WO2022163404A1 - 繊維強化プラスチックおよびその製造方法 - Google Patents

繊維強化プラスチックおよびその製造方法 Download PDF

Info

Publication number
WO2022163404A1
WO2022163404A1 PCT/JP2022/001373 JP2022001373W WO2022163404A1 WO 2022163404 A1 WO2022163404 A1 WO 2022163404A1 JP 2022001373 W JP2022001373 W JP 2022001373W WO 2022163404 A1 WO2022163404 A1 WO 2022163404A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced plastic
fibers
resin
reinforcing fibers
Prior art date
Application number
PCT/JP2022/001373
Other languages
English (en)
French (fr)
Inventor
水沼隼
金子隆行
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2022505201A priority Critical patent/JPWO2022163404A1/ja
Publication of WO2022163404A1 publication Critical patent/WO2022163404A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/14Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles oriented

Definitions

  • the present invention is a fiber-reinforced plastic having a plate-like portion and a protrusion protruding from at least one side of the plate-like portion, wherein the plate-like portion and the protrusion are composed of a large number of reinforcing fibers and the large number of reinforcing fibers. It relates to a fiber reinforced plastic formed with a matrix resin integrated with a.
  • Fiber reinforced plastics which consist of reinforced fibers and matrix resins, have high specific strength and specific modulus, excellent mechanical properties, and highly functional properties such as weather resistance and chemical resistance. It is expected to be used in a wide range of fields such as information communication, and is attracting attention.
  • methods for molding fiber-reinforced plastic include the following.
  • a method of manufacturing fiber-reinforced plastics with high-performance characteristics continuous reinforcing fiber sheets or fabrics called prepregs are impregnated with a matrix resin in a semi-cured state, laminated, and
  • autoclave molding in which the matrix resin of thermosetting resin is cured by applying heat and pressure in an autoclave to mold fiber reinforced plastic.
  • press molding in which a laminate of the above-mentioned prepregs is put into a mold, heated and pressurized with a press to cure a matrix resin of a thermosetting resin, and molded.
  • press molding there is also molding in which a matrix resin of a thermoplastic resin is softened or melted, molded, and then cooled and removed from the mold.
  • a matrix resin of a thermoplastic resin is softened or melted, molded, and then cooled and removed from the mold.
  • press molding it is possible to mass-produce molded products in a short time by using a prepreg impregnated with reinforcing fibers using a thermosetting resin with a fast curing speed as a matrix resin, making it a highly productive molding method. has attracted attention in recent years.
  • the cross section of the desired fiber reinforced plastic is formed into a plate-shaped portion or a rib-shaped portion.
  • a method of subdividing, molding each portion separately, and then joining them with an adhesive or heat-sealing is possible.
  • the bonding process is laborious and costly, and the strength and rigidity of the joint is lower than that of the fiber-reinforced plastic part, so the joint breaks before the fiber-reinforced plastic. It was difficult to fully exhibit the mechanical properties and durability.
  • the shaping process takes a long time, and production efficiency and cost have been a problem.
  • the matrix resin is a thermosetting resin
  • press molding using SMC (sheet molding compound) or BMC (bulk molding compound) can be used
  • the matrix resin is a thermoplastic resin
  • injection molding can be used.
  • SMC and BMC uneven distribution and orientation of reinforcing fibers inevitably occur in the manufacturing process, and there is a problem that the mechanical properties of the molded product deteriorate or the variation in the physical properties increases. rice field.
  • Patent Document 1 discloses a method for manufacturing a molded product with ribs based on press molding. The manufacturing method is intended to fill the ribs with the fibers by cutting the fibers at the rib portion and allowing the cut ends of the fibers to flow into the tips of the ribs during molding.
  • the fibers are cut only at the rib portion, since the fibers are not cut at the portion other than the rib portion, the fibers are restrained as a whole, and the actual situation is that it is difficult to fill the fibers to the tip of the rib.
  • the rigidity in the direction in which the rib is formed (the direction of the height of the rib) is improved, but The rigidity in the direction perpendicular to the height direction) depends on the rigidity of the resin alone because the fibers are cut. case arises.
  • Patent Document 2 discloses a technique for reducing the deformation resistance of the prepreg base material and improving the strength of the fiber-reinforced plastic by devising the length, angle, and interval of the cuts. It is
  • Patent Document 3 in order to solve the problem of Patent Document 1, at least two or more prepreg base materials adjusted to have a fiber length of 10 to 100 mm by inserting cuts are laminated and press-molded.
  • a method for producing a fiber-reinforced plastic has been proposed in which a rib shape is formed by doing so.
  • the elongation of the base material and the fluidity of the fiber are different between the direction of the fibers and the direction perpendicular to the fibers.
  • the rib portion of the mold may be “unfilled” in which fibers or resin are not filled, or “resin-rich” in which only resin is squeezed out of the prepreg.
  • the fibers since the fibers flow in the direction in which they are easy to flow, the fibers are uneven and disordered, resulting in irregularities on the surface of the molded product. Light striped patterns (moire) were generated, and surface smoothness and appearance quality were sometimes impaired.
  • Patent Document 4 discloses a manufacturing method for obtaining surface smoothness in SMC molding.
  • a plurality of sheet-like prepregs in which a reinforcing fiber material is impregnated with a resin are laminated, and a base material not impregnated with a resin is interposed between the prepreg layers to prevent resin shrinkage in the thickness direction. It is possible to suppress irregularities on the surface of the molded product and obtain surface smoothness.
  • the undulation of the reinforcing fibers due to the fluidity of the resin is also suppressed, there is also an effect of suppressing the occurrence of unevenness on the surface of the molded product and obtaining a smooth surface.
  • JP-A-63-087206 Japanese Patent No. 6597309 Japanese Patent No. 5315692 JP 2008-246981 A
  • An object of the present invention is to improve the problems of the prior art and to provide a fiber-reinforced plastic having protrusions that not only have excellent mechanical properties but also excellent appearance quality.
  • a fiber-reinforced plastic having a plate-like portion and at least one protrusion protruding from at least one side surface of the plate-like portion, wherein at least inside the plate-like portion, a large number of reinforcing fibers are arranged in a matrix.
  • a fiber-reinforced plastic comprising at least one layer arranged in one direction in the resin, wherein the orientation direction of the reinforcing fibers is neither parallel nor perpendicular to the width direction of the cross section of the protrusion.
  • At least a part of the plate-shaped portion has a structure in which at least two layers in which the reinforcing fibers are arranged in one direction are laminated, and the orientation direction of the reinforcing fibers in the two layers is arbitrarily selected.
  • the fiber-reinforced plastics according to (1) above which are not parallel to each other.
  • the fiber-reinforced plastic according to (1) or (2), wherein the projection has a shape extending in at least two different directions when viewed from the top of the fiber-reinforced plastic.
  • the fiber-reinforced plastic is provided with two or more protrusions when viewed from above, and the extending directions of the two arbitrarily selected protrusions are not parallel to each other.
  • the fiber-reinforced plastic according to (2) is or the fiber-reinforced plastic according to (2).
  • the fiber-reinforced plastic according to (7) The plate-shaped part has a plurality of layers of reinforcing fibers and has a protrusion only on one side surface, and the layers other than the surface layer constituting the one side surface have reinforcing fibers in a non-unidirectional direction.
  • the fiber-reinforced plastic according to any one of (1) to (6), characterized in that: (8) A preform in which prepregs in which a large number of reinforcing fibers are impregnated with a matrix resin are laminated is placed in a heated mold, and the mold is closed and pressurized to form a plate-like portion and the plate-like portion.
  • the preform is configured by arranging the unidirectional prepreg on one surface layer and arranging a non-unidirectional reinforcing fiber sheet in which the direction of the reinforcing fibers is non-unidirectional in a layer other than the surface layer. , by closing the mold and applying pressure, the matrix resin impregnated in the unidirectional prepreg is impregnated into the non-unidirectional reinforcing fiber sheet to form a non-unidirectional layer,
  • the method for producing a fiber-reinforced plastic according to (8) above. (10) The method for producing a fiber-reinforced plastic according to (9), wherein the non-unidirectionally reinforced fiber sheet is a woven fabric or a non-woven fabric.
  • the plate-shaped portion has at least one layer in which a large number of reinforcing fibers are arranged in one direction in the matrix resin, and the orientation direction of the reinforcing fibers is the width in the cross section of the protrusion. Characterized by being neither parallel nor perpendicular to the direction. When the orientation direction of the reinforcing fibers is parallel to the width direction, it means that the fibers are less likely to flow into the grooves of the mold during molding, and the resin tends to become rich or unfilled.
  • the orientation direction of the reinforcing fibers is parallel to the width direction, the fibers tend to flow into the grooves of the mold during molding and the fibers fill the projections, but the fibers on the design surface do not fill the projections. It means that a dent is likely to occur by being drawn in. Moreover, the protrusions are likely to break in the direction of the fibers, making it difficult to obtain sufficient mechanical properties.
  • the above configuration can suppress the occurrence of "unfilled” fibers or resin and "resin-rich" in the protrusions, and at the same time, improve appearance quality and mechanical properties.
  • FIG. 2 is a conceptual diagram showing an example of protrusions and plate-like portions that constitute the fiber-reinforced plastic according to the present invention.
  • FIG. 2 is an explanatory diagram showing definitions of fiber length, cut length, angle, and projected length in cut-inserted prepreg. It is an example of the cut pattern of the incision insertion prepreg (an example with parallel and continuous incisions).
  • Fig. 10 is another example of a cut pattern of a cut-insertion prepreg (an example with parallel and intermittent cuts).
  • Another example of the cut pattern of the incision insertion prepreg an example in which the angle with the reinforcing fiber is constant and the number of positive and negative incisions is approximately half each).
  • FIG. 4 is a schematic diagram showing the presence or absence and height of twist on the surface of the fiber-reinforced plastic (the surface opposite to the surface having projections).
  • FIG. 2 is a conceptual diagram showing orientation directions of reinforcing fibers in a protrusion and a plate-like portion that constitute fiber-reinforced plastic.
  • FIG. 10 is a schematic diagram showing an example of the shape of a protrusion raised from a plate-like portion;
  • the fiber-reinforced plastic of the present invention is obtained using a prepreg in which a large number of reinforcing fibers are impregnated with a matrix resin.
  • a prepreg in which a large number of reinforcing fibers are impregnated with a matrix resin.
  • FIG. It is a fiber reinforced plastic having a shape having at least one protruding portion 200 protruding from at least one surface of the .
  • At least one layer is arranged, and the fiber orientation direction of the unidirectional prepreg is neither parallel nor perpendicular to the width direction (longitudinal direction) in the cross section of the protrusion 200 .
  • the width direction (longitudinal direction) in the cross section of the protrusion is the maximum length in the direction parallel to the planar direction of the plate-like portion when the protrusion is measured from the side surface direction of the plate-like portion.
  • a cross section is called a cross section, and refers to a direction parallel to the planar direction of the plate-like portion in the cross section. If the protrusion extends in two different directions, for example, the cross section is determined based on the protrusion extending in one direction.
  • not parallel or perpendicular means that the cross section of the protrusion may be oblique to the width direction. That is, for example, in (A) to (C) of FIG. 8, the reinforcing fibers constituting the unidirectional prepreg extend in the longest direction of the projection (rib direction, depth direction of the paper surface) or in a direction orthogonal thereto.
  • FIG. 8A shows a mode in which the reinforcing fibers 300 are parallel to the width direction (longitudinal direction, rib direction) in the cross section of the protrusion 200
  • FIG. 8B shows a mode in which the reinforcing fibers 300 FIG.
  • FIG. 8C shows a mode in which the reinforcing fibers 300 are perpendicular to the width direction (longitudinal direction, rib direction) in the cross section of the projection 200, and FIG. , rib direction).
  • FIG. 8(D) since the reinforcing fibers 300 are neither parallel nor perpendicular to the width direction (longitudinal direction, rib direction) in the cross section of the protrusion 200, the cross section of the reinforcing fibers 300 is flat. It represents the state of being
  • the unidirectional prepreg is arranged so that the orientation direction of the reinforcing fibers is neither parallel nor perpendicular to the width direction (length direction) in the cross section of the protrusion.
  • the presence of at least one layer means that the number of reinforcing fibers extending in the longest direction of the protrusion is reduced. Therefore, as shown in FIG. 8(A), a dent 500 generated along the fiber alignment direction in the fiber-reinforced plastic protrusion, and as shown in FIGS. It is possible to suppress the occurrence of "unfilled” and "resin-rich” occurrences, and at the same time improve the appearance quality.
  • the alignment direction (orientation direction) of the reinforcing fibers is parallel to the length direction of the projection, the projection becomes difficult to withstand the load in the shear direction. Therefore, the strength of the protrusions is insufficient, cracks are likely to occur inside the ribs along the alignment direction of the reinforcing fibers, and the protrusions are likely to break and separate from the plate-like portion.
  • the angle between the alignment direction of the reinforcing fibers and the lengthwise direction of the projections (the angle formed by the orientation direction of the reinforcing fibers and the lengthwise direction of the projections) must be parallel or perpendicular within the range of 0 to 90°. Although not particularly limited, it is preferably 5 to 85°. Further, from the viewpoint of the filling property to the projection and the bonding strength between the projection and the plate-like portion, the angle is more preferably 30 to 60°.
  • the shape of the plate-like part is not particularly limited.
  • the thickness can be arbitrarily designed by adjusting the amount of fiber and matrix resin used. As a method of adjusting the amount of fiber and matrix resin used, in addition to adjusting the number of layers of unidirectional prepreg, changing the amount of resin impregnated in unidirectional prepreg, changing the type of fiber, etc. Arbitrary adjustment is possible.
  • the thickness of the plate-like portion is preferably 0.1 to 10 mm from the viewpoint of compatibility between the desired mechanical properties and weight reduction and practicality. Further, it is preferably 0.5 to 5.0 mm, and particularly preferably 0.5 to 2.0 mm when used in applications requiring weight reduction.
  • the cross-sectional shape of the protrusion includes, for example, a polygon (eg, rectangle), circle, or ellipse
  • the vertical cross-section includes, for example, a quadrangle (eg, rectangle), triangle, or semicircle. .
  • the maximum width of the projection measured from the cross section perpendicular to the projection (from the side of the plate) is compared, the widest cross section is the cross section, and the narrow cross section is the longitudinal section.
  • the height (h) of the protrusion is defined as the vertical distance from the surface of the plate-like portion, which is the root of the protrusion, to the vertex (highest part) of the longitudinal section, measured using the longitudinal section.
  • a shape in which the ratio of the height (h) of the protrusion to the width (t) of the protrusion is h/t>1 is preferably used.
  • the upper limit of h/t is preferably 30 or less, more preferably 5 or less.
  • the cross-sectional shape and height dimensions of the projections it is possible to make all the multiple projections the same shape and dimensions, but they can be changed according to the uneven shape and curvature shape of the fiber reinforced plastic. It is also possible to partially create a portion that does not have the above-mentioned shape and dimensional ratio.
  • the cross-sectional shape of the protrusion may be a shape obtained by connecting a plurality of polygons, circles, or ellipses in an arbitrary overlapping manner.
  • the vertical cross-sectional shape of the protrusion is triangular or trapezoidal, and the width becomes narrower toward the tip (that is, the farther away from the plate-like surface), or the cross-sectional shape of the protrusion becomes narrower toward the end.
  • a tapered shape with a lower height is preferable from the viewpoint of releasability during molding and relaxation of stress concentration when a load is applied during use.
  • the height (h) of the projections of the fiber-reinforced plastic of the present invention is not particularly limited and can be arbitrarily designed, but is preferably 0.1 to 100 mm.
  • the fiber-reinforced plastic of the present invention is used for transportation equipment such as automobiles and motorcycles, sports equipment such as bicycles and golf clubs, outer panels such as structural members and covers used for medical equipment, and other parts.
  • the height of the protrusion is 0.1 to 50 mm with respect to the thickness of the plate-like portion of 0.1 to 10 mm. More preferably, the thickness of the plate-shaped portion is 0.1 to 10 mm, and the height of the protrusion is preferably 1 to 10 mm.
  • the width (t) of the protrusion is also not particularly limited, and can be arbitrarily designed according to the required strength and design. From the viewpoint of weight reduction, it is preferable that the width (t) of the protrusion is 0.5 to 5 mm for the purpose of reinforcing the plate-like portion. Preferably.
  • protrusions can be arranged at arbitrary locations on the plate-like portion. Further, the arrangement positions of the projections can be confirmed in a top view of the fiber-reinforced plastic in which the appearance of all the projections can be confirmed.
  • the arrangement position of the protrusion is not limited to one place, and can be arranged in two or more places. That is, it is also possible to install protrusions of the same shape or different shapes at two or more locations.
  • the part where the plate-shaped part is visible in the top view is judged not to correspond to the protrusion, and the smallest protrusion surrounded by the plate-shaped part is recognized as one independent protrusion. to count.
  • ribs are provided as protrusions, in order to achieve both weight reduction and rigidity improvement of the fiber-reinforced plastic according to the present invention, it is preferable to arrange the ribs not only at one place but at two or more places. By doing so, it is possible to widen the reinforcing range of the plate-like portion.
  • ribs are arranged at two or more locations, a reinforcing effect can be obtained by arranging the ribs parallel to each other in the longitudinal direction. In that case, each rib may be provided discontinuously or intermittently.
  • the length directions of each of the plurality of ribs are not parallel to each other, the length directions should be arranged in arbitrary directions according to the mechanical properties required for the fiber-reinforced plastic. is possible (such as the letter C).
  • the shape of the rib is not limited to a single character shape with only one direction of length, but also a cross shape (X shape) or V shape (multiple It can be arbitrarily designed according to the mechanical properties required for fiber-reinforced plastics, such as a shape in which at least three ribs radially intersect at an arbitrary angle at one point.
  • the fiber-reinforced plastic of the present invention is formed by disposing at least one layer of unidirectional prepreg in which a large number of reinforcing fibers are sequentially arranged in one direction at least inside the plate-like portion.
  • the fiber orientation direction of the directional prepreg is characterized by being neither parallel nor perpendicular to the width direction (longitudinal direction) in the cross section of the protrusion.
  • the “inside of the plate-like portion” may be a portion corresponding to the plate-like portion, and may be a portion constituting the surface layer or an inner layer portion other than that.
  • the alignment direction of the reinforcing fibers is not parallel or perpendicular to the length direction of the protrusion as many layers as possible.
  • the angle difference in the alignment direction of the fibers between the layers is not particularly limited, and all the layers may be aligned in the same direction or may be different. It can be freely selected according to the desired properties of the composite.
  • the unidirectional prepreg is preferably arranged within the fourth layer from the surface on which the protrusion is provided, and most preferably, the unidirectional prepreg is arranged on the outermost layer of the surface on the side on which the protrusion is provided. is preferred.
  • all layers from the outermost layer to the fourth layer on the side where the protrusion is provided are layers that are not parallel or perpendicular to the length direction of the protrusion.
  • the number of unidirectional prepreg layers can be increased. . As the number of layers of the unidirectional prepreg increases, more fibers flow to the protrusions, which is more preferable.
  • the number of layers is preferably 6 or more, and more preferably 10 or more.
  • the prepreg filling properties may differ for each protrusion, and "unfilled" may occur in some protrusions.
  • the fiber orientation direction of the unidirectional prepreg is neither parallel nor perpendicular to at least the length direction of the projection having the longest length. More preferably, the fiber orientation direction of the unidirectional prepreg is neither parallel nor perpendicular to the length direction of each protrusion.
  • the fiber length of at least part of the reinforcing fibers is 10 to 300 mm.
  • the reinforcing fibers can easily conform to the shape of the protrusions of the molded article, and the formability into a three-dimensional shape is improved.
  • the disturbance of the fiber arrangement during shaping and molding is reduced, it is possible to obtain a fiber-reinforced plastic with small variations in mechanical properties and high surface smoothness.
  • the fiber length by setting the fiber length to 300 mm or less, the flexibility and fluidity of the reinforcing fibers are improved, and excellent shapeability and moldability can be obtained.
  • the fiber length is 10 mm or more, the distance between the incisions is large, so cracks that occur when a high load is applied to the fiber reinforced plastic are difficult to connect, so the fiber reinforced plastic has high mechanical properties and durability. becomes.
  • the reinforcing fiber moves when the knife hits the reinforcing fiber, and there is a possibility that some fibers escape from the blade or are caught in the blade. Although some fibers do not fall within the above range, a sufficient improvement effect is expected by adjusting the fiber length of most of the reinforcing fibers within the above range. In addition, since some fibers are cut by contact with the edge of the mold during molding, fibers shorter than the above range may exist inside the molded product.
  • the fiber length of the reinforcing fibers may be adjusted to the range described above, but the length of the portion where the shape of the fiber-reinforced plastic changes, such as a projection, and the reinforcing fiber around it A sufficient effect can be obtained by adjusting only the fiber length.
  • Embodiments of the reinforcing fiber sheet in which reinforcing fibers having a fiber length of 10 to 300 mm are arranged in one direction include, for example, (1) discontinuous reinforcing fibers obtained by spinning means such as stretch spinning; (2) discontinuous reinforcing fibers (for example, chopped fibers) may be arranged in one direction to form a sheet, or (3) For example, as shown in FIGS. 2 to 6, continuous or intermittent finite length cuts are made in the direction across the reinforcing fibers on the entire surface of the unidirectional prepreg composed of continuous reinforcing fibers. good.
  • Stretch spinning is one of the spinning methods in which the fibers are cut into short fiber units by applying tension to the continuous fibers in a strand state, and the cutting points of the short fibers do not gather in one place. and have the characteristic of being evenly distributed over the entire length of the strand.
  • the cut ends of the reinforcing fibers are randomly arranged so as not to be aligned in units of single fibers to form aggregates, and the reinforcing fibers flow in units of single fibers, so the moldability is slightly inferior. Since stress is transmitted very efficiently, it is possible to develop extremely high mechanical properties. In addition, since the cut portions of the reinforcing fibers are dispersed, it is possible to achieve excellent quality stability.
  • the cut ends of the reinforcing fibers are arranged in units of a plurality of fibers and arranged in a certain order. to form an aggregate.
  • the placement and distribution of the reinforcing fibers are uneven, resulting in slightly inferior quality stability.
  • the method of cutting the prepreg is not particularly limited.
  • a method of making incisions manually using a cutter is also possible, but a method of making incisions mechanically using an automatic cutting machine or the like that is stable in quality and capable of mass production is preferable.
  • There is no particular limitation on the method of mechanically cutting For example, using a cutting machine in which the blade moves over the prepreg base material spread out on the table, a method of inserting a cut at a predetermined position, a method of rolling a rotating round blade on a perforated line in a straight line, a method of using a laser processing pulse A method of inserting a notch corresponding to a pulse period by scanning a laser in a straight line at high speed can be exemplified. Both are highly productive incision insertion methods, and it is possible to select from the production equipment you own.
  • a prepreg that has undergone such a process is provided with a plurality of intermittent cuts across at least some of the reinforcing fibers, and as a result, at least some of the reinforcing fibers have a fiber length of 10 to 300 mm. Substantially all of the reinforcing fibers are divided by the intermittent cuts, so that shapeability and fluidity of the fibers during molding can be ensured.
  • the amount of reinforcing fibers that are cut by each cut is reduced, and strength is expected to be improved. In particular, by setting Ws to 1.5 mm or less, a large strength improvement is expected.
  • Ws is less than 30 ⁇ m, it is difficult to control the cut position, the fiber length of the reinforcing fibers increases, the number of reinforcing fibers having a length outside the predetermined range increases, and the shapeability and flowability decrease. do.
  • the absolute value of ⁇ is in the range of 2 to 25°, where ⁇ is the angle formed by the cut of the prepreg base material and the reinforcing fiber.
  • is the angle formed by the cut of the prepreg base material and the reinforcing fiber.
  • the absolute value of ⁇ is 25° or less, it is possible to improve mechanical properties, especially tensile strength. From this point of view, it is more preferable that the absolute value of ⁇ is 15° or less.
  • the absolute value of ⁇ is less than 2°, it becomes difficult to make a stable cut. That is, if the cuts lie flat with respect to the reinforcing fibers, the reinforcing fibers tend to escape from the blade when making the cuts, and the positional accuracy of the cuts decreases. From this point of view, it is more preferable that the absolute value of ⁇ is 5° or more.
  • a method for inserting the cuts for example, at the above angle, either a method of continuously inserting the cuts or a method of intermittently inserting the cuts at a plurality of locations can be adopted.
  • the fiber length can be controlled to be constant, and variations in mechanical properties and three-dimensional shape followability can be reduced.
  • the cut angle is oblique to the reinforcing fibers, so that the in-plane reinforcement of the prepreg base material with respect to the actual cut length Y is reduced.
  • the prepreg is less likely to come apart during lamination than with continuous cutting, and the handling property as a prepreg is also excellent.
  • the aspect shown in FIG. 6 is also preferred.
  • at least a portion of the cut-inserted prepreg is provided with a plurality of intermittent oblique cuts 10 in the direction across the reinforcing fibers.
  • the intermittent oblique cuts 10 are inserted linearly and substantially with the same length Y, and the shortest distance between adjacent cuts is longer than the length Y of the cuts.
  • substantially the same length means that the difference is within ⁇ 5% (the same shall apply hereinafter).
  • the fiber-reinforced plastic breaks when the cuts, which are discontinuous points of the fibers, are connected by cracks.
  • the cuts are easily recognized as an intermittent straight pattern after molding, while the distance between the cuts is increased.
  • the separation prevents the pattern from being recognized, resulting in excellent surface quality.
  • the fact that the incision exists on the same straight line means the angle between the straight line extending one incision a and the straight line connecting the points of the incision a and the target incision b that are closest to each other. is within 2°.
  • the fiber basis weight (FAW) of at least the plate-like portion of the fiber-reinforced plastic of the present invention is preferably 50 to 1000 g/m 2 . From the viewpoint of deformation resistance and fluidity, it is preferably 50 to 200 g/m 2 , more preferably 70 to 200 g/m 2 . When there are two or more fiber layers, it is preferable that at least one layer has the above range.
  • FAW fiber basis weight
  • Resin rich is likely to occur.
  • the fibers of the prepreg base material with a high basis weight are cut with a blade, the number of fibers that escape from the blade increases, and the number of fibers with a fiber length outside the target range increases, resulting in a prepreg base material with low fluidity. Probability is high.
  • the reinforcing fibers are not particularly limited, but glass fibers, aramid fibers, polyethylene fibers, silicon carbide fibers and carbon fibers are preferably used.
  • Glass fiber and carbon fiber are preferably used in that a fiber-reinforced composite material having particularly light weight, high performance, and excellent mechanical properties can be obtained.
  • a single glass fiber may be used, a single carbon fiber may be used, or both the glass fiber and the carbon fiber may be used at the same time from the balance between performance and cost.
  • the glass fiber is not particularly limited, but E glass fiber, S glass fiber, C glass fiber, and D glass fiber are preferably used. From the viewpoint of the balance between cost and strength, E glass fiber is preferably used, S glass fiber is preferably used when high strength is required, and C glass fiber is preferably used when acid resistance is required. D glass fiber is preferably used when a low dielectric constant is required.
  • the average fiber diameter of the glass fibers is not particularly limited, but the average fiber diameter of the glass fibers is preferably 4-20 ⁇ m, more preferably 5-16 ⁇ m. Generally, if the average fiber diameter is 4 ⁇ m or more, sufficient effects can be obtained, while if the average fiber diameter exceeds 20 ⁇ m, the strength tends to decrease.
  • pretreating the glass fiber with a coupling agent such as an isocyanate-based compound, an organic silane-based compound, an organic titanate-based compound, an organic borane-based compound, and an epoxy compound means obtaining better mechanical strength. is preferred.
  • carbon fibers are not particularly limited, but polyacrylonitrile-based carbon fibers, rayon-based carbon fibers, pitch-based carbon fibers, and the like are preferably used. Among them, polyacrylonitrile-based carbon fibers having high tensile strength are particularly preferably used. Twisted yarn, untwisted yarn, non-twisted yarn, and the like can be used as the form of the carbon fiber.
  • the number of filaments of the carbon fiber is not particularly limited, but when a woven fabric is used as the fiber-reinforced plastic of the present invention as described later, the weaving productivity and the required tensile and flexural elastic modulus as a fiber-reinforced plastic From the viewpoint of strength and design, it is preferably in the range of 1,000 to 70,000 filaments, more preferably 1,000 to 60,000 filaments. Being a multifilament in which a large number of filaments are aligned, flexibility is obtained, and it is easy to deform into an arbitrary shape by molding. In addition, since the multifilament can compensate for the defect of one fiber with another fiber, the variation in the mechanical properties of the molded product can be suppressed, and stable performance can be obtained.
  • thermosetting resin or a thermoplastic resin is preferably used as the matrix resin.
  • thermosetting resin may be a resin that self-cures by heat, or may contain a curing agent, a curing accelerator, or the like. Although those that form a crosslinked structure are preferred, they are not particularly limited.
  • thermosetting resins include epoxy resin compositions, vinyl ester resin compositions, unsaturated polyester resin compositions, polyurethane resin compositions, benzoxazine resin compositions, phenol resins, urea resin compositions, and melamine resins.
  • a composition, a polyimide resin composition, and the like are preferable from the viewpoint of handleability.
  • epoxy resin compositions, vinyl ester resin compositions, and unsaturated polyester resin compositions are more preferable from the viewpoint of performance and environmental resistance of fiber-reinforced plastics.
  • the thermosetting resin composition containing these does not need to be of a single type, and may be mixed with each other, such as by mixing resin compositions.
  • a matrix resin composition may be formed by dispersing a thermoplastic resin in the form of particles or fibers in a thermosetting resin, or by dissolving a thermoplastic resin in a thermosetting resin.
  • Thermoplastic resins used in this way usually have a bond selected from a carbon-carbon bond, an amide bond, an imide bond, an ester bond, an ether bond, a carbonate bond, a urethane bond, a thioether bond, a sulfone bond and a carbonyl bond.
  • the thermoplastic resin has a partially crosslinked structure.
  • the epoxy resin composition used in the thermosetting resin includes aromatic glycidyl ether obtained from phenol having multiple hydroxyl groups, aliphatic glycidyl ether obtained from alcohol having multiple hydroxyl groups, glycidylamine obtained from amine, and oxirane.
  • a resin composition containing an epoxy resin having a ring and an epoxy resin such as a glycidyl ester obtained from a carboxylic acid having a plurality of carboxyl groups can be exemplified.
  • aromatic glycidyl ethers include diglycidyl ethers obtained from bisphenols such as diglycidyl ethers of bisphenol A, diglycidyl ethers of bisphenol F, diglycidyl ethers of bisphenol AD, and diglycidyl ethers of bisphenol S; polyglycidyl ether of novolak, diglycidyl ether of resorcinol, diglycidyl ether of hydroquinone, diglycidyl ether of 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3′,5,5′-tetramethyl Diglycidyl ether of biphenyl, diglycidyl ether of 1,6-dihydroxynaphthalene, diglycidyl ether of 9,9′-bis(4-hydroxyphenyl)fluorene, tris(p-hydroxyphenyl)methane triglycidyl ether, tetrakis ( Examples include
  • Aliphatic glycidyl ethers include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, and diglycidyl ether of neopentyl glycol.
  • diglycidyl ether of cyclohexanedimethanol diglycidyl ether of glycerin, triglycidyl ether of glycerin, diglycidyl ether of trimethylolethane, triglycidyl ether of trimethylolethane, diglycidyl ether of trimethylolpropane, trimethylolpropane
  • Examples include glycidyl ether, tetraglycidyl ether of pentaerythritol, diglycidyl ether of dodecahydrobisphenol A, and diglycidyl ether of dodecahydrobisphenol F.
  • glycidylamine examples include diglycidylaniline, diglycidyltoluidine, triglycidylaminophenol, tetraglycidyldiaminodiphenylmethane, tetraglycidylxylylenediamine, and halogen-, alkyl-substituted and hydrogenated products thereof.
  • epoxy resins having an oxirane ring examples include vinylcyclohexene dioxide, dipentene dioxide, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, bis(3,4-epoxycyclohexylmethyl) adipate, di Examples include oligomers of cyclopentadiene dioxide, bis(2,3-epoxycyclopentyl)ether, and 4-vinylcyclohexene dioxide. Examples of glycidyl esters include diglycidyl phthalate, diglycidyl terephthalate, diglycidyl hexahydrophthalate, and diglycidyl dimer. These epoxy resins do not need to be contained singly in the epoxy resin composition, and a plurality of epoxy resins may be mixed in the epoxy resin composition.
  • vinyl ester resin composition examples include vinyl ester resin-containing resin compositions such as epoxy acrylate resin obtained by reacting an epoxy resin and acrylic acid, or epoxy methacrylate resin obtained by reacting an epoxy resin and methacrylic acid. be able to.
  • the types of epoxy resins used as raw materials for these vinyl ester resins are not particularly limited, but aromatic glycidyl ethers obtained from phenols having multiple hydroxyl groups, aliphatic glycidyl ethers obtained from alcohols having multiple hydroxyl groups, and glycidylamines obtained from amines. , an epoxy resin having an oxirane ring, and a glycidyl ester obtained from a carboxylic acid having a plurality of carboxyl groups.
  • aromatic glycidyl ethers used as raw materials for vinyl ester resins include diglycidyl ethers obtained from bisphenols, such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl ether of bisphenol AD, and diglycidyl ether of bisphenol S.
  • polyglycidyl ether of novolac obtained from phenol, alkylphenol, etc., diglycidyl ether of resorcinol, diglycidyl ether of hydroquinone, diglycidyl ether of 4,4′-dihydroxybiphenyl, 4,4′-dihydroxy-3,3′, diglycidyl ether of 5,5′-tetramethylbiphenyl, diglycidyl ether of 1,6-dihydroxynaphthalene, diglycidyl ether of 9,9′-bis(4-hydroxyphenyl)fluorene, tris(p-hydroxyphenyl)methane , tetraglycidyl ether of tetrakis(p-hydroxyphenyl)ethane, and diglycidyl ether having an oxazolidone skeleton obtained by reacting a diglycidyl ether of bisphenol A with a bifunctional isocyanate.
  • Aliphatic glycidyl ethers as raw materials for vinyl ester resins include diglycidyl ether of ethylene glycol, diglycidyl ether of propylene glycol, diglycidyl ether of 1,4-butanediol, diglycidyl ether of 1,6-hexanediol, Diglycidyl ether of neopentyl glycol, diglycidyl ether of cyclohexanedimethanol, diglycidyl ether of glycerin, triglycidyl ether of glycerin, diglycidyl ether of trimethylolethane, triglycidyl ether of trimethylolethane, diglycidyl of trimethylolpropane Ethers, triglycidyl ether of trimethylolpropane, tetraglycidyl ether of pentaerythritol, diglycidyl ether of dodeca
  • Glycidylamines used as raw materials for vinyl ester resins include diglycidylaniline, diglycidyltoluidine, triglycidylaminophenol, tetraglycidyldiaminodiphenylmethane, tetraglycidylxylylenediamine, halogen-, alkyl-substituted products, and hydrogenated products thereof. can be exemplified.
  • Examples of the glycidyl ester used as a raw material for the vinyl ester resin include diglycidyl phthalate, diglycidyl terephthalate, diglycidyl hexahydrophthalate, and diglycidyl dimer.
  • the unsaturated polyester resin composition includes a saturated dibasic acid having two carboxyl groups and no double bond, an unsaturated dibasic acid having a double bond, and a dihydric alcohol having two alcoholic hydroxyl groups.
  • a resin composition containing an unsaturated polyester resin obtained by the reaction can be exemplified.
  • the type of saturated dibasic acid used as a raw material for the unsaturated polyester resin is not particularly limited, but phthalic anhydride, isophthalic acid and the like can be exemplified.
  • the type of saturated unsaturated dibasic acid used as a raw material for the unsaturated polyester resin is not particularly limited, but maleic anhydride, fumaric acid and the like can be exemplified.
  • the type of dihydric alcohol used as a raw material for the unsaturated polyester resin is not particularly limited, examples thereof include ethylene glycol and propylene glycol.
  • the above vinyl ester resin composition and unsaturated polyester resin composition may contain a reactive diluent from the viewpoint of handling properties such as lowering the viscosity.
  • reactive diluents include styrene, vinyl monomers such as vinyl toluene and methyl methacrylate, allyl monomers such as diallyl phthalate, diallyl isophthalate and triallyl isocyanurate, phenoxyethyl (meth)acrylate, 1,6-hexanediol ( Examples include acrylic acid esters such as meth)acrylate, trimethylolpropane tri(meth)acrylate, 2-hydroxyethyl(meth)acrylate, vinylpyrrolidone, and phenylmaleimide.
  • Resins, polyamide (PA) resins (especially PA6, PA66, PA12), polycarbonate (PC) resins, and PC/ABS resins obtained by blending polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) resins are preferably used.
  • the color is not particularly limited, but the thermoplastic resins listed above include black, red, yellow, green, blue, Coloring such as purple or brown can enhance the design.
  • the fiber-reinforced plastic of the present invention is not particularly limited in its manufacturing method, but examples include a unidirectional prepreg in which a large number of reinforcing fibers are impregnated with a matrix resin, and a unidirectional prepreg of the same or different type as necessary. or a fiber base material, etc., and the laminate is integrated by press molding, autoclave molding, oven molding, or vacuum oven molding with heating and, if necessary, pressure.
  • the method of manufacturing the unidirectional prepreg is not particularly limited, but a method of arranging the short fibers or long fibers by the method described above and then impregnating them with the matrix resin can be preferably used.
  • the matrix resin is a thermosetting resin
  • a wet method, a hot melt method, extrusion, spraying, printing, or other known methods can be preferably used for impregnating the resin.
  • thermosetting resin is dissolved in an organic solvent selected from acetone, methyl ethyl ketone, methanol, etc. to reduce the viscosity, impregnated into the reinforcing fibers, pulled up, and evaporated using an oven or the like to evaporate the organic solvent to form a prepreg. can be obtained.
  • organic solvent selected from acetone, methyl ethyl ketone, methanol, etc.
  • a matrix resin whose viscosity has been reduced by heating is directly impregnated into reinforcing fibers, or a release paper sheet with a resin film coated with a matrix resin (hereinafter referred to as "resin A method can be used in which a matrix resin is impregnated into the reinforcing fibers by making a resin film from both sides or one side of the reinforcing fibers and applying heat and pressure to the reinforcing fibers. More specifically, the latter method includes, for example, the following method.
  • the first method is a so-called one-step impregnation hot-melt method in which a resin film containing a resin composition is heated and pressurized from both sides or one side of the reinforcing fibers to impregnate the matrix resin in a single step.
  • the second method is a multistage impregnation hot-melt method in which a matrix resin is applied to a resin film in multiple stages, and the reinforcing fibers are impregnated by heating and pressurizing them from both sides or one side.
  • the matrix resin is a thermoplastic resin
  • a melting method, a solvent method, a powder method, a resin film impregnation method, or other known methods can be preferably used.
  • the melting method is a method in which a thermoplastic resin is melted with an extruder, and reinforcing fibers are passed through the molten bath to impregnate the inside of the fiber bundle with the resin.
  • the solvent method impregnates the inside of the fiber bundle with a solution of resin dissolved in a solvent.
  • thermoplastic resin powder is adhered to reinforcing fibers, which are then heated to melt and impregnate.
  • the thickness of one sheet of prepreg in which reinforcing fibers are impregnated with resin is not particularly limited, but is preferably in the range of 0.05 mm to 5 mm. 05 mm to 3 mm is more preferred.
  • the method for molding the fiber-reinforced plastic of the present invention includes various molding methods as described above, and is not particularly limited.
  • a press molding method can be preferably used in which the molded product is shaped, put into a mold, and heated and pressurized with a press.
  • press molding the reinforcing fibers and the matrix resin are integrated by molding at high pressure, and the effects of slackness and angle variation of aligned fibers can be reduced.
  • the cavity (gap) of the mold used for press molding has the shape of the final desired fiber-reinforced plastic, and the shape of the mold corresponding to the protrusion of the fiber-reinforced plastic is concave.
  • press molding it is possible to mold the shape of the fiber-reinforced plastic by flowing the reinforcing fibers and the matrix resin into the recesses during heat molding. There is no need to shape the prepreg. Therefore, it is possible to reduce the man-hours for manufacturing the preform, which is preferable.
  • the matrix resin is a thermoplastic resin, it is necessary to cool the mold before taking out the fiber-reinforced plastic. Since fiber-reinforced plastic can be taken out, it is possible to shorten the molding cycle by combining it with a fast-curing thermosetting resin.
  • the press molding method is overwhelmingly superior in productivity because preparations before molding and post-processing after molding are simple. Furthermore, when the matrix resin is a thermosetting resin, it is possible to remove the mold while keeping the mold temperature T substantially constant. Therefore, since the mold cooling process, which is necessary when the matrix resin is a thermoplastic resin, is not necessary, high productivity can be obtained by combining with a fast-curing resin.
  • the mold temperature T (°C) for press molding preferably satisfies the exothermic peak temperature Tp (°C) obtained by differential scanning calorimetry (DSC) of the thermosetting resin and the following relational expression (I). More preferably, it is preferable to satisfy the following relational expression (II).
  • the exothermic peak temperature Tp (° C.) according to DSC is a value measured under the condition of a temperature increase rate of 10° C./min.
  • the fiber-reinforced plastic of the present invention is preferably produced under the condition that the thermosetting resin used as the matrix resin has a minimum viscosity of 0.1 to 100 Pa ⁇ s according to dynamic viscoelasticity measurement (DMA). More preferably, it is 0.5 to 10 Pa ⁇ s. If the minimum viscosity is less than 0.1 Pa ⁇ s, only the resin may flow when pressurized, and the reinforcing fibers may not be sufficiently filled up to the tips of the protrusions. On the other hand, if it is more than 100 Pa ⁇ s, the fluidity of the resin is poor, and the reinforcing fibers and the resin may not be sufficiently filled up to the tips of the protrusions.
  • the minimum viscosity determined by DMA is a value measured under the condition of a temperature increase rate of 1.5°C/min.
  • the fiber-reinforced plastic of the present invention preferably has protrusions only on one surface of the plate-like portion, and it is preferable to dispose woven fabric as the reinforcing fibers forming the outermost layer on the opposite side.
  • Woven fabrics woven with warp and weft not only have excellent mechanical properties and shape durability, but also are used to enhance design by showing the texture of the fabric.
  • the same reinforcing fibers as those used in the other layers can be used, but different fibers can also be used.
  • satin weave include 5-satin satin, 7-satin satin, 8-satin satin, 10-satin satin, irregular satin, wide satin, layered satin, satin weave, day and night satin, and blurred satin.
  • the ridge weave includes warp ridge weave, weft ridge weave, and variable ridge weave.
  • Examples of Nanako weave include regular Nanako weave, variable Nanako weave, irregular Nanako weave, facing Nanako weave, and triaxial fabric in which fibers are woven in three directions.
  • the reinforcing fiber constituting the fabric may be a single glass fiber, a single carbon fiber, or a combination of a plurality of different glass fibers or carbon fibers, as exemplified above. Furthermore, it is also possible to combine other different reinforcing fibers singly or in combination. Moreover, since it is excellent in performance, cost, and design, at least one type of glass fiber and at least one type of carbon fiber may be mixed and woven together.
  • the fabric forming the outermost layer on the side opposite to the surface on which the protrusions are provided is pre-impregnated with a matrix resin.
  • a matrix resin As for the matrix resin impregnated into the woven fabric, it is preferable to use the same matrix resin as the other layers, but a different resin can also be used. However, when using a resin different from the resin of the other layers, it is preferable to check the compatibility and adhesion, and insert an adhesive film or the like as necessary.
  • the basis weight of a prepreg obtained by impregnating a woven fabric with a matrix resin is preferably 20 to 400 g/m 2 and more preferably 40 to 300 g/m 2 when using glass fiber or carbon fiber as the reinforcing fiber.
  • the basis weight is 20 g/m 2 or more, the weavability is good, and when the basis weight is 400 g/m 2 or less, the fabric is soft and easy to shape, and the matrix resin (for example, When impregnated with an epoxy resin composition or the like), the resin easily reaches the central portion in the thickness direction, and non-impregnated portions (voids) are less likely to remain.
  • the fiber-reinforced plastic exhibits excellent mechanical properties such as compressive strength.
  • the direction of the reinforcing fibers in at least the layers below the second layer from the surface layer of the plate-like portion is a non-unidirectional layer.
  • a non-unidirectional layer refers to a layer in which reinforcing fibers are not arranged in only one direction, that is, a layer in which fibers are oriented in at least two directions.
  • the plate-shaped part is composed of multiple layers, and the orientation direction of the reinforcing fibers in the layer other than the surface layer on the side where the protrusion is provided is at least two directions (non-unidirectional).
  • An embodiment can be mentioned. More specific examples of non-unidirectional layers include those in which fibers are arranged in at least two or more predetermined directions, such as woven fabrics, and those in which fibers are randomly oriented, such as non-woven fabrics. It is not particularly limited.
  • one of the layers constituting the plate-like portion in the fiber-reinforced plastic is referred to as a non-unidirectional layer, and the material corresponding to the non-unidirectional layer before molding the fiber-reinforced plastic is referred to as a non-unidirectional layer.
  • a unidirectional reinforcing fiber sheet It is called a unidirectional reinforcing fiber sheet.
  • the non-unidirectional reinforcing fiber sheet may have any form as long as the reinforcing fibers are arranged not only in one direction but in multiple directions as described above, and does not contain a matrix resin. It may be in a state (dry sheet) or may be one in which at least a part of the area is pre-impregnated with a matrix resin.
  • the non-unidirectional reinforcing fiber sheet will be described in detail below.
  • the fibers used in the non-unidirectional reinforcing fiber sheet are not particularly limited, but glass fibers, aramid fibers, polyethylene fibers, silicon carbide fibers, and carbon fibers are preferably used, for example. Glass fiber and carbon fiber are preferably used in that a fiber-reinforced composite material having particularly light weight, high performance, and excellent mechanical properties can be obtained.
  • At least part of the reinforcing fibers constituting the non-unidirectional reinforcing fiber sheet contain fibers other than thermoplastic resin fibers.
  • heat is applied for press molding. Since thermoplastic resin fibers are softened by heat, at least part of the reinforcing fibers constituting the non-unidirectional reinforcing fiber sheet are made of thermoplastic resin.
  • Fibers other than thermoplastic resin fibers are not particularly limited, but preferred examples include glass fiber, aramid fiber, polyethylene fiber, silicon carbide fiber and carbon fiber. Glass fiber and carbon fiber are preferably used in that a fiber-reinforced composite material having particularly light weight, high performance, and excellent mechanical properties can be obtained. Preferred aspects of the glass fiber and carbon fiber are as described above.
  • a nonwoven fabric manufactured by a wet method in which short fibers are dispersed in water and scooped up on a papermaking net can also be preferably used.
  • unsaturated polyester, polyvinyl alcohol (PVA), and their copolymers are added.
  • a binder resin is applied by spraying or dipping to chemically fix fibers together, thermoplastic resin fibers are mixed during web production, thermoplastic resin fine particles are attached to the web, and then heated by a heat roller. It is also preferable to put the web into a web or an oven to melt the thermoplastic resin and fix the fibers together.
  • Non-woven fabrics other than the above include a spunbond method in which yarn obtained by melt-spinning a thermoplastic resin is laminated on a belt conveyor, or a melt-spun yarn is blown with air to make fine fibers, and the fibers are spread on the net.
  • a nonwoven fabric manufactured by a meltblown method, in which the fabric is accumulated and formed into a web, is also excellent in mechanical properties and inexpensive, and therefore can be preferably used.
  • the thickness of the non-unidirectional reinforcing fiber sheet is preferably 0.01-1.0 mm, more preferably 0.05-0.5 mm.
  • the thickness of the non-unidirectional reinforcing fiber sheet is 0.01 mm or more, it is possible to suppress the plastic flow of the fibers given by the pressure generated during press molding, and the meandering and It is possible to suppress appearance defects such as resin richness on the design surface.
  • the thickness of the non-unidirectional reinforcing fiber sheet is 1.0 mm or less, it is flexible and excellent in formability, and the resin easily reaches the central portion in the thickness direction when impregnated with an epoxy resin composition or the like during molding. Unimpregnated portions (voids) are less likely to remain, resulting in a fiber-reinforced plastic exhibiting excellent mechanical properties such as compressive strength.
  • the fabric weight of the fiber sheet is preferably 10 to 300 g/m 2 , more preferably 30 to 150 g/m 2 .
  • the fiber sheet basis weight is 10 g/m 2 or more, the plastic flow of the fibers imparted by the pressure generated during press molding can be suppressed, and the fiber meandering of the textile fibers used in the surface layer and the resin richness of the design surface. Poor appearance can be suppressed.
  • the preform includes at least one layer of unidirectional prepreg in which a large number of reinforcing fibers are sequentially arranged in one direction, and the fiber orientation direction of the at least one layer of unidirectional prepreg that constitutes the plate-like portion is , is not parallel or perpendicular to the width direction (longitudinal direction) in the cross section of the protrusion.
  • the required number of unidirectional prepregs can be laminated according to the desired thickness of the fiber-reinforced plastic. It need not be parallel or perpendicular to the width (longitudinal) direction of the plane.
  • the non-unidirectional reinforcing fiber sheet By arranging the fiber sheet and closing the concave mold and applying pressure, the non-unidirectional reinforcing fiber sheet can be impregnated with the matrix resin impregnated in the unidirectional prepreg to form a non-unidirectional layer. preferable.
  • the non-unidirectional reinforcing fiber sheet is not a sheet in which reinforcing fibers are arranged only in one direction, but a sheet in which reinforcing fibers are arranged in multiple directions, and is a dry sheet that does not contain a matrix resin.
  • it may be a prepreg-like sheet in which at least a part of the region is pre-impregnated with a matrix resin.
  • non-unidirectionally reinforced fiber sheet is a dry sheet
  • a portion of the matrix resin of the unidirectional prepreg is impregnated into the non-unidirectionally reinforced sheet (dry sheet) during press molding as described above, resulting in a fiber-reinforced plastic. can do.
  • the matrix resin pre-impregnated into the non-unidirectional reinforced fiber sheet is preferably the same resin as other prepregs.
  • a preferable one can be arbitrarily selected from the viewpoint.
  • a specific composition of the matrix resin can be selected from the matrix resin compositions described above.
  • the non-unidirectional reinforcing fiber sheet becomes a non-unidirectional layer through the molding process. Since the non-unidirectional layer is sufficiently impregnated with the resin as described above, the void ratio is 2% or less, and a fiber-reinforced plastic having excellent mechanical properties can be obtained.
  • the molded product was rotated 360° in the horizontal direction and observed while being tilted at an angle of 0° to 60° in the vertical direction, and it was confirmed whether there was any distortion in the reflected light of the fluorescent lamp along the ribs.
  • "A” indicates no distortion at any angle
  • "B” indicates distortion only at a certain angle
  • “F” indicates distortion at any angle. Those corresponding to "B” were regarded as passed.
  • the width of the fibers immediately below the projections is 3/4 or more of the width of the fibers used. is regarded as a pass, and is indicated as "A" in the table.
  • the plane of the fiber reinforced plastic was visually checked for twisting of the fiber directly below the protrusion, and the height of the twisting 102 shown in FIG. A rating of 0.5 mm or less was given as "A”
  • a rating of more than 0.5 mm and less than 1.0 mm was given as "B”
  • FIG. 7 shows a normal surface state without twisting of reinforcing fibers
  • (B) shows a surface state with twisting.
  • Example 1 no notch, straight rib
  • a concave mold of 100 mm ⁇ 100 mm is used as a lower mold, and a groove (rib groove, width 1.0 mm, length 70 mm, A convex mold having a depth of 3 mm (single letter shape) was prepared as an upper mold and heated to 150°C.
  • the prepreg base laminate prepared in advance is housed in the lower mold with the 0° direction at the time of lamination parallel to the rib groove, and after attaching the upper mold to the lower mold, hot press molding is performed. Molding and heat curing of the matrix resin were carried out under the conditions of a pressurizing force of 12 MPa, a heating temperature of 150° C., and a pressurizing time of 3 minutes, to obtain a fiber-reinforced plastic having ribs.
  • the warpage of the plate-shaped part was acceptable (contact with the inspection table on almost the entire surface, and the four corners had less than 1 mm of float).
  • a concave mold of 100 mm ⁇ 100 mm was used as a lower mold, and a cross rib groove (width 1.0 mm, length 70 mm, depth
  • a convex mold having a shape in which grooves of 3 mm each intersect at 90° at each center is prepared as an upper mold, heated to 150 ° C., and molded under the same conditions as in Example 1, and a width of 100 mm.
  • the warp of the plate-shaped part was acceptable (contact with the inspection table over almost the entire surface, and the four corners had a float of less than 1 mm).
  • Example 3 incision-inserted prepreg, cross rib, lamination different from Example 2
  • Molding was carried out under the same conditions as in Example 2, except that the lamination structure of the incision-inserted prepreg was laminated to [+45/ ⁇ 45] 6 to obtain a fiber-reinforced plastic having a cross rib shape.
  • Example 2 it was confirmed that carbon fibers were filled up to the ends of the ribs, and carbon fibers that were continuous with the plate-like portion were filled inside the ribs.
  • the warpage of the plate-shaped part was acceptable (contact was made on almost the entire surface of the inspection table, and the four corners had a float of less than 1 mm).
  • a 100 mm ⁇ 100 mm concave mold is used as a lower mold, and four rib grooves with a width of 1.0 mm, a length of 70 mm, and a depth of 3 mm are arranged in parallel on the flat surface of 100 mm ⁇ 100 mm at intervals of 25 mm.
  • the arranged convex mold is prepared as an upper mold, heated to 150 ° C., molded under the same conditions as in Example 1, and a plate-shaped portion of width 100 mm ⁇ length 100 mm ⁇ thickness 0.7 mm is 1 mm wide.
  • a fiber-reinforced plastic having four ribs of length 70 mm and height 3 mm was obtained. By observing the appearance of the ribs, carbon fibers were filled up to the tips of all four ribs. Further, as a result of cross-sectional observation, it was confirmed that carbon fibers continuous with the plate-like portion were filled inside the ribs.
  • the warp of the plate-shaped part was acceptable (contact with the inspection table over almost the entire surface, and the four corners had a float of less than 1 mm).
  • a concave mold of 100 mm ⁇ 100 mm is used as a lower mold, and two rib grooves with a width of 1.0 mm, a length of 70 mm, and a depth of 3 mm are provided on the flat surface of 100 mm ⁇ 100 mm, and the distance between the left ends is 5 mm.
  • a convex mold arranged in a non-parallel direction so that the distance between the right ends is 75 mm is prepared as an upper mold, heated to 150 ° C., and molded under the same conditions as in Example 1, and a width of 100 mm ⁇ length
  • a fiber-reinforced plastic having two ribs of width 1 mm ⁇ length 70 mm ⁇ height 3 mm on a plate-like portion of 100 mm length ⁇ 0.7 mm thickness was obtained.
  • the warpage of the plate-shaped part was acceptable (contact was made on almost the entire surface of the inspection table, and the four corners had a float of less than 1 mm).
  • Example 6 incision insertion prepreg, textile prepreg (design surface), reinforcing fiber sheet, cross rib)] A prepreg base laminate was prepared in the same manner as in Example 3.
  • a concave mold of 100 mm ⁇ 100 mm is used as the lower mold, and a cross rib groove (width 1.0 mm, length 70 mm, depth 3 mm) with a protrusion (rib) formed in the center of the convex part of 100 mm ⁇ 100 mm
  • a convex mold having grooves intersecting at 90° at each center was prepared as an upper mold and heated to 150°C.
  • the concave mold surface is used as the design surface, and Toray Industries, Inc. fabric prepreg (#CO6343B carbon fiber tensile strength 3530 Mpa, tensile elastic modulus 230 Gpa, basis weight 198 g / m 2 ) is arranged as the design surface base material.
  • a non-resin-impregnated glass mat (90 g/m 2 basis weight) was placed, and the prepreg base laminate prepared in advance was further placed thereon.
  • the molding conditions were the same as in Example 3, and a fiber-reinforced plastic having cross ribs was obtained by molding.
  • Example 7 incision insertion prepreg, fabric prepreg (design surface), reinforcing fiber sheet, cross rib
  • resin-unimpregnated CF paper basis weight: 48 g/m 2
  • Example 8 incision insertion prepreg, textile prepreg (design surface), resin-impregnated sheet, V-shaped)] A prepreg base laminate was prepared in the same manner as in Example 5.
  • a 100 mm ⁇ 100 mm concave mold is placed on the lower mold, and two rib grooves with a width of 1.0 mm, a length of 70 mm, and a depth of 3 mm are provided on the flat surface of 100 mm ⁇ 100 mm.
  • Convex molds arranged in non-parallel directions with a spacing of 75 mm were prepared as upper molds and heated to 150°C. Then, the concave mold surface is used as the design surface, and Toray Industries, Inc.
  • fabric prepreg (#CO6343B carbon fiber tensile strength 3530 MPa, tensile elastic modulus 230 GPa, basis weight 198 g / m 2 ) is arranged as the design surface base material, and is placed thereon.
  • the fabric prepreg was further arranged as a resin-impregnated sheet, and the prepreg base laminate was further arranged thereon.
  • the molding conditions were the same as in Example 5, and a fiber-reinforced plastic having V-shaped ribs was obtained by molding.
  • Example 1 A fiber-reinforced plastic was molded in the same manner and under the same conditions as in Example 1, except that the unidirectional prepregs were laminated in the [0] 12 (all the same direction) (for the ribs, all the reinforcing fibers is 0°).
  • the resulting fiber-reinforced plastic was filled with carbon fibers to the tip when observing the appearance of the ribs.
  • carbon fibers to the tip when observing the appearance of the ribs.
  • the cross section only fibers parallel to the ribs were filled inside the ribs, and carbon fibers continuous with the plate-like portion were not observed. Therefore, although the ribs are filled with carbon fibers, they are considered to be weak against shear stress.
  • the warp of the plate-shaped part was acceptable (contact was made on almost the entire surface of the inspection table, and the four corners had a float of less than 1 mm).
  • the appearance inspection as a result of observation under a fluorescent lamp, distortion was confirmed in the reflected light of the fluorescent lamp at any angle, and the distortion exceeded 1.0 mm, and was rejected.
  • the obtained fiber-reinforced plastic was not filled with carbon fiber to the tip of the rib, and "unfilled” and “resin-rich” occurred at the top, and the desired shape could not be obtained.
  • the carbon fibers filled inside the ribs were continuous with the carbon fibers in the plate-like portion, the upper portion was only resin, and it is considered that only the matrix resin flowed.
  • Example 3 A fiber-reinforced plastic was molded in the same manner and under the same conditions as in Example 1, except that the unidirectional prepreg was laminated so that the lamination direction was [0/90] 6 (the fiber direction was all parallel or perpendicular to the ribs). did.
  • the fiber-reinforced plastic of the present invention can be preferably used for members that require strength, rigidity, and light weight, and members that have a complicated shape and require shape-followability with other members.
  • members such as cranks and frames of bicycles, sports members such as shafts and heads of golf clubs, structural members such as doors, seats, members, modules and frames of automobiles, and exterior and interior materials for which the above-mentioned requirements are strong. , robot arms and other machine parts.
  • it can be preferably used for structural members and outer panels of medical equipment and information communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

力学特性に優れるだけでなく、外観品質にも優れた突起部を有する繊維強化プラスチックを提供するため、板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックにおいて、少なくとも前記板状部の内部に、多数本の強化繊維がマトリックス樹脂中で一方向に配列された層が少なくとも1層あり、前記強化繊維の配向方向が、前記突起部の横断面における幅方向と平行または垂直でない繊維強化プラスチックとする。

Description

繊維強化プラスチックおよびその製造方法
 本発明は、板状部と該板状部の少なくとも片面から隆起した突起部を有する繊維強化プラスチックであり、前記板状部および突起部が、多数本の強化繊維と、該多数本の強化繊維と一体となったマトリックス樹脂とで形成された繊維強化プラスチックに関する。
 強化繊維とマトリックス樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業、スポーツ、医療、情報通信等の幅広い分野において活用が期待され、注目されている。
 また、繊維強化プラスチックの力学特性向上や、力学特性を維持しながら、薄肉化と軽量化することを目的に、成形品の断面形状を工夫し、肉厚変化やリブ形状を有する繊維強化プラスチックの設計が行われる。また、リブ形状は、成形品の広い平面部のソリなどを防ぐためにも有効であるが、形状が複雑となり、成形性や量産性が課題となっている。
 一方、繊維強化プラスチックの成形方法としては、次のようなものが挙げられる。例えば高機能特性を有する繊維強化プラスチックの製法方法としては、プリプレグと称される、連続した強化繊維のシートや織物にマトリックス樹脂を含浸せしめた半硬化状態のものを、積層し、高温高圧釜(オートクレーブ)で加熱加圧することにより熱硬化性樹脂のマトリックス樹脂を硬化させ、繊維強化プラスチックを成形するオートクレーブ成形がある。また、前記のプリプレグを積層したものを、金型に投入し、プレス機で加熱加圧し、熱硬化性樹脂のマトリックス樹脂を硬化させ、成形するプレス成形がある。なお、プレス成形においては、熱可塑性樹脂のマトリックス樹脂を軟化、または溶融させ、成形した後、冷却脱型する成形もある。特にプレス成形では、硬化速度が速い熱硬化性樹脂をマトリックス樹脂として、強化繊維に含浸させたプリプレグを使用することで、短時間で大量に成形品を生産できることから、生産性の高い成形方法として、近年注目されている。
 前記のプリプレグを用いた成形方法において、肉厚が変化する形状やリブを有する形状など、複雑な形状の成形品を作る場合、所望する繊維強化プラスチックの断面を板状部やリブ形状部などに細分化し、各部位を別々に成形した後、接着剤や熱融着により接合する方法が可能である。しかしながら、接着工程は手間とコストがかかる上に、接合部の強度や剛性が繊維強化プラスチック部分よりも低くなるため、繊維強化プラスチックよりも先に接合部で壊れてしまい、繊維強化プラスチックの優れた力学特性や耐久性を十分に発揮することが難しかった。一方、成形前に金型上で賦形し、プリフォームを作製してから成形する方法も可能である。しかし、この方法では、賦形する工程に時間がかかるため、生産効率やコストが課題となっていた。
 また、強化繊維の長さが数~数十mm程度である短繊維を用いた繊維強化プラスチックの場合、突起部を形成することは、比較的容易である。例えば、マトリックス樹脂が熱硬化性樹脂であれば、SMC(シートモールディングコンパウンド)やBMC(バルクモールディングコンパウンド)によるプレス成形などがあり、熱可塑性樹脂であれば、射出成形などが用いられる。しかしながら、SMCやBMCでは、その製造工程において、強化繊維の分布ムラ、配向ムラが必然的に生じるため、成形品の力学物性が低下する、あるいは、その物性値のバラツキが大きくなると云う問題があった。また、射出成形では、強化繊維の量が少なく、さらに短い強化繊維を用いないと成形出来ないため、成形品の力学物性は非常に低くなる。従って、これらの方法では、特に高力学特性で耐久性が求められる部材に適した、突起部を有する繊維強化プラスチックを製造することは難しかった。
 このような従来技術の問題点を改善する試みが、提案されている(特許文献1、2、3、4)。
 特許文献1には、プレス成形に基づくリブを備えた成形品の製造方法が開示されている。その製造方法は、リブの部分で繊維を切断することにより、成形時に繊維の切断端部をリブ先端まで流し込んで、リブに繊維を充填させようとするものである。
 しかし、リブの部分のみで繊維を切断した場合、リブ以外の部分では繊維が切断されていないため、繊維は全体として互いに拘束され、リブの先端まで繊維が充填し難いのが実情である。この製造方法により、リブの先端まで繊維が充填した成形品が出来たとしても、リブが形成されている方向(リブの高さ方向)への剛性は向上するが、リブの厚み方向(リブの高さ方向に直交する方向)への剛性は、繊維が切断されているため、樹脂のみの剛性に依存することになり、それがため極めて低くなり、実際の構造部材としては、使用に耐えない場合が生じる。
 また、特許文献2では、上記特許文献1の課題を解決するために、切込みの長さや角度、間隔を工夫し、プリプレグ基材の変形抵抗低減と繊維強化プラスチックの強度向上を両立する技術が開示されている。
 一方、特許文献3は、特許文献1の課題を解決するために、切込みを挿入して、繊維長が10~100mmになるように調整したプリプレグ基材を、少なくとも2枚以上積層し、プレス成形することで、リブ形状を成形する繊維強化プラスチックの製造方法が提案されている。ただし、切込みを挿入したプリプレグ基材でも、繊維方向と繊維と垂直の方向とでは基材の伸長性や繊維の流動性が異なる。そのため、繊維強化プラスチックやリブの形状によっては、金型のリブ部分に、繊維や樹脂が充填されない“未充填”やプリプレグから樹脂だけが絞り出される“樹脂リッチ”が発生することがある。また、繊維は流動し易い方向に流動するため、繊維の偏りや乱れが発生し、成形品表面に凹凸が発生したり、乱れた繊維で光が乱反射することで成形品表面が白く見えたり、光の縞模様(モアレ)が発生し、表面の平滑性や外観品位が損なわれることがあった。
 更に、成形品表面に織物プリプレグを配置し、意匠性を重視した織物外観を有する成形品の成形においては、表面に露出しない下層のプリプレグの繊維の流動により織目が乱れる“目ヨレ”欠点が発生し、成形品の品質や不良品発生によるコスト増など課題が残っていた。
 特許文献4では、SMC成形において、表面平滑性を得る製造方法が開示されている。その製造方法では、強化繊維材料に樹脂を含浸させたシート状のプリプレグを複数枚積層し、プリプレグ層の間に樹脂が未含浸の基材を介装させることにより、厚さ方向の樹脂収縮を抑制し、成形品表面の凹凸を抑制して表面平滑性を得ることができる。また、樹脂の流動性に起因する強化繊維のうねりも抑制されるため、成形品の表面に凹凸が発生することを抑制して表面平滑化を得る効果もある。
 しかし、プリプレグ層の間に複数枚の樹脂未含浸基材を介装することは、成形工程が煩雑となり、コンポジットとしての物性が衰勢する。さらに、プリプレグ層間に複数枚の樹脂未含浸基材を挿入することにより、強化繊維の流動性を阻害し、リブでの繊維の“未充填”や“樹脂リッチ”が発生し、実際の構造部材の要求特性には耐えられない場合が生じる。
特開昭63-087206号公報 特許6597309号公報 特許5315692号公報 特開2008-246981号公報
 本発明は、従来技術の問題点を改善し、力学特性に優れるだけでなく、外観品質にも優れた突起部を有する繊維強化プラスチックを提供することを目的とする。
 かかる目的を達成する本発明は、次の通りである。
(1)板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックにおいて、少なくとも前記板状部の内部に、多数本の強化繊維がマトリックス樹脂中で一方向に配列された層が少なくとも1層あり、前記強化繊維の配向方向が、前記突起部の横断面における幅方向と平行または垂直でないことを特徴とする繊維強化プラスチック。
(2)前記板状部の少なくとも一部に、前記強化繊維が一方向に配列された層が少なくとも2層積層された構造を有し、任意に選択した2層の前記強化繊維の配向方向が互いに平行でないことを特徴とする、前記(1)に記載の繊維強化プラスチック。
(3)前記繊維強化プラスチックの上面視において、前記突起部は少なくとも異なる二方向に延在する形状を有することを特徴とする、前記(1)または(2)に記載の繊維強化プラスチック。
(4)前記繊維強化プラスチックの上面視において、前記突起部が2箇所以上に設けられ、任意に選択した2箇所の突起部の延在方向が互いに平行でないことを特徴とする、前記(1)または(2)に記載の繊維強化プラスチック。
(5)前記強化繊維は、少なくとも一部の繊維長が10~300mmであることを特徴とする、前記(1)~(4)のいずれかに記載の繊維強化プラスチック。
(6)前記板状部の片側の面のみに突起部を有し、その反対側の最表層を形成する強化繊維が織物であることを特徴とする、前記(1)~(5)のいずれかに記載の繊維強化プラスチック。
(7)前記板状部は、強化繊維の層を複数層有するとともに片側の面のみに突起部を有し、該片側の面を構成する表層以外の層は、強化繊維の方向が非一方向であることを特徴とする、前記(1)~(6)のいずれかに記載の繊維強化プラスチック。
(8)多数本の強化繊維にマトリックス樹脂を含浸させたプリプレグを積層したプリフォームを加熱した金型内に配置し、前記金型を閉じて加圧することにより、板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、前記プリフォームは、強化繊維が一方向に配列された一方向プリプレグを少なくとも1層積層させたものからなり、前記板状部を構成する前記一方向プリプレグの繊維配向方向が、前記突起部の横断面における幅方向と平行または垂直でないことを特徴とする繊維強化プラスチックの製造方法。
(9)前記プリフォームは、前記一方向プリプレグを片側の表層に配置するとともに、該表層以外の層に、強化繊維の方向が非一方向である非一方向強化繊維シートを配置して構成し、前記金型を閉じて加圧することにより、前記一方向プリプレグに含浸していた前記マトリックス樹脂を前記非一方向強化繊維シート内に含浸せしめて非一方向層を形成することを特徴とする、前記(8)に記載の繊維強化プラスチックの製造方法。
(10)前記非一方向強化繊維シートが織物または不織布であることを特徴とする、前記(9)に記載の繊維強化プラスチックの製造方法。
(11)前記非一方向強化繊維シートの厚みが0.01~1.0mmであることを特徴とする、前記(9)または(10)に記載の繊維強化プラスチックの製造方法。
(12)前記非一方向強化繊維シートを構成する強化繊維の少なくとも一部が熱可塑性樹脂繊維以外の繊維であることを特徴とする、前記(9)~(11)のいずれかに記載の繊維強化プラスチックの製造方法。
(13)前記非一方向強化繊維シートが、少なくとも一部の領域にあらかじめマトリックス樹脂を含浸させたものであることを特徴とする、前記(9)~(12)のいずれかに記載の繊維強化プラスチックの製造方法。
 本発明によれば、力学特性に優れるだけでなく、外観品質にも優れた突起部を有する繊維強化プラスチックを提供することができる。特に本発明においては、少なくとも板状部に、多数本の強化繊維がマトリックス樹脂中で一方向に配列された層が少なくとも1層あり、その強化繊維の配向方向が、突起部の横断面における幅方向と、平行でも垂直でもないことを特徴とする。該強化繊維の配向方向が幅方向と平行な場合とは、成形時に金型の溝に繊維が流動しにくく、樹脂リッチや未充填が発生しやすいことを意味する。一方、該強化繊維の配向方向が幅方向に対して平行な場合とは、成形時に金型の溝に繊維が流動しやすく突起部に繊維は充填されるが、意匠面の繊維が突起部に引き込まれることにより、凹みが発生しやすいことを意味する。しかも、突起部が繊維の方向に向かって折れやすく、十分な力学特性を得るのが難しいことになる。本発明においては、上記構成により、突起部における繊維や樹脂の“未充填”、“樹脂リッチ”の発生を抑制することができ、同時に外観品位の向上と力学特性の向上も可能となる。
本発明に係る繊維強化プラスチックを構成する突起部と板状部の一例を示す概念図である。 切込挿入プリプレグにおける繊維長さと、切込みの長さ、角度、投影長さそれぞれについての定義を示す説明図である。 切込挿入プリプレグのカットパターンの一例(平行で、連続した切込みを有する例)である。 切込挿入プリプレグのカットパターンの他の例(平行で、断続した切込みを有する例)である。 切込挿入プリプレグのカットパターンの他の例(強化繊維との角度が一定で正と負の切込みが略半数ずつである例)である。 切込挿入プリプレグのカットパターンの他の例(近接する切込同士の最短距離が切込の長さより長い例)である。 繊維強化プラスチックの表面(突起部を有する面とは反対側の面)における目ヨレの有無・高さを示す概略図である。 繊維強化プラスチックを構成する突起部と板状部における強化繊維の配向方向を示す概念図である。 板状部から隆起した突起部の形状の例を示す概略図である。
 本発明の繊維強化プラスチックは、多数本の強化繊維にマトリックス樹脂を含浸させたプリプレグを用いて得られたものであり、例えば図1に示すように、板状部100と、該板状部100の少なくとも片側の面から隆起した突起部200を少なくとも1箇所有する形状からなる繊維強化プラスチックである。少なくとも前記板状部100の内部には、強化繊維が一方向に順次配列された一方向プリプレグが配されることで形成された層、すなわち、多数本の強化繊維がマトリックス樹脂中で一方向に配列された層が少なくとも1層あり、前記一方向プリプレグの繊維配向方向が、前記突起部200の横断面における幅方向(長さ方向)と平行または垂直でないことを特徴とする。
 ここで、前記突起部の横断面における幅方向(長さ方向)とは、突起部を板状部の側面方向から測定した場合に該板状部の平面方向に平行な方向の長さが最大となる断面を横断面といい、その断面における該板状部の平面方向に平行な方向のことをいう。突起部が例えば異なる二方向に延在するような場合には、一方の方向に延在する突起部を基準に横断面を決定する。
 また、「平行または垂直でない」とは、突起部の横断面における幅方向に対して斜めであればよいことを意味する。すなわち、例えば図8の(A)~(C)には、突起部の最も長い方向(リブ方向、紙面奥行き方向)またはそれに直交する方向に、一方向プリプレグを構成する強化繊維が延在している態様を示しているが、このような態様とするのではなく、図8(D)のように、突起部の最も長い方向およびそれに直交する方向に亘って強化繊維が延在しないようにすることを意味する。なお、図8(A)は、強化繊維300が、突起部200の横断面における幅方向(長さ方向、リブ方向)と平行である態様を、図8(B)は、強化繊維300が、突起部200の横断面における幅方向(長さ方向、リブ方向)と垂直である態様を、さらに図8(C)は、強化繊維300が、突起部200の横断面における幅方向(長さ方向、リブ方向)と平行および垂直である態様を示している。一方、図8(D)は、強化繊維300が、突起部200の横断面における幅方向(長さ方向、リブ方向)と平行でも垂直でもないため、その強化繊維300の断面が扁平となっている状態を表している。
 最終的に得られる繊維強化プラスチックにおいて、突起部の横断面における幅方向(長さ方向)に対して、強化繊維の配向方向が平行にも垂直にもならないように、一方向プリプレグを配し形成した層が、少なくとも1層存在するということは、突起部の最も長い方向に亘って延在する強化繊維が低減されるということである。それゆえ、図8(A)に示すような繊維強化プラスチックの突起部において繊維の引き揃え方向に沿って発生する凹み500や、図8(B)、(C)に示すような繊維や樹脂の“未充填”の発生、“樹脂リッチ”の発生を抑制でき、同時に外観品位の向上も図ることが可能となる。
 強化繊維の引き揃え方向(配向方向)が突起部の長さ方向と平行である場合、突起部がせん断方向の荷重に耐えられにくくなる。そのため、突起部の強度が不足し、強化繊維の引き揃え方向に沿ってリブ内部にクラックが入り易く、突起部が折れて、板状部から剥離する可能性が高くなる。また、強化繊維の引き揃え方向が突起部の長さ方向に対して垂直の場合は、成形時に強化繊維が突起部内部(金型の凹部分)に流動しにくくなるため、成形後の突起部内に強化繊維の未充填領域が発生する可能性が高くなる。また、強化繊維が流動しにくくなると、一方向プリプレグからマトリックス樹脂が搾り出され、部分的に樹脂のみの領域(樹脂リッチ)が発生する可能性も高くなる。
 なお、強化繊維の引き揃え方向と突起部の長さ方向の角度(強化繊維の配向方向と突起部の長さ方向の形成する角度)は、0~90°のうち、平行または垂直でなければ特に限定されないが、5~85°が好ましい。また、突起部への充填性や突起部と板状部の接合強度の観点から、更に好ましくは30~60°である。
 板状部や突起部は、詳細は後述するが、前述の一方向プリプレグを例えば複数枚用意し、それらの繊維方向を所望の方向に合わせて順次積層し、この積層体(プリフォーム)をプレスする方法により得ることができる。また、積層体(プリフォーム)を作製する際には、必要に応じてあらかじめ定めた形状となるように賦形してもよい。この後、該積層体を予め加熱しておいた金型(例えば凹型金型)に投入し、プレス機で加熱加圧して成形することで繊維強化プラスチックを得ることができる。
 板状部の形状は、特に限定されない。厚みは繊維とマトリックス樹脂の使用量を調整することで任意に設計できる。繊維とマトリックス樹脂の使用量を調整する方法としては、一方向プリプレグの積層枚数を調整する以外にも、一方向プリプレグに含浸させる樹脂の量を変化させたり、繊維の種類を変えたりする等、任意に調整が可能である。
 本発明の繊維強化プラスチックが、自動車やバイクなどの輸送機器、自転車やゴルフクラブなどのスポーツ器具、医療機器などに用いられる構造部材やカバー等の外板、その他の部品に使用される場合、要求される力学特性と軽量化の両立と実用性の観点から、板状部の厚みは0.1~10mmが好ましい。更には0.5~5.0mmが好ましく、特に軽量化が必要な用途に用いられる場合には、0.5~2.0mmが好ましい。
 板状部から隆起した突起部の形状は、特に限定されず、目的に応じて種々の形態を採ることができる。例えば板状部の上面からみた形状が、図1に示す円形の突起部のほか、多角形(例えば長方形)、楕円形、X字形状、V字形状、H字形状、I字形状、Y字形状、L字形状などの突起部を挙げることができる。また、これらを組み合わせてもよい。なお、図9(A)にX字形状、図9(B)にI字形状、図9(C)にH字形状の突起部を有する態様を示し、図9(D)にI字形状の突起部を複数有する態様を示す。
 また突起部の横断面形状としては、例えば、多角形(例えば長方形)、円形、あるいは、楕円形があり、縦断面形状としては、例えば、四角形(例えば長方形)、三角形、あるいは、半円形がある。
 ここで、突起部に垂直に交わる断面から(板状部の側面方向から)測定した突起部の幅の最大値を比較し、幅の最も広い断面を横断面、幅が狭い断面を縦断面と定義する。
 なお、以下において、縦断面の幅(t)を突起部の“幅”と定義し、特に断らない場合(単に「突起部の幅」と呼ぶ場合)は、縦断面の幅(t)を指すものとする。また、横断面の幅(L)を突起部の“長さ”、横断面方向を突起部の“長さ方向”と定義する。この定義で言い換えると、突起部の長さ(L)と幅(t)の比はL/t≧1である。
 また、突起部の高さ(h)は、縦断面を用いて測定した、突起部のつけ根である板状部表面から縦断面の頂点(一番高い部分)までの垂直距離と定義する。そして、本発明の繊維強化プラスチックにおいては、突起部の高さ(h)と突起部の幅(t)の比がh/t>1である形状が好ましく用いられる。h/tの上限としては30以下が好ましく、さらに好ましくは5以下である。
 突起部の断面形状や高さの寸法については、複数存在する突起部の全てを同じ形状・寸法とすることも可能であるが、繊維強化プラスチックの凸凹形状や曲率形状に合わせて、変化させることも可能であり、部分的に前記の形状や寸法比率にない箇所を作ることも可能である。また、例えば突起部の断面形状を、複数の多角形や円形、楕円形を任意の重なり具合で連結して得られるような形状としてもよい。特に突起部の縦断面形状が三角形や台形など、先端の方に近づくほど(すなわち板状部表面から離れるほど)幅が狭くなっている形状や、突起部の横断面形状を端部に行くほど高さが低くなるテーパー形状にすることは、成形時の脱型性や、使用時に荷重がかかる際の応力集中緩和の観点から好ましい。
 本発明の繊維強化プラスチックの突起部の高さ(h)は、特に限定はされず、任意に設計できるが、0.1~100mmが好ましい。なお、本発明の繊維強化プラスチックが、自動車やバイクなどの輸送機器、自転車やゴルフクラブなどのスポーツ器具、医療機器などに用いられる構造部材やカバー等の外板、その他の部品に用いられる場合、板状部の厚み0.1~10mmに対し、突起部の高さが0.1~50mmであることが好ましい。更に好ましくは、板状部の厚み0.1~10mmに対し、突起部の高さは1~10mmが好ましい。
 一方、突起部の幅(t)も特に限定されるものでなく、必要な強度やデザインにより、任意に設計できる。なお、軽量化の観点からは狭い方が好ましいが、板状部を補強する目的から、板状部の厚み0.1~10mmに対し、突起部の幅(t)が0.5~5mmであることが好ましい。
 本発明の繊維強化プラスチックは、板状部の任意の場所に突起部を配置することができる。また、突起部の配置位置は、突起部の外観が全て確認できる繊維強化プラスチックの上面視において確認することができる。突起部の配置位置は、1箇所に限定されず、2箇所以上の場所に配置することが可能である。すなわち、同じ形状または異なる形状の突起部を2箇所以上の場所に設置することも可能である。
 なお、突起部の箇所数は、上面視において、板状部が見える部分は突起部に該当しないと判断し、該板状部で囲まれる最小の突起部を独立した1つの突起部と認定して、数を数える。
 突起部としてリブを設ける場合、本発明に係る繊維強化プラスチックの軽量化と剛性向上の両立を達成させるためには、リブを1箇所だけでなく、2箇所以上に配置することが好ましい。こうすることで、板状部の補強範囲を広げることができる。そして、2か所以上にリブを配置する場合、それらの長さ方向を互いに平行関係に配することで、補強効果を得ることができる。その場合、各リブが不連続、間欠的に設けられていてもよい。一方、複数のリブそれぞれの長さ方向が互いに平行関係でない場合であっても、繊維強化プラスチックに要求される力学特性に合わせて、当該長さ方向をそれぞれ任意の方向となるように配置することが可能である(ハの字等)。
 リブの形状は、長さ方向が一方向だけの一文字形状だけでなく、少なくとも2方向のリブが任意の場所と角度で交差した十字形状(X字形状)やV字形状(複数の十字が連結した形状を含む)、さらには少なくとも3本のリブが1箇所で任意の角度で放射状に交差した形状など、繊維強化プラスチックに求められる力学特性により、任意に設計が可能である。
 また、本発明の繊維強化プラスチックは、上記したように、少なくとも板状部の内部に、多数本の強化繊維が一方向に順次配列された一方向プリプレグが少なくとも1層配されて形成され、一方向プリプレグの繊維配向方向が、突起部の横断面における幅方向(長さ方向)と平行または垂直でないことを特徴とする。ここで、「板状部の内部」とは、板状部に相当する部分であればよく、表層を構成する部分であっても、それ以外の内層部分であってもよい。
 一方向プリプレグが2層以上積層される場合には、強化繊維の引き揃え方向ができる限り突起部の長さ方向と平行でない、または垂直でない層が多くなるように積層することが好ましい。その際、層間での繊維の引き揃え方向の角度差は特に限定されず、すべての層が同じ方向で引き揃えられていてもよいし、異なっていてもよい。所望するコンポジットの特性に応じて自由に選択できる。
 なお、一方向プリプレグの積層順は任意に設定しても問題ないが、成形性の観点から、突起部の長さ方向と平行でも垂直でもない層が突起部に近い位置になるように積層することが好ましい。好ましくは、板状部において、突起部がある面から4層目以内に一方向プリプレグを配置することが好ましく、最も好ましくは突起部がある側の面の最表層に一方向プリプレグを配置するのが好ましい。また、突起部がある側の面の最表層から4層目まで全てを、突起部の長さ方向と平行または垂直でない層とすることも好ましい
 さらに、一方向プリプレグの積層数を増やす事もできる。一方向プリプレグの積層数が多いほど突起部に流動する繊維が多くなるのでより好ましい。好ましくは6層以上であり、さらに好ましくは10層以上である。このように積層することにより、突起部に強化繊維が流動しやすく突起部末端にまで強化繊維を容易に充填できるようになるため、成形性や突起部の力学特性の観点から好ましい。
 また、突起部が2つ以上ある場合は、それぞれの突起部に対してプリプレグの充填性が異なる場合があり、一部の突起部で“未充填”が発生することがある。その場合は、一方向プリプレグの繊維配向方向が、より充填しにくい、突起部の横断面における幅方向に対して、平行または垂直とならないように、プリプレグを積層することが好ましい。充填しにくい突起部の例を示すと、突起部の長さが長い程、プリプレグが充填しにくい。そのため、一方向プリプレグの繊維配向方向は、少なくとも最も長さが長い突起部の長さ方向に対して、平行でも垂直でもないことが好ましい。更に好ましくは、一方向プリプレグの繊維配向方向が、それぞれの突起部の長さ方向に平行でも垂直でもないことが好ましい。
 一方向プリプレグは、繊維の配向方向が前記を満たす少なくとも一方向となるように配置すればよいが、本発明においては、板状部の少なくとも一部に、一方向プリプレグが2層以上積層された構造を有し、任意に選択した2層の一方向プリプレグの強化繊維層の繊維方向が互いに平行でないことが好ましい。すなわち、強化繊維が一方向に配列された層が少なくとも2層積層された構造を有し、それらの層から任意に選択される2層において強化繊維の配向方向が互いに平行でないことが好ましい。強化繊維の配向方向が一方向のみの場合、突起部は、熱収縮率や線膨張係数の異方性によってソリなどを生じ易く、寸法精度が悪くなる。更に、突起部がリブの場合は、リブに対して二方向への力や、ねじれの力が作用した場合、外力に対するリブの耐久性を高くすることができなくなる。
 なお、強化繊維の配向方向が異なる複数の強化繊維層を積層する場合、一般的には[0/90]nのような対象積層や、[0/±60]n、[+45/0/-45/90]nといった等方積層で、かつ、積層方向(厚み方向)に対しても対称積層構造とすることが、繊維強化プラスチックの板状部のソリ低減などに有効とされている。一方、本発明の繊維強化プラスチックでは、突起部をリブ形状にすることにより、反りを低減できるため、繊維の配向方向を繊維強化プラスチックに要求される剛性方向に偏重させることが可能である。
 また、本発明においては、強化繊維の少なくとも一部の繊維長を10~300mmにすることが好ましい。繊維長をこの範囲にすることで、強化繊維が成形品の突起の部の形状に沿いやすくなり、三次元形状への賦形性が向上する。また、賦形や成形時の繊維配列の乱れが低減することから、力学特性のバラつきが小さく、表面平滑性が高い繊維強化プラスチックを得ることができる。
 具体的には、繊維長を300mm以下とすることにより、強化繊維の柔軟性や流動性が向上し、優れた賦形性や成形性を得ることができる。一方、繊維長を10mm以上にすると、切込同士の距離が離れるため、繊維強化プラスチックに高い荷重が負荷された際に発生したクラックが連結し難いため、力学特性や耐久性が高い繊維強化プラスチックとなる。
 なお、強化繊維を刃物で切断して繊維長を調整する場合、刃物が強化繊維に当たった際に強化繊維が動き、刃から逃げる繊維や刃に巻き込まれる繊維が発生する可能性があるため、前記の範囲にない繊維も存在するが、大多数の強化繊維の繊維長さを前記の範囲に調整することで、十分な改善効果が期待される。また、成形時に金型のエッジなどが当たって切断される繊維も存在するため、成形品内部には上記範囲よりも短い繊維が存在する場合もある。
 強化繊維の繊維長は、繊維強化プラスチック内の全ての強化繊維の繊維長を前述した範囲に調整してもよいが、突起部など繊維強化プラスチックの形状が変化する部分とその周辺の強化繊維の繊維長だけを調整しても十分な効果を得ることができる。
 本発明において用いられる、繊維長10~300mmの強化繊維が一方向に配列された強化繊維シートの態様としては、例えば、(1)牽切紡などの紡績手段によって得られる不連続状の強化繊維をシート化した態様であってもよいし、(2)不連続状の強化繊維(例えば、チョップドファイバー)を一方向に配列させてシート化した態様であってもよいし、あるいは、(3)連続状の強化繊維で構成される一方向プリプレグの全面に、例えば図2~図6に示すように、強化繊維を横切る方向に連続的もしくは断続的な有限長の切り込みを入れる態様であってもよい。
 (1)の牽切紡とは、ストランド状態の連続繊維に張力をかけることにより、繊維を短繊維の単位で切断する紡績方法の1つであり、短繊維の切断点が一箇所に集まらないで、ストランドの全長にわたって均等に分散すると云う特徴を有する。強化繊維の切断端を単繊維の単位で揃わないようにランダムに配置して集合体を形成するものであり、強化繊維が、単繊維の単位で流動するため、成形性に僅かに劣るが、応力伝達が非常に効率良くなされるため、極めて高い力学特性の発現を可能とする。また、強化繊維の切断箇所が分散しているため、優れた品質安定性の実現を可能とする。
 (2)の、不連続状の強化繊維(例えば、チョップドファイバー)を一方向に配列させてシート化する方法は、強化繊維の切断端を複数の繊維の単位で揃えて、ある程度は規則正しく配置して集合体を形成するものである。必然的に強化繊維の配置、分布ムラなどを生じるため、品質安定性は僅かに劣るが、複数の繊維の単位で流動するため、極めて優れた成形性の実現を可能とする。
 (3)の切り込みプリプレグを用いる方法は、強化繊維が規則正しく配置しているため、品質安定性および力学特性に優れ、複数の繊維の単位で流動するため、成形性にも優れる。
 上記の(1)、(2)、(3)の3つの態様は、用途に応じて適宜選択することが出来、いずれも力学特性と成形性とのバランスに優れ、簡易に製造することが出来るものであるが、中でも(3)の、連続状の強化繊維で構成される一方向プリプレグの全面に、強化繊維を横切る方向に連続的または断続的な有限長の切り込みを入れる態様が、最も好ましい。
 なお、プリプレグに切込みを入れる方法は特に限定されない。例えば、カッターを用いての手作業により切込みを入れる方法も可能であるが、品質が安定し、大量生産も可能な自動裁断機等を用いて機械的に切り込みを入れる方法が好ましい。機械的に切込みを入れる方法としては、特に限定されない。例えば、テーブル上に広げたプリプレグ基材の上を刃が移動する裁断機で、所定の位置に切込みを挿入する方法や、ミシン目の回転丸刃を一直線上に転がしたり、レーザー加工用のパルスレーザーを一直線上に高速で走査したりすることでパルス周期に対応する切込を挿入する方法などを例示することができる。いずれも生産性の高い切込挿入法であり、所有する生産設備などより、選択が可能である。
 このような工程を経たプリプレグは、少なくとも一部の強化繊維を横切る方向へ断続的な切込が複数設けられ、その結果、少なくとも一部における強化繊維の繊維長が10~300mmとなる。そして、断続的な切込同士によって、実質的に強化繊維のすべてが分断されていることとなり、賦形性や成形時の繊維の流動性を確保できる。
 切込の長さは、プリプレグ基材の面内における強化繊維に対して垂直方向の投影面に投影した投影長さWsで定義した場合、30μm~1.5mmの範囲内であることが好ましい。ただし、この切込みは、賦形や成形時に基材が変形するため、基材が延びる場所では長くなり、基材が圧縮で潰される場所では短くなる可能性がある。そのため、成形後の繊維強化プラスチックで観察すると、切込みの長さが前記範囲に無い箇所も存在するが、最終的に繊維長が10~300mmの強化繊維が規則正しく配置された構造が繊維強化プラスチックに存在することで、力学特性や表面外観に優れた成形品を得ることができる。
 Wsを小さくすることにより、一つ一つの切込により分断される強化繊維の量が減り、強度向上が見込まれる。特に、Wsを1.5mm以下とすることで、大きな強度向上が見込まれる。一方で、Wsが30μmより小さい場合、切込位置の制御が難しく、強化繊維の繊維長のバラつきが大きくなり、所定範囲外の長さの強化繊維が増加し、賦形性や流動性が低下する。
 ここで、「強化繊維に対して垂直方向の投影面に投影した投影長さWs」とは、図2、4、5、6に示すように、切込挿入プリプレグの面内において、強化繊維の配向方向に対して垂直な方向(繊維垂直方向6)に投影面が存在すると仮定して、切込を該投影面に垂直(繊維配向方向5)に投影した際の長さを指す。
 プリプレグ基材の切込と強化繊維とのなす角度をθとしたとき、θの絶対値が2~25°の範囲内であることが好ましい。θの絶対値が25°以下であることで、力学特性、中でも引張強度を向上することができる。かかる観点からは、θの絶対値が15°以下であることがより好ましい。一方、θの絶対値は2°より小さいと、切込を安定して入れることが難しくなる。すなわち、強化繊維に対して切込が寝てくると、切込を入れる際、強化繊維が刃から逃げやすく、切込の位置精度が低下する。かかる観点からは、θの絶対値が5°以上であることがより好ましい。
 切込みを挿入する方法としては、例えば前記角度で、連続的に挿入する方法と、断続的に切込を複数箇所に挿入する方法のいずれも採用できる。連続切込の場合は、繊維長さを一定にコントロールすることができ、力学特性、三次元形状追従性のバラツキを低減することができる。一方、断続的に切込を挿入する場合には、切込角度が強化繊維に対して斜めであることにより、実際の切込み長さYの大きさに対して、プリプレグ基材の面内における強化繊維に対して垂直方向の投影面に投影した投影長さWsを小さくすることができる。そのため、例えばWs=1.5mm以下という極小の切込を工業的に安定して設けることができる。また積層時に連続切込よりもプリプレグがばらばらになり難く、プリプレグとしての取り扱い性にも優れる。
 切込挿入プリプレグの好ましいカットパターンとしては、図4のように、プリプレグ基材の少なくとも一部に強化繊維を横切る方向へ断続的な斜め切込9が複数設けられた態様を挙げることができる。複数の断続的な斜め切込9が直線状に挿入されて列11を形成し、さらにその列11が複数かつ互いに平行に配置されていることが好ましい。このようにすることで、強化繊維が一定長のもと隣接する切込同士の距離を最大化することができ、その結果、繊維強化プラスチックを均質化しつつ強度を高めることができる。列間の距離Xは例えば1~5mmの範囲内であることが好ましい。
 切込挿入プリプレグの別の好ましいカットパターンとしては、図5に示すような態様が挙げられる。この態様においては、プリプレグ基材の少なくとも一部に、強化繊維を横切る方向へ、複数の断続的な斜め切込9が設けられているとともに、該斜め切込9とはθの絶対値が実質的に同一(均一)であるものの、正負反対の角度となる斜め切込10が設けられている。これら斜め切込9、10は、略半数ずつ設けられている。ここでθの絶対値が「実質的に同一」の定義を、角度が、±1°以内のずれであることとする。また、略半数とは、斜め切込9、10の総数をベースとした百分率で示した時に、それぞれが45~55%であることをいう(以下同じ)。
 切込挿入プリプレグを積層する際、斜め切込が一方向のみに存在する場合には、同一繊維方向のプリプレグであっても、プリプレグを表から見るか裏から見るかで異なる切込の方向となる。したがって、繊維強化プラスチック製造時に、毎回切込の方向が同じになるように制御する手間、もしくは同じ繊維方向で切込の方向が異なるものを同じ枚数積層するための積層手順を制御する手間が増える可能性がある。しかし、繊維方向からの切込の傾きの絶対値が同一であり、正の角度となる切込と負の角度となる切込とが略半数ずつとなるカットパターンであれば、通常の連続繊維プリプレグと同様の扱いで積層することが可能となる。
 切込挿入プリプレグの好ましい実施態様としては、図5に示すように、任意の1つの切込Aに着目したとき、該切込Aと近接する切込のうち、θの正負が同一である最も近い切込Bよりも切込Aとの最短距離が近い、θの正負が異なる切込Cが、4つ以上存在するものが挙げられる。三次元形状追従時にプリプレグの切込挿入部は、切込角度と繊維方向との関係で繊維端部の動きが決まる。そのため、近接する切込同士は同形状、逆方向の角度であることで、マクロに見た場合、成形後の面内の等方性が担保される。
 さらに、切込挿入プリプレグの好ましい実施態様として、図6に示すような態様も好ましい。この態様においては、切込挿入プリプレグの少なくとも一部に、強化繊維を横切る方向へ断続的な斜め切込10が複数設けられている。そして、その断続的な斜め切込10は、直線状かつ実質的に同一の長さYで挿入され、近接する切込同士の最短距離が該切込の長さYよりも長い。ここで実質的に同一の長さとは、±5%の差以内であることをいう(以下同じ)。力学特性の観点から、繊維の不連続点である切込同士がクラックにより連結された際、繊維強化プラスチックは破壊する。面内の切込同士の距離を離したカットパターンとすることで、少なくとも同一面内でのクラック連結を抑制する効果があり、強度が向上する。
 さらに、切込挿入プリプレグの好ましい実施態様としては、切込挿入プリプレグの少なくとも一部に強化繊維を横切る方向へ断続的な切込が複数設けられており、断続的な切込が直線かつ実質的に同一の長さYで挿入され、かつ、同一直線上の近接する切込間の距離が、切込の長さYの3倍より大きいものが挙げられる。同一直線上に切込が存在する場合は、切込起因の損傷が切込の延長線上に発生する可能性があり、特に近接する距離が近いほどクラックが連結しやすい。従って同一直線状の切込同士の距離をできるだけ離すことでクラック連結が抑制され、強度が向上する。また、同一直線状に断続的な切込が挿入され、該切込同士の距離が近い場合は、成形後に切込が断続的な直線の模様として認識されやすくなる一方、切込同士の距離が離れていることで模様として認識されることがなくなり、表面品位に優れるものとなる。なお、同一直線上に切込が存在するとは、ある一つの切込aを延長した直線と、前記切込aと対象となる切込bの互いに最も近接する点同士を結んだ直線との角度が、2°以内であることを指す。
 また、一方向プリプレグの全てを繊維長が前述した範囲に調整されたものとしてもいいが、かかる繊維長の強化繊維を全ての層に配置する必要はない。繊維強化プラスチックの突起部の幅や高さ、形状の曲率や角度により、繊維長を調整した一方向プリプレグを配置する層を適宜選択することができる。即ち、繊維強化プラスチックの突起部や形状変化部と、板状部でも、突起部や形状変化部の直下の層における強化繊維の繊維長だけを調整しても十分な効果を得ることができる。
 また、本発明の繊維強化プラスチックの少なくとも板状部の繊維目付(FAW)は、50~1000g/mが好ましい。変形抵抗や流動性の観点から、好ましくは、50~200g/mであり、更に好ましくは70~200g/mである。繊維層が2層以上ある場合は、その少なくとも1層が前記範囲であることが好ましい。
 繊維目付(FAW)が高いほど繊維層の剛性が高くなり、1000g/mを超えると変形抵抗が大きくなり、繊維が突起部内部(金型凹部)に流動し難いため、“未充填”や“樹脂リッチ”が発生し易くなる。また、高目付のプリプレグ基材の繊維に刃物で切込みを入れる際に、刃から逃げる繊維が増加し、目標範囲外の繊維長の繊維が増加し、流動性の低いプリプレグ基材になってしまう可能性が高い。
 即ち、低目付のプリプレグ基材を多く積層した方が、成形性の観点からは好ましいが、50g/m未満の場合、プリプレグ基材の生産や積層工数の増加により、コストが高くなってしまう。また、積層工数削減の観点から、70g/m以上が更に好ましい。
 本発明の成形品の樹脂重量分率(Rc)は10~70%であることが好ましい。
更に好ましくは、20~60%である。樹脂重量分率(Rc)が10%未満の場合、成形品表面の樹脂量が少ないため、繊維の凹凸により成形品表面が凸凹になる上に、繊維の流動性が低くなり、成形で“未充填”が発生し易くなる。一方、樹脂重量分率(Rc)が70%を超えると樹脂が多くなり、成形品の凹部などに樹脂が過剰な部分(“樹脂リッチ”)が生じ、樹脂の硬化収縮で成形品表面の平滑性が低下する。
 本発明において、強化繊維は、特に限定されるものではないが、ガラス繊維、アラミド繊維、ポリエチレン繊維、炭化ケイ素繊維および炭素繊維が好ましく用いられる。特に軽量かつ高性能であり、優れた力学特性の繊維強化複合材料が得られる点で、ガラス繊維や炭素繊維が好ましく用いられる。また、ガラス繊維を単一で用いてもよいし、炭素繊維を単一で用いてもよく、性能とコストのバランスから、ガラス繊維と炭素繊維の両方を、同時に用いてもよい。
 ここで、ガラス繊維は、特に限定されるものではないが、Eガラス繊維、Sガラス繊維、Cガラス繊維、Dガラス繊維が好ましく用いられる。コストと強度のバランスの観点からは、Eガラス繊維が好ましく用いられ、高強度を求められる場合にはSガラス繊維が好ましく用いられ、耐酸性を求められる場合にはCガラス繊維が好ましく用いられ、低誘電率を求められる場合にはDガラス繊維が好ましく用いられる。
 ガラス繊維の平均繊維径に特に制限はないが、ガラス繊維の平均繊維径は4~20μmであることが好ましく、より好ましくは平均繊維径が、5~16μmである。通常4μm以上であれば十分効果を得ることができ、一方平均繊維径が20μmを超えると強度が低下する傾向にある。
 また、ガラス繊維をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用することは、より優れた機械的強度を得る意味において好ましい。
 次に、炭素繊維は、特に限定されるものではないが、ポリアクリロニトリル系炭素繊維、レーヨン系炭素繊維、およびピッチ系炭素繊維等が好ましく用いられる。中でも、引張強度の高いポリアクリロニトリル系炭素繊維が、特に好ましく用いられる。炭素繊維の形態としては、有撚糸、解撚糸および無撚糸等を使用することができる。
 かかる炭素繊維は、引張弾性率が180~600GPaの範囲であることが好ましい。引張弾性率がこの範囲であれば、得られる繊維強化プラスチックに剛性を持たせることができるため、得られる成形品を軽量化することができる。また一般に、炭素繊維は弾性率が高くなるほど強度が低下する傾向があるが、この範囲であれば炭素繊維自体の強度を保つことができる。より好ましい弾性率は、200~440GPaの範囲であり、さらに好ましくは220~300GPaの範囲である。上記の上限と下限のいずれを組み合わせた範囲であってもよい。ここで、炭素繊維の引張弾性率は、JIS R7601-2006に従い測定された値である。
 なお、炭素繊維の市販品としては、以下のものが挙げられるが、特にこれらに限定されるものではない。“トレカ(登録商標)”T300(引張強度:3.5GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T300B(引張強度:3.5GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T400HB(引張強度:4.4GPa、引張弾性率:250GPa)、“トレカ(登録商標)”T700SC(引張強度:4.9GPa、引張弾性率:230GPa)、“トレカ(登録商標)”T800HB(引張強度:5.5GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T800SC(引張強度:5.9GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T830HB(引張強度:5.3GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T1000GB-(引張強度:6.4GPa、引張弾性率:294GPa)、“トレカ(登録商標)”T1100GC(引張強度:7.0GPa、引張弾性率:324GPa)、“トレカ(登録商標)”M35JB(引張強度:4.7GPa、引張弾性率:343GPa)、“トレカ(登録商標)”M40JB(引張強度:4.4GPa、引張弾性率:377GPa)、“トレカ(登録商標)”M46JB(引張強度:4.2GPa、引張弾性率:436GPa)、“トレカ(登録商標)”M55J(引張強度:4.0GPa、引張弾性率:540GPa)、“トレカ(登録商標)”M60JB(引張強度:3.8GPa、引張弾性率:588GPa)、“トレカ(登録商標)”M30SC(引張強度:5.5GPa、引張弾性率:294GPa)(以上、東レ(株)製)、PX35(引張強度:4.1GPa、引張弾性率:242GPa)、(以上、ZOLTEK社製)などを挙げることができる。
 炭素繊維のフィラメント数としては、特に限定されるものではないが、本発明の繊維強化プラスチックに後述するように織物を用いる場合、製織生産性、要求される繊維強化プラスチックとしての引張・曲げ弾性率、強度、意匠性の観点から、1,000~70,000フィラメントの範囲であることが好ましく、さらには1,000~60,000フィラメントであることが好ましい。フィラメントを多数本引き揃えたマルチフィラメントであることで、柔軟性が得られ、成形で任意の形状に変形させ易い。また、マルチフィラメントは、一本の繊維の欠点を他の繊維が補うことができるため、成形品の力学特性のバラつきが抑えられ、安定した性能を得ることができる。
 次に、本発明の繊維強化プラスチックを構成する、前記強化繊維と組み合わせる、マトリックス樹脂について説明する。マトリックス樹脂には、熱硬化性樹脂または熱可塑性樹脂が好ましく用いられる。
 ここで、熱硬化性樹脂は、熱により自己硬化する樹脂であってもよいし、硬化剤や硬化促進剤等を含むものであってもよく、熱により架橋反応を起こし少なくとも部分的な三次元架橋構造を形成するものが好ましいが、特に限定されるものではない。ここで熱硬化性樹脂の例としては、エポキシ樹脂組成物、ビニルエステル樹脂組成物、不飽和ポリエステル樹脂組成物、ポリウレタン樹脂組成物、ベンゾオキサジン樹脂組成物、フェノール樹脂、尿素樹脂組成物、メラミン樹脂組成物、およびポリイミド樹脂組成物等が、取り扱い性の観点から好ましい。中でもエポキシ樹脂組成物、ビニルエステル樹脂組成物、不飽和ポリエステル樹脂組成物は、繊維強化プラスチックの性能や耐環境性の観点から、より好ましい。また、これらを含む熱硬化性樹脂組成物は、単一の種類である必要は無く、樹脂組成物同士を混合するなど、相互に混合されていても良い。
 さらに、熱硬化性樹脂に熱可塑性樹脂を粒子や繊維として分散、あるいは熱硬化性樹脂に熱可塑性樹脂を溶解させる等ブレンドして、マトリックス樹脂組成物としてもよい。このようにして用いられる熱可塑性樹脂は、通常は、炭素-炭素結合、アミド結合、イミド結合、エステル結合、エーテル結合、カーボネート結合、ウレタン結合、チオエーテル結合、スルホン結合およびカルボニル結合より選択される結合を有する熱可塑性樹脂であることが好ましいが、部分的に架橋構造を有していても構わない。
 前記熱硬化性樹脂に用いられる、エポキシ樹脂組成物としては、水酸基を複数有するフェノールから得られる芳香族グリシジルエーテル、水酸基を複数有するアルコールから得られる脂肪族グリシジルエーテル、アミンから得られるグリシジルアミン、オキシラン環を有するエポキシ樹脂、およびカルボキシル基を複数有するカルボン酸から得られるグリシジルエステルなどのエポキシ樹脂を含有する樹脂組成物を例示することができる。芳香族グリシジルエーテルとしては、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールADのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノールから得られるジグリシジルエーテル、フェノールやアルキルフェノール等から得られるノボラックのポリグリシジルエーテル、レゾルシノールのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテル、4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニルのジグリシジルエーテル、1,6-ジヒドロキシナフタレンのジグリシジルエーテル、9,9’-ビス(4-ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p-ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p-ヒドロキシフェニル)エタンのテトラグリシジルエーテル、およびビスフェノールAのジグリシジルエーテルと2官能イソシアネートを反応させて得られるオキサゾリドン骨格を有するジグリシジルエーテルなどを例示することができる。脂肪族グリシジルエーテルとしては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、ネオペンチルグリコールのジグリシジルエーテル、シクロヘキサンジメタノールのジグリシジルエーテル、グリセリンのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールエタンのジグリシジルエーテル、トリメチロールエタンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ペンタエリスリトールのテトラグリシジルエーテル、ドデカヒドロビスフェノールAのジグリシジルエーテル、およびドデカヒドロビスフェノールFのジグリシジルエーテルなどを例示することができる。グリシジルアミンとしては、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジルアミノフェノール、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、および水添品などを例示することができる。オキシラン環を有するエポキシ樹脂としては、ビニルシクロヘキセンジオキシド、ジペンテンジオキシド、3,4-エポキシシクロヘキサンカルボン酸3,4-エポキシキクロヘキシルメチル、アジピン酸ビス(3,4-エポキシキクロヘキシルメチル)、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、および4-ビニルシクロヘキセンジオキシドのオリゴマーなどを例示することができる。グリシジルエステルとしては、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、およびダイマー酸ジグリシジルエステルなどを例示することができる。これらエポキシ樹脂は、エポキシ樹脂組成物中に含まれるものは単一である必要は無く、エポキシ樹脂組成物に複数のエポキシ樹脂を混合しても良い。
 また、ビニルエステル樹脂組成物としては、エポキシ樹脂とアクリル酸を反応させたエポキシアクリレート樹脂、またはエポキシ樹脂とメタクリル酸を反応させたエポキシメタクリレート樹脂などのビニルエステル樹脂を含有する樹脂組成物を例示することができる。これらビニルエステル樹脂の原料となるエポキシ樹脂の種類は特に限定されないが、水酸基を複数有するフェノールから得られる芳香族グリシジルエーテル、水酸基を複数有するアルコールから得られる脂肪族グリシジルエーテル、アミンから得られるグリシジルアミン、オキシラン環を有するエポキシ樹脂、およびカルボキシル基を複数有するカルボン酸から得られるグリシジルエステルなどを例示することができる。ビニルエステル樹脂の原料となる芳香族グリシジルエーテルとしては、ビスフェノールAのジグリシジルエーテル、ビスフェノールFのジグリシジルエーテル、ビスフェノールADのジグリシジルエーテル、ビスフェノールSのジグリシジルエーテル等のビスフェノールから得られるジグリシジルエーテル、フェノールやアルキルフェノール等から得られるノボラックのポリグリシジルエーテル、レゾルシノールのジグリシジルエーテル、ヒドロキノンのジグリシジルエーテル、4,4’-ジヒドロキシビフェニルのジグリシジルエーテル、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニルのジグリシジルエーテル、1,6-ジヒドロキシナフタレンのジグリシジルエーテル、9,9’-ビス(4-ヒドロキシフェニル)フルオレンのジグリシジルエーテル、トリス(p-ヒドロキシフェニル)メタンのトリグリシジルエーテル、テトラキス(p-ヒドロキシフェニル)エタンのテトラグリシジルエーテル、およびビスフェノールAのジグリシジルエーテルと2官能イソシアネートを反応させて得られるオキサゾリドン骨格を有するジグリシジルエーテルなど例示することができる。ビニルエステル樹脂の原料となる脂肪族グリシジルエーテルとしては、エチレングリコールのジグリシジルエーテル、プロピレングリコールのジグリシジルエーテル、1,4-ブタンジオールのジグリシジルエーテル、1,6-ヘキサンジオールのジグリシジルエーテル、ネオペンチルグリコールのジグリシジルエーテル、シクロヘキサンジメタノールのジグリシジルエーテル、グリセリンのジグリシジルエーテル、グリセリンのトリグリシジルエーテル、トリメチロールエタンのジグリシジルエーテル、トリメチロールエタンのトリグリシジルエーテル、トリメチロールプロパンのジグリシジルエーテル、トリメチロールプロパンのトリグリシジルエーテル、ペンタエリスリトールのテトラグリシジルエーテル、ドデカヒドロビスフェノールAのジグリシジルエーテル、およびドデカヒドロビスフェノールFのジグリシジルエーテルなどを例示することができる。ビニルエステル樹脂の原料となるグリシジルアミンとしては、ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジルアミノフェノール、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルキシリレンジアミンや、これらのハロゲン、アルキル置換体、および水添品などを例示することができる。ビニルエステル樹脂の原料となるオキシラン環を有するエポキシ樹脂としては、ビニルシクロヘキセンジオキシド、ジペンテンジオキシド、3,4-エポキシシクロヘキサンカルボン酸3,4-エポキシキクロヘキシルメチル、アジピン酸ビス(3,4-エポキシキクロヘキシルメチル)、ジシクロペンタジエンジオキシド、ビス(2,3-エポキシシクロペンチル)エーテル、および4-ビニルシクロヘキセンジオキシドのオリゴマーなどを例示することができる。ビニルエステル樹脂の原料となるグリシジルエステルとしては、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、およびダイマー酸ジグリシジルエステルなどを例示することができる。
 不飽和ポリエステル樹脂組成物としては、カルボキシル基を2つ有し二重結合が無い飽和二塩基酸と二重結合を有する不飽和二塩基酸、さらにアルコール性水酸基を2個有する二価アルコールとを反応させて得られた不飽和ポリエステル樹脂を含有する樹脂組成物を例示することができる。不飽和ポリエステル樹脂の原料となる飽和二塩基酸の種類は特に限定されないが、無水フタル酸、イソフタル酸などを例示することができる。不飽和ポリエステル樹脂の原料となる飽和不飽和二塩基酸の種類は特に限定されないが、無水マレイン酸、フマル酸などを例示することができる。不飽和ポリエステル樹脂の原料となる二価アルコールの種類は特に限定されないが、エチレングリコールやプロピレングリコールなどを例示することができる。
 上記のビニルエステル樹脂組成物と不飽和ポリエステル樹脂組成物は、粘度を下げるなどの取り扱い性の観点から、反応性希釈剤を含んでも良い。反応性希釈剤としては、スチレン、ビニルトルエン、メタクリル酸メチルなどのビニルモノマー、ジアリルフタレート、ジアリルイソフタレート、トリアリルイソシアヌレートなどのアリルモノマー、フェノキシエチル(メタ)アクリレート、1,6-ヘキサンジオール(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートなどのアクリル酸エステル、ビニルピロリドン、フェニルマレイミドなどを例示することができる。
 一方、熱可塑性樹脂は、特に限定されるものではないが、アクリロニトリルブタジエンスチレン(ABS)樹脂、ポリウレタン(TPU)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、ポリトリメチレンテレフタレート(PTT)樹脂、ポリエチレンナフタレート(PEN)樹脂、液晶ポリエステル樹脂等のポリエステルや、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリブチレン樹脂等のポリオレフィンや、スチレン系樹脂の他、ポリオキシメチレン(POM)樹脂、ポリアミド(PA)樹脂、ポリカーボネート(PC)樹脂、ポリメチレンメタクリレート(PMMA)樹脂、ポリ塩化ビニル(PVC)樹脂、ポリフェニレンスルフィド(PPS)樹脂、ポリフェニレンエーテル(PPE)樹脂、変性PPE樹脂、ポリイミド(PI)樹脂、ポリアミドイミド(PAI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリA(PSU)樹脂、変性PSU樹脂、ポリエーテルスルホン樹脂、ポリケトン(PK)樹脂、ポリエーテルケトン(PEK)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリエーテルケトンケトン(PEKK)樹脂、ポリアリレート(PAR)樹脂、ポリエーテルニトリル樹脂、フェノール系樹脂、フェノキシ樹脂、ポリテトラフルオロエチレン樹脂などのフッ素系樹脂、更にポリスチレン系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリブタジエン系樹脂、ポリイソプレン系樹脂、フッ素系樹脂等の熱可塑性エラストマー等や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂などであってもよい。
 とりわけ、易加工性、力学特性、意匠性の観点から、ポリメチレンメタクリレート(PBSMMA)樹脂、ポリウレタン(TPU)樹脂、ポリエチレンテレフタレート(PET)樹脂、ポリブチレンテレフタレート(PBT)樹脂、アクリロニトリルブタジエンスチレン(ABS)樹脂、ポリアミド(PA)樹脂(特にPA6、PA66、PA12)、ポリカーボネート(PC)樹脂、ポリカーボネート(PC)とアクリロニトリルブタジエンスチレン(ABS)樹脂をブレンドした、PC/ABS樹脂が好ましく用いられる。
 ここで、繊維強化プラスチックの意匠性の一つとして、着色が求められる場合、特に色を限定されるものではないが、前記に挙げた熱可塑性樹脂に、黒、赤、黄、緑、青、紫、茶などの着色をすることで、意匠性を高めることができる。
 本発明の繊維強化プラスチックは、その製造方法が特に限定されないが、例としては、多数本の強化繊維にマトリックス樹脂を含浸させた一方向プリプレグを、必要に応じて同種または異なる種類の一方向プリプレグや繊維基材などと積層し、その積層体を、プレス成形、オートクレーブ成形、オーブン成形、または真空引きオーブン成形により加熱および必要に応じて加圧することで一体化して、得ることができる。
 まず、一方向プリプレグの製造方法は、特に限定されるものでないが、前述した方法で短繊維または長繊維を引き揃えた後、マトリックス樹脂を含浸させる方法が好もしく利用できる。
 マトリックス樹脂が熱硬化性樹脂の場合、樹脂を含浸する方法には、ウェット法、ホットメルト法、押出、スプレー、印刷又は他の公知の方法を好ましく利用できる。
 ウェット法では、熱硬化性樹脂を、アセトン、メチルエチルケトンおよびメタノールなどから選ばれる有機溶媒に溶解させて低粘度化し、強化繊維に含浸させた後に引き上げ、オーブンなどを用いて有機溶媒を蒸発させてプリプレグを得ることができる。
 ホットメルト法では、加熱により低粘度化したマトリックス樹脂を、直接、強化繊維に含浸させる方法、あるいは、一旦マトリックス樹脂を離型紙などの上にコーティングした樹脂フィルム付きの離型紙シート(以降、「樹脂フィルム」と表すこともある)を作製し、次いで強化繊維の両側あるいは片側から樹脂フィルムを強化繊維側に重ね、加熱加圧することにより強化繊維にマトリックス樹脂を含浸させる方法などを用いることができる。後者の方法として、より具体的には、例えば次に示す方法が挙げられる。すなわち、1つ目の方法は、樹脂組成物を含む樹脂フィルムを強化繊維の両側あるいは片側から加熱加圧することにより、単段階でマトリックス樹脂を含浸させる、いわゆる1段含浸ホットメルト法である。2つ目の方法は、マトリックス樹脂を多段階に分けて樹脂フィルムに塗工し、それらを強化繊維の両側あるいは片側から加熱加圧することにより含浸させる、多段含浸ホットメルト法である。
 一方、マトリックス樹脂が熱可塑性樹脂の場合、樹脂を含浸する方法としては、溶融法、溶剤法、パウダー法、樹脂フィルム含浸法、又は他の公知の方法を好ましく利用できる。
 溶融法は押出機で熱可塑性樹脂を溶融させ、溶融バスの中に強化繊維を通過させて繊維束内部に樹脂を含浸させる方法である。溶剤法は樹脂を溶剤で溶かした溶液を繊維束内部に含浸させるものである。パウダー法は熱可塑性樹脂の粉末を強化繊維に付着させ、それを加熱して溶融含浸させるものである。この製造プロセスにより、強化繊維を一つの方向に引き揃えたプリプレグを製造できる。また、樹脂フィルム含浸法は、強化繊維を織物に加工し、当該織物と、フィルム状に加工された上述のマトリックス樹脂とを、加熱された金属製盤面を有する加圧設備(所謂プレス)に、少なくとも、それぞれ1つずつ、同時に設置して、加熱と加圧により、フィルム状の樹脂を織物に含浸させて織物プリプレグを製造する方法である。そのため、後述するように一方向プリプレグとともに織物を基材としたプリプレグを用いる場合には、この方法を適用可能である。
 ここで、強化繊維に樹脂を含浸させたプリプレグの、1枚の厚みは、特に限定されるものではないが、0.05mmから5mmの範囲が好ましく、軽量化・薄肉化の観点から、0.05mmから3mmが更に好ましい。
 本発明の繊維強化プラスチックの成形方法としては、上記したように種々の成形方法を挙げることができ特に限定されないが、マトリックス樹脂を含浸させた一方向プリプレグを準備し、必要に応じて積層や賦形を行い、金型に投入し、プレス機で加熱加圧して成形するプレス成形法が好ましく使用できる。プレス成形では、高圧力で成形することで、強化繊維とマトリックス樹脂が一体化し、引き揃えた繊維の弛みや角度のバラつきの影響を小さくすることができる。
 プレス成形で使用する金型のキャビティー(間隙)は最終的に所望する繊維強化プラスチックの形状をしており、繊維強化プラスチックの突起部に当たる金型の形状は凹部になっている。プレス成形では、加熱成形する際に、強化繊維とマトリックス樹脂をその凹部に流動させ繊維強化プラチックの形状を成形する方法が可能であることから、必ずしも事前に繊維強化プラスチックと同一の形状に一方向プリプレグを賦形する必要がない。そのため、プリフォーム製作の工数を低減することができ、好ましい。
 なお、マトリックス樹脂が熱可塑性樹脂の場合は、金型を冷却してから、繊維強化プラスチックを取り出す必要があるが、マトリックス樹脂が熱硬化性樹脂の場合は、金型が高温のままでも成形した繊維強化プラスチックを取り出すことができるため、速硬化性の熱硬化性樹脂と組み合わせることで、成形サイクルを短くすることが可能である。
 プレス成形方法は、他の成形方法に比べ、成形前の下準備、更には、成形後の後処理も簡便なため、圧倒的に生産性に優れる。更に、マトリックス樹脂が熱硬化性樹脂である場合は、金型温度Tを実質的に一定に保ったまま脱型することが可能である。従って、マトリックス樹脂が熱可塑性樹脂の場合に必要となる金型の冷却工程が不要であることから、速硬化樹脂と組み合わせれば、高い生産性を得ることができる。
 なお、プレス成形の金型温度T(℃)は、熱硬化性樹脂の示差走査熱量測定(DSC)に拠る発熱ピーク温度Tp(℃)と、次の関係式(I)を満たすことが好ましい。更に好ましくは、次の関係式(II)を見たすことが、好ましい。
  Tp-60≦T≦Tp+20           ・・・(I)
  Tp-30≦T≦Tp              ・・・(II)
 金型温度T(℃)が、Tp-60(℃)より低い場合、樹脂の硬化に要する時間が非常に長くなり、また、硬化が不十分である場合もある。一方、Tp+20(℃)より高い場合、樹脂の急激な反応により、樹脂内部でのボイドの生成、硬化不良を引き起こすため好ましくない。なお、DSCに拠る発熱ピーク温度Tp(℃)は、昇温速度10℃/分の条件にて測定した値である。
 本発明の繊維強化プラスチックは、マトリックス樹脂として用いる熱硬化性樹脂の動的粘弾性測定(DMA)に拠る最低粘度が0.1~100Pa・sの条件で製造されることが好ましい。更に好ましくは、0.5~10Pa・sである。最低粘度が0.1Pa・sより小さい場合、加圧時に樹脂のみが流動し、突起部の先端まで十分に強化繊維が充填されない場合がある。一方、100Pa・sより大きい場合、樹脂の流動性が乏しいため、突起部の先端まで十分に強化繊維および樹脂が充填されない場合がある。なお、DMAに拠る最低粘度は、昇温速度1.5℃/分の条件にて測定した値である。
 また、本発明の繊維強化プラスチックは、板状部の片側の面のみに突起部を有することも好ましく、その反対側の最表層を形成する強化繊維としては織物を配置することが好ましい。経糸と緯糸で織り込まれた織物は、力学特性や形態の耐久性に優れるだけでなく、織物の織目を見せることで意匠性を高めるために使用される。なお、この織物を構成する繊維は、その他の層と同じ強化繊維を使用することができるが、異なる繊維を使用することも可能である。
 織物の織組織や密度は、特に限定されず、繊維強化プラスチック意匠性の観点から任意に選択することができる。織組織の例としては、平織り、斜文織り、朱子織り、うね織り、ななこ織り、はし巣織り、ハック織り、模しゃ織り、なし地織りが好ましく用いられる。斜文織りでは、3枚斜文、4枚斜文、5枚斜文、6枚斜文、伸び斜文、曲がり斜文、破れ斜文、飛び斜文、山形斜文、あじろ斜文、重ね斜文、よれ斜文、昼夜斜文、飾り斜文、ぼかし斜文を例示することができる。朱子織りでは、5枚朱子、7枚朱子、8枚朱子、10枚朱子、変則朱子、ひろげ朱子、重ね朱子、みかげ織り、昼夜朱子、ぼかし朱子を例示することができる。うね織りでは、たてうね織り、よこうね織り、変化うね織りを例示することができる。ななこ織りでは、正則ななこ織り、変化ななこ織り、不規則ななこ織り、向いななこ織り、3方向に繊維を織り込んだ3軸織物などを例示することができる。
 ここで、該織物を構成する強化繊維としては、上記に例示した、ガラス繊維単一でもよいし、炭素繊維単一でもよく、異なる複数のガラス繊維や炭素繊維を組み合わせて適用してもよく、さらにその他の異なる強化繊維を単一または複数組み合わせることも可能である。また、性能・コスト・意匠性に優れることから、少なくとも1種類のガラス繊維と少なくとも1種類の炭素繊維を合わせて交織してもよい。
 また、突起部を設けた面とは反対側の最表層を形成する織物には、予めマトリックス樹脂が含浸されていることが好ましい。なお、織物に含浸するマトリックス樹脂は、その他の層と同じマトリックス樹脂を使用することが好ましいが、異なる樹脂も使用できる。ただし、その他の層の樹脂と異なる樹脂を使用する場合は、相溶性や密着性を確認し、必要に応じて接着フィルムなどを挿入することが好ましい。
 織物にマトリックス樹脂を含浸したプリプレグとしての目付は、強化繊維としてガラス繊維や炭素繊維を用いる場合、好ましくは20~400g/mであり、より好ましくは40~300g/mである。該目付が20g/m以上の場合、製織性が良好となり、また、該目付が400g/m以下の場合、織物が柔軟で賦形しやすく、プリプレグ製造時や成形時のマトリックス樹脂(例えばエポキシ樹脂組成物など)の含浸時に、樹脂が厚み方向の中央部まで到達しやすく、未含浸部(ボイド)が残存しにくくなる。その結果、優れた圧縮強度等の機械物性を示す繊維強化プラスチックとなる。
 本発明の繊維強化プラスチックは、板状部の表層から少なくとも2層目より下の層における強化繊維の方向が非一方向層であることが好ましい。非一方向層とは、強化繊維が一方向のみに配列されているのではない状態の層をいい、すなわち、繊維の方向が少なくとも二方向に配向している層である。その構造の具体的な例としては、板状部が複数層で構成され、突起部が設けられた側の表層以外の層における強化繊維の配向方向が、少なくとも二方向(非一方向)となっている態様を挙げることができる。非一方向層のより具体的な態様としては、織物のように繊維が少なくとも二方向以上の決められた方向に配列されたものや、不織布のように繊維がランダムに配向されたものなどを例示でき、特に限定されるものでない。
 なお、本発明においては、繊維強化プラスチックにおける板状部を構成する層の1つを非一方向層と称し、該繊維強化プラスチックを成形する前の、非一方向層に相当する材料を、非一方向強化繊維シートと称する。非一方向強化繊維シートは、前述のとおり強化繊維が一方向のみに配列されているのではなく、多方向に配列されているものであればいかなる形態であってもよく、マトリックス樹脂を含まない状態(ドライシート)でも、少なくとも一部の領域にあらかじめマトリックス樹脂を含浸させたものでもよい。以下、非一方向強化繊維シートについて詳しく説明する。
 非一方向強化繊維シートに使用される繊維は、特に限定されるものではないが、例えばガラス繊維、アラミド繊維、ポリエチレン繊維、炭化ケイ素繊維、および炭素繊維が好ましく用いられる。特に軽量かつ高性能であり、優れた力学特性の繊維強化複合材料が得られる点で、ガラス繊維や炭素繊維が好ましく用いられる。
 また、非一方向強化繊維シートを構成する強化繊維の少なくとも一部には、熱可塑性樹脂繊維以外の繊維を含むことが好ましい。本発明の繊維強化プラスチックを製造する際、加熱してプレス成形を行うが、熱可塑性樹脂繊維は熱で柔らかくなるため、非一方向強化繊維シートを構成する強化繊維の少なくとも一部を熱可塑性樹脂繊維以外の繊維にすることで、成形品の厚みや形状のバラつきを抑制することができる。
 熱可塑性樹脂繊維以外の繊維としては特に限定されるものではないが、その例としてガラス繊維、アラミド繊維、ポリエチレン繊維、炭化ケイ素繊維および炭素繊維が好ましく用いられる。特に軽量かつ高性能であり、優れた力学特性の繊維強化複合材料が得られる点で、ガラス繊維や炭素繊維が好ましく用いられる。なお、ガラス繊維や炭素繊維として好ましい態様は前述のとおりである。
 非一方向強化繊維シートの形態としては、前述した織物が好ましく使用される。織物の織組織や密度は、特に限定されず任意に選択することができる。
 また、非一方向強化繊維シートの形態として、不織布を好ましく使用することもできる。不織布の構造や製造方法は特に限定されないが、数cmの短繊維を開繊し、カード機で薄いウェブを形成するカード法や、開繊した短繊維をエアランダム機で分散させ、ベルトコンベア上にウェブを形成するエアレイド法などの乾式法で製造された不織布を好ましく使用することができる。また、乾式法で製造された不織布の場合、ニードルパンチ法で繊維を絡め、物理的な方法でウェブの形態安定性を向上させたものや、不飽和ポリエステルやポリビニールアルコール(PVA)やその共重合体などのバインダー樹脂をスプレー法やディッピング法で付与して繊維同士を固着し、化学的にウェブの形態安定性を向上させたものが好ましく使用できる。繊維の固着方法としては、ウェブの製造時に熱可塑性樹脂の繊維を混繊したり、熱可塑性樹脂微粒子をウェブに付着させた後、熱ローラーやオーブンにウェブを投入して、熱可塑性樹脂を溶融させ、繊維同士を固着させる方法を挙げることができる。
 不織布の他の例としては、短繊維を水中に分散し、抄紙ネット上にすくい上げる湿式法で製造された不織布も好ましく使用できる。なお、湿式法で製造された不織布を、乾式法で製造された不織布と同様に寸法安定性や取り扱い性を向上させるために、不飽和ポリエステルやポリビニールアルコール(PVA)やその共重合体などのバインダー樹脂をスプレー法やディッピング法で付与して繊維同士を化学的に固着させたり、ウェブ製造時に熱可塑性樹脂の繊維を混繊したり、熱可塑性樹脂微粒子をウェブに付着させた後、熱ローラーやオーブンにウェブを投入して、熱可塑性樹脂を溶融させて、繊維同士を固着させることも好ましい。
 上記以外の不織布としては、熱可塑性樹脂を溶融紡糸して得た糸をベルトコンベア上に積層するスパンボンド法や、溶融紡糸した糸に空気を吹き付けて微細な繊維とし、その繊維をネット上に集積して、ウェブ化するメルトブローン法で製造した不織布も、力学特性に優れ、安価であることから、好ましく使用することができる。
 非一方向強化繊維シートの厚みは、好ましくは0.01~1.0mmであり、より好ましくは0.05mm~0.5mmである。非一方向強化繊維シートの厚みが0.01mm以上の場合、プレス成形時に生じる加圧力によって付与される繊維の塑性流動を抑制することができ、板状部の表層に使用する織物繊維の蛇行や意匠面における樹脂リッチといった外観不良を抑制することができる。一方、非一方向強化繊維シートの厚みが1.0mm以下の場合、柔軟で賦形性に優れるとともに、成形時のエポキシ樹脂組成物などの含浸時に樹脂が厚み方向の中央部まで到達しやすく、未含浸部(ボイド)が残存しにくくなり、その結果、優れた圧縮強度等の機械物性を示す繊維強化プラスチックとなる。
 但し、非一方向強化繊維シートとして不織布を用いる場合は、プレス成形時の圧力で該不織布の厚みを調整することが可能であるため、0.01~3.0mm厚みの不織布を好ましく使用できる。また、不織布は取り扱い性や賦形性の観点から柔軟であることが好ましいが、成形品の厚みバラつき抑制の観点から、寸法安定性も重要である。
 また、非一方向強化繊維シートとして炭素繊維やガラス繊維の織物を用いる場合、該繊維シートとしての目付は好ましくは10~300g/mであり、より好ましくは30~150g/mである。該繊維シート目付が10g/m以上の場合、プレス成形時に生じる加圧力によって付与される繊維の塑性流動を抑制することができ、表層に使用する織物繊維の繊維蛇行や意匠面の樹脂リッチといった外観不良を抑制することができる。また、該繊維シート目付が300g/m以下の場合、柔軟で賦形性に優れ成形時のエポキシ樹脂組成物などの含浸時に樹脂が厚み方向の中央部まで到達しやすく、未含浸部(ボイド)が残存しにくくなり、その結果、優れた圧縮強度等の機械物性を示す繊維強化プラスチックとなる。
 、非一方向強化繊維シートとして不織布を用いる場合も、該繊維シートの目付は、10~300g/mが好ましい。成形時のプリプレグの変形を吸収し、成形品表面への影響を緩和するためには、厚みと強度が必要であるが、厚くなりすぎると、成形品の物性に影響する可能性があることから、更に好ましくは、30~150g/mであり、もっとも好ましくは40~100g/mである。ただし、低目付の不織布を重ねることにより、前記目付の範囲に調整することも可能である。
 次に、本発明に係る繊維強化プラスチックの製造方法について詳細を説明する。
 本発明においては、まず、多数本の強化繊維にマトリックス樹脂を含浸させた一方向プリプレグを、必要に応じて、同種もしくは異なる種類の一方向プリプレグ、非一方向プリプレグ、または繊維基材などと共に積層してプリフォームとする。そして、そのプリフォームを、予め加熱した金型内(例えば凹型金型)に配置し、該金型を閉じて加圧することにより、板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックを得る。このとき、プリフォームには、多数本の強化繊維が一方向に順次配列された一方向プリプレグを少なくとも1層含み、板状部を構成する、少なくとも1層の前記一方向プリプレグの繊維配向方向が、突起部の横断面における幅方向(長さ方向)と平行または垂直でないようにすることを特徴とする。
 なお、本発明においては、所望する繊維強化プラスチックの厚さに応じて一方向プリプレグを必要な枚数積層することができるが、その際、全ての一方向プリプレグの繊維配向方向を、突起部の横断面における幅方向(長さ方向)と平行または垂直でないようにする必要はない。
 また、本発明においては、上記したように、繊維配向方向が、最終的に得られる突起部の横断面における幅方向(長さ方向)と平行または垂直とならないように配する一方向プリプレグを、他の一方向プリプレグ、非一方向プリプレグ、または繊維基材などと組み合わせてプリフォームとすることで、板状部を複数層からなるものとすることも好ましい。その際、プリフォームの表層から少なくとも2層目より下の層(すなわち、突起部が設けられる側の表層以外の層)に、強化繊維の配向方向が非一方向である前述の非一方向強化繊維シートを配置するとともに、凹型金型を閉じて加圧することにより、非一方向強化繊維シート内に、一方向プリプレグに含浸していた前記マトリックス樹脂を含浸せしめて非一方向層とすることが好ましい。
 特に、突起部を設けた面とは反対側の最表層に織物形態の非一方向強化繊維シートを配置した場合には、プレス成形時の加圧力によって生じる繊維の塑性流動を抑制することができ、表層に使用する織物繊維の繊維蛇行や意匠面の樹脂リッチといった外観不良を抑制することができる。
 非一方向強化繊維シートは、前述のとおり、強化繊維が一方向のみに配列されているシートではなく強化繊維が多方向に配列されているシートであり、マトリックス樹脂を含まないドライシートであっても、少なくとも一部の領域にあらかじめマトリックス樹脂を含浸させたプリプレグ状のシートであってもよい。
 非一方向強化繊維シートがドライシートの場合、プレス成形の際に、前述のように一方向プリプレグのマトリックス樹脂の一部が非一方向繊維強化シート(ドライシート)に含浸され、繊維強化プラスチックとすることができる。
 非一方向繊維強化シートがプリプレグ状のシートの場合、非一方向強化繊維シート(プリプレグ状のシート)に予め含浸するマトリックス樹脂は、他のプリプレグと同じ樹脂が好ましいが、接着性や成形性の観点から好ましいものを任意に選択することができる。具体的なマトリックス樹脂の組成は、前述したマトリックス樹脂組成物から選択することが可能である。
 かかる非一方向強化繊維シート(プリプレグ状のシート)における繊維体積含有率Vf〔a〕と前述の一方向プリプレグの繊維体積含有率Vf〔b〕は、Vf〔a〕>Vf〔b〕の関係であることが好ましい。この関係においては、プレス成形時に一方向プリプレグに含まれるマトリックス樹脂を非一方向強化繊維シート(プリプレグ状のシート)に含浸させる余地が生じる。すなわち、プレス成形時の加圧力によって、非一方向強化繊維シート(プリプレグ状のシート)の樹脂未含浸部分に一方向プリプレグに含有されていた樹脂が含浸されることになり、前記樹脂未含浸部分に樹脂が十分に充填された成形品を得ることができる。
 さらにVf〔a〕は好ましくは55~99.9%、さらに好ましくは80~99%である。Vf〔a〕が55%以上の場合、プレス成形時の加圧力によって生じる樹脂流動の影響を受けにくく、繊維流動を抑制できるため、繊維乱れが少なく、表面凹凸の少ない外観品位に優れた繊維強化プラスチックを得ることができる。
 以上のように、非一方向強化繊維シートは成形工程を経て非一方向層となる。非一方向層は、前述のように樹脂が十分に含浸されるため、ボイド率が2%以下となり、力学特性に優れた繊維強化プラスチックを得ることができる。
 次に、実施例および比較例を用いて、本発明を更に説明するが、本発明は、特にこれに限定されるものではない。
 <繊維強化プラスチックの成形>
 炭素繊維と熱硬化性エポキシ樹脂からなる一方向プリプレグを用いて、プレス成形にて、突起部(リブ)と板状部とを有する繊維強化プラスチックを成形した。詳細は以下のとおりである。
 <突起部(リブ)への繊維および樹脂の充填性の評価>
[1]外観検査:目視により、繊維および樹脂が共に充填されていない“未充填”と、樹脂のみが充填されている“樹脂リッチ”の有無を確認した。
[2]突起部(リブ)の断面観察
 板状部を含むように突起部をディスクグラインダーで切り出し、切断面を研磨後、マイクロスコープ(キーエンス(株)製、VHX-6000)を用いて突起部内部の観察を行い、内部に充填された炭素繊維の状態を確認した。突起部に充填された炭素繊維が板状部の連続繊維と連続しているもの(すなわち、“樹脂リッチ”の発生なし)を合格とした。
 なお、上記[1]において未充填”および“樹脂リッチ”が無くリブの先端まで炭素繊維が充填されており、かつ、上記[2]において合格のものを、表中「A」と表記し、それ以外を「F」と表記する。
 <成形品(繊維強化プラスチック)の反りの評価>
 突起部を上にするように板状部を平坦な検査台(机)の上に置き、板状部端部の、検査台との隙間(浮き)を確認した。板状部が検査台とほぼ全面で接触し、四隅の角部の浮きが1mm未満のものを合格とした。
 なお、合格のものを表中「A」と表記し、不合格のものを「F」と表記する。
 <成形品の、突起部(リブ)を有する面とは反対側の面(意匠面に相当)の外観検査>
 突起部を下にするように板上部を手に持ち、蛍光灯下、照度600lx(ルクス)~1500lxの環境下にて、板状部の、突起部を有する面とは反対側の面を目視で観察した。
 この際、成形品を水平方向に360°回転させ、さらに鉛直方向に0°~60°の角度に傾けながら観察し、リブに沿って蛍光灯の反射光に歪みがないかを確認した。なお、表においては、どの角度でも歪みがないものを「A」、ある一定の角度でのみ歪みがあるものを「B」、どの角度でも歪みがあるものを「F」とし、「A」、「B」に該当するものを合格とした。
 さらに、突起部を有する面とは反対側の表層において、強化繊維の織物を使用しているものについては、突起部直下の繊維幅が、使用する繊維幅の3/4以上となっているものを合格とし、表においてはそれを「A」と表記する。一方、一方向プリプレグを使用しているものについては、突起部直下にある繊維の目ヨレに関し、繊維強化プラスチックの平面を目視確認し、図7(B)に示す目ヨレ102の高さが、0.5mm以下のものを「A」、0.5超1.0mm以下のものを「B」、それ以上を「F」とし、「A」、「B」に該当するものを合格とした。なお、図7においては、(A)が強化繊維の目ヨレがない通常の表面状態、(B)が目ヨレが生じている表面状態を示す。
 〔実施例1(切込みなし、一文字リブ)〕
 東レ(株)製一方向プリプレグ#P384-S-7(炭素繊維(4,900MPa、引張弾性率235GPa)、FAW=70g/m、熱硬化型エポキシ樹脂、Rc=40%)から、1枚の大きさが100mm×100mmのプリプレグ基材12枚を切り出した。これを[0/45]になるよう積層し、プリプレグ基材積層体(プリフォーム)を準備した。
 次に、100mm×100mmの凹型金型を下金型として、また、100mm×100mmの凸部の中央部に突起部(リブ)形成用の溝(リブ溝、幅1.0mm、長さ70mm、深さ3mmの一文字形状)を有する凸型金型を上金型として準備し、150℃に加熱した。
 事前に準備したプリプレグ基材積層体を、積層時の0°方向をリブ溝と平行になる向きで、下金型に収容し、下金型に上金型を取付けた後、加熱型プレス成形機により加圧力12MPa、加熱温度150℃、加圧時間3分の条件で、成形とマトリックス樹脂の加熱硬化を行い、リブを有する繊維強化プラスチックを得た。
 得られた繊維強化プラスチックは、幅100mm×長さ100mm×厚み0.7mmの板状部の中央部に幅1mm×長さ70mm×高さ3mmのリブがあり、リブの外観観察ではリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、僅かに内部樹脂溜まり(“樹脂リッチ”)が認められるが、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。
 また、板状部の反りは合格(検査台とほぼ全面で接触し、四隅の浮き1mm未満)であった。
 外観検査については、蛍光灯下での観察を実施した結果、ある一定の角度でのみ蛍光灯の反射光に歪みがあり、さらに目ヨレについては0.5mm超、1.0mm以下であり、合格となった。実施例の結果を表1に示す。
 〔実施例2(切込挿入プリプレグ、十字リブ)〕
 東レ(株)製一方向プリプレグ#P384-S-7に、図6の切込みパターンで、繊維長さ13mm、切込み幅Ws=0.25mm、切込み角度θ=±14°になるように、シリンダーに刃を配置したローラーカッターを押し当て、このプリプレグの強化繊維に切込みを挿入し、切込挿入プリプレグを得た。
 この切込挿入プリプレグから、1枚の大きさが100mm×100mmのプリプレグ基材12枚を切り出した。これを[90/+45/-45]になるよう積層し、プリプレグ基材積層体を準備した。
 次に、100mm×100mmの凹型金型を下金型として、また、100mm×100mmの凸部の中央部に突起部(リブ)形成用の十字リブ溝(幅1.0mm、長さ70mm、深さ3mmの溝がそれぞれの中央部で90°に交差した形状)を有する凸型金型を上金型として準備し、150℃に加熱し、実施例1と同じ条件で成形を行い、幅100mm×長さ100mm×厚み0.7mmの板状部の中央部に幅1mm×長さ70mm×高さ3mmの2本のリブが中央部で90°に交わった十字リブ形状を有する繊維強化プラスチックを得た。リブの外観観察ではリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。
 また、板状部の反りは合格(検査台とほぼ全面で接触し、4隅の浮き1mm未満)であった。
 外観検査については、蛍光灯下での観察を実施した結果、ある一定の角度でのみ蛍光灯の反射光に歪みがあり、目ヨレについては、0.5mm超、1.0mm以下であり、合格となった。実施例の結果を表1に示す。
 〔実施例3(切込挿入プリプレグ、十字リブ、実施例2と積層違い)〕
 切込挿入プリプレグの積層構成が[+45/-45]になるように積層した以外は、実施例2と同じ条件で成形し、十字リブ形状を有する繊維強化プラスチックを得た。
 実施例2同様に、リブの先端まで炭素繊維が充填され、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。
 また、板状部の反りは合格(検査台ほぼ全面で接触し、4隅の浮き1mm未満)であった。
 外観検査については、蛍光灯下での観察を実施した結果、ある一定の角度でのみ蛍光灯の反射光に歪みがあり、目ヨレについては、0.5mm超、1.0mm以下であり、合格となった。実施例の結果を表1に示す。
 〔実施例4(切込挿入プリプレグ、4本平行連立リブ)〕
 実施例2と同じ切込挿入プリプレグから、1枚の大きさが100mm×100mmのプリプレグ基材12枚を切り出し、積層構成が[0/+45]になるようしに積層し、プリプレグ基材積層体を準備した。
 次に、100mm×100mmの凹型金型を下金型として、また、100mm×100mmの平面部に25mm間隔で、4本の幅1.0mm、長さ70mm、深さ3mmのリブ溝が平行に配置された凸型金型を上金型として準備し、150℃に加熱し、実施例1と同じ条件で成形を行い、幅100mm×長さ100mm×厚み0.7mmの板状部に幅1mm×長さ70mm×高さ3mmの4本のリブを有する繊維強化プラスチックを得た。リブの外観観察では4本全てのリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。
 また、板状部の反りは合格(検査台とほぼ全面で接触し、4隅の浮き1mm未満)であった。
 外観検査については、蛍光灯下での観察を実施した結果、ある一定の角度でのみ蛍光灯の反射光に歪みがあり、目ヨレについては、0.5mm超、1.0mm以下であり、合格となった。実施例の結果を表1に示す。
 〔実施例5(切込挿入プリプレグ、2本連立リブ、ハの字)〕
 実施例2と同じ切込挿入プリプレグから、1枚の大きさが100mm×100mmのプリプレグ基材12枚を切り出し、積層構成が[0/90]になるようしに積層し、プリプレグ基材積層体を準備した。
 次に、100mm×100mmの凹型金型を下金型として、また、100mm×100mmの平面部に幅1.0mm、長さ70mm、深さ3mmのリブ溝が2本あり、左端の間隔が5mm、右端の間隔が75mmになるように平行でない方向に配置された凸型金型を上金型として準備し、150℃に加熱し、実施例1と同じ条件で成形を行い、幅100mm×長さ100mm×厚み0.7mmの板状部に幅1mm×長さ70mm×高さ3mmの2本のリブを有する繊維強化プラスチックを得た。
 リブの外観観察では2本全てのリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。
 また、板状部の反りは合格(検査台のほぼ全面で接触し、4隅の浮き1mm未満)であった。
 外観検査については、蛍光灯下での観察を実施した結果、ある一定の角度でのみ蛍光灯の反射光に歪みがあり、目ヨレについては、0.5mm超、1.0mm以下であり、合格となった。実施例の結果を表1に示す。
 〔実施例6(切込挿入プリプレグ、織物プリプレグ(意匠面)、強化繊維シート、十字リブ)〕
 実施例3と同様にしてプリプレグ基材積層体を準備した。
 次に100mm×100mmの凹型金型を下金型に、100mm×100mmの凸部の中央部に突起部(リブ)形成の十字もリブ溝(幅1.0mm、長さ70mm、深さ3mmの溝がそれぞれの中央部で90°に交差した形状)を有する凸型金型を上金型として準備し、150℃に加熱した。そして、凹型金型面を意匠面とし、意匠面基材として東レ(株)製織物プリプレグ(#CO6343B 炭素繊維引張強度3530Mpa、引張弾性率230Gpa、目付198g/m)を配置し、その上に樹脂未含浸のガラスマット(目付90g/m)を配置し、さらにその上層に、予め準備した前記プリプレグ基材積層体を配置した。
 成形条件は実施例3と同じとし、成形することで十字リブを有する繊維強化プラスチックを得た。
 リブの外観観察ではリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。板状部の反りは合格(検査台とほぼ全面で接触し、4隅の浮き1mm未満)であった。さらに、樹脂未含浸のガラスマットを両表層間に挿入したことにより、プレス成形時に付与される加圧力によって生じる塑性流動をガラスマットで緩和でき、リブに流動する切込挿入プリプレグの層の影響を受けることなく、意匠面を構成する織物プリプレグの形状を保持でき、実施例2よりも良外観の繊維強化プラスチックを得ることができた。
 外観検査については、蛍光灯下での観察を実施し、規定したどの角度でも歪みがない成形品であったことを確認できた。また、織物の繊維幅についても成形前と同等の幅を有しており合格となった。実施例の結果を表1に示す。
 〔実施例7(切込挿入プリプレグ、織物プリプレグ(意匠面)、強化繊維シート、十字リブ)〕
 意匠面の織物プリプレグの上層に、ガラスマットの代わりに樹脂未含浸のCF抄紙(目付48g/m)を挿入した以外は実施例6と同じとし、成形することで十字リブを有する繊維強化プラスチックを得た。
 リブの外観観察ではリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。板状部の反りは合格(検査台とほぼ全面で接触し、4隅の浮き1mm未満)であった。さらに、実施例6と同じく、樹脂未含浸のCF抄紙を表表層間に挿入したことにより、プレス成形時に付与される加圧力によって生じる塑性流動をCF抄紙で緩和でき、リブに流動する切込挿入プリプレグの層の影響を受けることなく、意匠面を構成する織物プリプレグの形状を保持でき、実施例2よりも良外観の繊維強化プラスチックを得ることができた。
 外観検査については、蛍光灯下での観察を実施し、規定したどの角度でも歪みがない成形品であったことを確認できた。また、織物の繊維幅についても成形前と同等の幅を有しており合格となった。実施例の結果を表1に示す。
 〔実施例8(切込挿入プリプレグ、織物プリプレグ(意匠面)、樹脂含浸シート、ハの字)〕
 実施例5と同様にしてプリプレグ基材積層体を準備した。
 次に100mm×100mmの凹型金型を下金型に、100mm×100mmの平面部に幅1.0mm、長さ70mm、深さ3mmのリブ溝が2本あり、左端の間隔が5mm、右端の間隔が75mmになるように平行でない方向に配置された凸型金型を上金型として準備し、150℃に加熱した。そして、凹型金型面を意匠面とし、意匠面基材として東レ(株)製織物プリプレグ(#CO6343B 炭素繊維引張強度3530MPa、引張弾性率230GPa、目付198g/m)を配置し、その上に樹脂含浸シートとして前記織物プリプレグをさらに配置し、さらにその上に前記プリプレグ基材積層体を配置した。
 成形条件は実施例5と同じし、成形することでハの字リブを有する繊維強化プラスチックを得た。
 リブの外観観察では2本全てのリブの先端まで炭素繊維が充填されていた。また、断面観察の結果、板状部と連続した炭素繊維がリブ内部に充填されていることも確認できた。板状部の反りは合格(検査台のほぼ全面で接触し、4隅の浮き1mm未満)であった。さらに織物プリプレグを2枚重ねにしたことにより、プレス成形時に付与される加圧力によって生じる塑性流動を内側の織物プリプレグで緩和でき、リブに流動する切込挿入プリプレグの層の影響を受けることなく、意匠面を構成する織物プリプレグの形状を保持でき、実施例5よりも良外観の繊維強化プラスチックを得ることができた。
 外観検査については、蛍光灯下での観察を実施し、規定したある一定の角度でのみ歪みを目視できたが、合格レベルであることを確認できた。また、織物の繊維幅についても、成形前と同等の幅を有しており合格となった。実施例の結果を表1に示す。
 〔比較例1〕
 一方向プリプレグを積層方向が[0]12(全て同一方向)となるように積層した以外は、実施例1と同じ方法、同じ条件で繊維強化プラスチックを成形した(リブに対し、全ての強化繊維が0°)。
 得られた繊維強化プラスチックは、リブの外観観察では先端まで炭素繊維が充填されていた。しかし、断面観察の結果、リブの内部には、リブと平行の繊維のみが充填されており、板状部と連続している炭素繊維は認められなかった。そのため、リブの中に炭素繊維が充填されているものの、せん断応力に弱いものと考えられる。
 なお、板状部の反りは合格(検査台ほぼ全面で接触し、4隅の浮き1mm未満)であった。また、外観検査については、蛍光灯下での観察を実施した結果、どの角度でも蛍光灯の反射光に歪みを確認し、さらに目ヨレについても1.0mmを超えており不合格となった。
 〔比較例2〕
 一方向プリプレグを積層方向が[0]12(全て同一方向)となるように積層し、プリプレグ基材積層体の繊維方向をリブ溝と垂直になる向きで、下金型に収容した以外は、実施例1と同じ方法、同じ条件で繊維強化プラスチックを成形した。
 得られた繊維強化プラスチックは、リブの外観観察では先端まで炭素繊維が充填されておらず、“未充填”と上部に“樹脂リッチ”が発生し、目的の形状を得ることができなかった。断面観察の結果、リブの内部に充填された炭素繊維は、板状部の炭素繊維と連続しているものの、上部は樹脂のみとなっており、マトリックス樹脂のみが流動したと考えられる。
 〔比較例3〕
 一方向プリプレグを積層方向が[0/90]となるように積層した(リブに対し、繊維方向が全て平行または垂直)以外は、実施例1と同じ方法、同じ条件で繊維強化プラスチックを成形した。
 得られた繊維強化プラスチックは、リブの外観観察では先端まで炭素繊維が充填されておらず、“未充填”が発生し、上部に“樹脂リッチ”が形成されており、目的の形状を得ることができなかった。断面観察の結果、リブの先端に炭素繊維が見られるが、連続しておらず、“樹脂リッチ”が発生していた。表層の0°の炭素繊維のみが流動し、2層目以下の炭素繊維はリブ上部まで流動できなかったことと考えられる。
Figure JPOXMLDOC01-appb-T000001
 本発明の繊維強化プラスチックは、強度、剛性、軽量性が要求される部材や、部材形状が複雑で、他の部材との間で形状追従性が要求される部材に、好ましく利用できる。特に、前述した要求が強い、自転車のクランクやフレームなどの部材、ゴルフクラブのシャフトやヘッドなどのスポーツ部材、自動車の、ドア、シート、メンバー、モジュールあるいはフレームなどの構造部材や外板および内装材、ロボットアームなどの機械部品に用いることができる。その他、医療機器や情報通信機器の構造部材や外板などにも好ましく利用することができる。
1:突起部の縦断面の幅(t)
2:突起部の横断面の幅(L)
3:突起部の高さ(h)
4:切込挿入プリプレグ
5:繊維配向方向
6:繊維垂直方向
7:断続的な切込
8:連続的な切込
9:断続的な斜め切込(繊維方向に対して正の角度)
10:断続的な斜め切込(繊維方向に対して負の角度)
11:断続的な切込の列
100:板状部
101:板状部の、突起部を有する面とは反対側の面
102:目ヨレ
200:突起部
300:強化繊維
400:突起部を有する面とは反対側の表層
401:強化繊維
500:凹み
600:“未充填”領域

Claims (13)

  1. 板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックにおいて、少なくとも前記板状部の内部に、多数本の強化繊維がマトリックス樹脂中で一方向に配列された層が少なくとも1層あり、前記強化繊維の配向方向が、前記突起部の横断面における幅方向と平行または垂直でないことを特徴とする繊維強化プラスチック。
  2. 前記板状部の少なくとも一部に、前記強化繊維が一方向に配列された層が少なくとも2層積層された構造を有し、任意に選択した2層の前記強化繊維の配向方向が互いに平行でないことを特徴とする、請求項1に記載の繊維強化プラスチック。
  3. 前記繊維強化プラスチックの上面視において、前記突起部は少なくとも異なる二方向に延在する形状を有することを特徴とする、請求項1または2に記載の繊維強化プラスチック。
  4. 前記繊維強化プラスチックの上面視において、前記突起部が2箇所以上に設けられ、任意に選択した2箇所の突起部の延在方向が互いに平行でないことを特徴とする、請求項1または2に記載の繊維強化プラスチック。
  5. 前記強化繊維は、少なくとも一部の繊維長が10~300mmであることを特徴とする、請求項1~4のいずれかに記載の繊維強化プラスチック。
  6. 前記板状部の片側の面のみに突起部を有し、その反対側の最表層を形成する強化繊維が織物であることを特徴とする、請求項1~5のいずれかに記載の繊維強化プラスチック。
  7. 前記板状部は、強化繊維の層を複数層有するとともに片側の面のみに突起部を有し、該片側の面を構成する表層以外の層は、強化繊維の方向が非一方向であることを特徴とする、請求項1~6のいずれかに記載の繊維強化プラスチック。
  8. 多数本の強化繊維にマトリックス樹脂を含浸させたプリプレグを積層したプリフォームを加熱した金型内に配置し、前記金型を閉じて加圧することにより、板状部と該板状部の少なくとも片側の面から隆起した突起部を少なくとも1箇所有する形状からなる繊維強化プラスチックを得る繊維強化プラスチックの製造方法であって、前記プリフォームは、強化繊維が一方向に配列された一方向プリプレグを少なくとも1層積層させたものからなり、前記板状部を構成する前記一方向プリプレグの繊維配向方向が、前記突起部の横断面における幅方向と平行または垂直でないことを特徴とする繊維強化プラスチックの製造方法。
  9. 前記プリフォームは、前記一方向プリプレグを片側の表層に配置するとともに、該表層以外の層に、強化繊維の方向が非一方向である非一方向強化繊維シートを配置して構成し、前記金型を閉じて加圧することにより、前記一方向プリプレグに含浸していた前記マトリックス樹脂を前記非一方向強化繊維シート内に含浸せしめて非一方向層を形成することを特徴とする、請求項8に記載の繊維強化プラスチックの製造方法。
  10. 前記非一方向強化繊維シートが織物または不織布であることを特徴とする、請求項9に記載の繊維強化プラスチックの製造方法。
  11. 前記非一方向強化繊維シートの厚みが0.01~1.0mmであることを特徴とする、請求項9または10に記載の繊維強化プラスチックの製造方法。
  12. 前記非一方向強化繊維シートを構成する強化繊維の少なくとも一部が熱可塑性樹脂繊維以外の繊維であることを特徴とする、請求項9~11のいずれかに記載の繊維強化プラスチックの製造方法。
  13. 前記非一方向強化繊維シートが、少なくとも一部の領域にあらかじめマトリックス樹脂を含浸させたものであることを特徴とする、請求項9~12のいずれかに記載の繊維強化プラスチックの製造方法。
PCT/JP2022/001373 2021-01-28 2022-01-17 繊維強化プラスチックおよびその製造方法 WO2022163404A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505201A JPWO2022163404A1 (ja) 2021-01-28 2022-01-17

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021011803 2021-01-28
JP2021-011803 2021-01-28
JP2021094940 2021-06-07
JP2021-094940 2021-06-07

Publications (1)

Publication Number Publication Date
WO2022163404A1 true WO2022163404A1 (ja) 2022-08-04

Family

ID=82654417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001373 WO2022163404A1 (ja) 2021-01-28 2022-01-17 繊維強化プラスチックおよびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2022163404A1 (ja)
TW (1) TW202239828A (ja)
WO (1) WO2022163404A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038429A1 (en) * 2006-09-28 2008-04-03 Toray Industries, Inc. Fiber-reinforced plastic and process for production thereof
JP2008246981A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 繊維強化複合材料の製造方法
WO2019031111A1 (ja) * 2017-08-10 2019-02-14 東レ株式会社 プリプレグ積層体、プリプレグ積層体を用いた繊維強化プラスチックの製造方法及び繊維強化プラスチック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038429A1 (en) * 2006-09-28 2008-04-03 Toray Industries, Inc. Fiber-reinforced plastic and process for production thereof
JP2008246981A (ja) * 2007-03-30 2008-10-16 Honda Motor Co Ltd 繊維強化複合材料の製造方法
WO2019031111A1 (ja) * 2017-08-10 2019-02-14 東レ株式会社 プリプレグ積層体、プリプレグ積層体を用いた繊維強化プラスチックの製造方法及び繊維強化プラスチック

Also Published As

Publication number Publication date
JPWO2022163404A1 (ja) 2022-08-04
TW202239828A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
KR102406662B1 (ko) 단방향 섬유-강화 테이프를 제조하기 위한 스프레더 부재
JP5320742B2 (ja) 複合プリプレグ基材の製造方法、積層基材および繊維強化プラスチック
JP2009286817A (ja) 積層基材、繊維強化プラスチック、およびそれらの製造方法
KR20190022461A (ko) 프리프레그 및 그 제조 방법
CN103201087A (zh) 碳纤维增强塑料成型品
CN103649186A (zh) 热塑性树脂预浸料坯、使用其的预成型体及复合成型体、以及它们的制造方法
JP2010018724A (ja) プリプレグ積層基材および繊維強化プラスチック
JP5336225B2 (ja) 多軸ステッチ基材とそれを用いたプリフォーム
JP2010214704A (ja) 極細繊維からなるバインダーを用いたプリフォーム用基材とその製造方法
WO2022163404A1 (ja) 繊維強化プラスチックおよびその製造方法
WO2018142963A1 (ja) 繊維強化プラスチックの製造方法
EP3578332B1 (en) Method for producing fiber-reinforced plastic
JP2020023691A (ja) 繊維強化樹脂
WO2022024939A1 (ja) 繊維強化プラスチック及び繊維強化プラスチックの製造方法
WO2021095623A1 (ja) 炭素繊維テープ材料、ならびにそれを用いた強化繊維積層体および成形体
WO2024024564A1 (ja) 繊維強化プラスチックおよびその製造方法
WO2024024563A1 (ja) 繊維強化プラスチックおよびその製造方法
JP2004256961A (ja) 強化繊維基材の製造方法および該基材を用いた複合材料の製造方法
JP6754273B2 (ja) 連続繊維補強材
JP2014163016A (ja) 強化用多軸ステッチ基材、強化用織物および炭素繊維強化複合材料とその製造方法
US11465372B2 (en) Dry tape material for fiber placement, method of manufacturing the same, and reinforcing fiber laminate and fiber-reinforced plastic molded body produced with the same
JP2018066000A (ja) 強化繊維基材および繊維強化樹脂
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JP2011195723A (ja) 遮光性に優れたfrp成形品及びその成形方法
JP2007045004A (ja) 繊維強化樹脂成形品の真空注入成形方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022505201

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22745627

Country of ref document: EP

Kind code of ref document: A1