WO2022163436A1 - 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品 - Google Patents

二成分型室温速硬化性オルガノポリシロキサン組成物及び物品 Download PDF

Info

Publication number
WO2022163436A1
WO2022163436A1 PCT/JP2022/001591 JP2022001591W WO2022163436A1 WO 2022163436 A1 WO2022163436 A1 WO 2022163436A1 JP 2022001591 W JP2022001591 W JP 2022001591W WO 2022163436 A1 WO2022163436 A1 WO 2022163436A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
curing
agent
component
Prior art date
Application number
PCT/JP2022/001591
Other languages
English (en)
French (fr)
Inventor
晃 打它
隆文 坂本
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US18/274,175 priority Critical patent/US20240101762A1/en
Priority to CN202280011697.5A priority patent/CN116802233A/zh
Priority to JP2022578265A priority patent/JPWO2022163436A1/ja
Priority to EP22745659.7A priority patent/EP4286468A1/en
Priority to KR1020237028687A priority patent/KR20230138948A/ko
Publication of WO2022163436A1 publication Critical patent/WO2022163436A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2103/00Civil engineering use

Definitions

  • the present invention provides a condensation-curable two-component room-temperature fast-curing organopolysiloxane composition that crosslinks (cures) by hydrolysis and condensation reaction with atmospheric moisture (moisture) at room temperature (23° C. ⁇ 15° C.),
  • a two-component room-temperature-curing type containing a cross-linking agent in which the released compound released from the cross-linking agent (curing agent) by a hydrolysis reaction during curing is a cyclic ketone compound such as cyclobutanone or cyclopentanone.
  • the present invention relates to an organopolysiloxane composition and various articles containing the composition or a cured product thereof (silicone rubber).
  • Room-temperature-curable organopolysiloxane compositions that cure at room temperature to form silicone rubbers have long been known and have been widely used in industry.
  • Known curing mechanisms at room temperature include a mechanism of curing by hydrosilylation addition reaction, a mechanism of radical curing by ultraviolet rays, and a mechanism of curing by condensation reaction between hydrolyzable groups bonded to silicon atoms and hydroxyl groups.
  • room-temperature-curable organopolysiloxane compositions that cure by a condensation reaction have the advantage that they can be easily cured at room temperature and are less likely to be inhibited by impurities caused by hydrosilylation addition reactions. Therefore, it is widely used in fields such as in-vehicle gaskets and sealing materials, construction sealants, and electrical and electronic parts.
  • a room temperature curable organopolysiloxane composition that cures by a condensation reaction contains a hydrolyzable organosilane compound having a hydrolyzable group in the molecule as a curing agent (crosslinking agent) in the composition.
  • Curing agents that are widely used include deoxime-type hydrolyzable organosilane compounds that release oxime compounds such as 2-butanone oxime during curing, and dealcoholization-type hydrolyzable compounds that release alcohol compounds such as methanol.
  • Organosilane compounds and the like are known. Rubber-like cured products obtained by curing compositions containing these curing agents have high heat resistance, chemical resistance, and weather resistance derived from silicone (siloxane structure).
  • oxime compounds such as 2-butanone oxime, which are generated when the de-oximating curing agent is cured, are suspected to be carcinogenic and are not preferable. , and is designated as a deleterious substance, it is undesirable from the viewpoint of human health.
  • tin catalysts which are subject to stricter regulations as environmentally hazardous substances, are used as curing catalysts in some cases, which is not preferable from the viewpoint of environmental protection.
  • Patent Document 1 a hydrolyzable silyl group-blocked diorganopolysiloxane having an oxime structure as a leaving group at both ends of the molecular chain has at least one carbonyl in one molecule.
  • a composition comprising an organic compound having a group (C ⁇ O group) and an organic compound having at least one primary amino group (NH 2 group) per molecule has been proposed. This was achieved by using water, which is a by-product of the ketimine formation reaction between carbonyl groups and primary amino groups, to improve deep-curing and fast-curing properties. There was a drawback that separation was likely to occur in the composition containing the carbonyl compound.
  • the dealcoholized organopolysiloxane composition is inferior in curability to the deoximated organopolysiloxane composition, and therefore a sufficient curing speed cannot be obtained even by using the technique of Patent Document 1. Therefore, as in JP-A-2011-37968 (Patent Document 2), an organopolysiloxane having a silanol group and a ketenesilyl acetal type compound are mixed in the presence of an organic compound having a nitrogen atom, and then the silanol group is present. It is reported that the curability is dramatically improved by mixing with the composition, but this is not as good as the technology of Patent Document 1 that generates water from the inside in terms of deep part curability. .
  • the leaving groups (methanol, 2-butanone oxime) released during curing of the oxime- and dealcoholization-type room-temperature-curable organopolysiloxane compositions have toxicity and environmental impact. cannot be reduced.
  • the present invention has been made in view of the above circumstances, and is a room temperature curable organopolysiloxane composition, which is a two-component type, has excellent rapid curing and deep curing, and is carcinogenic to the human body when cured. There are no reported cases of health hazards such as reproductive toxicity and environmental hazards such as toxicity to aquatic organisms.
  • an organopolysiloxane having a specific structure having a silanol group or a hydrolyzable silyl group at the molecular chain end and (B) the following general formula: (4) a hydrolyzable organosilane compound and/or a partial hydrolytic condensate thereof, and (C) a first agent containing a curing catalyst in a specific proportion, and (A') a silanol at the molecular chain end
  • a two-component room-temperature fast-curing organopolysiloxane composition comprising a second agent containing a specific amount of an organopolysiloxane having a specific structure having groups cures faster than a one-component room-temperature-curing organopolysiloxane composition.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, a is an integer of 1 to 8, and b is 3 or 4.
  • the base polymer is an organopolysiloxane having a specific structure whose molecular chain ends are blocked with hydrolyzable silyl groups, or an organopolysiloxane whose molecular chain ends are blocked with silanol groups.
  • a first agent containing organopolysiloxane whose molecular chain end is blocked with a hydrolyzable silyl group, which is generated by coexisting polysiloxane and a specific hydrolyzable silane compound with a curing catalyst, and a base polymer having a molecular chain end By mixing the second agent containing the organopolysiloxane blocked with silanol groups, the terminal hydrolyzable silyl groups of the base polymer in the first agent and the terminal silanol groups of the base polymer in the second agent are directly It is presumed that the cross-linking reaction improves the curability of the one-component room-temperature-curing organopolysiloxane composition.
  • a cyclic ketone compound such as cyclobutanone or cyclopentanone
  • NH 2 group an organic compound having a primary amino group
  • the present invention provides the following two-component room-temperature fast-curing organopolysiloxane composition, and various articles (automobile parts, automotive oil seals, electrical and electronic parts, building structures for construction, structures for civil engineering work, adhesives, sealing agents, potting agents, coating agents, etc.).
  • (A) Organopolysiloxane represented by the following general formula (1), (2) or (3): 10 to 90 parts by mass (where the total of components (A) and (A') is 100 parts by mass) ),
  • R is the same or different unsubstituted or halogen atom-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 5 or more.
  • n may be the same or different, m is an integer of 1 to 10.
  • X is an oxygen atom or an alkylene group having 2 to 5 carbon atoms, and k is independently 0 or 1 for each silicon atom to be bonded.
  • B a hydrolyzable organosilane compound represented by the following general formula (4) and/or a partial hydrolytic condensate thereof: 0.1 to 0.1 parts per 100 parts by mass of components (A) and (A')
  • An automotive part comprising a cured product of the two-component room-temperature fast-curing organopolysiloxane composition according to any one of [1] to [8].
  • An automotive oil seal comprising a cured product of the two-component room-temperature fast-curing organopolysiloxane composition according to any one of [1] to [8].
  • An electric/electronic part comprising a cured product of the two-component room-temperature fast-curing organopolysiloxane composition according to any one of [1] to [8].
  • [12] An architectural structure comprising a cured product of the two-component room-temperature fast-curing organopolysiloxane composition according to any one of [1] to [8].
  • [13] A structure for civil engineering work comprising a cured product of the two-component room-temperature fast-curing organopolysiloxane composition according to any one of [1] to [8].
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention consists of a two-component type consisting of a first agent and a second agent. As a result, when the first part and the second part are mixed, they are excellent in rapid curability and deep part curability.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention is particularly excellent in fast-curing properties in air at room temperature and has good workability. Furthermore, it has storage stability. Therefore, the two-component room-temperature fast-curing organopolysiloxane composition of the present invention can be rapidly cured by mixing the first part and the second part and exposing it to the air even after storage for a long period of time, for example, six months. and exhibit excellent physical properties. Furthermore, the cross-linking agent used in the present invention has no reports of health hazards such as carcinogenicity and reproductive toxicity to the human body when cured, and environmental hazards such as toxicity to aquatic organisms.
  • cyclic ketone compounds such as pentanone are released as leaving groups (leaving substances), various adhesives, sealants, potting agents, coating agents, etc. that take into account the health and safety of the human body and environmental protection (reduction of load).
  • various adhesives, sealants, potting agents, coating agents, etc. that take into account the health and safety of the human body and environmental protection (reduction of load).
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention comprises a first component containing specific amounts of components (A), (B), and (C), which will be described later, and (A') and a second agent containing the ingredients.
  • the second agent does not contain component (B) and component (C).
  • viscosity is measured at 23° C. using a rotational viscometer according to the method specified in JIS Z-8803.
  • room temperature refers to a temperature of 23° C. ⁇ 15° C. and a humidity of 50% RH ⁇ 5% RH.
  • Component (A) is an organopolysiloxane represented by the general formula (1), (2) or (3) described later and is to be blended in the first agent, and component (A') is represented by the general formula described later.
  • the organopolysiloxane represented by (1) or (2) is compounded in the second agent, and these components (A) and (A') are the two-component room-temperature fast-curing organopolysiloxane of the present invention. It acts as the main agent (base polymer) in the siloxane composition.
  • Component (A) used in the two-component room-temperature fast-curing organopolysiloxane composition of the present invention is represented by the following general formula (1), (2) or (3) and preferably has a viscosity of 20 at 23°C. It is an organopolysiloxane having a viscosity of up to 1,000,000 mPa ⁇ s, and the component (A′) is represented by the following general formula (1) or (2), preferably having a viscosity at 23° C. of 20 to 1,000,000 mPa • is an organopolysiloxane of s.
  • R is the same or different unsubstituted or halogen atom-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n is an integer of 5 or more.
  • n may be the same or different, m is an integer of 1 to 10.
  • X is an oxygen atom or an alkylene group having 2 to 5 carbon atoms, and k is independently 0 or 1 for each silicon atom to be bonded.
  • R is an unsubstituted or halogen atom-substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, etc.
  • a methyl group, a vinyl group, a phenyl group and a 3,3,3-trifluoropropyl group are preferred, and a methyl group is particularly preferred.
  • Plural R's in general formulas (1), (2) and (3) may be the same group or different groups.
  • n is an integer of 5 or more, and in particular, the viscosity of this diorganopolysiloxane at 23° C. is in the range of 20 to 1,000,000 mPa ⁇ s, preferably in the range of 100 to 300,000 mPa ⁇ s. be. Specifically, the value of n that gives such a viscosity is usually an integer of about 5 to 2,000, preferably 20 to 1,500, more preferably 50 to 1,000.
  • the degree of polymerization can usually be determined as the number average degree of polymerization (number average molecular weight) in terms of polystyrene in gel permeation chromatography (GPC) analysis using toluene or the like as a developing solvent.
  • GPC gel permeation chromatography
  • m represents the number of branched chains and is an integer of 1-10, preferably an integer of 1-5, more preferably an integer of 1-3.
  • each repeating unit may be randomly bonded.
  • X is an oxygen atom or an alkylene group having 2 to 5 carbon atoms
  • examples of the alkylene group having 2 to 5 carbon atoms include an ethylene group, a propylene group, and a butylene group. be.
  • X is preferably an oxygen atom or an ethylene group.
  • k is independently 0 or 1 for each bonding silicon atom.
  • the organopolysiloxane of component (A) and component (A') preferably has a viscosity at 23° C. of 20 to 1,000,000 mPa ⁇ s, more preferably 100 to 300,000 mPa ⁇ s, still more preferably. is 1,000 to 200,000 mPa ⁇ s, particularly preferably 10,000 to 100,000 mPa ⁇ s. If the viscosity of the organopolysiloxane is less than the above lower limit (20 mPa ⁇ s), a large amount of component (B), which will be described later, is required, which is economically disadvantageous. Moreover, if the viscosity of the organopolysiloxane exceeds the above upper limit (1,000,000 mPa ⁇ s), the workability is lowered, which is not preferable.
  • the (A) component and (A') component organopolysiloxane may be used singly or in combination of two or more.
  • the same or different organopolysiloxanes may be used as the components (A) and (A').
  • Component (B) hydrolyzable organosilane compound and/or partial hydrolytic condensate thereof
  • the component (B) used in the two-component room-temperature fast-curing organopolysiloxane composition of the present invention is a hydrolyzable organosilane compound represented by the following general formula (4) and/or a partial hydrolytic condensate thereof, It is used as a cross-linking agent (curing agent), and is characterized by releasing a cyclic ketone compound such as cyclobutanone or cyclopentanone as a leaving group (leaving substance) upon hydrolysis.
  • a cyclic ketone compound such as cyclobutanone or cyclopentanone
  • the cyclic ketone compound which is the leaving group (leaving substance), reacts with the curing accelerator (D) described later to generate water, thereby forming a two-component room-temperature fast-curing organopolysiloxane composition. properties and deep curability can be imparted.
  • the term "partially hydrolyzed condensate” means that the hydrolyzable organosilane compound is partially hydrolyzed and condensed and has 3 or more residual hydrolyzable groups in the molecule, preferably It means an organosiloxane oligomer having 4 or more.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, a is an integer of 1 to 8, and b is 3 or 4.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, 6 alkenyl group, aryl group having 6 to 10 carbon atoms or aralkyl group having 7 to 10 carbon atoms, and R 1 is a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec -butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, nonyl group, alkyl group such as decyl group, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group
  • Examples include an alkenyl group such as a group, an aryl group such as a phen
  • a is an integer of 1-8, preferably an integer of 2-6, more preferably an integer of 2-4, still more preferably 2 or 3.
  • a is 0, it does not form a cyclic structure.
  • a is an integer of 9 or more, the molecular weight of the hydrolyzable organosilane compound increases, making it difficult to purify by distillation or increasing the amount of addition required to ensure storage stability, which is disadvantageous in terms of cost. Become.
  • b is 3 or 4. If this number is less than 3, rubber curing does not occur due to a crosslinking reaction, and it is not suitable as a crosslinking agent for a two-component room-temperature fast-curing organopolysiloxane composition.
  • the leaving group (leaving compound) generated by hydrolysis of the hydrolyzable organosilane compound represented by the general formula (4) includes cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone.
  • Cyclic ketone compounds such as non, cyclononanone and cyclodecanone, preferably cyclobutanone and cyclopentanone, more preferably cyclopentanone.
  • Cyclobutanone and cyclopentanone have no reports of health hazards such as carcinogenicity and reproductive toxicity to humans, and environmental hazards such as toxicity to aquatic organisms.
  • cyclopentanone is industrially mass-produced, readily available, and highly cost-competitive, so it is also advantageous for the production of the hydrolyzable organosilane compound of component (B), as will be described later.
  • the hydrolyzable organosilane compound (B) is, for example, a chlorosilane compound corresponding to the hydrolyzable organosilane compound represented by the general formula (4), which is the product, and a cyclic ketone compound in the presence of a catalyst and a basic substance. It can be produced by the following reaction (for example, dehydrochlorination reaction). This reaction formula is represented, for example, by the following formula [1].
  • chlorosilane compound the following can be exemplified.
  • the amount of the cyclic ketone compound to be reacted with the chlorosilane compound is preferably 0.95 to 3.0 mol, more preferably 0.99 to 2.5 mol, per 1 mol of chlorine atoms in the chlorosilane compound. 0.0 to 2.0 mol is more preferred. If the amount of the cyclic ketone compound added is too small, the reaction may not be completed.
  • the catalyst used in the reaction includes monovalent or divalent metal copper compounds, such as copper chloride, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, basic copper carbonate, copper formate, Examples include copper acetate and copper butyrate, but are not limited to these.
  • the amount of the catalyst (metallic copper compound) added is preferably 0.001 to 0.5 mol, more preferably 0.002 to 0.2 mol, and more preferably 0.003 to 0.1 mol with respect to 1 mol of chlorosilane. More preferred. If the amount of catalyst added is too small, the reaction may not be completed.
  • Basic substances used in the reaction include low nucleophilic basic substances such as trimethylamine, triethylamine, tripropylamine, tributylamine, urea, diazabicycloundecene, and diazabicyclononene. Among these, trimethylamine, triethylamine and tributylamine are preferred, and triethylamine is particularly preferred.
  • the amount of the basic substance to be added is preferably 0.95 to 2.5 mol, more preferably 0.99 to 2.0 mol, more preferably 1.0 to 1.5 mol, per 1 mol of chlorine atoms in the chlorosilane. Molar is more preferred. If the amount of the basic substance added is too small, the reaction may not be completed, and if the amount of the basic substance added is too large, it is economically disadvantageous.
  • solvents such as dimethyl ether, methyl ethyl ether, tetrahydrofuran, and dioxane, and halogenated hydrocarbons such as perchloroethane, perchlorethylene, trichloroethane, chloroform, and carbon tetrachloride.
  • amides such as dimethylformamide
  • organic solvents such as esters such as ethyl acetate, methyl acetate and butyl acetate.
  • the amount of the solvent to be used is not particularly limited, but usually 10 to 500 parts by mass, preferably 30 to 400 parts by mass, more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the cyclic ketone compound used. used.
  • the cyclic ketone compound is usually added dropwise to the chlorosilane at a temperature of 0 to 120°C, preferably 0 to 100°C, and the temperature is 50 to 120°C, preferably 60 to 100°C. is preferably allowed to react for 1 to 48 hours, more preferably 3 to 30 hours. If the temperature during the reaction is too low, the reaction may not be completed, and if the temperature during the reaction is too high, the product may become highly colored. On the other hand, if the reaction time is too short, the reaction may not be completed, and if the reaction time is too long, the productivity is adversely affected.
  • Purification after completion of the reaction can be carried out by distilling the target product under a reduced pressure environment. and the temperature during purification is preferably 100 to 250°C, more preferably 120 to 230°C. If the pressure (degree of pressure reduction) during decompression is too high, distillation may become difficult. On the other hand, if the temperature during purification is too low, purification by distillation may become difficult, and if the temperature is too high, the reaction product may be colored or decomposed.
  • hydrolyzable organosilane compound (B) examples include those represented by the following formulas.
  • Me shows a methyl group.
  • the (B) component hydrolyzable organosilane compound and/or its partial hydrolysis condensate may be used singly or in combination of two or more.
  • Component (B) is to be blended in the first agent, and its blending amount is 0.1 to 30 parts by mass with respect to a total of 100 parts by mass of components (A) and (A'), preferably 0.5 to 25 parts by mass. If the amount of component (B) is too small, sufficient cross-linking cannot be obtained when the composition is cured. There may be a problem that it is disadvantageous to
  • the (C) component curing catalyst is used to accelerate the hydrolytic condensation reaction and is generally called a curing catalyst. Any known material commonly used in room-temperature-curable silicone resin compositions that cure in the presence of moisture can be used.
  • the non-metallic organic catalyst is not particularly limited, but those known as curing accelerators for condensation-curable organopolysiloxane compositions can be used.
  • curing accelerators for condensation-curable organopolysiloxane compositions can be used.
  • phosphazene-containing compounds such as N,N,N',N',N'',N''-hexamethyl-N'''-(trimethylsilylmethyl)-phosphorimidic triamide; quaternary ammonium salts; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; ⁇ -(N,N,N',N'-tetramethylguanidyl)propyltrimethoxysilane, ⁇ -(N,N,N Silanes containing a guanidyl group such as ',N'-tetramethylguanidyl)propylmethyldimethoxysilane and ⁇ -(N,N,N'
  • the metal-based catalyst is not particularly limited, but those known as curing catalysts for condensation-curable organopolysiloxane can be used.
  • alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, dimethyltin dineodecanoate, dioctyltin dineodecanoate, di-n-butyl-dimethoxytin; tetraisopropoxytitanium, Titanate esters or titanium chelate compounds such as tetra-n-butoxytitanium, tetrakis(2-ethylhexoxy)titanium, dipropoxybis(acetylacetonato)titanium, titanium isopropoxyoctylene glycol; zinc naphthenate, zinc stearate, zinc -2-ethyl octo
  • Component (C) is compounded in the first agent, and its compounding amount is 0.001 to 10 parts by mass with respect to a total of 100 parts by mass of components (A) and (A'). 005 to 8 parts by mass, more preferably 0.01 to 5 parts by mass. If the amount is less than 0.001 parts by mass, good curability cannot be obtained, resulting in a problem of slow curing speed. Conversely, if the amount exceeds 10 parts by mass, the curing of the composition is too rapid, and the allowable range of working time after application of the composition is shortened. physical properties) are degraded.
  • Component (D) is an amine compound having a primary amino group (that is, an amino group having a —NH 2 structure, excluding a guanidyl group), and a cyclic ketone compound produced by hydrolysis of component (B). It reacts to produce water and significantly improves the deep-part curability of the composition.
  • Component (D) is not particularly limited as long as it has a primary amino group. Specific examples include methylamine, ethylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, and dodecylamine.
  • aliphatic amines such as ethylenediamine and triethylenetetramine; aromatic amines such as aniline; cyclic amines such as cyclopentylamine, cyclohexylamine and 2-ethylcyclohexylamine; ⁇ -aminopropyltrimethoxysilane, ⁇ - Primary amino group-containing silanes such as aminosilanes such as aminopropyltriethoxysilane, 3-2-(aminoethylamino)propyltrimethoxysilane [alias: N-2-(aminoethyl)-3-aminopropyltrimethoxysilane] coupling agents; and primary amino group-containing organosilicon compounds such as primary amino group-containing polysiloxanes. These may be used singly or in combination of two or more.
  • component (D) When component (D) is blended, it may be blended in the first agent, the second agent, or both. 0 to 20 parts by mass in each of the first and second agents for a total of 100 parts by mass (however, at least one of the first and second agents contains 0.1 parts by mass or more ), more preferably 0 to 10 parts by mass (provided that at least one of the first agent and the second agent contains 0.1 part by mass or more). That is, when the component (D) is blended, the total blending amount in the composition is 0.1 to 20 parts by mass, particularly 0.5 parts per 100 parts by mass of the total of the components (A) and (A'). It is preferably to 10 parts by mass.
  • component (D) added is less than 0.1 parts by mass, the amount of water produced by reacting with the cyclic ketone compound produced by hydrolysis of component (B) is small, and sufficient deep-section curability is not exhibited. , exceeding 20 parts by mass, the properties and storage stability of the resulting cured product are disadvantageous.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention may optionally contain an inorganic filler (E) as an optional component.
  • the (E) component inorganic filler is a reinforcing or non-reinforcing filler for imparting rubber physical properties to the two-component room temperature fast-curing organopolysiloxane composition of the present invention.
  • Inorganic fillers of component (E) include silica-based fillers such as dry silica such as pyrogenic silica and fumed silica, wet silica such as precipitated silica and sol-gel silica, with or without surface hydrophobizing treatment.
  • calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide are preferable, and more preferably calcium carbonate, fumed silica, precipitated silica, carbon black, and oxide obtained by hydrophobizing the surface of an inorganic filler.
  • Aluminum In this case, these inorganic fillers preferably have a low water content.
  • the type, amount, treatment method, etc. of the surface treatment agent (hydrophobic treatment agent) are not particularly limited. , a silane coupling agent, a titanium coupling agent, and the like can be applied.
  • the (E) component inorganic filler may be used singly or in combination of two or more.
  • the component (E) When the component (E) is blended, it may be blended in the first agent, the second agent, or both, and its blending amount is the (A) component and (A') component. 0 to 1,000 parts by mass in each of the first agent and the second agent for a total of 100 parts by mass of the more preferably 0 to 500 parts by mass (at least one of the first agent and the second agent contains 0.1 part by mass or more). That is, when component (E) is blended, the total amount in the composition is 0.1 to 1,000 parts by mass, particularly 1 part by mass, per 100 parts by mass of components (A) and (A'). It is preferably up to 500 parts by mass. If the amount is more than 1,000 parts by mass, the viscosity of the composition increases and workability deteriorates, and the rubber strength after curing decreases, making it difficult to obtain rubber elasticity.
  • Component (F) is an adhesion promoter, which is an optional component that can be blended as necessary, and which imparts sufficient adhesion to the cured product formed from the two-component room-temperature fast-curing organopolysiloxane composition of the present invention.
  • a known one is preferably used, and a silane coupling agent such as a functional group-containing hydrolyzable silane (however, the primary amino group described in the component (B) and the curing accelerator (D) (excluding aminosilanes having Specifically, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycides
  • Examples include xypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane and the like.
  • ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane and other (meth)acrylsilanes ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl )
  • Epoxysilanes such as ethyltrimethoxysilane and isocyanatesilanes such as 3-isocyanatopropyltriethoxysilane are preferred.
  • the component (F) When the component (F) is blended, it may be blended in the first agent, the second agent, or both. 0 to 10 parts by mass in each of the first agent and the second agent for a total of 100 parts by mass (however, at least one of the first agent and the second agent contains 0.001 parts by mass or more ) is preferable, and 0.1 to 10 parts by mass is particularly preferable. That is, when the component (F) is blended, the total amount in the composition is 0.001 to 10 parts by mass, particularly 0.1, per 100 parts by mass of the components (A) and (A'). It is preferably to 10 parts by mass. When the inorganic filler and the adherend are adhered without the use of an adhesion promoter, this may not be used.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention comprises components (A), (A'), (B) and (C) as essential components, and further comprises (D) and (E). and (F) component are preferably blended.
  • known additives such as pigments, dyes, antioxidants, antioxidants, antistatic agents, flame retardants such as antimony oxide and chlorinated paraffin can be blended.
  • a polyether as a thixotropic agent, an antifungal agent, and an antibacterial agent can be blended.
  • an organic solvent may be used in the two-component room-temperature fast-curing organopolysiloxane composition of the present invention, if necessary.
  • organic solvents include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, isooctane and isododecane; aromatic hydrocarbon compounds such as toluene and xylene; hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetra chain siloxanes such as siloxane, dodecamethylpentasiloxane, 2-(trimethylsiloxy)-1,1,1,2,3,3,3-heptamethyltrisiloxane; octamethylcyclopentasiloxane, decamethylcyclopentasiloxane, etc. and the like.
  • the amount of the organic solvent may be appropriately adjusted within a range that does not impair the effects of the present invention.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention comprises a first component comprising components (A), (B) and (C), and a component (A'). It consists of a second agent that does not contain the (B) component and the (C) component.
  • a two-component composition consisting of the first agent and the second agent provides excellent rapid curability and deep curability.
  • the first agent consists of all of the components (A), (B) and (C), and if necessary some or all of the components (D), (E), (F) and other components It can be prepared by mixing according to In addition, the second agent can be prepared by mixing all of the component (A') and, if necessary, the rest or all of the components (D), (E), (F) and other components in a conventional manner.
  • component (A) and (A') which are base polymers
  • component (A) is blended in the first agent and component (A') is blended in the second agent.
  • 10 to 90 parts by mass particularly 30 to 70 parts by mass of component
  • 10 to 90 parts by mass particularly 30 to 70 parts by mass of component (A') for the second agent (wherein component (A) and component (A')
  • the total amount of components is 100 parts by mass).
  • the optional components (D), (E), (F) and other components may be blended in either the first agent or the second agent, or may be blended in either one or both. Although they may be blended, it is particularly preferable to blend components (D), (E) and (F) in the first agent and blend components (D) and (E) in the second agent.
  • the ratio is 1:99 to 99:1, especially 30:70 to 70, in terms of mass ratio between the first agent and the second agent. :30 is preferable from the viewpoint of storage stability of the composition.
  • the ratio is 80:20 to 20:80, particularly 60:40 to 40, in terms of mass ratio between the first agent and the second agent. Blending so as to achieve 60 is preferable from the point of uniformity (ease of mixing) of the composition when mixed.
  • the mass ratio of the first agent and the second agent is 100:10 to 100:100, especially 100:25 to 100:100. It is preferable from the point of uniformity (ease of mixing) of the composition when mixing the first agent and the second agent.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention can be obtained by uniformly mixing the above-described components and the above-described various additives in predetermined amounts in a dry atmosphere.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention has storage stability, the first agent and the second agent produced as described above are placed in a moisture-free atmosphere. can be saved in .
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention has a ratio suitable for these, specifically, the ratio of the first component and the second component in a mass ratio of 1:1 to 10:1, particularly A 1:1 to 4:1 mix generally cures at room temperature in 10 minutes to 5 days.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention has fast-curing properties, and when molded into a sheet having a thickness of 2 mm at 23° C. and 50% RH, it usually takes 3 days.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention has deep-part curability and is cured at 23° C. and 50% RH in a glass petri dish having an inner diameter of 10 mm and a depth of 20 mm.
  • the hardening to the deep part is usually performed in 2 hours, but the hardening to the deep part is as short as 30 minutes.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention cures when left at room temperature. It is possible to adopt known methods and conditions according to the purpose of use.
  • the compound generated from the cross-linking agent by the hydrolysis reaction during curing is a highly safe cyclic ketone compound such as cyclobutanone or cyclopentanone.
  • cyclopentanone has a flash point of 35° C., which is higher than that of a dealcoholized type that releases an alcohol compound such as methanol when the composition is cured, and is highly safe.
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention exhibits good curability when used with various existing catalysts, and its cured product (silicone rubber) exhibits excellent adhesiveness. .
  • the two-component room-temperature fast-curing organopolysiloxane composition of the present invention is useful as an adhesive, sealing agent, potting agent, coating agent, or the like.
  • the method of using the two-component room-temperature fast-curing organopolysiloxane composition of the present invention as an adhesive, sealing agent, potting agent, or coating agent may follow conventionally known methods.
  • target items include automotive parts, automotive oil seals, electrical and electronic parts, architectural structures, civil engineering structures, and the like.
  • the viscosity is a value measured by a rotational viscometer at 23°C according to the method specified in JIS Z8803.
  • first agent a (Component (A) 50 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23°C and having both molecular chain ends blocked with silanol groups (hydroxyl groups bonded to silicon atoms); (Component (E)) 5 parts by mass of dimethyldichlorosilane-treated fumed silica (fumed silica) having a BET specific surface area of 130 m 2 /g, and (Component (B)) vinyltris(1-cyclopenten-1-yloxy)silane 3.5 parts by mass, (component (C)) ⁇ -(N,N,N',N'-tetramethylguanidyl)propyltrimethoxysilane 0.4 parts by mass, and (component (D)) ⁇ First agent a was prepared by uniformly mixing 0.5 parts by mass of -aminopropyltrimethoxysilane
  • second agent a (Component (A')) 50 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa ⁇ s at 23°C and having both molecular chain ends blocked with silanol groups (hydroxyl groups bonded to silicon atoms); (Component (E)) 5 parts by mass of dimethyldichlorosilane-treated fumed silica (fumed silica) having a BET specific surface area of 130 m 2 /g were uniformly mixed under reduced pressure to prepare the second agent a.
  • Composition 1 was produced by uniformly mixing the first agent a and the second agent a at a mixing ratio (mass ratio) of 1:1. Cured products 1-1 and 1-2 were obtained by curing the composition 1 under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively.
  • Second agent b (Component (A')) 50 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23°C and having both molecular chain ends blocked with silanol groups (hydroxyl groups bonded to silicon atoms); , (Component (E)) 5 parts by mass of dimethyldichlorosilane-treated fumed silica (fumed silica) having a BET specific surface area of 130 m 2 /g and (Component (D)) 2 parts by mass of octylamine under reduced pressure.
  • the second agent b was prepared by mixing them uniformly.
  • a composition 2 was produced by uniformly mixing the first agent a prepared in Example 1 and the second agent b at a mixing ratio (mass ratio) of 1:1. Cured products 2-1 and 2-2 were obtained by curing the composition 2 under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively.
  • first agent b (Component (A) 50 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23°C and having both molecular chain ends blocked with silanol groups (hydroxyl groups bonded to silicon atoms); (Component (E)) 5 parts by mass of dimethyldichlorosilane-treated fumed silica (fumed silica) having a BET specific surface area of 130 m 2 /g, and (Component (B)) vinyltris(1-cyclopenten-1-yloxy)silane 3.5 parts by mass, (component (C)) 0.4 parts by mass of ⁇ -tetramethylguanidylpropyltrimethoxysilane, and (component (D)) 0.5 parts by mass of ⁇ -aminopropyltrimethoxysilane. , (Component (F)) 0.5 parts by mass of ⁇ -glycid
  • Composition 3 was produced by uniformly mixing the first agent b and the second agent b prepared in Example 2 at a mixing ratio (mass ratio) of 1:1. Cured products 3-1 and 3-2 were obtained by curing the composition 3 under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively.
  • first agent c (Component (A) 50 parts by mass of dimethylpolysiloxane having a viscosity of 20,000 mPa s at 23°C and having both molecular chain ends blocked with silanol groups (hydroxyl groups bonded to silicon atoms); (Component (E)) 5 parts by mass of dimethyldichlorosilane-treated fumed silica (fumed silica) having a BET specific surface area of 130 m 2 /g, 2.5 parts by mass of vinyltrimethoxysilane, and (Component (C)) 0.05 parts by mass of dioctyltin dilaurate, (component (D)) 0.5 parts by mass of ⁇ -aminopropyltrimethoxysilane, and (component (F)) 0.5 parts by mass of ⁇ -glycidoxypropyltrimethoxysilane were uniformly mixed under reduced pressure to prepare the first agent c.
  • component (A) 50 parts by mass of di
  • Composition 4 was produced by uniformly mixing the first agent c and the second agent b prepared in Example 2 at a mixing ratio (mass ratio) of 1:1. Cured products 4-1 and 4-2 were obtained by curing the composition 4 under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively.
  • Composition 5 was produced by uniformly mixing the first agent d and the second agent b prepared in Example 2 at a mixing ratio (mass ratio) of 1:1. Cured products 5-1 and 5-2 were obtained by curing the composition 5 under the conditions of 23° C. and 50% RH for 1 day and 3 days, respectively.
  • Tack free time Using each composition prepared in Examples 1 to 3 and Comparative Examples 1 and 2, the tack free time (dry time to the touch) was measured according to the method specified in JIS A-5758.
  • Deep Curability A glass petri dish having an inner diameter of 10 mm and a depth of 20 mm was filled with each composition prepared in Examples 1 to 3 and Comparative Examples 1 and 2, and after 20 minutes at 23 ° C. and 50% RH, from the surface exposed to air The thickness up to the cured portion was measured to evaluate the deep-part curability.
  • Initial sealability In order to compare curability, initial sealability was measured.
  • a pressure vessel similar to the flange pressure vessel for pressure resistance test specified in JIS K-6820 was used as a test apparatus, and a pressure resistance test was performed.
  • the pressure vessel consists of an upper vessel having an upper flange with an inner diameter of 58 mm, an outer diameter of 80 mm, and a thickness of 10 mm, and a lower vessel having a lower flange having the same dimensions as the upper flange.
  • the edge is provided with an annular notch 3 mm wide and 3 mm deep along the circumference. The sealing surface of this lower flange was cleaned with toluene.
  • the above composition was applied in a bead shape to the central portion of the lower sealing surface in an amount sufficient to sufficiently fill the sealing surface.
  • the upper container is placed on the lower container so that the seal surfaces of the upper flange and the lower flange are in contact, and the distance between the seal surfaces of the upper and lower flanges is defined (thickness direction of the flange ), a steel spacer with a height of 21 mm was installed and four tightening bolts were assembled.
  • the spacer creates a gap of 1 mm between the sealing surfaces, but this is to make the pressure resistance test for the sealing material more severe, that is, to conduct a so-called accelerated test.
  • gas is introduced from the upper pressurization port, and the gas pressure that the sealing material, which is a cured product of the above composition, can withstand is measured. was judged to pass.
  • Table 1 The test results of Examples 1 to 3 are shown in Table 1, and the test results of Comparative Examples 1 and 2 are shown in Table 2. Tables 1 and 2 also show the compounds released from the curing agent during curing, and the presence or absence of health hazards and environmental hazards of these compounds.
  • compositions of Examples 1 to 3 exhibit high values of deep-section curability and initial sealability. Since the difference in rubber physical properties and adhesive strength is small in day curing, compared to conventional dealcoholization (composition of Comparative Example 1) and deoximation (composition of Comparative Example 2), high curability is obtained. I know you have.
  • the compound released during curing of the composition of the example is cyclopentanone, and it is safe because there are no reports of health hazards such as carcinogenicity and reproductive toxicity to the human body, and environmental hazards such as toxicity to aquatic organisms. It is a highly active compound.
  • Methanol is 2-butanone oxime, a potentially carcinogenic and toxic to aquatic organisms.
  • methanol has a lower flash point and boiling point than cyclopentanone, the two-component room-temperature fast-curing organopolysiloxane composition of the present invention is useful from the viewpoint of human health and safety and environmental protection. It turns out to be better.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)分子鎖末端にシラノール基又は加水分解性シリル基を有する特定構造のオルガノポリシロキサン、(B)加水分解によって環状ケトン化合物を脱離基(脱離物質)として放出する加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、及び(C)硬化触媒を特定割合で含有してなる第一剤と、(A')分子鎖末端にシラノール基を有する特定構造のオルガノポリシロキサンを特定量含有してなる第二剤からなる二成分型室温速硬化性オルガノポリシロキサン組成物が、一成分型の室温硬化性オルガノポリシロキサン組成物よりも硬化性に優れ、硬化時に、脱離基(脱離化合物)としてシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離・放出するため、人体・環境に対する有害性や安全性の問題を解決する。

Description

二成分型室温速硬化性オルガノポリシロキサン組成物及び物品
 本発明は、室温(23℃±15℃)において大気中の湿気(水分)により加水分解・縮合反応にて架橋(硬化)する縮合硬化型の二成分型室温速硬化性オルガノポリシロキサン組成物、特には、硬化時の加水分解反応によって架橋剤(硬化剤)から脱離・発生する脱離化合物がシクロブタノンやシクロペンタノン等の環状ケトン化合物である架橋剤を含む、二成分型室温速硬化性オルガノポリシロキサン組成物、及び該組成物又はその硬化物(シリコーンゴム)を有する各種物品等に関するものである。
 室温で硬化してシリコーンゴムとなる室温硬化性オルガノポリシロキサン組成物は従来から知られており、産業界で広く使用されてきた。室温で硬化する機構には、ヒドロシリル化付加反応によって硬化する機構、紫外線によってラジカル硬化する機構、ケイ素原子に結合する加水分解性基と水酸基との縮合反応によって硬化する機構などが知られている。中でも、縮合反応により硬化する室温硬化性オルガノポリシロキサン組成物は、室温にて容易に硬化することができ、また、ヒドロシリル化付加反応などで起こる不純物による硬化阻害を起しにくいという利点を有する。そのため、車載ガスケットやシール材、建築用シーラント、電気・電子部品などの分野で幅広く使用されている。
 縮合反応により硬化する室温硬化性オルガノポリシロキサン組成物は、硬化剤(架橋剤)として分子中に加水分解性基を有する加水分解性オルガノシラン化合物を該組成物中に含有するものであり、すでに広く利用されている硬化剤としては、硬化時に2-ブタノンオキシム等のオキシム化合物を放出する脱オキシム型の加水分解性オルガノシラン化合物や、メタノール等のアルコール化合物を放出する脱アルコール型の加水分解性オルガノシラン化合物などが知られている。これらの硬化剤を含有する組成物を硬化して得られるゴム状硬化物は、シリコーン(シロキサン構造)由来の高い耐熱性、耐薬品性、耐候性を有している。
 一方で、脱オキシム型の硬化剤が硬化時に発生する2-ブタノンオキシムなどのオキシム化合物は発がん性のおそれを疑われており好ましくなく、脱アルコール型の硬化剤が硬化時に発生するメタノール等は人体に対して有毒で、劇物に指定されていることから、人体の健康の観点から好ましくない。更に、これらの組成物では、硬化触媒として、環境負荷物質として規制が強化されている錫触媒を使用するケースもあり、環境保護の観点から好ましくない。
 また、従来の一成分型の縮合反応により硬化する室温硬化性オルガノポリシロキサン組成物は、大気中の湿気(水分)に触れた表面から硬化が進行するが、湿気の触れづらい深部は硬化が完了するまでに時間がかかるといった欠点がある。そのため、ベースポリマーと架橋剤、触媒等を適切に分割した二成分型の室温硬化性オルガノポリシロキサン組成物とすることで硬化性を大幅に改善する技術が知られている。
 特許第3916403号公報(特許文献1)では、分子鎖両末端が脱離基としてオキシム構造を有する、加水分解性シリル基で封鎖されたジオルガノポリシロキサンに対し1分子中に少なくとも1個のカルボニル基(C=O基)を有する有機化合物、及び1分子中に少なくとも1個の1級アミノ基(NH2基)を有する有機化合物を含有してなる組成物が提案されている。これはカルボニル基と1級アミノ基によるケチミン生成反応から副生する水を利用して深部硬化性、速硬化性を改良したものであるが、二成分中どちらかにカルボニル化合物を意図的に大量に添加しなければならず、カルボニル化合物を入れた組成物では分離が発生しやすいといった欠点があった。また、脱アルコール型オルガノポリシロキサン組成物では、硬化性が脱オキシム型オルガノポリシロキサン組成物に劣るため、特許文献1の手法を用いても十分な硬化速度は得られない。そのため、特開2011-37968号公報(特許文献2)のようにシラノール基を有するオルガノポリシロキサンとケテンシリルアセタール型化合物を、窒素原子を有する有機化合物存在下で混合したのち、シラノール基が存在する組成物と混合させることで硬化性を飛躍的に改善させることを報告しているが、こちらは、深部硬化性といった点では内部より水を発生する特許文献1の技術には及ばないものである。また、これらの技術では、前記のように脱オキシム型及び脱アルコール型の室温硬化性オルガノポリシロキサン組成物が硬化時に放出する脱離基(メタノール、2-ブタノンオキシム)が有する有毒性や環境負荷を低減することはできない。
特許第3916403号公報 特開2011-37968号公報
 本発明は、上記事情に鑑みなされたもので、室温硬化性オルガノポリシロキサン組成物であって、二成分型で速硬化性、深部硬化性に優れ、硬化時に、人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高いシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離化合物)として脱離・放出する加水分解性オルガノシラン化合物を架橋剤(硬化剤)として使用した、二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物を含有する各種物品、及び該二成分型室温速硬化性オルガノポリシロキサン組成物を硬化して得られるエラストマーの成形物(シリコーンゴム硬化物)を有する各種物品等を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、(A)分子鎖末端にシラノール基又は加水分解性シリル基を有する特定構造のオルガノポリシロキサン、(B)下記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、及び(C)硬化触媒を特定割合で含有してなる第一剤と、(A’)分子鎖末端にシラノール基を有する特定構造のオルガノポリシロキサンを特定量含有してなる第二剤からなる二成分型室温速硬化性オルガノポリシロキサン組成物が、一成分型の室温硬化性オルガノポリシロキサン組成物よりも硬化性に優れ、硬化時に、脱離基(脱離化合物)としてシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離・放出するため、人体・環境に対する有害性や安全性の問題を解決するものであることを見出した。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は炭素数1~10の一価炭化水素基であり、aは1~8の整数であり、bは3又は4である。)
 二成分型室温速硬化性オルガノポリシロキサン組成物において、ベースポリマーとして分子鎖末端が加水分解性シリル基で封鎖された特定構造のオルガノポリシロキサン、あるいは、分子鎖末端がシラノール基で封鎖されたオルガノポリシロキサンと特定の加水分解性シラン化合物を硬化触媒と共存させて生成する分子鎖末端が加水分解性シリル基で封鎖されたオルガノポリシロキサンを含有する第一剤と、ベースポリマーとして分子鎖末端がシラノール基で封鎖されたオルガノポリシロキサンを含有する第二剤とを混合することにより、第一剤中のベースポリマーの末端加水分解性シリル基と第二剤中のベースポリマーの末端シラノール基が直接架橋反応することで、一成分型室温硬化性オルガノポリシロキサン組成物よりも硬化性が向上するものと推定している。
 また、上述した硬化性の問題に対して、本発明の(B)成分である人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高いシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離化合物)とする加水分解性オルガノシラン化合物(架橋剤)と、(D)成分である1分子中に少なくとも1個の1級アミノ基(NH2基)を有する有機化合物を併用して使用することによって、特許文献1のようにケトン化合物の添加を必要とせずとも、ケチミン反応によって内部より水分を生成し、オルガノポリシロキサン組成物の分離を抑制しながらも、速硬化性に優れた組成物が得られることを見出し、本発明をなすに至った。
 即ち、本発明は、下記の二成分型室温速硬化性オルガノポリシロキサン組成物、及び該組成物又はその硬化物を有する各種物品(自動車用部品、自動車用オイルシール、電気・電子用部品、建築用構造物、土木工事用構造物、接着剤、シーリング剤、ポッティング剤、コーティング剤など)等を提供するものである。
[1]
 (A)下記一般式(1)、(2)又は(3)で示されるオルガノポリシロキサン:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である)、
Figure JPOXMLDOC01-appb-C000008
(式中、Rは同一又は異種の炭素数1~10の非置換もしくはハロゲン原子置換の一価炭化水素基であり、nは5以上の整数である。)
Figure JPOXMLDOC01-appb-C000009
(式中、R及びnは上記の通りであり、nは同一であっても異なっていてもよい。mは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000010
(式中、R及びnは上記の通りであり、Xは酸素原子又は炭素数2~5のアルキレン基であり、kは結合するケイ素原子毎に独立に0又は1である。)
(B)下記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分及び(A’)成分の合計100質量部に対して0.1~30質量部、
Figure JPOXMLDOC01-appb-C000011
(式中、R1は炭素数1~10の一価炭化水素基であり、aは1~8の整数であり、bは3又は4である。)及び、
(C)硬化触媒:(A)成分及び(A’)成分の合計100質量部に対して0.001~10質量部
を含有してなる第一剤と、
(A’)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である)
Figure JPOXMLDOC01-appb-C000012
(式中、Rは同一又は異種の炭素数1~10の非置換もしくはハロゲン原子置換の一価炭化水素基であり、nは10以上の整数である。)
Figure JPOXMLDOC01-appb-C000013
(式中、R及びnは上記の通りであり、nは同一であっても異なっていてもよい。mは1~10の整数である。)
を含有してなる第二剤からなるものである二成分型室温速硬化性オルガノポリシロキサン組成物。
[2]
 更に、(D)硬化促進剤として一級アミノ基を有するアミン化合物を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~20質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[3]
 (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである[1]又は[2]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[4]
 脱離する環状ケトン化合物が、シクロブタノン又はシクロペンタノンである[3]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[5]
 更に、(E)無機質充填剤を、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]~[4]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[6]
 (E)成分が、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選ばれる1種又は2種以上の無機質充填剤である[5]に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[7]
 更に、(F)接着促進剤を、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~10質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ものである[1]~[6]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[8]
 第一剤と第二剤との配合割合が質量比で1:1~10:1である[1]~[7]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
[9]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する自動車用部品。
[10]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する自動車用オイルシール。
[11]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する電気・電子用部品。
[12]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する建築用構造物。
[13]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する土木工事用構造物。
[14]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有する接着剤。
[15]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するシーリング剤。
[16]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するポッティング剤。
[17]
 [1]~[8]のいずれかに記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、第一剤と第二剤の二成分型からなる。これにより、第一剤と第二剤を混合した際に、速硬化性、深部硬化性に優れる。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、特に、室温における空気中での速硬化性に優れ、作業性も良好である。更に保存安定性を備える。そのため本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、長期間、例えば6か月間の貯蔵後でも、第一剤と第二剤とを混合し、空気中に曝すと速やかに硬化して、優れた物性を示す。更に、本発明に用いる架橋剤は、硬化時に人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高い、シクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離物質)として放出するため、人体の健康や安全、環境保護(負荷軽減)に配慮した、各種接着剤、シーリング剤、ポッティング剤、コーティング剤等として好適に使用できる。
 以下、本発明を更に詳細に説明する。
<二成分型室温速硬化性オルガノポリシロキサン組成物>
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、後述する(A)成分、(B)成分及び(C)成分の特定量を含有してなる第一剤と、(A’)成分を含有してなる第二剤とからなるものである。なお、第二剤には(B)成分、(C)成分を含まないものである。
 以下に、各成分について詳述する。なお、本発明において、粘度は、23℃において、JIS Z-8803に規定する方法に順じた回転粘度計による測定値である。特に記述がない限り、「室温」とは温度23℃±15℃、湿度50%RH±5%RHの状態をいう。
[(A)成分、(A’)成分:オルガノポリシロキサン]
 (A)成分は、後述する一般式(1)、(2)もしくは(3)で示されるオルガノポリシロキサンで、第一剤に配合するものであり、(A’)成分は、後述する一般式(1)もしくは(2)で示されるオルガノポリシロキサンで、第二剤に配合するものであり、これら(A)成分及び(A’)成分は、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物において主剤(ベースポリマー)として作用するものである。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物に用いられる(A)成分は、下記一般式(1)、(2)もしくは(3)で示される、好ましくは23℃における粘度が20~1,000,000mPa・sのオルガノポリシロキサンであり、(A’)成分は、下記一般式(1)もしくは(2)で示される、好ましくは23℃における粘度が20~1,000,000mPa・sのオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000014
(式中、Rは同一又は異種の炭素数1~10の非置換もしくはハロゲン原子置換の一価炭化水素基であり、nは5以上の整数である。)
Figure JPOXMLDOC01-appb-C000015
(式中、R及びnは上記の通りであり、nは同一であっても異なっていてもよい。mは1~10の整数である。)
Figure JPOXMLDOC01-appb-C000016
(式中、R及びnは上記の通りであり、Xは酸素原子又は炭素数2~5のアルキレン基であり、kは結合するケイ素原子毎に独立に0又は1である。)
 一般式(1)、(2)、(3)中、Rは炭素数1~10の非置換又はハロゲン原子置換の一価炭化水素基であり、例えば、メチル基、エチル基、プロピル基などのアルキル基;シクロヘキシル基などのシクロアルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基などのアリール基;及びこれらの基の炭素原子に結合している水素原子が部分的にハロゲン原子で置換された基、例えば3,3,3-トリフルオロプロピル基等が挙げられる。これらの中でも、メチル基、ビニル基、フェニル基、3,3,3-トリフルオロプロピル基が好ましく、メチル基が特に好ましい。一般式(1)、(2)、(3)中の複数のRは同一の基であっても異種の基であってもよい。
 また、nは5以上の整数であり、特にこのジオルガノポリシロキサンの23℃における粘度が20~1,000,000mPa・sの範囲、好ましくは100~300,000mPa・sの範囲となる整数である。このような粘度を与えるnの値としては、具体的には、通常、5~2,000、好ましくは20~1,500、より好ましくは50~1,000程度の整数であればよい。本発明において、重合度(又は分子量)は、通常、トルエン等を展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算での数平均重合度(数平均分子量)等として求めることができる。
 また、一般式(2)中、mは分岐鎖の数を示し、1~10の整数、好ましくは1~5の整数、より好ましくは1~3の整数である。なお、式(2)において、各繰り返し単位はランダムに結合されていてよい。
 また、一般式(3)中、Xは酸素原子又は炭素数2~5のアルキレン基であり、炭素数2~5のアルキレン基としては、例えば、エチレン基、プロピレン基、ブチレン基等が例示される。Xとしては、これらの中でも、酸素原子、エチレン基が好ましい。
 kは結合するケイ素原子毎に独立に0又は1である。
 (A)成分及び(A’)成分のオルガノポリシロキサンは、23℃における粘度が好ましくは20~1,000,000mPa・sであり、より好ましくは100~300,000mPa・sであり、更に好ましくは1,000~200,000mPa・sであり、特に好ましくは10,000~100,000mPa・sである。オルガノポリシロキサンの粘度が上記下限値(20mPa・s)未満であると、後述する(B)成分が多量に必要となるため、経済的に不利となる。また、オルガノポリシロキサンの粘度が上記上限値(1,000,000mPa・s)超では、作業性が低下するので、好ましくない。
 (A)成分及び(A’)成分のオルガノポリシロキサンは、それぞれ1種単独で用いてもよく、2種以上を併用してもよい。また、(A)成分及び(A’)成分のオルガノポリシロキサンは、同じものを用いても異なったものを用いてもよい。
[(B)成分:加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物に用いられる(B)成分は、下記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物で、架橋剤(硬化剤)として用いられるものであり、加水分解によってシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離物質)として放出するものであることを特徴とする。この脱離基(脱離物質)である環状ケトン化合物は、後述する(D)硬化促進剤と反応し、水を生成することで、二成分型室温速硬化性オルガノポリシロキサン組成物に速硬化性と深部硬化性を付与することができる。
 なお、本発明において「部分加水分解縮合物」とは、該加水分解性オルガノシラン化合物を部分的に加水分解・縮合して生成する、分子中に残存加水分解性基を3個以上、好ましくは4個以上有するオルガノシロキサンオリゴマーを意味する。
Figure JPOXMLDOC01-appb-C000017
(式中、R1は炭素数1~10の一価炭化水素基であり、aは1~8の整数であり、bは3又は4である。)
 上記一般式(4)において、R1は炭素数1~10、好ましくは炭素数1~6の、一価炭化水素基であり、より好ましくは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~10のアリール基又は炭素数7~10のアラルキル基であり、このR1としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基などを例示することができる。これらの中でも、メチル基、エチル基、ビニル基、フェニル基が好ましく、メチル基、ビニル基、フェニル基が特に好ましい。
 上記一般式(4)において、aは1~8の整数、好ましくは2~6の整数、より好ましくは2~4の整数、更に好ましくは2又は3である。aが0では環状構造とならない。aが9以上の整数となると、加水分解性オルガノシラン化合物の分子量が大きくなり、蒸留による精製が困難となったり、保存性を確保するのに必要な添加量が多くなり、コスト的に不利になる。
 また、上述したとおり、bは3又は4である。この数が3未満である場合は架橋反応によるゴム硬化が起こらず、二成分型室温速硬化性オルガノポリシロキサン組成物の架橋剤として不適である。
 また、上記一般式(4)で示される加水分解性オルガノシラン化合物の加水分解によって生じる脱離基(脱離化合物)は、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノンなどの環状ケトン化合物であり、好ましくはシクロブタノン、シクロペンタノンであり、更に好ましくはシクロペンタノンである。シクロブタノン、シクロペンタノンは人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がない。また、シクロペンタノンは工業的に大量生産されており、入手も容易でコスト競争力が高いため、後述するように(B)成分の加水分解性オルガノシラン化合物の製造にも有利である。
 (B)成分の加水分解性オルガノシラン化合物は、例えば、生成物である一般式(4)で示される加水分解性オルガノシラン化合物に対応するクロロシラン化合物と環状ケトン化合物を触媒及び塩基性物質の存在下に反応(例えば脱塩酸反応)させることで製造できる。この反応式は、例えば下記式[1]で表される。
Figure JPOXMLDOC01-appb-C000018
(式中、R1、a、bは前記の通りである。)
 ここで、クロロシラン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000019
 また、環状ケトン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000020
 クロロシラン化合物と反応させる環状ケトン化合物の添加量は、クロロシラン化合物中の塩素原子数1モルに対して、0.95~3.0モルが好ましく、0.99~2.5モルがより好ましく、1.0~2.0モルが更に好ましい。環状ケトン化合物の添加量が少ないと反応が終結しないおそれがあり、環状ケトン化合物の添加量が多すぎると精製に時間がかかり、製造時間が増加してしまう場合がある。
 反応に使用する触媒としては、1価もしくは2価の金属銅化合物が挙げられ、例えば塩化銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、塩基性炭酸銅、ギ酸銅、酢酸銅、酪酸銅などが例示できるがこれらに限られるものではない。
 触媒(金属銅化合物)の添加量としては、クロロシラン1モルに対して0.001~0.5モルが好ましく、0.002~0.2モルがより好ましく、0.003~0.1モルが更に好ましい。触媒の添加量が少ないと反応が終結しないおそれがあり、触媒の添加量が多すぎるとコスト的に不利となる。
 反応に使用する塩基性物質としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、尿素、ジアザビシクロウンデセン、ジアザビシクロノネンなどの求核性の低い塩基性物質が使用できる。この中でもトリメチルアミン、トリエチルアミン、トリブチルアミンが好ましく、特にトリエチルアミンが好ましい。
 塩基性物質の添加量としては、クロロシラン中の塩素原子数1モルに対して0.95~2.5モルが好ましく、0.99~2.0モルがより好ましく、1.0~1.5モルが更に好ましい。塩基性物質の添加量が少ないと反応が終結しないおそれがあり、塩基性物質の添加量が多すぎると経済的に不利である。
 (B)成分の加水分解性オルガノシラン化合物の製造には、一般に使用される溶剤を使用してもよく、溶剤としては、例えば、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ペンタン、ヘキサン、ヘプタン、ノナン、オクタン、デカンなどの脂肪族炭化水素類、ジメチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、パークロロエタン、パークロロエチレン、トリクロロエタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素、ジメチルホルムアミドなどのアミド類、酢酸エチル、酢酸メチル、酢酸ブチルなどのエステル類などの有機溶剤が挙げられる。
 溶剤の使用量としては特に限定されないが、通常、使用する環状ケトン化合物100質量部に対して、10~500質量部、好ましくは30~400質量部、より好ましくは50~300質量部の範囲で使用される。
 クロロシラン化合物と環状ケトン化合物との反応条件としては、通常、0~120℃、好ましくは0~100℃の温度下でクロロシランに環状ケトン化合物を滴下し、50~120℃、好ましくは60~100℃で1~48時間、更に好ましくは3~30時間程度反応させることが好ましい。反応時の温度が低すぎると反応が完結しない場合があり、反応時の温度が高すぎると生成物の着色が大きくなる場合がある。また、反応時間が短すぎると反応が完結しない場合があり、反応時間が長すぎると生産性に不利に働く。
 また、反応終了後の精製は減圧環境下で目的物を蒸留することで可能であり、減圧度は好ましくは1×10-5~3,000Pa、より好ましくは1×10-5~2,000Paであり、精製時の温度は好ましくは100~250℃、より好ましくは120~230℃である。減圧時の圧力(減圧度)が高すぎると蒸留が困難となる場合がある。また、精製時の温度が低すぎると、蒸留による精製が困難となる場合があり、高すぎると反応物の着色や分解を招くおそれがある。
 (B)成分の加水分解性オルガノシラン化合物の具体例としては、例えば、下記式で表されるものが挙げられる。なお、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000021
 (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物は、1種単独で使用しても、2種以上を併用してもよい。
 (B)成分は第一剤に配合するものであり、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~30質量部であり、好ましくは0.5~25質量部である。(B)成分の配合量が少なすぎると組成物を硬化させる際に十分な架橋が得られず、多すぎると得られる硬化物(シリコーンゴム)の機械特性(ゴム物性)が低下し、経済的に不利となるという問題が発生する場合がある。
[(C)成分:硬化触媒]
 (C)成分の硬化触媒は、加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿分の存在下で硬化する室温硬化性シリコーン樹脂組成物に通常使用されている公知のものを使用することができる。
 (C)成分の硬化触媒のうち、非金属系有機触媒は特に制限されないが、縮合硬化型オルガノポリシロキサン組成物の硬化促進剤として公知のものを使用することができる。例えば、N,N,N’,N’,N'',N''-ヘキサメチル-N'''-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン、γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルメチルジメトキシシラン、γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が挙げられる。また、非金属系有機触媒は1種単独で使用してもよく、2種以上混合して使用してもよい。
 (C)成分の硬化触媒のうち、金属系触媒は特に制限されないが、縮合硬化型オルガノポリシロキサンの硬化触媒として公知のものを使用することができる。例えば、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズジオクトエート、ジメチルスズジネオデカノエート、ジオクチルスズジネオデカノエート、ジ-n-ブチル-ジメトキシスズ等のアルキルスズエステル化合物;テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート;アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物;アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物;ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト等の有機金属化合物;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩が挙げられる。金属系触媒はこれらに限定されない。金属系触媒は、1種単独で使用してもよく、2種以上混合して使用してもよい。
 (C)成分は第一剤に配合するものであり、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.001~10質量部であり、0.005~8質量部が好ましく、更に0.01~5質量部が好ましい。0.001質量部未満であると良好な硬化性を得ることができないため、硬化速度が遅れる不具合を生じる。逆に、10質量部を超える量になると、組成物の硬化性が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られる硬化物(シリコーンゴム)の機械特性(ゴム物性)が低下したりする。
[(D)成分:硬化促進剤]
 (D)成分は1級アミノ基(即ち、-NH2構造を有するアミノ基、ただし、グアニジル基を除く)を有するアミン化合物であり、(B)成分が加水分解して生成する環状ケトン化合物と反応して水を生成し、組成物の深部硬化性を著しく向上させるものである。(D)成分としては、1級アミノ基を有するものであれば特に制限されないが、具体的にはメチルアミン、エチルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、ドデシルアミン等の脂肪族アミン;エチレンジアミン、トリエチレンテトラミン等の脂肪族ポリアミン;アニリン等の芳香族アミン;シクロペンチルアミン、シクロヘキシルアミン、2-エチルシクロヘキシルアミン等の環状アミン類;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン[別名:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン]等のアミノシラン等の1級アミノ基含有シランカップリング剤;及び1級アミノ基含有ポリシロキサン等の1級アミノ基含有有機ケイ素化合物等が例示される。これらは1種単独で用いても2種以上併用してもよい。
 (D)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~20質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~10質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことがより好ましい。即ち、(D)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~20質量部、特に0.5~10質量部であることが好ましい。(D)成分の添加量が0.1質量部未満の場合、(B)成分の加水分解によって生じる環状ケトン化合物と反応して生成する水の量が少なく、十分な深部硬化性が発現せず、20質量部を超えると得られる硬化物の特性や保存性の面から不利となる。
[(E)成分:無機質充填剤]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物には、必要に応じて(E)成分の無機質充填剤を任意成分として配合することができる。(E)成分の無機質充填剤は、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物にゴム物性を付与するための補強性、非補強性充填剤である。(E)成分の無機質充填剤としては、表面疎水化処理又は無処理の、焼成シリカ、煙霧質シリカ等の乾式シリカ、沈降性シリカ、ゾル-ゲル法シリカ等の湿式シリカなどのシリカ系充填剤、カーボンブラック、タルク、ベントナイト、表面処理又は無処理の炭酸カルシウム、炭酸亜鉛、炭酸マグネシウム、表面処理又は無処理の酸化カルシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム等が例示され、その中でも炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムが好ましく、より好ましくは無機質充填剤の表面が疎水化処理された、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムである。この場合、これら無機質充填剤は、水分量が少ないことが好ましい。
 なお、該表面処理剤(疎水化処理剤)の種類、量や処理方法等については特に制限はないが、代表的には、クロロシラン、アルコキシシラン、オルガノシラザン等の有機ケイ素化合物や、脂肪酸、パラフィン、シランカップリング剤、チタンカップリング剤等の処理剤が適用できる。
 (E)成分の無機質充填剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 (E)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~1,000質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~500質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことがより好ましい。即ち、(E)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~1,000質量部、特に1~500質量部であることが好ましい。1,000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。
[(F)成分:接着促進剤]
 (F)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤としては公知のものが好適に使用され、官能性基含有加水分解性シラン等のシランカップリング剤(ただし、前記(B)成分、及び硬化促進剤(D)に記載の一級アミノ基を有するアミノシラン類を除く)、具体的には、ビニルシランカップリング剤、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-アクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が例示される。
 これらの中でも、特にγ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン類が好ましい。
 (F)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~10質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ことが好ましく、特に0.1~10質量部とすることが好ましい。即ち、(F)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.001~10質量部、特に0.1~10質量部であることが好ましい。無機質充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
[その他の成分]
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、(A)、(A’)、(B)、(C)成分を必須成分とし、更に、(D)、(E)及び(F)成分を配合することが好ましい。その他、添加剤として、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤など公知の添加剤を配合することができる。更に、チクソ性向上剤としてのポリエーテル、防かび剤、抗菌剤を配合することもできる。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物には、必要に応じて有機溶剤を用いてもよい。有機溶剤としては、n-ヘキサン、n-ヘプタン、イソオクタン、イソドデカンなどの脂肪族炭化水素系化合物;トルエン、キシレンなどの芳香族炭化水素系化合物;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ドデカメチルペンタシロキサン、2-(トリメチルシロキシ)-1,1,1,2,3,3,3-ヘプタメチルトリシロキサンなどの鎖状シロキサン;オクタメチルシクロペンタシロキサン、デカメチルシクロペンタシロキサンなどの環状シロキサンなどが挙げられる。有機溶剤の量は本発明の効果を妨げない範囲で適宜調製すればよい。
[二成分型室温速硬化性オルガノポリシロキサン組成物の調製]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、(A)成分、(B)成分及び(C)成分を含有してなる第一剤と、(A’)成分を含有してなり、(B)成分、(C)成分を含有しない第二剤とからなるものである。上記第一剤と第二剤とからなる二成分型の組成物とすることにより、速硬化性、深部硬化性に優れる。これは第一剤と第二剤を混合した際に、第一剤中のベースポリマーである(A)成分の分子鎖末端が加水分解性シリル基で封鎖された特定構造のオルガノポリシロキサン、あるいは、(A)成分の分子鎖末端がシラノール基で封鎖されたオルガノポリシロキサンと(B)成分の特定の加水分解性シラン化合物を(C)成分の硬化触媒と共存させて生成する分子鎖末端が加水分解性シリル基で封鎖されたオルガノポリシロキサンにおける加水分解性シリル基と、第二剤中のベースポリマーである(A’)成分の分子鎖末端がシラノール基で封鎖されたオルガノポリシロキサンにおけるシラノール基が直接加水分解・縮合反応(架橋反応)することによるものと推定される。
 第一剤は、(A)成分、(B)成分及び(C)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の一部又は全部とを常法に従い混合することによって調製できる。また、第二剤は、(A’)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の残部又は全部とを常法に従い混合することによって調製できる。
 なお、ベースポリマーである(A)成分及び(A’)成分において、(A)成分は第一剤に、(A’)成分は第二剤に配合するが、第一剤には(A)成分を10~90質量部、特に30~70質量部、第二剤には(A’)成分を10~90質量部、特に30~70質量部(ただし、(A)成分及び(A’)成分の合計は100質量部)配合するものである。
 また、任意成分である(D)、(E)、(F)成分及びその他の成分は、第一剤と第二剤のどちらに配合してもよく、どちらか一方に配合しても両方に配合してもよいが、特には、第一剤に(D)、(E)、(F)成分を配合し、第二剤に(D)、(E)成分を配合することが好ましい。
 ここで、(D)成分を第一剤と第二剤に配合する場合、この割合としては、第一剤と第二剤に質量比で1:99~99:1、特に30:70~70:30となるように配合することが、組成物の保存安定性の点から好ましい。
 また、(E)成分を第一剤と第二剤に配合する場合、この割合としては、第一剤と第二剤に質量比で80:20~20:80、特に60:40~40:60となるように配合することが、混合する際の組成物の均一性(混ざり易さ)の点から好ましい。
 第一剤と第二剤の割合としては、第一剤と第二剤を質量比で100:10~100:100、特に100:25~100:100となるように配合することが、作業性や第一剤と第二剤を混合する際の組成物の均一性(混ざり易さ)の点から好ましい。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、上記各成分、更にはこれに上記各種添加剤の所定量を、乾燥雰囲気中において均一に混合することにより得ることができる。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、保存安定性を備えるため、上記のようにして製造された第一剤及び第二剤を、湿分を避けた雰囲気下で保存することができる。
[二成分型室温速硬化性オルガノポリシロキサン組成物の硬化方法]
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、これらを適する比率、具体的には第一剤と第二剤との割合が質量比で1:1~10:1、特には1:1~4:1で混合することにより、通常、室温にて10分~5日で硬化する。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、速硬化性を有するものであって、23℃、50%RHで厚み2mmのシート状に成型する条件の場合、通常は3日~5日で硬化するものが、10分~3日と短時間で硬化するものである。
 また、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、深部硬化性を有するものであって、23℃、50%RHで内径が10mm、深さが20mmのガラスシャーレで硬化させる条件の場合、通常は2時間で深部(測定可能な厚さ)まで硬化するものが、30分と短時間で深部まで硬化するものである。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、室温で放置することにより硬化するが、その成形方法、硬化条件などは、電子部品用や車載用、建築用途など、種々の用途や使用目的に応じた公知の方法、条件を採用することができる。
 本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、硬化時の加水分解反応によって架橋剤から発生する化合物が安全性の高いシクロブタノンやシクロペンタノン等の環状ケトン化合物であり、人体、環境に配慮されているものである。更に、シクロペンタノンでは、引火点が35℃と、組成物の硬化時にメタノール等のアルコール化合物を放出する脱アルコール型のものよりも引火点が高く、安全性の高いものである。このような本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、既存の様々な触媒を使用することで良好な硬化性を示し、その硬化物(シリコーンゴム)は接着性にも優れる。
 そのため、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、接着剤、シーリング剤、ポッティング剤、又はコーティング剤等として有用である。本発明の二成分型室温速硬化性オルガノポリシロキサン組成物を接着剤、シーリング剤、ポッティング剤、又はコーティング剤として使用する方法は、従来公知の方法に従えばよい。
 対象となる物品としては、例えば、自動車用部品、自動車用オイルシール、電気・電子用部品、建築用構造物、土木工事用構造物等が挙げられる。
 以下、本発明を具体的に説明する合成例、実施例及び比較例を示すが、本発明は下記実施例に制限されるものではない。なお、下記の例において、粘度はJIS Z 8803に規定する方法に準じた23℃における回転粘度計による測定値である。
[合成例1]ビニルトリス(1-シクロペンテン-1-イルオキシ)シランの合成
 機械攪拌機、温度計、還流管及び滴下ロートを備えた5,000mLの四つ口セパラブルフラスコに、シクロペンタノン834g(9.9mol)、トリエチルアミン825g(8.2mol)、塩化銅(I)5g(0.05mol)、ヘキサン1,500mlを仕込み、40~60℃の範囲でビニルトリクロロシラン400g(2.47mol)を約2時間かけて滴下した。その後、80℃で12時間撹拌後、生成したトリエチルアミン塩酸塩を濾過して取り除き、ろ液から100℃、常圧の条件でヘキサンを留去したのち、180℃、300Paの条件で蒸留することでビニルトリス(1-シクロペンテン-1-イルオキシ)シランを得た(収量532g、収率69%)。この反応式は、下記式[2]で表される。
Figure JPOXMLDOC01-appb-C000022
[実施例1]
第一剤aの調製
 ((A)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部と、((B)成分)ビニルトリス(1-シクロペンテン-1-イルオキシ)シラン3.5質量部と、((C)成分)γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン0.4質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン0.5質量部を減圧下にて均一に混合して第一剤aを調製した。
第二剤aの調製
 ((A’)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部を減圧下にて均一に混合して第二剤aを調製した。
 上記第一剤aと第二剤aを混合比(質量比)1:1で均一に混合して組成物1を製造した。また、該組成物1を23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させたものを、硬化物1-1、1-2とした。
[実施例2]
第二剤bの調製
 ((A’)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部と、((D)成分)オクチルアミン2質量部を減圧下にて均一に混合して第二剤bを調製した。
 実施例1で調製した第一剤aと上記第二剤bを混合比(質量比)1:1で均一に混合して組成物2を製造した。また、該組成物2を23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させたものを、硬化物2-1、2-2とした。
[実施例3]
第一剤bの調製
 ((A)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部と、((B)成分)ビニルトリス(1-シクロペンテン-1-イルオキシ)シラン3.5質量部と、((C)成分)γ-テトラメチルグアニジルプロピルトリメトキシシラン0.4質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン0.5質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン0.5質量部を減圧下にて均一に混合して第一剤bを調製した。
 上記第一剤bと実施例2で調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物3を製造した。また、該組成物3を23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させたものを、硬化物3-1、3-2とした。
[比較例1]
第一剤cの調製
 ((A)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部と、ビニルトリメトキシシラン2.5質量部と、((C)成分)ジオクチル錫ジラウレート0.05質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン0.5質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン0.5質量部を減圧下にて均一に混合して第一剤cを調製した。
 上記第一剤cと実施例2で調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物4を製造した。また、該組成物4を23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させたものを、硬化物4-1、4-2とした。
[比較例2]
第一剤dの調製
 ((A)成分)23℃における粘度が20,000mPa・sの分子鎖両末端がシラノール基(ケイ素原子に結合した水酸基)で封鎖されたジメチルポリシロキサン50質量部と、((E)成分)BET比表面積が130m2/gの表面ジメチルジクロロシラン処理ヒュームドシリカ(煙霧質シリカ)5質量部と、ビニルトリス(メチルエチルケトオキシム)シラン3.5質量部と、((C)成分)ジオクチル錫ジラウレート0.05質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン0.5質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン0.5質量部を減圧下にて均一に混合して第一剤dを調製した。
 上記第一剤dと実施例2で調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物5を製造した。また、該組成物5を23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させたものを、硬化物5-1、5-2とした。
[試験方法]
 上記実施例1~3及び比較例1、2で調製した各組成物を用いて、下記に示す方法により、硬化性、ゴム物性、接着性を評価した。
[硬化性]
タックフリータイム:
 実施例1~3及び比較例1、2で調製した各組成物を用いて、JIS A-5758に規定する方法に準じてタックフリータイム(指触乾燥時間)を測定した。
深部硬化性:
 内径が10mm、深さが20mmのガラスシャーレに実施例1~3及び比較例1、2で調製した各組成物を充填し、23℃,50%RHで20分後に空気に触れた表面部分から硬化した部分までの厚さを測定し、深部硬化性を評価した。
初期シール性:
 硬化性を比較するため、初期シール性を測定した。初期シール性の試験方法は、試験装置としてJIS K-6820に規定されている耐圧試験用フランジ圧力容器に類似する圧力容器を用い、耐圧試験を行った。該圧力容器は、内径58mm、外径80mm、厚さ10mmの上側フランジを有する上側容器と、上側フランジと同寸法の下側フランジを有する下側容器からなり、下側フランジのシール面のインナー側縁部には、幅3mm、深さ3mmの環状の切り欠きが円周に沿って設けられている。この下側のフランジのシール面をトルエンにより洗浄した。その後、上記組成物をシール面が十分に満たされるだけの塗布量で、下側のシール面中央部にビード状に塗布した。塗布後直ちに、上側容器を、上側フランジと下側フランジのシール面とが当接するように、下側容器に載せ、上下フランジのシール面間の距離を規定するための(上記フランジの厚さ方向の)高さ21mmの鉄製スペーサーを設置して4本の締め付けボルトを組み付けた。当該スペーサーによりシール面間は1mmの間隔が生じているが、これはシール材に対する耐圧試験をより過酷にする、いわゆる促進試験とするためである。その後、23℃、50%RHで30分間硬化させた後、上側の加圧口から気体を挿入し、上記組成物の硬化物であるシール材が耐えうる気体圧を測定し、400kPa以上のものを合格と判定した。
[ゴム物性]
 実施例1~3及び比較例1、2で調製した調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に1日間又は3日間放置して得た硬化物のゴム物性(硬さ、切断時伸び、引張強さ)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
[接着性]
 実施例1~3及び比較例1、2で調製した組成物より、幅25mm、長さ100mmのアルミニウム又はガラスを被着体として、それぞれ同材の被着体同士を、上記組成物を用いて、各試験片の接着面積2.5mm2、接着厚さ1mmで接着したせん断(シア)接着試験体を作製し、23℃,50%RHで1日間又は3日間養生した後、これらの試験体を用いてアルミニウム又はガラスに対するせん断接着力をJIS K-6249に規定する方法に準じて測定した。
 実施例1~3の試験結果を表1に、比較例1、2の試験結果を表2に示す。また、硬化時に硬化剤から脱離する化合物、及び該化合物の健康有害性、環境有害性の有無について表1、2に併記する。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 上記の結果より、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物(実施例1~3の組成物)は、深部硬化性、初期シール性が高い値を示し、1日硬化と3日硬化でゴム物性、接着強度の差が小さいことから、従来の脱アルコール(比較例1の組成物)、脱オキシム(比較例2の組成物)の硬化形態と比較して、高い硬化性を有することが分かる。
 また、実施例の組成物が硬化中に放出する化合物は、シクロペンタノンであり、人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく安全性の高い化合物である。一方で、比較例の組成物が硬化中に放出する化合物はいずれもSDS(安全データシート)等で健康有害性が表示されており、劇物に指定され、人体に強い有害性を有しているメタノール、発がん性のおそれ、水生生物への毒性を有する2-ブタノンオキシムである。また、メタノールは、シクロペンタノンと比較して引火点や沸点が低いことからも、本発明の二成分型室温速硬化性オルガノポリシロキサン組成物は、人体の健康や安全、環境保護の観点からより優れていることが分かる。

Claims (17)

  1.  (A)下記一般式(1)、(2)又は(3)で示されるオルガノポリシロキサン:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である)、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは同一又は異種の炭素数1~10の非置換もしくはハロゲン原子置換の一価炭化水素基であり、nは5以上の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びnは上記の通りであり、nは同一であっても異なっていてもよい。mは1~10の整数である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びnは上記の通りであり、Xは酸素原子又は炭素数2~5のアルキレン基であり、kは結合するケイ素原子毎に独立に0又は1である。)
    (B)下記一般式(4)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分及び(A’)成分の合計100質量部に対して0.1~30質量部、
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1は炭素数1~10の一価炭化水素基であり、aは1~8の整数であり、bは3又は4である。)及び、
    (C)硬化触媒:(A)成分及び(A’)成分の合計100質量部に対して0.001~10質量部
    を含有してなる第一剤と、
    (A’)下記一般式(1)又は(2)で示されるオルガノポリシロキサン:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rは同一又は異種の炭素数1~10の非置換もしくはハロゲン原子置換の一価炭化水素基であり、nは10以上の整数である。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R及びnは上記の通りであり、nは同一であっても異なっていてもよい。mは1~10の整数である。)
    を含有してなる第二剤からなるものである二成分型室温速硬化性オルガノポリシロキサン組成物。
  2.  更に、(D)硬化促進剤として一級アミノ基を有するアミン化合物を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~20質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  3.  (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである請求項1又は2に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  4.  脱離する環状ケトン化合物が、シクロブタノン又はシクロペンタノンである請求項3に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  5.  更に、(E)無機質充填剤を、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1~4のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  6.  (E)成分が、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選ばれる1種又は2種以上の無機質充填剤である請求項5に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  7.  更に、(F)接着促進剤を、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~10質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.001質量部以上含有する)ものである請求項1~6のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  8.  第一剤と第二剤との配合割合が質量比で1:1~10:1である請求項1~7のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物。
  9.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する自動車用部品。
  10.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する自動車用オイルシール。
  11.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する電気・電子用部品。
  12.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する建築用構造物。
  13.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物の硬化物を有する土木工事用構造物。
  14.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有する接着剤。
  15.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するシーリング剤。
  16.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するポッティング剤。
  17.  請求項1~8のいずれか1項に記載の二成分型室温速硬化性オルガノポリシロキサン組成物を含有するコーティング剤。
PCT/JP2022/001591 2021-01-27 2022-01-18 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品 WO2022163436A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/274,175 US20240101762A1 (en) 2021-01-27 2022-01-18 Two-component type room temperature fast-curing organopolysiloxane composition and article
CN202280011697.5A CN116802233A (zh) 2021-01-27 2022-01-18 双组分型室温速固化性有机聚硅氧烷组合物和物品
JP2022578265A JPWO2022163436A1 (ja) 2021-01-27 2022-01-18
EP22745659.7A EP4286468A1 (en) 2021-01-27 2022-01-18 Two-component type room temperature fast-curing organopolysiloxane composition and article
KR1020237028687A KR20230138948A (ko) 2021-01-27 2022-01-18 2성분형 실온 속경화성 오가노폴리실록산 조성물 및 물품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-010874 2021-01-27
JP2021010874 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163436A1 true WO2022163436A1 (ja) 2022-08-04

Family

ID=82653384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001591 WO2022163436A1 (ja) 2021-01-27 2022-01-18 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品

Country Status (6)

Country Link
US (1) US20240101762A1 (ja)
EP (1) EP4286468A1 (ja)
JP (1) JPWO2022163436A1 (ja)
KR (1) KR20230138948A (ja)
CN (1) CN116802233A (ja)
WO (1) WO2022163436A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032745A1 (ja) * 2021-09-03 2023-03-09 信越化学工業株式会社 オルガノポリシロキサン化合物、室温硬化性オルガノポリシロキサン組成物、及び物品
WO2023127675A1 (ja) * 2021-12-27 2023-07-06 信越化学工業株式会社 室温硬化性樹脂組成物及び物品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916403B2 (ja) 2001-01-30 2007-05-16 株式会社スリーボンド 自動車用室温硬化性シール材組成物
JP2011037968A (ja) 2009-08-10 2011-02-24 Shin-Etsu Chemical Co Ltd 2液混合型オルガノポリシロキサン組成物
JP2015113377A (ja) * 2013-12-10 2015-06-22 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物の製造方法、シーリング材及び物品
JP2019073670A (ja) * 2017-10-19 2019-05-16 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車ロングライフクーラントシール材
JP2020517771A (ja) * 2017-04-21 2020-06-18 ニトロヘミー、アッシヤウ、ゲーエムベーハー 硬化性シリコーンゴム化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3916403B2 (ja) 2001-01-30 2007-05-16 株式会社スリーボンド 自動車用室温硬化性シール材組成物
JP2011037968A (ja) 2009-08-10 2011-02-24 Shin-Etsu Chemical Co Ltd 2液混合型オルガノポリシロキサン組成物
JP2015113377A (ja) * 2013-12-10 2015-06-22 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物の製造方法、シーリング材及び物品
JP2020517771A (ja) * 2017-04-21 2020-06-18 ニトロヘミー、アッシヤウ、ゲーエムベーハー 硬化性シリコーンゴム化合物
JP2019073670A (ja) * 2017-10-19 2019-05-16 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及びその製造方法、並びに自動車ロングライフクーラントシール材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE REGISTRY 21 January 1985 (1985-01-21), ANONYMOUS : "Silane, tris(1-cyclopenten-1-yloxy)methyl-(9CI)", XP055935616, retrieved from STN Database accession no. RN 94358-77-7 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023032745A1 (ja) * 2021-09-03 2023-03-09 信越化学工業株式会社 オルガノポリシロキサン化合物、室温硬化性オルガノポリシロキサン組成物、及び物品
WO2023127675A1 (ja) * 2021-12-27 2023-07-06 信越化学工業株式会社 室温硬化性樹脂組成物及び物品

Also Published As

Publication number Publication date
EP4286468A1 (en) 2023-12-06
KR20230138948A (ko) 2023-10-05
CN116802233A (zh) 2023-09-22
JPWO2022163436A1 (ja) 2022-08-04
US20240101762A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
JP2738235B2 (ja) 紫外線及び湿気硬化性オルガノポリシロキサン組成物、その硬化物及びその製造方法
JP7048138B2 (ja) 湿気硬化型組成物、硬化物の製造方法
CN111344357B (zh) 有机聚合物或者有机聚硅氧烷用固化催化剂、湿气固化型组合物、固化物及其制造方法
KR20100103411A (ko) 접착 촉진제 및 경화성 수지 조성물
KR102619534B1 (ko) 실온 경화성 조성물, 실링재, 및 물품
WO2022163436A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品
WO2022113437A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法
EP3954747B1 (en) Room-temperature-curable organopolysiloxane composition for oil seal, and automotive part
WO2022009759A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
US6710119B2 (en) Room temperature rapid curing organopolysiloxane composition
KR102198324B1 (ko) 실온경화성 오가노폴리실록산 조성물, 이 조성물의 경화물을 이용한 건축용 실란트, 전기전자부품, 및 자동차용 오일씰
WO2023127675A1 (ja) 室温硬化性樹脂組成物及び物品
JP2017031303A (ja) オルガノポリシルメチレンシロキサン組成物
JP6315100B2 (ja) 新規有機チタン化合物、該有機チタン化合物の製造方法、硬化触媒及び室温硬化性オルガノポリシロキサン組成物
JP2023026886A (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品
WO2024014350A1 (ja) 二成分型室温速硬化性樹脂組成物及び物品
WO2023032745A1 (ja) オルガノポリシロキサン化合物、室温硬化性オルガノポリシロキサン組成物、及び物品
WO2020162132A1 (ja) 耐シリコーンオイル性に優れた室温硬化性組成物、及び自動車用クーラントシール材
WO2015052859A1 (ja) 室温硬化性樹脂組成物
WO2021014968A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び自動車ロングライフクーラントシール材
JP2022001611A (ja) 室温硬化性オルガノポリシロキサン組成物及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578265

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18274175

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011697.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237028687

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022745659

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745659

Country of ref document: EP

Effective date: 20230828