WO2024014350A1 - 二成分型室温速硬化性樹脂組成物及び物品 - Google Patents

二成分型室温速硬化性樹脂組成物及び物品 Download PDF

Info

Publication number
WO2024014350A1
WO2024014350A1 PCT/JP2023/024712 JP2023024712W WO2024014350A1 WO 2024014350 A1 WO2024014350 A1 WO 2024014350A1 JP 2023024712 W JP2023024712 W JP 2023024712W WO 2024014350 A1 WO2024014350 A1 WO 2024014350A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
mass
parts
group
Prior art date
Application number
PCT/JP2023/024712
Other languages
English (en)
French (fr)
Inventor
晃 打它
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024014350A1 publication Critical patent/WO2024014350A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09J201/10Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention consists of two-component compositions that are stored separately, and by mixing the two, a hydrolysis/condensation reaction occurs due to moisture (moisture) in the atmosphere at room temperature (23°C ⁇ 15°C).
  • An organopolysiloxane structure is attached to the polymer main chain, which is crosslinked (cured) and whose molecular chain ends are capped with hydrolyzable silyl groups and/or hydroxysilyl groups (silyl groups or silanol groups having a hydroxyl group bonded to a silicon atom).
  • a condensation-curing two-component room-temperature fast-curing resin composition using a base polymer that does not contain an organic polymer in particular, it is a condensation-curing type two-component room-temperature fast-curing resin composition that is free from the crosslinking agent (curing agent) due to hydrolysis and condensation reactions during curing (crosslinking).
  • the generated elimination compound is a cyclic ketone compound such as cyclobutanone or cyclopentanone, and it is a two-component product that cures well through a condensation reaction and provides a cured rubber product other than organopolysiloxane resin such as silicone rubber that has excellent adhesive properties.
  • the present invention relates to a room temperature rapid curing resin composition and various articles having the composition or a cured product thereof.
  • a polymer having a reactive silicon group (hereinafter referred to as a hydrolyzable silyl group) is hydrolyzed and condensed in the presence of water, and a silicon group having a hydroxyl group on a silicon atom (hereinafter referred to as a hydroxysilyl group or The silanol group) is condensed with a hydrolyzate of a hydrolyzable silyl group or a silanol group.
  • Organic polymers whose molecular chain ends are capped with hydrolyzable silyl groups and/or hydroxysilyl groups and which do not contain an organopolysiloxane structure in the polymer main chain have a repeating organosiloxane structure (organopolysiloxane structure) in the main chain.
  • organopolysiloxane structure organopolysiloxane structure
  • silicone polymer has a reactive silyl group at the end of the molecular chain and forms a siloxane structure only at the crosslinking point during curing, so it is generally called a modified (modified) silicone polymer. It can be crosslinked and cured in the presence of the resin, and can be used as a curable resin composition.
  • the above-mentioned room temperature curable resin composition whose base polymer is an organic polymer that does not contain an organopolysiloxane structure in the polymer main chain is liquid or paste-like at room temperature (23°C ⁇ 15°C), and becomes a rubber elastic body upon curing.
  • Adhesives, sealants, potting agents, and coating agents that utilize these characteristics to be used in automobile parts, electrical/electronic parts, architectural structures, civil engineering structures, etc. It is widely used.
  • compositions that harden through a condensation reaction have a hydrolyzable group in their curing agent (crosslinking agent), and curing agents that are already widely used release oxime compounds such as 2-butanone oxime during curing.
  • a deoxime type and a dealcoholization type that release alcohol compounds such as methanol are known.
  • oxime compounds such as 2-butanone oxime which are generated when de-oxime type curing agents are cured, are suspected to be carcinogenic, and methanol, etc., which are generated when dealcoholization type curing agents are cured, are harmful to the human body. Since it is toxic and designated as a deleterious substance, it is undesirable from a human health perspective.
  • these compositions sometimes use tin catalysts as curing catalysts, which are subject to stricter regulations as environmentally hazardous substances, which is undesirable from the viewpoint of environmental protection.
  • one-component type room-temperature-curable resin compositions that initiate a curing reaction upon contact with moisture in the air require that the base polymer, crosslinking agent, catalyst, etc. be weighed out immediately before use. Although they are easy to handle without the hassle of mixing, they have drawbacks such as slow curing speed and poor deep curing properties.
  • two-component room temperature curable resin compositions have a fast curing speed and excellent deep curability.
  • This composition is prepared separately into a main component consisting of a polymer whose molecular chain ends are capped with a silanol group and/or a hydrolyzable silyl group, an inorganic filler, and the like, and a crosslinking component. Since they are stored in separate containers and mixed at the time of use (see Patent Documents 1 and 2 (Japanese Unexamined Patent Application Publications No.
  • the present invention was made in view of the above circumstances, and uses an organic polymer whose molecular chain ends are blocked with a hydrolyzable silyl group and/or a hydroxysilyl group and whose main chain does not contain an organopolysiloxane structure as a base polymer.
  • the room-temperature curable resin composition used is a two-component type with excellent fast curing and deep curing properties, and is free from health hazards such as carcinogenicity and reproductive toxicity to the human body, and environmental hazards such as toxicity to aquatic organisms.
  • the object of the present invention is to provide various articles having the composition, and elastomer molded articles obtained by curing the two-component room temperature fast-curing resin composition.
  • a two-component room-temperature fast-curing resin composition consisting of is superior in curability to a one-component room-temperature-curing resin composition, and during curing, cyclobutanone, cyclopentanone, etc. are used as a leaving group (eliminating compound). It was discovered that this method solves the problem of toxicity and safety for the human body and the environment because it desorbs and releases cyclic ketone compounds.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 8
  • m is 3 or 4.
  • the crosslinking agent of the component (B) is added to the first part of the entire base polymer.
  • the amount of crosslinking agent required to ensure storage stability can be reduced compared to a one-component room-temperature-curable resin composition. Since the total amount of base polymer (total amount of subsequent base polymers) can be reduced to close to the minimum amount necessary and sufficient for crosslinking, the curing reaction proceeds relatively faster than in a one-component room temperature curable resin composition. This is thought to improve the properties (fast curing property, deep part curing property).
  • the cyclic ketone compound produced by hydrolysis of the component (B) and the component (D) at the initial stage of curing reacts with ketimine to generate water within the system, further promoting hydrolysis and condensation reactions, so it has the same curability as a one-component room temperature curable resin composition. It is estimated that (fast curing property, deep part curing property) is improved.
  • component (B) having health hazards such as carcinogenicity or reproductive toxicity to the human body, or environmental hazards such as toxicity to aquatic organisms, and it has a relatively low flash point.
  • the present invention relates to the following two-component room-temperature fast-curing resin composition, and various articles (automobile parts, electrical/electronic parts, architectural structures, civil engineering works) having the composition or its cured product. structures, adhesives, sealants, potting agents, coating agents, etc.).
  • Curable resin composition [4] The two-component room temperature fast-curing resin composition according to [3], wherein the cyclic ketone compound to be eliminated is cyclobutanone or cyclopentanone.
  • the first part and the second part each contain 0 to 1,000 parts by mass of an inorganic filler (E) based on a total of 100 parts by mass of components (A) and (A') (however, The two-component room temperature fast-curing resin composition according to any one of [1] to [6], wherein at least one of the first and second parts contains 0.1 part by mass or more.
  • component (E) is one or more inorganic fillers selected from calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide. Resin composition.
  • an adhesion promoter is contained in the first part and the second part, respectively, in an amount of 0 to 5 parts by mass based on a total of 100 parts by mass of components (A) and (A') (however, at least The two-component room temperature fast-curing resin composition according to any one of [1] to [8], wherein either the first part or the second part contains 0.1 part by mass or more. [10] The two-component room temperature fast-curing resin composition according to any one of [1] to [9], wherein the mixing ratio of the first part and the second part is 1:1 to 10:1 by mass.
  • [11] [1] An automobile part comprising a cured product of the two-component room-temperature fast-curing resin composition according to any one of [1] to [10].
  • [12] [1] An electrical/electronic component comprising a cured product of the two-component, room-temperature, rapid-curing resin composition according to any one of [1] to [10].
  • [13] [1] An architectural structure comprising a cured product of the two-component room-temperature fast-curing resin composition according to any one of [1] to [10].
  • [14] A structure for civil engineering work comprising a cured product of the two-component room temperature fast-curing resin composition according to any one of [1] to [10].
  • [15] [1] An adhesive containing the two-component room temperature fast-curing resin composition according to any one of [1] to [10].
  • a sealing agent containing the two-component room-temperature fast-curing resin composition according to any one of [1] to [10].
  • a potting agent containing the two-component room temperature rapidly curing resin composition according to any one of [1] to [10].
  • [18] [1] A coating agent containing the two-component room temperature rapidly curing resin composition according to any one of [1] to [10].
  • the two-component room-temperature fast-curing resin composition of the present invention consists of a first part and a second part. As a result, when the first part and the second part are mixed, quick curing properties and deep curing properties are excellent.
  • the two-component room-temperature fast-curing resin composition of the present invention is particularly excellent in fast-curing properties in air at room temperature, and has good workability.
  • the two-component room-temperature fast-curing resin composition of the present invention is a mixture of a first part and a second part, and when exposed to air, it rapidly cures and exhibits excellent physical properties.
  • the two-component room-temperature fast-curing resin composition of the present invention uses a crosslinking agent that has been reported to have health hazards such as carcinogenicity and reproductive toxicity to the human body and environmental hazards such as toxicity to aquatic organisms during curing.
  • Cyclic ketone compounds such as cyclobutanone and cyclopentanone, which have a relatively high flash point, are released as leaving groups (eliminating substances), and the curing occurs without the use of tin catalysts, which poses a risk to human health, safety, and the environment. It can be suitably used as various adhesives, sealants, potting agents, coating agents, etc. with protection (load reduction) in mind.
  • the present invention will be explained in more detail below.
  • the two-component room temperature fast-curing resin composition of the present invention comprises a first part containing specific amounts of component (A), component (B) and component (C), which will be described later, and component (A'). and a second agent containing. Note that the second agent does not contain component (B) or component (C).
  • the viscosity is a value measured at 23° C. using a rotational viscometer according to the method specified in JIS Z-8803.
  • Room temperature in the “two-component room temperature fast-curing resin composition” refers to a temperature of 23° C. ⁇ 15° C. and a humidity of 50% RH ⁇ 5% RH.
  • Component (A), component (A'): Organic polymer Component (A) and component (A') used in the present invention have molecular chain terminals blocked with a hydrolyzable silyl group and/or hydroxysilyl group (silyl group or silanol group having a hydroxyl group bonded to a silicon atom).
  • a hydrolyzable silyl group and/or hydroxysilyl group silyl group or silanol group having a hydroxyl group bonded to a silicon atom.
  • it is an organic polymer (modified silicone polymer) that does not contain an organopolysiloxane structure in the polymer main chain, and the component (A) is to be added to the first part, and the component (A') is to be added to the first part. It is combined into two drugs.
  • the modified silicone polymers of component (A) and component (A') have a short-chain siloxane structure (preferably a repeating number of 2 (about 5 diorganosiloxane units). That is, the modified silicone polymers of component (A) and component (A') consist of diorganosiloxane units with a repeating number of 6 or more in the linker part that connects the silyl group at the end of the molecular chain and the main chain.
  • the polymer does not have a long chain siloxane structure (i.e., if it is an organic polymer that does not contain an organopolysiloxane structure in the polymer main chain, the linker portion adjacent to the silyl group at the end of the molecular chain) may contain a short chain siloxane structure having 2 to 5 repeating diorganosiloxane units).
  • Such base polymers include those that do not contain an organopolysiloxane structure in the polymer main chain, and whose molecular chain ends are blocked with hydrolyzable silyl groups (e.g., alkoxysilyl groups) and/or hydroxysilyl groups (silanol groups).
  • polyoxyalkylene such as polypropylene oxide, polyethylene oxide, polyisobutylene oxide, propylene oxide-ethylene oxide copolymer
  • the silicone polymer is preferably a silylated oxyalkylene polymer, a silylated urethane polymer, a silylated acrylate polymer, or a silylated alkylene polymer.
  • the main chain is composed of a polyoxyalkylene structure such as polypropylene oxide, polyethylene oxide, propylene oxide-ethylene oxide copolymer, etc., and the molecular chain ends, especially both molecular chain ends, are hydrolyzed.
  • examples include polymers having a structure blocked with silyl groups and/or silanol groups (polyether-modified silicone polymers).
  • a polyoxyalkylene structure such as polypropylene oxide, polyethylene oxide, propylene oxide-ethylene oxide copolymer, etc.
  • the molecular chain ends especially both molecular chain ends, are blocked with hydrolyzable silyl groups and/or silanol groups (urethane-modified silicone polymers).
  • the main chain is composed of a structure such as polyacrylate or polymethacrylate, and the molecular chain ends, particularly both molecular chain ends, are blocked with hydrolyzable silyl groups and/or silanol groups.
  • examples include polymers having a structure (acrylate-modified silicone polymers).
  • the main chain consists of a polyalkylene structure such as a polymer of isobutylene monomer, and the molecular chain ends, especially both molecular chain ends, are blocked with hydrolyzable silyl groups and/or silanol groups.
  • Polymers (alkylene-modified silicone polymers) having the following structure are mentioned.
  • silylated oxypropylene polymers whose main chain is polypropylene oxide whose molecular chain ends are capped with hydrolyzable silyl groups and/or silanol groups, and hydrolyzable polymers whose molecular chain ends are both hydrolyzable.
  • a silylated acrylate polymer having a main chain of polyacrylate blocked with a silyl group and/or silanol group is preferable, and a main chain of polypropylene oxide blocked at both ends of the molecular chain with a hydrolyzable silyl group and/or silanol group is preferable. More preferred are silylated oxypropylene polymers.
  • silyl polymers whose main chain is polypropylene oxide whose molecular chain ends are blocked with silanol groups are preferable from the viewpoint of rapid curing and deep curing.
  • silyl polymers whose main chain is polypropylene oxide whose molecular chain ends are blocked with silanol groups are preferable from the viewpoint of rapid curing and deep curing.
  • Polymerized oxypropylene polymers are preferred.
  • the organic polymers of component (A) and component (A') have a hydrolyzable silyl group or hydroxysilyl group (bonded to a silicon atom) at both ends of the molecular chain and are represented by the following general formula (2) or (3). More preferably, it is an organic polymer blocked with a silyl group or silanol group having a hydroxyl group.
  • R 2 and R 4 may be the same or different, and each is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 3 is each independently an unsubstituted or substituted monovalent hydrocarbon group.
  • a is each independently an integer of 2 or more
  • b is 0, 1, or 2 for each bonded silicon atom
  • c is independently is an integer from 1 to 5.
  • Y is a divalent organic group that does not contain a siloxane structure.
  • R 2 and R 4 are unsubstituted or substituted monovalent hydrocarbon groups having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms
  • R 3 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 , R 3 , and R 4 include methyl group, ethyl group, n-propyl group, and isopropyl group.
  • n-butyl group isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, alkyl group such as octyl group; cycloalkyl group such as cyclopentyl group, cyclohexyl group; vinyl group, allyl group, Alkenyl groups such as propenyl group, isopropenyl group, butenyl group, pentenyl group, hexenyl group; Aryl groups such as phenyl group, tolyl group, xylyl group, ⁇ -, ⁇ -naphthyl group; benzyl group, 2-phenylethyl group, Aralkyl groups such as 3-phenylpropyl groups, and groups in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as F, Cl, Br, or cyano groups, such as F
  • R 2 and R 4 a methyl group and a phenyl group are preferable, and a methyl group is particularly preferable.
  • R 3 a methyl group, an ethyl group, and a hydrogen atom are preferable, and a methyl group and a hydrogen atom are particularly preferable.
  • R 2 , R 3 and R 4 may be the same group or different groups.
  • a is each independently an integer of 2 or more, preferably an integer of 2 to 8, more preferably 2, 3 or 4, particularly preferably 3. be.
  • b is independently 0, 1 or 2 for each bonded silicon atom, preferably 0 or 1, particularly preferably 1.
  • c is independently an integer of 1 to 5, preferably an integer of 1 to 4.
  • Y is a divalent organic group that does not contain a siloxane structure, specifically, polyoxyethylene groups such as polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups.
  • polyoxyethylene groups such as polyoxyethylene groups, polyoxypropylene groups, and polyoxybutylene groups.
  • R' is a hydrogen atom or a methyl group, and R'' is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group
  • R'' is a hydrogen atom or a methyl group, and R'' is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group
  • R'' is a hydrogen atom or a methyl group, and R'' is a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl
  • organic polymers of component (A) and component (A') include the following structures.
  • z indicates the degree of polymerization of the repeating unit constituting the main chain and is an integer from 20 to 800. Me indicates a methyl group.
  • the methoxy group (MeO-) at the end of the molecular chain may be substituted with another lower alkoxy group such as an ethoxy group, or hydroxydimethylsilyl at the end of the molecular chain.
  • the number average molecular weight of the organic polymer of component (A) and component (A') is preferably 2,000 to 50,000, more preferably 5,000 to 40,000, and even more preferably 10,000. ⁇ 35,000. If the number average molecular weight is too small, the rubber physical properties such as elongation and strength of the resulting cured product may deteriorate, while if it is too large, the viscosity of the composition may increase rapidly, which may be disadvantageous in terms of handling. .
  • the molecular weight (or degree of polymerization) is, for example, the number average molecular weight (or number average degree of polymerization) in terms of polystyrene in gel permeation chromatography (GPC) analysis using tetrahydrofuran (THF), toluene, etc. as a developing solvent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • THF tetrahydrofuran
  • toluene tetrahydrofuran
  • it can be determined as the weight average molecular weight (or weight average degree of polymerization), etc. (the same applies hereinafter).
  • polymers whose molecular chain ends are capped with a hydrolyzable silyl group and/or hydroxysilyl group can be obtained by known methods such as, for example, JP 2017-203065A (Patent Document 3). .
  • an alkenyl group having a CH 2 ⁇ CH- structure at the end such as an allyl group
  • an organosilicon compound such as an organosilane or an organosiloxane oligomer having a silanol group (SiOH group) and a hydrosilyl group (SiH group) is added to a polyoxyalkylene polymer such as a polyoxypropylene polymer whose molecular chain ends are blocked. It can be produced by hydrosilylation.
  • a chlorosilyl group (SiCl ) and a hydrosilyl group (SiH group), an organosilicon compound such as an organosilane or an organosiloxane oligomer is hydrosilylated in the presence of a platinum catalyst, and then the chlorosilyl group is converted into silanol (SiOH) by a hydrolysis reaction.
  • SiCl chlorosilyl group
  • SiH group hydrosilyl group
  • an organosilicon compound such as an organosilane or an organosiloxane oligomer
  • an organic polymer that does not contain an organopolysiloxane structure in the polymer main chain, in which the molecular chain terminals of component (A) and component (A') are blocked with a hydrolyzable silyl group and/or silanol group.
  • polyether-modified silicone polymers include "MS Polymer” manufactured by Kaneka Co., Ltd., "GENIOSIL (registered trademark) (STP-E)” manufactured by Wacker (Germany), and urethane.
  • STP-E registered trademark
  • urethane As the modified silicone polymer, “GENIOSIL (registered trademark) (SPUR/STP-U)” manufactured by Wacker (Germany) may be used.
  • the organic polymers of component (A) and component (A') whose molecular chain terminals are capped with a hydrolyzable silyl group and/or silanol group may be used alone or, if necessary, two or more types with different structures and degrees of polymerization. Can also be used in combination. Furthermore, the organopolysiloxanes of component (A) and component (A') may be the same or different.
  • Component (B) used in the two-component room-temperature fast-curing resin composition of the present invention is a hydrolyzable organosilane compound and/or a partially hydrolyzed condensate thereof represented by the following general formula (1), and is a crosslinking agent. It is used as a curing agent (curing agent), and is characterized by releasing a cyclic ketone compound such as cyclobutanone or cyclopentanone as a leaving group (eliminating substance) upon hydrolysis.
  • the term "partially hydrolyzed condensate” refers to a product produced by partially hydrolyzing and condensing the hydrolysable organosilane compound, and preferably has three or more remaining hydrolyzable groups in the molecule. It means an organosiloxane oligomer having 4 or more.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms
  • n is an integer of 1 to 8
  • m is 3 or 4.
  • R 1 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, or 2 to 6 carbon atoms. is an alkenyl group, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms, and R 1 is a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec- Alkyl groups such as butyl group, tert-butyl group, pentyl group, hexyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group
  • Examples include alken
  • n is an integer of 1 to 8, preferably an integer of 2 to 6, more preferably an integer of 2 to 4, and even more preferably 2 or 3.
  • n is 0, a cyclic structure is not formed.
  • n is an integer of 9 or more, the molecular weight of the hydrolyzable organosilane becomes large, making it difficult to purify by distillation, requiring a large amount of addition to ensure shelf life, and being disadvantageous in terms of cost. Become.
  • m is 3 or 4. When this number is less than 3, rubber curing due to crosslinking reaction does not occur, making it unsuitable as a crosslinking agent for a two-component room temperature rapid curing resin composition.
  • the leaving groups (eliminating compounds) generated by hydrolysis of the hydrolyzable organosilane compound represented by the above general formula (1) include cyclopropanone, cyclobutanone, cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctane.
  • cyclic ketone compounds such as non, cyclononanone, and cyclodecanone, preferably cyclobutanone and cyclopentanone, and more preferably cyclopentanone.
  • Cyclobutanone and cyclopentanone have no reports of health hazards such as carcinogenicity or reproductive toxicity to humans, or environmental hazards such as toxicity to aquatic organisms.
  • cyclopentanone is industrially mass-produced, easily available, and highly cost-competitive, so it is advantageous for producing the hydrolyzable organosilane compound of component (B), as described below.
  • the hydrolyzable organosilane compound of component (B) is, for example, a chlorosilane compound and a cyclic ketone compound corresponding to the product, the hydrolyzable organosilane compound represented by the general formula (1), in the presence of a catalyst and a basic substance. It can be produced by a reaction (for example, dehydrochlorination reaction). This reaction formula is expressed, for example, by the following formula [1]. (In the formula, R 1 , n, and m are as described above.)
  • chlorosilane compound those shown below can be exemplified.
  • the amount of the cyclic ketone compound to be reacted with the chlorosilane compound is preferably 0.95 to 3.0 mol, more preferably 0.99 to 2.5 mol, per 1 mol of chlorine atoms in the chlorosilane compound. More preferably .0 to 2.0 mol. If the amount of the cyclic ketone compound added is small, the reaction may not be completed, and if the amount of the cyclic ketone compound added is too large, the purification may take time and the production time may increase.
  • Catalysts used in the reaction include monovalent or divalent metal copper compounds, such as copper chloride, copper bromide, copper iodide, copper sulfate, copper nitrate, copper carbonate, basic copper carbonate, and copper formate. Examples include, but are not limited to, copper acetate, copper butyrate, and the like.
  • the amount of the catalyst (metallic copper compound) added is preferably 0.001 to 0.5 mol, more preferably 0.002 to 0.2 mol, and 0.003 to 0.1 mol per mol of the chlorosilane compound. is even more preferable. If the amount of catalyst added is small, the reaction may not be completed, and if the amount of catalyst added is too large, it will be disadvantageous in terms of cost.
  • basic substances with low nucleophilicity such as trimethylamine, triethylamine, tripropylamine, tributylamine, urea, diazabicycloundecene, and diazabicyclononene can be used.
  • trimethylamine, triethylamine, and tributylamine are preferred, and triethylamine is particularly preferred.
  • the amount of the basic substance added is preferably 0.95 to 2.5 moles, more preferably 0.99 to 2.0 moles, and more preferably 1.0 to 1.5 moles per mole of chlorine atoms in the chlorosilane compound. 5 mol is more preferred. If the amount of the basic substance added is too small, the reaction may not be completed, and if the amount of the basic substance added is too large, it is economically disadvantageous.
  • solvents such as aromatic hydrocarbons such as toluene, xylene, and benzene, pentane, and hexane.
  • aromatic hydrocarbons such as toluene, xylene, and benzene
  • pentane and hexane.
  • aliphatic hydrocarbons such as heptane, nonane, octane, and decane
  • ethers such as dimethyl ether, methyl ethyl ether, tetrahydrofuran, and dioxane
  • halogenated hydrocarbons such as perchloroethane, perchloroethylene, trichloroethane, chloroform, and carbon tetrachloride.
  • amides such as dimethylformamide
  • esters such as ethyl acetate, methyl acetate, and butyl acetate.
  • the amount of the solvent used is not particularly limited, but is usually in the range of 10 to 500 parts by weight, preferably 30 to 400 parts by weight, more preferably 50 to 300 parts by weight, per 100 parts by weight of the cyclic ketone compound used. used.
  • the reaction conditions for the chlorosilane compound and the cyclic ketone compound are usually such that the chlorosilane compound is added dropwise to the cyclic ketone compound at a temperature of 0 to 120°C, preferably 0 to 100°C, and then the chlorosilane compound is added dropwise to the cyclic ketone compound at a temperature of 50 to 120°C, preferably 60 to 100°C. It is preferable to react at a temperature of 1 to 48 hours, more preferably 3 to 30 hours. If the reaction temperature is too low, the reaction may not be completed; if the reaction temperature is too high, the product may become heavily colored.
  • the reaction time is too short, the reaction may not be completed, and if the reaction time is too long, it will work against productivity.
  • purification after the completion of the reaction is possible by distilling the target product in a reduced pressure environment, and the degree of reduced pressure is preferably 1 x 10 -5 to 3,000 Pa, more preferably 1 x 10 -5 to 2,000 Pa.
  • the temperature during purification is preferably 100 to 250°C, more preferably 120 to 230°C. If the pressure at the time of decompression (degree of decompression) is too high, distillation may become difficult. Furthermore, if the temperature during purification is too low, purification by distillation may become difficult, and if it is too high, the reaction product may be colored or decomposed.
  • hydrolyzable organosilane compound of component (B) examples include those represented by the following formula. Note that Me represents a methyl group.
  • Component (B) may be used alone or in combination of two or more.
  • Component (B) is added to the first agent, and its amount is 1 to 30 parts by weight, preferably 2 to 30 parts by weight, based on 100 parts by weight of the total of components (A) and (A'). It is 25 parts by mass. If the amount of component (B) is too small, sufficient crosslinking will not be obtained when curing the composition, and if it is too large, the mechanical properties (rubber physical properties) of the resulting cured product (silicone rubber) will deteriorate, resulting in an economical Problems may arise that may be disadvantageous.
  • Component (C) Curing catalyst
  • the curing catalyst of component (C) is used to promote the hydrolysis condensation reaction and is generally called a curing catalyst.
  • a curing catalyst any known material commonly used for room temperature curable silicone resin compositions that cure in the presence of moisture can be used.
  • the nonmetallic organic catalyst is not particularly limited, but those known as curing accelerators for condensation-curing organopolysiloxane compositions can be used.
  • curing accelerators for condensation-curing organopolysiloxane compositions can be used.
  • phosphazene-containing compounds such as N,N,N',N',N'',N''-hexamethyl-N'''-(trimethylsilylmethyl)-phosphorimidic triamide; Quaternary ammonium salts; dialkylhydroxylamines such as dimethylhydroxylamine and diethylhydroxylamine; ⁇ -(N,N,N',N'-tetramethylguanidyl)propyltrimethoxysilane, ⁇ -(N,N,N Silane containing a guanidyl group such as ',N'-tetramethylguanidyl)propylmethyldimethoxysilane, ⁇ -(N,N,N',N
  • the metal catalyst is not particularly limited, but those known as curing catalysts for condensation-curing organopolysiloxanes can be used.
  • alkyltin ester compounds such as dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctoate, dimethyltin dineodecanoate, dioctyltin dineodecanoate, di-n-butyl-dimethoxytin; Titanate esters or titanium chelate compounds such as tetraisopropoxytitanium, tetra-n-butoxytitanium, tetrakis(2-ethylhexoxy)titanium, dipropoxybis(acetylacetonato)titanium, titaniumisopropoxyoctylene glycol; zinc naphthenate; Zinc stearate, zinc-2-ethyl
  • Metal catalysts are not limited to these. The metal catalysts may be used alone or in combination of two or more.
  • the curability and cured product performance are equivalent to those when the tin catalyst is blended. From the viewpoint of environmental protection, it is preferable to blend other catalysts instead of the catalyst.
  • Component (C) is to be blended into the first agent, and its blending amount is 0.01 to 5 parts by mass per 100 parts by mass of the total of components (A) and (A'), and 0.01 to 5 parts by mass.
  • the amount is preferably 0.05 to 4 parts by weight, more preferably 0.1 to 3 parts by weight. If the amount of component (C) is less than 0.01 parts by mass, good curability cannot be obtained, resulting in a problem of slow curing speed. On the other hand, if the amount exceeds 5 parts by mass, the curing of the composition is too fast, resulting in a shortened working time tolerance after application of the composition and a deterioration in the mechanical properties of the resulting rubber.
  • Component (D) is an organic compound having a primary amino group (that is, an amino group having a -NH 2 structure, excluding a guanidyl group), and is an optional component that can be blended as necessary. It reacts with the cyclic ketone compound produced by decomposition to produce water, which significantly improves the deep curability of the composition.
  • Component (D) is not particularly limited as long as it has a primary amino group, but specific examples include methylamine, ethylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine, nonylamine, dodecylamine, etc.
  • Aliphatic amines Aliphatic polyamines such as ethylenediamine and triethylenetetramine; Aromatic amines such as aniline; Cyclic amines such as cyclopentylamine, cyclohexylamine, and 2-ethylcyclohexylamine; ⁇ -aminopropyltrimethoxysilane, ⁇ -amino Silane coupling containing primary amino groups such as aminosilanes such as propyltriethoxysilane, 3-2-(aminoethylamino)propyltrimethoxysilane [also known as N-2-(aminoethyl)-3-aminopropyltrimethoxysilane] and primary amino group-containing organosilicon compounds such as primary amino group-containing polysiloxanes. These may be used alone or in combination of two or more.
  • the first and second parts each contain 0 to 5 parts by mass (however, at least 0.1 part by mass or more of either the first or second part) ), and more preferably 0 to 4 parts by mass (however, at least one of the first part and the second part contains 0.1 part by mass or more). That is, when blending component (D), the total amount in the composition is preferably 0.1 to 10 parts by mass based on the total of 100 parts by mass of components (A) and (A').
  • component (D) added is less than 0.1 part by mass, the amount of water produced by reaction with the cyclic ketone compound produced by hydrolysis of component (B) is small, and sufficient deep hardening properties cannot be expressed. First, if it exceeds 10 parts by mass, it will be disadvantageous in terms of the properties and storage stability of the cured product obtained.
  • the two-component room-temperature fast-curing resin composition of the present invention may optionally contain an inorganic filler as component (E), if necessary.
  • the inorganic filler as component (E) is a reinforcing or non-reinforcing filler for imparting rubber physical properties to the two-component room temperature rapidly curing resin composition of the present invention.
  • silica-based fillers such as dry silica such as pyrogenic silica and fumed silica, wet silica such as precipitated silica, and sol-gel silica, with or without surface hydrophobization treatment.
  • calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide are preferred, and more preferably calcium carbonate, fumed silica, precipitated silica, carbon black, and aluminum oxide, in which the surface of the inorganic filler is hydrophobized. It is aluminum.
  • these inorganic fillers preferably have a low moisture content.
  • the surface treatment agent hydrophobic treatment agent
  • organic silicon compounds such as chlorosilane, alkoxysilane, and organosilazane, fatty acids, and paraffin are used.
  • a silane coupling agent, a titanium coupling agent, and the like can be applied.
  • the inorganic fillers of component (E) may be used alone or in combination of two or more.
  • component (E) When blending component (E), it may be blended in the first part, the second part, or both, and the blending amount is the (A) component and (A') component. 0 to 1,000 parts by mass in the first part and the second part, based on a total of 100 parts by mass (however, at least 0.1 part by mass or more in either the first part or the second part)
  • the content is preferably 0 to 500 parts by mass (however, it is more preferably contained in at least 0.1 part by mass in either the first part or the second part). That is, when component (E) is blended, the total amount in the composition is 0.1 to 2,000 parts by mass based on the total of 100 parts by mass of components (A) and (A').
  • the amount is preferably from 0.1 to 1,000 parts by weight, and even more preferably from 1 to 500 parts by weight.
  • the viscosity of the composition increases and workability not only deteriorates, but also the rubber strength after curing decreases and it becomes difficult to obtain rubber elasticity.
  • Component (F) Adhesion promoter
  • Component (F) is an adhesion promoter, and is an optional component that can be blended as necessary, in order to provide sufficient adhesiveness to the cured product formed from the two-component room-temperature fast-curing resin composition of the present invention. used.
  • adhesion promoter known ones are suitably used, and silane coupling agents such as functional group-containing hydrolyzable silane (however, components (B) and primary amino groups described in curing accelerator (D)) are preferably used.
  • vinyl silane coupling agents (excluding containing silane coupling agents), specific examples include vinyl silane coupling agents, (meth)acrylic silane coupling agents, epoxy silane coupling agents, mercaptosilane coupling agents, isocyanate silane coupling agents, etc.
  • (meth)acrylic silanes such as ⁇ -methacryloxypropyltrimethoxysilane and ⁇ -acryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -(3,4-epoxycyclohexyl )
  • Epoxysilanes such as ethyltrimethoxysilane and isocyanatesilanes such as 3-isocyanatepropyltriethoxysilane are preferred.
  • the first and second parts each contain 0 to 5 parts by mass (however, at least 0.1 part by mass or more of either the first or second part) ), and more preferably 0 to 3 parts by mass (however, at least one of the first and second parts contains 0.2 parts by mass or more). That is, when blending component (F), the total amount in the composition is preferably 0.1 to 10 parts by mass based on the total of 100 parts by mass of components (A) and (A'). , more preferably 0.1 to 5 parts by weight, and even more preferably 0.3 to 3 parts by weight. When adhesion is achieved between the inorganic filler and the adherend without the use of an adhesion promoter, it is not necessary to use this.
  • the two-component room-temperature fast-curing resin composition of the present invention has components (A), (A'), (B), and (C) as essential components, and further contains (D), (E), and ( It is preferable to blend component F).
  • known additives such as plasticizers, pigments, dyes, antiaging agents, antioxidants, antistatic agents, antimony oxide, flame retardants such as chlorinated paraffin, fungicides, and antibacterial agents may be added. I can do it.
  • plasticizers that can be added to the two-component room-temperature fast-curing resin composition of the present invention include dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and phthalate.
  • DMP dimethyl phthalate
  • DEP diethyl phthalate
  • DBP di-n-butyl phthalate
  • phthalate phthalate
  • trimellitic acid plasticizers and polyester plasticizers.
  • chlorinated paraffin such as linear dimethylpolysiloxane, polyoxypropylene glycol, acrylic resin, acrylic polymer, paraffin type, naphthenic type, isoparaffin.
  • silicone oil non-functional organopolysiloxane
  • examples include petroleum-based high-boiling point solvents such as petroleum-based solvents. These may be used alone or in combination of two or more.
  • an organic solvent may be used in the two-component room temperature fast-curing resin composition of the present invention, if necessary.
  • organic solvents include aliphatic hydrocarbon compounds such as n-hexane, n-heptane, isooctane, and isododecane; aromatic hydrocarbon compounds such as toluene and xylene; hexamethyldisiloxane, octamethyltrisiloxane, and decamethyltetra Linear or branched siloxane oligomers such as siloxane, dodecamethylpentasiloxane, 2-(trimethylsiloxy)-1,1,1,2,3,3,3-heptamethyltrisiloxane; octamethylcyclopentasiloxane, Examples include cyclic siloxane oligomers such as decamethylcyclopentasiloxane.
  • the amount of organic solvent may be adjusted as appropriate within a range that does not impede the
  • the two-component room temperature fast-curing resin composition of the present invention comprises a first part containing component (A), component (B) and component (C), and component (A'), It consists of component (B) and a second agent that does not contain component (C).
  • a two-component composition consisting of the first part and the second part, it has excellent fast curing properties and deep curing properties. This is achieved by making the crosslinking agent (B) coexist only with the component (A) in the first part of the entire base polymer when storing the first part and the second part separately.
  • the amount of crosslinking agent needed to crosslink the entire base polymer i.e., the total amount of base polymer after mixing the two components
  • the amount can be reduced to close to the minimum amount, the curing reaction proceeds relatively faster than a one-component room temperature curing resin composition, that is, the curing properties (fast curing properties, deep curing properties) are improved. it is conceivable that.
  • the organic compound having a primary amino group reacts with ketimine to generate water within the system, further promoting hydrolysis and condensation reactions, so it has the same curability as a one-component room temperature curable resin composition. It is estimated that (fast curing property, deep part curing property) is improved.
  • the first agent is prepared by adding all of the components (A), (B), and (C), and if necessary, some or all of the components (D), (E), (F), and other components using a conventional method. It can be prepared by mixing according to the following.
  • the second agent is made by uniformly mixing all of the component (A') and, if necessary, the remainder or all of the components (D), (E), (F) and other components in a dry atmosphere according to a conventional method. It can be prepared by
  • the mixing ratio of component (A) to be blended in the first part and component (A') to be blended in the second part is 90 to 10 parts by mass of component (A') to 10 to 90 parts by mass of component (A). (100 parts by mass in total), and preferably 70 to 30 parts by mass of component (A') to 30 to 70 parts by mass of component (A) (100 parts by mass in total).
  • the optional components (D), (E), (F) and other components may be added to either the first agent or the second agent, or may be added to either one or both. Although they may be blended, it is particularly preferable to blend components (D), (E), and (F) into the first part, and blend components (D) and (E) into the second part.
  • the mass ratio of the first part to the second part is 1:99 to 99:1, particularly 15:85 to 70. :30 is preferable from the viewpoint of storage stability of the composition.
  • the mass ratio of the first part to the second part is 80:20 to 20:80, particularly 60:40 to 40: 60 is preferable from the viewpoint of uniformity (easiness of mixing) of the composition during mixing.
  • the ratio of the first part to the second part is such that the mass ratio of the first part (total) to the second part (total) is 1:1 to 10:1, especially 1:1 to 4:1. It is preferable to do this from the viewpoint of workability and uniformity of the composition (easiness of mixing) when mixing the first part and the second part.
  • the first and second parts produced as described above can be stored in an atmosphere that avoids moisture.
  • the two-component room-temperature fast-curing resin composition of the present invention has a suitable ratio of these components, specifically, the ratio of the first part to the second part in a mass ratio of 1:1 to 10:1, particularly 1: By mixing at a ratio of 1 to 4:1, it usually cures in 10 minutes to 5 days by leaving it in a room temperature environment (temperature 23 ° C ⁇ 15 ° C, humidity 50% RH ⁇ 5% RH), but the molding method As for the curing conditions, etc., known methods and conditions depending on the type of composition can be adopted.
  • the two-component room-temperature fast-curing resin composition of the present invention has fast-curing properties, and when molded into a sheet with a thickness of 2 mm at 23° C. and 50% RH, it usually takes about 7 days or more. Some cure in 10 days, while others cure in a short time of 60 minutes to 3 days. Furthermore, the two-component room-temperature fast-curing resin composition of the present invention has deep curability, and is cured in a glass Petri dish with an inner diameter of 10 mm and a depth of 3 mm at 23° C. and 50% RH. In this case, it usually hardens in 5 hours, but it hardens deeply in a short time of about 60 minutes.
  • the compound generated from the crosslinking agent by the hydrolysis reaction during curing is a cyclic ketone compound such as cyclobutanone or cyclopentanone, which is highly safe and is safe for the human body and the environment. This is something that is taken into consideration.
  • cyclopentanone has a flash point of 35°C, which is higher than dealcoholization type products that release alcohol compounds such as methanol when the composition is cured, and is highly safe.
  • the two-component room-temperature fast-curing resin composition of the present invention exhibits good curability by using various existing catalysts, and the cured product thereof also has excellent adhesive properties.
  • the two-component room temperature fast-curing resin composition of the present invention is useful as an adhesive, a sealant, a potting agent, a coating agent, or the like.
  • the two-component room-temperature fast-curing resin composition of the present invention can be used as an adhesive, a sealant, a potting agent, or a coating agent by following a conventionally known method.
  • target articles include automobile parts, electrical/electronic parts, architectural structures, and civil engineering structures.
  • the viscosity is a value measured using a rotational viscometer at 23° C. according to the method specified in JIS Z-8803.
  • the molecular weight is a measured value determined as a number average molecular weight in terms of polystyrene in GPC analysis using tetrahydrofuran as a developing solvent.
  • a planetary mixer manufactured by Inoue Seisakusho Co., Ltd. was used as an appropriate mixer.
  • first agent a 100 parts by mass of the polyoxypropylene containing silanol groups at both ends of the molecular chain (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000) synthesized in Synthesis Example 1, (Component (E)) 10 parts by mass of dry silica (fumed silica) with a BET specific surface area of 130 m 2 /g, (Component (B)) 7 parts by mass of vinyltris(1-cyclopenten-1-yloxy)silane, (( Component C) 0.8 parts by mass of ⁇ -(N,N,N',N'-tetramethylguanidyl)propyltrimethoxysilane and 1 part by mass of ⁇ -aminopropyltrimethoxysilane (Component (D)) were mixed uniformly under reduced pressure to prepare the first part a.
  • Component (E) 10 parts by mass of dry silica (fumed silica) with a BET
  • second agent a 100 parts by mass of polyoxypropylene containing silanol groups at both ends of the molecular chain (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000) synthesized in Synthesis Example 1, (Component (E))
  • a second agent a was prepared by uniformly mixing 10 parts by mass of dry silica (fumed silica) with a BET specific surface area of 130 m 2 /g under reduced pressure.
  • composition 1 After producing Composition 1 by uniformly mixing the first part a and the second part a at a mixing ratio (mass ratio) of 1:1, the composition 1 was mixed so that the thickness was 2.5 mm. Coated on the material. Thereafter, the cured products were left to stand for 1 day and 3 days under conditions of 23° C. and 50% RH to obtain cured products 1-1 and 1-2.
  • Second agent b (Component (A')) 100 parts by mass of polyoxypropylene containing silanol groups at both ends of the molecular chain synthesized in Synthesis Example 1 (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000), (Component (E)) 10 parts by mass of dry silica (fumed silica) with a BET specific surface area of 130 m 2 /g and 4 parts by mass of octylamine (Component (D)) were uniformly mixed under reduced pressure to form a second Agent b was prepared.
  • Component (A') 100 parts by mass of polyoxypropylene containing silanol groups at both ends of the molecular chain synthesized in Synthesis Example 1 (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000), (Component (E)) 10 parts by mass of dry silica (fumed silica) with a BET specific surface area of 130 m 2 /g
  • a composition 2 was produced by uniformly mixing the first part a prepared in the same manner as in Example 1 and the second part b described above at a mixing ratio (mass ratio) of 1:1. It was coated onto the base material so that the thickness was 2.5 mm. Thereafter, they were allowed to stand and cure under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively, to obtain cured products 2-1 and 2-2.
  • composition 3 After producing composition 3 by uniformly mixing the first part b and the second part b prepared in the same manner as in Example 2 at a mixing ratio (mass ratio) of 1:1, the composition 3 was It was coated onto the base material so that the thickness was 2.5 mm. Thereafter, the cured products were left to stand for 1 day and 3 days under conditions of 23° C. and 50% RH to obtain cured products 3-1 and 3-2.
  • composition 4 After producing composition 4 by uniformly mixing the first part c and the second part b prepared in the same manner as in Example 2 at a mixing ratio (mass ratio) of 1:1, the composition 4 was It was coated onto the base material so that the thickness was 2.5 mm. Thereafter, they were allowed to stand and cure under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively, to obtain cured products 4-1 and 4-2.
  • first agent d (Component (A) 100 parts by mass of polyoxypropylene containing silanol groups at both ends of the molecular chain synthesized in Synthesis Example 1 (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000), (E) component) 10 parts by mass of dry silica (fumed silica) with a BET specific surface area of 130 m 2 /g, 5 parts by mass of vinyltrimethoxysilane (in place of the above component (B)), (component (C) ) 0.1 part by mass of dioctyltin dilaurate, 1 part by mass of ⁇ -aminopropyltrimethoxysilane (component (D)), and 1 part by mass of ⁇ -glycidoxypropyltrimethoxysilane (component (F)) under reduced pressure.
  • a first agent d was prepared by uniformly mixing the mixture.
  • composition 5 After producing composition 5 by uniformly mixing the first part d and the second part b prepared in the same manner as in Example 2 at a mixing ratio (mass ratio) of 1:1, the composition 5 was It was coated onto the base material so that the thickness was 2.5 mm. Thereafter, they were allowed to stand and cure under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively, to obtain cured products 5-1 and 5-2.
  • first agent e 100 parts by mass of the polyoxypropylene containing silanol groups at both ends of the molecular chain (viscosity 24,000 mPa ⁇ s, number average molecular weight: 24,000) synthesized in Synthesis Example 1, Component (E)) 10 parts by mass of dry silica (fumed silica) having a BET specific surface area of 130 m 2 /g, 7 parts by mass of vinyl tris(methyl ethyl ketoxime) silane (in place of component (B) above), and ((C ) component) 0.1 part by mass of dioctyltin dilaurate, (component (D)) 1 part by mass of ⁇ -aminopropyltrimethoxysilane, and (component (F)) 1 part by mass of ⁇ -glycidoxypropyltrimethoxysilane.
  • the first part e was prepared by uniformly mixing under reduced pressure.
  • composition 6 After producing composition 6 by uniformly mixing the first part e and the second part b prepared in the same manner as in Example 2 at a mixing ratio (mass ratio) of 1:1, the composition 6 was It was coated onto the base material so that the thickness was 2.5 mm. Thereafter, they were allowed to stand and cure under conditions of 23° C. and 50% RH for 1 day and 3 days, respectively, to obtain cured products 6-1 and 6-2.
  • Rubber physical properties The freshly prepared compositions prepared in Examples 1 to 4 and Comparative Examples 1 and 2 were extruded into a sheet with a thickness of 2 mm, exposed to air at 23° C. and 50% RH, and then the sheet was exposed to the same atmosphere. Rubber physical properties (hardness, elongation at break, tensile strength) of the cured products obtained after being left for 1 or 3 days were measured in accordance with JIS K-6249. The hardness was measured using a JIS K-6249 durometer A hardness tester.
  • each test piece was bonded to each other by using the compositions described above, using aluminum with a width of 25 mm and a length of 100 mm as an adherend.
  • Shear adhesion test specimens with an area of 2.5 mm 2 and adhesive thickness of 1 mm were prepared, and after curing at 23°C and 50% RH for 1 or 3 days, these test specimens were used to test the shear strength of aluminum. Adhesive strength was measured according to the method specified in JIS K-6249.
  • Table 1 The test results of Examples 1 to 4 are shown in Table 1, and the test results of Comparative Examples 1 and 2 are shown in Table 2. Tables 1 and 2 also list compounds that are released from the curing agent during curing, and the presence or absence of health hazards and environmental hazards of these compounds.
  • the two-component room-temperature fast-curing resin compositions of the present invention have excellent deep curability, and exhibit excellent rubber physical properties and adhesive strength in 1-day and 3-day curing. Since the difference is small, it can be seen that the composition has high curability compared to the conventional dealcoholization type (composition of Comparative Example 1) and deoxime type (composition of Comparative Example 2).
  • the compound released by the composition of the example during curing is cyclopentanone, and it is safe as there are no reports of health hazards such as carcinogenicity or reproductive toxicity to the human body, or environmental hazards such as toxicity to aquatic organisms. It is a compound with high properties.
  • the compounds released by the comparative compositions during curing are all labeled as hazardous to health by SDS (Safety Data Sheet), and include 2-butanone, which is potentially carcinogenic and toxic to aquatic organisms.
  • Methanol is designated as an oxime, a deleterious substance, and is highly harmful to the human body.
  • methanol has a lower flash point and boiling point than cyclopentanone, the two-component room-temperature fast-curing resin composition of the present invention is superior in terms of human health, safety, and environmental protection. I can see that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー、 (B)下式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、及び式(1)(R1は一価炭化水素基、nは1~8、mは3又は4。) (C)硬化触媒を特定割合で含有してなる第一剤と、 (A')分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーを含有してなる第二剤との特定割合からなる二成分型室温速硬化性樹脂組成物が、速硬化性、深部硬化性に優れ、作業性も良好であり、更に硬化時に、脱離基(脱離化合物)としてシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離・放出するため、人体・環境に対する有害性や安全性の問題を解決する。

Description

二成分型室温速硬化性樹脂組成物及び物品
 本発明は、それぞれ別々に保存された二成分型の組成物からなり、両者を混合することで、室温(23℃±15℃)において大気中の湿気(水分)により加水分解・縮合反応にて架橋(硬化)する、分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基(ケイ素原子に結合した水酸基を有するシリル基又はシラノール基)で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーをベースポリマーとした縮合硬化型の二成分型室温速硬化性樹脂組成物、特には、硬化時(架橋時)の加水分解・縮合反応によって架橋剤(硬化剤)から脱離・発生する脱離化合物がシクロブタノンやシクロペンタノン等の環状ケトン化合物であり、縮合反応によって良好に硬化し、かつ接着性に優れる、シリコーンゴム等のオルガノポリシロキサン樹脂以外のゴム硬化物を与える二成分型室温速硬化性樹脂組成物、及び該組成物又はその硬化物を有する各種物品に関する。
 反応性ケイ素基(以下、加水分解性シリル基という)を有するポリマーは、水分存在下にて加水分解、縮合し、またケイ素原子上に水酸基を有してなるケイ素基(以下、ヒドロキシシリル基又はシラノール基という)は、加水分解性シリル基の加水分解物やシラノール基と縮合する。分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーは、主鎖中にオルガノシロキサンの繰り返し構造(オルガノポリシロキサン構造)を有していないにもかかわらず、分子鎖末端に反応性のシリル基を有し、硬化時に架橋点でのみシロキサン構造を形成することから一般的に変性(変成)シリコーンポリマーと呼ばれ、湿気存在下で架橋、硬化し、硬化性樹脂組成物として用いることができる。上記ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーをベースポリマーとした室温硬化性樹脂組成物は、室温(23℃±15℃)では液状又はペースト状であり、硬化によりゴム弾性体となる特徴を有しており、その特徴を利用して自動車用部品、電気・電子用部品、建築用構造物、土木工事用構造物等に使用される、接着剤、シーリング剤、ポッティング剤、コーティング剤などに広く用いられている。
 縮合反応により硬化する組成物は、硬化剤(架橋剤)に加水分解性基を有しており、すでに広く利用されている硬化剤としては、硬化時に2-ブタノンオキシム等のオキシム化合物を放出する脱オキシム型や、メタノール等のアルコール化合物を放出する脱アルコール型のものが知られている。
 一方で、脱オキシム型の硬化剤が硬化時に発生する2-ブタノンオキシムなどのオキシム化合物は発がん性のおそれが疑われており、脱アルコール型の硬化剤が硬化時に発生するメタノール等は人体に対して有毒で、劇物に指定されていることから、人体の健康の観点から好ましくない。更に、これらの組成物では、硬化触媒として、環境負荷物質として規制が強化されている錫触媒を使用するケースもあり、環境保護の観点から好ましくない。
 また、これらの中で、空気中の水分と接触することにより硬化反応が開始される一成分型の室温硬化性樹脂組成物は、使用直前にベースポリマーと架橋剤や触媒等とを秤量したり、混合したりする煩雑さがなく、取り扱いが容易であるが、硬化速度が遅く、また深部硬化性が悪いといった欠点があった。
 これに対して、二成分型の室温硬化性樹脂組成物は、硬化速度が速く、深部硬化性にも優れている。この組成物は、分子鎖末端がシラノール基及び/又は加水分解性シリル基で封鎖されたポリマーと無機質充填剤などからなる主成分と、架橋成分とに分けて調製される。そして、別々の容器に分けて保存され使用時に混合して使用される(特許文献1,2(特開平11-246780号公報、特開2013-204020号公報)参照)ことから、一成分型の室温硬化性樹脂組成物では保存性確保のために多量に添加される架橋剤量を減らすことが可能であり、硬化物の伸び物性も良好である。
 しかしながら、硬化時に発生するガスは従来と同様にメタノールであり、錫触媒を用いるケースもあることから、脱離基や触媒が有する有毒性や環境負荷を低減することはできない。
特開平11-246780号公報 特開2013-204020号公報 特開2017-203065号公報
 本発明は、上記事情に鑑みなされたもので、分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーをベースポリマーとして用いた室温硬化性樹脂組成物であって、二成分型で、速硬化性、深部硬化性に優れ、人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高い、シクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離化合物)とする架橋剤を使用した、二成分型室温速硬化性樹脂組成物、該組成物を有する各種物品、及び該二成分型室温速硬化性樹脂組成物を硬化して得られるエラストマーの成形物等を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、(A)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー、(B)下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物、及び(C)硬化触媒を特定割合で含有してなる第一剤と、(A’)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーを特定量含有してなる第二剤とからなる二成分型室温速硬化性樹脂組成物が、一成分型の室温硬化性樹脂組成物よりも硬化性に優れ、硬化時に、脱離基(脱離化合物)としてシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離・放出するため、人体・環境に対する有害性や安全性の問題を解決するものであることを見出した。
Figure JPOXMLDOC01-appb-C000002
(式中、R1は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
 本発明の二成分型室温速硬化性樹脂組成物は、上記の第一剤と第二剤とに分けて保存する際に、(B)成分の架橋剤をベースポリマー全体のうち第一剤中の(A)成分とのみ共存させることによって、一成分型の室温硬化性樹脂組成物よりも、貯蔵安定性確保のために必要な架橋剤の量をベースポリマー全体(即ち、二成分を混合した後のベースポリマーの合計量)の架橋に必要十分な最少量近くまで減らすことができるため、一成分型の室温硬化性樹脂組成物よりも相対的に硬化反応が速く進行し、即ち硬化性(速硬化性、深部硬化性)が向上するものと考えられる。更に好適には、硬化促進剤として一級アミノ基を有する有機化合物を添加することで、二成分混合後、硬化初期に(B)成分が加水分解することによって生じる環状ケトン化合物と、(D)成分の一級アミノ基を有する有機化合物とがケチミン反応して系内で水を生成することで更に加水分解・縮合反応が促進されることから、一成分型室温硬化性樹脂組成物と同様に硬化性(速硬化性、深部硬化性)が向上するものと推定される。
 また、上述した硬化性の問題に対して、(B)成分である人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高い、シクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基とする加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物(架橋剤)と、(D)成分である一級アミノ基を有する有機化合物を使用することによって、二成分混合後、硬化初期に(B)成分が加水分解することによって生じる環状ケトン化合物と、(D)成分の一級アミノ基を有する有機化合物とのケチミン反応によって内部より水分を生成し、速硬化性に優れた組成物が得られることを見出した。更に、本発明の二成分型室温速硬化性樹脂組成物は、錫触媒を用いずとも錫触媒を用いた場合と同様に速硬化となることから、人体・環境に対する有害性や安全性の問題を解決するものであることを見出し、本発明をなすに至った。
 即ち、本発明は、下記の二成分型室温速硬化性樹脂組成物、及び該組成物又はその硬化物を有する各種物品(自動車用部品、電気・電子用部品、建築用構造物、土木工事用構造物、接着剤、シーリング剤、ポッティング剤、コーティング剤など)等を提供するものである。
[1]
 (A)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー:10~90質量部(ただし、(A)成分及び下記(A’)成分の合計は100質量部である。)、
(B)下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分及び(A’)成分の合計100質量部に対して1~30質量部、及び
Figure JPOXMLDOC01-appb-C000003
(式中、R1は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
(C)硬化触媒:(A)成分及び(A’)成分の合計100質量部に対して0.01~5質量部
を含有してなる第一剤と、
(A’)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である。)
を含有してなる第二剤と
からなるものである二成分型室温速硬化性樹脂組成物。
[2]
 更に、(D)硬化促進剤:一級アミノ基を有する有機化合物を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~5質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]に記載の二成分型室温速硬化性樹脂組成物。
[3]
 (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである[1]又は[2]に記載の二成分型室温速硬化性樹脂組成物。
[4]
 脱離する環状ケトン化合物が、シクロブタノン又はシクロペンタノンである[3]に記載の二成分型室温速硬化性樹脂組成物。
[5]
 (A)成分及び(A’)成分の有機ポリマーの数平均分子量が2,000~50,000である[1]~[4]のいずれかに記載の二成分型室温速硬化性樹脂組成物。
[6]
 (C)硬化触媒が、錫触媒を含有しないものである[1]~[5]のいずれかに記載の二成分型室温速硬化性樹脂組成物。
[7]
 更に、(E)無機質充填剤を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]~[6]のいずれかに記載の二成分型室温速硬化性樹脂組成物。
[8]
 (E)成分が、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選ばれる1種又は2種以上の無機質充填剤である[7]に記載の二成分型室温速硬化性樹脂組成物。
[9]
 更に、(F)接着促進剤を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~5質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである[1]~[8]のいずれかに記載の二成分型室温速硬化性樹脂組成物。
[10]
 第一剤と第二剤との配合割合が質量比で1:1~10:1である[1]~[9]のいずれかに記載の二成分型室温速硬化性樹脂組成物。
[11]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物の硬化物を有する自動車用部品。
[12]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物の硬化物を有する電気・電子用部品。
[13]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物の硬化物を有する建築用構造物。
[14]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物の硬化物を有する土木工事用構造物。
[15]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物を含有する接着剤。
[16]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物を含有するシーリング剤。
[17]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物を含有するポッティング剤。
[18]
 [1]~[10]のいずれかに記載の二成分型室温速硬化性樹脂組成物を含有するコーティング剤。
 本発明の二成分型室温速硬化性樹脂組成物は、第一剤と第二剤の二成分型からなる。これにより、第一剤と第二剤を混合した際に、速硬化性、深部硬化性に優れる。
 本発明の二成分型室温速硬化性樹脂組成物は、特に、室温における空気中での速硬化性に優れ、作業性も良好である。本発明の二成分型室温速硬化性樹脂組成物は、第一剤と第二剤とを混合し、空気中に曝すと速やかに硬化して、優れた物性を示す。更に、本発明の二成分型室温速硬化性樹脂組成物は、用いる架橋剤が、硬化時に人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく、比較的引火点の高い、シクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離物質)として放出し、また錫触媒を用いずとも硬化するため、人体の健康や安全、環境保護(負荷軽減)に配慮した、各種接着剤、シーリング剤、ポッティング剤、コーティング剤等として好適に使用できる。
 以下、本発明を更に詳細に説明する。
<二成分型室温速硬化性樹脂組成物>
 本発明の二成分型室温速硬化性樹脂組成物は、後述する(A)成分、(B)成分及び(C)成分の特定量を含有してなる第一剤と、(A’)成分を含有してなる第二剤とからなるものである。なお、第二剤には(B)成分、(C)成分を含まないものである。
 以下に、各成分について詳述する。なお、本発明において、粘度は、23℃において、JIS Z-8803に規定する方法に準じた回転粘度計による測定値である。「二成分型室温速硬化性樹脂組成物」における「室温」とは温度23℃±15℃、湿度50%RH±5%RHの状態をいう。
[(A)成分、(A’)成分:有機ポリマー]
 本発明に用いられる(A)成分及び(A’)成分は、分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基(ケイ素原子に結合した水酸基を有するシリル基又はシラノール基)で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー(変成シリコーンポリマー(modified silicone polymer))であり、(A)成分は第一剤に配合するものであり、(A’)成分は第二剤に配合するものである。これら(A)成分及び(A’)成分は、いずれも本発明の二成分型室温速硬化性樹脂組成物においてベースポリマーとして作用するものである。なお、(A)成分及び(A’)成分の変成シリコーンポリマーは、分子鎖末端のシリル基と主鎖とを連結する連結部(リンカー部)に短鎖のシロキサン構造(好ましくは繰り返し数が2~5程度のジオルガノシロキサン単位)を有するものであってもよい。即ち、(A)成分及び(A’)成分の変成シリコーンポリマーは、分子鎖末端のシリル基と主鎖とを連結する連結部(リンカー部)に繰り返し数が6以上のジオルガノシロキサン単位からなる長鎖のシロキサン構造を有しないものであることが好ましい(即ち、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーであれば、分子鎖末端のシリル基に隣接する連結部(リンカー部)にはジオルガノシロキサン単位の繰り返し数が2~5個の短鎖シロキサン構造を含むものであってもよい)。
 このようなベースポリマーとしては、分子鎖末端が加水分解性シリル基(例えばアルコキシシリル基等)及び/又はヒドロキシシリル基(シラノール基)で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマーであれば主鎖構造を限定せずに好適に用いることができるが、特にポリマー主鎖がポリプロピレンオキシド、ポリエチレンオキシド、ポリイソブチレンオキシド、プロピレンオキシド-エチレンオキシド共重合体などのポリオキシアルキレン、ポリイソブチレンなどのポリアルキレン、ポリアクリレート、ポリメタクリレート等のポリマー構造であることが入手の容易さから好ましく、これら主鎖構造の一部にウレタン構造(-NHC(=O)O-)やエステル構造(-C(=O)O-)等を有していてもよい。
 (A)成分及び(A’)成分の分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基(シラノール基)で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー(変成シリコーンポリマー)としては、シリル化オキシアルキレンポリマー、シリル化ウレタンポリマー、シリル化アクリレートポリマー、シリル化アルキレンポリマーであることが好ましい。
 シリル化オキシアルキレンポリマーとして、具体的には、主鎖がポリプロピレンオキシド、ポリエチレンオキシド、プロピレンオキシド-エチレンオキシド共重合体などのポリオキシアルキレン構造からなり、分子鎖末端、特には分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖された構造を有するポリマー(ポリエーテル変成シリコーンポリマー)が挙げられる。
 シリル化ウレタンポリマーとして、具体的には、主鎖がポリプロピレンオキシド、ポリエチレンオキシド、プロピレンオキシド-エチレンオキシド共重合体などのポリオキシアルキレン構造からなり、イソシアネートとのウレタン結合構造(-NHC(=O)O-)を主鎖構造の一部に有し、かつ分子鎖末端、特には分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖された構造を有するポリマー(ウレタン変成シリコーンポリマー)が挙げられる。
 シリル化アクリレートポリマーとして、具体的には、主鎖がポリアクリレート、ポリメタクリレートなどの構造からなり、分子鎖末端、特には分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖された構造を有するポリマー(アクリレート変成シリコーンポリマー)が挙げられる。
 シリル化アルキレンポリマーとして、具体的には、主鎖がイソブチレンモノマーの重合体などのポリアルキレン構造からなり、分子鎖末端、特には分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖された構造を有するポリマー(アルキレン変成シリコーンポリマー)が挙げられる。
 これらの中でも入手の容易さから、分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖されたポリプロピレンオキシドを主鎖とするシリル化オキシプロピレンポリマーや、分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖されたポリアクリレートを主鎖とするシリル化アクリレートポリマーが好ましく、分子鎖両末端が加水分解性シリル基及び/又はシラノール基で封鎖されたポリプロピレンオキシドを主鎖とするシリル化オキシプロピレンポリマーがより好ましい。
 また、分子鎖末端がシラノール基で封鎖されたポリマーが、速硬化性、深部硬化性の観点から好ましいことから、特には分子鎖両末端がシラノール基で封鎖されたポリプロピレンオキシドを主鎖とするシリル化オキシプロピレンポリマーが好ましい。
 (A)成分及び(A’)成分の有機ポリマーとしては、下記一般式(2)又は(3)で示される、分子鎖両末端が加水分解性シリル基又はヒドロキシシリル基(ケイ素原子に結合した水酸基を有するシリル基又はシラノール基)で封鎖された有機ポリマーであることがより好ましい。
Figure JPOXMLDOC01-appb-C000004
(式中、R2及びR4はそれぞれ同一又は異なっていてもよく、非置換又は置換の炭素数1~10の1価炭化水素基であり、R3はそれぞれ独立に、非置換又は置換の炭素数1~10の1価炭化水素基又は水素原子である。aはそれぞれ独立に2以上の整数であり、bは結合するケイ素原子毎に独立に0、1又は2であり、cは独立に1~5の整数である。Yはシロキサン構造を含まない2価の有機基である。)
 上記式(2)及び(3)中、R2及びR4は炭素数1~10、好ましくは炭素数1~6の非置換又は置換1価炭化水素基であり、R3は、炭素数1~10、好ましくは炭素数1~6の非置換又は置換1価炭化水素基、又は水素原子である。R2、R3、R4の炭素数1~10、好ましくは炭素数1~6の非置換又は置換1価炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基等のアルキル基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;フェニル基、トリル基、キシリル基、α-,β-ナフチル基等のアリール基;ベンジル基、2-フェニルエチル基、3-フェニルプロピル基等のアラルキル基、また、これらの基の水素原子の一部又は全部が、F、Cl、Br等のハロゲン原子やシアノ基等で置換された基、例えば、3-クロロプロピル基、3,3,3-トリフルオロプロピル基、2-シアノエチル基などが挙げられる。R2及びR4としては、メチル基、フェニル基が好ましく、メチル基が特に好ましい。R3としては、メチル基、エチル基、水素原子が好ましく、メチル基、水素原子が特に好ましい。これらR2、R3、R4は同一の基であっても異種の基であってもよい。
 また、式(2)及び(3)中、aはそれぞれ独立に2以上の整数であり、好ましくは2~8の整数であり、より好ましくは2、3又は4であり、特に好ましくは3である。
 式(2)中、bは結合するケイ素原子毎に独立に0、1又は2であり、好ましくは0又は1であり、特に好ましくは1である。
 式(3)中、cは独立に1~5の整数であり、好ましくは1~4の整数である。
 上記一般式(2)及び(3)中、Yはシロキサン構造を含まない2価の有機基であり、具体的には、ポリオキシエチレン基、ポリオキシプロピレン基、ポリオキシブチレン基等のポリオキシアルキレン基、ポリイソブチレン基等のポリアルキレン基、下記式で表されるメタクリル酸メチルの重合体、あるいはこれらの基に、アルキレン基や、エーテル結合酸素原子、アミド結合、ウレタン結合、カルボニル結合、エステル結合等から選ばれる1種又は2種以上を介在させたものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式中、R’は水素原子又はメチル基であり、R''はメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基等の炭素数1~10のアルキル基であり、zは主鎖を構成する繰り返し単位の重合度を示し、20~800の整数である。)
 (A)成分及び(A’)成分の有機ポリマーの具体例としては、以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式中、zは主鎖を構成する繰り返し単位の重合度を示し、20~800の整数である。Meはメチル基を示す。)
 なお、上記の各例示式において、分子鎖末端のメトキシ基(MeO-)は、エトキシ基等の他の低級アルコキシ基に置換されたものであってもよく、また、分子鎖末端のヒドロキシジメチルシリル基(-SiMe2OH)は、末端ヒドロキシジメチルシリル封鎖ポリジメチルシロキサニル基(-[Si(Me)2O]c’-H、c’=2~5の整数)に置換されたものであってもよい。
 (A)成分及び(A’)成分の有機ポリマーの数平均分子量は、好ましくは2,000~50,000であり、より好ましくは5,000~40,000であり、更に好ましくは10,000~35,000である。数平均分子量が小さすぎると得られる硬化物の伸びや強度などのゴム物性が悪化する場合があり、大きすぎると組成物の粘度が急激に上昇し、取り扱い性の面で不利になる場合がある。
 なお、本発明において、分子量(又は重合度)は、例えば、テトラヒドロフラン(THF)、トルエン等を展開溶媒として、ゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均分子量(もしくは数平均重合度)又は重量平均分子量(もしくは重量平均重合度)等として求めることができる(以下、同じ)。
 分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基(シラノール基)で封鎖されたこれらのポリマーは、例えば特開2017-203065号(特許文献3)など、公知の手法によって得ることができる。具体的に、分子鎖両末端がシラノール基で封鎖されたポリプロピレンオキシドを主鎖とするシリル化オキシプロピレンポリマーの製造方法としては、アリル基等のCH2=CH-構造を末端に有するアルケニル基で分子鎖末端が封鎖されたポリオキシプロピレン重合体等のポリオキシアルキレン重合体にシラノール基(SiOH基)及びヒドロシリル基(SiH基)を有するオルガノシラン、オルガノシロキサンオリゴマー等の有機ケイ素化合物を白金触媒存在下にヒドロシリル化することで製造することができる。また、他の製造方法としては、アリル基等のCH2=CH-構造を末端に有するアルケニル基を分子鎖末端が封鎖されたポリオキシプロピレン重合体等のポリオキシアルキレン重合体にクロロシリル基(SiCl基)及びヒドロシリル基(SiH基)を有するオルガノシラン、オルガノシロキサンオリゴマー等の有機ケイ素化合物を白金触媒存在下にヒドロシリル化し、次いでクロロシリル基を加水分解反応によりシラノール(SiOH)化することで製造することができる。
 なお、(A)成分及び(A’)成分の分子鎖末端が加水分解性シリル基及び/又はシラノール基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー(変成シリコーンポリマー)は、市販品を用いてもよく、例えば、ポリエーテル変成シリコーンポリマーとしては(株)カネカ製「MSポリマー」やWacker社(独)製「GENIOSIL(登録商標)(STP-E))」、ウレタン変成シリコーンポリマーとしてはWacker社(独)製「GENIOSIL(登録商標)(SPUR/STP-U)」などを使用してもよい。
 (A)成分及び(A’)成分の分子鎖末端が加水分解性シリル基及び/又はシラノール基で封鎖された有機ポリマーは、1種単独でも必要に応じて構造や重合度の異なる2種以上を組み合わせても使用することができる。また、(A)成分及び(A’)成分のオルガノポリシロキサンは、同じものを用いても異なったものを用いてもよい。
[(B)成分:加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物]
 本発明の二成分型室温速硬化性樹脂組成物に用いられる(B)成分は、下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物で、架橋剤(硬化剤)として用いられるものであり、加水分解によってシクロブタノンやシクロペンタノン等の環状ケトン化合物を脱離基(脱離物質)として放出するものであることを特徴とする。
 なお、本発明において「部分加水分解縮合物」とは、該加水分解性オルガノシラン化合物を部分的に加水分解・縮合して生成する、分子中に残存加水分解性基を3個以上、好ましくは4個以上有するオルガノシロキサンオリゴマーを意味する。
Figure JPOXMLDOC01-appb-C000011
(式中、R1は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
 上記一般式(1)において、R1は炭素数1~10、好ましくは炭素数1~6の一価炭化水素基であり、より好ましくは炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数6~10のアリール基又は炭素数7~10のアラルキル基であり、このR1としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等のアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基などを例示することができる。これらの中でも、メチル基、エチル基、ビニル基、フェニル基が好ましく、メチル基、ビニル基、フェニル基が特に好ましい。
 上記一般式(1)において、nは1~8の整数、好ましくは2~6の整数、より好ましくは2~4の整数、更に好ましくは2又は3である。nが0では環状構造とならない。nが9以上の整数となると、加水分解性オルガノシランの分子量が大きくなり、蒸留による精製が困難となったり、保存性を確保するのに必要な添加量が多くなったり、コスト的に不利になる。
 また、上述したとおり、mは3又は4である。この数が3未満である場合は架橋反応によるゴム硬化が起こらず、二成分型室温速硬化性樹脂組成物の架橋剤として不適である。
 また、上記一般式(1)で示される加水分解性オルガノシラン化合物の加水分解によって生じる脱離基(脱離化合物)は、シクロプロパノン、シクロブタノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロノナノン、シクロデカノンなどの環状ケトン化合物であり、好ましくはシクロブタノン、シクロペンタノンであり、更に好ましくはシクロペンタノンである。シクロブタノン、シクロペンタノンは人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がない。また、シクロペンタノンは、工業的に大量生産されており、入手も容易でコスト競争力が高いため、後述するように(B)成分の加水分解性オルガノシラン化合物の製造にも有利である。
 (B)成分の加水分解性オルガノシラン化合物は、例えば、生成物である一般式(1)で示される加水分解性オルガノシラン化合物に対応するクロロシラン化合物と環状ケトン化合物を触媒及び塩基性物質の存在下に反応(例えば脱塩酸反応)させることで製造できる。この反応式は、例えば下記式[1]で表される。
Figure JPOXMLDOC01-appb-C000012
(式中、R1、n、mは前記の通りである。)
 ここで、クロロシラン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000013
 また、環状ケトン化合物としては、下記に示すものが例示できる。
Figure JPOXMLDOC01-appb-C000014
 クロロシラン化合物と反応させる環状ケトン化合物の添加量は、クロロシラン化合物中の塩素原子数1モルに対して、0.95~3.0モルが好ましく、0.99~2.5モルがより好ましく、1.0~2.0モルが更に好ましい。環状ケトン化合物の添加量が少ないと反応が終結しないおそれがあり、環状ケトン化合物の添加量が多すぎると精製に時間がかかり、製造時間が増加してしまう場合がある。
 反応に使用する触媒としては、1価もしくは2価の金属銅化合物が挙げられ、例えば、塩化銅、臭化銅、ヨウ化銅、硫酸銅、硝酸銅、炭酸銅、塩基性炭酸銅、ギ酸銅、酢酸銅、酪酸銅などが例示できるがこれらに限られるものではない。
 触媒(金属銅化合物)の添加量としては、クロロシラン化合物1モルに対して0.001~0.5モルが好ましく、0.002~0.2モルがより好ましく、0.003~0.1モルが更に好ましい。触媒の添加量が少ないと反応が終結しないおそれがあり、触媒の添加量が多すぎるとコスト的に不利となる。
 反応に使用する塩基性物質としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、尿素、ジアザビシクロウンデセン、ジアザビシクロノネンなどの求核性の低い塩基性物質が使用できる。この中でもトリメチルアミン、トリエチルアミン、トリブチルアミンが好ましく、特にトリエチルアミンが好ましい。
 塩基性物質の添加量としては、クロロシラン化合物中の塩素原子数1モルに対して0.95~2.5モルが好ましく、0.99~2.0モルがより好ましく、1.0~1.5モルが更に好ましい。塩基性物質の添加量が少ないと反応が終結しないおそれがあり、塩基性物質の添加量が多すぎると経済的に不利である。
 (B)成分の加水分解性オルガノシラン化合物の製造には、一般に使用される溶剤を使用してもよく、溶剤としては、例えば、トルエン、キシレン、ベンゼン等の芳香族炭化水素類、ペンタン、ヘキサン、ヘプタン、ノナン、オクタン、デカンなどの脂肪族炭化水素類、ジメチルエーテル、メチルエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、パークロロエタン、パークロロエチレン、トリクロロエタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素、ジメチルホルムアミドなどのアミド類、酢酸エチル、酢酸メチル、酢酸ブチルなどのエステル類などの有機溶剤が挙げられる。
 溶剤の使用量としては特に限定されないが、通常、使用する環状ケトン化合物100質量部に対して、10~500質量部、好ましくは30~400質量部、より好ましくは50~300質量部の範囲で使用される。
 クロロシラン化合物と環状ケトン化合物との反応条件としては、通常、0~120℃、好ましくは0~100℃の温度下でクロロシラン化合物を環状ケトン化合物に滴下し、50~120℃、好ましくは60~100℃で1~48時間、更に好ましくは3~30時間程度反応させることが好ましい。反応時の温度が低すぎると反応が完結しない場合があり、反応時の温度が高すぎると生成物の着色が大きくなる場合がある。また、反応時間が短すぎると反応が完結しない場合があり、反応時間が長すぎると生産性に不利に働く。
 また、反応終了後の精製は減圧環境下で目的物を蒸留することで可能であり、減圧度は好ましくは1×10-5~3,000Pa、より好ましくは1×10-5~2,000Paであり、精製時の温度は好ましくは100~250℃、より好ましくは120~230℃である。減圧時の圧力(減圧度)が高すぎると蒸留が困難となる場合がある。また、精製時の温度が低すぎると、蒸留による精製が困難となる場合があり、高すぎると反応物の着色や分解を招くおそれがある。
 (B)成分の加水分解性オルガノシラン化合物の具体例としては、例えば、下記式で表されるものが挙げられる。なお、Meはメチル基を示す。
Figure JPOXMLDOC01-appb-C000015
 (B)成分は、1種単独で用いてもよく、2種以上を併用してもよい。
 (B)成分は第一剤に配合するものであり、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して1~30質量部であり、好ましくは2~25質量部である。(B)成分の配合量が少なすぎると組成物を硬化させる際に十分な架橋が得られず、多すぎると得られる硬化物(シリコーンゴム)の機械特性(ゴム物性)が低下し、経済的に不利となるという問題が発生する場合がある。
[(C)成分:硬化触媒]
 (C)成分の硬化触媒は、加水分解縮合反応を促進させるために使用され、一般的に硬化触媒と呼ばれるものである。これは湿気の存在下で硬化する室温硬化性シリコーン樹脂組成物に通常使用されている公知のものを使用することができる。
 (C)成分の硬化触媒のうち、非金属系有機触媒は特に制限されないが、縮合硬化型オルガノポリシロキサン組成物の硬化促進剤として公知のものを使用することができる。例えば、N,N,N’,N’,N'',N''-ヘキサメチル-N'''-(トリメチルシリルメチル)-ホスホリミディックトリアミド等のホスファゼン含有化合物;ベンジルトリエチルアンモニウムアセテート等の第4級アンモニウム塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン;γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン、γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルメチルジメトキシシラン、γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリス(トリメチルシロキシ)シラン等のグアニジル基を含有するシラン及びシロキサン等が挙げられる。また、非金属系有機触媒は1種単独で使用してもよく、2種以上を混合して使用してもよい。
 (C)成分の硬化触媒のうち、金属系触媒は特に制限されないが、縮合硬化型オルガノポリシロキサンの硬化触媒として公知のものを使用することができる。例えば、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジオクトエート、ジメチル錫ジネオデカノエート、ジオクチル錫ジネオデカノエート、ジ-n-ブチル-ジメトキシ錫等のアルキル錫エステル化合物(錫触媒);テトライソプロポキシチタン、テトラ-n-ブトキシチタン、テトラキス(2-エチルヘキソキシ)チタン、ジプロポキシビス(アセチルアセトナト)チタン、チタニウムイソプロポキシオクチレングリコール等のチタン酸エステル又はチタンキレート化合物;ナフテン酸亜鉛、ステアリン酸亜鉛、亜鉛-2-エチルオクトエート;アルミニウムイソプロピレート、アルミニウムセカンダリーブチレートなどのアルコレートアルミニウム化合物;アルミニウムアルキルアセテート・ジイソプロピレート、アルミニウムビスエチルアセトアセテート・モノアセチルアセトネート等のアルミニウムキレート化合物;ネオデカン酸ビスマス(III)、2-エチルヘキサン酸ビスマス(III)、クエン酸ビスマス(III)、オクチル酸ビスマス、鉄-2-エチルヘキソエート、コバルト-2-エチルヘキソエート、マンガン-2-エチルヘキソエート、ナフテン酸コバルト等の有機金属化合物;酢酸カリウム、酢酸ナトリウム、シュウ酸リチウム等のアルカリ金属の低級脂肪酸塩が挙げられる。金属系触媒はこれらに限定されない。金属系触媒は、1種単独で使用してもよく、2種以上を混合して使用してもよい。
 なお、本発明においては、上記触媒のうち、錫触媒以外のいずれの触媒を配合しても、錫触媒を配合した場合と同等の硬化性及び硬化物性能を示すことから、錫触媒を配合せずに他の触媒を配合することが環境保護の観点から好ましい。
 (C)成分は第一剤に配合するものであり、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.01~5質量部であり、0.05~4質量部が好ましく、更に0.1~3質量部が好ましい。(C)成分の配合量が0.01質量部未満であると良好な硬化性を得ることができないため、硬化速度が遅れる不具合を生じる。逆に、5質量部を超える量になると、組成物の硬化性が速すぎるため、組成物塗布後の作業時間の許容範囲が短くなったり、得られるゴムの機械特性が低下したりする。
[(D)成分:硬化促進剤]
 (D)成分は一級アミノ基(即ち、-NH2構造を有するアミノ基、ただし、グアニジル基を除く)を有する有機化合物で、必要に応じて配合できる任意成分であり、(B)成分が加水分解して生成する環状ケトン化合物と反応して水を生成し、組成物の深部硬化性を著しく向上させるものである。(D)成分としては、一級アミノ基を有するものであれば特に制限されないが、具体的にはメチルアミン、エチルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、ドデシルアミン等の脂肪族アミン;エチレンジアミン、トリエチレンテトラミン等の脂肪族ポリアミン;アニリン等の芳香族アミン;シクロペンチルアミン、シクロヘキシルアミン、2-エチルシクロヘキシルアミン等の環状アミン類;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-2-(アミノエチルアミノ)プロピルトリメトキシシラン[別名:N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン]等のアミノシラン等の一級アミノ基含有シランカップリング剤;及び一級アミノ基含有ポリシロキサン等の一級アミノ基含有有機ケイ素化合物等が例示される。これらは1種単独で用いてもよく、2種以上を併用してもよい。
 (D)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~5質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~4質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことがより好ましい。即ち、(D)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~10質量部であることが好ましく、0.1~5質量部であることがより好ましく、0.4~4質量部であることが更に好ましい。(D)成分の総添加量が0.1質量部未満の場合、(B)成分の加水分解によって生じる環状ケトン化合物と反応して生成する水の量が少なく、十分な深部硬化性が発現せず、10質量部を超えると得られる硬化物の特性や保存性の面から不利となる。
[(E)成分:無機質充填剤]
 本発明の二成分型室温速硬化性樹脂組成物には、必要に応じて(E)成分の無機質充填剤を任意成分として配合することができる。(E)成分の無機質充填剤は、本発明の二成分型室温速硬化性樹脂組成物にゴム物性を付与するための補強性、非補強性充填剤である。(E)成分の無機質充填剤としては、表面疎水化処理又は無処理の、焼成シリカ、煙霧質シリカ等の乾式シリカ、沈降性シリカ、ゾル-ゲル法シリカ等の湿式シリカなどのシリカ系充填剤、カーボンブラック、タルク、ベントナイト、表面処理又は無処理の炭酸カルシウム、炭酸亜鉛、炭酸マグネシウム、表面処理又は無処理の酸化カルシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、水酸化アルミニウム等が例示され、その中でも炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムが好ましく、より好ましくは無機質充填剤の表面が疎水化処理された、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック、酸化アルミニウムである。この場合、これら無機質充填剤は、水分量が少ないことが好ましい。
 なお、該表面処理剤(疎水化処理剤)の種類、量や処理方法等については特に制限はないが、代表的には、クロロシラン、アルコキシシラン、オルガノシラザン等の有機ケイ素化合物や、脂肪酸、パラフィン、シランカップリング剤、チタンカップリング剤等の処理剤が適用できる。
 (E)成分の無機質充填剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 (E)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~1,000質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~500質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことがより好ましい。即ち、(E)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~2,000質量部であることが好ましく、0.1~1,000質量部であることがより好ましく、1~500質量部であることが更に好ましい。2,000質量部よりも多量に使用すると、組成物の粘度が増大して作業性が悪くなるばかりでなく、硬化後のゴム強度が低下してゴム弾性が得難くなる。
[(F)成分:接着促進剤]
 (F)成分は接着促進剤であり、必要に応じて配合できる任意成分であり、本発明の二成分型室温速硬化性樹脂組成物から形成される硬化物に十分な接着性を与えるために使用される。接着促進剤としては公知のものが好適に使用され、官能性基含有加水分解性シラン等のシランカップリング剤(ただし、前記(B)成分、及び硬化促進剤(D)に記載の一級アミノ基含有シランカップリング剤を除く)、具体的には、ビニルシランカップリング剤、(メタ)アクリルシランカップリング剤、エポキシシランカップリング剤、メルカプトシランカップリング剤、イソシアネートシランカップリング剤などが例示され、具体的には、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が例示される。
 これらの中でも、特にγ-メタクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン類が好ましい。
 (F)成分を配合する場合、第一剤に配合しても、第二剤に配合しても、両方に配合してもよく、その配合量は、(A)成分及び(A’)成分の合計100質量部に対して、第一剤及び第二剤中にそれぞれ0~5質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ことが好ましく、0~3質量部とする(ただし、少なくとも第一剤、第二剤のいずれか一方に0.2質量部以上含有する)ことがより好ましい。即ち、(F)成分を配合する場合の組成物中における総配合量は、(A)成分及び(A’)成分の合計100質量部に対して0.1~10質量部であることが好ましく、0.1~5質量部であることがより好ましく、0.3~3質量部であることが更に好ましい。無機質充填剤及び被着体により接着促進剤を使用しなくても接着するときは、これを使用しなくてもよい。
[その他の成分]
 また、本発明の二成分型室温速硬化性樹脂組成物は、(A)、(A’)、(B)、(C)成分を必須成分とし、更に、(D)、(E)及び(F)成分を配合することが好ましい。その他、添加剤として、可塑剤、顔料、染料、老化防止剤、酸化防止剤、帯電防止剤、酸化アンチモン、塩化パラフィン等の難燃剤、防かび剤、抗菌剤など公知の添加剤を配合することができる。
 本発明の二成分型室温速硬化性樹脂組成物に添加可能な可塑剤としては、例えば、フタル酸ジメチル(DMP)、フタル酸ジエチル(DEP)、フタル酸ジ-n-ブチル(DBP)、フタル酸ジヘプチル(DHP)、フタル酸ジオクチル(DOP)、フタル酸ジイソノニル(DINP)、フタル酸ジイソデシル(DIDP)、フタル酸ジトリデシル(DTDP)、フタル酸ブチルベンジル(BBP)、フタル酸ジシクロヘキシル(DCHP)、テトラヒドロフタル酸エステル、アジピン酸ジオクチル(DOA)、アジピン酸ジイソノニル(DINA)、アジピン酸ジイソデシル(DIDA)、アジピン酸ジ-n-アルキル、ジブチルジグリコールアジペート(BXA)、アゼライン酸ビス(2-エチルヘキシル)(DOZ)、セバシン酸ジブチル(DBS)、セバシン酸ジオクチル(DOS)、マレイン酸ジブチル(DBM)、マレイン酸ジ-2-エチルヘキシル(DOM)、フマル酸ジブチル(DBF)、リン酸トリクレシル(TCP)、トリエチルホスフェート(TEP)、トリブチルホスフェート(TBP)、トリス(2-エチルヘキシル)ホスフェート(TOP)、トリ(クロロエチル)ホスフェート(TCEP)、トリスジクロロプロピルホスフェート(CPP)、トリブトキシエチルホスフェート(TBXP)、トリス(β-クロロプロピル)ホスフェート(TMCPP)、トリフェニルホスフェート(TPP)、オクチルジフェニルホスフェート(ODP)、クエン酸アセチルトリエチル、アセチルクエン酸トリブチルなどがあり、その他にはトリメリット酸系可塑剤、ポリエステル系可塑剤、塩素化パラフィン、ステアリン酸系可塑剤など、更に直鎖状ジメチルポリシロキサン等のシリコーンオイル(無官能性オルガノポリシロキサン)、ポリオキシプロピレングリコール、アクリルレジン、アクリルポリマー、パラフィン系、ナフテン系、イソパラフィン系等の石油系高沸点溶剤などが挙げられる。これらは1種単独で又は2種以上組み合わせて用いられる。
 また、本発明の二成分型室温速硬化性樹脂組成物には、必要に応じて有機溶剤を用いてもよい。有機溶剤としては、n-ヘキサン、n-ヘプタン、イソオクタン、イソドデカンなどの脂肪族炭化水素系化合物;トルエン、キシレンなどの芳香族炭化水素系化合物;ヘキサメチルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、ドデカメチルペンタシロキサン、2-(トリメチルシロキシ)-1,1,1,2,3,3,3-ヘプタメチルトリシロキサンなどの直鎖状又は分岐鎖状シロキサンオリゴマー;オクタメチルシクロペンタシロキサン、デカメチルシクロペンタシロキサンなどの環状シロキサンオリゴマーなどが挙げられる。有機溶剤の量は本発明の効果を妨げない範囲で適宜調製すればよい。
[二成分型室温速硬化性樹脂組成物の調製]
 本発明の二成分型室温速硬化性樹脂組成物は、(A)成分、(B)成分及び(C)成分を含有してなる第一剤と、(A’)成分を含有してなり、(B)成分、(C)成分を含有しない第二剤とからなるものである。上記第一剤と第二剤とからなる二成分型の組成物とすることにより、速硬化性、深部硬化性に優れる。これは、上記の第一剤と第二剤とに分けて保存する際に、(B)成分の架橋剤をベースポリマー全体のうち第一剤中の(A)成分とのみ共存させることによって、一成分型の室温硬化性樹脂組成物よりも、貯蔵安定性確保のために必要な架橋剤の量をベースポリマー全体(即ち、二成分を混合した後のベースポリマーの合計量)の架橋に必要十分な最少量近くまで減らすことができるため、一成分型の室温硬化性樹脂組成物よりも相対的に硬化反応が速く進行し、即ち硬化性(速硬化性、深部硬化性)が向上するためと考えられる。更に好適には、硬化促進剤として一級アミノ基を有する有機化合物を添加することで、二成分混合後、硬化初期に(B)成分が加水分解することによって生じる環状ケトン化合物と、(D)成分の一級アミノ基を有する有機化合物とがケチミン反応して系内で水を生成することで更に加水分解・縮合反応が促進されることから、一成分型室温硬化性樹脂組成物と同様に硬化性(速硬化性、深部硬化性)が向上するものと推定される。
 第一剤は、(A)成分、(B)成分及び(C)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の一部又は全部とを常法に従い混合することによって調製できる。また、第二剤は、(A’)成分の全部と、必要により(D)、(E)、(F)成分及びその他の成分の残部又は全部とを常法に従い乾燥雰囲気中において均一に混合することによって調製できる。
 第一剤に配合する(A)成分と第二剤に配合する(A’)成分との配合割合は、(A)成分10~90質量部に対して(A’)成分90~10質量部(合計で100質量部)であり、好ましくは(A)成分30~70質量部に対して(A’)成分70~30質量部(合計で100質量部)である。
 また、任意成分である(D)、(E)、(F)成分及びその他の成分は、第一剤と第二剤のどちらに配合してもよく、どちらか一方に配合しても両方に配合してもよいが、特には、第一剤に(D)、(E)、(F)成分を配合し、第二剤に(D)、(E)成分を配合することが好ましい。
 ここで、(D)成分を第一剤と第二剤に配合する場合、この割合としては、第一剤と第二剤に質量比で1:99~99:1、特に15:85~70:30となるように配合することが、組成物の保存安定性の点から好ましい。
 また、(E)成分を第一剤と第二剤に配合する場合、この割合としては、第一剤と第二剤に質量比で80:20~20:80、特に60:40~40:60となるように配合することが、混合する際の組成物の均一性(混ざり易さ)の点から好ましい。
 第一剤と第二剤の割合としては、第一剤(全体)と第二剤(全体)が質量比で1:1~10:1、特に1:1~4:1となるように配合することが作業性や第一剤と第二剤を混合する際の組成物の均一性(混ざり易さ)の点から好ましい。
 本発明の二成分型室温速硬化性樹脂組成物は、上記のようにして製造された第一剤及び第二剤を、湿気を避けた雰囲気下で保存することができる。
[二成分型室温速硬化性樹脂組成物の硬化方法]
 本発明の二成分型室温速硬化性樹脂組成物は、これらを適する比率、具体的には第一剤と第二剤との割合が質量比で1:1~10:1、特には1:1~4:1で混合することにより、通常、室温環境(温度23℃±15℃、湿度50%RH±5%RH)で放置することにより10分~5日で硬化するが、その成形方法、硬化条件などは、組成物の種類に応じた公知の方法、条件を採用することができる。
 本発明の二成分型室温速硬化性樹脂組成物は、速硬化性を有するものであって、23℃,50%RHで厚さ2mmのシート状に成型する条件の場合、通常は7日~10日で硬化するものが、60分~3日と短時間で硬化するものである。
 また、本発明の二成分型室温速硬化性樹脂組成物は、深部硬化性を有するものであって、23℃,50%RHで内径が10mm、深さが3mmのガラスシャーレで硬化させる条件の場合、通常は5時間で硬化するものが、60分程度と短時間で深部まで硬化するものである。
 本発明の二成分型室温速硬化性樹脂組成物は、硬化時の加水分解反応によって架橋剤から発生する化合物が安全性の高いシクロブタノンやシクロペンタノン等の環状ケトン化合物であり、人体、環境に配慮されているものである。更に、シクロペンタノンでは、引火点が35℃と、組成物の硬化時にメタノール等のアルコール化合物を放出する脱アルコール型のものよりも引火点が高く、安全性の高いものである。このような本発明の二成分型室温速硬化性樹脂組成物は、既存の様々な触媒を使用することで良好な硬化性を示し、その硬化物は接着性にも優れる。
 そのため、本発明の二成分型室温速硬化性樹脂組成物は、接着剤、シーリング剤、ポッティング剤、又はコーティング剤等として有用である。本発明の二成分型室温速硬化性樹脂組成物を接着剤、シーリング剤、ポッティング剤、又はコーティング剤として使用する方法は、従来公知の方法に従えばよい。
 対象となる物品としては、例えば、自動車用部品、電気・電子用部品、建築用構造物、土木工事用構造物等が挙げられる。
 以下、本発明を具体的に説明する合成例、実施例及び比較例を示すが、本発明は下記実施例に制限されるものではない。粘度はJIS Z-8803に規定する方法に準じた23℃における回転粘度計による測定値である。分子量はテトラヒドロフランを展開溶媒としたGPC分析におけるポリスチレン換算の数平均分子量として求めた測定値である。
 なお、実施例及び比較例はすべて適切な混合機として、プラネタリミキサー((株)井上製作所製)を用いた。
[合成例1]
<分子鎖両末端シラノール基含有ポリオキシプロピレンの合成>
 攪拌機、還流冷却管、温度計及び滴下ロートを備えた1Lの四つ口セパラブルフラスコに、数平均分子量23,000の分子鎖両末端アリル基封鎖ポリオキシプロピレン600g(末端アリル基の官能基換算0.058モル)、及び白金触媒(カールステッド触媒のトルエン溶液;白金濃度1質量%)2.4gを入れ、加熱攪拌しながら、温度を90℃まで上げた。
 次いで、攪拌下で、1-ヒドロキシ-オクタメチルテトラシロキサン(即ち、1-ヒドロキシ-7-ハイドロジェン-1,1,3,3,5,5,7,7-オクタメチルテトラシロキサン)19.6g(末端Si-Hの官能基量0.066モル)を滴下し、反応温度を90~95℃として6時間、この反応系を保持した。反応終了後、室温(23℃)まで冷却し、分子鎖両末端シラノール基含有ポリオキシプロピレン(分子鎖両末端が-(CH23-[Si(Me)2O]4-Hで封鎖され、主鎖がポリオキシプロピレンである分子鎖両末端シラノール基含有ポリオキシアルキレン化合物(前記式(3)において、R2=メチル基、R3=水素原子、a=3、c=4、Y=ポリオキシプロピレン基))570g(収率92%、粘度24,000mPa・s、数平均分子量;24,000)を得た。
[合成例2]
<ビニルトリス(1-シクロペンテン-1-イルオキシ)シランの合成>
 機械攪拌機、温度計、還流管及び滴下ロートを備えた5,000mLの四つ口セパラブルフラスコに、シクロペンタノン834g(9.9mol)、トリエチルアミン825g(8.2mol)、塩化銅(I)5g(0.05mol)、及びヘキサン1,500mlを仕込み、40~60℃の範囲でビニルトリクロロシラン400g(2.47mol)を約2時間かけて滴下した。その後、80℃で12時間攪拌後、生成したトリエチルアミン塩酸塩を濾過して取り除き、ろ液から100℃、常圧の条件でヘキサンを留去したのち、180℃、300Paの条件で蒸留することでビニルトリス(1-シクロペンテン-1-イルオキシ)シランを得た(収量532g、収率69%)。この反応式は、下記式[2]で表される。
Figure JPOXMLDOC01-appb-C000016
[実施例1]
第一剤aの調製
 ((A)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、((B)成分)ビニルトリス(1-シクロペンテン-1-イルオキシ)シラン7質量部と、((C)成分)γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン0.8質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン1質量部を減圧下にて均一に混合して第一剤aを調製した。
第二剤aの調製
 ((A’)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部を減圧下にて均一に混合して第二剤aを調製した。
 上記第一剤aと第二剤aを混合比(質量比)1:1で均一に混合して組成物1を製造した後、該組成物1を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物1-1、1-2を得た。
[実施例2]
第二剤bの調製
 ((A’)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、((D)成分)オクチルアミン4質量部を減圧下にて均一に混合して第二剤bを調製した。
 実施例1と同様にして調製した第一剤aと上記第二剤bを混合比(質量比)1:1で均一に混合して組成物2を製造した後、該組成物2を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物2-1、2-2を得た。
[実施例3]
第一剤bの調製
 ((A)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、((B)成分)ビニルトリス(1-シクロペンテン-1-イルオキシ)シラン7質量部と、((C)成分)γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン0.8質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン1質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン1質量部を減圧下にて均一に混合して第一剤bを調製した。
 上記第一剤bと実施例2と同様にして調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物3を製造した後、該組成物3を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物3-1、3-2を得た。
[実施例4]
第一剤cの調製
 ((A)成分)カネカMSポリマーS303H(分子鎖両末端ジメトキシ(メチル)シリルプロピル基封鎖ポリオキシプロピレン(前記一般式(2)において、R2=R4=メチル基、R3=水素原子、a=3、b=2、Y=ポリオキシプロピレン基)、(株)カネカ製、数平均分子量;17,500)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、((B)成分)ビニルトリス(1-シクロペンテン-1-イルオキシ)シラン7質量部と、((C)成分)γ-(N,N,N’,N’-テトラメチルグアニジル)プロピルトリメトキシシラン0.8質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン1質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン1質量部を減圧下にて均一に混合して第一剤cを調製した。
 上記第一剤cと実施例2と同様にして調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物4を製造した後、該組成物4を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物4-1、4-2を得た。
[比較例1]
第一剤dの調製
 ((A)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、(上記(B)成分の代わりとして)ビニルトリメトキシシラン5質量部と、((C)成分)ジオクチル錫ジラウレート0.1質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン1質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン1質量部を減圧下にて均一に混合して第一剤dを調製した。
 上記第一剤dと実施例2と同様にして調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物5を製造した後、該組成物5を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物5-1、5-2を得た。
[比較例2]
第一剤eの調製
 ((A)成分)合成例1で合成した分子鎖両末端シラノール基含有ポリオキシプロピレン(粘度24,000mPa・s、数平均分子量;24,000)100質量部と、((E)成分)BET比表面積が130m2/gの乾式シリカ(煙霧質シリカ)10質量部と、(上記(B)成分の代わりとして)ビニルトリス(メチルエチルケトオキシム)シラン7質量部と、((C)成分)ジオクチル錫ジラウレート0.1質量部と、((D)成分)γ-アミノプロピルトリメトキシシラン1質量部と、((F)成分)γ-グリシドキシプロピルトリメトキシシラン1質量部を減圧下にて均一に混合して第一剤eを調製した。
 上記第一剤eと実施例2と同様にして調製した第二剤bを混合比(質量比)1:1で均一に混合して組成物6を製造した後、該組成物6を厚さが2.5mmになるように基材上に塗布した。その後、23℃,50%RH条件下で、1日間及び3日間それぞれ静置して硬化させ、硬化物6-1、6-2を得た。
[試験方法]
 上記実施例1~4及び比較例1、2で調製した各組成物を用いて、下記に示す方法により、硬化性、ゴム物性、接着性を評価した。
[硬化性]
 実施例1~4及び比較例1、2で調製した各組成物を用いて、JIS A-5758に規定する方法に準じてタックフリータイム(指触乾燥時間)を測定した。
 また、内径が10mmのガラスシャーレに実施例1~4及び比較例1、2で調製した各組成物を充填し、23℃,50%RHで60分後に空気に触れた表面部分から硬化した部分までの厚さを測定し、深部硬化性を評価し、60分後に深部硬化性を測定可能なものを合格とした。
[ゴム物性]
 実施例1~4及び比較例1、2で調製した調製直後の各組成物を厚さ2mmのシート状に押し出し、23℃,50%RHの空気に曝し、次いで、該シートを同じ雰囲気下に1日間又は3日間放置して得た硬化物のゴム物性(硬さ、切断時伸び、引張強さ)を、JIS K-6249に準拠して測定した。なお、硬さは、JIS K-6249のデュロメーターA硬度計を用いて測定した。
[接着性]
 実施例1~4及び比較例1、2で調製した組成物より、幅25mm、長さ100mmのアルミニウムを被着体として、被着体同士を、上記組成物を用いて、各試験片の接着面積2.5mm2、接着厚さ1mmで接着したせん断(シア)接着試験体を作製し、23℃,50%RHで1日間又は3日間養生した後、これらの試験体を用いてアルミニウムに対するせん断接着力をJIS K-6249に規定する方法に準じて測定した。
 実施例1~4の試験結果を表1に、比較例1、2の試験結果を表2に示す。また、硬化時に硬化剤から脱離する化合物、及び該化合物の健康有害性、環境有害性の有無について表1、2に併記する。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 上記の結果より、本発明の二成分型室温速硬化性樹脂組成物(実施例1~4の組成物)は、深部硬化性に優れ、1日硬化と3日硬化でゴム物性、接着強度の差が小さいことから、従来の脱アルコール型(比較例1の組成物)、脱オキシム型(比較例2の組成物)の硬化形態と比較して、高い硬化性を有することが分かる。
 また、実施例の組成物が硬化中に放出する化合物は、シクロペンタノンであり、人体に対しての発がん性や生殖毒性など健康有害性、水生生物毒性など環境有害性の報告例がなく安全性の高い化合物である。一方で、比較例の組成物が硬化中に放出する化合物はいずれもSDS(安全データシート)等で健康有害性が表示されており、発がん性のおそれ、水生生物への毒性を有する2-ブタノンオキシム、劇物に指定され、人体に強い有害性を有しているメタノールである。また、メタノールは、シクロペンタノンと比較して引火点や沸点が低いことからも、本発明の二成分型室温速硬化性樹脂組成物は、人体の健康や安全、環境保護の観点からより優れていることが分かる。

Claims (18)

  1.  (A)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー:10~90質量部(ただし、(A)成分及び下記(A’)成分の合計は100質量部である。)、
    (B)下記一般式(1)で示される加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物:(A)成分及び(A’)成分の合計100質量部に対して1~30質量部、及び
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素数1~10の一価炭化水素基であり、nは1~8の整数であり、mは3又は4である。)
    (C)硬化触媒:(A)成分及び(A’)成分の合計100質量部に対して0.01~5質量部
    を含有してなる第一剤と、
    (A’)分子鎖末端が加水分解性シリル基及び/又はヒドロキシシリル基で封鎖された、ポリマー主鎖にオルガノポリシロキサン構造を含まない有機ポリマー:10~90質量部(ただし、(A)成分及び(A’)成分の合計は100質量部である。)
    を含有してなる第二剤と
    からなるものである二成分型室温速硬化性樹脂組成物。
  2.  更に、(D)硬化促進剤:一級アミノ基を有する有機化合物を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~5質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1に記載の二成分型室温速硬化性樹脂組成物。
  3.  (B)成分の加水分解性オルガノシラン化合物及び/又はその部分加水分解縮合物が、加水分解によって環状ケトン化合物を脱離するものである請求項1に記載の二成分型室温速硬化性樹脂組成物。
  4.  脱離する環状ケトン化合物が、シクロブタノン又はシクロペンタノンである請求項3に記載の二成分型室温速硬化性樹脂組成物。
  5.  (A)成分及び(A’)成分の有機ポリマーの数平均分子量が2,000~50,000である請求項1に記載の二成分型室温速硬化性樹脂組成物。
  6.  (C)硬化触媒が、錫触媒を含有しないものである請求項1に記載の二成分型室温速硬化性樹脂組成物。
  7.  更に、(E)無機質充填剤を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~1,000質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1に記載の二成分型室温速硬化性樹脂組成物。
  8.  (E)成分が、炭酸カルシウム、煙霧質シリカ、沈降性シリカ、カーボンブラック及び酸化アルミニウムから選ばれる1種又は2種以上の無機質充填剤である請求項7に記載の二成分型室温速硬化性樹脂組成物。
  9.  更に、(F)接着促進剤を、(A)成分及び(A’)成分の合計100質量部に対して第一剤及び第二剤中にそれぞれ0~5質量部含有する(ただし、少なくとも第一剤、第二剤のいずれか一方に0.1質量部以上含有する)ものである請求項1に記載の二成分型室温速硬化性樹脂組成物。
  10.  第一剤と第二剤との配合割合が質量比で1:1~10:1である請求項1に記載の二成分型室温速硬化性樹脂組成物。
  11.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物の硬化物を有する自動車用部品。
  12.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物の硬化物を有する電気・電子用部品。
  13.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物の硬化物を有する建築用構造物。
  14.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物の硬化物を有する土木工事用構造物。
  15.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物を含有する接着剤。
  16.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物を含有するシーリング剤。
  17.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物を含有するポッティング剤。
  18.  請求項1~10のいずれか1項に記載の二成分型室温速硬化性樹脂組成物を含有するコーティング剤。
PCT/JP2023/024712 2022-07-14 2023-07-04 二成分型室温速硬化性樹脂組成物及び物品 WO2024014350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022112829 2022-07-14
JP2022-112829 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014350A1 true WO2024014350A1 (ja) 2024-01-18

Family

ID=89536579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024712 WO2024014350A1 (ja) 2022-07-14 2023-07-04 二成分型室温速硬化性樹脂組成物及び物品

Country Status (1)

Country Link
WO (1) WO2024014350A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118531A (ja) * 1993-10-25 1995-05-09 Shin Etsu Chem Co Ltd 室温速硬化性オルガノポリシロキサン組成物
JPH11246768A (ja) * 1997-12-23 1999-09-14 Dow Corning Corp 迅速硬化のアルコキシ官能性自然加硫組成物
JP2001303024A (ja) * 2000-04-25 2001-10-31 Three Bond Co Ltd 室温速硬化型シール剤組成物及びその硬化方法
WO2022113437A1 (ja) * 2020-11-26 2022-06-02 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法
WO2023127675A1 (ja) * 2021-12-27 2023-07-06 信越化学工業株式会社 室温硬化性樹脂組成物及び物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118531A (ja) * 1993-10-25 1995-05-09 Shin Etsu Chem Co Ltd 室温速硬化性オルガノポリシロキサン組成物
JPH11246768A (ja) * 1997-12-23 1999-09-14 Dow Corning Corp 迅速硬化のアルコキシ官能性自然加硫組成物
JP2001303024A (ja) * 2000-04-25 2001-10-31 Three Bond Co Ltd 室温速硬化型シール剤組成物及びその硬化方法
WO2022113437A1 (ja) * 2020-11-26 2022-06-02 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法
WO2023127675A1 (ja) * 2021-12-27 2023-07-06 信越化学工業株式会社 室温硬化性樹脂組成物及び物品

Similar Documents

Publication Publication Date Title
KR20100103411A (ko) 접착 촉진제 및 경화성 수지 조성물
KR102619534B1 (ko) 실온 경화성 조성물, 실링재, 및 물품
JP2018087348A (ja) 室温硬化性組成物、シーリング材及び物品
KR101914399B1 (ko) 가교결합성 유기 폴리실록산 조성물
WO2022113437A1 (ja) 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法
WO2020189463A1 (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
WO2022163436A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品
WO2022009759A1 (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物、該組成物の硬化物及び物品
WO2023127675A1 (ja) 室温硬化性樹脂組成物及び物品
JP3916403B2 (ja) 自動車用室温硬化性シール材組成物
US6710119B2 (en) Room temperature rapid curing organopolysiloxane composition
JP7300993B2 (ja) 室温硬化性組成物、シーリング材及び物品
JP2017031303A (ja) オルガノポリシルメチレンシロキサン組成物
WO2024014350A1 (ja) 二成分型室温速硬化性樹脂組成物及び物品
CN106795182B (zh) 有机钛化合物、该有机钛化合物的制造方法以及室温固化性树脂组合物
WO2020226076A1 (ja) 室温硬化性オルガノポリシロキサン組成物、シリコーンゴム及び物品
CN109485672B (zh) 固化催化剂、湿气固化型室温固化性有机聚硅氧烷组合物和成型体
JP2023026886A (ja) 二成分型室温速硬化性オルガノポリシロキサン組成物及び物品
WO2023032745A1 (ja) オルガノポリシロキサン化合物、室温硬化性オルガノポリシロキサン組成物、及び物品
JP2024031517A (ja) 室温硬化性オルガノポリシロキサン組成物及びその製造方法並びに物品
JP2711613B2 (ja) 室温硬化性組成物
JP2022111452A (ja) 室温硬化性樹脂組成物、コーティング剤、接着剤及びシーリング剤、並びに物品
JP2023161342A (ja) 室温硬化性オルガノポリシロキサン組成物及び物品
WO2020162132A1 (ja) 耐シリコーンオイル性に優れた室温硬化性組成物、及び自動車用クーラントシール材
JP2022001611A (ja) 室温硬化性オルガノポリシロキサン組成物及び物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839522

Country of ref document: EP

Kind code of ref document: A1