WO2022165886A1 - 辐射制冷膜及其制品 - Google Patents

辐射制冷膜及其制品 Download PDF

Info

Publication number
WO2022165886A1
WO2022165886A1 PCT/CN2021/078472 CN2021078472W WO2022165886A1 WO 2022165886 A1 WO2022165886 A1 WO 2022165886A1 CN 2021078472 W CN2021078472 W CN 2021078472W WO 2022165886 A1 WO2022165886 A1 WO 2022165886A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
thickness
radiation
emission layer
Prior art date
Application number
PCT/CN2021/078472
Other languages
English (en)
French (fr)
Inventor
徐绍禹
杨荣贵
钟松
王明辉
尹铮杰
杨慧慧
夏兆路
Original Assignee
宁波瑞凌新能源科技有限公司
宁波瑞凌新能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75339419&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022165886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 宁波瑞凌新能源科技有限公司, 宁波瑞凌新能源材料研究院有限公司 filed Critical 宁波瑞凌新能源科技有限公司
Priority to US17/280,878 priority Critical patent/US11867434B1/en
Publication of WO2022165886A1 publication Critical patent/WO2022165886A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • B32B7/028Heat-shrinkability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • B32B2307/7375Linear, e.g. length, distance or width
    • B32B2307/7376Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds

Definitions

  • the present application relates to the technical field of new materials and the technical field of energy saving, in particular to radiation refrigeration films and their products.
  • the radiation cooling film can transfer the surface heat of the object to outer space in the form of infrared radiation in the atmospheric window (8 ⁇ m-13 ⁇ m) band, so as to achieve the purpose of cooling without energy consumption.
  • FIG. 1 it is a conventional radiation cooling film, including a first base layer 11, a first reflective layer 12 and a first emission coating layer 13 that are stacked in sequence, wherein the first emission coating layer 13 is made of fluorine-containing resin
  • the first radiative cooling particles 14 are also distributed in the first emissive coating 13 .
  • the first radiative cooling particles 14 are added to the first emissive coating 13.
  • the mechanical properties of the radiative cooling film will be reduced, and on the other hand, the fluorine-containing resin in the first emissive coating 13 will be damaged.
  • the order of the molecular chain leads to an increase in the permeability of water and oxygen, thereby reducing the weather resistance of the radiative refrigeration film.
  • another conventional radiative cooling film includes a second base layer 21, a second reflective layer 22, a second base layer 21, a second reflective layer 22, a second layer of Two emission layers 23 and a fluorine-containing film 24, wherein the second emission layer 23 includes a colloid and second radiation refrigeration particles 25 distributed in the colloid.
  • the second radiation refrigeration particles 25 are not added to the fluorine-containing film 24, but are added to the colloid, so that the adhesive layer composed of the colloid and the second radiation refrigeration particles is used as the second emission layer 23.
  • the fluorine-containing film 24 is mainly used to improve the weather resistance of the radiation refrigeration film.
  • the addition of the second radiation cooling particles 25 to the colloid will also increase the water and oxygen permeability of the colloid, thereby reducing the weather resistance of the radiation cooling film. Reducing the cohesive force of the colloid will reduce the integrity of the radiation refrigeration film, and at the same time, it will also destroy the internal structure of the colloid, reduce the cohesion of the colloid, and further reduce the mechanical properties of the radiation refrigeration film.
  • the radiation refrigeration film comprises a carrier layer, a reflection layer and an emission layer arranged in layers, the emission layer is the light incident side of the radiation refrigeration film, and the material of the emission layer is a C-F bond-containing material.
  • the material of the carrier layer is a polymer containing C-C bonds and/or C-O bonds
  • the thermal shrinkage rate of the carrier layer in the transverse direction after being placed at 120 ° C for 30min ⁇ 2% is 50 ⁇ m-170 ⁇ m, wherein the thickness of the emission layer accounts for 20%-90%.
  • the thickness of the radiation cooling film is 55 ⁇ m-170 ⁇ m.
  • the ratio of the thickness of the emission layer to the carrier layer is 1:2-8:1.
  • the thickness of the emission layer is 25 ⁇ m-120 ⁇ m.
  • the thickness of the radiative cooling film is 50 ⁇ m-125 ⁇ m.
  • the thickness ratio of the emission layer to the carrier layer is 3:10-22:3.
  • the thickness of the emission layer is 15 ⁇ m-110 ⁇ m.
  • the material of the emission layer includes a fluorine-containing resin
  • the material of the carrier layer includes at least one of polyester, polyurethane, polyamide, and polycarbonate;
  • the material of the reflective layer includes at least one of metals and alloys.
  • the surface energy of the surface of the carrier layer for carrying the reflective layer is greater than or equal to 40 mN/m.
  • a polymer coating is further disposed between the carrier layer and the reflective layer, the surface energy of the polymer coating is greater than or equal to 40 mN/m, and the thickness of the polymer coating is greater than or equal to 40 mN/m. 3nm-200nm.
  • the absolute value of the refractive index difference between the carrier layer and the polymer coating is greater than or equal to 0.05.
  • the light incident surface of the emission layer is provided with an embossed structure.
  • a product comprising a radiation refrigeration film, the product comprising a substrate and the radiation refrigeration film disposed on the substrate, wherein the side of the radiation refrigeration film away from an emission layer is connected to the substrate through an adhesive layer.
  • the substrate includes at least one of a metal substrate, a ceramic substrate, a semiconductor substrate, a plastic substrate, a glass substrate, a rubber substrate, an asphalt substrate, a cement substrate, and a textile substrate.
  • the product is a radiant refrigeration waterproofing membrane
  • the substrate is a petroleum asphalt paper tire linoleum, petroleum asphalt fiberglass tire coil, aluminum foil surface coil, SBS modified asphalt waterproofing membrane, APP modified It is one of the asphalt waterproofing membranes, EPDM membranes, PVC membranes, chlorinated polyethylene membranes, rubber blended membranes, and TPO waterproofing membranes.
  • the product is a radiant cooling metal plate
  • the substrate is one of an aluminum alloy metal plate, a galvanized metal plate, a tin-plated metal plate, a composite steel metal plate, and a color-coated steel metal plate .
  • the C-F bond has strong absorption in the atmospheric window band of 8 ⁇ m-13 ⁇ m, and has a strong absorption peak in the band of 8 ⁇ m-10 ⁇ m.
  • C-C and C-O also have strong absorption in the atmospheric window of 8 ⁇ m-13 ⁇ m. , especially in the band of 8 ⁇ m-9.5 ⁇ m, it has a strong absorption peak, so the polymers containing C-F bonds have very excellent spectral selectivity, and the polymers containing C-C bonds and/or C-O bonds have excellent spectral selectivity sex.
  • the bond energy of the C-F bond is high, up to 500KJ/mol.
  • the light band that destroys organic matter is 280nm-780nm, and its energy cannot reach the destruction.
  • the degree of C-F bond and the low polarizability of F atom, the polymer containing C-F bond can show high thermal stability and chemical inertness, so the polymer containing C-F bond also has excellent weather resistance.
  • the polymer containing C-F bonds is used as the material of the emission layer, and the polymer containing C-C bonds and/or C-O bonds is used as the material of the carrier layer, and the two are used in cooperation with each other.
  • the emission layer serves as the light incident side of the radiative cooling film, and through the control of thickness, the number of C-F bonds, C-C bonds and/or C-O bonds per unit area is optimized, and the heat absorption in the solar light band is controlled at the same time, so that the radiation cooling film It has excellent atmospheric window emissivity without adding radiation cooling particles, thereby avoiding the adverse effects of the addition of radiation cooling particles on the mechanical properties and weather resistance of the radiation cooling film, making the radiation cooling film more excellent. Mechanical properties and weather resistance.
  • Fig. 1 is the structural representation of a kind of traditional radiation refrigeration film
  • FIG. 2 is a schematic structural diagram of another traditional radiation refrigeration film
  • FIG. 3 is a schematic structural diagram of the radiation refrigeration film according to the first embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a radiation refrigeration film according to a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a radiation refrigeration film according to a third embodiment of the present application.
  • Fig. 6 is the model house of the engineering application experiment
  • FIG. 7 is a cooling effect diagram of the experiment shown in FIG. 6 .
  • the radiative cooling film of the first embodiment provided by the present application includes a carrier layer 31 , a reflection layer 32 and an emission layer 33 which are arranged in layers.
  • the material of the emission layer 33 is a polymer containing C-F bonds.
  • the C-F bonds have strong absorption in the atmospheric window band of 8 ⁇ m-13 ⁇ m and have a strong absorption peak in the 8 ⁇ m-13 ⁇ m band, so the C-F bonds contain C-F bonds.
  • the polymer has very excellent spectral selectivity, and when used as the material of the emission layer 33, the emission layer 33 can have an excellent atmospheric window emissivity.
  • the bond energy of the C-F bond is high, up to 500KJ/mol.
  • the light band that destroys organic matter is 280nm-780nm, and its energy cannot reach the destruction.
  • the polymer containing C-F bond can show high thermal stability and chemical inertness, so the polymer containing C-F bond also has excellent weather resistance, used as the emission layer 33
  • the emissive layer 33 can have excellent weather resistance when using the same material.
  • the material of the carrier layer 31 is a polymer containing C-C bonds and/or C-O bonds.
  • C-C and C-O also have strong absorption in the atmospheric window of 8 ⁇ m-13 ⁇ m, especially in the wavelength band of 8 ⁇ m-9.5 ⁇ m. Therefore, polymers containing C-C bonds and/or C-O bonds also have excellent spectral selectivity. When used as the material of the carrier layer 31, it can help to improve the atmospheric window emissivity of the radiation refrigeration film.
  • the emissivity y a-be ⁇ (-x/k), in the formula, a, b, k are constants depending on different materials, x is the thickness, e is the natural index, from the emissivity It can be seen from the formula of , that as the thicknesses of the emissive layer 33 and the carrier layer 31 increase, the number of C-F bonds, C-C bonds and/or C-O bonds per unit area increases, and the atmospheric window emissivity of the radiation refrigeration film also increases, but , the increase of the thickness will not only increase the cost of the radiative cooling film, but also increase the heat absorption of the emission layer 33 and the carrier layer 31 to the solar light band. When the thickness reaches a limit, the cooling effect of the radiative cooling film will increase. dropped.
  • the thickness of the radiation cooling film is controlled to be 50 ⁇ m-170 ⁇ m, wherein the thickness of the emission layer 33 accounts for 20%-90%, thus, through the control of the thickness, the C-F bond, C-C bond and/or the unit area are optimized. Or the number of C-O bonds, and at the same time control the heat absorption of the solar light band, so that the heat absorption rate of the emission layer 33 and the carrier layer 31 is less than or equal to 20%, so that the radiation cooling film has excellent performance without adding radiation cooling particles.
  • the atmospheric window emissivity is increased, thereby avoiding the adverse effects of the addition of radiative refrigeration particles on the mechanical properties and weather resistance of the radiative refrigeration film, so that the reflective radiative refrigeration particles have better mechanical properties and weather resistance.
  • the reflective layer 32 is disposed between the carrier layer 31 and the emission layer 33.
  • the emission layer 33 is the light incident side of the radiation cooling film, so that the Radiant cooling films have excellent weather resistance.
  • the reflective layer 32 reflects most of the sunlight back into the atmosphere, so that the sunlight band is blocked and rarely enters the matrix, and then the emission layer 33 converts the heat in the matrix into Infrared rays of 8 ⁇ m-13 ⁇ m are radiated through the 8 ⁇ m-13 ⁇ m atmospheric window. Since the atmosphere in the 8 ⁇ m-13 ⁇ m atmospheric window basically has no absorption, the infrared rays directly enter the outer space cold source, thereby playing a role in radiation cooling and cooling the substrate.
  • the thickness of the radiation cooling film can be further selected to be 55 ⁇ m-170 ⁇ m.
  • the thickness ratio of the emission layer 33 to the carrier layer 31 is 1:2-8:1, optionally 1:1-3.75:1, and the emission
  • the ratio of the thickness of the layer 33 to the reflective layer 32 is 50:1-12000:1, optionally 80:1-4000:1, and the thickness of the emission layer 33 is 25 ⁇ m-120 ⁇ m, further optionally 40 ⁇ m- 75 ⁇ m.
  • the thickness the number of C-F bonds, C-C bonds and/or C-O bonds per unit area is further optimized, and the heat absorption of the solar light band is controlled at the same time, so that the heat absorption rate of the emission layer 33 and the carrier layer 31 is further less than or is equal to 15%, and further, the heat absorption rate is less than or equal to 10%.
  • the material of the reflective layer 32 includes at least one of metals and alloys, and specifically includes at least one of silver, silver alloys, aluminum, aluminum alloys, titanium, and titanium alloys.
  • the reflection layer 32 includes a plurality of sub-reflection layers to reduce the internal stress of the reflection layer 32.
  • the reflection layer 32 includes a stacked silver reflection layer and an aluminum reflection layer.
  • the reflective layer, or further includes a stacked titanium reflective layer the coordination of multiple sub-reflection layers can make up for the technical defects and effect defects of the respective sub-reflection layers when they exist alone, and improve the reflective layer 32 to the full wavelength of sunlight.
  • the reflectivity of the radiative cooling film is improved, and at the same time, the damage of the ultraviolet light to the radiative cooling film can be reduced, and the service life of the radiation cooling film can be prolonged. Therefore, in this embodiment, through optimization of materials, structures and thicknesses, the emissivity of the radiative cooling film in the atmospheric window band can reach 85%, further, it can reach 90%, and further, it can reach 95%. %; the reflectivity to the full wavelength of sunlight can reach 82%, further, it can reach 87%, and further, it can reach 92%, and it has excellent cooling effect.
  • the polymer containing C-C bonds and/or C-O bonds can be selected from at least one of polyester, polyurethane, polyamide, and polycarbonate, wherein, the polyester includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), poly(ethylene terephthalate-1,4-cyclohexane) At least one of diendimethylene terephthalate) (PETG).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PET poly(ethylene terephthalate-1,4-cyclohexane)
  • PETG diendimethylene terephthalate
  • the reflective layer 32 can be directly attached to the surface of the carrier layer 31, or directly deposited on the surface of the carrier layer 31 by sputtering, vapor deposition, etc. .
  • the thermal shrinkage rate of the carrier layer 31 in the transverse (TD) direction after being placed at 120° C. for 30 minutes is ⁇ 2%, and the longitudinal (MD) direction is less than or equal to 2%.
  • the material of the emission layer 33 can be selected as a fluorine-containing resin, specifically including ethylene-tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride Ethylene (PVDF), Polyvinyl Formal (PVF), Polychlorotrifluoroethylene (PCTFE), Fluoroolefin-Vinyl Ether Copolymer (FEVE), Polytetrafluoroethylene (PTFE), Ethylene Chlorotrifluoroethylene Copolymer (ECTFE), at least one of fluorine ethylene propylene copolymer (FEP), fusible polytetrafluoroethylene (PFA), further, the fluorine-containing resin specifically includes ethylene-tetrafluoroethylene copolymer (ETFE), At least one of polyvinylidene fluoride (PVDF), polyvinyl formal (PVF) fluoro
  • EFE ethylene-tetrafluoroethylene copolymer
  • PVDF polyvin
  • the surface energy of fluorine-containing resin is relatively low, so the emission layer 33 can be formed by directly curing a coating of fluorine-containing resin on the surface of the reflection layer 32, and the coating of fluorine-containing resin can be water-based or oil-based.
  • the emission layer 33 is a fluorine-containing film, as shown in FIG. 4 , it is the radiation cooling film of the second embodiment provided by the application.
  • the fluorine-containing resin film is fixed and adhered by the adhesive layer 34 .
  • the material of the adhesive layer 34 includes at least one of polyurethane glue and acrylic glue with good weather resistance, and the thickness of the adhesive layer 34 is 0.5 ⁇ m-20 ⁇ m.
  • the carrier layer 31 when the material of the carrier layer 31 is selected from polyester, polyurethane, polyamide, and polycarbonate, its surface energy is low.
  • the carrier layer Before depositing or pasting the reflective layer 32, the carrier layer can be treated by plasma method or corona method.
  • the surface of 31 is treated to increase its surface energy to more than 40mN/m, further increased to more than 42mN/m or more than 45mN/m or more than 50mN/m or more than 55mN/m, or a polymer is arranged on the carrier layer 31
  • the coating 35, the surface energy of the polymer coating 35 is more than 40mN/m, further more than 42mN/m or more than 45mN/m or more than 50mN/m or more than 55mN/m, thereby greatly improving the carrier.
  • the adhesion between the layer 31 and the reflective layer 32 further improves the peeling strength of the entire radiative cooling film.
  • the thickness of the polymer coating can be selected to be 3 nm-200 nm, and the absolute value of the refractive index difference between the carrier layer 31 and the polymer coating 35 is greater than or equal to 0.05 to help improve the reflectivity of the radiative cooling film.
  • the material of the polymer coating 35 includes at least one of epoxy acrylic polymer, urethane acrylate, and polyester acrylate.
  • the light incident surface of the emission layer 33 may also be provided with an embossed structure 36, and the embossed structure is one of square, round, diamond, and twill. or multiple structures, the depth is 0.5 ⁇ m-2.5 ⁇ m, so that the surface gloss of the radiative cooling film can be reduced by the embossed structure 36 to reduce the light reflected by the specular surface, thereby reducing the application process of the radiative cooling film of the present application.
  • Light pollution suitable for airports and other fields with special requirements for light pollution.
  • the carrier layer 31 is disposed between the reflection layer 32 and the emission layer 33 .
  • the reflective layer 32 reflects most of the sunlight back into the atmosphere, so that the sunlight band is blocked and rarely enters the matrix; then the emission layer 33 converts the heat in the matrix into Infrared rays of 8 ⁇ m-13 ⁇ m are radiated through the 8 ⁇ m-13 ⁇ m atmospheric window, and the atmosphere in the 8 ⁇ m-13 ⁇ m atmospheric window basically has no absorption, and the infrared rays directly enter the outer space cold source, thereby playing a role in radiation cooling and realizing the cooling of the substrate.
  • the carrier layer 31 is located between the emission layer 33 and the reflection layer 32, so the carrier layer 31 can better assist the emission layer 33 to radiate. Therefore, in an embodiment, the thickness of the radiation cooling film Further optional is 50 ⁇ m-125 ⁇ m. Meanwhile, considering the thermal shrinkage of the radiation refrigeration film, the thickness ratio of the emission layer 33 to the carrier layer 31 is 3:10-22:3, optionally 1:5-20:3, and the emission The ratio of the thickness of the layer 33 to the reflective layer 32 is 30:1-110000:1, optionally 25:1-100000:1, and the thickness of the emission layer 33 is 15 ⁇ m-110 ⁇ m, further optionally 40 ⁇ m- 75 ⁇ m.
  • the thickness the number of C-F bonds, C-C bonds and/or C-O bonds per unit area is further optimized, and the heat absorption of the solar light band is controlled at the same time, so that the heat absorption rate of the emission layer 33 and the carrier layer 31 is further less than or is equal to 15%, and further, the heat absorption rate is less than or equal to 10%.
  • the emissivity of the radiative cooling film in the atmospheric window band can reach 87%, further, it can reach 92%, and further, it can reach 97% %; the reflectivity to the full wavelength of sunlight can reach 80%; further, it can reach 85%, and further, it can reach 90%, and it has excellent cooling effect.
  • the reflective layer 32 can be directly attached to the surface of the carrier layer 31, or directly deposited on the surface of the carrier layer 31 by sputtering, vapor deposition, etc., and the reflective layer can be deposited or pasted Before 32, the surface of the carrier layer 31 can also be treated by the plasma method and the corona method to improve its surface energy, or a polymer coating 35 can be arranged on the carrier layer 31 to improve the relationship between the carrier layer 31 and the carrier layer 31. The adhesion of the reflective layer 32 is improved, thereby improving the peeling strength of the entire radiative cooling film.
  • the emission layer 33 can be formed by directly curing a fluorine-containing resin coating on the surface of the carrier layer 31, and the fluorine-containing resin coating can be water-based or oil-based, or, when the emission layer 33 is a fluorine-containing film, the fluorine-containing resin The film is fixedly bonded to the carrier layer 31 by the adhesive layer 34 .
  • the radiative cooling film provided by the present application has excellent atmospheric window emissivity without adding radiative cooling particles through optimization of material, structure and thickness, thereby avoiding the addition of radiative cooling particles to the radiation cooling film.
  • the adverse effects of mechanical properties and weather resistance make the radiant cooling film have more excellent mechanical properties and weather resistance, and at the same time, it has an excellent cooling effect.
  • the present application also provides an application of a radiation cooling film, the radiation cooling film is disposed on the surface of the substrate, and is used for reflecting sunlight and emitting heat through the atmospheric window in the form of infrared radiation.
  • the substrate includes at least one of a metal substrate, a ceramic substrate, a semiconductor substrate, a plastic substrate, a glass substrate, a rubber substrate, an asphalt substrate, a cement substrate, and a textile substrate.
  • the present application also provides a product including a radiation refrigeration film, the product includes a substrate and the radiation refrigeration film disposed on the substrate, and the side of the radiation refrigeration film away from the emission layer 33 is connected with the adhesive layer through an adhesive layer.
  • the substrate is connected, and the surface of the emission layer 33 away from the substrate is the light incident side.
  • the adhesive layer includes one of acrylic adhesive, polyurethane pressure-sensitive adhesive, hot melt adhesive, hot melt adhesive film, and butyl adhesive, and the thickness of the adhesive layer is 20 ⁇ m-1500 ⁇ m, and further, The thickness of the adhesive layer is 25 ⁇ m-150 ⁇ m. If the adhesive layer is too thick, the solar light absorption rate of the adhesive layer will increase, which will affect the cooling effect of the radiant cooling film.
  • the substrate includes at least one of a metal substrate, a plastic substrate, a glass substrate, a rubber substrate, an asphalt substrate, a cement substrate, and a textile substrate.
  • the product is a radiant refrigeration waterproofing membrane
  • the substrate is petroleum asphalt paper tire linoleum, petroleum asphalt fiberglass tire coil, aluminum foil surface coil, SBS modified asphalt waterproofing membrane, APP modified One of the asphalt waterproofing membranes, EPDM membranes, PVC membranes, chlorinated polyethylene membranes, rubber blended membranes, and TPO waterproofing membranes.
  • the product is a radiant cooling metal plate
  • the substrate is one of an aluminum alloy metal plate, a galvanized metal plate, a tin-plated metal plate, a composite steel metal plate, and a color-coated steel metal plate.
  • the radiation refrigeration film of the present application can be used on the outer surface of the enclosure structure such as grain depots, large public buildings (such as high-speed railway stations, airports, exhibition halls, museums), petrochemical storage tanks, power cabinets, communication cabinets, etc., and can reflect sunlight And it emits heat through the atmospheric window in the form of infrared radiation, so as to achieve energy-free cooling of the envelope.
  • the enclosure structure such as grain depots, large public buildings (such as high-speed railway stations, airports, exhibition halls, museums), petrochemical storage tanks, power cabinets, communication cabinets, etc.
  • a polyethylene terephthalate film with a thickness of 30 ⁇ m was used as the carrier layer. After the carrier layer was placed at 120 ° C for 30 min, the thermal shrinkage rate in the transverse direction was 1.2%, and the thermal shrinkage rate in the longitudinal direction was 1.4%.
  • a silver reflective layer with a thickness of 100 nm is obtained by magnetron sputtering on one surface of the carrier layer, then a polytetrafluoroethylene resin is coated on the surface of the carrier layer away from the silver reflective layer, and cured into an emission layer with a thickness of 50 ⁇ m, A radiative cooling film is obtained.
  • a polyethylene terephthalate film with a thickness of 30 ⁇ m was used as the carrier layer. After the carrier layer was placed at 120 ° C for 30 min, the thermal shrinkage rate in the transverse direction was 1.2%, and the thermal shrinkage rate in the longitudinal direction was 1.4%.
  • a silver reflective layer with a thickness of 100 nm was obtained by magnetron sputtering on the carrier layer, and then a polytetrafluoroethylene resin was coated on the silver reflective layer and cured into an emission layer with a thickness of 50 ⁇ m to obtain a radiation refrigeration film.
  • Example 3 The difference between Example 3 and Example 1 is that a 50- ⁇ m-thick polytetrafluoroethylene film is bonded to the surface of the carrier layer through a 10- ⁇ m-thick polyurethane adhesive layer to obtain a radiation refrigeration film.
  • Example 4 The difference between Example 4 and Example 3 is that the PTFE film of Example 4 is processed by an embossing process, and has a square embossed structure on the surface with a depth of 1 ⁇ m, and the embossed structure is arranged on the light incident surface of the emission layer.
  • Example 5 The difference between Example 5 and Example 3 is that the surface for carrying the silver reflective layer in Example 5 is provided with an epoxy acrylic polymer coating with a thickness of 50 nm, the surface energy is 56 mN/m, and the carrier layer and polymer The absolute value of the difference in the refractive indices of the coatings was 0.06.
  • a polyethylene terephthalate film with a thickness of 15 ⁇ m was used as the carrier layer, and the thermal shrinkage rate of the carrier layer in the transverse direction after being placed at 120 ° C for 30 min was 1.6% and 1.8% in the longitudinal direction.
  • One surface of the carrier layer is plasma treated to make the surface energy reach 42mN/m, and then magnetron sputtering is performed on the surface to obtain a silver reflection layer with a thickness of 50nm, and then the surface of the carrier layer away from the silver reflection layer is coated
  • a polyethylene terephthalate film with a thickness of 20 ⁇ m was used as the carrier layer, and the thermal shrinkage rate of the carrier layer in the transverse direction after being placed at 120 ° C for 30 min was 1.5% and 1.6% in the longitudinal direction.
  • One surface of the carrier layer is coated with a urethane acrylate polymer coating with a thickness of 10 nm, the surface energy is 42 mN/m, and the absolute value of the difference between the refractive indices of the carrier layer and the polymer coating is 0.07.
  • magnetron sputtering is applied on the polymer coating to obtain a silver reflective layer with a thickness of 60 nm, and then a polytetrafluoroethylene resin is coated on the surface of the carrier layer away from the silver reflective layer, and cured to a thickness of 40 ⁇ m. layer, and the emission layer is then subjected to an embossing process to form a square embossed structure on the surface with a depth of 0.5 ⁇ m to obtain a radiation refrigeration film.
  • a polyethylene terephthalate film with a thickness of 30 ⁇ m was used as the carrier layer, and the thermal shrinkage rate of the carrier layer in the transverse direction after being placed at 120 ° C for 30 min was 1.2% and 1.4% in the longitudinal direction.
  • One surface of the carrier layer is coated with a polyester-based acrylate polymer coating with a thickness of 100 nm, the surface energy is 47 mN/m, and the absolute value of the difference between the refractive indices of the carrier layer and the polymer coating is 0.06.
  • magnetron sputtering is applied on the polymer coating to obtain a silver reflective layer with a thickness of 50 nm and an aluminum reflective layer with a thickness of 50 nm, and then a polytetrafluoroethylene resin is coated on the surface of the carrier layer away from the silver reflective layer, and cured An emission layer with a thickness of 15 ⁇ m is formed, and the emission layer is then subjected to an embossing process to form a square embossed structure on the surface with a depth of 1 ⁇ m to obtain a radiation refrigeration film.
  • a polyethylene terephthalate film with a thickness of 50 ⁇ m was used as the carrier layer. After the carrier layer was placed at 120 ° C for 30 min, the thermal shrinkage rate in the transverse direction was 0.8%, and the thermal shrinkage rate in the longitudinal direction was 1.0%.
  • One surface of the carrier layer is coated with a polyester acrylate polymer coating with a thickness of 20 nm, the surface energy is 47 mN/m, and the absolute value of the difference between the refractive indices of the carrier layer and the polymer coating is 0.06. Then, a silver reflective layer with a thickness of 200 nm was obtained by magnetron sputtering on the polymer coating.
  • a polytetrafluoroethylene film with a thickness of 75 ⁇ m is bonded to the surface of the carrier layer away from the silver reflection layer through a polyurethane adhesive layer with a thickness of 5 ⁇ m, wherein the polytetrafluoroethylene film is processed by an embossing process, and the surface has a square shape Embossed structure with a depth of 2 ⁇ m to obtain a radiative cooling film.
  • a polyethylene terephthalate film with a thickness of 35 ⁇ m was used as the carrier layer. After the carrier layer was placed at 120 ° C for 30min, the thermal shrinkage rate in the transverse direction was 1.1% and the thermal shrinkage rate in the longitudinal direction was 1.2%.
  • One surface of the carrier layer is coated with a urethane acrylate polymer coating with a thickness of 50 nm, the surface energy is 42 mN/m, and the absolute value of the difference between the refractive indices of the carrier layer and the polymer coating is 0.07.
  • magnetron sputtering is applied to the polymer coating to obtain a silver reflective layer with a thickness of 100 nm and an aluminum reflective layer with a thickness of 100 nm, and then the PTFE film with a thickness of 110 ⁇ m is bonded to the carrier layer through a polyurethane adhesive layer with a thickness of 5 ⁇ m
  • the surface facing away from the reflective layer wherein the polytetrafluoroethylene film is processed by an embossing process, and the surface has a square embossed structure with a depth of 2.5 ⁇ m to obtain a radiation refrigeration film.
  • Comparative Example 1 The difference between Comparative Example 1 and Example 1 is that a mixed coating of polytetrafluoroethylene resin and silica particles is coated on the surface of the carrier layer away from the silver reflective layer, wherein the mass percentage of silica particles is 1 %, the particle size is 5 ⁇ m.
  • Comparative Example 2 The difference between Comparative Example 2 and Comparative Example 1 is that the mass percentage of silica particles is 10%, and the particle size is 5 ⁇ m.
  • Comparative Example 3 contains silica particles, wherein the mass percentage of the silica particles is 1%, and the particle size is 5 ⁇ m.
  • Comparative Example 4 contains silica particles, wherein the mass percentage of the silica particles is 10%, and the particle size is 5 ⁇ m.
  • Atmospheric window (8 ⁇ m-13 ⁇ m) band emissivity test method use infrared spectroscopy to test, the test instrument is a Fourier transform infrared spectrometer, test the infrared emissivity in the 8 ⁇ m-13 ⁇ m band, the test interval is 5nm, the 8 ⁇ m-13 ⁇ m band The emissivity is the atmospheric window emissivity.
  • Sunlight (300nm-2500nm) band reflectance test method according to the provisions of GB/T 25968-2010 6.2.
  • Gloss test method according to the provisions of GB/T 9754-2007, take the test result of 60°.
  • the test xenon arc lamp shall comply with the provisions of GB/T 16422.2-2014.
  • the test is carried out according to GB/T 16422.2-2014 cycle 1. During the test, the surface of the sample film faces the light source and is placed for 1000h.
  • Peel strength test method refer to the standard GB/T 25256-2010 "180° Peeling Force and Residual Adhesion Ratio of Optical Functional Film Release Films", and use a cutting knife to cut 3 150mm*25mm splines in the TD and MD directions. (one on the left, one on the middle, one on the right), the peel strength of the adhesive layer was tested with a gauge length of 100 mm and a test speed of 100 m/min.
  • Test method for elongation at break and tensile strength according to the provisions of Chapter 5 in GB/T 1040.1-2018.
  • the test speed is 150mm/min
  • the width is 25mm
  • the length is not less than 3 pieces of long strip samples (that is, the type 2 samples in GB/T 1040.3-2006). It should be ensured that the edges of the specimen are neat and smooth without nicks.
  • install the sample on the jig of the tensile testing machine with an interval of 100mm, and stretch at a speed of 100mm/min, and measure the maximum tensile force and elongation of the sample when it breaks.
  • the elongation at break was calculated according to formula (1). Values are rounded to one decimal place.
  • E is the elongation at break
  • L1 is the elongation of the sample at break
  • L0 is the initial distance between the clamps.
  • Thermal shrinkage test method refer to ASTM D1204.
  • two model houses A and B as shown in Figure 6 are selected in the same environment in Ningbo City, and the exterior surface of the model house B does not do anything.
  • the radiative cooling film of Example 1 is set on the exterior surface of the model house A, a temperature measurement point A1 and B1 are respectively installed in the central area of the two model houses A and B, and the ambient temperature temperature measurement point is installed next to the model house.
  • the radiative cooling film can effectively reduce the temperature inside the model house, and the maximum contrast temperature difference between model house A and model house B reaches 18°C; (2) around noon every day, the solar radiation intensity reaches the maximum, At this time, the temperature difference between the two model houses is the largest; (3) the overall temperature of the model house can be continuously and effectively reduced by the radiant cooling film, saving energy and protecting the environment.

Landscapes

  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Abstract

一种辐射制冷膜及其制品,该辐射制冷膜包括层叠设置的载体层(31)、反射层(32)和发射层(33),发射层(33)为辐射制冷膜的入光侧,发射层(33)的材料为含C-F键的聚合物,载体层(31)的材料为含C-C键和/或C-O键的聚合物,所述载体层(31)在120℃下放置30min后的横向方向的热收缩率≤2%、纵向方向的热收缩率≤3%,所述辐射制冷膜的厚度为50μm-170μm,其中发射层(33)的厚度占20%-90%;该制品包括基体和设置于基体上的所述辐射制冷膜,辐射制冷膜中远离所述发射层(33)的一面通过胶粘剂层与基体连接。该辐射制冷膜在不需添加辐射制冷颗粒的条件下就具有优异的大气窗口发射率,具有更优异的力学性能和耐候性。

Description

辐射制冷膜及其制品
相关申请
本申请要求2021年2月4日申请的,申请号为202110154142.3,发明名称为“辐射制冷膜及其制品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新材料技术领域与节能技术领域,特别是涉及辐射制冷膜及其制品。
背景技术
在节能技术领域,辐射制冷膜能够将物体表面热量以大气窗口(8μm-13μm)波段的红外辐射的方式传递至外太空,达到无能耗降温的目的。如图1所示,为一种传统的辐射制冷膜,包括依次层叠设置的第一基层11、第一反射层12和第一发射涂层13,其中,第一发射涂层13由含氟树脂固化而成,第一发射涂层13中还分布有第一辐射制冷颗粒14。该辐射制冷膜中,第一辐射制冷颗粒14添加在第一发射涂层13中,一方面,会降低辐射制冷膜的力学性能,另一方面,会破坏第一发射涂层13中含氟树脂分子链的有序性,导致水、氧的渗透率增加,从而降低了该辐射制冷膜的耐候性。
为了规避辐射制冷颗粒添加至含氟薄膜涂层中产生的缺陷,如图2所示,为另一种传统的辐射制冷膜,包括依次层叠设置的第二基层21、第二反射层22、第二发射层23和含氟薄膜24,其中,所述第二发射层23包括胶体以及分布于所述胶体中的第二辐射制冷颗粒25。该辐射制冷膜中,第二辐射制冷颗粒25没有添加在含氟薄膜24中,而是添加在胶体中,从而,以胶体和第二辐射制冷颗粒组成的胶黏剂层作为第二发射层23,含氟薄膜24主要用于提高辐射制冷膜的耐候性。但是,第二辐射制冷颗粒25添加在胶体中,也会导致胶体的水、氧渗透率增加,因而也会降低辐射制冷膜的耐候性;另外,第二辐射制冷颗粒25添加在胶体中,会降低胶体的粘结力,使得辐射制冷膜 的整体性下降,同时,还会破坏胶体的内部结构,降低胶体的内聚力,进而也会导致辐射制冷膜的力学性能降低。
发明内容
基于此,有必要针对上述问题,提供一种具有优异制冷效果、耐候性和力学性能的辐射制冷膜及其制品。
一种辐射制冷膜,所述辐射制冷膜包括层叠设置的载体层、反射层和发射层,所述发射层为所述辐射制冷膜的入光侧,所述发射层的材料为含C-F键的聚合物,所述载体层的材料为含C-C键和/或C-O键的聚合物,所述载体层在120℃下放置30min后的横向方向的热收缩率≤2%、纵向方向的热收缩率≤3%,所述辐射制冷膜的厚度为50μm-170μm,其中,所述发射层的厚度占20%-90%。
在其中一个实施例中,所述反射层设置于所述载体层和所述发射层之间时,所述辐射制冷膜的厚度为55μm-170μm。
在其中一个实施例中,所述发射层与所述载体层的厚度之比为1:2-8:1。
在其中一个实施例中,所述发射层的厚度为25μm-120μm。
在其中一个实施例中,所述载体层设置于所述反射层与所述发射层之间时,所述辐射制冷膜的厚度为50μm-125μm。
在其中一个实施例中,所述发射层与所述载体层的厚度之比为3:10-22:3。
在其中一个实施例中,所述发射层的厚度为15μm-110μm。
在其中一个实施例中,所述发射层的材料包括含氟树脂;
及/或,所述载体层的材料包括聚酯、聚氨酯、聚酰胺、聚碳酸酯中的至少一种;
及/或,所述反射层的材料包括金属、合金中的至少一种。
在其中一个实施例中,所述载体层用于承载所述反射层的表面的表面能大于或等于40mN/m。
在其中一个实施例中,所述载体层和所述反射层之间还设置有聚合物涂层,所述聚合物涂层的表面能大于或等于40mN/m,所述聚合物涂层的厚度为3nm-200nm。
在其中一个实施例中,所述载体层和所述聚合物涂层之间的折射率差值的绝对值大于或等于0.05。
在其中一个实施例中,所述发射层的入光面设置有压花结构。
一种包括辐射制冷膜的制品,所述制品包括基体以及设置于所述基体上的所述的辐射制冷膜,所述辐射制冷膜中的远离发射层的一面通过胶粘剂层与基体连接。
在其中一个实施例中,所述基体包括金属基体、陶瓷基体、半导体基体、塑料基体、玻璃基体、橡胶基体、沥青基体、水泥基体、纺织物基体中的至少一种。
在其中一个实施例中,所述制品为辐射制冷防水卷材,所述基体为石油沥青纸胎油毡、石油沥青玻纤胎卷材、铝箔面卷材、SBS改性沥青防水卷材、APP改性沥青防水卷材、三元乙丙卷材、聚氯乙烯卷材、氯化聚乙烯卷材、橡胶共混卷材、TPO防水卷材中的一种。
在其中一个实施例中,所述制品为辐射制冷金属板,所述基体为铝合金金属板、镀锌金属板、镀锡金属板、复合钢金属板、彩色涂层钢金属板中的一种。
C-F键在8μm-13μm的大气窗口波段具有很强的吸收性,且在8μm-10μm的波段具有很强的吸收峰,同样,C-C和C-O在8μm-13μm的大气窗口也具有较强的吸收性,尤其是在8μm-9.5μm的波段,具有很强的吸收峰,所以含C-F键的聚合物具有非常优异的光谱选择性,含C-C键和/或C-O键的聚合物具有较优异的光谱选择性。同时,由于F原子电负性大,C-F键的键能高,可达500KJ/mol,但是,太阳光的光波段中,对有机物起破坏的光波段是280nm-780nm,其能量达不到破坏C-F键的程度,且F原子极化率低,含C-F键的聚合物能够表现出高的热稳定性和化学惰性,所以含C-F键 的聚合物还具有优异的耐候性。
因此,本申请的辐射制冷膜中,以含C-F键的聚合物作为发射层的材料,以含C-C键和/或C-O键的聚合物作为载体层的材料,二者相互配合使用,同时,以发射层作为辐射制冷膜的入光侧,且通过厚度的控制,优化了单位面积内C-F键、C-C键和/或C-O键的数量,同时控制了太阳光波段的热吸收,从而使得辐射制冷膜在不需要添加辐射制冷颗粒的条件下就具有优异的大气窗口发射率,进而避免了辐射制冷颗粒的添加对辐射制冷膜的力学性能和耐候性的产生不利影响,使得辐射制冷膜具有更优异的力学性能和耐候性。
附图说明
图1为一种传统的辐射制冷膜的结构示意图;
图2为另一种传统的辐射制冷膜的结构示意图;
图3为本申请第一实施方式的辐射制冷膜的结构示意图;
图4为本申请第二实施方式的辐射制冷膜的结构示意图;
图5为本申请第三实施方式的辐射制冷膜的结构示意图;
图6为工程应用实验的模型屋;
图7为图6所示实验的降温效果图。
图中:11、第一基层;12、第一反射层;13、第一发射涂层;14、第一辐射制冷颗粒;21、第二基层;22、第二反射层;23、第二发射层;24、含氟薄膜;25、第二辐射制冷颗粒;31、载体层;32、反射层;33、发射层;34、胶粘层;35、聚合物涂层;36、压花结构。
具体实施方式
以下将对本申请提供的辐射制冷膜及其制品作进一步说明。
如图3所示,为本申请提供的第一实施方式的辐射制冷膜,所述辐射制冷膜包括层叠设置的载体层31、反射层32和发射层33。
其中,所述发射层33的材料为含C-F键的聚合物,C-F键在8μm-13μm的大气窗口波段具有很强的吸收性且在8μm-13μm波段具有很强的吸收峰, 所以含C-F键的聚合物具有非常优异的光谱选择性,用作发射层33的材料时可使发射层33具有优异的大气窗口发射率。同时,由于F原子电负性大,C-F键的键能高,可达500KJ/mol,但是,太阳光的光波段中,对有机物起破坏的光波段是280nm-780nm,其能量达不到破坏C-F键的程度,且F原子极化率低,含C-F键的聚合物能够表现出高的热稳定性和化学惰性,所以含C-F键的聚合物还具有优异的耐候性,用作发射层33的材料时可使发射层33具有优异的耐候性。
所述载体层31的材料为含C-C键和/或C-O键的聚合物,C-C和C-O在8μm-13μm的大气窗口也具有较强的吸收性,尤其是在8μm-9.5μm的波段,具有很强的吸收峰,所以含C-C键和/或C-O键的聚合物也具有较优异的光谱选择性,作为载体层31的材料时,可以辅助提高辐射制冷膜的大气窗口发射率。
辐射制冷膜中,发射率y=a-be^(-x/k),式中,a、b、k为依据不同材料而定的常数,x为厚度,e为自然指数,从该发射率的公式可知,随着发射层33和载体层31的厚度的增加,单位面积内C-F键、C-C键和/或C-O键的数量的增加,辐射制冷膜的大气窗口发射率也随之增加,但是,厚度的增加,不仅会使辐射制冷膜的成本增加,也会使发射层33和载体层31对太阳光波段的热吸收增加,当厚度达到一极限时,辐射制冷膜的降温效果反而会有所下降。
所以,本申请控制辐射制冷膜的厚度为50μm-170μm,其中,所述发射层33的厚度占20%-90%,从而,通过厚度的控制,优化了单位面积内C-F键、C-C键和/或C-O键的数量,同时控制了太阳光波段的热吸收,使发射层33和载体层31的热吸收率≤20%,从而使得辐射制冷膜在不需要添加辐射制冷颗粒的条件下就具有优异的大气窗口发射率,进而避免了辐射制冷颗粒的添加对辐射制冷膜的力学性能和耐候性的产生不利影响,使得反射型辐射制冷颗粒具有更优异的力学性能和耐候性。
该实施方式中,所述反射层32设置于所述载体层31和所述发射层33 之间,于基体上使用时,所述发射层33为所述辐射制冷膜的入光侧,从而使得辐射制冷膜具有优异的耐候性。
此时,太阳光到达辐射制冷膜后,反射层32将绝大多数太阳光反射回大气中,从而,太阳光波段被阻隔而极少进入基体内,然后发射层33将基体内的热量转化为8μm-13μm的红外线通过8μm-13μm大气窗口进行辐射,由于在8μm-13μm大气窗口的大气基本无吸收,红外线直接进入外太空冷源,从而起到辐射制冷作用,实现对基体的降温。
该实施方式中,由于载体层31与发射层33被反射层32隔开,载体层31可以对反射层32起到保护作用,但辅助发射的作用被相应减弱,所以,在一实施例中,所述辐射制冷膜的厚度进一步可选为55μm-170μm。考虑到辐射制冷膜的热收缩性,其中,所述发射层33与所述载体层31的厚度之比为1:2-8:1,可选为1:1-3.75:1,所述发射层33与所述反射层32的厚度之比为50:1-12000:1,可选为80:1-4000:1,所述发射层33的厚度为25μm-120μm,进一步可选为40μm-75μm。从而,通过厚度的控制,进一步优化单位面积内C-F键、C-C键和/或C-O键的数量,同时控制了太阳光波段的热吸收,使发射层33和载体层31的热吸收率进一步小于或等于15%,更进一步地,热吸收率小于或等于10%。
该实施方式的辐射制冷膜中,所述反射层32的材料包括金属、合金中的至少一种,具体包括银、银合金、铝、铝合金、钛、钛合金中的至少一种。在一实施例中,所述反射层32包括多个子反射层,以降低反射层32的内应力,同时,当子反射层的材料不同时,如反射层32包括层叠设置的银反射层和铝反射层,或者进一步还包括层叠设置的钛反射层时,可以通过多层子反射层的协调作用,弥补各自子反射层单独存在时的技术缺陷和效果缺陷,提高反射层32对太阳光全波段的反射率,进而提高辐射制冷膜的反射率,同时,可以减少紫外光对辐射制冷膜的损伤,延长辐射制冷膜的使用寿命。因此,该实施方式中,通过材料、结构和厚度的优化,可使所述辐射制冷膜在大气窗口波段的发射率可以达到85%,进一步地,可以达到90%,更进一步地, 可以达到95%;对太阳光全波段的反射率可以达到82%,进一步地,可以达到87%,更进一步地,可以达到92%,具有优异的制冷效果。
考虑到辐射制冷膜的拉伸强度等力学性能,在一实施例中,含C-C键和/或C-O键的聚合物可选为聚酯、聚氨酯、聚酰胺、聚碳酸酯中的至少一种,其中,所述聚酯包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚(对苯二甲酸乙二醇酯-1,4-环己二烯二亚甲基对苯二甲酸酯)(PETG)中的至少一种。
由于金属、合金材料制成的反射层32的表面能高,所述反射层32可直接贴合于载体层31的表面,或者,以溅射、蒸镀等方式直接沉积于载体层31的表面。
为了保证反射层的平整性、辐射制冷膜的降温效果以及使用寿命,所述载体层31在120℃下放置30min后的横向(TD)方向的热收缩率≤2%、纵向(MD)方向的热收缩率≤3%。
考虑到含氟树脂中含有C-F键,且容易获得,在一实施例中,所述发射层33的材料可选为含氟树脂,具体包括乙烯-四氟乙烯共聚物(ETFE)、聚偏氟乙烯(PVDF)、聚乙烯醇缩甲醛(PVF)、聚氯三氟乙烯(PCTFE)、氟烯烃-乙烯基醚共聚物(FEVE)、聚四氟乙烯(PTFE)、乙烯三氟氯乙烯共聚物(ECTFE)、氟乙烯丙烯共聚物(FEP)、可熔性聚四氟乙烯(PFA)中的至少一种,进一步地,所述含氟树脂具体包括乙烯-四氟乙烯共聚物(ETFE)、聚偏氟乙烯(PVDF)、聚乙烯醇缩甲醛(PVF)氟烯烃-乙烯基醚共聚物(FEVE)、聚四氟乙烯(PTFE)、氟乙烯丙烯共聚物(FEP)中的至少一种。
含氟树脂的表面能较低,所以,所述发射层33可由含氟树脂的涂料于反射层32的表面直接固化而成,含氟树脂的涂料可为水性或者油性。
当发射层33为含氟薄膜时,如图4所示,为本申请提供的第二实施方式的辐射制冷膜,该实施方式的辐射制冷膜中,含氟树脂薄膜通过胶粘层34固定粘接于反射层32上,其中,所述胶粘层34的材料包括耐候性好的聚氨酯胶水、丙烯酸胶水中的至少一种,所述胶粘层34的厚度为0.5μm-20μm。
另外,载体层31的材料选自聚酯、聚氨酯、聚酰胺、聚碳酸酯时,其表面能低,在沉积或者粘贴反射层32之前,可以先采用等离子体方法和电晕方法等对载体层31的表面进行处理,以提高其表面能至40mN/m以上,进一步提高至42mN/m以上或45mN/m以上或50mN/m以上或55mN/m以上,或者,于载体层31上设置聚合物涂层35,所述聚合物涂层35的表面能为40mN/m以上,进一步为42mN/m以上或45mN/m以上或50mN/m以上或55mN/m以上,从而,极大的提高了载体层31与反射层32的附着力,进而提高了整个辐射制冷膜的剥离强度。
当设置聚合物涂层35时,所述聚合物涂层的厚度可选为3nm-200nm,所述载体层31和所述聚合物涂层35之间的折射率差值的绝对值大于或等于0.05,以辅助提高辐射制冷膜的反射率。
在一实施方式中,所述聚合物涂层35的材料包括环氧丙烯酸聚合物、聚氨酯类丙烯酸酯、聚酯类丙烯酸酯中的至少一种。
如图4所示,本申请的辐射制冷膜中,所述发射层33的入光面还可以设置有压花结构36,该压花结构为方形、圆形、菱形、斜纹形中的一种或多种结构,深度为0.5μm-2.5μm,从而,可以通过压花结构36降低辐射制冷膜的表面光泽度,以减少镜面反射的光线,从而减少本申请的辐射制冷膜在应用过程中的光污染,适用于机场等对光污染有特殊要求的领域。
如图5所示,为本申请提供的第三实施方式的辐射制冷膜,该实施方式中,所述载体层31设置于所述反射层32与所述发射层33之间。此时,太阳光到达辐射制冷膜后,反射层32将绝大多数太阳光反射回大气中,从而,太阳光波段被阻隔而极少进入基体内;然后发射层33将基体内的热量转化为8μm-13μm的红外线通过8μm-13μm大气窗口进行辐射,在8μm-13μm大气窗口的大气基本无吸收,红外线直接进入外太空冷源,从而起到辐射制冷作用,实现对基体的降温。
该实施方式中,载体层31位于发射层33和反射层32之间,所以,载体层31能够更好的辅助发射层33进行辐射,所以,在一实施例中,所述辐射 制冷膜的厚度进一步可选为50μm-125μm。同时,考虑到辐射制冷膜的热收缩性,所述发射层33与所述载体层31的厚度之比为3:10-22:3,可选为1:5-20:3,所述发射层33与所述反射层32的厚度之比为30:1-110000:1,可选为25:1-100000:1,所述发射层33的厚度为15μm-110μm,进一步可选为40μm-75μm。从而,通过厚度的控制,进一步优化单位面积内C-F键、C-C键和/或C-O键的数量,同时控制了太阳光波段的热吸收,使发射层33和载体层31的热吸收率进一步小于或等于15%,更进一步地,热吸收率小于或等于10%。
因此,该实施方式中,通过材料、结构和厚度的优化,可使所述辐射制冷膜在大气窗口波段的发射率可以达到87%,进一步地,可以达到92%,更进一步地,可以达到97%;对太阳光全波段的反射率可以达到80%;进一步地,可以达到85%,更进一步地,可以达到90%,具有优异的制冷效果。
可以理解,在该实施方式中,所述反射层32可直接贴合于载体层31的表面,或者,以溅射、蒸镀等方式直接沉积于载体层31的表面,在沉积或者粘贴反射层32之前,也可以先采用等离子体方法和电晕方法等对载体层31的表面进行处理,以提高其表面能,或者,于载体层31上设置聚合物涂层35,以提高载体层31与反射层32的附着力,进而提高整个辐射制冷膜的剥离强度。
另外,所述发射层33可由含氟树脂的涂料于载体层31的表面直接固化而成,含氟树脂的涂料可为水性或者油性,或者,当发射层33为含氟薄膜时,含氟树脂薄膜通过胶粘层34固定粘接于载体层31上。
因此,本申请提供的辐射制冷膜通过材料、结构和厚度的优化,在不需要添加辐射制冷颗粒的条件下就具有优异的大气窗口发射率,进而避免了辐射制冷颗粒的添加对辐射制冷膜的力学性能和耐候性的产生不利影响,使得辐射制冷膜具有更优异的力学性能和耐候性,同时,具有优异的制冷效果。
本申请还提供一种辐射制冷膜的应用,所述辐射制冷膜设置于基体的表面,用于反射太阳光以及以红外辐射方式通过大气窗口发射热量。
在一实施例中,所述基体包括金属基体、陶瓷基体、半导体基体、塑料基体、玻璃基体、橡胶基体、沥青基体、水泥基体、纺织物基体中的至少一种。
本申请还提供一种包括辐射制冷膜的制品,所述制品包括基体以及设置于所述基体上的所述的辐射制冷膜,所述辐射制冷膜中的远离发射层33的一面通过胶粘剂层与基体连接,所述发射层33远离基体的表面为入光侧。
在一实施例中,所述胶粘剂层包括丙烯酸胶、聚氨酯型压敏胶、热熔胶、热熔胶膜、丁基胶中的一种,所述胶粘剂层厚度为20μm-1500μm,进一步地,所述胶粘剂层厚度为25μm-150μm。胶粘剂层太厚会导致胶粘剂层的太阳光吸收率增加,进而会影响辐射制冷膜的降温效果;胶粘剂层太薄会使粘结性能下降,进而会影响辐射制冷膜的使用寿命。
在一实施例中,所述基体包括金属基体、塑料基体、玻璃基体、橡胶基体、沥青基体、水泥基体、纺织物基体中的至少一种。
在一实施例中,所述制品为辐射制冷防水卷材,所述基体为石油沥青纸胎油毡、石油沥青玻纤胎卷材、铝箔面卷材、SBS改性沥青防水卷材、APP改性沥青防水卷材、三元乙丙卷材、聚氯乙烯卷材、氯化聚乙烯卷材、橡胶共混卷材、TPO防水卷材中的一种。
在一实施例中,所述制品为辐射制冷金属板,所述基体为铝合金金属板、镀锌金属板、镀锡金属板、复合钢金属板、彩色涂层钢金属板中的一种。
因此,本申请的辐射制冷膜可以用于粮库、大型公共建筑(如高铁站、机场、展览馆、博物馆)、石化储罐、电力柜、通信柜等围护结构外表面,能够反射太阳光以及以红外辐射方式通过大气窗口发射热量,从而实现对围护结构的无能耗降温。
以下,将通过以下具体实施例对所述辐射制冷膜及其制品做进一步的说明。
实施例1
以厚度为30μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃ 下放置30min后的横向方向的热收缩率为1.2%、纵向方向的热收缩率为1.4%,于载体层的一表面上磁控溅射得到厚度为100nm的银反射层,然后于载体层背离所述银反射层的表面上涂覆聚四氟乙烯树脂,并固化成厚度为50μm的发射层,得到辐射制冷膜。
实施例2
以厚度为30μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为1.2%、纵向方向的热收缩率为1.4%,于载体层上磁控溅射得到厚度为100nm的银反射层,然后于银反射层上涂覆聚四氟乙烯树脂,并固化成厚度为50μm的发射层,得到辐射制冷膜。
实施例3
实施例3与实施例1的区别在于,将厚度为50μm的聚四氟乙烯薄膜通过厚度为10μm的聚氨酯胶层粘结于载体层的表面,得到辐射制冷膜。
实施例4
实施例4与实施例3的区别在于,实施例4的聚四氟乙烯薄膜经过压花工艺处理,表面有方形的压花结构,深度为1μm,压花结构设置于发射层的入光面。
实施例5
实施例5与实施例3的区别在于,实施例5的用于承载银反射层的表面设置有厚度为50nm的环氧丙烯酸聚合物涂层,表面能为56mN/m,且载体层和聚合物涂层的折射率的差值的绝对值为0.06。
实施例6
以厚度为15μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为1.6%、纵向方向的热收缩率为1.8%,将载体层的一表面进行等离子处理,使其表面能达到42mN/m,然后于该表面上磁控溅射得到厚度为50nm的银反射层,然后于载体层背离所述银反射层的表面上涂覆聚四氟乙烯树脂,并固化成厚度为35μm的发射层, 发射层再经过压花工艺使其表面形成有方形的压花结构,深度为0.5μm,得到辐射制冷膜。
实施例7
以厚度为20μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为1.5%、纵向方向的热收缩率为1.6%,将载体层的一表面涂覆厚度为10nm的聚氨酯类丙烯酸酯聚合物涂层,表面能为42mN/m,且载体层和聚合物涂层的折射率的差值的绝对值为0.07。然后于该聚合物涂层上磁控溅射得到厚度为60nm的银反射层,然后于载体层背离所述银反射层的表面上涂覆聚四氟乙烯树脂,并固化成厚度为40μm的发射层,发射层再经过压花工艺使其表面形成有方形的压花结构,深度为0.5μm,得到辐射制冷膜。
实施例8
以厚度为30μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为1.2%、纵向方向的热收缩率为1.4%,将载体层的一表面涂覆厚度为100nm的聚酯类丙烯酸酯聚合物涂层,表面能为47mN/m,且载体层和聚合物涂层的折射率的差值的绝对值为0.06。然后于该聚合物涂层上磁控溅射得到厚度为50nm的银反射层和50nm的铝反射层,然后于载体层背离所述银反射层的表面上涂覆聚四氟乙烯树脂,并固化成厚度为15μm的发射层,发射层再经过压花工艺使其表面形成有方形的压花结构,深度为1μm,得到辐射制冷膜。
实施例9
以厚度为50μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为0.8%、纵向方向的热收缩率为1.0%,在载体层的一表面涂覆厚度为20nm的聚酯类丙烯酸酯聚合物涂层,表面能为47mN/m,且载体层和聚合物涂层的折射率的差值的绝对值为0.06。然后于聚合物涂层上磁控溅射得到厚度为200nm的银反射层。然后将厚度为75μm的聚四氟乙烯薄膜通过厚度为5μm的聚氨酯胶层粘结于载体层背 离所述银反射层的表面,其中,聚四氟乙烯薄膜经过压花工艺处理,表面具有方形的压花结构,深度为2μm,得到辐射制冷膜。
实施例10
以厚度为35μm的聚对苯二甲酸乙二醇酯膜作为载体层,载体层在120℃下放置30min后的横向方向的热收缩率为1.1%、纵向方向的热收缩率为1.2%,在载体层的一表面涂覆厚度为50nm的聚氨酯类丙烯酸酯聚合物涂层,表面能为42mN/m,且载体层和聚合物涂层的折射率的差值的绝对值为0.07。然后于聚合物涂层上磁控溅射得到厚度为100nm的银反射层和100nm的铝反射层,然后将厚度为110μm的聚四氟乙烯薄膜通过厚度为5μm的聚氨酯胶层粘结于载体层背离所述反射层的表面,其中,聚四氟乙烯薄膜经过压花工艺处理,表面具有方形的压花结构,深度为2.5μm,得到辐射制冷膜。
对比例1
对比例1与实施例1的区别在于,于载体层背离所述银反射层的表面上涂覆聚四氟乙烯树脂和二氧化硅粒子的混合涂料,其中,二氧化硅粒子的质量百分数为1%,粒径为5μm。
对比例2
对比例2与对比例1的区别在于,二氧化硅粒子的质量百分数为10%,粒径为5μm。
对比例3
对比例3与实施例3的区别在于,聚氨酯胶层中含有二氧化硅粒子,其中,二氧化硅粒子的质量百分数为1%,粒径为5μm。
对比例4
对比例4与实施例3的区别在于,聚氨酯胶层中含有二氧化硅粒子,其中,二氧化硅粒子的质量百分数为10%,粒径为5μm。
将实施例1-10和对比例1-4的辐射制冷膜进行以下性能测试,结果见表1。
大气窗口(8μm-13μm)波段发射率试验方法:使用红外光谱法进行测 试,试验仪器为傅里叶变换红外光谱仪,测试8μm-13μm波段的红外发射率,测试间隔为5nm,8μm-13μm波段的发射率即为大气窗口发射率。
太阳光(300nm-2500nm)波段反射率试验方法:按GB/T 25968-2010 6.2的规定进行。
光泽度试验方法:按GB/T 9754-2007的规定进行,取60°的测试结果。
氙灯老化试验方法:试验氙弧灯应符合GB/T 16422.2-2014的规定。测试按照GB/T 16422.2-2014循环1进行。测试时,样品膜面面向光源,放置1000h。
剥离强度试验方法:参照标准GB/T 25256-2010《光学功能薄膜离型膜180°剥离力和残余黏着率测试方法》,用裁样刀裁切TD、MD方向150mm*25mm样条各3个(左、中、右各一个),用100mm标距,100m/min测试速率对胶粘层的剥离强度进行测试。
断裂伸长率和拉伸强度试验方法:按GB/T 1040.1-2018中的第5章的规定进行。试验速度为150mm/min,宽度为25mm,长度不小于150mm的长条试样3块(即GB/T 1040.3-2006中的2型试样)。应确保试样边缘整齐光滑无缺口。试验时将试样安装在拉力试验机夹具上,夹具间隔100mm,以100mm/min的速度拉伸,测定试样断裂时的最大拉力及延伸量。根据公式(1)计算断裂伸长率。数值修约至小数点后一位。
Figure PCTCN2021078472-appb-000001
式中:E为断裂伸长率;L1为试样断裂时的延伸量;L0为夹具间的初始距离。
热收缩率试验方法:参考ASTM D1204。
表1
Figure PCTCN2021078472-appb-000002
【工程应用实验】
为了模拟辐射制冷膜应用于建筑物时,对建筑物内部的降温效果,选取位于宁波市内的相同环境下的如图6所示的A、B两个模型屋,B模型屋外表面不做任何处理,A模型屋外表面设置实施例1的辐射制冷膜,在A、B两个模型屋内的中部区域分别安装1个温度测温点A1、B1,在模型屋旁安装环境温度测温点,连续采集测温点A1、B1、环境温度在2020.10.1-2020.10.3的温度数据,见图7中的温度曲线。
从图7可知,(1)辐射制冷膜可有效降低模型屋内部的温度,A模型屋和B模型屋最大的对比温差达到18℃;(2)每天的中午前后,太阳辐照强度 达到最大,此时2个模型屋的温差最大;(3)通过辐射制冷膜可以持续有效地降低模型屋的整体温度,节能环保。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种辐射制冷膜,其特征在于,所述辐射制冷膜包括层叠设置的载体层、反射层和发射层,所述发射层为所述辐射制冷膜的入光侧,所述发射层的材料为含C-F键的聚合物,所述载体层的材料为含C-C键和/或C-O键的聚合物,所述载体层在120℃下放置30min后的横向方向的热收缩率≤2%、纵向方向的热收缩率≤3%,所述辐射制冷膜的厚度为50μm-170μm,其中,所述发射层的厚度占20%-90%。
  2. 根据权利要求1所述的辐射制冷膜,其中,所述反射层设置于所述载体层和所述发射层之间时,所述辐射制冷膜的厚度为55μm-170μm。
  3. 根据权利要求2所述的辐射制冷膜,其中,所述发射层与所述载体层的厚度之比为1:2-8:1。
  4. 根据权利要求3所述的辐射制冷膜,其中,所述发射层的厚度为25μm-120μm。
  5. 根据权利要求1所述的辐射制冷膜,其中,所述载体层设置于所述反射层与所述发射层之间时,所述辐射制冷膜的厚度为50μm-125μm。
  6. 根据权利要求5所述的辐射制冷膜,其中,所述发射层与所述载体层的厚度之比为3:10-22:3。
  7. 根据权利要求6所述的辐射制冷膜,其中,所述发射层的厚度为15μm-110μm。
  8. 根据权利要求1-7任一项所述的辐射制冷膜,其中,所述发射层的材料包括含氟树脂;
    及/或,所述载体层的材料包括聚酯、聚氨酯、聚酰胺、聚碳酸酯中的至少一种;
    及/或,所述反射层的材料包括金属、合金中的至少一种。
  9. 根据权利要求1-7任一项所述的辐射制冷膜,其中,所述载体层用于承载所述反射层的表面的表面能大于或等于40mN/m。
  10. 根据权利要求1-7任一项所述的辐射制冷膜,其中,所述载体层和所述反射层之间还设置有聚合物涂层,所述聚合物涂层的表面能大于或等于40mN/m,所述聚合物涂层的厚度为3nm-200nm。
  11. 根据权利要求10所述的辐射制冷膜,其中,所述载体层和所述聚合物涂层之间的折射率差值的绝对值大于或等于0.05。
  12. 根据权利要求1-7任一项所述的辐射制冷膜,其中,所述发射层的入光面设置有压花结构。
  13. 一种包括辐射制冷膜的制品,其特征在于,所述制品包括基体以及设置于所述基体上的如权利要求1所述的辐射制冷膜,所述辐射制冷膜中的远离发射层的一面通过胶粘剂层与基体连接。
  14. 根据权利要求13所述的包括辐射制冷膜的制品,其中,所述基体包括金属基体、陶瓷基体、半导体基体、塑料基体、玻璃基体、橡胶基体、沥青基体、水泥基体、纺织物基体中的至少一种。
  15. 根据权利要求13所述的包括辐射制冷膜的制品,其中,所述制品为辐射制冷防水卷材,所述基体为石油沥青纸胎油毡、石油沥青玻纤胎卷材、铝箔面卷材、SBS改性沥青防水卷材、APP改性沥青防水卷材、三元乙丙卷材、聚氯乙烯卷材、氯化聚乙烯卷材、橡胶共混卷材、TPO防水卷材中的一种。
  16. 根据权利要求13所述的包括辐射制冷膜的制品,其中,所述制品为辐射制冷金属板,所述基体为铝合金金属板、镀锌金属板、镀锡金属板、复合钢金属板、彩色涂层钢金属板中的一种。
PCT/CN2021/078472 2021-02-04 2021-03-01 辐射制冷膜及其制品 WO2022165886A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,878 US11867434B1 (en) 2021-02-04 2021-03-01 Radiative cooling film and product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110154142.3 2021-02-04
CN202110154142.3A CN112797666B (zh) 2021-02-04 2021-02-04 辐射制冷膜及其制品

Publications (1)

Publication Number Publication Date
WO2022165886A1 true WO2022165886A1 (zh) 2022-08-11

Family

ID=75339419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078472 WO2022165886A1 (zh) 2021-02-04 2021-03-01 辐射制冷膜及其制品

Country Status (5)

Country Link
US (1) US11867434B1 (zh)
EP (1) EP4039461A1 (zh)
JP (1) JP6999057B1 (zh)
CN (1) CN112797666B (zh)
WO (1) WO2022165886A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595796A (zh) * 2022-10-26 2023-01-13 王文玉(Cn) 一种辐射制冷纤维及其制备方法、织物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7183327B2 (ja) * 2021-03-26 2022-12-05 大阪瓦斯株式会社 放射冷却式膜材
WO2023090717A1 (ko) * 2021-11-19 2023-05-25 롯데케미칼 주식회사 복사냉각 다층 필름
CN116301091B (zh) * 2023-05-19 2023-08-04 浙江农林大学 一种适用于辐射冷暖窗户的温控智能管理系统
CN116836592A (zh) * 2023-08-03 2023-10-03 电子科技大学长三角研究院(衢州) 一种辐射冷却涂料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139780A1 (en) * 2004-06-17 2007-06-21 Fujifilm Corporation Process for producing coating film, antireflection film and process for producing the same, sheet polarizer using the film, and image display device using these
WO2016194560A1 (ja) * 2015-05-29 2016-12-08 コニカミノルタ株式会社 赤外遮蔽フィルム
WO2018207563A1 (ja) * 2017-05-10 2018-11-15 コニカミノルタ株式会社 光反射フィルム及び光反射フィルムの製造方法
CN110128688A (zh) * 2019-03-29 2019-08-16 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜及其制备方法
CN110274326A (zh) * 2018-03-16 2019-09-24 浙江大学 一种日间辐射制冷器及其制备方法
CN111114031A (zh) * 2019-12-31 2020-05-08 宁波瑞凌新能源科技有限公司 辐射制冷薄膜、辐射制冷复合膜、辐射制冷制品
CN210894760U (zh) * 2019-09-30 2020-06-30 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜
CN211683857U (zh) * 2019-12-31 2020-10-16 宁波瑞凌新能源科技有限公司 辐射制冷膜
CN111806020A (zh) * 2020-09-04 2020-10-23 宁波瑞凌新能源科技有限公司 制冷膜、包括制冷膜的制品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586350A (en) * 1984-09-14 1986-05-06 The United States Of America As Represented By The United States Department Of Energy Selective radiative cooling with MgO and/or LiF layers
JPH07638Y2 (ja) * 1986-04-17 1995-01-11 鹿島建設株式会社 日射調整板
DE102005025083B4 (de) * 2005-05-30 2007-05-24 Infineon Technologies Ag Thermoplast-Duroplast-Verbund und Verfahren zum Verbinden eines thermoplastischen Materials mit einem duroplastischen Material
KR20100127954A (ko) * 2009-05-27 2010-12-07 도레이첨단소재 주식회사 반사방지필름 및 이를 포함하는 편광판
CN102529211B (zh) * 2011-12-22 2014-09-24 电子科技大学 一种增强太赫兹辐射吸收率的膜系结构及其制备方法
BR112016016131B1 (pt) * 2014-01-10 2023-03-07 Bry Air [Asia] Pvt. Ltd Dispositivo de troca de calor de adsorvedor híbrido e método de fabricação
US10088251B2 (en) * 2014-05-21 2018-10-02 The Board Of Trustees Of The Leland Stanford Junior University Radiative cooling with solar spectrum reflection
WO2016158604A1 (ja) 2015-03-31 2016-10-06 コニカミノルタ株式会社 近赤外線遮蔽フィルム、その製造方法及び粘着剤組成物
US10710113B2 (en) * 2015-09-08 2020-07-14 Grafoid, Inc. Process for coating a substrate with a carbon-based material
WO2017131174A1 (ja) * 2016-01-29 2017-08-03 日立マクセル株式会社 透明スクリーン機能を備えた透明遮熱断熱部材
AU2017225866B2 (en) * 2016-02-29 2021-10-07 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
US10323151B2 (en) * 2017-02-27 2019-06-18 Palo Alto Research Center Incorporated Coating to cool a surface by passive radiative cooling
CN107936389A (zh) * 2017-11-10 2018-04-20 新奥科技发展有限公司 一种复合膜及其制备方法
CN109119504A (zh) * 2018-11-02 2019-01-01 南京朗伯尼特新能源有限公司 光伏组件及在光伏组件背面制备多孔pvdf-hfp薄膜的方法
CN110030760A (zh) * 2019-03-29 2019-07-19 宁波瑞凌新能源科技有限公司 一种辐射制冷结构
CN110216924B (zh) * 2019-05-31 2021-08-06 宁波瑞凌新能源科技有限公司 一种复合辐射制冷膜
CN110774673B (zh) * 2019-11-06 2022-09-20 宁波瑞凌新能源科技有限公司 一种辐射制冷透射膜
CN110815985A (zh) * 2019-11-08 2020-02-21 宁波瑞凌新能源科技有限公司 一种辐射制冷面料及其用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139780A1 (en) * 2004-06-17 2007-06-21 Fujifilm Corporation Process for producing coating film, antireflection film and process for producing the same, sheet polarizer using the film, and image display device using these
WO2016194560A1 (ja) * 2015-05-29 2016-12-08 コニカミノルタ株式会社 赤外遮蔽フィルム
WO2018207563A1 (ja) * 2017-05-10 2018-11-15 コニカミノルタ株式会社 光反射フィルム及び光反射フィルムの製造方法
CN110274326A (zh) * 2018-03-16 2019-09-24 浙江大学 一种日间辐射制冷器及其制备方法
CN110128688A (zh) * 2019-03-29 2019-08-16 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜及其制备方法
CN210894760U (zh) * 2019-09-30 2020-06-30 宁波瑞凌新能源科技有限公司 一种辐射制冷薄膜
CN111114031A (zh) * 2019-12-31 2020-05-08 宁波瑞凌新能源科技有限公司 辐射制冷薄膜、辐射制冷复合膜、辐射制冷制品
CN211683857U (zh) * 2019-12-31 2020-10-16 宁波瑞凌新能源科技有限公司 辐射制冷膜
CN111806020A (zh) * 2020-09-04 2020-10-23 宁波瑞凌新能源科技有限公司 制冷膜、包括制冷膜的制品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115595796A (zh) * 2022-10-26 2023-01-13 王文玉(Cn) 一种辐射制冷纤维及其制备方法、织物
CN115595796B (zh) * 2022-10-26 2024-02-27 王文玉 一种辐射制冷纤维及其制备方法、织物

Also Published As

Publication number Publication date
JP2022119691A (ja) 2022-08-17
US11867434B1 (en) 2024-01-09
JP6999057B1 (ja) 2022-01-18
US20240019180A1 (en) 2024-01-18
CN112797666A (zh) 2021-05-14
CN112797666B (zh) 2022-03-01
EP4039461A1 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
WO2022165886A1 (zh) 辐射制冷膜及其制品
US10693024B2 (en) Barrier assembly
US20150323718A1 (en) Light diffusing solar control film
EP3084092B1 (en) Barrier films and vacuum insulated panels employing same
TW200422185A (en) Polymer-metal infrared interference filter
JP2013010341A (ja) 赤外線反射フィルム
CN111806020B (zh) 制冷膜、包括制冷膜的制品
JP2000096009A (ja) 窓貼り用積層フィルムおよびそれからなる積層体
US20150214405A1 (en) Methods of making barrier assemblies
JP2017185669A (ja) 遮熱フィルムと遮熱合わせガラス
CN215176155U (zh) 辐射制冷膜及其制品
WO2014156518A1 (ja) 太陽電池モジュールの製造方法
CN212864647U (zh) 一种安全隔热车顶车衣膜
TW202138739A (zh) 輻射冷卻裝置及輻射冷卻方法
KR20010053888A (ko) 고조도 반사판용 열접착 다층 필름
JP2016213366A (ja) 太陽電池裏面保護用シート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17280878

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923896

Country of ref document: EP

Kind code of ref document: A1