1998标准通过划格法进行涂层附着力测试,测试后样品表面形貌如图2所示,结果显示该涂层附着力评级为1级。利用数显显微硬度计测量该涂层的显微硬度为813HV。
实施例2
将镁合金按照如下步骤进行处理:
(1)将清洗干净的镁合金样品置于组成为:磷酸体积分数15%、氟化钠3g/L、其余为水的浸蚀液中进行预处理,浸蚀液温度为20℃,浸泡40s。
(2)将样品从浸蚀液中取出,用水冲洗后,置于组成为:氢氧化钠5g/L、柠檬酸铵1.5g/L、其余为水的超声波清洗液中进行超声波清洗,超声波清洗液温度为25℃,清洗5min,之后取出样品吹干待用。
(3)将经过第(2)步处理所得样品置于组成为:三硅酸镁8g/L、乙二醇15mL/L、其余为乙醇的阻挡膜制备液中进行超声波浸泡处理,浸泡时间40s,之后取出样品置于烘箱中烘干固化,烘干温度100℃,烘干时间20min,结束后取出冷却待用。
(4)将经过第(3)步处理所得样品置于组成为:硝酸铝100g/L、其余为乙醇的阴极电解液中,以待处理样品作阴极,以石墨片作阳极,进行阴极微弧电沉积处理,施加电压200V,占空比20%,频率100Hz,时间3min。
(5)将经过第(4)步处理所得样品置于按如下组成配置的阳极电解液:六偏磷酸钠5g/L、二水合氟化钾10g/L、硝酸银2g/L、葡萄糖2g/L、其余为水、最后缓慢滴加氨水使溶液由澄清变浑浊并再次变澄清为止,以待处理样品作阳极,以不锈钢作阴极,进行阳极微弧氧化处理,施加电压400V,占空比15%,频率600Hz,时间10min。
(6)依次用水和乙醇冲洗干净,吹干。
将制备所得样品进行扫描电镜观察,其表面显微形貌如图3所示,可以观察到,涂层表面孔洞结构发达,经统计分析,涂层孔隙率大于60%,微孔孔径为1.4μm。涂层附着力测试结果显示该涂层附着力评级为1级。利用数显显微硬度计测量该涂层的显微硬度为861HV。
对比例1
将镁合金按照如下步骤进行处理:
(1)将清洗干净的镁合金样品置于组成为:磷酸体积分数10%、氟化钠1.5g/L、其余为水的浸蚀液中进行预处理,浸蚀液温度为20℃,浸泡20s。
(2)将样品从浸蚀液中取出,用水冲洗后,置于组成为:氢氧化钠5g/L、柠檬酸铵1.5g/L、其余为水的超声波清洗液中进行超声波清洗,超声波清洗液温度为25℃,清洗3min,之后取出样品吹干待用。
(3)将经过第(2)步处理所得样品置于按如下组成配置的阳极电解液:六偏磷酸钠5g/L、二水合氟化钾10g/L、硝酸银1g/L、葡萄糖1g/L、其余为水、最后缓慢滴加氨水使溶液由澄清变浑浊并再次变澄清为止,以待处理样品作阳极,以不锈钢作阴极,进行阳极微弧氧化处理,施加电压380V,占空比8%,频率800Hz,时间6min。
(4)依次用水和乙醇冲洗干净,吹干。
将制备所得样品进行扫描电镜观察,其表面显微形貌如图4所示,可以观察到,涂层表面孔洞结构相比实施例1而言表现为欠发达,经统计分析,涂层孔隙率小于40%;另外,涂层上明显可见较疏松的组织,其面积占比可达50%;涂层附着力测试结果显示该涂层附着力评级为2级,硬度仅为214HV。
对比例2
将镁合金按照如下步骤进行处理:
(1)将清洗干净的镁合金样品置于组成为:硅酸钠10g/L、氟化钠5g/L、氢氧化钠8g/L、其余为水的电解液中,以待处理样品作阳极,以不锈钢作阴极,进行阳极微弧氧化处理,施加电压380V,占空比8%,频率800Hz,时间10min。
(2)依次用水和乙醇冲洗干净,吹干。
将制备所得样品进行扫描电镜观察,其表面显微形貌如图5所示,可以观察到,涂层表面孔洞结构相比实施例1而言表现为十分欠发达,经统计分析,涂层孔隙率小于10%,微孔孔径明显相比实施例1而言较大,可达5μm。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种镁合金超高孔隙率微弧氧化涂层的制备方法,其特征在于:具体包括以下步骤:
    (1)将清洗干净的镁合金样品置于浸蚀液中进行预处理;
    (2)将预处理后的镁合金样品置于超声波清洗液中进行超声波清洗,之后取出吹干待用;
    (3)将超声波清洗后的样品置于阻挡膜制备液中进行超声波浸泡处理,之后取出样品置于烘箱中烘干固化,结束后取出冷却待用;
    (4)将步骤(3)所得样品置于阴极电解液中,以该样品作阴极,以石墨片作阳极,进行阴极微弧电沉积处理;
    (5)将阴极微弧电沉积处理后的样品置于阳极电解液中,以该样品作阳极,以不锈钢作阴极,进行阳极微弧氧化处理;
    (6)将样品依次用水和乙醇冲洗干净,吹干。
  2. 如权利要求1所述制备方法,其特征在于:所述步骤(1)中,预处理的操作条件为:浸蚀液温度为10~30℃,处理时间为15~50s;浸蚀液的组成为:磷酸体积分数5~15%、氟化钠0.5~3g/L、其余为水。
  3. 如权利要求1所述制备方法,其特征在于:所述步骤(2)中,超声波清洗的操作条件为:超声波清洗液温度为10~35℃,清洗时间为1~5min;所述超声波清洗液的组成为:氢氧化钠3~8g/L、柠檬酸铵0.5~3g/L、其余为水。
  4. 如权利要求1所述制备方法,其特征在于:所述步骤(3)中,阻挡膜制备的操作条件为:浸泡时间30~60s,烘干温度为80~150℃,烘干时间为15~30min;
    所述阻挡膜制备液的组成为:三硅酸镁5~10g/L、乙二醇5~20mL/L、其余为乙醇。
  5. 如权利要求1所述制备方法,其特征在于:所述步骤(4)中,阴极微弧 电沉积处理的操作条件为:电压为100~250V,占空比为10~30%,频率为80~150Hz,时间为2~4min。
  6. 如权利要求1所述制备方法,其特征在于:所述步骤(4)中,所述阴极电解液的组成为:硝酸铝50~100g/L、其余为乙醇。
  7. 如权利要求1所述制备方法,其特征在于:所述步骤(5)中,阳极微弧氧化处理的操作条件为:电压为300~450V,占空比为5~30%,频率为500~1000Hz,时间为3~10min。
  8. 如权利要求1所述制备方法,其特征在于:所述步骤(5)中,所述阳极电解液的组成为:六偏磷酸钠2~10g/L、二水合氟化钾5~15g/L、硝酸银0.2~3g/L、葡萄糖0.2~3g/L、其余为水,电解液使用前需缓慢滴加氨水至溶液由澄清变浑浊并再次变澄清为止。
  9. 权利要求1-8任一项所述的制备方法得到的镁合金超高孔隙率微弧氧化涂层,孔隙率不低于50%,微孔孔径为0.5~3μm。
  10. 权利要求9所述的镁合金超高孔隙率微弧氧化涂层在环境、催化、能源、军工、航天航空及汽车、纺织或机械领域的应用。
PCT/CN2021/084381 2021-02-02 2021-03-31 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用 WO2022165961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021338582A AU2021338582B2 (en) 2021-02-02 2021-03-31 Magnesium alloy ultra-high porosity micro-arc oxidation coating, preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110142491.3 2021-02-02
CN202110142491.3A CN112962132B (zh) 2021-02-02 2021-02-02 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022165961A1 true WO2022165961A1 (zh) 2022-08-11

Family

ID=76271817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084381 WO2022165961A1 (zh) 2021-02-02 2021-03-31 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用

Country Status (3)

Country Link
CN (1) CN112962132B (zh)
AU (1) AU2021338582B2 (zh)
WO (1) WO2022165961A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418697A (zh) * 2022-09-23 2022-12-02 西北有色金属研究院 一种在镁合金表面制备高致密结构耐蚀涂层的环保电解液及其应用
CN118007216A (zh) * 2024-04-08 2024-05-10 上海航天精密机械研究所 一种用于稀土镁合金的微弧氧化耐蚀涂层及其制备方法
CN118292075A (zh) * 2024-05-31 2024-07-05 太原理工大学 一种镁合金表面微弧氧化导电涂层的制备方法
CN118461100A (zh) * 2024-07-15 2024-08-09 潍坊科技学院 一种镁合金表面等离子体电解氧化膜层及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214689B (zh) * 2022-01-11 2023-09-01 山东省科学院新材料研究所 低电流密度的双极性脉冲阴极等离子体电沉积陶瓷涂层方法
CN114563322B (zh) * 2022-01-28 2023-12-19 武汉理工大学 一种铝合金/聚合物叠层材料中铝合金表面腐蚀微结构的表征及调控方法
CN115142107B (zh) * 2022-06-10 2024-05-31 中国科学院金属研究所 一种镁合金表面环保型导电防护膜的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469438A (zh) * 2007-12-25 2009-07-01 中国科学院兰州化学物理研究所 镁合金表面自润滑和疏水性结构一体化微弧氧化涂层的制备方法
CN102677127A (zh) * 2012-06-11 2012-09-19 西北有色金属研究院 一种镁合金微弧氧化-电泳复合涂层及其制备方法
CN106929898A (zh) * 2017-01-23 2017-07-07 郑州大学 一种镁合金批量微弧氧化和/或电沉积表面处理装置及方法
CN108677237A (zh) * 2018-05-22 2018-10-19 常州大学 用于镁合金微弧氧化的前处理液及镁合金微弧氧化前处理方法和微弧氧化方法
CN108950651A (zh) * 2018-07-16 2018-12-07 江苏科技大学 一种镁合金表面微弧电泳含ha生物复合膜层的制备方法
CN109234773A (zh) * 2018-10-23 2019-01-18 中国兵器工业第五九研究所 一种镁合金表面复合涂层的制备方法
CN110438541A (zh) * 2019-09-12 2019-11-12 山东省科学院新材料研究所 一种粒子掺杂型复合梯度微弧氧化涂层及多级制备方法、应用
WO2020189947A1 (ko) * 2019-03-18 2020-09-24 삼성전자 주식회사 커버 부재 제조 방법 및 커버 부재 구조

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046100B (zh) * 2013-01-29 2015-05-20 哈尔滨工业大学 三步法制备双级孔隙微弧氧化陶瓷涂层的方法
CN103647053B (zh) * 2013-12-16 2015-10-21 电子科技大学 一种镍电极表面制备三氧化铝涂层的方法
CN105648498A (zh) * 2016-02-17 2016-06-08 赵全明 医用钛基金属表面载铜微孔纳米抗菌生物涂层的制备方法
KR102056412B1 (ko) * 2017-11-03 2019-12-16 창원대학교 산학협력단 플라즈마 전해 산화법을 이용한 산화막 형성 방법
CN110438546B (zh) * 2019-08-21 2021-02-19 大连理工大学 一种在钛合金表面微弧氧化制备分级结构多孔涂层的电解液

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101469438A (zh) * 2007-12-25 2009-07-01 中国科学院兰州化学物理研究所 镁合金表面自润滑和疏水性结构一体化微弧氧化涂层的制备方法
CN102677127A (zh) * 2012-06-11 2012-09-19 西北有色金属研究院 一种镁合金微弧氧化-电泳复合涂层及其制备方法
CN106929898A (zh) * 2017-01-23 2017-07-07 郑州大学 一种镁合金批量微弧氧化和/或电沉积表面处理装置及方法
CN108677237A (zh) * 2018-05-22 2018-10-19 常州大学 用于镁合金微弧氧化的前处理液及镁合金微弧氧化前处理方法和微弧氧化方法
CN108950651A (zh) * 2018-07-16 2018-12-07 江苏科技大学 一种镁合金表面微弧电泳含ha生物复合膜层的制备方法
CN109234773A (zh) * 2018-10-23 2019-01-18 中国兵器工业第五九研究所 一种镁合金表面复合涂层的制备方法
WO2020189947A1 (ko) * 2019-03-18 2020-09-24 삼성전자 주식회사 커버 부재 제조 방법 및 커버 부재 구조
CN110438541A (zh) * 2019-09-12 2019-11-12 山东省科学院新材料研究所 一种粒子掺杂型复合梯度微弧氧化涂层及多级制备方法、应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418697A (zh) * 2022-09-23 2022-12-02 西北有色金属研究院 一种在镁合金表面制备高致密结构耐蚀涂层的环保电解液及其应用
CN118007216A (zh) * 2024-04-08 2024-05-10 上海航天精密机械研究所 一种用于稀土镁合金的微弧氧化耐蚀涂层及其制备方法
CN118292075A (zh) * 2024-05-31 2024-07-05 太原理工大学 一种镁合金表面微弧氧化导电涂层的制备方法
CN118461100A (zh) * 2024-07-15 2024-08-09 潍坊科技学院 一种镁合金表面等离子体电解氧化膜层及其制备方法

Also Published As

Publication number Publication date
CN112962132A (zh) 2021-06-15
AU2021338582B2 (en) 2023-06-15
CN112962132B (zh) 2022-02-18
AU2021338582A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2022165961A1 (zh) 一种镁合金超高孔隙率微弧氧化涂层及其制备方法与应用
Matykina et al. Energy-efficient PEO process of aluminium alloys
CN106757260B (zh) 一种用于制备铝合金表面微弧氧化膜的复合纳米电解液其应用
CN102797024B (zh) 一种铝合金微弧氧化着蓝色膜层的方法
CN106086990A (zh) 一种多孔氧化钛薄膜固载二硫化钼的方法
CN100537851C (zh) 镁、铝合金在铝酸盐体系中微弧氧化表面处理电解液
CN103590008A (zh) 一种在TiAl合金和MCrAlY涂层间制备Al2O3扩散障的方法
CN109023468B (zh) 2xxx铝及铝合金表面高耐磨自润滑微弧氧化膜层的制备方法
CN113106516A (zh) 一种通过调控负向电参数提高铝合金微弧氧化膜致密性的方法
CN113737243B (zh) 一种阀金属表面微弧氧化/水热处理制备耐磨涂层的方法
CN107937874B (zh) 一种在铌合金表面制备Pt-Al高温防护涂层的方法
CN112195491A (zh) 一种基于微弧氧化的SiC-Al2O3涂层的制备方法
CN109183115A (zh) 一种表面覆有超硬微弧氧化陶瓷膜的铝合金的制备方法
CN103526262A (zh) 一种对钽及其合金进行表面改性的方法及其所用的电解液
CN103695981A (zh) 一种铝合金表面微弧氧化膜功能化设计的方法
CN101307480A (zh) 钛合金表面抗高温氧化腐蚀涂层制备方法
CN107201538B (zh) 一种金属管内壁氧化铬-氧化铝复合涂层制备方法
CN106544627B (zh) 一种抗高温热腐蚀复合涂层及其制备方法
CN110777413B (zh) 一种等离子体阴极电解沉积陶瓷涂层表面激光重熔的方法
US20200199734A1 (en) Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby
CN114438568B (zh) 一种金属防护涂层的制备方法
CN105780085A (zh) 一种铀表面微弧氧化的方法
CN112663105A (zh) 一种阴极液相等离子体电解制备氧化物陶瓷涂层的方法
CN113046811A (zh) 一种微弧氧化电解液及其应用方法、工件
CN114507893B (zh) 钽合金表面高硬度耐磨微弧氧化涂层电解液及制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2021338582

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2021338582

Country of ref document: AU

Date of ref document: 20210331

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923970

Country of ref document: EP

Kind code of ref document: A1