WO2022163553A1 - 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物 - Google Patents

新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物 Download PDF

Info

Publication number
WO2022163553A1
WO2022163553A1 PCT/JP2022/002314 JP2022002314W WO2022163553A1 WO 2022163553 A1 WO2022163553 A1 WO 2022163553A1 JP 2022002314 W JP2022002314 W JP 2022002314W WO 2022163553 A1 WO2022163553 A1 WO 2022163553A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
compound
benzoxazine compound
Prior art date
Application number
PCT/JP2022/002314
Other languages
English (en)
French (fr)
Inventor
芳美 宇高
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Priority to KR1020237025903A priority Critical patent/KR20230137341A/ko
Priority to CN202280011056.XA priority patent/CN116888102A/zh
Priority to JP2022578346A priority patent/JPWO2022163553A1/ja
Priority to US18/262,295 priority patent/US20240101543A1/en
Publication of WO2022163553A1 publication Critical patent/WO2022163553A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/041,3-Oxazines; Hydrogenated 1,3-oxazines
    • C07D265/121,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
    • C07D265/141,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D265/161,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems condensed with one six-membered ring with only hydrogen or carbon atoms directly attached in positions 2 and 4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/357Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a novel benzoxazine compound, a resin raw material composition containing it, a curable resin composition, and a cured product thereof. Specifically, the present invention relates to a novel benzoxazine compound having benzoxazine rings at both ends of a binding group and a thiol group, a resin raw material composition containing the same, a curable resin composition, and a cured product thereof.
  • Benzoxazine compounds are known as thermosetting resin raw materials that harden through ring-opening polymerization of benzoxazine rings without generating volatile by-products when heated. It is used as a raw material for solids, liquid crystal aligning agents, and resin compositions for semiconductor encapsulation.
  • the curing temperature of benzoxazine compounds is generally relatively high, and catalysts, polymerization accelerators and highly reactive benzoxazine compounds have been developed in recent years in order to lower the polymerization temperature.
  • highly reactive benzoxazine compounds a hydroxyl-functional benzoxazine composition having a hydroxyl group introduced into the structure has been reported (Patent Document 1).
  • An object of the present invention is to provide a novel benzoxazine compound, a resin raw material composition containing the compound, a curable resin composition, and a cured product thereof, which can be cured under low temperature conditions.
  • a benzoxazine compound represented by the general formula (1) (In the formula, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, R 2 represents a divalent group having 1 to 10 carbon atoms, and X is a single bond, an oxygen atom, or a sulfur atom.
  • R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or 12 aryl groups, each of R 3 and R 4 may be combined with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole, and Ar 1 and Ar 2 each independently 6 to 12 aryl groups are shown, and * indicates each bonding position.
  • a curable resin composition comprising the resin raw material composition according to . 4.1. or the benzoxazine compound according to 2. and one or more selected from the group consisting of an epoxy resin, a benzoxazine compound other than the benzoxazine compound represented by the general formula (1), a phenolic resin, and a bismaleimide compound. 3.
  • the curable resin composition according to . 5.3. or 4. A cured product obtained by curing the curable resin composition according to 1.
  • the novel benzoxazine compound of the present invention can be cured at a low temperature and can be melted at a low temperature as compared with conventionally known benzoxazine compounds having a hydroxyl group. Therefore, by using the novel benzoxazine compound of the present invention, it is possible to reduce the temperature during mixing of other thermosetting resin monomers and various additives, and during the molding process of thermosetting resins, thereby enabling heating and cooling. It is possible to improve efficiency by shortening the time and saving energy, and it is possible to suppress thermal deterioration of materials due to exposure to high temperatures during mixing with other thermosetting resin monomers and various additives and during polymerization. and is very useful.
  • novel benzoxazine compound, the resin raw material composition containing it, the curable resin composition, and the cured product thereof in the present invention are varnishes that can be applied to various substrates, varnish-impregnated prepregs, printed circuit boards, electronic It can be suitably used as a raw material for resins such as sealants for parts, electric/electronic molded parts, automotive parts, laminated materials, paints, and resist inks.
  • the novel benzoxazine compound of the present invention is represented by general formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 2 represents a divalent group having 1 to 10 carbon atoms
  • X is a single bond, an oxygen atom, or a sulfur atom.
  • R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, or 12 aryl groups, each of R 3 and R 4 may be combined with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole, and Ar 1 and Ar 2 each independently 6 to 12 aryl groups are shown, and * indicates each bonding position.
  • R 1 in general formula (1) is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 carbon atom (methyl group), A hydrogen atom is particularly preferred.
  • R 1 is not a hydrogen atom
  • the bonding position is preferably ortho-position on the benzene ring with respect to the oxygen atom of the benzoxazine ring.
  • R 2 in general formula (1) is a divalent group having 1 to 10 carbon atoms, and specific examples thereof include methylene group, ethylene group, propane-1,2-diyl group, propane-1, 3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, cyclohexane-1,3-diyl group, cyclohexane-1,4-diyl group, etc.
  • Bivalent groups having 1 to 10 carbon atoms and containing a benzene ring such as an alkylidene group having 1 to 10 carbon atoms, a phenylene group, and groups represented by the following formulas can be mentioned.
  • R 2 is preferably a linear or branched alkylene group having 1 to 10 carbon atoms, an alkylene group containing a cyclic alkane, or an alkylidene group having 1 to 10 carbon atoms.
  • a linear or branched alkylene group having 1 to 10 or an alkylene group containing a cyclic alkane is more preferable, and a linear or branched alkylene group having 1 to 6 carbon atoms or an alkylene group containing a cyclic alkane is preferred. More preferably, a linear or branched alkylene group having 1 to 4 carbon atoms is particularly preferred.
  • R 3 and R 4 when X in general formula (1) is general formula (1a) are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or a A halogenated alkyl group or an aryl group having 6 to 12 carbon atoms, more preferably hydrogen, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group or an aryl group having 6 to 8 carbon atoms, particularly preferably It is hydrogen, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • each of R 3 and R 4 may combine with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole. Excellent in nature.
  • the cycloalkylidene group having 5 to 20 carbon atoms may contain an alkyl group as a branched chain.
  • the cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably 6 to 12 carbon atoms, and particularly preferably 6 to 9 carbon atoms.
  • cycloalkylidene group examples include a cyclopentylidene group (having 5 carbon atoms), a cyclohexylidene group (having 6 carbon atoms), a 3-methylcyclohexylidene group (having 7 carbon atoms), 4 -methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cycloheptylidene group (7 carbon atoms), bicyclo [2.2.1 ]heptane-2,2-diyl group (7 carbon atoms), 1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), 4,7, 7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), tricyclo[5.2.1.0 2,6 ]decane-8,8-diyl group (carbon atoms 10), 2,2-
  • cyclohexylidene group (6 carbon atoms), 3-methylcyclohexylidene group (7 carbon atoms), 4-methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexyl
  • a den group (having 9 carbon atoms) and a cyclododecanylidene group (having 12 carbon atoms) more preferably a cyclohexylidene group (having 6 carbon atoms) and a 3,3,5-trimethylcyclohexylidene group (having 9 atoms) and a cyclododecanylidene group (12 carbon atoms), particularly preferably a cyclohexylidene group (6 carbon atoms) and a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms).
  • Preferred Ar 1 and Ar 2 when X in general formula (1) is general formula (1b) are each independently a benzene ring or a naphthalene ring, and both Ar 1 and Ar 2 are benzene rings. is more preferred.
  • the group represented by general formula (1b) is a fluorenylidene group.
  • the bonding positions of X in the general formula (1) and the two benzoxazine rings are preferably ortho- or para-positions on the benzene ring with respect to the oxygen atoms of the benzoxazine rings.
  • Compounds (p-1) to (p-126) having the following chemical structures are shown as specific examples of the novel benzoxazine compound represented by general formula (1) in the present invention.
  • compounds (p-1) to (p-63) are preferred, and compounds (p-1) to (p-42), compounds (p-46) to (p-48) and compound (p-52) ⁇ (p-63) is more preferable, compounds (p-1) ⁇ (p-15) and compounds (p-22) ⁇ (p-30) and compounds (p-34) ⁇ (p-42) and compounds (p-52) to (p-63) are more preferred.
  • a bisphenol compound represented by general formula (2) an aminothiol compound represented by general formula (3), and formaldehydes are used as starting materials.
  • Specific examples of the bisphenol compound represented by the general formula (2) include bisphenol F (bis(2-hydroxyphenyl)methane, 2-hydroxyphenyl-4-hydroxyphenylmethane, bis(4-hydroxyphenyl) ) methane), bisphenol E (1,1-bis(4-hydroxyphenyl)ethane), bisphenol A (2,2-bis(4-hydroxyphenyl)propane), bisphenol C (2,2-bis(4-hydroxy -3-methylphenyl)propane), 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3′-dimethylbiphenyl, bis (4-hydroxyphenyl)ether, 4,4'-dihydroxybenzophenone, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxypheny
  • aminothiol compound represented by the general formula (3) examples include 2-aminoethanethiol, 3-amino-1-propanethiol, 2-amino-1-methylethanethiol, 2-amino -2-methylethanethiol, 5-amino-1-pentanethiol, 6-amino-1-hexanethiol, 2-aminothiophenol, 3-aminothiophenol, 4-aminothiophenol, 4-aminobenzylmercaptan, etc. mentioned.
  • 2-aminoethanethiol, 3-amino-1-propanethiol, 2-amino-1-methylethanethiol, 2-amino-2-methylethanethiol, 5-amino-1-pentanethiol, 6-amino -1-Hexanethiol is preferred
  • 2-aminoethanethiol, 3-amino-1-propanethiol and 2-amino-1-methylethanethiol are more preferred
  • 2-aminoethanethiol is particularly preferred.
  • Specific examples of formaldehyde include aqueous formaldehyde solution, 1,3,5-trioxane, and paraformaldehyde.
  • the amount of formaldehyde to be used is preferably in the range of 4.0 to 20.0 mol per 1 mol of the bisphenol compound represented by the general formula (2). 0 mol, more preferably 4.0 to 12.0 mol.
  • the amount of the aminothiol compound represented by the general formula (3) used is in the range of 2.0 to 10.0 mol per 1 mol of the bisphenol compound represented by the general formula (2). is preferably in the range of 2.0 to 8.0 mol, even more preferably in the range of 2.0 to 6.0 mol.
  • a catalyst for promoting the reaction is not particularly necessary, but an acid or base catalyst can be used as necessary.
  • usable acid catalysts include concentrated hydrochloric acid, hydrochloric acid gas, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid and mixtures thereof
  • usable basic catalysts include sodium hydroxide. , sodium carbonate, triethylamine, triethanolamine and mixtures thereof, and the like.
  • the reaction is usually carried out in the presence of a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the reaction, but toluene, xylene, ethyl acetate, butyl acetate, chloroform, dichloromethane, tetrahydrofuran, dioxane and the like are preferred. These solvents can be used alone or in combination.
  • the amount of the solvent to be used is not particularly limited as long as it does not interfere with the reaction. used in the range of
  • the reaction temperature is usually in the range of 10 to 150°C, preferably 10 to 120°C, more preferably 10 to 80°C, still more preferably 20 to 70°C, and more preferably 20 to 60°C. Especially preferred.
  • the reaction pressure may be normal pressure, increased pressure, or reduced pressure.
  • a procedure for removing water derived from the raw materials or water generated during the reaction out of the system can be included.
  • the procedure for removing the produced water from the reaction solution is not particularly limited, and can be carried out by azeotropically distilling the produced water with the solvent system in the reaction solution.
  • the produced water can be removed from the reaction system by using, for example, a constant pressure dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
  • the benzoxazine compound represented by the general formula (1) can be obtained from the resulting reaction mixture by a known method.
  • the target product can be obtained as a residual liquid by distilling off the remaining raw materials and solvent from the reaction mixture. It is also conceivable to add the residual liquid to a poor solvent to obtain a precipitated target product, or to obtain a powdery or granular target product by adding a solvent to the reaction mixture for crystallization and filtering. .
  • the benzoxazine compound taken out by the above method can be made into a highly purified product, for example, by ordinary purification means such as washing with a solvent or water and recrystallization.
  • the resin raw material composition of the present invention is characterized by containing a benzoxazine compound represented by the general formula (1), and can be obtained by distilling off the residual raw material and solvent from the reaction mixture described above. Alternatively, the remaining liquid may be added to a poor solvent to obtain a precipitated target product, or a solvent may be added to the reaction mixture to crystallize and filter to obtain a powder or granular resin raw material composition of the present invention. Obtainable. For example, by performing ordinary purification such as washing with a solvent or water or recrystallization, the resin raw material composition of the present invention having a large content of the benzoxazine compound represented by the general formula (1) can be obtained. can be done.
  • the resin raw material composition of the present invention can be used in the reaction for producing the benzoxazine compound represented by the general formula (1), in the bisphenol compound represented by the general formula (2) at the position of the bonding group X that bonds to the benzene ring. may be produced using mixtures with different There is no particular limitation on the ratio of compounds having different positions of the bonding groups X bonded to the benzene ring in the bisphenol compound represented by the general formula (2) to be used. To illustrate, when bisphenol F is used, its positional isomers, namely bis(2-hydroxyphenyl)methane, 2-hydroxyphenyl-4-hydroxyphenylmethane, bis(4-hydroxyphenyl)methane can be used, and the ratio is not particularly limited.
  • Bisphenol F with a large proportion of bis(2-hydroxyphenyl)methane can be obtained, for example, by the method of JP-A-08-245464.
  • Bisphenol F with a large proportion of bis(4-hydroxyphenyl)methane is can be obtained, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 06-340565.
  • the benzoxazine compound represented by general formula (1) of the present invention can be obtained as a mixture of compounds (p-1), (p-7) and (p-13).
  • the bisphenol compound represented by the general formula (2) to be used may contain a polynuclear compound that is a by-product in the production of bisphenol (binuclear compound), and the content ratio is not particularly limited, but bisphenol ( The content of the binuclear compound) is preferably 50% by weight or more, more preferably 70% by weight or more, still more preferably 85% by weight or more, and 89% by weight or more. Especially preferred.
  • the resin raw material composition in the present invention may contain a compound produced as a by-product in the reaction for producing the benzoxazine compound represented by general formula (1).
  • by-products include compounds having a higher molecular weight than the benzoxazine compound represented by general formula (1).
  • the content of the benzoxazine compound represented by the general formula (1) is not particularly limited, but the content is analyzed by gel permeation chromatography using a differential refractometer as a detector. It is usually 10 to 100 area%, preferably 20 to 100 area%, more preferably 30 to 100 area%, relative to the area of all peaks detected in such analysis. , particularly preferably 40 to 100 area %.
  • One embodiment thereof includes a benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same, silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide, There are curable resin compositions mixed with inorganic fillers such as hexagonal boron nitride and reinforcing fibers such as carbon fibers, glass fibers, organic fibers, boron fibers, steel fibers and aramid fibers. As another aspect, there is a curable resin composition containing the benzoxazine compound represented by the general formula (1) or a resin raw material composition containing it as an essential component and containing other polymer materials.
  • the polymer material constituting the curable resin composition of the present invention is not particularly limited, but epoxy resins, phenol resins, bismaleimide compounds, and benzoxazine compounds other than the benzoxazine compound represented by the general formula (1). , can contain the respective raw materials.
  • the epoxy resin include orthocresol-type epoxy resin, biphenyl-type epoxy resin, biphenylaralkyl-type epoxy resin, naphthalene-type epoxy resin, anthracene dihydride-type epoxy resin, and brominated novolac-type epoxy resin.
  • phenolic resin examples include novolac-type phenolic resins such as phenolic novolac resin, cresol novolac resin, naphthol novolac resin, aminotriazine novolac resin, and trisphenylmethane-type phenolic novolac resin; terpene-modified phenol resin, dicyclopentadiene-modified phenol. Modified phenol resins such as resins; phenol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton, aralkyl resins such as naphthol aralkyl resins having a phenylene skeleton and/or biphenylene skeleton; and resol type phenol resins.
  • bismaleimide compound examples include raw materials for bismaleimide compounds having the following structures.
  • benzoxazine compounds other than the benzoxazine compound represented by general formula (1) include benzoxazine compounds having structures represented by general formulas (A) to (C).
  • Ra represents a divalent group having 1 to 30 carbon atoms
  • Rb each independently represents a monovalent group having 1 to 10 carbon atoms which may have a substituent
  • n is indicates 0 or 1.
  • Rc represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group, or a sulfonyl group
  • each Rd independently represents 1 to 10 carbon atoms. indicates a valence group.
  • each Re independently represents a monovalent group having 1 to 10 carbon atoms
  • m represents 0 or 1.
  • Ra in the benzoxazine compound having the structure represented by general formula (A) represents a divalent group having 1 to 30 carbon atoms.
  • Specific examples thereof include alkylene groups such as 1,2-ethylene, 1,4-butylene and 1,6-hexylene, and alkylenes containing cyclic structures such as 1,4-cyclohexylene, dicyclopentadienylene and adamantylene. groups, 1,4-phenylene, 4,4'-biphenylene, diphenylether-4,4'-diyl, diphenylether-3,4'-diyl, diphenylketone-4,4'-diyl, diphenylsulfone-4,4' -arylene groups such as diyl.
  • Each Rb in the benzoxazine compound having the structure represented by general formula (A) independently represents a monovalent group having 1 to 10 carbon atoms.
  • Specific examples include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propargyl group; and aryl groups such as phenyl group and naphthyl group.
  • benzoxazine compounds having a structure represented by general formula (A) include Pd-type benzoxazine manufactured by Shikoku Kasei Co., Ltd., and JBZ-OP100N and JBZ-BP100N manufactured by JFE Chemical.
  • Rc in the benzoxazine compound having the structure represented by general formula (B) represents a divalent group having 1 to 30 carbon atoms, a direct bond, an oxygen atom, a sulfur atom, a carbonyl group or a sulfonyl group.
  • divalent groups having 1 to 30 carbon atoms include alkylene groups such as methylene, 1,2-ethylene, 1,4-butylene and 1,6-hexylene, 1,4-cyclohexylene and dicyclopentadienylene.
  • alkylene groups containing cyclic structures such as adamantylene, ethylidene, propylidene, isopropylidene, butylidene, phenylethylidene, cyclopentylidene, cyclohexylidene, cycloheptylidene, cyclododecylidene, 3,3,5-trimethylcyclohexyl
  • alkylidene groups such as silidene and fluorenylidene.
  • Each Rd in the benzoxazine compound having the structure represented by general formula (B) independently represents a monovalent group having 1 to 10 carbon atoms.
  • alkyl groups such as methyl group, ethyl group, propyl group and butyl group; alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propargyl group; and aryl groups such as phenyl group and naphthyl group.
  • substituents further include substituents such as alkoxy groups having 1 to 4 carbon atoms, acyl groups having 1 to 4 carbon atoms, halogen atoms, carboxyl groups, sulfo groups, allyloxy groups, hydroxy groups, and the like. You may have a group.
  • Examples of the benzoxazine compound having the structure represented by the general formula (B) include Fa-type benzoxazine manufactured by Shikoku Kasei Co., Ltd. and BS-BXZ manufactured by Konishi Chemical Industry Co., Ltd.
  • Each Re in the benzoxazine compound having the structure represented by general formula (C) independently represents a monovalent group having 1 to 10 carbon atoms.
  • Specific examples include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethynyl group and propargyl group; and aryl groups such as phenyl group and naphthyl group.
  • the curable resin composition of the present invention comprises a benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the same, an epoxy resin, and a benzoxazine compound other than the benzoxazine compound represented by the general formula (1). It is preferable to contain one or more selected from the group consisting of benzoxazine compounds, phenol resins, and bismaleimide compounds.
  • the mixed amount of the benzoxazine compound represented by the general formula (1) or the resin raw material composition containing it and the other polymer material is represented by the general formula (1) 0.01 parts by weight to 100 parts by weight with respect to 1 part by weight of the benzoxazine compound or the resin raw material composition containing it.
  • the curable resin composition of the present invention is obtained by adding a benzoxazine compound represented by the general formula (1) or a resin raw material composition containing the compound to the polymer material, if necessary.
  • the addition method is not particularly limited, and conventionally known methods can be employed.
  • a method of adding during the synthesis or polymerization of a polymeric material a method of adding a resin made of a polymeric material to a molten resin melted in, for example, a melt extrusion process, a method of impregnating a resin product made of a polymeric material, etc. can be mentioned.
  • the curable resin composition of the present invention contains water or residual solvent in the composition, air bubbles will be generated during curing. To prevent this, it is preferable to perform a vacuum degassing treatment as a pretreatment.
  • the temperature of this vacuum degassing treatment is not particularly limited as long as it is a temperature at which the curable resin composition of the present invention is in a molten state. is preferably performed as an upper limit.
  • the pressure of the vacuum degassing treatment is not particularly limited, but lower (higher degree of pressure reduction) is preferable, and the treatment may be performed either in air or in a nitrogen-substituted atmosphere. This vacuum degassing process is performed until bubbles cannot be visually confirmed.
  • the curable resin composition of the present invention includes silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide, depending on the application, and inorganic fillers such as hexagonal boron nitride, It can be used by mixing with reinforcing fibers such as carbon fibers, glass fibers, organic fibers, boron fibers, steel fibers and aramid fibers.
  • the cured product of the present invention is obtained by curing the curable resin composition of the present invention, which contains the benzoxazine compound represented by the general formula (1) of the present invention or a resin raw material composition containing the compound as an essential component. can be done.
  • the method for producing the cured product of the present invention include a method of heating to a predetermined temperature to cure, a method of heating and melting and pouring into a mold or the like and further heating the mold to harden and mold, and a method of heating the melt in advance.
  • a method of injecting into a molded mold and curing can be exemplified.
  • the cured product of the present invention can be cured by ring-opening polymerization under the same curing conditions as those for ordinary benzoxazine.
  • the curing temperature is usually in the temperature range of 120 to 300°C, preferably in the temperature range of 120 to 280°C, more preferably in the temperature range of 130 to 250°C. In order to achieve this, it is particularly preferable to set the temperature in the range of 150 to 240°C. When curing is performed within such a temperature range, the reaction time may be about 1 to 10 hours.
  • the production of the cured product may be carried out either in the air or in an atmosphere of an inert gas such as nitrogen. preferable.
  • the curing accelerator that can be used is not particularly limited, and examples thereof include 1,8-diaza-bicyclo[5.4.0]undecene-7, triethylenediamine, tris(2,4,6-dimethylaminomethyl ) Tertiary amines such as phenol, imidazoles such as 2-ethyl-4-methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium Phosphorus compounds such as -O,O-diethylphosphorodithioate, quaternary ammonium salts, organic metal salts, derivatives thereof, and the like. These may be
  • the benzoxazine compound represented by the general formula (1) of the present invention has a lower curing temperature than conventionally known benzoxazine compounds having a hydroxy group, and thus improves workability by shortening the curing time and saving energy. It is very useful because it can be used for heat-sensitive materials (base materials). Furthermore, the cured product can be melted at a lower temperature than conventionally known benzoxazine compounds having a hydroxy group. It is very useful because it can be done with
  • Apparatus HLC-8320/manufactured by Tosoh Corporation Detector: Differential refractometer (RI) [Measurement condition] Flow rate: 1mL/min Eluent: Tetrahydrofuran Temperature: 40°C Wavelength: 254nm Measurement sample: 1 g of the benzoxazine compound-containing composition was diluted 200 times with tetrahydrofuran. 2. Evaluation of Curing Properties Curing properties of various synthesized benzoxazine compounds were evaluated by differential scanning calorimetry (DSC) under the following operating conditions. The exothermic peak temperature was defined as the curing temperature.
  • DSC differential scanning calorimetry
  • Heating rate 1°C/min Measurement temperature range: 30 to 130°C However, every time the temperature was increased by 10°C, the temperature was maintained for about 10 minutes to confirm the melting state of the benzoxazine compound.
  • Measurement sample 1.0 g of various synthesized benzoxazine compounds
  • Measurement container Glass vial (trunk diameter x total length: ⁇ 15 x 60 mm) 4.
  • Heat resistance evaluation of cured product of benzoxazine compound Dynamic viscoelasticity measurement (DMA) The heat resistance of the cured products of various benzoxazine compounds synthesized was evaluated by measuring the glass transition temperature (Tg) by dynamic viscoelasticity measurement under the following operating conditions.
  • DMA Dynamic viscoelasticity measurement
  • a composition containing the target compound was extracted to obtain 59 g of the target compound (purity: 41%, compound having a higher molecular weight than the target compound: 59% by area). From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above chemical structure was obtained.
  • 1 H-NMR analysis 400 MHz, solvent: CDCl 3 , reference material: tetramethylsilane) 1.32-1.95 (2H, brm), 2.91-3.05 (4H, m), 3.07-3.22 (4H, m), 3.64-4.13 (10H, m ), 6.66-7.12 (6H, m).
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that 97 g (0.48 mol) of bisphenol F, 62 g of 94% paraformaldehyde, 121 g of toluene, the temperature before and after the addition of the amine was changed to 50° C., and the amount of 2-aminoethanethiol was changed to 75 g. gone.
  • the ratio of the target compound present in the reaction solution was 65 area %.
  • toluene and water were removed by vacuum distillation at 50°C. The pressure during distillation was gradually reduced to 1.5 kPa finally.
  • a composition containing the target compound was extracted, solidified by cooling, pulverized, and dried under conditions of 60° C. and 1.5 kPa to give 208 g of the target compound (purity: 56%, compound with a higher molecular weight than the target compound: 44 area %). ).
  • Example 3 The reaction was carried out in the same manner as in Example 1 except that 74 g of 94% paraformaldehyde was used, the temperature before and after dropping the amine was changed to 30° C., and the stirring time after the completion of dropping the amine was changed to 3 hours. As a result of analyzing the composition of the reaction solution by GPC according to the analysis method described above, the ratio of the target compound present in the reaction solution was 88 area %. After completion of the reaction, the reaction solution was washed with alkaline water using a 3% aqueous sodium hydroxide solution, and then washed with water until the pH of the reaction solution became 7 or less. After that, toluene and water were removed by vacuum distillation at 30°C.
  • the pressure during distillation was gradually reduced to 2.3 kPa finally. After removing the solvent to some extent, the residual solvent was further removed under conditions of 90° C. and 2.8 kPa.
  • a composition containing the target compound was extracted, solidified by cooling, and pulverized to obtain 156 g of the target compound (purity: 75%, compound having a higher molecular weight than the target compound: 25% by area).
  • the reaction was carried out in the same manner as in Example 1 except that the mixture was stirred for 3 hours.
  • the ratio of the target compound present in the reaction solution was 73% by area.
  • the reaction solution was washed with alkaline water using a 3% aqueous sodium hydroxide solution, and then washed with water until the pH of the reaction solution became 7 or less.
  • toluene and water were removed by vacuum distillation at 30°C. The pressure during distillation was gradually reduced to 4.2 kPa finally. After removing the solvent to some extent, the remaining solvent was further removed under conditions of 90° C. and 20 kPa.
  • a composition containing the target compound was extracted, solidified by cooling, and pulverized to obtain 188 g of the target compound (purity: 71%, compound having a higher molecular weight than the target compound: 29% by area). From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above chemical structure was obtained.
  • 1 H-NMR 400 MHz, solvent: CDCl 3 , reference material: tetramethylsilane) 0.25-0.44 (3H, m), 0.76-1.02 (7H, m), 1.11 (1H, dd), 1.36 (1H, d), 1.75-2.
  • the ratio of the target compound present in the reaction solution was 51 area %.
  • toluene and water were removed by vacuum distillation at 70°C.
  • the pressure during distillation was gradually reduced to 4.8 kPa finally.
  • the composition containing Comparative Example Compound A was extracted, cooled and solidified, pulverized, dried at 60 ° C. under 1.5 kPa conditions, and 173 g of Comparative Example Compound A-containing composition (purity 53%, Comparative Example Compound A 47 area %) of higher molecular weight compounds were obtained.
  • the ratio of the target compound present in the reaction solution was 79 area %.
  • the reaction mixture was washed with an alkaline water solution using a 3% aqueous sodium hydroxide solution, then 350 g of toluene was added, and water washing was carried out until the pH of the washing liquid became 7 or less.
  • toluene and water were removed by vacuum distillation at 60°C. The pressure during distillation was gradually reduced to 4.8 kPa finally. After removing the solvent to some extent, the residual solvent was further removed under conditions of 90° C. and 9.8 kPa.
  • the compound of Example 2 and the compound of Example 4 which are the compounds of the present invention, are at a lower temperature than the comparative example compounds A and C and the widely used Fa-type benzoxazine compound (comparative example compound B). found to harden.
  • the novel benzoxazine compound represented by the general formula (1) of the present invention the temperature in the molding process of thermosetting resin can be lowered, and the heating and cooling time can be shortened and energy can be saved.
  • it can be used for heat-sensitive materials (base materials), so it is very useful.
  • Example 2 compound (Preparation of test piece of cured product of Example 2 compound)
  • the compound of Example 2 was melted and degassed for about 2 hours until foaming ceased, and was cast into a preheated silicone casting plate for DMA measurement. Then, it was heated at 175° C. for 2 hours in a dryer (DP32, manufactured by Yamato Scientific Co., Ltd.), and then cooled.
  • a test piece of the cured product was prepared by polishing the surface of the obtained plate-like cured resin product with sandpaper.
  • Example 4 Method for preparing test piece of cured product of Example 4 compound
  • the compound of Example 4 was melted and degassed for about 2 hours until foaming ceased, and was cast into a preheated silicone casting plate for DMA measurement. Then, it was heated in a dryer (DP32, manufactured by Yamato Scientific Co., Ltd.) under the conditions of 140° C. ⁇ 150° C. ⁇ 160° C. ⁇ 180° C. ⁇ 200° C./2 hours each, and then cooled.
  • a test piece of the cured product was prepared by polishing the surface of the obtained plate-like cured resin product with sandpaper.
  • Comparative Example Compound A was filled into a silicone casting plate for DMA measurement. Then, it was heated at 175° C. for 2 hours in a dryer (DP32, manufactured by Yamato Scientific Co., Ltd.), and then cooled. A test piece of the cured product was prepared by polishing the surface of the obtained plate-like cured resin product with sandpaper.
  • the glass transition temperature (Tg) of the cured product was measured by DMA on the test piece of the benzoxazine compound heat-cured by the above method. The results are summarized in Table 2.
  • the glass transition temperature (Tg) of Comparative Example Compound B is the numerical value described in Journal of Electronics Packaging Society, Vol. 14, No. 3, pp. 204-211, 2011.
  • the cured products using the compound of Example 2 and the compound of Example 4, which are the compounds of the present invention not only exhibit excellent effects of curing at a low temperature as shown in Table 1, but also have a high glass temperature. It has been found to have a transition temperature (Tg) and excellent heat resistance. Among them, the cured product using the compound of Example 4 has a glass transition temperature (Tg) higher than that of Comparative Example Compound A and the widely used Fa-type benzoxazine compound (Comparative Example Compound B), and is excellent in heat resistance. It became clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

低い温度条件で硬化が可能な、新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物を提供することを課題とする。解決手段として、一般式(1)で表されるベンゾオキサジン化合物を提供する。(式中、Rは水素原子又は炭素原子数1~6のアルキル基を示し、Rは炭素原子数1~10の2価の基を示し、Xは、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)若しくは一般式(1b)で表される2価の基を示す。)(一般式(1a)、(1b)中、R及びRは各々独立して水素、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)

Description

新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
 本発明は、新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物に関する。詳しくは、結合基の両末端にベンゾオキサジン環を有し、さらにチオール基を有する新規なベンゾオキサジン化合物や、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物に関する。
 ベンゾオキサジン化合物は、加熱することにより揮発性の副生物を生ずることなく、ベンゾオキサジン環が開環重合して硬化する熱硬化性樹脂原料として知られており、絶縁基板用材料として利用可能な成形体、液晶配向剤、半導体封止用樹脂組成物などの原料として利用されている。
 一方で、通常ベンゾオキサジン化合物の硬化温度は比較的高く、その重合温度を下げるために触媒、重合促進剤や高反応性ベンゾオキサジン化合物が近年開発されている。その高反応性ベンゾオキサジン化合物の中でも、構造内にヒドロキシル基を導入したヒドロキシル官能性ベンゾオキサジン組成物が報告されている(特許文献1)。
特表2011-530570号公報
 熱硬化性樹脂の成型プロセスにおける温度を低下させ、加熱及び冷却の時間短縮や省エネルギー化による効率化や、重合時の高温にさらされることによる材料の熱劣化の抑制をするために、低い温度条件で硬化が可能な優れた材料が要望されている。
 また、他の熱硬化性樹脂モノマーや各種添加剤の混合時や熱硬化性樹脂の成型プロセスにおける温度を低下させるために、溶融温度が低い材料が求められている。
 本発明は、低い温度条件で硬化が可能な、新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物を提供することを課題とする。
 本発明者は、上述の課題解決のために鋭意検討した結果、ビスフェノール化合物を原料として用い、結合基の両末端にベンゾオキサジン環を有し、さらにチオール基を有する新規なベンゾオキサジン化合物が、低い温度条件で硬化が可能であることを見出し、本発明を完成した。
 本発明は以下のとおりである。
1.一般式(1)で表されるベンゾオキサジン化合物。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子又は炭素原子数1~6のアルキル基を示し、Rは炭素原子数1~10の2価の基を示し、Xは、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)若しくは一般式(1b)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000004
(一般式(1a)、(1b)中、R及びRは各々独立して水素、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
2.1.に記載のベンゾオキサジン化合物を含む樹脂原料組成物。
3.1.に記載のベンゾオキサジン化合物又は2.に記載の樹脂原料組成物を含む、硬化性樹脂組成物。
4.1.に記載のベンゾオキサジン化合物又は2.に記載の樹脂原料組成物と、エポキシ樹脂、前記一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂及びビスマレイミド化合物からなる群より選択される1種以上を含有する、3.に記載の硬化性樹脂組成物。
5.3.又は4.に記載の硬化性樹脂組成物を硬化させてなる硬化物。
 本発明の新規なベンゾオキサジン化合物は、従来公知のヒドロキシ基を有するベンゾオキサジン化合物と比較して、低温で硬化することができ、また低い温度で溶融することができる。
 そのため、本発明の新規なベンゾオキサジン化合物を使用すると、他の熱硬化性樹脂モノマーや各種添加剤の混合時や熱硬化性樹脂の成型プロセスにおける温度を低下させることが可能であり、加熱及び冷却の時間短縮や省エネルギー化による効率化が可能であるほか、他の熱硬化性樹脂モノマーや各種添加剤との混合時や重合時に高温にさらされることによる材料の熱劣化の抑制をすることが可能であり、非常に有用である。
 本発明における新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物は、各種基材に塗布可能なワニス、ワニスを含浸させたプリプレグ、プリント回路基板、電子部品の封止剤、電気・電子成型部品、自動車部品、積層材、塗料、レジストインク等の樹脂原料として好適に用いることができる。
<本発明の新規なベンゾオキサジン化合物>
 本発明の新規なベンゾオキサジン化合物は、一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子又は炭素原子数1~6のアルキル基を示し、Rは炭素原子数1~10の2価の基を示し、Xは、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)若しくは一般式(1b)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000006
(一般式(1a)、(1b)中、R及びRは各々独立して水素、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
 一般式(1)中のRは、水素原子又は炭素原子数1~4のアルキル基であることが好ましく、水素原子又は炭素原子数1のアルキル基(メチル基)であることがより好ましく、水素原子であることが特に好ましい。Rが水素原子ではない場合の結合位置は、ベンゾオキサジン環の酸素原子に対してベンゼン環上のオルソ位であることが好ましい。
 一般式(1)中のRは炭素原子数1~10の2価の基であり、具体的には、例えば、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基などの炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、シクロペンチリデン基、シクロヘキシリデン基などの炭素原子数1~10のアルキリデン基、フェニレン基や下記式で表される基などのベンゼン環を含む炭素原子数1~10の2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式中、*は結合位置を示す。)
 これらの中でもRは、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基、環状アルカンを含むアルキレン基又は炭素原子数1~10のアルキリデン基であることが好ましく、炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がより好ましく、炭素原子数1~6の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がさらに好ましく、炭素原子数1~4の直鎖状又は分岐鎖状のアルキレン基が特に好ましい。
 一般式(1)におけるXが一般式(1a)である場合のより好ましいR及びRとしては、各々独立して水素、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基又は炭素数6~12のアリール基であり、さらに好ましくは水素、炭素原子数1~4のアルキル基、トリフルオロメチル基又は炭素数6~8のアリール基であり、特に好ましくは水素、炭素原子数1~4のアルキル基又はフェニル基である。
 また、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、この場合、このベンゾオキサジン化合物を使用して得られる硬化物は耐熱性に優れる。炭素原子数5~20のシクロアルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~9であることが特に好ましい。
 シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数7)、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、4,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、トリシクロ[5.2.1.02,6]デカン-8,8-ジイル基(炭素原子数10)、2,2-アダマンチリデン基(炭素原子数10)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、特に好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)である。
 一般式(1)におけるXが一般式(1b)である場合の好ましいAr及びArとしては、各々独立してベンゼン環、ナフタレン環であり、Ar及びArが共にベンゼン環であることがより好ましい。例えば、Ar及びArが共にベンゼン環である場合、一般式(1b)で表される基はフルオレニリデン基である。
 一般式(1)におけるXと、2つのベンゾオキサジン環との結合位置は、ベンゾオキサジン環の酸素原子に対してベンゼン環上のオルソ位又はパラ位であることが好ましい。
 本発明における、一般式(1)で表される新規なベンゾオキサジン化合物の具体例として、下記化学構造を有する化合物(p-1)~(p-126)を示す。このうち、化合物(p-1)~(p-63)が好ましく、化合物(p-1)~(p-42)と化合物(p-46)~(p-48)と化合物(p-52)~(p-63)がより好ましく、化合物(p-1)~(p-15)と化合物(p-22)~(p-30)と化合物(p-34)~(p-42)と化合物(p-52)~(p-63)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
<本発明化合物の製造方法>
 本発明における、一般式(1)で表される新規なベンゾオキサジン化合物については、その製造における出発原料、製造方法について特に制限はない。例えば、下記反応式で例示するとおり、一般式(2)で表されるビスフェノール化合物、一般式(3)で表されるアミノチオール化合物及びホルムアルデヒドを脱水縮合反応させて環化し、目的とする一般式(1)で表される新規なベンゾオキサジン化合物を得る製造方法が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、R、R、Xは一般式(1)と同じそれを表す。)
 上記製造方法において、出発原料として一般式(2)で表されるビスフェノール化合物、一般式(3)で表されるアミノチオール化合物及びホルムアルデヒド類を使用する。
 一般式(2)で表されるビスフェノール化合物としては、具体的には、例えば、ビスフェノールF(ビス(2-ヒドロキシフェニル)メタン、2-ヒドロキシフェニル-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシフェニル)メタン)、ビスフェノールE(1,1-ビス(4-ヒドロキシフェニル)エタン)、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)、ビスフェノールC(2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン)、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニル、ビス(4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビスフェノールM(1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン)、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。
 一般式(3)で表されるアミノチオール化合物としては、具体的には、例えば、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオール、2-アミノ-2-メチルエタンチオール、5-アミノ-1-ペンタンチオール、6-アミノ-1-ヘキサンチオール、2-アミノチオフェノール、3-アミノチオフェノール、4-アミノチオフェノール、4-アミノベンジルメルカプタン等が挙げられる。この中でも、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオール、2-アミノ-2-メチルエタンチオール、5-アミノ-1-ペンタンチオール、6-アミノ-1-ヘキサンチオールが好ましく、2-アミノエタンチオール、3-アミノ-1-プロパンチオール、2-アミノ-1-メチルエタンチオールがより好ましく、2-アミノエタンチオールが特に好ましい。
 ホルムアルデヒド類としては、具体的には、例えば、ホルムアルデヒド水溶液、1,3,5-トリオキサン、パラホルムアルデヒド等を挙げることができる。
 上記製造方法において、ホルムアルデヒド類の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して4.0~20.0モルの範囲であることが好ましく、4.0~16.0モルの範囲であることがより好ましく、4.0~12.0モルの範囲であることがさらに好ましい。
 上記製造方法において、一般式(3)で表されるアミノチオール化合物の使用量としては、一般式(2)で表されるビスフェノール化合物1モルに対して、2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~6.0モルの範囲であることがさらに好ましい。
 反応を促進するための触媒は特に必要はないが、必要に応じて、酸触媒又は塩基触媒を使用することができる。この場合、使用できる酸触媒として、濃塩酸、塩酸ガス、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸、安息香酸及びそれらの混合物等が挙げられ、使用できる塩基触媒としては、水酸化ナトリウム、炭酸ナトリウム、トリエチルアミン、トリエタノールアミン及びそれらの混合物等が挙げられるが、これらに限定されるものではない。
 反応は通常、溶媒の存在下に行われる。溶媒としては、反応を阻害しないものであれば特に制限はないが、トルエン、キシレン、酢酸エチル、酢酸ブチル、クロロホルム、ジクロロメタン、テトラヒドロフラン、ジオキサン等が好ましく挙げられる。これらの溶媒は単独又は組み合わせて用いることができる。また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、一般式(2)で表されるビスフェノール化合物に対し0.5~5重量倍の範囲、好ましくは1~3重量倍の範囲で用いられる。
 反応温度は、通常10~150℃の範囲で行い、10~120℃の範囲が好ましく、10~80℃の範囲がより好ましく、20~70℃の範囲がさらに好ましく、20~60℃の範囲が特に好ましい。
 反応圧力は常圧条件下で行ってもよく、また、加圧下でも、或は減圧下で行ってもよい。
 別の態様として、原料に由来する水若しくは反応中に生成した水を系外に除去する手順を含むことができる。反応溶液から生成した水を除去する手順は特に制限されず、生成した水を反応溶液中の溶媒系と共沸的に蒸留することにより行うことができる。生成した水は、例えばコックを備えた等圧滴下漏斗、ジムロート冷却器、ディーンスターク装置等の使用により反応系外に除去することができる。
 得られた反応終了混合物は、反応終了後、公知の方法によりこの混合物から一般式(1)で表されるベンゾオキサジン化合物を得ることができる。例えば、反応後、反応混合物から残存原料や溶媒を留去することにより残液として目的物を得ることができる。また、残液を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。上記方法により、取り出されたベンゾオキサジン化合物は、例えば、溶媒や水での洗浄や再結晶等の通常の精製手段により、高純度品とすることができる。
<一般式(1)で表されるベンゾオキサジン化合物を含む樹脂原料組成物>
 本発明の樹脂原料組成物は、一般式(1)で表されるベンゾオキサジン化合物を含むことを特徴としており、前述の反応混合物から残存原料や溶媒を留去することにより得ることができる。また、残液を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の本発明の樹脂原料組成物を得ることができる。例えば、溶媒や水での洗浄や再結晶等の通常の精製を行うことにより、前記一般式(1)で表されるベンゾオキサジン化合物の含有量が多い、本発明の樹脂原料組成物を得ることができる。
 本発明の樹脂原料組成物は、一般式(1)で表されるベンゾオキサジン化合物を製造する反応において、一般式(2)で表されるビスフェノール化合物における、ベンゼン環に結合する結合基Xの位置が異なる混合物を使用して製造してもよい。
 使用する一般式(2)で表されるビスフェノール化合物における、ベンゼン環に結合する結合基Xの位置が異なる化合物の比率には特に制限はない。
 具体例を挙げて説明をすると、ビスフェノールFを使用する場合、その位置異性体すなわち、ビス(2-ヒドロキシフェニル)メタン、2-ヒドロキシフェニル-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシフェニル)メタンの混合物を使用することができ、その比率には特に制限はない。
 ビス(2-ヒドロキシフェニル)メタンの比率が大きいビスフェノールFとしては、例えば、特開平08-245464号公報の方法により得ることができ、ビス(4-ヒドロキシフェニル)メタンの比率が大きいビスフェノールFとしては、例えば、特開平06-340565号公報の方法により得ることができる。
 そのようなビスフェノールFの位置異性体の混合物と一般式(3)で表されるアミノチオール化合物として2-アミノエタンチオールを使用して、本発明の一般式(1)で表されるベンゾオキサジン化合物を上記製造方法により合成すると、化合物(p-1)、(p-7)、(p-13)の混合物として得ることができる。
 使用する一般式(2)で表されるビスフェノール化合物は、ビスフェノール(2核体)の製造における副生物である多核体を含有していてもよく、その含有比率は特に制限はないが、ビスフェノール(2核体)の含有量としては、50重量%以上であることが好ましく、70重量%以上であることがより好ましく、85重量%以上であることがさらに好ましく、89重量%以上であることが特に好ましい。
 本発明における樹脂原料組成物は、一般式(1)で表されるベンゾオキサジン化合物を製造する反応において副生する化合物を含有していてもよい。かかる副生物として、例えば、一般式(1)で表されるベンゾオキサジン化合物よりも高分子量の化合物が挙げられる。
 本発明の樹脂原料組成物において、一般式(1)で表されるベンゾオキサジン化合物の含有量については特に限定されないが、その含有量は、示差屈折計を検出器とするゲル浸透クロマトグラフィーにより分析することができ、通常、かかる分析で検出されるすべてのピークの面積に対して、10~100面積%であり、好ましくは20~100面積%であり、より好ましくは30~100面積%であり、特に好ましくは40~100面積%である。
<一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を含む、硬化性樹脂組成物>
 本発明の一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物は、これを必須成分とする硬化性樹脂組成物として使用することができる。
 その一態様として、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、六方晶窒化ホウ素等の無機フィラーや、炭素繊維、ガラス繊維、有機繊維、ボロン繊維、スチール繊維、アラミド繊維等の強化繊維とを混合した硬化性樹脂組成物がある。
 その他の態様として、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を必須成分として含有し、その他の高分子材料を含有する硬化性樹脂組成物がある。
 本発明の硬化性樹脂組成物を構成する高分子材料としては、特に制限はないが、エポキシ樹脂、フェノール樹脂、ビスマレイミド化合物、一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、それぞれの原料を含有することができる。
 このエポキシ樹脂としては、例えば、オルソクレゾール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセンジヒドリド型エポキシ樹脂、臭素化ノボラック型エポキシ樹脂等が挙げられる。
 このフェノール樹脂としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂、アミノトリアジンノボラック樹脂、トリスフェニルメタン型のフェノールノボラック樹脂等のノボラック型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;レゾール型フェノール樹脂等が挙げられる。
 このビスマレイミド化合物としては、例えば、下記構造を有するビスマレイミド化合物の原料等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物としては、例えば、一般式(A)~(C)で表される構造を有するベンゾオキサジン化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式中、Raは炭素原子数1~30の2価の基を示し、Rbは各々独立して置換基を有してもよい炭素原子数1~10の1価の基を示し、nは0又は1を示す。)
Figure JPOXMLDOC01-appb-C000022
(式中、Rcは炭素原子数1~30の2価の基、直接結合、酸素原子、硫黄原子、カルボニル基、又はスルホニル基を示し、Rdは各々独立して炭素原子数1~10の1価の基を示す。)
Figure JPOXMLDOC01-appb-C000023
(式中、Reは各々独立して炭素原子数1~10の1価の基を示し、mは0又は1を示す。)
 一般式(A)で表される構造を有するベンゾオキサジン化合物におけるRaは、炭素原子数1~30の2価の基を示す。その具体例としては、1,2-エチレン、1,4-ブチレン、1,6-ヘキシレン等のアルキレン基、1,4-シクロヘキシレン、ジシクロペンタジエニレン、アダマンチレン等の環状構造を含むアルキレン基、1,4-フェニレン、4,4’-ビフェニレン、ジフェニルエーテル-4,4’-ジイル、ジフェニルエーテル-3,4’-ジイル、ジフェニルケトン-4,4’-ジイル、ジフェニルスルホン-4,4’-ジイル等のアリーレン基が挙げられる。
 一般式(A)で表される構造を有するベンゾオキサジン化合物におけるRbは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基等が挙げられ、これらの基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基、チオール基等の置換基を有してもよい。
 一般式(A)で表される構造を有するベンゾオキサジン化合物としては、例えば、四国化成社製P-d型ベンゾオキサジン、JFEケミカル社製JBZ-OP100N、JBZ-BP100Nが挙げられる。
 一般式(B)で表される構造を有するベンゾオキサジン化合物におけるRcは、炭素原子数1~30の2価の基、直接結合、酸素原子、硫黄原子、カルボニル基又はスルホニル基を示す。炭素原子数1~30の2価の基としては、メチレン、1,2-エチレン、1,4-ブチレン、1,6-ヘキシレン等のアルキレン基、1,4-シクロヘキシレン、ジシクロペンタジエニレン、アダマンチレン等の環状構造を含むアルキレン基、エチリデン、プロピリデン、イソプロピリデン、ブチリデン、フェニルエチリデン、シクロペンチリデン、シクロヘキシリデン、シクロヘプチリデン、シクロドデシリデン、3,3,5-トリメチルシクロヘキシリデン、フルオレニリデン等のアルキリデン基等が挙げられる。
 一般式(B)で表される構造を有するベンゾオキサジン化合物におけるRdは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基が挙げられ、これらの置換基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基等の置換基を有してもよい。
 一般式(B)で表される構造を有するベンゾオキサジン化合物としては、例えば、四国化成社製F-a型ベンゾオキサジン、小西化学工業社製BS-BXZが挙げられる。
 一般式(C)で表される構造を有するベンゾオキサジン化合物におけるReは、各々独立して炭素原子数1~10の1価の基を示す。その具体例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、ビニル基、アリル基等のアルケニル基、エチニル基、プロパルギル基等のアルキニル基、フェニル基、ナフチル基等のアリール基が挙げられ、これらの置換基には更に、炭素原子数1~4のアルコキシ基、炭素原子数1~4のアシル基、ハロゲン原子、カルボキシル基、スルホ基、アリルオキシ基、ヒドロキシ基、チオール基等の置換基を有してもよい。
 中でも、本発明の硬化性樹脂組成物は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、エポキシ樹脂、一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂、ビスマレイミド化合物からなる群より選択される1種以上を含有することが好ましい。
 本発明の硬化性樹脂組成物における、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物と、その他の高分子材料の混合量は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物1重量部に対して、0.01重量部~100重量部の範囲である。
 本発明の硬化性樹脂組成物は、一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を、その他必要に応じて前記高分子材料に添加することによって得られるが、かかる添加方法は特に限定されず、従来公知の方法を採用することができる。例えば、高分子材料の合成や重合中に添加する方法、高分子材料からなる樹脂を例えば溶融押出工程等において溶融した溶融樹脂に添加する方法、高分子材料からなる樹脂製品等に含浸する方法等を挙げることができる。
 本発明の硬化性樹脂組成物は、組成物中に水や残存溶媒を含んでいると硬化時に気泡が発生してしまうので、これを防ぐために前処理として真空脱気処理を行うことが好ましい。この真空脱気処理の温度は、本発明の硬化性樹脂組成物が溶融状態となる温度であれば特に制限されないが、硬化が進行せず、かつ、脱気がしやすいとの理由により150℃を上限として行うのが好ましい。真空脱気処理の圧力は、特に制限はないが、低い(減圧度の高い)方がよく、空気中でも窒素置換雰囲気下中の何れで行ってもよい。この真空脱気処理は、気泡が目視で確認できなくなるまで行う。
 本発明の硬化性樹脂組成物は、用途の必要に応じて、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素があり、六方晶窒化ホウ素等の無機フィラーや、炭素繊維、ガラス繊維、有機繊維、ボロン繊維、スチール繊維、アラミド繊維等の強化繊維と混合して使用することができる。
<本発明の硬化性樹脂組成物を硬化させてなる硬化物>
 続いて、本発明の硬化物について説明する。
 本発明の硬化物は、本発明の一般式(1)で表されるベンゾオキサジン化合物又はそれを含む樹脂原料組成物を必須成分とする、本発明の硬化性樹脂組成物を硬化させて得ることができる。
 本発明の硬化物の製造方法としては、例えば、所定の温度まで加熱して硬化させる方法、加熱融解させて金型等に注ぎ金型を更に加熱して硬化成型させる方法、溶融物を予め加熱された金型に注入して硬化させる方法等を挙げることができる。
 本発明の硬化物は、通常のベンゾオキサジンと同様の硬化条件にて、開環重合を行い硬化することができる。硬化温度は、通常120~300℃の温度範囲であり、好ましくは120~280℃の温度範囲であり、より好ましくは130~250℃の温度範囲であるが、得られる硬化物の機械物性を良くするためには、特に150~240℃の温度範囲とすることが好ましい。このような温度範囲において硬化を行う場合には、反応時間は1~10時間程度であればよい。
 硬化物の製造は、空気中でも窒素などの不活性ガス雰囲気下中の何れで行ってもよいが、不活性ガス雰囲気下中に行うことが、得られる硬化物の酸素による劣化を防止するために好ましい。
 本発明の樹脂組成物は、熱のみで硬化できるが、一般式(1)で表されるベンゾオキサジン化合物以外の成分やその含有量等によっては、硬化促進剤を用いた方が好ましい。使用できる硬化促進剤としては、特に限定されるものではなく、例えば、1,8-ジアザ-ビシクロ[5.4.0]ウンデセン-7、トリエチレンジアミン、トリス(2,4,6-ジメチルアミノメチル)フェノール等の第三級アミン類、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-О,О-ジエチルホスホロジチオエート等のリン化合物、4級アンモニウム塩、有機金属塩類、及びこれらの誘導体等が挙げられる。これらは単独で使用してもよく、あるいは、併用してもよい。これら硬化促進剤の中では、第三級アミン類、イミダゾール類及びリン化合物を用いることが好ましい。
 本発明の一般式(1)で表されるベンゾオキサジン化合物は、従来公知のヒドロキシ基を有するベンゾオキサジン化合物と比べて硬化温度が低いことから、硬化時の時間短縮や省エネルギー化により作業性を向上させ、また熱に弱い材料(基材)にも使用できるため、非常に有用である。さらに、その硬化物は、従来公知のヒドロキシ基を有するベンゾオキサジン化合物と比べて、低い温度で溶融することができることから、本発明の化合物を使用した硬化性樹脂組成物の製造や取扱いを低い温度で行うことができるので、非常に有用である。
 以下、実施例により、本発明をさらに具体的に説明する。
<分析方法>
1.反応溶液組成及び純度分析(ゲル浸透クロマトグラフィー:GPC)
 合成した各種ベンゾオキサジン化合物の純度は、本分析によるベンゾオキサジン化合物の面積百分率の数値とした。
装置 :HLC-8320/東ソー(株)製
検出器:示差屈折計(RI)
[測定条件]
流量 :1mL/min
溶出液:テトラヒドロフラン
温度 :40℃
波長 :254nm
測定試料:ベンゾオキサジン化合物含有組成物1gをテトラヒドロフランで200倍に希釈した。
2.硬化特性評価
 合成した各種ベンゾオキサジン化合物の硬化特性評価は、以下の操作条件の示差走査熱量測定(DSC)により行った。発熱ピーク温度を硬化温度とした。
[測定条件]
 装置    :DSC7020/(株)日立ハイテクサイエンス製
 昇温速度  :10℃/min
 測定温度範囲:30~400℃
 測定雰囲気 :窒素50mL/min
 測定試料  :合成した各種ベンゾオキサジン化合物3mg
3.溶融温度評価
 合成した各種ベンゾオキサジン化合物の溶融温度の測定は、アルミブロックヒーターを使用して行った。
 装置    :アルミブロック付ホットドライバス HOTB624K/アズワン(株)製
 昇温速度  :1℃/min
 測定温度範囲:30~130℃
 ただし、10℃上げるごとに約10分間その温度を保持してベンゾオキサジン化合物の溶融状況を確認した。
 測定試料  :合成した各種ベンゾオキサジン化合物1.0g
 測定容器  :ガラス製のバイヤル瓶(胴径×全長:φ15×60mm)
4.ベンゾオキサジン化合物の硬化物の耐熱性評価動的粘弾性測定(以下DMA)
 合成した各種ベンゾオキサジン化合物の硬化物の耐熱性評価は、以下の操作条件の動的粘弾性測定によるガラス転移温度(Tg)測定により行った。
[測定条件]
装置    :DMA Q800(ティー・エイ・インスツルメント・ジャパン株式会社製)
治具    :デュアルカンチレバー
周波数   :1Hz
温度    :30→250℃(2℃/分)
測定試料  :後述する方法により得た試験片
<実施例1>(下記化学式で表される本発明の化合物の合成)
Figure JPOXMLDOC01-appb-C000024

 温度計、撹拌機、冷却管、滴下ロートを備えた500mLの4つ口フラスコにビスフェノールF(2核体含有率90.1重量%、その内の異性体比率:ビス(2-ヒドロキシフェニル)メタン18.8重量%、2-ヒドロキシフェニル-4-ヒドロキシフェニルメタン49.3重量%、ビス(4-ヒドロキシフェニル)メタン31.9重量%、多核体含有率9.9重量%)31g(0.15モル)、94%パラホルムアルデヒド20g、トルエン57gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を60℃とした。その後、2-アミノエタンチオール24gを滴下ロートで4つ口フラスコに、温度を60℃に保持しながら1時間かけて滴下した。滴下終了後、さらに60℃で2時間撹拌した。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、41面積%であった。
 反応終了後、トルエン及び水を、50℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に2.4kPaとした。目的化合物を含む組成物を抜き取り、59gの目的化合物(純度:41%、目的化合物より高分子量の化合物59面積%)を得た。
 H-NMRの分析結果から、上記化学構造の目的化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 1.32-1.95(2H,brm),2.91-3.05(4H,m),3.07-3.22(4H,m),3.64-4.13(10H,m),6.66-7.12(6H,m).
<実施例2>
 ビスフェノールFを97g(0.48モル)、94%パラホルムアルデヒドを62g、トルエンを121g、アミン滴下前後の温度を50℃、2-アミノエタンチオールを75gに変更し、実施例1と同様に反応を行った。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する上記目的化合物の割合は、65面積%であった。
 反応終了後、トルエン及び水を、50℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に1.5kPaとした。目的化合物を含む組成物を抜き取り、冷却固化後、粉砕して、60℃、1.5kPa条件下で乾燥して、208gの目的化合物(純度:56%、目的化合物より高分子量の化合物44面積%)を得た。
<実施例3>
 94%パラホルムアルデヒドを74g、アミン滴下前後の温度を30℃、アミン滴下終了後の撹拌時間を3時間に変更して、実施例1と同様に反応を行った。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する上記目的化合物の割合は、88面積%であった。
 反応終了後、3%水酸化ナトリウム水溶液によりアルカリ水洗を行った後、反応溶液のpHが7以下となるまで水洗した。その後、トルエン及び水を、30℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に2.3kPaとした。溶媒をある程度除去した後、さらに90℃、2.8kPa条件下で残存溶媒を除去した。目的化合物を含む組成物を抜き取り、冷却固化後、粉砕して、156gの目的化合物(純度:75%、目的化合物より高分子量の化合物25面積%)を得た。
<実施例4>(下記化学式で表される本発明の化合物の合成)
Figure JPOXMLDOC01-appb-C000025
 温度計、撹拌機、冷却管、滴下ロートを備えた1Lの4つ口フラスコ、1,1’-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン97g(0.31モル)、94%パラホルムアルデヒド48g、2-アミノエタンチオール48g及びトルエン180gを使用して、実施例1における、アミン滴下前の温度を30℃に、アミン滴下終了後さらに30℃、40℃、50℃で各3時間、撹拌する以外の操作は、実施例1と同様にして反応を行った。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、73面積%であった。
 反応終了後、3%水酸化ナトリウム水溶液によりアルカリ水洗を行った後、反応溶液のpHを7以下になるまで水洗した。その後、トルエン及び水を、30℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に4.2kPaとした。溶媒をある程度除去した後、さらに90℃、20kPa条件下で残存溶媒を除去した。目的化合物を含む組成物を抜き取り、冷却固化後粉砕し、188gの目的化合物(純度:71%、目的化合物より高分子量の化合物29面積%)を得た。
 H-NMRの分析結果から、上記化学構造の目的化合物が得られたことを確認した。
 H-NMR(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
0.25-0.44(3H,m),0.76-1.02(7H,m),1.11(1H,dd),1.36(1H,d),1.75-2.05(2H,m),2.33(1H,brm),2.59(1H,brm),2.77-3.22(8H,m),3.54-3.79(4H,m),3.86-4.07(4H,m),6.51-7.04(6H,m),9.07-10.3(2H,brm).
<比較合成例1>(下記化学式で表される比較例化合物Aの合成)
Figure JPOXMLDOC01-appb-C000026
 温度計、撹拌機、冷却管、滴下ロートを備えた1Lの4つ口フラスコにビスフェノールF97g(0.49モル)、94%パラホルムアルデヒド62g、トルエン121gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を70℃とした。その後、2-アミノエタノール60gを滴下ロートで4つ口フラスコに、温度を70℃に保持しながら2時間かけて滴下した。滴下終了後、さらに70℃で3時間撹拌した。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する目的とする化合物の割合は、51面積%であった。
 反応終了後、トルエン及び水を、70℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に4.8kPaとした。比較例化合物Aを含む組成物を抜き取り、冷却固化後、粉砕して、60℃、1.5kPa条件下で乾燥して、173gの比較例化合物A含有組成物(純度53%、比較例化合物Aより高分子量の化合物47面積%)を得た。
 H-NMRの分析結果から、上記化学構造の比較例化合物Aのベンゾオキサジン化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 2.43-2.72(2H,brm),2.71-3.16(4H,m),3.41-4.09(12H,m),4.69-5.01(4H,m),6.49-7.07(6H,m).
<比較合成例2>
 ベンゾオキサジン化合物として汎用される、下記構造で表されるFa型ベンゾオキサジン化合物(比較例化合物B)を以下のとおり合成した。
Figure JPOXMLDOC01-appb-C000027
 温度計、撹拌機、冷却管、滴下ロートを備えた1Lの4つ口フラスコにビスフェノールF83g(0.41モル)、アニリン77g、94%パラホルムアルデヒド56g、トルエン153gを仕込み、反応容器内を窒素置換した後、反応溶液の温度を90℃とした。その後、温度を90℃に保持しながら2時間撹拌した。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する目的とする比較例化合物Bの割合は、71面積%であった。
 反応終了後、トルエン及び水を、90℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に20kPaとした。比較例化合物Bを含む組成物を抜き取り、178gの比較例化合物B含有組成物(純度:69%、比較例化合物Bより高分子量の化合物31面積%)を得た。
<比較合成例3>(下記化学式で表される比較例化合物Cの合成)
Figure JPOXMLDOC01-appb-C000028
 温度計、撹拌機、冷却管、滴下ロートを備えた1Lの4つ口フラスコに、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン124g(0.4モル)、92%パラホルムアルデヒド63g、及びトルエン230gを仕込んだ。反応容器内を窒素置換した後、混合溶液の温度を30℃とし、温度を保持しながら、2-アミノエタノール49gを滴下ロートで4つ口フラスコに、2時間かけて滴下した。滴下終了後、さらに30℃で4時間撹拌した。上記分析方法によりGPCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、79面積%であった。
 反応終了後、3%水酸化ナトリウム水溶液によりアルカリ水洗を行った後、トルエンを350g追加し、水洗液のpHが7以下になるまで水洗した。その後、トルエン及び水を、60℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に4.8kPaとした。溶媒をある程度除去した後、さらに90℃、9.8kPa条件下で残存溶媒を除去した。183gの目的化合物(純度:76%、目的化合物より高分子量の化合物24面積%)を得た。
 H-NMRの分析結果から、上記化学構造の比較例化合物Cのベンゾオキサジン化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 0.30-0.40(3H、m),0.84(1H、m),0.90-1.00(6H、m),1.10(1H、m),1.76-2.02(2H、m),2.32(1H、m),2.58(1H、m),2.81-3.07(4H、m),3.57-4.05(8H、m),4.73-4.90(4H、m),6.50-7.12(6H、m).
<硬化特性評価、溶融温度評価>
 実施例2及び4と、比較合成例1~3で得られたそれぞれのベンゾオキサジン化合物について、上記分析方法に従い硬化特性評価及び溶融温度評価を行った。その結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000029
 表1に示すとおり、本発明化合物である実施例2化合物及び実施例4化合物は、比較例化合物A並びにC、及び汎用されるFa型ベンゾオキサジン化合物(比較例化合物B)よりも、低い温度で硬化することが明らかとなった。本発明の一般式(1)で表される新規のベンゾオキサジン化合物を使用することで、熱硬化性樹脂の成型プロセスにおける温度を低下させることができ、加熱及び冷却の時間短縮や省エネルギー化による効率化が可能であるほか、熱に弱い材料(基材)にも使用できるため、非常に有用であることを示すものである。
 また、表1に示すとおり、本発明化合物である実施例2の化合物は、比較例化合物A並びに比較例化合物C、及び比較例化合物Bよりも低い温度で溶融することが明らかとなった。本発明の一般式(1)で表される新規のベンゾオキサジン化合物を使用した硬化性樹脂組成物は、その製造や取扱いを低い温度で行えるため、非常に有用である。
(実施例2化合物の硬化物の試験片の作成)
 実施例2化合物を2時間程度発泡がなくなるまで溶融脱気させ、予備加熱したDMA測定用シリコーン注型板に注型した。その後、乾燥機内(DP32、ヤマト科学株式会社製)にて、175℃で2時間加熱して、その後冷却した。得られた板状の樹脂硬化物をサンドペーパーで表面を研磨することにより硬化物の試験片を作製した。
(実施例4化合物の硬化物の試験片の作成方法)
 実施例4化合物を2時間程度発泡がなくなるまで溶融脱気させ、予備加熱したDMA測定用シリコーン注型板に注型した。その後、乾燥機内(DP32、ヤマト科学株式会社製)にて、140℃→150℃→160℃→180℃→200℃/各2時間の条件で加熱して、その後冷却した。得られた板状の樹脂硬化物をサンドペーパーで表面を研磨することにより硬化物の試験片を作製した。
(比較例化合物Aの硬化物の試験片の作成方法)
 比較例化合物AをDMA測定用シリコーン注型板に充填した。その後、乾燥機内(DP32、ヤマト科学株式会社製)にて、175℃で2時間加熱して、その後冷却した。得られた板状の樹脂硬化物をサンドペーパーで表面を研磨することにより硬化物の試験片を作製した。
<ベンゾオキサジン化合物の硬化物の耐熱性評価>
 上記方法で熱硬化して作成したベンゾオキサジン化合物の試験片を、DMAにより硬化物のガラス転移温度(Tg)を測定した。その結果を表2にまとめて示す。
 なお、比較例化合物Bのガラス転移温度(Tg)は、エレクトロニクス実装学会誌、第14巻、第3号、第204~211頁、2011年に記載の数値を示す。
Figure JPOXMLDOC01-appb-T000030
 表2に示すとおり、本発明化合物である実施例2化合物及び実施例4化合物を使用した硬化物は、表1に示すとおり低い温度で硬化するという優れた効果を発揮するだけでなく、高いガラス転移温度(Tg)を有し、優れた耐熱性を有することが明らかになった。中でも、実施例4化合物を使用した硬化物は、比較例化合物A及び汎用されるFa型ベンゾオキサジン化合物(比較例化合物B)よりも高いガラス転移温度(Tg)を有し、さらに耐熱性に優れることが明らかとなった。

Claims (5)

  1.  一般式(1)で表されるベンゾオキサジン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水素原子又は炭素原子数1~6のアルキル基を示し、Rは炭素原子数1~10の2価の基を示し、Xは、単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)若しくは一般式(1b)で表される2価の基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1a)、(1b)中、R及びRは各々独立して水素、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
  2.  請求項1に記載のベンゾオキサジン化合物を含む樹脂原料組成物。
  3.  請求項1に記載のベンゾオキサジン化合物又は請求項2に記載の樹脂原料組成物を含む、硬化性樹脂組成物。
  4.  請求項1に記載のベンゾオキサジン化合物又は請求項2に記載の樹脂原料組成物と、エポキシ樹脂、前記一般式(1)で表されるベンゾオキサジン化合物以外のベンゾオキサジン化合物、フェノール樹脂及びビスマレイミド化合物からなる群より選択される1種以上を含有する、請求項3に記載の硬化性樹脂組成物。
  5.  請求項3又は4に記載の硬化性樹脂組成物を硬化させてなる硬化物。
PCT/JP2022/002314 2021-01-29 2022-01-24 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物 WO2022163553A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237025903A KR20230137341A (ko) 2021-01-29 2022-01-24 신규한 벤즈옥사진 화합물, 그것을 함유하는 수지 원료조성물, 경화성 수지 조성물 및 그의 경화물
CN202280011056.XA CN116888102A (zh) 2021-01-29 2022-01-24 新型苯并噁嗪化合物、含有该化合物的树脂原料组合物、固化性树脂组合物及其固化物
JP2022578346A JPWO2022163553A1 (ja) 2021-01-29 2022-01-24
US18/262,295 US20240101543A1 (en) 2021-01-29 2022-01-24 Novel benzoxazine compound, resin raw material composition containing the same, curable resin composition, and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013397 2021-01-29
JP2021013397 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163553A1 true WO2022163553A1 (ja) 2022-08-04

Family

ID=82653439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002314 WO2022163553A1 (ja) 2021-01-29 2022-01-24 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物

Country Status (6)

Country Link
US (1) US20240101543A1 (ja)
JP (1) JPWO2022163553A1 (ja)
KR (1) KR20230137341A (ja)
CN (1) CN116888102A (ja)
TW (1) TW202246221A (ja)
WO (1) WO2022163553A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026850A1 (ja) * 2021-08-24 2023-03-02 本州化学工業株式会社 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
WO2023037818A1 (ja) * 2021-09-10 2023-03-16 本州化学工業株式会社 硬化性樹脂組成物、ワニス、硬化物、硬化物の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530570A (ja) * 2008-08-14 2011-12-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 重合性組成物
KR20150027861A (ko) * 2013-08-28 2015-03-13 삼성전자주식회사 조성물, 이로부터 형성된 고분자, 이를 포함한 연료전지용 전해질막, 이를 포함한 연료전지용 전극 및 이를 채용한 연료전지
WO2019178547A1 (en) * 2018-03-16 2019-09-19 The Regents Of The University Of California Benzoxazine polymers and methods of making and using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011530570A (ja) * 2008-08-14 2011-12-22 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン 重合性組成物
KR20150027861A (ko) * 2013-08-28 2015-03-13 삼성전자주식회사 조성물, 이로부터 형성된 고분자, 이를 포함한 연료전지용 전해질막, 이를 포함한 연료전지용 전극 및 이를 채용한 연료전지
WO2019178547A1 (en) * 2018-03-16 2019-09-19 The Regents Of The University Of California Benzoxazine polymers and methods of making and using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026850A1 (ja) * 2021-08-24 2023-03-02 本州化学工業株式会社 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
WO2023037818A1 (ja) * 2021-09-10 2023-03-16 本州化学工業株式会社 硬化性樹脂組成物、ワニス、硬化物、硬化物の製造方法

Also Published As

Publication number Publication date
CN116888102A (zh) 2023-10-13
TW202246221A (zh) 2022-12-01
US20240101543A1 (en) 2024-03-28
JPWO2022163553A1 (ja) 2022-08-04
KR20230137341A (ko) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2022163553A1 (ja) 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
US7968672B2 (en) Phenolic resin, process for production thereof, epoxy resin, and use thereof
JP5476762B2 (ja) フェノール樹脂、該樹脂の製造方法及び該樹脂を含むエポキシ樹脂組成物、ならびにその硬化物
US5756564A (en) Epoxy resin composition for encapsulation of semiconductors
TWI478955B (zh) 環氧樹脂組成物、該環氧樹脂組成物的製造方法及其硬化物
WO2022097598A1 (ja) ベンゾオキサジン化合物含有組成物、硬化性樹脂組成物及びその硬化物
KR20230138467A (ko) 벤즈옥사진 화합물의 제조방법
KR20230138468A (ko) 벤즈옥사진 화합물의 신규한 제조방법
JP3894628B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
WO2023037818A1 (ja) 硬化性樹脂組成物、ワニス、硬化物、硬化物の製造方法
WO2022163552A1 (ja) 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
WO2023026850A1 (ja) 新規なベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
JP2004359672A (ja) アニリン系化合物、およびその製造方法
WO2024106523A1 (ja) ベンゾオキサジン化合物、それを含有する樹脂原料組成物、硬化性樹脂組成物及びその硬化物
JP3907140B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP3636409B2 (ja) フェノール類樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4521934B2 (ja) 多価フェノール化合物、エポキシ樹脂、熱硬化性樹脂組成物及びその硬化物
JP4086630B2 (ja) 多価フェノール類化合物、エポキシ樹脂組成物およびその硬化物
JPH06157710A (ja) 新規エポキシ樹脂及びその製造方法並びにその中間体の製造方法
JP4026733B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JPH11181049A (ja) 変性エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4338062B2 (ja) 樹脂及び硬化性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578346

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262295

Country of ref document: US

Ref document number: 202280011056.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745774

Country of ref document: EP

Kind code of ref document: A1