WO2022163073A1 - 缶用鋼板およびその製造方法 - Google Patents

缶用鋼板およびその製造方法 Download PDF

Info

Publication number
WO2022163073A1
WO2022163073A1 PCT/JP2021/041946 JP2021041946W WO2022163073A1 WO 2022163073 A1 WO2022163073 A1 WO 2022163073A1 JP 2021041946 W JP2021041946 W JP 2021041946W WO 2022163073 A1 WO2022163073 A1 WO 2022163073A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
treatment
aqueous solution
chromium
cans
Prior art date
Application number
PCT/JP2021/041946
Other languages
English (en)
French (fr)
Inventor
勇人 川村
祐介 中川
洋一郎 山中
家林 王
周平 高津
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180091021.7A priority Critical patent/CN116783329A/zh
Priority to EP21923078.6A priority patent/EP4269660A4/en
Priority to US18/272,148 priority patent/US20240141504A1/en
Priority to KR1020237024402A priority patent/KR20230121871A/ko
Priority to JP2022506429A priority patent/JP7239055B2/ja
Publication of WO2022163073A1 publication Critical patent/WO2022163073A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/08Deposition of black chromium, e.g. hexavalent chromium, CrVI
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • the present invention relates to a steel sheet for cans and a method for manufacturing the same.
  • Patent Documents 1 and 2 disclose a steel sheet for cans having "a metallic chromium layer and a chromium hydrated oxide layer in this order from the steel sheet side on the surface of the steel sheet", and further, the metallic chromium layer having "granular projections”. is disclosed.
  • an object of the present invention is to provide a steel sheet for cans having excellent weldability and a method for producing the same.
  • the surface of the steel sheet has a metallic chromium layer and a hydrated chromium oxide layer in this order from the steel sheet side, and the metallic chromium layer has an adhesion amount of 50 to 200 mg/m 2 , and the hydrated chromium.
  • the chromium-equivalent adhesion amount of the oxide layer is 3 to 30 mg/m 2
  • the metal chromium layer includes a flat plate-shaped base and granular projections provided on the base, and the granular projections are Steel sheet for cans, at least 20% of which has a circularity C of 0.85 or less.
  • U is the outer peripheral length of the projection image of the granule projection
  • A is the area.
  • Treatment C2 is applied in this order, followed by anodic electrolytic treatment A2 and cathodic electrolytic treatment C3 using a second aqueous solution, the first aqueous solution containing a hexavalent chromium compound, a fluorine-containing compound and sulfuric acid.
  • a method for producing a steel sheet for cans wherein the second aqueous solution contains a hexavalent chromium compound and a fluorine-containing compound, and does not contain sulfuric acid except sulfuric acid that is unavoidably mixed.
  • [5] A method for producing a steel sheet for cans according to [1] or [2] above, wherein the steel sheet is subjected to cathodic electrolysis C1, anodic electrolysis A1 and cathodic electrolysis using a first aqueous solution.
  • Treatment C2 is performed in this order, and then cathodic electrolytic treatment C3 is performed using a second aqueous solution, the first aqueous solution containing a hexavalent chromium compound, a fluorine-containing compound and sulfuric acid, and the second aqueous solution.
  • a method for producing a steel sheet for cans wherein the aqueous solution contains a hexavalent chromium compound and a fluorine-containing compound and does not contain sulfuric acid except sulfuric acid that is unavoidably mixed.
  • the immersion time in the immersion treatment is 0.10 to 20.00 seconds.
  • the current density of the cathodic electrolysis treatment C3 is 5.0 A/dm 2 or more, and the charge density of the cathode electrolysis treatment C3 is 3.5 C/dm 2 or more, [3] to [ 7].
  • a steel sheet for cans with excellent weldability and a method for manufacturing the same can be provided.
  • FIG. 4 is an SEM image showing granular projections of Comparative Example 1.
  • FIG. 10 is an SEM image showing granular projections of Invention Example 3.
  • FIG. 1 is a cross-sectional view schematically showing an example of a steel sheet for cans. As shown in FIG. 1, it has a steel plate 2 .
  • the steel plate 1 for cans further has a metallic chromium layer 3 and a hydrated chromium oxide layer 4 on the surface of the steel plate 2 in this order from the steel plate 2 side.
  • the metallic chromium layer 3 includes a plate-like base portion 3a covering the steel plate 2 and granular projections 3b provided on the base portion 3a.
  • a chromium hydrated oxide layer 4 is disposed on the metal chromium layer 3 so as to follow the shape of the granular projections 3b.
  • the type of steel plate is not particularly limited.
  • a steel plate that is usually used as a container material for example, low carbon steel plate, ultra-low carbon steel plate
  • the manufacturing method and material of the steel plate are also not particularly limited. It is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from the normal billet manufacturing process.
  • Metal chromium layer A metal chromium layer is arranged on the surface of the steel plate described above.
  • the metal chromium layer suppresses surface exposure of the steel sheet and improves corrosion resistance.
  • the coating amount of the metallic chromium layer is 50 mg/m 2 or more, preferably 60 mg/m 2 or more, and more preferably 70 mg/m 2 or more.
  • the adhesion amount is the adhesion amount per one side of the steel plate (the same shall apply hereinafter).
  • the amount of the metallic chromium layer deposited is 200 mg/m 2 or less, preferably 180 mg/m 2 or less, more preferably 160 mg/m 2 or less, for the reason that the steel sheet for cans has excellent weldability.
  • the adhesion amount of the metal chromium layer and the adhesion amount of the hydrated chromium oxide layer described later in terms of chromium are measured as follows. First, the chromium content (total chromium content) is measured using a fluorescent X-ray device for the steel sheet for cans on which the metal chromium layer and the hydrated chromium oxide layer are formed. Next, the can steel sheet is subjected to alkali treatment by immersing it in 6.5N-NaOH at 90° C. for 10 minutes, and then the chromium content (chromium content after alkali treatment) is measured again using the fluorescent X-ray device.
  • the amount of chromium after alkali treatment be the adhesion amount of the metallic chromium layer.
  • Such a metal chromium layer includes a flat base and granular projections provided on the base. Next, each of these parts included in the metal chromium layer will be described in detail.
  • the base of the metallic chromium layer mainly covers the surface of the steel sheet and improves corrosion resistance.
  • the base of the metal chromium layer has a sufficient thickness so that when the steel sheets for cans inevitably come into contact with each other during handling, the granular protrusions provided on the surface layer do not break the base and expose the steel sheet. is preferred.
  • the coating amount of the metallic chromium layer on the base is preferably 10 mg/m 2 or more, more preferably 30 mg/m 2 or more, and even more preferably 40 mg/m 2 or more.
  • the granular projections of the metal chromium layer are formed on the surface of the base portion described above, and reduce the contact resistance between the steel sheets for cans to improve weldability.
  • the presumed mechanism by which the contact resistance is lowered is described below. Since the hydrated chromium oxide layer coated on the metallic chromium layer is a non-conductive film, it has a higher electrical resistance than the metallic chromium, which is an obstacle to welding.
  • the granular projections break the hydrated chromium oxide layer due to the surface pressure when the steel sheets for cans come into contact with each other during welding, and the welding current is applied. and the contact resistance is greatly reduced.
  • the value of the roundness C decreases as the shape deviates from a perfect circle, that is, as the outer peripheral length U increases.
  • Examples of the shape of the granular projections having a circularity C of 0.85 or less include a angular shape.
  • Angular granular projections for example, have many sharp parts compared to perfectly circular granular projections, and tend to destroy the chromium hydrated oxide layer (or to easily form triggers for destruction). Therefore, it is considered that the weldability of the steel sheet for cans is excellent by having many granular projections with a circularity C of 0.85 or less.
  • the proportion of granular projections having a circularity C of 0.85 or less is 20% or more, and is preferably 40% or more, more preferably 60% or more, because the weldability of the steel sheet for cans is better. is more preferred.
  • FIG. 2 is an SEM image showing granular projections of Comparative Example 1 described later
  • FIG. 3 is an SEM image showing granular projections of Invention Example 3 described later.
  • Table 4 the proportion of granular projections having a circularity C of 0.85 or less is 12% in FIG. 2 (Comparative Example 1), whereas FIG. 3 (Invention Example 3). is 68%.
  • FIG. 3 Invention Example 3
  • granular projections with a circularity C of 0.85 or less may be referred to as “angular granular projections”. Furthermore, regarding granular protrusions, making the roundness C 0.85 or less is sometimes referred to as “cornering”.
  • the maximum grain size of the granular projections of the metal chromium layer is, for example, 10 nm or more.
  • the maximum grain size of the granular projections of the metallic chromium layer is preferably 50 nm or more, more preferably 80 nm or more, and even more preferably 140 nm or more, because the weldability of the steel sheet for cans is more excellent.
  • the maximum grain size of the granular projections of the metallic chromium layer is preferably 200 nm or less, more preferably 180 nm or less. This is probably because the smaller diameter of the granular projections suppresses the absorption of light on the short wavelength side and suppresses the scattering of reflected light.
  • the number density of the granular projections in the metal chromium layer is preferably 10/ ⁇ m 2 or more, more preferably 30/ ⁇ m 2 or more, still more preferably 50/ ⁇ m 2 or more, and 100/ ⁇ m 2 or more. Especially preferred.
  • the number density of the granular projections in the metal chromium layer is preferably 10,000/ ⁇ m 2 or less, more preferably 5,000/ ⁇ m 2 or less, for the reason that the surface appearance of the steel sheet for cans is excellent. 000/ ⁇ m 2 or less is more preferable, and 800/ ⁇ m 2 or less is particularly preferable.
  • the circularity C, the number density and the maximum particle size of the granular protrusions are obtained as follows. First, the surface of a steel sheet for cans on which a metallic chromium layer and a hydrated chromium oxide layer are formed is subjected to carbon vapor deposition to obtain a sample for observation. Then, using a scanning electron microscope (SEM), the observation sample is observed from the direction perpendicular to the surface of the steel sheet for cans, and an SEM image (projection image of granular protrusions) is obtained at a magnification of 20,000 times. . The obtained SEM image is subjected to image analysis using software (trade name: ImageJ).
  • SEM scanning electron microscope
  • the ratio (unit: %) of granular protrusions having a roundness C of 0.85 or less is determined. This ratio is the average of 5 fields of view.
  • the obtained SEM image is converted to a perfect circle based on the area occupied by the granular projections, and the particle size (unit: nm) and the number density (unit: pieces/ ⁇ m 2 ) of the granular projections are obtained.
  • the maximum grain size of the five fields of view is taken as the maximum grain size of the granular projection.
  • the number density is the average of 5 fields of view.
  • Chromium hydrated oxide precipitates on the surface of the steel sheet at the same time as metallic chromium to improve corrosion resistance.
  • Chromium hydrated oxides include, for example, chromium oxides and chromium hydroxides.
  • the chromium-equivalent adhesion amount of the hydrated chromium oxide layer is 3 mg/m 2 or more, preferably 10 mg/m 2 or more, and more preferably more than 15 mg/m 2 .
  • chromium hydrated oxide has a lower electrical conductivity than metallic chromium, and if the amount is too large, it will cause excessive resistance during welding, causing various welding defects such as blowholes due to the generation of dust and splashes and over-welding. , and the weldability of steel sheets for cans may be poor.
  • the chromium-equivalent adhesion amount of the hydrated chromium oxide layer is 30 mg/m 2 or less, preferably 25 mg/m 2 or less, and more preferably 20 mg/m 2 or less. .
  • the method for measuring the chromium-equivalent adhesion amount of the hydrated chromium oxide layer is as described above.
  • the steel plate is subjected to a first treatment (cathode electrolytic treatment C1, anodic electrolytic treatment A1 and cathodic electrolytic treatment C2) using a first aqueous solution containing sulfuric acid, and then the steel plate does not contain sulfuric acid.
  • a second treatment is performed using a second aqueous solution. It is believed that the first treatment first produces a metallic chromium layer (base and granules) and a chromium hydrated oxide layer, and then the second treatment cornifies the granules.
  • the second processing has two aspects (first aspect and second aspect). The amount of each precipitation can be controlled by the conditions of each treatment. Each process will be described in detail below.
  • a steel plate is subjected to cathodic electrolytic treatment C1, anodic electrolytic treatment A1 and cathodic electrolytic treatment C2 in this order using a first aqueous solution.
  • the first aqueous solution contains a hexavalent chromium compound, a fluorine-containing compound and sulfuric acid.
  • hexavalent chromium compound examples include chromium trioxide (CrO 3 ); dichromates such as potassium dichromate (K 2 Cr 2 O 7 ); chromates such as potassium chromate (K 2 CrO 4 ). ; and the like.
  • the Cr content is preferably 0.14 mol/L or more, more preferably 0.30 mol/L or more.
  • the Cr content is preferably 3.00 mol/L or less, more preferably 2.50 mol/L or less.
  • fluorine-containing compound examples include hydrofluoric acid (HF), potassium fluoride (KF), sodium fluoride (NaF), hydrosilicofluoric acid (H 2 SiF 6 ) and/or salts thereof.
  • hydrosilicofluoric acid salts include sodium silicofluoride (Na 2 SiF 6 ), potassium silicofluoride (K 2 SiF 6 ), and ammonium silicofluoride ((NH 4 ) 2 SiF 6 ).
  • the amount of F is preferably 0.020 mol/L or more, more preferably 0.080 mol/L or more.
  • the F amount is preferably 0.480 mol/L or less, more preferably 0.400 mol/L or less.
  • sulfuric acid The use of sulfuric acid in combination with the fluorine-containing compound improves the deposition efficiency of the metallic chromium layer.
  • content of sulfuric acid SO 4 2 ⁇ content
  • sulfuric acid also influences the formation of sites for generation of granular protrusions in the metallic chromium layer during anodic electrolysis.
  • sulfuric acid is included in the first aqueous solution in order to control the particle size and number density of the granules.
  • Sulfuric acid may be partially or wholly a sulfate such as sodium sulfate, calcium sulfate, or ammonium sulfate.
  • the amount of SO 4 2- is preferably 0.0001 mol/L or more, more preferably 0.0003 mol/L or more, and still more preferably 0.0010 mol/L or more.
  • the amount of SO 4 2- is preferably 0.1000 mol/L or less, more preferably 0.0500 mol/L or less.
  • the liquid temperature of the first aqueous solution is preferably 20° C. or higher, more preferably 40° C. or higher. On the other hand, the liquid temperature is preferably 80°C or lower, more preferably 60°C or lower.
  • the charge density (the product of the current density and the energization time) of the cathode electrolytic treatment C1 is preferably 15 C/dm 2 or more, more preferably 20 C/dm 2 or more, and 25 C /dm 2 or more is more preferable.
  • the charge density of the cathodic electrolytic treatment C1 is preferably 50 C/dm 2 or less, more preferably 45 C/dm 2 or less, and even more preferably 35 C/dm 2 or less.
  • the current density (unit: A/dm 2 ) and the energization time (unit: sec.) of the cathodic electrolysis treatment C1 are appropriately set from the above electricity density.
  • the anodic electrolysis treatment A1 dissolves the metallic chromium deposited in the cathodic electrolysis treatment C1 to form the generation sites of the granular projections of the metallic chromium layer in the cathode electrolysis treatment C2. At this time, if the dissolution in the anodic electrolytic treatment A1 is too strong or too weak, the generation sites are reduced, the number density of the granular projections is reduced, or the dissolution progresses unevenly, resulting in variations in the distribution of the granular projections. may occur, or the thickness of the base of the metallic chromium layer may be reduced.
  • the charge density (the product of the current density and the energization time) of the anodic electrolytic treatment A1 is preferably 0.1 C/dm 2 or more, more preferably 0.3 C/dm 2 or more, and 0.3 C/dm 2 or more. Greater than dm 2 is even more preferred.
  • the charge density of the anodic electrolytic treatment A1 is preferably less than 5.0 C/dm 2 , more preferably 3.0 C/dm 2 or less, even more preferably 2.0 C/dm 2 or less.
  • the current density (unit: A/dm 2 ) and energization time (unit: sec.) of the anodic electrolytic treatment A1 are appropriately set based on the above-described electricity density.
  • cathodic electrolysis deposits metallic chromium and chromium hydrated oxides.
  • the cathodic electrolysis treatment C2 produces granular projections of the metallic chromium layer starting from the aforementioned generation sites. At this time, if the charge density is too high, the granular projections of the metal chromium layer grow rapidly, and the grain size may become coarse.
  • the current density of the cathodic electrolysis treatment C2 is preferably less than 60.0 A/dm 2 , more preferably less than 50.0 A/dm 2 , and even more preferably less than 40.0 A/dm 2 .
  • the current density of the cathodic electrolytic treatment C2 is preferably 10 A/dm 2 or more, more preferably over 15.0 A/dm 2 .
  • the charge density (product of current density and energization time) of the cathodic electrolysis treatment C2 is preferably less than 30.0 C/dm 2 , more preferably 25.0 C/dm 2 or less.
  • the charge density of the cathodic electrolytic treatment C2 is preferably 1.0 C/dm 2 or more, more preferably 2.0 C/dm 2 or more.
  • the energization time (unit: sec.) of the cathodic electrolysis treatment C2 is appropriately set from the above electricity density.
  • Cathodic electrolytic treatment C1, anodic electrolytic treatment A1 and cathodic electrolytic treatment C2 do not have to be continuous electrolytic treatments. That is, intermittent electrolysis treatment in which non-energized immersion time inevitably exists by dividing into a plurality of electrodes for industrial production and performing electrolysis may be used. In the case of intermittent electrolytic treatment, the total charge density is preferably within the above range.
  • the second aqueous solution is an aqueous solution containing a hexavalent chromium compound and a fluorine-containing compound and containing no sulfuric acid except sulfuric acid which is unavoidably mixed. If sulfuric acid is contained, the dissolution proceeds excessively, the crystal orientation dependence of metallic chromium deposition on the granules cannot be maintained, and the granules do not become angular even if the cathodic electrolysis treatment C3 is performed. For this reason, the second aqueous solution does not contain sulfuric acid except sulfuric acid that is unavoidably mixed.
  • hexavalent chromium compound examples include chromium trioxide (CrO 3 ); dichromates such as potassium dichromate (K 2 Cr 2 O 7 ); chromates such as potassium chromate (K 2 CrO 4 ). ; and the like.
  • the Cr content is preferably 0.14 mol/L or more, more preferably 0.30 mol/L or more.
  • the Cr content is preferably 3.00 mol/L or less, more preferably 2.50 mol/L or less.
  • fluorine-containing compound examples include hydrofluoric acid (HF), potassium fluoride (KF), sodium fluoride (NaF), hydrosilicofluoric acid (H 2 SiF 6 ) and/or salts thereof.
  • hydrosilicofluoric acid salts include sodium silicofluoride (Na 2 SiF 6 ), potassium silicofluoride (K 2 SiF 6 ), and ammonium silicofluoride ((NH 4 ) 2 SiF 6 ).
  • the amount of F is preferably 0.010 mol/L or more, more preferably 0.020 mol/L or more. This improves the uniformity of the metallic chromium layer and the like. On the other hand, if the amount of F in the second aqueous solution is too large, the dissolution proceeds excessively, making it difficult for the granules to become cornified. Therefore, in the second aqueous solution, the F content is preferably 0.053 mol/L or less, more preferably 0.048 mol/L or less.
  • sulfuric acid includes sulfates such as sodium sulfate, calcium sulfate, and ammonium sulfate.
  • the second aqueous solution is inevitably mixed with sulfuric acid.
  • the amount of SO 4 2- in the second aqueous solution is preferably less than 0.0001 mol/L.
  • the liquid temperature of the second aqueous solution is preferably 20° C. or higher, more preferably 30° C. or higher. On the other hand, the liquid temperature is preferably 80°C or lower, more preferably 60°C or lower.
  • the anodic electrolysis treatment A2 dissolves the granular projections deposited in the cathodic electrolysis treatment C2 to form starting points for the cornification of the granular projections in the subsequent cathodic electrolysis treatment C3. At this time, if the dissolution in the anodic electrolytic treatment A2 is too strong, formation of starting points of cornification becomes excessive, and angular granular projections may not be obtained.
  • the charge density (the product of the current density and the energization time) of the anodic electrolytic treatment A2 is preferably 1.3 C/dm 2 or less, more preferably less than 1.0 C/dm 2 , and 0.5 C/dm 2 or less. dm 2 or less is more preferable, and 0.1 C/dm 2 or less is particularly preferable.
  • the current density (unit: A/dm 2 ) and the energization time (unit: sec.) of the anodic electrolytic treatment A2 are appropriately set from the above electricity density.
  • cathodic electrolysis deposits metallic chromium and chromium hydrated oxides.
  • the cathodic electrolysis treatment C3 cornifies the granules of the metallic chromium layer.
  • the current density of the cathodic electrolytic treatment C3 is preferably 5.0 A/dm 2 or more, more preferably 10.0 A/dm 2 or more, and still more preferably over 15.0 A/dm 2 .
  • the upper limit of the current density of the cathodic electrolysis treatment C3 is not particularly limited, and is, for example, 80 A/dm 2 or less, preferably 70 A/dm 2 or less.
  • the charge density (the product of the current density and the energization time) of the cathodic electrolysis treatment C3 is preferably 3.5 C/dm 2 or more, more preferably 5.0 C/dm 2 or more, and 10.0 C/dm 2 or more. dm 2 or more is more preferred.
  • the upper limit of the charge density of the cathodic electrolysis treatment C3 is not particularly limited, and is, for example, 35.0 C/dm 2 or less, preferably 25.0 C/dm 2 or less.
  • the energization time (unit: sec.) of the cathodic electrolysis treatment C3 is appropriately set from the above current density and electricity density.
  • the anodic electrolytic treatment A2 and the cathodic electrolytic treatment C3 do not have to be continuous electrolytic treatments. That is, intermittent electrolysis treatment in which non-energized immersion time inevitably exists by dividing into a plurality of electrodes for industrial production and performing electrolysis may be used. In the case of intermittent electrolytic treatment, the total charge density is preferably within the above range.
  • the steel sheet that has undergone the first treatment is immersed in the second aqueous solution in a non-energized state.
  • the second aqueous solution contains a fluorine-containing compound. Therefore, by immersing the steel plate that has undergone the first treatment in the second aqueous solution, the granular projections precipitated in the first treatment are dissolved, and the starting point for the cornification of the granular projections in the subsequent cathodic electrolysis treatment C3. is formed.
  • the immersion time is preferably 0.10 seconds or longer, more preferably 0.20 seconds or longer, and still more preferably 0.30 seconds or longer.
  • the immersion time is preferably 20.00 seconds or less, more preferably 15.00 seconds or less, still more preferably 10.00 seconds or less, and particularly preferably 5.00 seconds or less.
  • Adhesion amount the adhesion amount of the metal chromium layer and the adhesion amount of the hydrated chromium oxide layer in terms of chromium (simply referred to as "adhesion amount” in Table 4 below) were measured. Furthermore, regarding the granular projections of the metal chromium layer of the manufactured steel plate for cans, the number density, the maximum particle size, and the ratio of granular projections having a circularity C of 0.85 or less (in Table 4 below, “circularity C is 0.85 or less”) was measured. All measurement methods are as described above. The results are shown in Table 4 below.
  • the produced steel sheets for cans were subjected to heat treatment at 210° C. for 10 minutes (holding for 10 minutes at a reached plate temperature of 210° C.) three times, and then the contact resistance value was measured. More specifically, first, two samples were taken from a steel sheet for cans, heat-treated in a batch furnace, and superimposed after the heat-treatment. Next, using a DR type 1% by mass Cr--Cu electrode (electrode processed to have a tip diameter of 6 mm and a curvature R of 40 mm), the two superimposed samples were sandwiched and held for 15 seconds under a pressure of 1 kgf/cm 2 .
  • Contact resistance value of 20 ⁇ or less ⁇ : Contact resistance value of more than 20 ⁇ , 100 ⁇ or less ⁇ : Contact resistance value of more than 100 ⁇ , 300 ⁇ or less ⁇ : Contact resistance value of more than 300 ⁇ , 500 ⁇ or less ⁇ : Contact resistance value of more than 500 ⁇ , 1000 ⁇ or less ⁇ : Contact resistance value over 1000 ⁇
  • the structure of the hydrated chromium oxide layer is a structure in which chromium is linked by oxo bonds and all bonds.
  • the hydrated chromium oxide layer undergoes a dehydration reaction, and all bonds become oxo bonds.
  • the higher the proportion of oxo bonds the more insulating the hydrated chromium oxide layer.
  • Patent Documents 1 and 2 the number of times of heat treatment at 210 ° C. for 10 minutes was "two times", but in this test, the number of times of this heat treatment was set to "three times" to improve weldability under stricter conditions. is evaluated.
  • Comparative Example 1 is an example in which only the first process is performed.
  • Comparative Example 2 is an example using an aqueous solution C containing sulfuric acid as the second aqueous solution.
  • Comparative Example 3 is an example using an aqueous solution D containing no sulfuric acid as the first aqueous solution. In all of these cases, the ratio of granular projections having a roundness C of 0.85 or less was less than 20%, and the weldability was insufficient.
  • Comparative Examples 4 and 5 are examples in which the charge density of the anodic electrolytic treatment A2 is too high.
  • Comparative Examples 6 and 7 are examples in which the current density and charge density of the cathodic electrolysis treatment C3 are too low. In all of these cases, the ratio of granular projections having a roundness C of 0.85 or less was less than 20%, and the weldability was insufficient.
  • Invention Example 1 for example, like Invention Examples 2 to 4, the proportion of granular projections having a circularity C of 0.85 or less was 60% or more, but was higher than Invention Examples 2 to 4. , the weldability was good. This is presumed because, for example, the maximum grain size of the granular projections of Invention Example 1 is larger than those of Invention Examples 2-4.
  • Inventive example 2 is an example in which the second process of the second mode was performed, and for example, the same results as in invention examples 3 and 4 in which the second process of the first mode was performed were obtained.
  • Inventive Examples 3 to 9 differ from each other only in the conditions of the anode electrolytic treatment A2 (charge density, etc.). As the charge density of the anodic electrolytic treatment A2 decreased, the proportion of granular projections having a roundness C of 0.85 or less increased, and weldability tended to improve.
  • Inventive Examples 10 to 19 differ from each other only in the conditions (such as the charge density) of the cathode electrolysis treatment C3. As the charge density of the cathodic electrolytic treatment C3 increased, the proportion of granular projections having a circularity C of 0.85 or less increased, and weldability tended to improve.
  • Example 11 compared with Example 12, the current density of the cathode electrolysis treatment C3 is higher, although the electricity density of the cathode electrolysis treatment C3 is the same. For this reason, it is presumed that invention example 11 has a higher proportion of granular projections having a roundness C of 0.85 or less than invention example 12, and thus has better weldability. This also applies to invention examples 15 and 16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

溶接性に優れる缶用鋼板1を提供する。缶用鋼板1は、鋼板2の表面に、鋼板2側から順に、金属クロム層3およびクロム水和酸化物層4を有する。金属クロム層3の付着量が、50~200mg/m2であり、クロム水和酸化物層4のクロム換算の付着量が、3~30mg/m2である。金属クロム層3は、平板状の基部3aと、基部3a上に設けられた粒状突起3bと、を含む。粒状突起3bの少なくとも20%が、0.85以下の真円度Cを有する。真円度Cは、粒状突起3bの投影像の外周長をU、面積をAとしたとき、C=4πA/U2で表される。

Description

缶用鋼板およびその製造方法
 本発明は、缶用鋼板およびその製造方法に関する。
 特許文献1~2には、「鋼板の表面に、前記鋼板側から順に、金属クロム層およびクロム水和酸化物層」を有し、更に、金属クロム層が「粒状突起」を有する缶用鋼板が開示されている。
国際公開第2018/225739号 国際公開第2018/225726号
 特許文献1~2に開示された缶用鋼板の溶接性は良好であるが、近年、より一層の溶接性の向上が要求されている。
 そこで、本発明は、溶接性に優れる缶用鋼板およびその製造方法を提供することを目的とする。
 本発明者らが鋭意検討した結果、粒状突起を特定の形状とすることにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[9]を提供する。
[1]鋼板の表面に、上記鋼板側から順に、金属クロム層およびクロム水和酸化物層を有し、上記金属クロム層の付着量が、50~200mg/mであり、上記クロム水和酸化物層のクロム換算の付着量が、3~30mg/mであり、上記金属クロム層は、平板状の基部と、上記基部上に設けられた粒状突起と、を含み、上記粒状突起の少なくとも20%が、0.85以下の真円度Cを有する、缶用鋼板。ただし、上記真円度Cは、上記粒状突起の投影像の外周長をU、面積をAとしたとき、C=4πA/Uで表される。
[2]上記粒状突起の最大粒径が、200nm以下であり、上記粒状突起の個数密度が、10個/μm以上である、上記[1]に記載の缶用鋼板。
[3]上記[1]または[2]に記載の缶用鋼板を製造する方法であって、鋼板に対して、第1の水溶液を用いて、陰極電解処理C1、陽極電解処理A1および陰極電解処理C2を、この順に施し、その後、第2の水溶液を用いて、陽極電解処理A2および陰極電解処理C3を施し、上記第1の水溶液は、六価クロム化合物、フッ素含有化合物および硫酸を含有し、上記第2の水溶液は、六価クロム化合物およびフッ素含有化合物を含有し、かつ、不可避的に混入する硫酸を除いて硫酸を含有しない、缶用鋼板の製造方法。
[4]上記陽極電解処理A2の電気量密度が、1.3C/dm以下である、上記[3]に記載の缶用鋼板の製造方法。
[5]上記[1]または[2]に記載の缶用鋼板を製造する方法であって、鋼板に対して、第1の水溶液を用いて、陰極電解処理C1、陽極電解処理A1および陰極電解処理C2を、この順に施し、その後、第2の水溶液を用いて、陰極電解処理C3を施し、上記第1の水溶液は、六価クロム化合物、フッ素含有化合物および硫酸を含有し、上記第2の水溶液は、六価クロム化合物およびフッ素含有化合物を含有し、かつ、不可避的に混入する硫酸を除いて硫酸を含有しない、缶用鋼板の製造方法。
[6]上記陰極電解処理C2の後、上記陰極電解処理C3の前に、上記第2の水溶液を用いて、浸漬処理を施す、上記[5]に記載の缶用鋼板の製造方法。
[7]上記浸漬処理における浸漬時間が、0.10~20.00秒である、上記[6]に記載の缶用鋼板の製造方法。
[8]上記陰極電解処理C3の電流密度が、5.0A/dm以上である、上記陰極電解処理C3の電気量密度が、3.5C/dm以上である、上記[3]~[7]のいずれかに記載の缶用鋼板の製造方法。
[9]上記第1の水溶液におけるF量が、0.020~0.480mol/Lであり、上記第2の水溶液におけるF量が、0.010~0.053mol/Lである、上記[3]~[8]のいずれかに記載の缶用鋼板の製造方法。
 本発明によれば、溶接性に優れる缶用鋼板およびその製造方法を提供できる。
缶用鋼板の一例を模式的に示す断面図である。 比較例1の粒状突起を示すSEM像である。 発明例3の粒状突起を示すSEM像である。
[缶用鋼板]
 図1は、缶用鋼板の一例を模式的に示す断面図である。
 図1に示すように、鋼板2を有する。缶用鋼板1は、更に、鋼板2の表面に、鋼板2側から順に、金属クロム層3およびクロム水和酸化物層4を有する。
 金属クロム層3は、鋼板2を覆う平板状の基部3aと、基部3a上に設けられた粒状突起3bとを含む。クロム水和酸化物層4は、粒状突起3bの形状に追従するように、金属クロム層3上に配置される。
 以下、缶用鋼板の各構成について、より詳細に説明する。
 〈鋼板〉
 鋼板の種類は特に限定されない。通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を使用できる。鋼板の製造方法、材質なども特に限定されない。通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
 〈金属クロム層〉
 上述した鋼板の表面には、金属クロム層が配置される。金属クロム層は、鋼板の表面露出を抑えて耐食性を向上させる。
 《付着量》
 缶用鋼板の耐食性が優れるという理由から、金属クロム層の付着量は、50mg/m以上であり、60mg/m以上が好ましく、70mg/m以上がより好ましい。付着量は、鋼板の片面当たりの付着量である(以下、同様)。
 一方、金属クロム層の付着量が多すぎる場合、高融点の金属クロムが鋼板の全面を覆い、その結果、溶接時に溶接強度が低下したりチリの発生が著しくなったりして、溶接性が不十分となり得る。
 缶用鋼板の溶接性が優れるという理由から、金属クロム層の付着量は、200mg/m以下であり、180mg/m以下が好ましく、160mg/m以下がより好ましい。
 (付着量の測定方法)
 金属クロム層の付着量、および、後述するクロム水和酸化物層のクロム換算の付着量は、次のようにして測定する。
 まず、金属クロム層およびクロム水和酸化物層を形成させた缶用鋼板について、蛍光X線装置を用いて、クロム量(全クロム量)を測定する。次いで、缶用鋼板を90℃の6.5N-NaOH中に10分間浸漬させるアルカリ処理を行なってから、再び、蛍光X線装置を用いて、クロム量(アルカリ処理後クロム量)を測定する。アルカリ処理後クロム量を、金属クロム層の付着量とする。
 次に、(アルカリ可溶性クロム量)=(全クロム量)-(アルカリ処理後クロム量)を計算し、アルカリ可溶性クロム量を、クロム水和酸化物層のクロム換算の付着量とする。
 このような金属クロム層は、平板状の基部と、基部上に設けられた粒状突起と、を含む。次に、金属クロム層が含むこれらの各部について、詳細に説明する。
 《基部》
 金属クロム層の基部は、主に、鋼板の表面を被覆し、耐食性を向上させる。
 金属クロム層の基部は、ハンドリング時に不可避的に缶用鋼板どうしが接触した際に、表層に設けられた粒状突起が基部を破壊して鋼板が露出しないように、十分な厚みを確保していることが好ましい。
 缶用鋼板の耐食性が優れるという理由から、金属クロム層の基部の付着量は、10mg/m以上が好ましく、30mg/m以上がより好ましく、40mg/m以上が更に好ましい。
 《粒状突起》
 金属クロム層の粒状突起は、上述した基部の表面に形成されており、缶用鋼板どうしの接触抵抗を低下させて溶接性を向上させる。接触抵抗が低下する推定のメカニズムを以下に記述する。
 金属クロム層の上に被覆されるクロム水和酸化物層は、不導体皮膜であるため、金属クロムよりも電気抵抗が大きく、溶接の阻害因子になる。金属クロム層の基部の表面に粒状突起を形成させると、溶接する際の缶用鋼板どうしの接触時の面圧により、粒状突起がクロム水和酸化物層を破壊して、溶接電流の通電点になり、接触抵抗が大幅に低下する。
 (真円度C)
 金属クロム層の粒状突起の少なくとも20%が、0.85以下の真円度Cを有する。これにより、缶用鋼板の溶接性がより向上する。すなわち、缶用鋼板の溶接性が優れる。
 真円度Cは、粒状突起の投影像の外周長をU、面積をAとしたとき、C=4πA/Uで表される。真円度Cは、面積がAである真円の外周長の二乗(=4π=4πA)と、実際に測定した外周長Uの二乗(=U)との比を表しており、真円では1.0となる。形状が真円から崩れるほど、すなわち、外周長Uが長くなるほど、真円度Cの値は小さくなる。
 真円度Cが0.85以下である粒状突起の形状としては、例えば、角状が挙げられる。
 角状の粒状突起は、例えば、真円状の粒状突起と比較して、尖鋭的な部分が多く、クロム水和酸化物層を破壊しやすい(または、破壊のきっかけを形成しやすい)。
 このため、真円度Cが0.85以下である粒状突起を多く有することにより、缶用鋼板の溶接性が優れると考えられる。
 真円度Cが0.85以下である粒状突起の割合は、上述したように、20%以上であり、缶用鋼板の溶接性がより優れるという理由から、40%以上が好ましく、60%以上がより好ましい。
 ここで、粒状突起を示すSEM像として、図2および図3を提示する。
 図2は、後述する比較例1の粒状突起を示すSEM像であり、図3は、後述する発明例3の粒状突起を示すSEM像である。
 後出の表4を参照すると、真円度Cが0.85以下である粒状突起の割合は、図2(比較例1)が12%であるのに対して、図3(発明例3)では68%である。
 実際に、図3のSEM像では、図2よりも多くの角状の粒状突起を確認できる。
 以下、便宜的に、真円度Cが0.85以下である粒状突起を「角状の粒状突起」と称する場合がある。更に、粒状突起について、真円度Cを0.85以下にすることを「角状化」と称することがある。
 (最大粒径)
 上述したように、金属クロム層の粒状突起は、クロム水和酸化物層を破壊することにより、接触抵抗を低下させて溶接性を向上させる。このため、金属クロム層の粒状突起の最大粒径は、例えば、10nm以上である。
 缶用鋼板の溶接性がより優れるという理由から、金属クロム層の粒状突起の最大粒径は、50nm以上が好ましく、80nm以上がより好ましく、140nm以上が更に好ましい。
 一方、缶用鋼板の表面外観が優れるという理由からは、金属クロム層の粒状突起の最大粒径は、200nm以下が好ましく、180nm以下がより好ましい。これは、粒状突起が小径化することで、短波長側の光の吸収が抑制されたり、反射光の散乱が抑制されたりするためと考えられる。
 (個数密度)
 金属クロム層の粒状突起が多い場合は、通電点が増加することにより、溶接性が優れる。このため、金属クロム層の粒状突起の個数密度は、10個/μm以上が好ましく、30個/μm以上がより好ましく、50個/μm以上が更に好ましく、100個/μm以上が特に好ましい。
 一方、缶用鋼板の表面外観が優れるという理由から、金属クロム層の粒状突起の個数密度は、10,000個/μm以下が好ましく、5,000個/μm以下がより好ましく、1,000個/μm以下が更に好ましく、800個/μm以下が特に好ましい。
 (真円度C、個数密度および最大粒径の測定方法)
 粒状突起の真円度C、個数密度および最大粒径は、次のようにして求める。
 まず、金属クロム層およびクロム水和酸化物層を形成させた缶用鋼板の表面に、カーボン蒸着を施して、観察用サンプルとする。次いで、観察用サンプルを、走査型電子顕微鏡(SEM)を用いて、缶用鋼板の表面に対して垂直方向から観察し、20,000倍の倍率でSEM像(粒状突起の投影像)を得る。得られたSEM像について、ソフトウェア(商品名:ImageJ)を用いて画像解析する。
 SEM像に含まれる各粒状突起について、外周長Uおよび面積Aを求めて、C=4πA/Uの式から、真円度Cを算出する。その後、真円度Cが0.85以下である粒状突起の割合(単位:%)を求める。この割合は、5視野の平均とする。
 更に、得られたSEM像について、粒状突起の占める面積に基づいて、真円換算して、粒状突起の粒径(単位:nm)および個数密度(単位:個/μm)を求める。5視野の最大の粒径を、粒状突起の最大粒径とする。個数密度は、5視野の平均とする。
 〈クロム水和酸化物層〉
 クロム水和酸化物は、鋼板の表面に金属クロムと同時に析出し、耐食性を向上させる。クロム水和酸化物は、例えば、クロム酸化物およびクロム水酸化物を含む。
 《付着量》
 缶用鋼板の耐食性を確保する理由から、クロム水和酸化物層のクロム換算の付着量は、3mg/m以上であり、10mg/m以上が好ましく、15mg/m超が更に好ましい。
 一方、クロム水和酸化物は、金属クロムと比較して導電率が低く、量が多すぎると溶接時に過大な抵抗となり、チリやスプラッシュの発生および過融接に伴うブローホールなどの各種溶接欠陥を引き起こし、缶用鋼板の溶接性が劣る場合がある。
 缶用鋼板の溶接性が優れるという理由から、クロム水和酸化物層のクロム換算の付着量は、30mg/m以下であり、25mg/m以下が好ましく、20mg/m以下がより好ましい。
 クロム水和酸化物層のクロム換算の付着量の測定方法は、上述したとおりである。
[缶用鋼板の製造方法]
 次に、上述した缶用鋼板を製造する方法を説明する。
 概略的には、鋼板に対して、硫酸を含有する第1の水溶液を用いて第1の処理(陰極電解処理C1、陽極電解処理A1および陰極電解処理C2)を施し、その後、硫酸を含有しない第2の水溶液を用いて第2の処理を施す。
 まず、第1の処理によって金属クロム層(基部および粒状突起)およびクロム水和酸化物層が生成し、次いで、第2の処理によって、粒状突起が角状化すると考えられる。第2の処理は、2種類の態様(第1態様および第2態様)がある。
 各々の析出量は、各処理の条件によって、コントロール可能である。
 以下、各処理を詳細に説明する。
 〈第1の処理〉
 第1の処理として、鋼板に対して、第1の水溶液を用いて、陰極電解処理C1、陽極電解処理A1および陰極電解処理C2を、この順に施す。
 《第1の水溶液》
 第1の水溶液は、六価クロム化合物、フッ素含有化合物および硫酸を含有する。
 (六価クロム化合物)
 六価クロム化合物としては、例えば、三酸化クロム(CrO);二クロム酸カリウム(KCr)などの二クロム酸塩;クロム酸カリウム(KCrO)などのクロム酸塩;等が挙げられる。
 第1の水溶液において、Cr量は、0.14mol/L以上が好ましく、0.30mol/L以上がより好ましい。一方、Cr量は、3.00mol/L以下が好ましく、2.50mol/L以下がより好ましい。
 (フッ素含有化合物)
 フッ素含有化合物としては、例えば、フッ化水素酸(HF)、フッ化カリウム(KF)、フッ化ナトリウム(NaF)、ケイフッ化水素酸(HSiF)および/またはその塩などが挙げられる。ケイフッ化水素酸の塩としては、例えば、ケイフッ化ナトリウム(NaSiF)、ケイフッ化カリウム(KSiF)、ケイフッ化アンモニウム((NHSiF)などが挙げられる。
 第1の水溶液において、F量は、0.020mol/L以上が好ましく、0.080mol/L以上がより好ましい。一方、F量は、0.480mol/L以下が好ましく、0.400mol/L以下がより好ましい。
 (硫酸)
 硫酸をフッ素含有化合物と併用することにより、金属クロム層の付着効率が向上する。
 硫酸の含有量(SO 2-量)を下記範囲内にすることにより、陰極電解処理C2において析出する粒状突起の粒径を適正な範囲に制御しやすくなる。
 更に、硫酸は、陽極電解処理における金属クロム層の粒状突起の発生サイトの形成にも影響する。硫酸の含有量(SO 2-量)を下記範囲内にすることにより、粒状突起が過度に微細または粗大になりにくくなり、適正な個数密度が得られやすい。
 粒状突起の粒径が小さすぎる場合、または、粒状突起の個数密度が低すぎる場合は、粒状突起への電流集中が起こらず、第2の処理を施しても、粒状突起の角状化が進行しにくい。したがって、粒状突起の粒径および個数密度を制御するために、第1の水溶液に、硫酸を含有させる。
 硫酸は、その一部または全部が、硫酸ナトリウム、硫酸カルシウム、硫酸アンモニウムなどの硫酸塩であってもよい。
 第1の水溶液において、SO 2-量は、0.0001mol/L以上が好ましく、0.0003mol/L以上がより好ましく、0.0010mol/L以上が更に好ましい。
 一方、第1の水溶液において、SO 2-量は、0.1000mol/L以下が好ましく、0.0500mol/L以下がより好ましい。
 第1の処理(陰極電解処理C1、陽極電解処理A1、および、陰極電解処理C1)において、1種類の水溶液のみを用いることが好ましい。
 第1の水溶液の液温は、20℃以上が好ましく、40℃以上がより好ましい。一方、この液温は、80℃以下が好ましく、60℃以下がより好ましい。
 《陰極電解処理C1》
 陰極電解処理C1は、金属クロムおよびクロム水和酸化物を析出させる。
 このとき、適切な析出量とする観点から、陰極電解処理C1の電気量密度(電流密度と通電時間との積)は、15C/dm以上が好ましく、20C/dm以上がより好ましく、25C/dm以上が更に好ましい。一方、陰極電解処理C1の電気量密度は、50C/dm以下が好ましく、45C/dm以下がより好ましく、35C/dm以下が更に好ましい。
 陰極電解処理C1の電流密度(単位:A/dm)および通電時間(単位:sec.)は、上記の電気量密度から、適宜設定される。
 《陽極電解処理A1》
 陽極電解処理A1は、陰極電解処理C1で析出した金属クロムを溶解させて、陰極電解処理C2における金属クロム層の粒状突起の発生サイトを形成する。
 このとき、陽極電解処理A1での溶解が強すぎたり弱すぎたりすると、発生サイトが減少し、粒状突起の個数密度が減少したり、不均一に溶解が進行して粒状突起の分布にばらつきが生じたり、金属クロム層の基部の厚さが低減したりする場合がある。
 以上の観点から、陽極電解処理A1の電気量密度(電流密度と通電時間との積)は、0.1C/dm以上が好ましく、0.3C/dm以上がより好ましく、0.3C/dm超が更に好ましい。一方、陽極電解処理A1の電気量密度は、5.0C/dm未満が好ましく、3.0C/dm以下がより好ましく、2.0C/dm以下が更に好ましい。
 陽極電解処理A1の電流密度(単位:A/dm)および通電時間(単位:sec.)は、上記の電気量密度から、適宜設定される。
 《陰極電解処理C2》
 上述したように、陰極電解処理は、金属クロムおよびクロム水和酸化物を析出させる。とりわけ、陰極電解処理C2は、上述した発生サイトを起点として、金属クロム層の粒状突起を生成させる。このとき、電気量密度が高すぎると、金属クロム層の粒状突起が急激に成長し、粒径が粗大となる場合がある。
 以上の観点から、陰極電解処理C2の電流密度は、60.0A/dm未満が好ましく、50.0A/dm未満がより好ましく、40.0A/dm未満が更に好ましい。一方、陰極電解処理C2の電流密度は、10A/dm以上が好ましく、15.0A/dm超がより好ましい。
 同様の理由から、陰極電解処理C2の電気量密度(電流密度と通電時間との積)は、30.0C/dm未満が好ましく、25.0C/dm以下がより好ましい。一方、陰極電解処理C2の電気量密度は、1.0C/dm以上が好ましく、2.0C/dm以上がより好ましい。
 陰極電解処理C2の通電時間(単位:sec.)は、上記の電気量密度から、適宜設定される。
 陰極電解処理C1、陽極電解処理A1および陰極電解処理C2は、連続電解処理でなくてもよい。すなわち、工業生産上、複数の電極に分けて電解することにより不可避的に無通電浸漬時間が存在する断続電解処理であってもよい。断続電解処理の場合、トータルの電気量密度が上記範囲内であることが好ましい。
 〈第2の処理(第1態様)〉
 第2の処理(第1態様)では、第1の処理を経た鋼板に対して、第2の水溶液を用いて、陽極電解処理A2および陰極電解処理C3を、この順に施す。
 第2の処理では、第1の処理で析出した粒状突起に電流が集中する。そのため、第2の処理の電解反応は、粒状突起上で進行する。
 まず、陽極電解処理A2では、陰極電解処理C2で析出した粒状突起を溶解させて、後の陰極電解処理C3における粒状突起の角状化の起点を形成する。次いで、陰極電解処理C3を施すことで、粒状突起の結晶方位に依存して金属クロムが析出し、粒状突起が角状化する。
 《第2の水溶液》
 第2の水溶液は、六価クロム化合物およびフッ素含有化合物を含有し、かつ、不可避的に混入する硫酸を除いて硫酸を含有しない水溶液である。
 硫酸が含まれると溶解が過剰に進行し、粒状突起上での金属クロム析出の結晶方位依存性が保たれず、陰極電解処理C3を施しても粒状突起が角状化しない。このため、第2の水溶液には、不可避的に混入する硫酸を除いて、硫酸を含有させない。
 (六価クロム化合物)
 六価クロム化合物としては、例えば、三酸化クロム(CrO);二クロム酸カリウム(KCr)などの二クロム酸塩;クロム酸カリウム(KCrO)などのクロム酸塩;等が挙げられる。
 第1の水溶液において、Cr量は、0.14mol/L以上が好ましく、0.30mol/L以上がより好ましい。一方、Cr量は、3.00mol/L以下が好ましく、2.50mol/L以下がより好ましい。
 (フッ素含有化合物)
 フッ素含有化合物としては、例えば、フッ化水素酸(HF)、フッ化カリウム(KF)、フッ化ナトリウム(NaF)、ケイフッ化水素酸(HSiF)および/またはその塩などが挙げられる。ケイフッ化水素酸の塩としては、例えば、ケイフッ化ナトリウム(NaSiF)、ケイフッ化カリウム(KSiF)、ケイフッ化アンモニウム((NHSiF)などが挙げられる。
 第2水溶液において、F量は、0.010mol/L以上が好ましく、0.020mol/L以上がより好ましい。これにより、金属クロム層などの均一性が向上する。
 一方、第2の水溶液におけるF量が多すぎると、溶解が過剰に進行して、粒状突起が角状化しにくい。このため、第2の水溶液において、F量は、0.053mol/L以下が好ましく、0.048mol/L以下がより好ましい。
 (硫酸)
 第2の水溶液は、硫酸を含有しない。ここで、硫酸は、硫酸ナトリウム、硫酸カルシウム、硫酸アンモニウムなどの硫酸塩を含む。
 ところで、三酸化クロムなどの原料は、工業的な生産過程で硫酸が不可避的に混入しているため、これらの原料を用いる場合、第2の水溶液には、不可避的に硫酸が混入する。
 この場合、第2の水溶液におけるSO 2-量は、0.0001mol/L未満が好ましい。
 第2の処理(陽極電解処理A2および陰極電解処理C3)において、1種類の水溶液のみを用いることが好ましい。
 第2の水溶液の液温は、20℃以上が好ましく、30℃以上がより好ましい。一方、この液温は、80℃以下が好ましく、60℃以下がより好ましい。
 《陽極電解処理A2》
 陽極電解処理A2は、陰極電解処理C2で析出した粒状突起を溶解させて、後の陰極電解処理C3における粒状突起の角状化の起点を形成する。
 このとき、陽極電解処理A2での溶解が強すぎると、角状化の起点の形成が過剰となり、角状の粒状突起を得られない場合がある。
 以上の観点から、陽極電解処理A2の電気量密度(電流密度と通電時間との積)は、1.3C/dm以下が好ましく、1.0C/dm未満がより好ましく、0.5C/dm以下が更に好ましく、0.1C/dm以下が特に好ましい。
 陽極電解処理A2の電流密度(単位:A/dm)および通電時間(単位:sec.)は、上記の電気量密度から、適宜設定される。
 《陰極電解処理C3》
 上述したように、陰極電解処理は、金属クロムおよびクロム水和酸化物を析出させる。とりわけ、陰極電解処理C3は、金属クロム層の粒状突起を角状化させる。
 以上の観点から、陰極電解処理C3の電流密度は、5.0A/dm以上が好ましく、10.0A/dm以上がより好ましく、15.0A/dm超が更に好ましい。
 一方、陰極電解処理C3の電流密度は、上限は特に限定されず、例えば、80A/dm以下であり、70A/dm以下が好ましい。
 同様の理由から、陰極電解処理C3の電気量密度(電流密度と通電時間との積)は、3.5C/dm以上が好ましく、5.0C/dm以上がより好ましく、10.0C/dm以上が更に好ましい。
 一方、陰極電解処理C3の電気量密度は、上限は特に限定されず、例えば、35.0C/dm以下であり、25.0C/dm以下が好ましい。
 陰極電解処理C3の通電時間(単位:sec.)は、上記の電流密度および電気量密度から、適宜設定される。
 陽極電解処理A2および陰極電解処理C3は、連続電解処理でなくてもよい。すなわち、工業生産上、複数の電極に分けて電解することにより不可避的に無通電浸漬時間が存在する断続電解処理であってもよい。断続電解処理の場合、トータルの電気量密度が上記範囲内であることが好ましい。
 〈第2の処理(第2態様)〉
 上述した第1態様の第2の処理では、陰極電解処理C3(粒状突起の角状化)の前に、例えば比較的低い電気量密度で陽極電解処理A2を実施することで、粒状突起を緩やかに溶解させた。
 このとき、陰極電解処理C3の前に、粒状突起を緩やかに溶解させることできれば、必ずしも陽極電解処理A2を実施することを要しない。
 そこで、第2態様の第2の処理では、第1の処理を経た鋼板に対して、第2の水溶液を用いて、陽極電解処理A2を実施しないで、陰極電解処理C3を施す。
 具体的には、陰極電解処理C3の前に、第2の水溶液を用いて、第1の処理を経た鋼板に対して、浸漬処理を施すことが好ましい。
 《第2の水溶液》
 第2態様の第2の処理で用いる第2の水溶液は、第1態様と同じであるため、説明を省略する。
 《浸漬処理》
 浸漬処理を実施する場合、第2の水溶液中に、第1の処理を経た鋼板を、無通電状態で浸漬させる。第2の水溶液は、フッ素含有化合物を含有する。このため、第1の処理を経た鋼板を第2の水溶液中に浸漬することにより、第1の処理で析出した粒状突起が溶解し、後の陰極電解処理C3における粒状突起の角状化の起点が形成される。
 第1の処理で析出した粒状突起を溶解させるためには、ある程度の長さの浸漬時間を設けることが好ましい。具体的には、浸漬時間は、0.10秒以上が好ましく、0.20秒以上がより好ましく、0.30秒以上が更に好ましい。
 一方、浸漬時間が長すぎると、角状化の起点の形成が過剰となり、角状の粒状突起が得られにくい場合がある。このため、浸漬時間は、20.00秒以下が好ましく、15.00秒以下がより好ましく、10.00秒以下が更に好ましく、5.00秒以下が特に好ましい。
 《陰極電解処理C3》
 第2態様の第2の処理で実施する陰極電解処理C3は、第1態様と同じであるため、説明を省略する。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は以下の実施例に限定されない。
 〈缶用鋼板の作製〉
 0.22mmの板厚で製造した鋼板(調質度:T4CA)に対して、通常の脱脂および酸洗を施した。
 次いで、この鋼板に対して、下記表1に示す水溶液を用いて、下記表2~表3に示す条件で第1の処理(陰極電解処理C1、陽極電解処理A1および陰極電解処理C2)および第2の処理を実施した。比較例1では、第2の処理を実施しなかった(下記表3中の該当する欄には「-」を記載した)。
 第2の処理を実施した例のうち、発明例2では、浸漬処理および陰極電解処理C3を実施し、それ以外の例では、陽極電解処理A2および陰極電解処理C3を実施した(下記表3中、実施しなかった処理の欄には「-」を記載した)。
 各処理において、水溶液は流動セルでポンプにより100mpm相当で循環させ、鉛電極を使用した。
 こうして、缶用鋼板を作製した。作製後の缶用鋼板は、水洗し、ブロアを用いて室温で乾燥した。
 〈付着量など〉
 作製した缶用鋼板について、金属クロム層の付着量、および、クロム水和酸化物層のクロム換算の付着量(下記表4では単に「付着量」と表記)を測定した。
 更に、作製した缶用鋼板の金属クロム層の粒状突起について、個数密度、最大粒径、および、真円度Cが0.85以下である粒状突起の割合(下記表4では「真円度Cが0.85以下の割合」と表記)を測定した。
 測定方法は、いずれも上述したとおりである。結果を下記表4に示す。
 〈評価〉
 作製した缶用鋼板について、以下の試験を行ない、溶接性を評価した。結果を下記表4に示す。
 《溶接性》
 作製した缶用鋼板について、210℃×10分間の熱処理(到達板温210℃で10分間保持)を3回行なった後、接触抵抗値を測定した。
 より詳細には、まず、缶用鋼板から2枚のサンプルを採取し、バッチ炉中で熱処理を施し、熱処理後、重ね合わせた。
 次いで、DR型1質量%Cr-Cu電極(先端径6mm、曲率R40mmとして加工した電極)を用いて、重ね合わせた2枚のサンプルを挟み込み、加圧力1kgf/cm2として、15秒保持した。
 その後、電流値10Aで通電し、2枚のサンプル間の抵抗値(単位:μΩ)を測定した。10点測定し、平均値を接触抵抗値とし、下記基準で溶接性を評価した。「◎◎◎」、「◎◎」、「◎」または「○」であれば、溶接性に優れると評価できる。
 ◎◎◎:接触抵抗値20μΩ以下
 ◎◎:接触抵抗値20μΩ超、100μΩ以下
 ◎:接触抵抗値100μΩ超、300μΩ以下
 ○:接触抵抗値300μΩ超、500μΩ以下
 △:接触抵抗値500μΩ超、1000μΩ以下
 ×:接触抵抗値1000μΩ超
 クロム水和酸化物層の構造は、クロムがオキソ結合およびオール結合で連なる構造である。缶用鋼板に熱処理を施すことにより、クロム水和酸化物層の脱水反応が進行し、オール結合がオキソ結合となる。一般に、オキソ結合の比率が高いほど、クロム水和酸化物層の絶縁性が高くなる。
 特許文献1~2では、210℃×10分間の熱処理の回数が「2回」であったが、本試験では、この熱処理の回数を「3回」とすることにより、より厳しい条件で溶接性を評価している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 〈評価結果まとめ〉
 上記表1~表4に示す結果から明らかなように、発明例1~発明例19は、溶接性が良好であった。これに対して、比較例1~比較例7は、溶接性が不十分であった。
 より詳細には、以下のとおりであった。
 比較例1は、第1の処理のみを実施した例である。
 比較例2は、第2の水溶液として、硫酸を含有する水溶液Cを用いた例である。
 比較例3は、第1の水溶液として、硫酸を含有しない水溶液Dを用いた例である。
 これらは、いずれも、真円度Cが0.85以下である粒状突起の割合が20%未満であり、溶接性が不十分であった。
 比較例4および比較例5は、陽極電解処理A2の電気量密度が高すぎる例である。
 比較例6および比較例7は、陰極電解処理C3の電流密度および電気量密度が低すぎる例である。
 これらは、いずれも、真円度Cが0.85以下である粒状突起の割合が20%未満であり、溶接性が不十分であった。
 上述したように、発明例1~発明例19の溶接性は、いずれも良好であった。
 より詳細には、真円度Cが0.85以下である粒状突起の割合が20%以上40%未満である例では「○」であり、同割合が40%以上60%未満である例では「◎」であり、同割合が60%以上である例では「◎◎」または「◎◎◎」であった。
 発明例1は、例えば、発明例2~発明例4と同じく、真円度Cが0.85以下である粒状突起の割合が60%以上であったが、発明例2~発明例4よりも、溶接性が良好であった。これは、例えば、発明例1の粒状突起の最大粒径が、発明例2~発明例4よりも大きいためと推測される。
 発明例2は、第2態様の第2の処理を実施した例であるが、例えば、第1態様の第2の処理を実施した発明例3~発明例4と同等の結果が得られた。
 発明例3~発明例9は、互いに、陽極電解処理A2の条件(電気量密度など)のみが異なる。陽極電解処理A2の電気量密度が低くなるに従い、真円度Cが0.85以下である粒状突起の割合が増え、溶接性が良好になる傾向が見られた。
 発明例10~発明例19は、互いに、陰極電解処理C3の条件(電気量密度など)のみが異なる。陰極電解処理C3の電気量密度が高くなるに従い、真円度Cが0.85以下である粒状突起の割合が増え、溶接性が良好になる傾向が見られた。
 なお、発明例11は、発明例12と比較して、陰極電解処理C3の電気量密度は同じであるが、陰極電解処理C3の電流密度が高い。このため、発明例11は、発明例12よりも、真円度Cが0.85以下である粒状突起の割合が高く、溶接性がより良好になったと推測される。
 これは、発明例15および発明例16においても同様である。
 1:缶用鋼板
 2:鋼板
 3:金属クロム層
 3a:基部
 3b:粒状突起
 4:クロム水和酸化物層

Claims (9)

  1.  鋼板の表面に、前記鋼板側から順に、金属クロム層およびクロム水和酸化物層を有し、
     前記金属クロム層の付着量が、50~200mg/mであり、
     前記クロム水和酸化物層のクロム換算の付着量が、3~30mg/mであり、
     前記金属クロム層は、平板状の基部と、前記基部上に設けられた粒状突起と、を含み、
     前記粒状突起の少なくとも20%が、0.85以下の真円度Cを有する、缶用鋼板。
     ただし、前記真円度Cは、前記粒状突起の投影像の外周長をU、面積をAとしたとき、C=4πA/Uで表される。
  2.  前記粒状突起の最大粒径が、200nm以下であり、
     前記粒状突起の個数密度が、10個/μm以上である、請求項1に記載の缶用鋼板。
  3.  請求項1または2に記載の缶用鋼板を製造する方法であって、
     鋼板に対して、第1の水溶液を用いて、陰極電解処理C1、陽極電解処理A1および陰極電解処理C2を、この順に施し、その後、第2の水溶液を用いて、陽極電解処理A2および陰極電解処理C3を施し、
     前記第1の水溶液は、六価クロム化合物、フッ素含有化合物および硫酸を含有し、
     前記第2の水溶液は、六価クロム化合物およびフッ素含有化合物を含有し、かつ、不可避的に混入する硫酸を除いて硫酸を含有しない、缶用鋼板の製造方法。
  4.  前記陽極電解処理A2の電気量密度が、1.3C/dm以下である、請求項3に記載の缶用鋼板の製造方法。
  5.  請求項1または2に記載の缶用鋼板を製造する方法であって、
     鋼板に対して、第1の水溶液を用いて、陰極電解処理C1、陽極電解処理A1および陰極電解処理C2を、この順に施し、その後、第2の水溶液を用いて、陰極電解処理C3を施し、
     前記第1の水溶液は、六価クロム化合物、フッ素含有化合物および硫酸を含有し、
     前記第2の水溶液は、六価クロム化合物およびフッ素含有化合物を含有し、かつ、不可避的に混入する硫酸を除いて硫酸を含有しない、缶用鋼板の製造方法。
  6.  前記陰極電解処理C2の後、前記陰極電解処理C3の前に、前記第2の水溶液を用いて、浸漬処理を施す、請求項5に記載の缶用鋼板の製造方法。
  7.  前記浸漬処理における浸漬時間が、0.10~20.00秒である、請求項6に記載の缶用鋼板の製造方法。
  8.  前記陰極電解処理C3の電流密度が、5.0A/dm以上である、
     前記陰極電解処理C3の電気量密度が、3.5C/dm以上である、請求項3~7のいずれか1項に記載の缶用鋼板の製造方法。
  9.  前記第1の水溶液におけるF量が、0.020~0.480mol/Lであり、
     前記第2の水溶液におけるF量が、0.010~0.053mol/Lである、請求項3~8のいずれか1項に記載の缶用鋼板の製造方法。
PCT/JP2021/041946 2021-01-27 2021-11-15 缶用鋼板およびその製造方法 WO2022163073A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180091021.7A CN116783329A (zh) 2021-01-27 2021-11-15 罐用钢板及其制造方法
EP21923078.6A EP4269660A4 (en) 2021-01-27 2021-11-15 CAN STEEL SHEET AND METHOD FOR MANUFACTURING SAME
US18/272,148 US20240141504A1 (en) 2021-01-27 2021-11-15 Can steel sheet and method for producing same
KR1020237024402A KR20230121871A (ko) 2021-01-27 2021-11-15 캔용 강판 및 그 제조 방법
JP2022506429A JP7239055B2 (ja) 2021-01-27 2021-11-15 缶用鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021011355 2021-01-27
JP2021-011355 2021-01-27

Publications (1)

Publication Number Publication Date
WO2022163073A1 true WO2022163073A1 (ja) 2022-08-04

Family

ID=82653163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041946 WO2022163073A1 (ja) 2021-01-27 2021-11-15 缶用鋼板およびその製造方法

Country Status (6)

Country Link
US (1) US20240141504A1 (ja)
EP (1) EP4269660A4 (ja)
JP (1) JP7239055B2 (ja)
KR (1) KR20230121871A (ja)
CN (1) CN116783329A (ja)
WO (1) WO2022163073A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254096A (ja) * 1985-08-31 1987-03-09 Nippon Kokan Kk <Nkk> 溶接性に優れた電解クロメ−ト処理鋼板及びその製造方法
JPH0246678B2 (ja) * 1982-11-30 1990-10-16 Nippon Kokan Kk
JPH03229897A (ja) * 1990-02-05 1991-10-11 Kawasaki Steel Corp 表面明度の高い溶接缶用ティンフリー鋼板およびその製造方法
WO2018225739A1 (ja) 2017-06-09 2018-12-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2018225726A1 (ja) 2017-06-09 2018-12-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP2020117748A (ja) * 2019-01-22 2020-08-06 Jfeスチール株式会社 缶用鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246678B2 (ja) * 1982-11-30 1990-10-16 Nippon Kokan Kk
JPS6254096A (ja) * 1985-08-31 1987-03-09 Nippon Kokan Kk <Nkk> 溶接性に優れた電解クロメ−ト処理鋼板及びその製造方法
JPH03229897A (ja) * 1990-02-05 1991-10-11 Kawasaki Steel Corp 表面明度の高い溶接缶用ティンフリー鋼板およびその製造方法
WO2018225739A1 (ja) 2017-06-09 2018-12-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
WO2018225726A1 (ja) 2017-06-09 2018-12-13 Jfeスチール株式会社 缶用鋼板およびその製造方法
JP2020117748A (ja) * 2019-01-22 2020-08-06 Jfeスチール株式会社 缶用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4269660A4

Also Published As

Publication number Publication date
CN116783329A (zh) 2023-09-19
US20240141504A1 (en) 2024-05-02
JP7239055B2 (ja) 2023-03-14
EP4269660A1 (en) 2023-11-01
EP4269660A4 (en) 2024-07-10
KR20230121871A (ko) 2023-08-21
JPWO2022163073A1 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
JP7067543B2 (ja) 缶用鋼板およびその製造方法
TWI627289B (zh) 罐用鋼板及其製造方法
TWI634984B (zh) 罐用鋼板及其製造方法
JP7239087B1 (ja) 缶用鋼板およびその製造方法
JP6648835B2 (ja) 缶用鋼板およびその製造方法
WO2018225726A1 (ja) 缶用鋼板およびその製造方法
JP7409337B2 (ja) 缶用鋼板およびその製造方法
JP7024807B2 (ja) 缶用鋼板およびその製造方法
JP7239055B2 (ja) 缶用鋼板およびその製造方法
TW202009136A (zh) 罐用鋼板及其製造方法
WO2023127237A1 (ja) 缶用鋼板およびその製造方法
JP7239014B2 (ja) 缶用鋼板およびその製造方法
WO2023127236A1 (ja) 缶用鋼板およびその製造方法
JP7563660B1 (ja) 缶用鋼板
JP7563659B1 (ja) 缶用鋼板
WO2023112467A1 (ja) 缶用鋼板およびその製造方法
JP7384151B2 (ja) 缶用鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506429

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923078

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317045837

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 18272148

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237024402

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091021.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12023552045

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2021923078

Country of ref document: EP

Effective date: 20230724

NENP Non-entry into the national phase

Ref country code: DE