WO2022162896A1 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
WO2022162896A1
WO2022162896A1 PCT/JP2021/003347 JP2021003347W WO2022162896A1 WO 2022162896 A1 WO2022162896 A1 WO 2022162896A1 JP 2021003347 W JP2021003347 W JP 2021003347W WO 2022162896 A1 WO2022162896 A1 WO 2022162896A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
light
elements
area
scanning axis
Prior art date
Application number
PCT/JP2021/003347
Other languages
English (en)
French (fr)
Inventor
晃一 村上
耕太郎 滝上
哲也 阿部
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN202180092160.1A priority Critical patent/CN116783554A/zh
Priority to PCT/JP2021/003347 priority patent/WO2022162896A1/ja
Priority to EP21922911.9A priority patent/EP4286947A1/en
Priority to JP2022577969A priority patent/JPWO2022162896A1/ja
Priority to KR1020237025621A priority patent/KR20230122153A/ko
Priority to TW111104129A priority patent/TW202244629A/zh
Publication of WO2022162896A1 publication Critical patent/WO2022162896A1/ja
Priority to US18/361,066 priority patent/US20230367230A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • G03F7/70116Off-axis setting using a programmable means, e.g. liquid crystal display [LCD], digital micromirror device [DMD] or pupil facets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness

Definitions

  • the present invention relates to the technical field of exposure apparatuses.
  • Photomasks are used, for example, to manufacture display panels of display devices (such as liquid crystal displays or organic EL displays) and integrated circuits of semiconductor devices.
  • display devices such as liquid crystal displays or organic EL displays
  • an exposure apparatus for forming a desired exposure pattern on a work for manufacturing a photomask.
  • An exposure apparatus of the present invention comprises a light source that emits exposure light, an exposure pattern forming device arranged on an optical path of at least a part of the exposure light, and a control unit electrically connected to the exposure pattern forming device.
  • the exposure pattern forming apparatus comprises a plurality of exposure elements, and at least one of the plurality of exposure elements irradiates a predetermined exposure area of the workpiece with at least a part of the exposure light.
  • the control unit controls whether or not the workpiece is irradiated with exposure light through each exposure element by switching each exposure element to a first state or a second state.
  • a part of the exposure light that has passed through the second exposure element is sequentially irradiated onto a predetermined area of the predetermined exposure area as the workpiece and the exposure pattern forming device move relative to each other. Accumulate the amount of exposure.
  • the plurality of exposure elements are arranged two-dimensionally, and the first exposure element and the second exposure element are arranged in the same row among the plurality of exposure elements. It is a different exposure element.
  • control unit sequentially irradiates a part of the exposure light onto a predetermined area of the planned exposure area as the workpiece and the exposure pattern forming device move relative to each other.
  • the integrated exposure amount in a predetermined area is controlled based on the number of elements used.
  • control unit controls the integrated exposure time in the predetermined area based on the number of exposure elements in the first state.
  • control unit controls the width of the pattern formed in the predetermined area through the exposure process using the exposure light for the predetermined area by controlling the cumulative exposure amount in the predetermined area.
  • the amount of light in the central portion of the area where the planned exposure area is irradiated with part of the exposure light through the exposure element is greater than the amount of light in the peripheral portion of the irradiated area.
  • the exposure pattern forming apparatus is a digital mirror device
  • the exposure element is a mirror element having a reflecting surface that reflects part of the exposure light.
  • control unit controls a part of the exposure light that has passed through the first exposure element in the first state and the exposure light that has passed through the second exposure element in the first state.
  • a part of the light and the light are sequentially irradiated onto predetermined areas of the planned exposure area while the workpiece and the exposure pattern forming device are moved relative to each other, thereby accumulating the exposure amount in the predetermined area.
  • a collimating optical system for collimating at least part of the exposure light from the exposure pattern forming device, and at least part of the exposure light emitted from the collimating optical system onto a workpiece. It further comprises an objective optical system for directing and condensing light, and a driving device for displacing some optical members of the collimating optical system along an axis that intersects the optical axis of the objective optical system.
  • the control unit controls a part of the exposure light that has passed through the first exposure element in the first state and the exposure light that has passed through the second exposure element in the first state.
  • a part of the light is sequentially irradiated onto a predetermined area as the workpiece and the exposure pattern forming device are moved relative to each other along the main scanning axis, thereby accumulating the exposure amount in the predetermined area.
  • At least part of the exposure light that has passed through at least one exposure element of the exposure elements is applied to a partial area of the predetermined exposure area along a sub-scanning axis that intersects the main scanning axis with respect to the predetermined area.
  • a driver is controlled to displace a portion of the optical member along an axis that intersects the optical axis so that it is illuminated.
  • the plurality of exposure elements of the exposure pattern forming apparatus are two-dimensionally arranged, and the driving device is intended to correspond to the interval between the two-dimensionally adjacent exposure elements. part along an axis that intersects the optical axis so that the irradiation position of at least part of the light for exposure is displaced at an irradiation interval smaller than the irradiation interval of at least part of the light for exposure in the exposure region optical member.
  • the sub-scanning axis is an axis perpendicular to the main scanning axis
  • the control unit controls displacement of some optical members along an axis intersecting the optical axis and displacement along the main scanning axis.
  • the workpiece and the exposure pattern forming device are repeatedly moved relative to each other, and at least part of the exposure light that has passed through each of the plurality of exposure elements in the first state, which are different from each other, is transferred to the workpiece and the exposure pattern forming device.
  • the exposure amount is accumulated by irradiating the light through the plurality of exposure elements in the first state that are different from each other in each of the plurality of regions. to form an exposure area along an axis intersecting the main scanning axis and the sub-scanning axis.
  • control unit moves the workpiece and the exposure pattern forming device relative to each other along a main scanning axis, and further moves the workpiece and the exposure pattern forming device relative to each other along the main scanning axis. At least part of the exposure light that has passed through each of the plurality of exposure elements in the first state, which are different from each other, is moved relative to the workpiece and the exposure pattern forming device along the sub-scanning axis. Along with the movement, the exposure amount is integrated by sequentially irradiating a part of the predetermined exposure area along the sub-scanning axis with respect to the predetermined area.
  • the sub-scanning axis is an axis orthogonal to the main scanning axis
  • the control unit controls relative movement between the workpiece and the exposure pattern forming device along the main scanning axis, and movement along the sub-scanning axis.
  • the workpiece and the exposure pattern forming device are repeatedly moved relative to each other, and at least part of the exposure light that has passed through each of the plurality of exposure elements in the first state, which are different from each other, is transferred to the workpiece and the exposure pattern forming device.
  • the exposure amount is accumulated by irradiating the light through the plurality of exposure elements in the first state that are different from each other in each of the plurality of regions. to form an exposure area along an axis intersecting the main scanning axis and the sub-scanning axis.
  • control unit moves the workpiece and the exposure pattern forming device relative to each other along the main scanning axis so that at least exposure light passes through each of the plurality of exposure elements in the first state, which are different from each other.
  • a predetermined area along the main scanning axis by sequentially irradiating a part of the light onto an area adjacent to the predetermined area along the main scanning axis in the planned exposure area as the workpiece and the exposure pattern forming device move relative to each other. The amount of exposure in adjacent regions is integrated.
  • control unit controls the integrated exposure amount of the predetermined area and the area adjacent to the predetermined area along the main scanning axis, thereby controlling the area adjacent to the predetermined area along the main scanning axis.
  • the distance along the main scanning axis between a pattern formed in a predetermined area through an exposure process using exposure light and a pattern formed in an area adjacent to the predetermined area along the main scanning axis is controlled.
  • control unit transmits at least part of the exposure light that has passed through the plurality of exposure elements in the first state, which are different from each other, while relatively moving the workpiece and the exposure pattern forming device.
  • the control unit transmits at least part of the exposure light that has passed through the plurality of exposure elements in the first state, which are different from each other, while relatively moving the workpiece and the exposure pattern forming device.
  • the control unit moves the workpiece and the exposure pattern forming device relative to each other along the main scanning axis so that at least exposure light passes through each of the plurality of exposure elements in the first state, which are different from each other.
  • the exposure amount is accumulated by irradiating light through a plurality of exposure elements in the first state, which are different from each other, and an exposure area is formed along the main scanning axis.
  • the control unit directs at least part of the exposure light that has passed through each of the plurality of exposure elements in the first state, which are different from each other, to the workpiece and the exposure pattern forming device along the main scanning axis.
  • the control unit directs at least part of the exposure light that has passed through each of the plurality of exposure elements in the first state, which are different from each other, to the workpiece and the exposure pattern forming device along the main scanning axis.
  • the control unit relatively moves the workpiece and the exposure pattern forming device along the main scanning axis, and through the third exposure element in the first state among the plurality of exposure elements.
  • a part of the exposure light and a part of the exposure light that has passed through the fourth exposure element in the first state among the plurality of exposure elements are transferred between the workpiece and the exposure pattern forming device.
  • a third exposure for accumulating the amount of exposure in an area adjacent to the predetermined area by sequentially irradiating the predetermined exposure area along the sub-scanning axis perpendicular to the main scanning axis along with the relative movement along the main scanning axis.
  • the exposure element and the fourth exposure element are exposure elements different from the first exposure element and the second exposure element, respectively.
  • control unit controls the integrated exposure amount of the predetermined region and the region adjacent to the predetermined region along the sub-scanning axis, thereby It controls the spacing along the sub-scanning axis between a pattern formed in a predetermined region through an exposure process using exposure light for a matching region and a pattern formed in a region adjacent to the predetermined region along the sub-scanning axis.
  • control unit controls the workpiece and the exposure pattern based on the exposure pattern information including information about the position of the planned exposure area on the workpiece and information about the integrated exposure amount in each area of the planned exposure area. At least some of the plurality of exposure elements are switched to the first state or the second state along with the relative movement with the forming apparatus.
  • the control unit controls the plurality of exposure elements so that the integrated exposure amount of a predetermined area of the planned exposure area becomes a predetermined exposure amount based on information on defective exposure elements in the plurality of exposure elements.
  • the exposure elements a part of the exposure light that has passed through the exposure elements in the first state other than the defect exposure elements is irradiated onto a predetermined area along with the relative movement between the workpiece and the exposure pattern forming device.
  • the plurality of exposure elements of the second portion when at least one of the exposure elements of the first portion among the plurality of exposure elements included in the exposure pattern forming apparatus is a defective exposure element, the plurality of exposure elements The exposure elements of the second portion, which are different from the first portion, are used for exposure instead of the defect exposure elements so that the integrated exposure amount of the predetermined area becomes the predetermined exposure amount.
  • the plurality of exposure elements are arranged two-dimensionally, and the control unit arranges a portion of the first portion and a portion of the second portion in the same column among the plurality of exposure elements. and at least one of the exposure elements in the first part of the row is a defective exposure element, one of the exposure elements in the second part in the row instead of the defective exposure element Part of the exposure light that has passed through at least one exposure element among the exposure elements of the part is irradiated onto a predetermined area as the workpiece and the exposure pattern forming device move relative to each other.
  • the plurality of exposure elements are arranged two-dimensionally, and the light intensity distribution of at least a portion of the exposure light transmitted through at least a portion of the plurality of exposure elements is determined as follows: a light detection unit for detecting, the control unit generates defect exposure element information including information about the position of the defect exposure element in the two-dimensional array based on the light intensity distribution detected by the light detection unit; do.
  • An embodiment of the present invention further comprises a first exposure head including an exposure pattern forming device and at least one optical element, and a second exposure head including an exposure pattern forming device and at least one optical element, At least part of the exposure light transmitted through at least one exposure element among the plurality of exposure elements of the exposure pattern forming device in the first exposure head, and at least the exposure light applied to the first predetermined exposure area of the workpiece part of the exposure light through at least one exposure element among the plurality of exposure elements of the exposure pattern forming device in the second exposure head;
  • the control unit is used to irradiate at least a part of the exposure light onto the second predetermined exposure area of the control unit, and the relative position between the workpiece along the main scanning axis and the first exposure head and the second exposure head.
  • sub-scanning A first exposure area and a second exposure area are formed side by side along an axis.
  • any one of the second planned exposure areas is located between two first planned exposure areas.
  • first planned exposure regions there are a plurality of first exposure regions and a plurality of second exposure regions, and one first planned exposure region is adjacent to another first planned exposure region and is subjected to the first planned exposure.
  • a group of regions is formed, and any one first group of planned exposure regions is located between two second planned exposure regions.
  • FIG. 1 is a structural explanatory diagram showing an example of the overall structure of an exposure apparatus according to this embodiment
  • FIG. FIG. 3 is an explanatory diagram of an optical path after passing through the exposure pattern forming apparatus of the embodiment
  • FIG. 5 is an explanatory diagram of optical path changes when an example collimator lens moves.
  • 1 is a front view of an exposure pattern forming device
  • FIG. FIG. 5 is an explanatory diagram showing that the workpiece and the exposure head of this embodiment continue to move relative to the main scanning axis
  • FIG. 3 is an explanatory diagram showing the light amount distribution of exposure light through the exposure pattern forming apparatus of the present embodiment
  • FIG. 4 is an explanatory diagram of the relationship between the integrated exposure amount in the planned exposure region of the exposure light and the range of the pattern formed through the exposure process and the development process of the embodiment;
  • FIG. 4 is a contour explanatory diagram showing an example of a pattern formed in a predetermined area in the planned exposure area of the work according to the present embodiment;
  • FIG. 11 is a contour explanatory diagram showing another example of a pattern formed in a predetermined area in the planned exposure area of the work according to the present embodiment;
  • FIG. 4 is an explanatory diagram showing patterns to be continuously exposed; It is explanatory drawing which shows the formation process of the pattern to the predetermined exposure area
  • FIG. 4 is an explanatory diagram of the relationship between the integrated exposure amount in the planned exposure region of the exposure light and the range of the pattern formed through the exposure process and the development process of the embodiment;
  • FIG. 4 is a contour explanatory diagram showing an example of a pattern formed in a predetermined area in the
  • FIG. 4 is a process explanatory diagram showing an example of exposure pattern formation in a planned exposure area in an oblique direction according to the present embodiment; It is outline explanatory drawing which shows the modification of the exposure pattern of this embodiment.
  • FIG. 4 is an explanatory diagram showing the position distribution of defective elements in the exposure pattern forming apparatus of the present embodiment;
  • FIG. 5 is an explanatory diagram showing an exposure process in a planned exposure region corresponding to a different exposure element of the exposure pattern forming apparatus of the present embodiment; It is structural explanatory drawing which shows an example of the detection optical system of this embodiment. It is structural explanatory drawing which shows another example of the detection optical system of this embodiment.
  • FIG. 4 is a process explanatory diagram showing an example of exposure pattern formation in a planned exposure area in an oblique direction according to the present embodiment; It is outline explanatory drawing which shows the modification of the exposure pattern of this embodiment.
  • FIG. 4 is an explanatory diagram showing the position distribution of defective elements in the exposure pattern forming apparatus of the present embodiment
  • FIG. 4 is a structural explanatory diagram showing an example of exposure patterns formed in corresponding planned exposure regions by different exposure elements according to the present embodiment
  • FIG. 4 is a structural explanatory diagram showing an example of exposure patterns formed in corresponding planned exposure regions by different exposure elements according to the present embodiment
  • FIG. 4 is a structural explanatory diagram showing an example of exposure patterns formed in corresponding planned exposure regions by different exposure elements according to the present embodiment
  • an XYZ orthogonal coordinate system defined by mutually orthogonal X, Y, and Z axes will be used to describe the positional relationship between the components that make up the exposure apparatus and the workpiece.
  • the X-axis direction and the Y-axis direction are assumed to be horizontal directions (that is, predetermined directions in the horizontal plane), and the Z-axis direction is the vertical direction (that is, a direction perpendicular to the horizontal plane, substantially vertical direction).
  • the +Z-axis direction is defined as upward (upper side)
  • the ⁇ Z-axis direction is defined as downward (lower side).
  • the X-axis is the main scanning axis
  • the Y-axis is the sub-scanning axis. Note that the main scanning axis and the sub-scanning axis need only intersect each other, and need not be orthogonal.
  • Exposure apparatus 1 of the present embodiment An exposure apparatus 1 of the present embodiment will be described with reference to FIGS. 1 to 7.
  • FIG. In the exposure process the exposure apparatus 1 of the present embodiment uses light (exposure light) emitted by the exposure optical system 10 mounted on the exposure head HU to apply a resist agent (that is, a photosensitive agent).
  • the substrate, that is, the workpiece W is exposed.
  • a work W exposed by the exposure apparatus 1 is, for example, a glass substrate used for manufacturing a photomask.
  • the workpiece W may be a glass substrate used for manufacturing a display panel of a display device (for example, a liquid crystal display or an organic EL display) or a semiconductor wafer used for manufacturing an integrated circuit of a semiconductor device.
  • the resist agent of this embodiment can be a positive resist agent or a negative resist agent depending on the type of workpiece W to be exposed.
  • a pattern (resist pattern) is formed on the workpiece W by the development process after the exposure process.
  • the exposed portion of the positive resist agent undergoes a photochemical reaction and dissolves in the developer, while the unexposed portion is insoluble in the developer, leaving the unexposed portion on the substrate.
  • a pattern corresponding to the area scanned and exposed by the exposure head HU is formed on the substrate.
  • the exposed portion of the negative resist agent is insoluble in the developer due to cross-linking and curing, and the unexposed portion dissolves in the developer, leaving the exposed portion on the substrate.
  • the type of resist agent used in the manufacture of display panel exposure masks for display devices is a positive resist agent, which is used in the manufacture of exposure masks for integrated circuits of semiconductor devices.
  • a positive resist agent or a negative resist agent can be adopted according to actual needs.
  • FIG. 1 is a perspective view showing an example of the overall structure of an exposure apparatus 1 of this embodiment.
  • FIG. 2 is an explanatory diagram showing the optical path after passing through the exposure pattern forming device 12 of this embodiment.
  • FIG. 3 is an explanatory diagram of an optical path change when an example collimator lens moves.
  • the exposure apparatus 1 includes at least one exposure head HU, a substrate stage 20 and a control unit 30.
  • the exposure head HU includes an exposure optical system 10 and an autofocus optical system 40.
  • the mounted exposure optical system 10 includes an exposure light source 11 , an exposure pattern forming device 12 , a collimating optical system 13 and an objective optical system 14 .
  • the exposure light source 11 emits exposure light EL.
  • the exposure light EL is, for example, light in an ultraviolet wavelength band such as 405 nm. Note that the wavelength band of the exposure light EL may be another wavelength band.
  • the exposure pattern forming device 12, the collimating optical system 13, and the objective optical system 14 are arranged on the optical path of the exposure light EL (in other words, on the transmission path).
  • the exposure pattern forming device 12 is used to irradiate the workpiece W on the substrate stage 20 with the exposure light EL via the collimating optical system 13 and the objective optical system 14 . It should be noted that in this embodiment, in a situation where each exposure head HU is equipped with the exposure light source 11, the exposure pattern forming device 12 is positioned on the entire optical path of the exposure light EL. However, in another embodiment, the exposure light source 11 of each exposure head HU may be provided outside the exposure head, and the light may be incident on each exposure pattern forming device 12 of each exposure head HU using an existing optical member.
  • one exposure light source 11 is provided outside each exposure head HU, and an optical path design using existing optical members is used to divide the exposure light EL emitted from the one exposure light source 11 into a plurality of portions, and each exposure head HU is divided into a plurality of portions.
  • An exposure pattern forming device for the head may be provided on at least a part of the optical path of the exposure light EL.
  • the collimating optical system 13 collimates at least part of the exposure light EL from the exposure pattern forming device 12 .
  • the objective optical system 14 condenses at least part of the exposure light EL emitted from the collimating optical system 13 toward the work W.
  • the exposure apparatus 1 further includes a driving device 15 that displaces some optical members of the collimating optical system along an axis that intersects the optical axis O of the objective optical system 14 .
  • the driving device 15 is an existing device such as a piezo element.
  • the collimating optical system 13 is composed of a displacement optical system 131 and a variable magnification optical system 132 from the work W side.
  • the displacement optical system 131 moves through at least one of the plurality of exposure elements on the work W.
  • the irradiation position of at least part of the exposed light EL is moved.
  • the displacement optical system 131 is a part of the optical member of the collimating optical system, and is moved by the driving device 15 along an axis orthogonal to the optical axis O of the objective optical system 14 .
  • the driving device 15 is configured to be able to drive the displacement optical system 131 in the direction along the sub-scanning axis (Y-axis).
  • the displacement optical system 131 is displaced in the direction along the sub-scanning axis (Y-axis) by the driving device 15, the irradiation position of at least a part of the exposure light EL irradiated onto the workpiece W also moves along the sub-scanning axis (Y-axis). Y-axis).
  • the amount of movement of the irradiation position of at least part of the exposure light EL irradiated onto the workpiece W is determined by the displacement of the displacement optical system 131 in the direction along the sub-scanning axis (Y-axis) by the driving device 15. It can vary based on quantity.
  • the direction in which the displacement optical system 131 is displaced may not be along the sub-scanning axis (Y-axis), but may be along the main-scanning axis (X-axis). It may be a direction along an axis that intersects the (Y-axis) and the main scanning axis (X-axis).
  • the displacement optical system 131 does not have to be displaced along the axis perpendicular to the optical axis O, and the driving device 15 drives the displacement optical system 131 so as to displace it along the axis intersecting the optical axis O.
  • the displacement optical system 131 moves along an axis intersecting the optical axis O
  • the exposure light EL collimated by the displacement optical system 131 is displaced. It can be regarded as the image height of parallel light obliquely incident on the displacement optical system 131 from the side, and the image height and the focal length of the displacement optical system 131 have a certain mathematical relationship.
  • the collimated incident light is displaced from the other side to the collimator lens.
  • the displacement optical system 131 moves on an axis orthogonal to the optical axis O
  • fc the focal length of displacement optics 131 .
  • the collimated exposure light EL is displaced, it passes through the objective optical system 14, and the irradiation position on the work W also produces a displacement amount y' corresponding to the displacement amount y, and y' and y'.
  • the lens configuration of the displacement optical system 131 of the collimating optical system 13 is, in this embodiment, a cemented lens of two positive and negative lenses, specifically a cemented lens of a biconvex lens and a biconcave lens.
  • displacement optics 131 can also be a cemented lens of a concave meniscus lens and a plano-convex lens.
  • it may be a combination of a biconvex lens and a cemented lens of a biconvex lens and a biconcave lens, or a combination of a cemented lens of a biconvex lens and a biconcave lens and a convex meniscus lens, and the present invention is not limited to these. do not have.
  • variable magnification optical system 132 of the collimating optical system 13 includes a first lens group 132a, a second lens group 132b, a third lens group 132c, and a fourth lens group 132d.
  • the first lens group 132a and the fourth lens group 132d are lens groups whose positions are fixed.
  • the second lens group 132b and the third lens group 132c are lens groups that can move along the optical axis O independently of each other. For example, the second lens group 132b and the third lens group 132c can be moved by existing actuators such as motors.
  • the magnification of the image of the reflective surface of the exposing element of the DMD can be varied.
  • the refractive powers of the first lens group 132a to the fourth lens group 132d are positive, negative, positive, and positive, respectively.
  • the lens configuration of the first lens group 132a is a combination of a biconvex lens and a cemented lens of a biconvex lens and a biconcave lens.
  • the lens configuration of the second lens group 132b is a cemented lens of a biconcave lens and a concave meniscus lens.
  • the lens configuration of the lens group 132c is a combination of a plano-concave lens and a plano-convex lens
  • the lens configuration of the fourth lens group 132d is a biconvex lens.
  • the collimating optical system 13 is telecentric on the exposure pattern forming device 12 side in order to efficiently receive incident light (exposure light EL) from the exposure pattern forming device 12 .
  • the lens configurations of the first lens group 132a to the fourth lens group 132d described above are examples, and each lens configuration of the first lens group 132a to the fourth lens group 132d has at least one existing shape or characteristic. A configuration different from that described above, including a lens, may be used.
  • the displacement optical system 131 is subjected to aberration correction so as to eliminate aberration fluctuations due to XY displacement.
  • the exposure light EL from the exposure light source 11 is irradiated onto the workpiece W via the exposure pattern forming device 12, the collimating optical system 13, and the objective optical system 14. be.
  • the exposure light EL is converted into a desired pattern (in other words, a desired intensity distribution) by the exposure pattern forming device 12, and the desired exposure pattern is formed on the workpiece W (predetermined exposure area on the workpiece W). can be done.
  • the exposure pattern is an exposure area of a desired pattern formed on the resist of the workpiece W by exposing the resist agent. More specifically, when the scanning path of the exposure light EL for exposure is along the main scanning axis and the exposure light EL for continuous exposure is performed, the exposure pattern generated in the planned exposure area exhibits a linear shape.
  • the autofocus optical system 40 includes an autofocus light source 41, an objective optical system 14 shared with the exposure optical system 10, an autofocus collimator lens group 42, and a first autofocus lens having a predetermined focal depth. and a second autofocus detection optical system 44 having a depth of focus shallower than that of the first autofocus detection optical system 43 .
  • the autofocus light source 41 can provide the autofocus pattern image beam AL outside the photosensitive wavelength band of the resist layer.
  • the work W is irradiated via the objective optical system 14 shared with the autofocus optical system 40 , and the autofocus optical system 40 forms an image of the autofocus pattern with the autofocus pattern image beam AL reflected by the work W.
  • the autofocus pattern is a pattern between light and dark phases.
  • a dichroic mirror DN is installed on the optical path of the autofocus pattern image beam AL and the exposure light EL. Further, the autofocus pattern image beam AL and the exposure light EL enter from both sides of the dichroic mirror DN, and the dichroic mirror DN reflects one of the exposure light EL and the autofocus pattern image beam AL, The other of the light EL and the autofocus pattern image beam AL can be transmitted, and thus the autofocus pattern image beam AL and the exposure light EL are transmitted along the same direction after passing through the dichroic mirror DN, and the objective The work W is irradiated via the optical system 14 .
  • the substrate stage 20 is arranged below the exposure head HU.
  • the substrate stage 20 can hold the workpiece W. As shown in FIG.
  • the substrate stage 20 can hold the substrate so that the upper surface of the work W is parallel to the XY plane.
  • the substrate stage 20 can release the workpiece W it holds.
  • the work W is, for example, a glass substrate of several meters (m) square.
  • the substrate stage 20 can move along the plane of the substrate stage 20 (for example, the XY plane) while holding the workpiece W.
  • the substrate stage 20 can move along the X-axis direction.
  • the substrate stage 20 can be moved along the X-axis direction by operation of a substrate stage drive system including any motors.
  • the substrate stage 20 is movable along the Y-axis direction in addition to being movable along the X-axis direction.
  • the substrate stage 20 can be moved along the Y-axis direction by operation of a substrate stage drive system including optional motors.
  • the substrate stage 20 may be configured to be movable along the Z-axis direction.
  • the control unit 30 can control the operation of the exposure apparatus 1.
  • the control unit 30 includes, for example, a CPU (Central Processing Unit), a read only memory (Read Only Memory, ROM), or a random access memory (Random Access Memory, RAM).
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the control unit 30 controls the substrate stage drive system to perform step-and-repeat or continuous scan exposure. That is, the control unit 30 drives the substrate stage so that the exposure head HU holding the exposure pattern forming device 12 and the substrate stage 20 holding the workpiece W continue to move relative to each other along the predetermined main scanning axis or sub-scanning axis. You can control the system. As a result, the plurality of planned exposure regions of the work W are irradiated with the exposure light EL correspondingly.
  • the main scanning axis along which the exposure head HU and the substrate stage 20 move relative to each other is defined as the X-axis direction, and the Y-axis direction orthogonal to the X-axis direction is appropriately referred to as the "sub-scanning axis".
  • the relative movement of the main scanning axis or the sub-scanning axis involves moving the workpiece and the exposure pattern forming device (DMD) relative to each other along the main scanning axis or the sub-scanning axis, and moving the workpiece and the exposure head. It is synonymous with relative movement along the main scanning axis or the sub-scanning axis.
  • FIG. 4 is a front view of the exposure pattern forming apparatus
  • FIG. 5 is an explanatory diagram showing that the workpiece W and the exposure head HU of this embodiment continue to move relative to each other along the main scanning axis.
  • FIG. 6 is an explanatory diagram showing the light quantity distribution of the exposure light through the exposure pattern forming apparatus of this embodiment.
  • FIG. 7 is an explanatory diagram of the relationship between the cumulative exposure amount in the planned exposure region of the exposure light EL for exposure and the range of the pattern EP formed through the exposure process and the development process according to the present embodiment.
  • the exposure pattern forming device 12 of the present embodiment is, for example, a digital micromirror device (DMD), and the exposure pattern forming device 12 has a plurality of exposure elements, Each exposing element is each micromirror of the DMD, and the plurality of exposing elements are arranged in two dimensions.
  • a micromirror is an element having a reflecting surface that reflects light.
  • the DMD is composed of 1920 ⁇ 1080 micromirrors, ie the DMD has 1920 ⁇ 1080 pixels.
  • the plurality of exposure elements in the same row are arranged side by side along the first direction D1, and the plurality of exposure elements are arranged side by side in the second direction, and the first direction is the same as the second direction D2.
  • a row represents the same arrangement along the first direction D1.
  • the arrangement along the first direction D1 can be called a row.
  • Each exposure element provided in the exposure pattern forming device 12 is configured so that the angle of the light reflection surface can be changed independently.
  • the reflective surface of the exposure element is set at the first angle
  • the light reflected by the reflective surface enters the workpiece W via the collimating optical system 13 and the objective optical system 14 .
  • the reflective surface of the exposure element is set at the second angle
  • the light reflected by the reflective surface does not enter the workpiece W because it enters a light absorbing member (not shown) and is absorbed.
  • the exposure pattern forming device 12 can form an exposure area of a desired pattern by selectively allowing at least part of the exposure light EL from the exposure light source 11 to enter the workpiece W.
  • the first angle is called the first state (in other words, ON state)
  • the second angle is called the second state (in other words, OFF state).
  • the control unit 30 controls a plurality of exposure pattern forming devices 12 as the exposure head HU holding the exposure pattern forming device 12 and the substrate stage 20 holding the workpiece W move relative to each other along the main scanning axis. Whether or not the workpiece W is irradiated with the exposure light EL through each exposure element is controlled by switching the exposure elements between the first state and the second state.
  • the inclination of the reflecting surfaces of the first exposure element DM1 and the second exposure element DM2 accompanying the relative movement between the exposure pattern forming device 12 (exposure head HU) and the workpiece W (substrate stage 20) (change between the first state and the second state).
  • FIG. 5 the control unit 30 controls a plurality of exposure pattern forming devices 12 as the exposure head HU holding the exposure pattern forming device 12 and the substrate stage 20 holding the workpiece W move relative to each other along the main scanning axis. Whether or not the workpiece W is irradiated with the exposure light EL through each exposure element is controlled by switching the exposure elements between the
  • the first exposure element DM1 and the second exposure element DM2 are different exposure elements in the same column of the plurality of exposure elements, and the control unit 30 , part of the exposure light EL that has passed through the first exposure element DM1 in the first state among the plurality of exposure elements, and the first exposure element DM1 among the plurality of exposure elements. is a part of the exposure light EL that has passed through the second exposure element DM2 in the different first state, and is sequentially applied to a predetermined exposure area in accordance with the relative movement between the workpiece W and the exposure pattern forming device 12. By irradiating the area RX, the amount of exposure in the predetermined area RX is accumulated.
  • the control unit The first state or second state of a plurality of exposure elements is controlled such that a predetermined region RX of the intended exposure area is sequentially irradiated by different exposure elements in different first states.
  • the accumulated exposure time of the exposure light at each location in the planned exposure region can be controlled. That is, the integrated exposure time of the predetermined region RX of the planned exposure region is the sum of the time (exposure time) during which the predetermined region RX is irradiated with at least part of the plurality of exposure light beams EL.
  • the control unit 30 causes each of the exposure pattern forming devices 12 to irradiate the exposure light EL as the workpiece W and the exposure pattern forming device 12 move relative to each other.
  • the integrated exposure time of the exposure light EL to each predetermined region RX of the planned exposure region can be controlled.
  • the exposure apparatus 1 can integrate the exposure amount of at least a part of the plurality of exposure light beams EL in the predetermined area RX of the corresponding planned exposure area.
  • the amount of exposure to each predetermined area RX of the planned exposure area of the workpiece W can be controlled based on the above method.
  • control unit 30 sequentially irradiates a part of the exposure light EL to a predetermined region RX of the planned exposure region as the workpiece W and the exposure pattern forming device 12 move relative to each other. Based on the number of elements, the integrated exposure time in the predetermined area RX is controlled, and further the integrated exposure amount in the predetermined area RX is controlled.
  • the exposure amount in the predetermined region RX of the planned exposure region is determined by the exposure intensity and exposure time of the exposure light EL that irradiates the predetermined region RX.
  • the exposure intensity of the exposure light EL and the time (ON time) during which the exposure element is in the first state are constant, part of the light of the exposure light EL is directed to a predetermined exposure area.
  • the integrated exposure amount that irradiates the predetermined region RX also changes accordingly.
  • the present invention is not limited to this.
  • control unit 30 changes at least one of the exposure intensity of the exposure light EL through each exposure element and the time during which each exposure element is in the first state (ON time).
  • the amount of exposure applied to the region RX may be controlled.
  • control unit 30 changes the number of exposure elements in the first state that irradiate a predetermined area RX of the planned exposure area with a part of the exposure light EL, and also changes the number of exposure elements through the respective exposure elements.
  • the amount of exposure applied to the predetermined area RX may be controlled by changing at least one of the exposure intensity of the light EL and the time (ON time) during which each exposure element is in the first state.
  • control unit 30 of the present embodiment controls a portion of the exposure light EL that has passed through the first exposure element DM1 in the first state among the plurality of exposure elements and a plurality of exposure light EL.
  • a portion of the exposure light EL that has passed through the second exposure element DM2 in the first state among the elements is sequentially applied to the predetermined exposure area as the workpiece W and the exposure pattern forming device 12 move relative to each other.
  • the predetermined region RX By irradiating the predetermined region RX, the amount of exposure in the predetermined region RX can be integrated.
  • the exposure dose (accumulated exposure dose) of the predetermined region RX of the planned exposure region of the workpiece W is equal to or greater than a predetermined threshold value Td (the predetermined threshold value Td is, for example, a resist (which is the standard value of the exposure dose to properly expose the agent), the resist agent thereon is exposed.
  • a predetermined threshold value Td is, for example, a resist (which is the standard value of the exposure dose to properly expose the agent)
  • the maximum number of irradiation times to a predetermined region RX on the workpiece W in the same row (for example, part of the exposure light EL is sequentially applied to the predetermined region RX as the workpiece W and the exposure pattern forming device 12 move relative to each other)
  • the maximum number of exposure elements that can be irradiated with light is set in advance, and at least a part of each exposure light EL
  • the required amount of light each time can be finely adjusted.
  • the pattern EP resist pattern
  • the maximum number of times of irradiation is 256 times (in other words, a maximum of 256 exposure elements are used to expose the predetermined area RX), but the present invention is not limited to this.
  • the amount of light in the central portion of the area where the planned exposure area is irradiated with part of the exposure light EL through one exposure element in the first state is The amount of light in the peripheral portion of the illuminated area is greater.
  • the center of the area where the planned exposure area is irradiated with the light is diffracted by the micromirrors of the digital micromirror device.
  • the amount of light in the part becomes larger than the amount of light in the peripheral part. Therefore, as shown in FIG. 7, the area to which the exposure amount equal to or higher than the threshold value Td is applied expands in the exposure area (exposed resist layer) on the workpiece W as the integrated exposure amount increases.
  • the size of the pattern EP formed on the exposure area of the workpiece W through is also enlarged to Px1, Px2, and Px3. That is, the relationship between the sizes Px1, Px2, and Px3 of the pattern EP formed in the exposure region through the exposure process and the development process of the work W and the integrated exposure amount of the exposure light EL to the planned exposure region is positive. It has correlation properties.
  • the increase in the integrated exposure amount is controlled by controlling the number of times of irradiation, but the present invention is not limited to this, and in another embodiment, the light amount of the exposure light EL Alternatively, by controlling the exposure time (irradiation time of the exposure light EL) of each time, the cumulative exposure amount can be controlled, thereby achieving control of the size of the pattern EP.
  • FIG. 8 is a contour explanatory diagram showing an example of the pattern EP formed in the predetermined area RX in the planned exposure area of the workpiece W of the present embodiment.
  • FIG. 9 is a contour explanatory diagram showing another example of the pattern EP formed in the predetermined area RX in the planned exposure area of the workpiece W of the present embodiment.
  • the planned exposure area can be composed of a plurality of predetermined areas RX. corresponds to an area where the work W is irradiated with part of the light.
  • the control unit 30 controls a plurality of exposure elements (for example, the first exposure element) in the same row as the workpiece W and the exposure pattern forming device 12 (exposure head HU) move relative to each other.
  • the pattern EP is formed after the development step by sequentially turning the element DM1 and the second exposure element DM2 into the first state (on) and integrating the exposure amount in the predetermined area RX in the corresponding planned exposure area. be.
  • the relationship between the size of the pattern formed in the exposure region through the exposure process and the development process of the work W and the integrated exposure amount of the planned exposure region by the exposure light EL has a positive correlation characteristic. Therefore, the width in the direction along the sub-scanning axis of the pattern EP in the predetermined region RX formed by at least part of the plurality of exposure light beams EL and the integrated exposure amount of the predetermined region RX by the exposure light beam EL The relationship between also has a positive correlation property.
  • control unit 30 controls the integrated exposure amount of the same predetermined region RX (that is, the sum of the exposure amounts of at least a part of the exposure light EL irradiated to the same predetermined region RX), thereby controlling the predetermined
  • the width of the pattern EP in the region RX along the main scanning axis and the width along the sub-scanning axis orthogonal to the main scanning axis can be controlled.
  • control unit 30 of the exposure apparatus 1 controls the integrated exposure amount in the predetermined region RX, thereby controlling the pattern EP formed in the predetermined region RX through the exposure process using the exposure light EL for the predetermined region RX. Control width. Further, the exposure apparatus 1 forms connection or separation of patterns EP in different predetermined regions RX by controlling the integrated exposure amount of each predetermined region RX, thereby forming a precise pattern EP on the workpiece W. can be done.
  • the control unit 30 relatively moves the workpiece W and the exposure pattern forming device 12 along the main scanning axis, and performs exposure via a plurality of different exposure elements in the first state. At least a part of the light EL is directed to a predetermined area RX (herein referred to as RX1) in the planned exposure area along the main scanning axis in accordance with the relative movement between the workpiece W and the exposure pattern forming device 12. By irradiating the adjacent area RX2, the exposure amount in the area RX2 adjacent to the predetermined area RX1 along the main scanning axis is accumulated.
  • the predetermined area RX1 and the predetermined area RX2 may be exposed (accumulated desired exposure amount) by one relative movement of the workpiece W and the exposure pattern forming device 12 along the main scanning axis. and the exposure pattern forming device 12 may be separately moved relative to each other along the main scanning axis to expose the predetermined region RX1 and the predetermined region RX2 (accumulate the desired exposure amount).
  • the control unit 30 sequentially directs at least part of the exposure light EL that has passed through each of the exposure elements to a predetermined region RX1 along the main scanning axis while relatively moving the workpiece W and the exposure pattern forming device 12.
  • the adjacent region RX2 By irradiating the adjacent region RX2, the exposure amount in the region RX2 adjacent to the predetermined region RX1 along the main scanning axis is accumulated.
  • the plurality of exposure elements for irradiating the predetermined region RX1 of the planned exposure region are the plurality of exposure elements in the same row.
  • the plurality of exposure elements of the exposure pattern forming device 12 used for the exposure of the predetermined region RX2 are the plurality of exposure elements (the first exposure element DM1 and the second exposure element DM2) used for the predetermined region RX1. ) or a plurality of other exposure elements in the same column as the first exposure element DM1 and the second exposure element DM2.
  • the control unit 30 controls the integrated exposure amount of the predetermined region RX1 and the region RX2 adjacent to the predetermined region RX1 along the main scanning axis, so that the region RX2 adjacent to the predetermined region RX1 along the main scanning axis is exposed.
  • the interval G in the main scanning axis between the pattern EP formed in the predetermined region RX1 through the exposure process with the exposure light EL and the pattern EP formed in the region RX2 adjacent to the predetermined region RX1 along the main scanning axis is controlled. . More specifically, the size of the pattern EP formed in each of the predetermined regions RX1 and RX2 can be changed according to the integrated exposure amount applied to each of the predetermined regions RX1 and RX2 (see FIG. 7). Therefore, the control unit 30 controls the interval G in the main scanning axis between the patterns EP formed in the predetermined regions RX1 and RX2 by controlling the integrated exposure dose given to the predetermined regions RX1 and RX2. be able to.
  • the control unit 30 causes the workpiece W and the exposure pattern forming device 12 to move relative to each other along the main scanning axis, and selects one of the plurality of exposure elements in the first state.
  • Part of the exposure light EL that has passed through the third exposure element DM3 and part of the exposure light EL that has passed through the fourth exposure element DM4 in the first state among the plurality of exposure elements are sequentially irradiated along the sub-scanning axis perpendicular to the main scanning axis in the predetermined exposure area as the workpiece W and the exposure pattern forming device 12 move relative to each other along the main scanning axis, thereby forming a predetermined area.
  • RX (herein referred to as RY1) is made to integrate the exposure amount in the adjacent region RY2.
  • the predetermined area RY1 and the predetermined area RY2 may be exposed (accumulated desired exposure amount) by one degree of relative movement between the workpiece W and the exposure pattern forming device 12 along the main scanning axis. and the exposure pattern forming device 12 may be separately moved relative to each other along the main scanning axis to expose the predetermined region RY1 and the predetermined region RY2 (accumulate the desired exposure amount).
  • the third exposure element DM3 and the fourth exposure element DM4 are a plurality of exposure elements in the same column, and the third exposure element DM3 and the fourth exposure element DM4
  • the column in which is located is different from the column in which the first exposure element DM1 and the second exposure element DM2 are located.
  • the positions of the first exposure element and the second exposure element on the DMD and the positions of the third exposure element DM3 and the fourth exposure element DM4 on the DMD do not need to be adjacent to each other. It is sufficient that the row in which the first exposure element DM1 and the second exposure element DM2 are positioned and the row in which the third exposure element DM3 and the fourth exposure element DM4 are positioned are adjacent to each other.
  • the plurality of exposure elements for irradiating the region RY2 adjacent to the predetermined region RY1 in the planned exposure region along the sub-scanning axis orthogonal to the main scanning axis are the plurality of exposure elements ( For example, a third exposure element DM3 and a fourth exposure element DM4), and a plurality of exposure elements (for example, a first exposure element DM3 and a fourth exposure element DM4) for irradiating this row and a predetermined area RY1 in the intended exposure area.
  • the columns in which the element DM1 and the second exposure element DM2) are located are different and adjacent to each other.
  • control unit 30 controls the integrated exposure amount of the predetermined region RY1 and the region RY2 adjacent to the predetermined region RY1 along the sub-scanning axis, thereby controlling the predetermined region RY1 and the predetermined region RY1 along the sub-scanning axis.
  • the spacing G on the axis can be controlled.
  • the size of the pattern EP formed in each of the predetermined regions RX1 and RX2 can be changed according to the integrated exposure amount applied to each of the predetermined regions RY1 and RY2 (see FIG. 7). Therefore, the control unit 30 controls the interval G in the sub-scanning axis between the patterns EP formed in the predetermined regions RY1 and RY2 by controlling the integrated exposure dose given to the predetermined regions RY1 and RY2. be able to.
  • the exposure apparatus controls the connection or separation of the patterns EP in different regions RY1 and RY2 along the main scanning axis by controlling the integrated exposure amount for each region RY1 and RY2 along the sub-scanning axis. is made possible, whereby a precise layout pattern can be formed on the workpiece W.
  • FIG. 10 is an explanatory diagram showing patterns to be continuously exposed.
  • FIG. 11 is an explanatory diagram showing a process of forming a pattern EP in a planned exposure area in an oblique direction in the prior art.
  • FIG. 12 is a process explanatory diagram showing an example of forming an exposure pattern in a planned exposure area in an oblique direction according to this embodiment.
  • the pattern EP generated in the planned exposure area exhibits a linear shape.
  • the meaning of continuous exposure is that the control unit 30 controls part of the exposure light EL that has passed through the first exposure element DM1 in the first state and the second exposure element DM2 in the first state.
  • a predetermined area RX of the planned exposure area is sequentially irradiated with a part of the exposure light EL that has passed through the workpiece and the exposure pattern forming device while relatively moving the work and the exposure pattern forming device, thereby accumulating the exposure amount in the predetermined area RX.
  • the exposure head including the exposure pattern forming device and the workpiece continue to move relative to each other, and the exposure amount is accumulated in a plurality of predetermined regions RX.
  • the patterns EP in the plurality of predetermined regions RX can be continuously connected to each other along the main scanning axis to form a linear pattern EP.
  • the pattern EP refers to a partial pattern formed in a plurality of predetermined regions through the exposure process and the development process of the workpiece W
  • the oblique line pattern EPS is an overall pattern composed of a plurality of patterns EP. be. That is, the oblique line pattern EPS is the overall contour of the pattern formed on the workpiece through the exposure process and the development process.
  • oblique pattern EPS when forming oblique pattern EPS by a conventional exposure method, different patterns EP are formed by different exposure elements in different columns, and these different patterns EP are formed. By controlling the relative positions of the , oblique line patterns EPS are combined and formed.
  • the width in the sub-scanning axis direction between the patterns EP in the predetermined areas RX of different planned exposure areas is limited corresponding to the width (pitch) between the exposure elements. (fixed). Therefore, it has been difficult to form an oblique line pattern EPS with a smooth outline.
  • control unit 30 controls that at least part of the exposure light EL that has passed through at least one exposure element of the plurality of exposure elements is projected along the sub-scanning axis with respect to the predetermined region RX. At least part of the exposure light EL that has passed through at least one of the plurality of exposure elements is shifted by the displacement optical system 131 of the collimating optical system 13 so that a partial area of the exposure area is irradiated.
  • the drive 15 can be controlled to displace the illuminated area.
  • the exposure light that has passed through at least one exposure element of the plurality of exposure elements travels along the sub-scanning axis that intersects the main scanning axis with respect to the predetermined area RX.
  • the driving device 15 is controlled to displace the displacement optical system 131 along an axis orthogonal to the optical axis so that a partial area of the planned exposure area is irradiated.
  • the direction in which the displacement optical system 131 is displaced is the direction of the sub-scanning axis.
  • the driving device 15 controls at least part of the exposure light in the planned exposure region corresponding to the interval between the two-dimensionally adjacent exposure elements arranged in the exposure pattern forming device 12.
  • a part of the displacement optical system 131 is displaced along an axis intersecting the optical axis so that the irradiation position of at least part of the exposure light is displaced at an irradiation interval smaller than the irradiation interval of .
  • the hatched pattern EPS indicates the overall pattern formed by connecting the patterns EP1, EP2, EP3, and EP4 in a plurality of regions.
  • Each area (RXY1, RXY2, RXY3, RXY4) of the planned exposure area is an area where a part of the exposure light EL is irradiated onto the workpiece W through one exposure element in the first state. handle.
  • each area (RXY1, RXY2, RXY3, RXY4) can be called a predetermined area RX.
  • the control unit 30 sequentially changes a plurality of first states in different columns of the exposure pattern forming device 12 .
  • At least a part of the exposure light EL that has passed through the exposure elements is used to form the area RXY1 (predetermined area RX) and the integrated exposure amount of the area RXY3 along the axis intersecting the main scanning axis and the sub-scanning axis with respect to the area RXY1, thereby forming the pattern EP1 in the predetermined area RXY1 through the development process. and the size of the pattern EP3 formed in the region RXY3 through the development process can be controlled.
  • the workpiece W and the exposure head HU move relative to each other in the first direction along the main scanning axis.
  • the driving device 15 is controlled to displace the system 131 in the direction along the sub-scanning axis.
  • the control unit 30 the irradiation position of the exposure light EL on the work W moves in the direction along the sub-scanning axis (for example, moves in the sub-scanning axis direction by OT as shown in FIG. 12).
  • the control unit 30 relatively moves in a second direction opposite to the first direction along the main scanning axis, and likewise moves each of the exposure elements in the first state in different columns.
  • At least a part of the light of the exposure light EL is used to control the integrated exposure amount of the area RXY2 of the planned exposure area and the area RXY4 along the axis intersecting the main scanning axis and the sub-scanning axis with respect to the area RXY2.
  • the size of the pattern EP2 formed in the predetermined area RXY2 through the development process and the size of the pattern EP4 formed in the area RXY4 through the development process can be controlled.
  • the displacement optical system 131 is displaced by a predetermined amount in the direction along the sub-scanning axis. Then, by repeating the step of cumulatively exposing each region (RXY2, RXY4) along with the relative movement in the second direction opposite to the first direction along the main scanning axis, after the development step, the oblique line pattern EPS (Diagonal patterns including patterns EP1, EP2, EP3, and EP4) can be formed on the workpiece.
  • EPS Diagonal patterns including patterns EP1, EP2, EP3, and EP4
  • each area RXY1, RXY2, RXY3, RXY4
  • the size of each pattern EP1, EP2, EP3, EP4
  • can be reduced from each area RXY1, RXY2, RXY3, RXY4).
  • control unit 30 repeats the displacement OT of the displacement optical system 131 and the relative movement between the work W and the exposure head HU along the main scanning axis, and also repeats a plurality of different first states. At least a part of the exposure light EL through each of the exposure elements is sequentially irradiated to each of the plurality of areas in the planned exposure area as the workpiece W and the exposure pattern forming device 12 move relative to each other. , in each of the plurality of regions, by irradiating light through a plurality of exposure elements in the first state different from each other, the amount of exposure is integrated to form an exposure region along an axis intersecting the main scanning axis and the sub-scanning axis; be able to.
  • the exposure apparatus 1 can form a precise pattern on the workpiece W by controlling the cumulative exposure amount of a plurality of areas.
  • the displacement amount OT for displacing the irradiation position of at least a part of the workpiece W with the exposure light EL is, for example, one exposure light EL is half the width in the direction of the sub-scanning axis in the region (in other words, one predetermined region RX) irradiated with part of the light onto the work W, but the present invention is not limited to this, and the displacement amount is , the width of a region (in other words, one predetermined region RX) in which part of the exposure light EL is irradiated onto the work W through one exposure element in the first state.
  • the shaped diagonal pattern EPS can be adapted to a variety of different boundary coverage requirements.
  • the irradiation position on the workpiece (resist) is moved by displacing the displacement optical system 131 to form the oblique line pattern EPS.
  • the method of moving the position is not limited to the formation of the slanting line pattern EPS.
  • patterns of any shape can be used. It can also be used for forming.
  • a method of displacing the displacement optical system 131 to move the irradiation position on the workpiece and the formation of a pattern of any shape other than the formation of the slanted line pattern EPS, and a method of moving the irradiation position on the work, and a plurality of exposure pattern forming apparatuses 12 It is possible to combine with the method of controlling the cumulative exposure amount to a predetermined area of the planned exposure area by at least a part of the exposure light EL that has passed through the exposure element.
  • control unit 30 has a pattern in which the predetermined area RX and the area adjacent to the predetermined area RX are spaced along the main scanning axis or the sub-scanning axis. EP, but the invention is not limited thereto. In a modification, these may not be adjacent to multiple regions different from the predetermined region RX.
  • FIG. 13 is a contour explanatory diagram showing a modified example of the exposure pattern of this embodiment.
  • the control unit 30 directs at least part of the exposure light EL through the plurality of exposure elements in the first state, which are different from each other.
  • a plurality of exposure elements in the first state different from each other in each of the plurality of regions RX
  • the exposure amount can be accumulated to form an exposure area along the main scanning axis.
  • At least part of the exposure light EL that has passed through the exposure element is sequentially moved along the main scanning axis in the planned exposure area while the workpiece W and the exposure pattern forming device 12 are moved relative to each other along the main scanning axis. irradiate the plurality of regions RX along.
  • control unit 30 can also move, for example, the substrate stage 20 holding the workpiece W along the sub-scanning axis with respect to the exposure head HU.
  • control unit 30 directs at least part of the exposure light EL that has passed through at least one of the plurality of exposure elements to a predetermined exposure area RX along the sub-scanning axis.
  • the workpiece W and the exposure pattern forming device 12 can also be moved relative to each other along the sub-scanning axis so as to irradiate a part of the area.
  • control unit 30 controls relative movement between the work W and the exposure head HU along the main scanning axis and relative movement between the work W and the exposure head HU along the sub-scanning axis. are repeated, and the exposure process similar to that of the above embodiment is repeated. That is, the control unit 30 sequentially changes at least a part of the exposure light EL through the plurality of exposure elements in the first state, which are different from each other, according to the relative movement between the workpiece W and the exposure head HU.
  • the exposure amount is integrated, and the main scanning axis and the sub scanning axis forming an exposed region along an axis intersecting the .
  • control unit 30 directs at least part of the exposure light EL that has passed through at least one exposure element among the plurality of exposure elements to the predetermined area RX in a sub-scanning direction that intersects the main scanning axis.
  • the workpiece W and the exposure pattern forming device 12 can also be moved relative to each other so as to irradiate a partial region of the planned exposure region along the axis.
  • a pattern EP is formed on the workpiece W by controlling the movement of part of the exposure light EL reflected by the exposure element of the exposure pattern forming device 12 along the main scanning axis and the sub-scanning axis. can be formed.
  • the exposure apparatus 1 controls the integrated exposure amount of a plurality of regions, and controls part of the exposure light EL reflected by the exposure elements of the exposure pattern forming apparatus 12 in the main scanning axis and the sub-scanning axis. By controlling movement, a precise layout pattern can be formed on the workpiece W.
  • FIG. 1
  • control unit 30 includes a CPU (Central Processing Unit CPU) 31 , a memory 32 , an input section 33 , an operation device 34 and a display device 35 .
  • CPU Central Processing Unit CPU
  • the CPU 31 calculates an exposure pattern to generate exposure pattern information, and also generates corrected exposure pattern information based on the information on the defective exposure elements of the exposure pattern forming device 12 .
  • the information on the defective exposure element is, for example, information on the position of the defective exposure element among the plurality of exposure elements in the exposure pattern forming apparatus 12 (for example, the ID of the defective exposure element and the information on the exposure pattern forming apparatus 12 coordinates of the defect exposure element in ).
  • the CPU 31 calculates the layout of the exposure pattern and controls the order and timing of setting the plurality of exposure elements to the first state (ON state). Specifically, CPU 31 solves an optimization problem or a mathematical programming problem to calculate an exposure pattern that satisfies the required calculation conditions, thereby calculating the exposure pattern. Specific examples of necessary calculation conditions include conditions for optimizing the amount of exposure (DOSE amount) and depth of focus (Depth Of Focus, DOF) (so-called process window optimization).
  • the CPU 31 can substantially function as an electronic design automation (EDA) tool.
  • EDA electronic design automation
  • the CPU 31 can also function as an EDA tool by executing a computer program for causing the CPU 31 to perform exposure pattern calculation operations.
  • the memory 32 stores a computer program for causing the CPU 31 to perform exposure pattern calculation operations.
  • the computer program for causing the CPU 31 to execute the calculation operation of the exposure pattern can also be recorded in an external memory device (for example, hard disk or optical disk) or the like.
  • the memory 32 also temporarily stores intermediate data generated during the exposure pattern calculation operation by the CPU 31 .
  • the input unit 33 accepts input of various data for causing the CPU 31 to perform exposure pattern calculation operations. For example, inputs such as exposure pattern information indicating an exposure pattern to be formed on the workpiece W and information on defective exposure elements of the exposure pattern forming device 12 may be received.
  • the operation device 34 receives the user's operation on the control unit 30 .
  • the operating device 34 includes, for example, at least one of a keyboard, mouse and touch panel.
  • the CPU 31 can also perform the calculation operation of the exposure pattern according to the user's operation received by the operation device 34 .
  • the control unit 30 may not include the operation device 34 in some cases.
  • the display device 35 can display necessary information.
  • display device 35 may directly or indirectly display information indicating the state of control unit 30 .
  • display device 35 may directly or indirectly display the exposure pattern calculated by control unit 30 .
  • the display device 35 may directly or indirectly display any information related to the exposure pattern calculation operation.
  • the control unit 30 may not have the display device 35 in some cases.
  • FIG. 14 is an explanatory diagram showing the positions of the defect exposure elements in the exposure pattern forming apparatus 12 of this embodiment.
  • 15A and 15B are explanatory diagrams showing the process of exposing different exposure elements to corresponding planned exposure regions in the exposure pattern forming apparatus 12 of the present embodiment.
  • the defective exposure element includes, for example, an exposure element that cannot be switched between the first state (on state) and the second state (off state) due to a failure, or a damaged or missing exposure element. .
  • the CPU 31 provided in the control unit 30 generates exposure pattern information indicating an exposure pattern.
  • the exposure pattern information is data representing the content of the exposure pattern (that is, the pattern layout) calculated so as to satisfy the specified design rule, and is related to the position of the planned exposure area on the workpiece. and information on the integrated exposure amount in each area of the planned exposure area.
  • control unit 30 sets at least some of the plurality of exposure elements to the first state or the second state as the workpiece W and the exposure pattern forming device 12 move relative to each other. switch to state.
  • control unit 30 controls the exposure of the plurality of exposure elements so that the integrated exposure amount of the predetermined area RX of the planned exposure area becomes the predetermined exposure amount based on the information of the defective exposure elements in the plurality of exposure elements.
  • a part of the exposure light EL that has passed through the exposure elements in the first state other than the defect exposure elements is irradiated onto the predetermined area RX as the workpiece W and the exposure pattern forming device 12 move relative to each other.
  • the first portion of the plurality of exposure elements and the The exposure elements of the second portion which are different from each other, are used for exposure instead of the defect exposure elements so that the integrated exposure amount of the predetermined area RX becomes the predetermined exposure amount.
  • a part of the first portion and a part of the second portion are included in the same row of a plurality of exposure elements, and at least one of the exposure elements of the part of the first portion in the row is used for exposure.
  • the element is a defect exposure element
  • part of the exposure light EL is transmitted through at least one of the exposure elements of the second portion of the row instead of the defect exposure element. is irradiated onto the predetermined region RX as the workpiece W and the exposure pattern forming device 12 move relative to each other.
  • some of the exposure elements a, b, and c in the first region R1 of the exposure pattern forming apparatus 12 (in other words, a plurality of exposure elements included in the exposure pattern forming apparatus 12). (i.e., if exposure elements a, b, and c are defective exposure elements), exposure through Since the predetermined region RX of the work W cannot be irradiated with the light EL as planned, the exposure amount of the predetermined region RX (exposure pattern) of the work W becomes insufficient.
  • the control unit 30 replaces the defect exposure elements a, b, and c with some exposure elements a1, b1, and c1 in the second region R2 of the exposure pattern formation device 12 (in other words, the exposure pattern formation device). 12) can be used to irradiate the predetermined region RX with the exposure light EL. That is, the exposure elements in the second region R2 of the exposure pattern forming device 12 can be used as substitutes for the defective exposure elements in the first region R1 of the exposure pattern forming device 12.
  • the exposure elements in the second region R2 of the exposure pattern forming device 12 are irradiated with the exposure light EL (exposure) when there is no defective exposure element in the first region R1 of the exposure pattern forming device 12. ), and when a defective exposure element is included in the first region R1 of the exposure pattern forming device 12, the spare is used for irradiation (exposure) of the exposure light EL instead of the defective exposure element. It may be used as an exposure element.
  • FIG. 15 shows the exposure process of the predetermined area RX corresponding to the first row of exposure elements EU1 having no defects in the exposure pattern forming apparatus 12.
  • (b) of FIG. 15 shows the exposure process of the predetermined area RX corresponding to the second row of exposure elements EU2 including the exposure element a having the defect in the exposure pattern forming apparatus 12.
  • FIG. shows the exposure process of the predetermined area RX corresponding to the exposure elements EU3 of the third row including the exposure elements b and c having defects in the exposure pattern forming device 12.
  • FIG. 15A and 15B the exposure light EL passing through the plurality of exposure elements in the same row is sequentially applied to one predetermined area RX as the work W and the exposure pattern forming device 12 move relative to each other.
  • FIG. 4 is a diagram showing the concept of accumulating the amount of exposure to a predetermined area RX by irradiating.
  • the exposure elements in the first region R1 of the first row of exposure elements EU1 in the first state are replaced. At least a part of the light beam EL for exposure through the exposure light beam EL sequentially irradiates the corresponding predetermined regions RX, and then the cumulative exposure amount of the corresponding predetermined regions RX becomes a desired amount.
  • the exposure element EU1 in the first row has a defective exposure element a.
  • the integrated exposure dose to the predetermined region RX corresponding to the defect exposure element a does not increase.
  • the exposure element a1 in the second region R2 of the exposure pattern forming device 12 it is possible to use the exposure element a1 in the second region R2 of the exposure pattern forming device 12 to control the predetermined region RX to be irradiated with the exposure light EL. Therefore, at least part of the exposure light EL that has passed through the exposure element a1 in the first state can irradiate the predetermined region RX, and the integrated exposure amount to the predetermined region RX increases.
  • the integrated exposure amount of the predetermined region RX is reduced to the desired value. amount.
  • the second row of exposure elements EU2 has defect exposure elements b and c. Since it becomes impossible to irradiate the predetermined region RX of the workpiece W with the exposure light EL through the defect exposure elements b and c as planned, the cumulative exposure to the predetermined region RX corresponding to the defect exposure elements b and c is not possible. quantity cannot be increased.
  • the exposure elements b1 and c1 in the second region R2 of the exposure pattern forming device 12 can be used to control the predetermined region RX to be irradiated with the exposure light EL.
  • the exposure elements b1 and c1 in the first state can irradiate the predetermined region RX, and the integrated exposure amount to the predetermined region RX increases.
  • the exposure elements b1 and c1 in the second region R2 of the exposure pattern forming device 12 sequentially irradiate the corresponding predetermined area RX. is the desired amount.
  • the exposure apparatus 1 can be provided with the detection optical system 50, and the detection optical system 50 can be provided with the detection unit DU.
  • the detection unit DU detects the light intensity distribution of at least part of the exposure light EL that has passed through at least part of the plurality of exposure elements
  • the control unit 30 detects the light intensity distribution detected by the detection unit DU. Based on this, information on the defect exposure elements including information on the positions of the two-dimensionally arrayed defect exposure elements is generated.
  • the control unit 30 forms the detection light DL with at least part of the exposure light EL of the exposure pattern forming device 12, and controls the detection unit DU to be arranged on the optical path of the detection light DL. be able to.
  • the detection unit DU detects the light intensity distribution of the detection light DL, and obtains information on the defect exposure elements arranged two-dimensionally in the exposure pattern forming device 12, for example, the positions of the defect exposure elements. The information can be obtained, and the detection unit DU is electrically connected with the control unit 30 and can feed back the information of the defective exposing element and store it in the control unit 30 .
  • the detection unit DU may be an imaging device such as a CCD or CMOS, or may be another existing photodetector. Note that the exposure apparatus 1 may not be provided with the detection unit DU.
  • an inspection apparatus provided separately from the exposure apparatus 1 is used to irradiate each element for exposure in the ON state of the exposure pattern forming apparatus 12 with light according to an existing method, and each element in the ON state of the exposure pattern forming apparatus 12 is irradiated with light.
  • the information of the defective exposure elements may be generated by regarding the exposure elements whose detected light intensities are equal to or less than the threshold value as the defective exposure elements.
  • information on the generated defect exposure element may be input to the control device 30 via the input unit 33 . It should be noted that information on defect exposure elements may be generated using other existing methods without being limited to this method.
  • FIG. 16 is a structural explanatory diagram showing an example of the detection optical system 50 of this embodiment.
  • FIG. 17 is a structural explanatory diagram showing another example of the detection optical system 50 of this embodiment.
  • the exposure apparatus 1 of the example of this embodiment further includes a detection optical system 50, and the detection optical system 50 has the same structure as the detection collimator optical system 51 and the objective optical system 14. an objective optical system 52, and a detection unit DU.
  • the control unit 30 of the exposure apparatus 1 of this embodiment moves the exposure head HU out of the range of the substrate stage 20, and the objective optical system 14 mounted on the exposure head HU.
  • the control unit 30 causes the detection optical system 50 to be aligned with the detection objective optical system 52, and the control unit 30 causes the detection objective optical system 52 to be horizontally symmetrical with the objective optical system 14.
  • FIG. the collimator optical system 51 for detection and the objective optical system 52 for detection are arranged on the optical path of the exposure light EL from the objective optical system 14 .
  • the combination of the collimator optical system 13 and the objective optical system 14 and the combination of the collimator optical system 51 for detection and the objective optical system 52 for detection have the same optical refractive power, but the positive and negative are opposite. It has become.
  • the optical effect of the combination of the detection collimator optical system 51 and the detection objective optical system 52 is substantially opposite to the optical effect of the combination of the collimator optical system 13 and the objective optical system 14, and the exposure pattern forming apparatus 12 It can be used to restore the imaging information of the exposure light EL through.
  • the control unit 30 puts all the exposure elements of the exposure pattern forming device 12 into the first state (ON state), and the exposure light EL therethrough is directed to the collimating optical system 13, the objective optical system 14, and the detecting objective optical system. 52, and a collimator optical system 51 for detection, and then image-formed on the detection unit DU.
  • the exposure light EL from the objective optical system 14 is incident on the detection optical system 50 (detection objective optical system 52)
  • the incident exposure light EL becomes light detected by the detection unit DU.
  • the exposure light EL that has entered the detection optical system 50 can also be called the detection light DL.
  • information on the light intensity distribution of the exposure light EL by the exposure pattern forming device 12 can be obtained, and if at least one of the plurality of exposure elements of the exposure pattern forming device 12 is a defective exposure element, detection A portion of the light intensity distribution detected by the unit DU is equal to or less than a predetermined threshold. In this way, information on the two-dimensionally arranged defective exposure elements of the exposure pattern forming apparatus 12 (for example, information on the positions of the defective exposure elements) can be obtained.
  • the detection unit DU can be arranged at the rear end of the optical path of the primary imaging position described above, and an image is formed on the detection unit DU by an imaging lens arranged in front of the detection unit DU. can do.
  • this imaging lens is used to adjust the size of the image formed by the exposure light EL so that the size of the image formed by the exposure light EL is matched to the size of the detection surface of the detection unit DU. can correspond.
  • the imaging lens can be designed to reduce the size of the image formed by the exposure light EL. can.
  • the imaging lens can be designed to magnify the size of the image formed by the exposure light EL. If the overall size of the exposure pattern forming device 12 is equal to the size of the detection surface of the detection unit DU, the imaging lens can be designed not to adjust the size of the image formed by the exposure light EL, or , the detection surface of the detection unit DU is placed directly at the primary imaging position after the exposure light EL passes through the collimating optical system 13, the objective optical system 14, the objective optical system 52 for detection, and the collimator optical system 51 for detection in this order. It is also possible to eliminate the need to install an imaging lens separately.
  • the exposure apparatus 1 of the above example acquires the information of the defective exposure elements of the exposure pattern forming apparatus 12 before the exposure apparatus 1 performs the exposure process.
  • a detection unit DU is installed next to one exposure pattern forming device 12, and used to acquire information on the positions of defect exposure elements arranged two-dimensionally at the same time when the exposure device 1 executes the exposure process. can be done.
  • the exposure light EL passing through the plurality of exposure elements in the second state (OFF state) of the exposure pattern forming device 12 is detected. It is detected by the detection unit DU arranged on the optical path via the existing optical system as the light DL. Then, the detection unit DU acquires the light intensity distribution of the detected detection light DL. The detection unit DU inputs the acquired light intensity distribution of the detection light DL to the control unit 30 .
  • the control unit 30 compares the light intensity distribution of the detection light DL and the predetermined exposure pattern information, and if the two are complementary, it is the first state of the exposure element controlled by the control unit 30 ( The ON state) and the second state (OFF state) match the states required to form the exposure pattern, indicating that there is no defective exposure element. On the other hand, if the two are not complementary, the first state (ON state) and the second state (OFF state) of the exposure elements controlled by the control unit 30 do not match the states required to form the exposure pattern. represents that a defective exposure element exists in the exposure pattern forming apparatus 12 at this time. In this way, the control unit 30 can acquire information on the defective exposure element.
  • FIG. 18 is a structural explanatory diagram showing an example of exposure patterns formed in corresponding planned exposure regions by different exposure heads in a conventional exposure method.
  • FIG. 19 is a structural explanatory view showing an example of exposure patterns formed in corresponding planned exposure regions by different exposure heads of this embodiment.
  • FIG. 20 is a structural explanatory diagram showing another example of exposure patterns formed in corresponding planned exposure regions by different exposure heads of this embodiment.
  • each exposure head HU corresponds to a different planned exposure area on the workpiece W and forms a desired exposure pattern thereon.
  • the control unit 30 sub-scans the exposure head HU on which the workpiece W and the exposure pattern forming device 12 are arranged.
  • the exposure head HU is moved relative to the axis, and exposure of another planned exposure area corresponding to this exposure head HU is started. In this way, the desired exposure pattern of all the planned exposure areas on the work W can be completed after constantly repeating the exposure of the different planned exposure areas corresponding to this exposure head HU.
  • the characteristics of the exposure patterns to be formed also differ due to the difference in characteristics between the exposure pattern forming devices 12 of the different exposure heads HU.
  • the exposure pattern forming devices 12 of the exposure heads HU different from each other have different exposure dose distributions applied to respective planned exposure regions. If the distribution of the amount of exposure given to the planned exposure area is different, the shape of the pattern formed through development also changes. Therefore, as shown in FIG.
  • the exposure area to be exposed by the first exposure head is represented as a first exposure area ER1
  • the exposure area to be exposed by the second exposure head is a second exposure area ER2. It represents.
  • the present embodiment by designing alternately arranging the planned exposure regions corresponding to different exposure heads HU, the possibility of recognizing the shape change of the exposure pattern formed by different exposure heads HU is reduced. be able to.
  • the exposure apparatus of the present embodiment includes a first exposure head on which an exposure optical system 10 including an exposure pattern forming device 12 is mounted, and an exposure optical system 10 including the exposure pattern forming device 12.
  • the first exposure head is used to irradiate at least a part of the exposure light EL corresponding to the first predetermined exposure region ER1 of the work W
  • the second exposure head is used to irradiate the second predetermined exposure area ER2 of the workpiece W with at least another part of the light EL for exposure.
  • the first planned exposure region ER1 and the second planned exposure region ER2 extend along the main scanning axis and are arranged side by side along the sub-scanning axis perpendicular to the main scanning axis.
  • the exposure light EL is emitted into one first planned exposure area ER1 and one second planned exposure.
  • the control unit 30 relatively moves the first exposure head and the second exposure head on which the workpiece W and the exposure pattern forming device 12 are arranged along the sub-scanning axis, and then controls the The unit 30 irradiates a plurality of portions of the exposure light EL onto another first planned exposure region ER1 and another second planned exposure region ER2.
  • any second planned exposure area ER2 is located between two first planned exposure areas ER1.
  • the first exposure The head moves in the first direction of the main scanning axis to expose the first predetermined exposure area ER1, moves in the direction of the sub-scanning axis, and moves in the second direction opposite to the first direction of the main scanning axis. Repeatedly exposing another first planned exposure area ER1 by movement.
  • the control unit 30 controls the interval between the two first expected exposure areas ER1 to correspond to the width (size) of one second expected exposure area ER2.
  • the second exposure head exposes a portion corresponding to this second exposure area by moving in the first direction of the main scanning axis, and exposes a second exposure area ER2 adjacent to the two first exposure areas ER1. of exposure can be completed.
  • the second exposure head moves in the direction of the sub-scanning axis, and by moving in the second direction opposite to the first direction of the main scanning axis, the space between another two first predetermined exposure areas ER1 is reached. is repeated to expose the second predetermined exposure area ER2.
  • the shape change of the entire exposure pattern formed through development is visually non-uniform. The properties can be averaged, thereby avoiding the appearance of visible imperfections (mura).
  • the portions of the planned exposure area corresponding to the same exposure head HU can be appropriately connected, and the area formed by the planned exposure area of the connected portion is smaller than a certain width.
  • a first planned exposure region ER1 is adjacent to another first planned exposure region ER1 to form a first planned exposure region group, and an arbitrary The first scheduled exposure area group is positioned between the two second scheduled exposure areas ER2.
  • the first exposure head exposes the first planned exposure area ER1 by moving in the first direction of the main scanning axis, moves in the direction of the sub-scanning axis, and moves in the first direction of the main scanning axis. repeats exposing another first predetermined exposure area ER1 by moving in the opposite second direction.
  • the control unit 30 sets the first scheduled exposure area ER1 adjacent to another first scheduled exposure area ER1 to form a first scheduled exposure area group, and sets the interval between the two first scheduled exposure area groups to two. Control is performed so as to correspond to the width of the second predetermined exposure area.
  • the second exposure head exposes the space between the two first planned exposure area groups by moving in the first direction of the main scanning axis to expose one first exposure area adjacent to one first planned exposure area ER1. 2 Complete the exposure to the planned exposure area ER2. Next, the second exposure head moves in the direction of the sub-scanning axis, and moves in the second direction opposite to the first direction of the main scanning axis to cover the unexposed portion of the interval between the first predetermined exposure regions ER1. Exposure is performed to expose another second planned exposure area ER2 adjacent to the second planned exposure area. Next, the second exposure head moves in the direction of the sub-scanning axis, and exposes the next second planned exposure area ER2 in the space between the other two groups of first planned exposure areas by moving along the main scanning axis. repeat.
  • different exposure heads HU can also be locally alternated in the corresponding planned exposure areas, so that the shape change of the entire exposure pattern formed through development can be visualized.
  • the non-uniformity can be averaged out and the appearance of visible defects (mura) can be avoided.
  • the exposure apparatus 1 forms connections or separations of exposure patterns in different predetermined regions RX by controlling the integrated exposure amount to each predetermined region RX of the planned exposure region, thereby making the workpiece W A precise layout pattern can be formed. Further, the exposure apparatus 1 controls the movement of the exposure light EL reflected by the exposure elements of the exposure pattern forming apparatus 12 by the displacement optical system 131 along the sub-scanning axis, thereby forming a more precise layout pattern on the workpiece W. can be formed. Furthermore, the exposure apparatus can complete the irradiation of the exposure pattern to the defect area in the predetermined area RX by controlling the exposure elements in different areas of the exposure pattern forming apparatus, and the predetermined exposure area on the workpiece W can be completed. A desired exposure pattern can be formed.
  • the exposure apparatus alternately arranges the designs of the planned exposure areas corresponding to different exposure heads HU (that is, different exposure pattern forming devices) so that different exposure head HUs (that is, different exposure pattern forming devices) can be used for development. It is possible to reduce the possibility of recognizing a change in the shape of the entire exposure pattern formed through the above steps, and to avoid appearance of visible defects (unevenness).
  • the exposure patterning device 12 may be another type of spatial light modulator (Spatial Light Modulator).
  • the exposure pattern forming device 12 may be a light-reflective liquid-crystal-on-silicon panel (LCOS panel), a light-transmissive liquid crystal panel or other light It can be a modulator. Both types of spatial light modulators have multiple exposure pixels. The state of each exposure pixel can be switched between a first state (ON state) and a second state (OFF state). is incident on the work W, and at least part of the exposure light EL that has passed through the exposure element in the first state is not incident on the work W in the second state.
  • the direction in which the displacement optical system 131 is displaced is the direction of the sub-scanning axis, but in other embodiments, the direction in which the displacement optical system 131 is displaced may not be the sub-scanning axis. There is also sex.
  • the substrate stage 20 is movable along the X-axis direction and the Y-axis direction. may be movable along the X-axis direction and the Y-axis direction while holding the exposure optical system 10 and the autofocus optical system 40 .
  • the exposure head HU can be moved along the X-axis direction by the operation of an exposure head drive system including arbitrary motors.
  • the exposure head HU is movable along at least one of the Y-axis direction and the Z-axis direction in addition to being movable in the X-axis direction.
  • the present invention provides an exposure apparatus that enables fine pattern formation.
  • Exposure Device 10 Exposure Optical System 11 Exposure Light Source 12 Exposure Pattern Forming Device 13 Collimating Optical System 14 Objective Optical System 15 Driving Device 20 Substrate Stage 30 control unit 40 autofocus optical system 41 autofocus light source 42 autofocus collimator lens group 43 first autofocus detection optical system 44 second autofocus detection optical system 50 detection optical system 51 detection collimator optical system 52 detection objective optical system 131 displacement optical system 132 variable magnification optical system 132a first lens group 132b second lens group 132c third lens group 132d fourth lens group AL autofocus pattern image beam DL detection light DN dichroic mirror DU detection unit EL exposure light EP , EP1, EP2, EP3, EP4 Patterns DM1, DM2, DM3, DM4 Exposure elements ER1 First expected exposure area ER2 Second expected exposure area EU1 First row of exposure elements EU2 Second row of exposure elements EU3 Third Row of exposure elements G Spacing HU Exposure head O Optical axes Px1, Px2, Px3 Size Td Threshold value R

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明は、微細なパターン成形が可能となる露光装置を提供する。本発明の露光装置は、露光用光を射出する光源と、複数の露光用素子を備え、露光用光の少なくとも一部の光路上に配置される露光パターン形成装置と、露光パターン形成装置と電気的に接続される制御ユニットと、を備え、制御ユニットは、各露光用素子を第1状態又は第2状態に切り替えることにより、各露光用素子を介した露光用光がワークに照射されるか否かを制御し、複数の露光用素子のうちで第1状態の第1の露光用素子を介した露光用光の一部の光と、複数の露光用素子のうちで第1の露光用素子とは異なる第1状態の第2の露光用素子を介した露光用光の一部の光とを、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域の所定領域に照射させることにより所定領域における露光量を積算させる。

Description

露光装置
 本発明は、露光装置の技術分野に関する。
 フォトマスクは、例えば、表示装置(例えば、液晶ディスプレイ又は有機ELディスプレイ等)のディスプレイパネルや半導体デバイスの集積回路を製造するために使用される。一例として、フォトマスクを製造するために、ワークに所望の露光パターンを形成する露光装置が知られている。
米国特許第10522329号 米国特許第7170584号 米国特許第6778257号
 本発明の露光装置は、露光用光を射出する光源と、露光用光の少なくとも一部の光路上に配置される露光パターン形成装置と、露光パターン形成装置と電気的に接続される制御ユニットと、を備え、露光パターン形成装置は、複数の露光用素子を備え、複数の露光用素子の少なくとも一つの露光用素子は、ワークの予定露光領域に露光用光の少なくとも一部の光を照射させることに用いられ、制御ユニットは、各露光用素子を第1状態又は第2状態に切り替えることにより、各露光用素子を介した露光用光がワークに照射されるか否かを制御し、複数の露光用素子のうちで第1状態の第1の露光用素子を介した露光用光の一部の光と、複数の露光用素子のうちで第1の露光用素子とは異なる第1状態の第2の露光用素子を介した露光用光の一部の光とを、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域の所定領域に照射させることにより所定領域における露光量を積算させる。
 本発明の実施形態において、上記複数の露光用素子は、2次元に配列されており、第1の露光用素子と第2の露光用素子は、複数の露光用素子のうちで同じ列の互いに異なる露光用素子である。
 本発明の実施形態において、上記制御ユニットは、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域の所定領域に露光用光の一部の光を照射する第1状態の露光用素子の数に基づいて所定領域における積算露光量を制御する。
 本発明の実施形態において、上記制御ユニットは、第1状態の露光用素子の数に基づいて、所定領域における積算露光時間を制御する。
 本発明の実施形態において、上記制御ユニットは、所定領域における積算露光量を制御することによって、所定領域への露光用光による露光工程を経て所定領域に形成されるパターンの幅を制御する。
 本発明の実施形態において、上記露光用素子を介した露光用光の一部の光が予定露光領域に照射された領域における中心部分の光量は照射された領域における周辺部分の光量よりも大きい。
 本発明の実施形態において、上記露光パターン形成装置は、デジタルミラーデバイスであり、露光用素子は、露光用光の一部の光を反射する反射面を有するミラー素子である。
 本発明の実施形態において、上記制御ユニットは、第1状態の第1の露光用素子を介した露光用光の一部の光と、第1状態の第2の露光用素子を介した露光用光の一部の光とを、ワークと露光パターン形成装置とを相対移動させつつ順次、予定露光領域の所定領域に照射させることにより所定領域における露光量を積算させる。
 本発明の実施形態において、上記露光パターン形成装置からの露光用光の少なくとも一部の光をコリメートするコリメート光学系と、コリメート光学系から射出された露光用光の少なくとも一部の光をワークに向けて集光する対物光学系と、コリメート光学系の一部の光学部材を対物光学系の光軸に交差する軸に沿って変位させる駆動装置と、を更に備える。
 本発明の実施形態において、上記制御ユニットは、第1状態の第1の露光用素子を介した露光用光の一部の光と、第1状態の第2の露光用素子を介した露光用光の一部の光とを、ワークと露光パターン形成装置との主走査軸に沿った相対移動に伴って順次、所定領域に照射させることにより所定領域における露光量を積算させ、更に、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光の少なくとも一部の光が、所定領域に対して主走査軸と交差する副走査軸に沿った予定露光領域の一部の領域に照射されるように、一部の光学部材を光軸に交差する軸に沿って変位させるように駆動装置を制御する。
 本発明の実施形態において、上記露光パターン形成装置の複数の露光用素子は、2次元に配列されており、駆動装置は、2次元に配列された互いに隣り合う露光用素子の間隔に対応する予定露光領域における露光用光の少なくとも一部の光の照射間隔よりも小さい照射間隔で露光用光の少なくとも一部の光の照射位置が変位するように、光軸に交差する軸に沿って一部の光学部材を変位させる。
 本発明の実施形態において、上記副走査軸は、主走査軸に直交する軸であり、制御ユニットは、光軸に交差する軸に沿った一部の光学部材の変位と、主走査軸に沿ったワークと露光パターン形成装置との相対移動とをそれぞれ繰り返すと共に、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域における複数の領域それぞれへ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸と副走査軸に交差する軸に沿って露光領域を形成させる。
 本発明の実施形態において、上記制御ユニットは、ワークと露光パターン形成装置とを主走査軸に沿って相対移動 させ、更に、前記ワークと前記露光パターン形成装置とを前記主走査軸と交差する副走査軸に沿って相対移動させ、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置との副走査軸に沿った相対移動に伴って、順次、所定領域に対して副走査軸に沿った予定露光領域の一部領域に照射させることにより露光量を積算させる。
 本発明の実施形態において、上記副走査軸は、主走査軸に直交する軸であり、制御ユニットは、主走査軸に沿ったワークと露光パターン形成装置との相対移動と、副走査軸に沿ったワークと露光パターン形成装置との相対移動とをそれぞれ繰り返すと共に、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域における複数の領域それぞれへ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸と副走査軸に交差する軸に沿って露光領域を形成させる。
 本発明の実施形態において、上記制御ユニットは、ワークと露光パターン形成装置とを主走査軸に沿って相対移動させ、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域において主走査軸に沿って所定領域に隣り合う領域に照射させることによって主走査軸に沿って所定領域に隣り合う領域における露光量を積算させる。
 本発明の実施形態において、上記制御ユニットは、所定領域と主走査軸に沿って所定領域に隣り合う領域との積算露光量を制御することによって、主走査軸に沿って所定領域に隣り合う領域への露光用光による露光工程を経て所定領域に形成されるパターンと主走査軸に沿って所定領域に隣り合う領域に形成されるパターンとの主走査軸における間隔を制御する。
 本発明の実施形態において、上記制御ユニットは、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置とを相対移動させつつ順次、主走査軸に沿って所定領域に隣り合う領域に照射させることによって、主走査軸に沿って所定領域に隣り合う領域における露光量を積算させる。
 本発明の実施形態において、上記制御ユニットは、ワークと露光パターン形成装置とを主走査軸に沿って相対移動させ、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置との相対移動に伴って順次、予定露光領域における主走査軸に沿った所定領域とは異なる複数の領域へ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸に沿って露光領域を形成させる。
 本発明の実施形態において、上記制御ユニットは、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光の少なくとも一部の光を、ワークと露光パターン形成装置とを主走査軸に沿って相対移動させつつ順次、予定露光領域における主走査軸に沿った複数の領域へ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸に沿って露光領域を形成させる。
 本発明の実施形態において、上記制御ユニットは、ワークと露光パターン形成装置と主走査軸に沿って相対移動させ、複数の露光用素子のうちで第1状態の第3の露光用素子を介した露光用光の一部の光と、複数の露光用素子のうちで第1状態の第4の露光用素子を介した露光用光の一部の光とを、ワークと露光パターン形成装置との主走査軸に沿った相対移動に伴って順次、予定露光領域において主走査軸と直交する副走査軸に沿って照射させることにより所定領域に隣り合う領域における露光量を積算させる、第3の露光用素子と第4の露光用素子はそれぞれ、第1の露光用素子と第2の露光用素子とは異なる露光用素子である。
 本発明の実施形態において、上記制御ユニットは、所定領域と副走査軸に沿って所定領域に隣り合う領域の積算露光量を制御することによって、所定領域と副走査軸に沿って所定領域に隣り合う領域への露光用光による露光工程を経て所定領域に形成されるパターンと副走査軸に沿って所定領域に隣り合う領域に形成されるパターンとの副走査軸における間隔を制御する。
 本発明の実施形態において、上記制御ユニットは、ワーク上における予定露光領域の位置に関する情報と、予定露光領域の各領域における積算露光量に関する情報とを含む露光パターン情報に基づいて、ワークと露光パターン形成装置との相対移動に伴って、複数の露光用素子の少なくとも一部の露光用素子を第1状態又は第2状態に切り替える。
 本発明の実施形態において、上記制御ユニットは、複数の露光用素子における欠陥露光用素子の情報に基づいて、予定露光領域の所定領域の積算露光量が所定の露光量になるように、複数の露光用素子のうち、欠陥露光用素子以外の第1状態の露光用素子を介した露光用光の一部の光を、ワークと露光パターン形成装置との相対移動に伴って、所定領域に照射させる。
 本発明の実施形態において、上記露光パターン形成装置に含まれる複数の露光用素子のうちの第1部分の露光用素子の少なくとも一つの露光用素子が欠陥露光用素子の場合、複数の露光用素子のうちの第1部分とは異なる第2部分の露光用素子は、欠陥露光用素子の代わりに所定領域の積算露光量が所定の露光量になるように露光に用いられる。
 本発明の実施形態において、上記制御ユニットは、複数の露光用素子は、2次元に配列されており、複数の露光用素子のうちの同じ列に第1部分の一部と第2部分の一部が含まれ、上記列における第1部分の一部の露光用素子のうちで少なくとも一つの露光用素子が欠陥露光用素子の場合、欠陥露光用素子の代わりに上記列における第2部分の一部の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光の一部の光を、ワークと露光パターン形成装置との相対移動に伴って、所定領域に照射させる。
 本発明の実施形態において、上記複数の露光用素子は、2次元に配列されており、さらに、複数の露光用素子の少なくとも一部を介した露光用光の少なくとも一部の光の強度分布を検出する光検出ユニットを備え、制御ユニットは、光検出ユニットで検出された光の強度分布に基づいて、2次元の配列における欠陥露光用素子の位置に関する情報を含む欠陥露光用素子の情報を生成する。
 本発明の実施形態において、さらに、露光パターン形成装置と少なくとも一つの光学素子とを含む第1露光ヘッドと、露光パターン形成装置と少なくとも一つの光学素子とを含む第2露光ヘッドと、を備え、第1露光ヘッドにおける露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光の一部の光と、ワークの第1予定露光領域に露光用光の少なくとも一部の光を照射させることに用いられ、第2露光ヘッドにおける露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光の一部の光と、ワークの第2予定露光領域に露光用光の少なくとも一部の光を照射させることに用いられ、制御ユニットは、主走査軸に沿ったワークと、第1露光ヘッド及び前記第2露光ヘッドとの相対移動と、主走査軸に直交する軸である副走査軸に沿ったワークと、露光ヘッドとの相対移動とをそれぞれ繰り返すと共に、ワークと第1露光ヘッド及び前記第2露光ヘッドとの相対移動に伴って順次、第1露光ヘッドにおける露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光の少なくとも一部の光を第1予定露光領域に照射させ、第2露光ヘッドにおける露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光の少なくとも一部の光を第2予定露光領域に照射させることによって、副走査軸に沿って第1露光領域と第2露光領域を並べて形成させる。
 本発明の実施形態において、上記第1露光領域と第2露光領域はそれぞれ複数であり、且つ、何れか1つの第2予定露光領域は、2つの第1予定露光領域の間に位置する。
 本発明の実施形態において、上記第1露光領域と第2露光領域はそれぞれ複数であり、1つの第1予定露光領域は、別の1つの第1の予定露光領域と隣り合って第1予定露光領域群を形成し、且つ何れか1つの第1予定露光領域群は、2つの第2予定露光領域の間に位置する。
 本発明の上述した特徴と利点を更に明確化するために、以下に、実施例を挙げて図面と共に詳細な内容を説明する。
本実施形態の露光装置の全体構造の一例を示す構造説明図である。 本実施形態の露光パターン形成装置を介した後の光路の説明図である。 一例のコリメータレンズが移動する時の光路変化の説明図である。 露光パターン形成装置の正面図である。 本実施形態のワークと露光ヘッドが主走査軸に相対移動し続けることを示す説明図である。 本実施形態の露光パターン形成装置を介した露光用光の光量分布を示す説明図である。 本実施形態の露光用光の予定露光領域における積算露光量と露光工程及び現像工程を経て形成されるパターンの範囲の関係説明図である。 本実施形態のワークの予定露光領域における所定領域に形成されるパターンの一例を示す輪郭説明図である。 本実施形態のワークの予定露光領域における所定領域に形成されるパターンの別の例を示す輪郭説明図である。 連続露光するパターンを示す説明図である。 従来技術における斜め方向の予定露光領域へのパターンの形成過程を示す説明図である。 本実施形態の斜め方向の予定露光領域への露光パターン形成の一例を示す過程説明図である。 本実施形態の露光パターンの変形例を示す輪郭説明図である。 本実施形態の露光パターン形成装置の欠陥素子の位置分布を示す説明図である。 本実施形態の露光パターン形成装置の異なる露光用素子の対応する予定露光領域における露光過程を示す説明図である。 本実施形態の検出光学系の一例を示す構造説明図である。 本実施形態の検出光学系の別の一例を示す構造説明図である。 本実施形態の異なる露光用素子が対応する予定露光領域に形成する露光パターンの一例を示す構造説明図である。 本実施形態の異なる露光用素子が対応する予定露光領域に形成する露光パターンの一例を示す構造説明図である。 本実施形態の異なる露光用素子が対応する予定露光領域に形成する露光パターンの一例を示す構造説明図である。
 以下では、図面を参照しながら、露光装置について説明する。但し、本発明は、以下に説明する実施形態に限定しない。
 以下の説明では、互いに直交するX軸、Y軸及びZ軸によって定義されるXYZ直交座標系を使用して、露光装置を構成する構成要素とワークとの間の位置関係を説明する。また、以下の説明では、説明の便宜上、X軸方向とY軸方向をそれぞれ水平面方向(即ち、水平面内の既定の方向)とし、Z軸方向を垂直方向(即ち、水平面と直交する方向、実質的には上下方向)とする。また、+Z軸方向を上方(上側)とし、-Z軸方向を下方(下側)とする。また、X軸を主走査軸とし、Y軸を副走査軸とする。なお、主走査軸と副走査軸とは、互いに交差していればよく、直交していなくてもよい。
(1)本実施形態の露光装置1
 図1~図7を参照しながら、本実施形態の露光装置1を説明する。本実施形態の露光装置1は、露光工程において、露光ヘッドHUに搭載される露光光学系10によって照射される光(露光用光)を使用して、レジスト剤(即ち、感光剤)が塗布された基板、即ち、ワークWを露光する。露光装置1によって露光されるワークWは、例えば、フォトマスクの製造に用いられるガラス基板である。なお、ワークWは、表示装置(例えば、液晶ディスプレイ又は有機ELディスプレイ等)のディスプレイパネルの製造に用いられるガラス基板や半導体デバイスの集積回路の製造に用いられる半導体ウエハであってもよい。
 更に、本実施形態のレジスト剤は、露光するワークWのタイプに応じて、ポジ型レジスト剤(positive photoresist)またはネガ型レジスト剤(negative photoresist)であり得る。露光工程後の現像工程によりワークW上にパターン(レジストパターン)が形成される。ここで、ポジ型レジスト剤の露光部分は光化学反応を起こして現像液に溶解し、未露光部分は現像液に不溶であるため、未露光部分が基板上に残る。このようにして、露光ヘッドHUが走査露光する領域に対応するパターンが基板に形成される。一方、ネガ型レジスト剤の露光部分は、架橋と硬化により現像液に不溶であり、未露光部分が現像液に溶けるため、露光部分が基板上に残る。このようにして、露光ヘッドHUが走査露光する領域と反対のパターンが基板に形成される。例えば、ディスプレイデバイス(液晶ディスプレイや有機ELディスプレイなど)のディスプレイパネル露光用マスクの製造に使用されるレジスト剤のタイプはポジ型レジスト剤であり、半導体デバイスの集積回路の露光用マスクの製造に使用されるものは、実際の必要に応じてポジ型レジスト剤又はネガ型レジスト剤が採用され得る。
(1-1)本実施形態の露光装置1の構造
 まず、図1及び図2を参照しながら、本実施形態の露光装置1の構造について説明する。図1は、本実施形態の露光装置1の全体構造の一例を示す斜視図である。図2は、本実施形態の露光パターン形成装置12を介した後の光路を示す説明図である。図3は、一例のコリメータレンズが移動する時の光路変化の説明図である。
 図1及び図2に示すように、露光装置1には、少なくとも1つの露光ヘッドHU、基板ステージ20及び制御ユニット30を備え、露光ヘッドHUには、露光光学系10とオートフォーカス光学系40が搭載され、露光光学系10は、露光光源11、露光パターン形成装置12、コリメート光学系13及び対物光学系14を含む。更に、露光光源11は、露光用光ELを射出する。露光用光ELは、例えば、405nmなどの紫外波長帯域の光である。なお、露光用光ELの波長帯域は、他の波長帯域でもよい。露光パターン形成装置12、コリメート光学系13及び対物光学系14は、露光用光ELの光路上(言い換えると、伝達経路上)に配置される。露光パターン形成装置12は、コリメート光学系13及び対物光学系14を介して、基板ステージ20上のワークWに露光用光ELを照射することに用いられる。また、注意すべきこととして、本実施形態では、各露光ヘッドHUが何れも露光光源11を備えた状況において、露光パターン形成装置12は、露光用光ELの全体の光路上に位置する。但し、別の実施形態においては、各露光ヘッドHUの露光光源11を露光ヘッドの外部に設け、既存の光学部材を用いて各露光ヘッドHUの各露光パターン形成装置12に入射させてもよい。また、1つの露光光源11を各露光ヘッドHUの外部に設け、既存の光学部材による光路設計を利用し、1つの露光光源11より射出される露光用光ELを複数の部分に分け、各露光ヘッドの露光パターン形成装置をそれぞれ少なくとも一部の露光用光ELの光路上に設けてもよい。
 また、コリメート光学系13は、露光パターン形成装置12からの露光用光ELの少なくとも一部の光をコリメートする。対物光学系14は、コリメート光学系13から射出された露光用光ELの少なくとも一部の光をワークWに向けて集光する。なお、露光装置1には、コリメート光学系の一部の光学部材を対物光学系14の光軸Oに交差する軸に沿って変位させる駆動装置15を更に備える。例えば、駆動装置15は、ピエゾ素子などの既存の装置である。
 より具体的には、図2に示すように、コリメート光学系13は、ワークW側から変位光学系131と変倍光学系132とから構成されている。変位光学系131はワークWの表面に平行な方向に(光軸Oに対して垂直な方向)に移動させることによって、ワークW上における、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光の照射位置を移動させる。言い換えると、ここで、変位光学系131は、前記コリメート光学系の一部の光学部材であり、駆動装置15により対物光学系14の光軸Oに直交する軸に沿って移動させられる。ここで、例えば、駆動装置15は、副走査軸(Y軸)に沿った方向に変位光学系131を駆動可能に構成されている。変位光学系131が、駆動装置15により副走査軸(Y軸)に沿った方向に変位すると、ワークW上に照射される露光用光ELの少なくとも一部の光の照射位置も副走査軸(Y軸)に沿った方向に移動する。また、ワークW上に照射される露光用光ELの少なくとも一部の光の照射位置の移動量は、駆動装置15による副走査軸(Y軸)に沿った方向への変位光学系131の変位量に基づいて変化させることができる。なお、変位光学系131を変位させる方向は、副走査軸(Y軸)に沿って方向でなくてもよく、主走査軸(X軸)に沿った方向であってもよいし、副走査軸(Y軸)と主走査軸(X軸)に交差する軸に沿った方向であってもよい。なお、変位光学系131は、光軸Oに直交する軸に沿って変位させなくてもよく、光軸Oに交差する軸に沿って変位させるように駆動装置15が変位光学系131を駆動してもよい。
 より具体的には、変位光学系131が光軸Oに交差する軸において移動する時、変位光学系131によってコリメートされる露光用光ELは、変位を生じ、その変位量の大きさは、他側から変位光学系131に斜めに入射する平行光からなる像高とみなすことができ、且つその像高及び変位光学系131の焦点距離は、一定の数式の関係を有する。
 例えば、図3に示すように、コリメータレンズを調整し、入射光の光軸と垂直な軸上で移動させる時、コリメートされた入射光は、その変位量の大きさを他側からコリメータレンズに傾斜方向に入射した平行光により生成される像高とみなし、且つその像高とコリメータレンズの焦点の数学的関係は、y=f・tanθである。
 即ち、変位光学系131が光軸Oに直交する軸上で移動する時、変位光学系131は露光用光ELが生成させる変位量と変位光学系131の焦点距離とにy=fc・tanθの数学的関係をもたせ、ここで、fcは変位光学系131の焦点距離である。類似して、コリメートされた露光用光ELが変位した後、対物光学系14を通過し、ワークW上における照射位置も上記変位量yによって対応して変位量y’を生じ、且つy’と対物光学系14の焦点距離も類似してy’=fo・tanθの数学系関係を有し、ここで、foは、対物光学系14の焦点距離である。
 また、上記2つの式に基づいて、y’=(fo/fc)・yを得ることができる。このように、変位光学系131の変位量の大きさを制御することによって、ワークW上における露光用光ELの少なくとも一部の光の照射位置の変位量を制御することができる。
 なお、コリメート光学系13の変位光学系131のレンズ構成は、本実施形態では、正、負2枚の接合レンズであり、具体的には両凸レンズと両凹レンズの接合レンズである。但し、別の実施形態においては、変位光学系131は、凹メニスカスレンズと平凸レンズの接合レンズであることもできる。或いは、両凸レンズ及び、両凸レンズと両凹レンズの接合レンズの組み合わせ、又は、両凸レンズと両凹レンズの接合レンズと及び凸メニスカスレンズの組み合わせであることもでき、本発明は、これらに限定するものではない。
 また、コリメート光学系13の変倍光学系132は第1レンズ群132aと、第2レンズ群132bと、第3レンズ群132cと、第4レンズ群132dと、を含む。第1レンズ群132aと第4レンズ群132dは、その位置が固定されたレンズ群である。第2レンズ群132bと第3レンズ群132cは互いに独立して光軸Oに移動可能なレンズ群である。例えば、第2レンズ群132bと第3レンズ群132cは、モータなどの既存のアクチュエータによって移動することができる。より具体的には、第2レンズ群132bと第3レンズ群132cを光軸Oの方向に移動させることにより、対物光学系14を介してワーク上に結像される像(例えば、露光パターン形成装置12がDMDの場合は、DMDの露光用素子の反射面の像)の倍率を変化させることができる。
 また、図2に示すように、第1レンズ群132aから第4レンズ群132dまでの屈折力は、それぞれ正、負、正、正であり、且つ本実施形態では、変倍光学系132の第1レンズ群132aのレンズ構成は、両凸レンズ及び、両凸レンズと両凹レンズの接合レンズの組み合わせであり、第2レンズ群132bのレンズ構成は、両凹レンズと凹メニスカスレンズの接合レンズであり、第3レンズ群132cのレンズ構成は、平凹レンズ及び平凸レンズの組み合わせであり、第4レンズ群132dのレンズ構成は、両凸レンズである。また、コリメート光学系13は露光パターン形成装置12からの入射光(露光用光EL)を効率良く取り込むため、露光パターン形成装置12側にテレセントリックとなっている。なお、上述の第1レンズ群132a~第4レンズ群132dの各レンズ構成は一例であり、第1レンズ群132a~第4レンズ群132dの各レンズ構成は、既存の形状や特性の少なくとも1つのレンズを含んだ上述と異なる構成であってもよい。
 なお、変位光学系131はXY変位による収差変動を排除するよう収差補正が為されている。
 本実施形態において、露光装置1が露光工程を実行すると、露光光源11からの露光用光ELは、露光パターン形成装置12とコリメート光学系13と対物光学系14を介してワークW上に照射される。露光用光ELは、露光パターン形成装置12により、所望のパターン(言い換えると、所望の強度分布)に変換され、ワークW上(ワークW上における予定露光領域)に所望の露光パターンを形成することができる。なお、露光パターンは、レジスト剤を感光させてワークWのレジストに形成される所望のパターンの露光領域である。より具体的には、露光用光ELの走査経路が主走査軸に沿って、露光用光ELに連続露光を行わせる場合、予定露光領域に生成される露光パターンは直線状を呈する。
 なお、図1に示すように、オートフォーカス光学系40は、オートフォーカス光源41、露光光学系10と共有する対物光学系14、オートフォーカス用コリメータレンズ群42、所定の焦点深度の第1オートフォーカス用検出光学系43、及び第1オートフォーカス用検出光学系43の焦点深度よりも焦点深度が浅い第2オートフォーカス用検出光学系44を備える。オートフォーカス光源41は、レジスト層の感光波長帯域外の前記オートフォーカスパターン画像ビームALを提供することができ、また、オートフォーカスパターン画像ビームALは、オートフォーカス用コリメータレンズ群42及び露光光学系10と共有する対物光学系14を介してワークWに照射され、また、オートフォーカス光学系40は、ワークWによって反射されたオートフォーカスパターン画像ビームALでオートフォーカスパターンの像を形成する。例えば、本実施形態では、オートフォーカスパターンは、明暗相間のパターンである。
 なお、図1に示すように、オートフォーカスパターン画像ビームAL及び露光用光ELの光路上には、ダイクロイックミラーDNが設置される。更に、オートフォーカスパターン画像ビームAL及び露光用光ELは、それぞれダイクロイックミラーDNの両面から入射し、且つダイクロイックミラーDNは、露光用光EL及びオートフォーカスパターン画像ビームALの一方を反射し、露光用光EL及びオートフォーカスパターン画像ビームALの他方を透過させることができ、このように、オートフォーカスパターン画像ビームAL及び露光用光ELがダイクロイックミラーDNを介した後に同一方向に沿って伝達され、対物光学系14を介してワークWに照射される。
 基板ステージ20は露光ヘッドHUの下方に配置される。基板ステージ20はワークWを保持することができる。基板ステージ20は、ワークWの上面がXY平面に平行になるように基板を保持することができる。基板ステージ20は、保持しているワークWを解放することができる。ワークWは、例えば、数メートル(m)平方のガラス基板である。
 基板ステージ20は、ワークWを保持した状態で、基板ステージ20の平面(例えば、XY平面)に沿って移動することができる。基板ステージ20はX軸方向に沿って移動できる。例えば、基板ステージ20は、任意のモータを含む基板ステージ駆動システムの動作により、X軸方向に沿って移動することができる。基板ステージ20は、X軸方向に移動可能であることに加えて、Y軸方向に沿って移動可能である。例えば、基板ステージ20は、任意のモータを含む基板ステージ駆動システムの動作により、Y軸方向に沿って移動することができる。なお、基板ステージ20は、Z軸方向に沿って移動可能に構成されていてもよい。
 制御ユニット30は、露光装置1の動作を制御することができる。制御ユニット30は、例えば、CPU(Central Processing Unit)、リードオンリーメモリ(Read Only Memory、ROM)又はランダムアクセスメモリ(Random Access Memory,RAM)等を備える。
 制御ユニット30は、基板ステージ駆動システムを制御して、ステップ・アンド・リピート走査(Step and repeat)又は連続走査(scan)方式の露光を行う。即ち、制御ユニット30は、露光パターン形成装置12を保持する露光ヘッドHUとワークWを保持する基板ステージ20が既定の主走査軸または副走査軸に沿って相対移動し続けるように、基板ステージ駆動システムを制御することができる。結果として、露光用光ELを対応してワークWの複数の予定露光領域に照射させる。以下の説明では、露光ヘッドHUと基板ステージ20が相対移動する主走査軸をX軸方向とし、X軸方向と直交するY軸方向を適宜「副走査軸」と称する。
 また、本実施形態において、主走査軸又は副走査軸の相対移動では、ワークと露光パターン形成装置(DMD)を主走査軸又は副走査軸に沿って相対移動させることと、ワークと露光ヘッドを主走査軸又は副走査軸に沿って相対移動させることとは同義である。
 (1-2)予定露光領域の配置及び所定領域RXに形成されるパターンEPの生成
 次に、図4~図6を参照しながら、ワークW上に設定された予定露光領域の配置及び所定領域RXに形成されるパターンEPの生成について説明する。図4は、露光パターン形成装置の正面図であり、図5は、本実施形態のワークWと露光ヘッドHUが、主走査軸に相対移動し続けることを示す説明図である。図6は、本実施形態の露光パターン形成装置を介した露光用光の光量分布を示す説明図である。図7は、本実施形態の露光用光ELの予定露光領域における積算露光量と露光工程及び現像工程を経て形成されるパターンEPの範囲の関係説明図である。
 図4に示すように、本実施形態の露光パターン形成装置12は、例えば、デジタルマイクロミラー装置(Digital Micromirror Device,DMD)であり、露光パターン形成装置12は、複数の露光用素子を有し、各露光用素子は、DMDの各マイクロミラーであり、且つ複数の露光用素子は、2次元に配列される。なお、マイクロミラーは、光を反射する反射面を有する素子である。例えば、本実施形態では、DMDは、1920×1080個のマイクロミラーから構成され、即ち、DMDは、1920×1080個の画素を有する。具体的には、同一の列の複数の露光用素子は第1方向D1に沿って並べて配置され、複数の露光用素子は第2方向に並べて配置され、第1方向は、第2方向D2と互いに直交する。また、同一の列の複数の露光用素子がワークW上で走査する対応領域は、同じ予定露光領域である。即ち、本実施形態では、異なる複数の露光用素子は、それぞれワークWの複数の予定露光領域に露光用光ELを対応して照射することに用いられることができる。ここで、列とは、第1方向D1に沿った同じ並びであることを表す。また、第1方向D1に沿った並びを行と言い換えることもできる。例えば、露光パターン形成装置の露光ヘッドHU及びワークWを保持する基板ステージ20が主走査軸に沿って相対移動する時、これらの複数の予定露光領域は、主走査軸に沿って延伸し、主走査軸と直交する副走査軸に沿って並べて配置される。また、露光パターン形成装置12に設けられた各露光用素子は、それぞれ独立して光の反射面の角度を変更可能に構成されている。露光用素子の反射面が第1角度に設定された場合、その反射面が反射した光はコリメート光学系13及び対物光学系14を介してワークWに入射する。一方、露光用素子の反射面が第2角度に設定された場合、その反射面が反射した光は不図示の光吸収部材に入射し吸収されるためワークWに入射しない。例えば、露光パターン形成装置12に設けられた複数の露光用素子の少なくとも一部の露光用素子が第1角度に設定され、他の一部の露光用素子が第2角度に設定されることで、第1角度に設定された少なくとも一部の露光用素子の反射面が反射した露光光源11からの露光用光ELの少なくとも一部の光がワークWに入射する。つまり、露光パターン形成装置12は、露光光源11からの露光用光ELの少なくとも一部の光を選択的にワークWに入射させることで所望のパターンの露光領域を形成することができる。ここで、第1角度を第1状態(言い換ると、オン状態)と称し、第2角度を第2状態(言い換えると、オフ状態)と称する。
 また、図5に示すように、露光パターン形成装置12を保持する露光ヘッドHUとワークWを保持する基板ステージ20との主走査軸に沿った相対移動に伴って、制御ユニット30は、複数の露光用素子の第1状態及び第2状態の切り替えにより、各露光用素子を介した露光用光ELがワークWを照射するか否かを制御する。図5では、露光パターン形成装置12(露光ヘッドHU)とワークW(基板ステージ20)との相対移動に伴う、第1の露光用素子DM1及び第2の露光用素子DM2それぞれの反射面の傾きの変化(第1状態と第2状態との間の変化)を表している。一例として図5に示すように、第1の露光用素子DM1及び第2の露光用素子DM2は、複数の露光用素子のうちの同一の列における異なる露光用素子であり、且つ制御ユニット30は、複数の露光用素子のうちで第1状態の第1の露光用素子DM1を介した露光用光ELの一部の光と、複数の露光用素子のうちで第1の露光用素子DM1とは異なる第1状態の第2の露光用素子DM2を介した露光用光ELの一部の光とを、ワークWと露光パターン形成装置12との相対移動に伴って順次、予定露光領域の所定領域RXに照射させることにより所定領域RXにおける露光量を積算させる。
 更に、図5に示すように、露光パターン形成装置12を保持する露光ヘッドHUと、ワークWを保持する基板ステージ20とが相対移動し続けることに伴って、制御ユニットは、各露光用ユニットの複数の露光用素子の第1状態又は第2状態を制御し、予定露光領域の所定領域RXが順に異なる第1状態の異なる露光用素子によって照射されるように制御する。このように、予定露光領域の所定領域RXの積算される被照射回数を制御することによって、露光用光の予定露光領域の各箇所における積算露光時間を制御することができる。即ち、予定露光領域の所定領域RXの積算露光時間は、所定領域RXの複数の露光用光ELの少なくとも一部の光によって照射された時間(露光時間)の総和である。
 このようにして、図4に示すように、制御ユニット30は、ワークWと露光パターン形成装置12との相対移動に伴って、露光用光ELを照射する際に、露光パターン形成装置12の各露光用素子の状態を第1状態と第2状態との間で切り替えることによって、露光用光ELの予定露光領域の各所定領域RXへの積算露光時間を制御することができる。このようにして、露光装置1は、対応する予定露光領域の所定領域RXに複数の露光用光ELの少なくとも一部の光の露光量を積算させることができる。更に、ワークWの予定露光領域の各所定領域RXへの露光量は、何れも上記方法に基づいて制御することができる。
 また、制御ユニット30は、ワークWと露光パターン形成装置12との相対移動に伴って順次、予定露光領域の所定領域RXに露光用光ELの一部の光を照射する第1状態の露光用素子の数に基づいて、所定領域RXにおける積算露光時間を制御し、更に所定領域RXにおける積算露光量を制御する。
 具体的には、予定露光領域の所定領域RXにおける露光量は、所定領域RXに照射する露光用光ELの露光強度及び露光時間によって決定される。本実施形態において、一例として、露光用光ELの露光強度及び露光用素子が第1状態にある時間(オン時間)を一定とすると、露光用光ELの一部の光を予定露光領域の所定領域RXに照射させる第1状態の露光用素子の数が変化する時、所定領域RXに照射される積算露光量も伴って変化する。但し、本発明は、これに限定するものではない。その他の実施例において、制御ユニット30は、各露光用素子を介した露光用光ELの露光強度及び各露光用素子が第1状態にある時間(オン時間)の少なくとも一方を変更することによって所定領域RXに照射する露光量を制御してもよい。また、制御ユニット30は、露光用光ELの一部の光を予定露光領域の所定領域RXに照射させる第1状態の露光用素子の数を変化させると共に、各露光用素子を介した露光用光ELの露光強度及び各露光用素子が第1状態にある時間(オン時間)の少なくとも一方を変更することによって所定領域RXに照射する露光量を制御してもよい。
 このように、本実施形態の制御ユニット30は、複数の露光用素子のうちで第1状態の第1の露光用素子DM1を介した露光用光ELの一部の光と、複数の露光用素子のうちで第1状態の第2の露光用素子DM2を介した露光用光ELの一部の光とを、ワークWと露光パターン形成装置12との相対移動に伴って順次、予定露光領域の所定領域RXに照射させることにより所定領域RXにおける露光量を積算させることができる。
 また、本実施形態では、図7に示すように、ワークWの予定露光領域の所定領域RXの露光量(積算露光量)が所定の閾値Td以上の場合(所定の閾値Tdは、例えば、レジスト剤を的確に露光する露光量の標準値である)、その上のレジスト剤は、露光される。例えば、同一の列のワークW上の所定領域RXへの最大照射回数(例えば、ワークWと露光パターン形成装置12との相対移動に伴って順次、所定領域RXに露光用光ELの一部の光を照射可能な露光用素子の最大数)を予め設定し、露光強度、最大照射回数、毎回の露光時間及び所定の閾値Tdの大きさに基づいて、各露光用光ELの少なくとも一部の光の毎回の必要な露光量を精細に調整することができる。例えば、予定露光領域の所定領域RXは、照射回数を増やすことにより、露光量を積算させて、ワークWの予定露光領域の所定領域RXにパターンEP(レジストパターン)を形成することができる。例えば、本実施形態では、上記の最大照射回数は、例えば256回(言い換えると、最大256個の露光用素子を所定領域RXへの露光に用いる)であるが、本発明はこれに限定しない。
 従来技術において、露光領域に照射される光量が露光領域内で一様な場合は、現像工程後、露光領域と同等のサイズ(形状)のパターンがワークW上に形成される。一方、本実施形態では、図6に示すように、第1状態の一つの露光用素子を介した露光用光ELの一部の光が予定露光領域に照射された領域における中心部分の光量は照射された領域における周辺部分の光量よりも大きい。具体的には、本実施形態において、デジタルマイクロミラー装置のマイクロミラーで反射された光(露光用光ELの一部の光)の回折により、その光が予定露光領域に照射された領域の中心部分の光量が周辺部分の光量よりも大きくなる。したがって、図7に示すように、積算露光量の増加に伴ってワークW上の露光領域(露光されたレジスト層)において閾値Td以上の露光量が付与される領域が拡大することで、現像工程を経てワークWの露光領域へ形成されるパターンEPのサイズもPx1、Px2、Px3と拡大する。即ち、ワークWの露光工程及び現像工程を経て露光領域に形成されるパターンEPのサイズPx1、Px2、Px3と露光用光ELの予定露光領域への積算露光量との間の関係は、正の相関特性を有する。なお、本実施例において、照射回数を制御することによって積算露光量の増加を制御しているが、本発明は、これに限定するものではなく、他の実施例において、露光用光ELの光量又は毎回の露光時間(露光用光ELの照射時間)を制御することによって積算露光量を制御し、それにより、パターンEPのサイズの制御を達成することもできる。
 このように、積算露光量を制御することにより、ワークWの所定領域RXにおいて精密なパターンEPの形成を行うことができる。
 (1-3)露光パターンの形成と幅の制御過程
 次に、図8及び図9を参照しながら、露光工程及び現像工程を経て、ワークWの予定露光領域における所定領域RXに形成されるパターンEPの形成と幅の制御について説明する。図8は、本実施形態のワークWの予定露光領域における所定領域RXに形成されるパターンEPの一例を示す輪郭説明図である。図9は、本実施形態のワークWの予定露光領域における所定領域RXに形成されるパターンEPの別の例を示す輪郭説明図である。
 更に、本実施形態では、予定露光領域は、複数の所定領域RXから構成されることができ、1つの所定領域RXは、例えば、1つの第1状態の露光用素子を介して露光用光ELの一部の光がワークW上へ照射された領域に対応する。また、上記のように、制御ユニット30は、ワークWと露光パターン形成装置12(露光ヘッドHU)との相対移動に伴って、同一の列の複数の露光用素子(例えば、第1の露光用素子DM1及び第2の露光用素子DM2)を順次、第1状態(オン)にし、対応する予定露光領域中の所定領域RXにおける露光量を積算することによって、現像工程後、パターンEPが形成される。
 より具体的には、ワークWの露光工程及び現像工程を経て露光領域に形成されるパターンのサイズと露光用光ELによる予定露光領域への積算露光量との間の関係は正の相関特性を有するので、複数の露光用光ELの少なくとも一部の光によって形成される所定領域RXにおけるパターンEPの副走査軸に沿った方向の幅と露光用光ELによる所定領域RXへの積算露光量との間の関係も正の相関特性を有する。その結果、制御ユニット30は、同じ所定領域RXの積算露光量(即ち、同じ所定領域RXに照射された露光用光ELの少なくとも一部の光の露光量の総和)を制御することによって、所定領域RXにおけるパターンEPの主走査軸における幅、及び主走査軸と直交する副走査軸における幅を制御することができる。
 例えば、ワークWの予定露光領域の所定箇所の露光量が所定の閾値Tdよりも大きい場合、その上のレジスト剤は露光が完成するため、隣り合う所定領域RXの積算露光量が所定の閾値Td以上である場合、これらの所定領域RXのレジスト剤は完全に露光され、更に、隣り合う所定領域RXに形成されたパターンEPの輪郭は互いに接している。このように、異なる所定領域RXのパターンEPが接することによって、幅が比較的広いパターンEPを形成することができる。なお、隣り合う所定領域RXの積算露光量が何れも所定の閾値Tdよりも小さい時、これら所定領域RXのレジスト剤は、所定領域RXの中心部分のみが完全に露光され、周辺部分は完全には露光されず、隣り合う所定領域RXに形成されるパターンEPの間に隙間が存在する。このようにして、異なる所定領域RXに幅が比較的小さいパターンEPを形成することができる。
 このように、露光装置1の制御ユニット30は、所定領域RXにおける積算露光量を制御することによって、所定領域RXへの露光用光ELによる露光工程を経て所定領域RXに形成されるパターンEPの幅を制御する。また、露光装置1は、各所定領域RXの積算露光量を制御することにより、異なる所定領域RXのパターンEPの接続又は分離を形成し、それによってワークW上に精密なパターンEPを形成することができる。
 例えば、図8に示すように、制御ユニット30は、ワークWと露光パターン形成装置12とを主走査軸に沿って相対移動させ、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光ELの少なくとも一部の光を、ワークWと前記露光パターン形成装置12との相対移動に伴って順次、予定露光領域において主走査軸に沿って所定領域RX(ここではRX1と称する)に隣り合う領域RX2に照射させることによって主走査軸に沿って所定領域RX1に隣り合う領域RX2における露光量を積算させる。なお、ワークWと露光パターン形成装置12との主走査軸に沿った1度の相対移動によって、所定領域RX1と所定領域RX2を露光(所望の露光量を積算)してもよいし、ワークWと露光パターン形成装置12との主走査軸に沿った別々の相対移動によって、所定領域RX1と所定領域RX2を露光(所望の露光量を積算)してもよい。
 制御ユニット30は、露光用素子それぞれを介した露光用光ELの少なくとも一部の光を、ワークWと露光パターン形成装置12とを相対移動させつつ順次、主走査軸に沿って所定領域RX1に隣り合う領域RX2に照射させることによって、主走査軸に沿って所定領域RX1に隣り合う領域RX2における露光量を積算させる。ここで、予定露光領域の所定領域RX1に照射するための複数の露光用素子は、同一の列の複数の露光用素子である。この場合、所定領域RX2の露光に用いる露光パターン形成装置12の複数の露光用素子は、所定領域RX1に用いた複数の露光用素子(第1の露光用素子DM1及び第2の露光用素子DM2)と同じ露光用素子であってもよいし、第1の露光用素子DM1及び第2の露光用素子DM2と同じ列の他の複数の露光用素子であってもよい。
 制御ユニット30は、所定領域RX1と主走査軸に沿って所定領域RX1に隣り合う領域RX2との積算露光量を制御することによって、主走査軸に沿って所定領域RX1に隣り合う領域RX2への露光用光ELによる露光工程を経て所定領域RX1に形成されるパターンEPと主走査軸に沿って所定領域RX1に隣り合う領域RX2に形成されるパターンEPとの主走査軸における間隔Gを制御する。より具体的には、所定領域RX1と所定領域RX2それぞれに形成されるパターンEPのサイズは、所定領域RX1と所定領域RX2それぞれに与える積算露光量によって変化させることができる(図7を参照)。したがって、制御ユニット30は、所定領域RX1と所定領域RX2それぞれに与える積算露光量を制御することによって、所定領域RX1と所定領域RX2それぞれに形成されるパターンEPの主走査軸における間隔Gを制御することができる。
 このように、主走査軸に沿った各領域RX1、RX2の積算露光量の制御によって、主走査軸に沿った異なる領域RX1、RX2におけるパターンEP同士の接続又は分離を制御することが可能となり、それにより、ワークW上において精密なパターンの形成を行うことができる。
 一方で、図4及び図9に示すように、前記制御ユニット30は、ワークWと露光パターン形成装置12と主走査軸に沿って相対移動させ、複数の露光用素子のうちで第1状態の第3の露光用素子DM3を介した露光用光ELの一部の光と、複数の露光用素子のうちで第1状態の第4の露光用素子DM4を介した露光用光ELの一部の光とを、ワークWと露光パターン形成装置12との主走査軸に沿った相対移動に伴って順次、予定露光領域において主走査軸と直交する副走査軸に沿って照射させることにより所定領域RX(ここでは、RY1と称する)に隣り合う領域RY2における露光量を積算させる。なお、ワークWと露光パターン形成装置12との主走査軸に沿った1度の相対移動によって、所定領域RY1と所定領域RY2を露光(所望の露光量を積算)してもよいし、ワークWと露光パターン形成装置12との主走査軸に沿った別々の相対移動によって、所定領域RY1と所定領域RY2を露光(所望の露光量を積算)してもよい。
 具体的には、第3の露光用素子DM3と第4の露光用素子DM4は、同一の列の複数の露光用素子であり、且つ第3の露光用素子DM3及び第4の露光用素子DM4が位置する列は、第1の露光用素子DM1及び第2の露光用素子DM2が位置する列と異なる。また、第1露光用素子と第2露光用素子のDMD上の位置、並びに第3の露光用素子DM3と第4の露光用素子DM4のDMD上の位置は、隣り合っている必要はなく、第1の露光用素子DM1と第2の露光用素子DM2が位置する列と第3の露光用素子DM3と第4の露光用素子DM4の位置する列が隣り合ってさえいればよい。即ち、主走査軸と直交する副走査軸に沿った予定露光領域における所定領域RY1と隣り合う領域RY2に照射するための複数の露光用素子は、同一の列に位置する複数の露光用素子(例えば、第3の露光用素子DM3及び第4の露光用素子DM4)であり、この列と、予定露光領域における所定領域RY1を照射するための複数の露光用素子(例えば、第1の露光用素子DM1及び第2の露光用素子DM2)が位置する列とは、異なり且つ互いに隣り合う。
 このように、制御ユニット30は、所定領域RY1と副走査軸に沿って所定領域RY1に隣り合う領域RY2の積算露光量を制御することによって、所定領域RY1と副走査軸に沿って所定領域RY1に隣り合う領域RY2への露光用光ELによる露光工程を経て所定領域RY1に形成されるパターンEPと副走査軸に沿って所定領域RY1に隣り合う領域RY2に形成されるパターンEPとの副走査軸における間隔Gを制御することができる。より具体的には、所定領域RX1と所定領域RX2それぞれに形成されるパターンEPのサイズは、所定領域RY1と所定領域RY2それぞれに与える積算露光量によって変化させることができる(図7を参照)。したがって、制御ユニット30は、所定領域RY1と所定領域RY2それぞれに与える積算露光量を制御することによって、所定領域RY1と所定領域RY2それぞれに形成されるパターンEPの副走査軸における間隔Gを制御することができる。
 このように、露光装置は、副走査軸に沿った各領域RY1、RY2に対する積算露光量の制御によって、主走査軸に沿った異なる領域RY1、RY2におけるパターンEP同士の接続又は分離を制御することが可能となり、それにより、ワークW上に精密なレイアウトのパターンを形成することができる。
(1-4)斜線状のパターンEPSの形成過程
 次に、図10~図12を参照しながら、斜線状のパターンEPSの形成過程について説明する。図10は、連続露光するパターンを示す説明図である。図11は、従来技術における斜め方向の予定露光領域へのパターンEPの形成過程を示す説明図である。図12は、本実施形態の斜め方向の予定露光領域への露光パターン形成の一例を示す過程説明図である。
 図10に示すように、露光用光ELの走査経路が主走査軸に沿って、露光用光ELに連続露光を行わせる場合、予定露光領域に生成されるパターンEPは直線状を呈する。ここで、連続露光の意味は、制御ユニット30が、第1状態の第1の露光用素子DM1を介した露光用光ELの一部の光と、第1状態の第2の露光用素子DM2を介した露光用光ELの一部の光とを、ワークと露光パターン形成装置とを相対移動させつつ順次、予定露光領域の所定領域RXに照射させることにより所定領域RXにおける露光量を積算させること、即ち、露光パターン形成装置を含む露光ヘッド及びワークが相対移動し続けるようにし、複数の所定領域RXにおいて露光量を積算させることである。また、図10に示すように、本実施例において、複数の所定領域RXにおけるパターンEPは、主走査軸において互いに連続して接続することができ、線状のパターンEPを形成することができる。ここで、パターンEPは、ワークWの露光工程及び現像工程を経て複数の所定領域中に形成される部分的パターンを指し、斜線状のパターンEPSは、複数のパターンEPから構成される全体パターンである。即ち、斜線状のパターンEPSは、ワーク上で露光工程及び現像工程を経て形成されるパターンの全体の輪郭である。
 また、一般的に、図11に示すように、従来の露光方法で斜線状のパターンEPSを形成する場合、異なる列の異なる露光用素子によって対応する異なるパターンEPを形成し、これらの異なるパターンEPの相対位置を制御することによって斜線状のパターンEPSを組み合わせて形成する。しかしながら、図11に示すように、従来の露光方法における予定露光領域の異なる所定領域RXのパターンEP同士の副走査軸方向における幅は、露光用素子同士の幅(ピッチ)に対応して制限される(固定される)。従って、滑らかな輪郭の斜線状のパターンEPSを形成することが困難であった。
 本実施形態では、制御ユニット30は、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光が、所定領域RXに対して副走査軸に沿った予定露光領域の一部領域に照射されるように、コリメート光学系13の変位光学系131によって、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光が照射される領域を変位させるように駆動装置15を制御することができる。
 より具体的には、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光の少なくとも一部の光が、所定領域RXに対して主走査軸と交差する副走査軸に沿った予定露光領域の一部の領域に照射されるように、変位光学系131を光軸に直交する軸に沿って変位させるように駆動装置15を制御する。例えば、本実施形態では、変位光学系131を変位させる方向は、副走査軸の方向である。
 また、本実施例において、例えば、駆動装置15は、露光パターン形成装置12に2次元に配列された互いに隣り合う露光用素子の間隔に対応する予定露光領域における露光用光の少なくとも一部の光の照射間隔よりも小さい照射間隔で露光用光の少なくとも一部の光の照射位置が変位するように、光軸に交差する軸に沿って一部の変位光学系131を変位させる。
 (1-4-1)斜線状のパターンの形成方式
 本実施形態では、図12に示すように、制御ユニット30は、ワークWと露光ヘッドHUが主走査軸に沿った方向への相対移動に伴って、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光ELの一部の光を順次、予定露光領域の一部の領域に照射させることによって、前記領域それぞれにおいて、互いに異なる複数の第1状態の露光用光素子を介した光の照射により露光量を累積させる。ここで、制御ユニット30は、互いに異なる列の複数の露光用素子を介した露光用光ELの少なくとも一部の光による予定露光領域の各領域(RXY1、RXY2、RXY3、RXY4)の積算露光量を上述の方法で制御することで、現像工程を経て形成されるパターンEP1、EP2、EP3、EP4のサイズを制御することによって、斜線状のパターンEPSを形成させることができる。ここで、斜線状のパターンEPSは、複数の領域におけるパターンEP1、EP2、EP3、EP4を接続させて構成される全体のパターンを示す。なお、予定露光領域の各領域(RXY1、RXY2、RXY3、RXY4)は、1つの第1状態の露光用素子を介して露光用光ELの一部の光がワークW上へ照射された領域に対応する。また、各領域(RXY1、RXY2、RXY3、RXY4)を所定領域RXと言い替えることもできる。
 例えば、制御ユニット30は、ワークWと露光ヘッドHUとの主走査軸に沿った第1方向への相対移動に伴って、順次、露光パターン形成装置12の互いに異なる列の複数の第1状態の露光用素子(例えば、図4示す露光用素子DM1、DM2と、露光用素子DM3,DM4)を介したそれぞれの露光用光ELの少なくとも一部の光で、予定露光領域の領域RXY1(所定領域RX)と、領域RXY1に対して主走査軸と副走査軸とに交差する軸に沿った領域RXY3の積算露光量をそれぞれ制御することによって、現像工程を経て所定領域RXY1に形成されるパターンEP1のサイズと、現像工程を経て領域RXY3に形成されるパターンEP3のサイズをそれぞれ制御することができる。
 ワークWと露光ヘッドHUの主走査軸に沿った第1方向への相対移動に伴って、順次、露光を行い、領域RXY1及び領域RXY2の露光を完了させた後、制御ユニット30は、変位光学系131を副走査軸に沿った方向に変位させるように駆動装置15を制御する。この制御ユニット30の制御により、ワークWにおける露光用光ELの照射位置が副走査軸に沿った方向に移動(例えば、図12に示すように副走査軸方向にOTだけ移動)する。更に、制御ユニット30は、主走査軸に沿った第1方向とは反対方向の第2方向へ相対移動させ、同様に、互いに異なる列の複数の第1状態の露光用素子を介したそれぞれの露光用光ELの少なくとも一部の光で、予定露光領域の領域RXY2と、領域RXY2に対して主走査軸と副走査軸とに交差する軸に沿った領域RXY4の積算露光量をそれぞれ制御することによって、現像工程を経て所定領域RXY2に形成されるパターンEP2のサイズと、現像工程を経て領域RXY4に形成されるパターンEP4のサイズをそれぞれ制御することができる。
 このように、主走査軸に沿った第1方向への相対移動に伴い各領域(RXY1、RXY3)を積算露光した後に、変位光学系131を副走査軸に沿った方向に所定量だけ変位させて、主走査軸に沿った第1方向とは反対の第2方向への相対移動に伴い各領域(RXY2、RXY4)を積算露光する工程を繰り返すことによって、現像工程後、斜線状のパターンEPS(パターンEP1、EP2、EP3、EP4を含む斜線状のパターン)をワーク上に形成することができる。この場合、各領域(RXY1、RXY2、RXY3、RXY4)の積算露光量を制御することで、各パターン(EP1、EP2、EP3、EP4)のサイズを各領域(RXY1、RXY2、RXY3、RXY4)よりも小さくすることができるため、滑らかな輪郭の斜線状のパターンEPSを形成することができる。
 即ち、本実施形態において、制御ユニット30は、変位光学系131の変位OTと、主走査軸に沿ったワークWと露光ヘッドHUとの相対移動とをそれぞれ繰り返すと共に、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光ELの少なくとも一部の光を、ワークWと露光パターン形成装置12との相対移動 に伴って順次、予定露光領域における複数の領域それぞれへ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸と副走査軸に交差する軸に沿って露光領域を形成させることができる。
 このように、露光装置1は、複数の領域の積算露光量を制御することにより、ワークW上に精密なパターンを形成することができる。
 例えば、図12の実施形態では、露光用光ELの少なくとも一部のワークWへの照射位置を変位させる変位量OTは、例えば、1つの第1状態の露光用素子を介して露光用光ELの一部の光をワークW上へ照射された領域(言い換えると1つの所定領域RX)における副走査軸方向の幅の半分であるが、本発明はこれに限定するものではなく、変位量は、1つの第1状態の露光用素子を介して露光用光ELの一部の光をワークW上へ照射された領域(言い換えると1つの所定領域RX)の幅よりも小さければよい。更に、変位量の大きさを制御することにより、成形する斜線状のパターンEPSを多種の異なる境界範囲の要件に適用させることができる。
 なお、本実施形態では、変位光学系131を変位させることでワーク(レジスト)上の照射位置を移動させて斜線状のパターンEPSを形成したが、変位光学系131を変位させてワーク上の照射位置を移動させる方法は、斜線状のパターンEPSの形成に限らず、例えば、副走査軸方向に沿って主走査軸方向に沿った直線状のパターンを複数形成する場合など、いかなる形状のパターンの形成にも利用することができる。また、斜線状のパターンEPSの形成に限らず、他のいかなる形状のパターンの形成においても、変位光学系131を変位させてワーク上の照射位置を移動させる方法と、露光パターン形成装置12の複数の露光用素子を介した露光用光ELの少なくとも一部の光によって予定露光領域の所定領域への積算露光量を制御する方法とを組み合わせることができる。
 (1-4-2)変形例:複数の領域
 前記の実施例において、制御ユニット30は、主走査軸又は副走査軸に沿って所定領域RX及び所定領域RXと隣り合う領域に間隔を有するパターンEPを形成するが、本発明は、これに限定するものではない。変形例では、これらは、所定領域RXと異なる複数の領域と隣り合っていなくともよい。
 例えば、図13は、本実施形態の露光パターンの変形例を示す輪郭説明図である。図13に示すように、制御ユニット30は、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光ELの少なくとも一部の光を、ワークWと露光パターン形成装置12との相対移動に伴って順次、予定露光領域における主走査軸に沿った所定領域RXとは異なる複数の領域RXへ照射させることによって、複数の領域RXそれぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて主走査軸に沿って露光領域を形成させることができる。また、露光用素子を介した露光用光ELの少なくとも一部の光を、ワークWと露光パターン形成装置12とを主走査軸に沿って相対移動させつつ順次、予定露光領域における主走査軸に沿った前記複数の領域RXへ照射させる。
 (1-4-3)変形例:副走査軸に沿って相対移動する方式の変更
 前記の実施例では、制御ユニット30は、変位光学系131を変位させることによって複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光を、所定領域RXに対して主走査軸と交差する副走査軸に沿った予定露光領域の一部の領域に照射させることによって露光工程を行っているが、本発明はこれに限定するものではない。
 一変形例において、制御ユニット30は、例えば、ワークWを保持した基板ステージ20を露光ヘッドHUに対して副走査軸に沿って移動させることもできる。この場合、制御ユニット30は、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光を、所定領域RXに対して副走査軸に沿った予定露光領域の一部の領域に照射させるようにワークWと露光パターン形成装置12(露光ヘッドHU)とを副走査軸に沿って相対移動させることもできる。
 より具体的には、本変形例において、制御ユニット30は、主走査軸に沿ったワークWと露光ヘッドHUとの相対移動と、副走査軸に沿ったワークWと露光ヘッドHUとの相対移動とをそれぞれ繰り返し、上記実施例と類似した露光工程を繰り返す。即ち、制御ユニット30は、互いに異なる複数の第1状態の露光用素子それぞれを介した露光用光ELの少なくとも一部の光を、ワークWと露光ヘッドHUとの相対移動に伴って順次、予定露光領域における複数の領域それぞれへ照射させることによって、複数の領域それぞれにおいて、互いに異なる複数の第1状態の露光用素子を介した光の照射により露光量を積算させて 主走査軸と副走査軸に交差する軸に沿って露光領域を形成させる。
 このように、制御ユニット30は、複数の露光用素子の少なくとも一つの露光用素子を介した露光用光ELの少なくとも一部の光を、所定領域RXに対して主走査軸と交差する副走査軸に沿った予定露光領域の一部領域に照射させるようにワークWと露光パターン形成装置12とを相対移動させることもでき、また、露光装置1は、複数の領域の積算露光量に対する制御及び露光パターン形成装置12の露光用素子が反射する露光用光ELの一部の光の主走査軸及び副走査軸における移動に対する制御によって、パターンEPを形成し、ワークW上に精密なレイアウトのパターンを形成することができる。
 上記のように、露光装置1は、複数の領域の積算露光量に対する制御及び露光パターン形成装置12の露光用素子が反射する露光用光ELの一部の光の主走査軸及び副走査軸における移動に対する制御によって、ワークW上に精密なレイアウトのパターンを形成することができる。
 (2)本実施形態の露光パターン計算方法及び欠陥露光用素子の補償方法
 次に、図14~17を参照しながら、ワークW上に形成された露光パターンを計算する方法及び欠陥露光用素子の補償方法について説明する。
 (2-1)制御ユニット30(露光パターン計算機能ブロック)の構造
 まず、図1を参照しながら、露光パターンを形成する過程について説明する。
 本実施形態では、制御ユニット30は、CPU(Central Processing UnitCPU)31、メモリ32、入力部33、操作装置34及び表示装置35を備える。
 CPU31は、露光パターンを計算して露光パターン情報を生成し、また、露光パターン形成装置12の欠陥露光用素子の情報に基づいて補正露光パターン情報を生成する。ここで、欠陥露光用素子の情報は、例えば、露光パターン形成装置12における複数の露光用素子のうちで欠陥露光用素子の位置に関する情報(例えば、欠陥露光用素子のIDや露光パターン形成装置12における欠陥露光用素子の座標)である。また、CPU31は、露光パターンのレイアウトを算出し、複数の露光用素子を第1状態(オン状態)にする順序及びタイミングを制御する。具体的には、CPU31は、必要な計算条件を満たす露光パターンを計算するための最適化問題または数学的計画問題を解決し、それによって露光パターンを計算する。必要な計算条件の具体例としては、露光量(DOSE量)及び焦点深度(Depth Of Focus,DOF)を最適化(いわゆるプロセスウィンドウ最適化)する条件が挙げられる。
 CPU31は、実質上、電子設計自動化(Electronic Design Automation、EDA)ツールとして機能を発揮することもできる。例えば、CPU31は、CPU31に露光パターンの計算動作を実行させるためのコンピュータプログラムを実行することにより、EDAツールとして機能を発揮することもできる。
 メモリ32は、CPU31に露光パターンの計算動作を実行させるためのコンピュータプログラムを保存する。ただし、CPU31に露光パターンの計算動作を実行させるためのコンピュータプログラムは、外部のメモリデバイス(例えば、ハードディスク又は光ディスク)等に記録することもできる。メモリ32は、更に、CPU31による露光パターンの計算動作中に生成された中間データを一時的に記憶する。
 入力ユニット33は、CPU31に露光パターンの計算動作を実行させるための各種データの入力を受け付ける。例えば、ワークW上に形成される露光パターンを示す露光パターン情報及び露光パターン形成装置12の欠陥露光用素子の情報などの入力を受け付けてもよい。
 操作装置34は、ユーザの制御ユニット30に対する操作を受け取る。操作装置34は、例えば、キーボード、マウス及びタッチパネルのうちの少なくとも1つを含む。CPU31は、操作装置34によって受け取られるユーザの操作に従って、露光パターンの計算動作を実行することもできる。但し、制御ユニット30は、操作装置34を備えない場合もある。
 表示装置35は、必要な情報を表示することができる。例えば、表示装置35は、制御ユニット30の状態を示す情報を直接的または間接的に表示することもできる。例えば、表示装置35は、制御ユニット30によって計算された露光パターンを直接的または間接的に表示することもできる。例えば、表示装置35は、露光パターンの計算動作に関連する任意の情報を直接的または間接的に表示することもできる。但し、制御ユニット30は、表示装置35を備えない場合もある。
 (2-2)露光パターンの計算動作と欠陥露光用素子の補償
 次に、図14、図15を参照しながら、制御ユニット30によって実行される光パターンの計算動作について説明する。図14は、本実施形態の露光パターン形成装置12における欠陥露光用素子の位置を示す説明図である。図15は、本実施形態の露光パターン形成装置12の異なる露光用素子の対応する予定露光領域への露光過程を示す説明図である。なお、欠陥露光用素子とは、例えば、故障により第1状態(オン状態)と第2状態(オフ状態)との切替えが出来なくなった露光用素子や、損傷や欠落した露光用素子などを含む。
 本実施形態では、制御ユニット30が備えるCPU31は、露光パターンを示す露光パターン情報を生成する。具体的には、露光パターン情報は、規定の設計ルール(design rule)を満たすように算出された露光パターンの内容(即ち、パターンレイアウト)を表すデータであり、ワーク上における予定露光領域の位置に関する情報と、予定露光領域の各領域における積算露光量に関する情報を含む。
 そして、制御ユニット30は、露光パターン情報に基づいて、ワークWと露光パターン形成装置12との相対移動に伴って、複数の露光用素子の少なくとも一部の露光用素子を第1状態又は第2状態に切り替える。
 また、制御ユニット30は、複数の露光用素子における欠陥露光用素子の情報に基づいて、予定露光領域の所定領域RXの積算露光量が所定の露光量になるように、複数の露光用素子のうち、欠陥露光用素子以外の第1状態の露光用素子を介した露光用光ELの一部の光を、ワークWと露光パターン形成装置12との相対移動に伴って、所定領域RXに照射させる。
 露光パターン形成装置12に含まれる複数の露光用素子のうちの第1部分の露光用素子の少なくとも一つの露光用素子が欠陥露光用素子の場合、複数の露光用素子のうちの第1部分とは異なる第2部分の露光用素子は、欠陥露光用素子の代わりに所定領域RXの積算露光量が所定の露光量になるように露光に用いられる。
 複数の露光用素子のうちの同じ列に第1部分の一部と第2部分の一部が含まれ、前記列における第1部分の一部の前記露光用素子のうちで少なくとも一つの露光用素子が欠陥露光用素子の場合、欠陥露光用素子の代わりに前記列における第2部分の一部の露光用素子のうちで少なくとも一つの露光用素子を介した露光用光ELの一部の光を、ワークWと露光パターン形成装置12との相対移動に伴って、前記所定領域RXに照射させる。
 例えば、本実施形態では、図14に示すように、露光パターン形成装置12の第1領域R1内の一部の露光用素子a、b、c(言い換えると、露光パターン形成装置12に含まれる複数の露光用素子の第1部分の露光用素子の少なくとも1つの露光用素子)に欠陥があると(つまり、露光用素子a、b、cが欠陥露光用素子の場合)、それを介した露光用光ELを予定通りにワークWの所定領域RXに照射させることができなくなるため、ワークWの所定領域RX(露光パターン)の露光量が不足する。この場合、制御ユニット30は、欠陥露光用素子a、b、cの代わりに露光パターン形成装置12の第2領域R2の一部の露光用素子a1、b1、c1(言い換えると、露光パターン形成装置12に含まれる複数の露光用素子のうちの第2部分の露光用素子)を使用して露光用光ELを所定領域RXに照射するように制御することができる。即ち、露光パターン形成装置12の第2領域R2における露光用素子は、露光パターン形成装置12の第1領域R1における欠陥露光用素子の代替として使用することができる。なお、露光パターン形成装置12の第2領域R2における露光用素子は、露光パターン形成装置12の第1領域R1における露光用素子に欠陥露光用素子が無い場合には露光用光ELの照射(露光)には使用せず、露光パターン形成装置12の第1領域R1に欠陥露光用素子が含まれた場合にその欠陥露光用素子の代わりに露光用光ELの照射(露光)に使用する予備の露光用素子としてもよい。
 次に、図15を参照し、図15の(a)は、露光パターン形成装置12における欠陥のない第1列の露光用素子EU1に対応する所定領域RXの露光過程を示しており、図15の(b)は、露光パターン形成装置12における欠陥を有する露光用素子aを含むの第2列の露光用素子EU2が対応する所定領域RXの露光過程を示しており、図15の(b)は、露光パターン形成装置12に欠陥を有する露光用素子b、cを含むの第3列の露光用素子EU3に対応する所定領域RXの露光過程を示している。なお、図15のいずれの図も、同じ列の複数の露光用素子を介した露光用光ELを、ワークWと露光パターン形成装置12との相対移動に伴って順次、1つの所定領域RXに照射させることにより所定領域RXへの露光量が積算される概念を示した図である。
 図15(a)に示すように、第1列の露光用素子EU1には欠陥露光用素子がないため、第1状態の第1列の露光用素子EU1の第1領域R1の露光用素子を介した露光用光ELの少なくとも一部の光は、対応する所定領域RXを順に照射した後、その対応する所定領域RXの積算露光量は所望の量となる。一方で、図15の(b)に示すように、第1列の露光用素子EU1は欠陥露光用素子aを有する。欠陥露光用素子aを介した露光用光ELを予定通りにワークWの所定領域RXに照射させることができなくなるため、欠陥露光用素子aに対応する所定領域RXへの積算露光量は増えない。一方、露光パターン形成装置12の第2領域R2の露光用素子a1を使用して露光用光ELを所定領域RXに照射するように制御することができる。そのため、第1状態の露光用素子a1を介した露光用光ELの少なくとも一部の光は、所定領域RXに照射でき、所定領域RXへの積算露光量は増える。これにより、欠陥露光用素子aの代わりに露光パターン形成装置12の第2領域R2の露光用素子a1が対応する所定領域RXに対する照射を行うことによって、その所定領域RXの積算露光量は所望の量となる。
 同様に、第2列の露光用素子EU2には欠陥露光用素子b、cを有する。欠陥露光用素子b、cを介した露光用光ELを予定通りにワークWの所定領域RXに照射させることができなくなるため、欠陥露光用素子b、cに対応する所定領域RXへの積算露光量は増えない。一方、露光パターン形成装置12の第2領域R2の露光用素子b1、c1を使用して露光用光ELを所定領域RXに照射するように制御することができる。そのため、第1状態の露光用素子b1、c1を介した露光用光ELの少なくとも一部の光は、所定領域RXに照射でき、所定領域RXへの積算露光量は増える。これにより、欠陥露光用素子b、cの代わりに露光パターン形成装置12の第2領域R2の露光用素子b1、c1は、対応する所定領域RXに対する照射を順次、行うことによって、その所定領域RXの積算露光量が所望の量となる。
 このように、露光パターン形成装置12の欠陥露光用素子がある場合、露光パターン形成装置12の他の正常な露光用素子を用いて補償することができるため、ワークW上の予定露光領域に所望の積算露光量を付与することができ、しいては、所望のパターンを形成することができる。
 (2-3)本実施形態の検出光学系50
 本実施形態では、露光装置1に検出光学系50を設けることができ、検出光学系50には検出ユニットDUを設けることができる。検出ユニットDUは、複数の露光用素子の少なくとも一部を介した露光用光ELの少なくとも一部の光の強度分布を検出し、且つ制御ユニット30は、検出ユニットDUが検出した光強度分布に基づき、二次元に配列された欠陥露光用素子の位置に関する情報を含む欠陥露光用素子の情報を生成する。例えば、制御ユニット30は、露光パターン形成装置12の少なくとも一部の露光用光ELによって検出用光DLを形成し、且つ検出ユニットDUが検出用光DLの光路上に配置されるように制御することができる。このように、検出ユニットDUは、検出用光DLの光強度分布を検出し、露光パターン形成装置12の二次元に配列された欠陥露光用素子の情報として、例えば、欠陥露光用素子の位置に関する情報を取得することができ、検出ユニットDUは、制御ユニット30と電気的に接続され、欠陥露光用素子の情報をフィードバックして、制御ユニット30に保存することができる。なお、検出ユニットDUは、CCDやCMOSなどの撮像素子であってもよいし、他の既存の光検出装置であってもよい。なお、露光装置1に検出ユニットDUを設けなくてもよい。例えば、露光装置1とは別に設けられた検査装置を利用し、既存の方法で露光パターン形成装置12のオン状態の各露光用素子に光を照射し、露光パターン形成装置12のオン状態の各露光用素子からの光の強度を検出することによって、検出した光の強度が閾値以下の露光用素子を欠陥露光用素子として欠陥露光用素子の情報を生成してもよい。そして、生成した欠陥露光用素子の情報を入力部33を介して制御装置30に入力してもよい。なお、この方法に限られず、他の既存の方法を利用して欠陥露光用素子の情報を生成してもよい。
 次に、図16及び図17を参照しながら、本実施形態の検出光学系50の異なる例について説明する。図16は、本実施形態の検出光学系50の一例を示す構造説明図である。図17は、本実施形態の検出光学系50の別の例を示す構造説明図である。
 図16に示すように、本実施形態の一例の露光装置1は、検出光学系50を更に含み、且つ検出光学系50は、検出用コリメータ光学系51、対物光学系14と同じ構造を有する検出用対物光学系52、及び検出ユニットDUを含む。
 露光装置1が露光工程を実行する前に、本実施形態の露光装置1の制御ユニット30は、露光ヘッドHUを基板ステージ20の範囲外に移動させ、露光ヘッドHUに搭載された対物光学系14に検出光学系50の検出用対物光学系52と位置合わせをさせ、且つ制御ユニット30は、検出用対物光学系52を対物光学系14と水平面に対して対称に配置させる。このように、検出用コリメータ光学系51と検出用対物光学系52は、対物光学系14からの露光用光ELの光路上に配置される。また、コリメート光学系13と対物光学系14の組み合わせ、及び検出用コリメータ光学系51と検出用対物光学系52の組み合わせの光屈折力の大きさは同じであるが、但し、正と負が反対になっている。言い換えれば、検出用コリメータ光学系51及び検出用対物光学系52の組み合わせの光学効果は、コリメート光学系13及び対物光学系14の組み合わせの光学効果と実質的に反対であり、露光パターン形成装置12を介した露光用光ELの結像情報を復元することに用いることができる。
 制御ユニット30は、露光パターン形成装置12の全ての露光用素子を第1状態(オン状態)にし、それを介した露光用光ELをコリメート光学系13、対物光学系14、検出用対物光学系52、及び検出用コリメータ光学系51を順に介した後に検出ユニットDUに結像させるように制御する。なお、対物光学系14からの露光用光ELが検出光学系50(検出用対物光学系52)に入射した場合、その入射した露光用光ELは検出ユニットDUに検出される光となることから、検出光学系50に入射した露光用光ELを検出用光DLと言い替えることもできる。このようにして、露光パターン形成装置12による露光用光ELの光強度分布の情報を得ることができ、露光パターン形成装置12の複数の露光用素子の少なくとも一つが欠陥露光用素子の場合、検出ユニットDUで検出された光強度分布の一部の強度が所定の閾値以下となる。このようにして、露光パターン形成装置12の二次元に配列された欠陥露光用素子の情報(例えば、欠陥露光用素子の位置に関する情報)を取得することができる。
 また、図16に示すように、検出ユニットDUは、前述の一次結像位置の光路後端に配置することができ、検出ユニットDUの前方に配置された結像レンズによって検出ユニットDUに結像することができる。また、この結像レンズは、露光用光ELによって形成される像のサイズを対応して調整することに用い、露光用光ELによって形成される像のサイズを検出ユニットDUの検出面のサイズに対応させることができる。例えば、露光パターン形成装置12の全体のサイズが検出ユニットDUの検出面のサイズよりも大きい場合、結像レンズは、露光用光ELによって形成される像のサイズを縮小するように設計することができる。露光パターン形成装置12の全体のサイズが検出ユニットDUの検出面のサイズよりも小さい場合、結像レンズは、露光用光ELによって形成される像のサイズを拡大するように設計することができる。露光パターン形成装置12の全体のサイズが検出ユニットDUの検出面のサイズと等しい場合、結像レンズは、露光用光ELによって形成される像のサイズを調整しないように設計することができ、或いは、検出ユニットDUの検出面を露光用光ELが、コリメート光学系13、対物光学系14、検出用対物光学系52、検出用コリメータ光学系51を順に介した後の一次結像位置に直接配置して結像レンズを別途設置不要にすることもできる。
 一方、上記の一例の露光装置1は、露光装置1が露光工程を行う前に、露光パターン形成装置12の欠陥露光用素子の情報を取得するが、別の例の露光装置1では、露光装置1の露光パターン形成装置12の隣に検出ユニットDUを設置して、露光装置1が露光工程を実行すると同時に、二次元に配列された欠陥露光用素子の位置に関する情報を取得することに用いることができる。
 図17に示すように、露光装置1が露光工程を実行すると同時に、露光パターン形成装置12の第2状態(オフ状態)になっている複数の露光用素子を介した露光用光ELは、検出用光DLとして既存の光学系を介して、光路上に配置された検出ユニットDUで検出される。そして、検出ユニットDUは、検出した検出用光DLの光強度分布を取得する。検出ユニットDUは、取得した検出用光DLの光強度分布を制御ユニット30に入力する。ここで、制御ユニット30は、検出用光DLの光強度分布と所定露光パターン情報と比較して、2つが相補的である場合、それは制御ユニット30によって制御される露光用素子の第1状態(オン状態)と第2状態(オフ状態)が露光パターンを形成するために必要な状態と一致しており、欠陥露光用素子は存在しないことを表す。一方、両者が相補的でない場合、制御ユニット30が制御する露光用素子の第1状態(オン状態)と第2状態(オフ状態)が、露光パターンを形成するために必要な状態と一致しないことを表し、この時、露光パターン形成装置12に欠陥露光用素子が存在することを表す。このようにして、制御ユニット30は、欠陥露光用素子の情報を取得することができる。
 (3)本実施形態のムラ対策
 次に、図18~図19を参照しながら、本実施形態のムラ対策について説明する。図18は、従来の露光方法における異なる露光ヘッドが対応する予定露光領域に形成する露光パターンの一例を示す構造説明図である。図19は、本実施形態の異なる露光ヘッドが対応する予定露光領域に形成する露光パターンの一例を示す構造説明図である。図20は、本実施形態の異なる露光ヘッドが対応する予定露光領域に形成する露光パターンの別の例を示す構造説明図である。
 例えば、光装置1は複数の露光ヘッドHUを有する場合、各露光ヘッドHUは、ワークW上における異なる予定露光領域に対応し、その上に所望の露光パターンを形成する。また、露光装置1のそれぞれの露光ヘッドHUが1つの予定露光領域の所望の露光パターンを完成した後、制御ユニット30は、ワークWと露光パターン形成装置12が配置された露光ヘッドHUを副走査軸に相対移動させ、この露光ヘッドHUに対応する別の予定露光領域の露光を開始させる。このようにして、この露光ヘッドHUに対応する異なる予定露光領域の露光を絶えず繰り返した後、ワークW上の全ての予定露光領域の所望の露光パターンを完成することができる。
 しかしながら、異なる露光ヘッドHUを用いて予定露光領域を露光する場合、互いに異なる露光ヘッドHUの露光パターン形成装置12同士の特性の差異により、形成する露光パターンの特性にも差異が生じる。例えば、互いに異なる露光ヘッドHUの露光パターン形成装置12を用いてそれぞれの予定露光領域に与えられる露光量の分布が異なる。そして、この予定露光領域に与えられる露光量の分布が異なる場合、現像を経て形成されるパターンの形状も変わる。したがって、図18に示すように、同じ露光ヘッドHUに対応する複数の予定露光領域が副走査軸に互いに接続されている場合、これらの予定露光領域への露光及び現像によって形成されるパターンブロックにおいて、形成される特性が一致した露光パターンのブロックも大きくなって、現像を経て形成されるパターンの形状変化も認識され易くなる。このように、互いに異なる露光ヘッドHUの露光パターン形成装置12を用いてそれぞれの予定露光領域に与えられる予定露光領域における露光量の分布が異なる場合、現像を経て形成されるパターンの形状変化により、視覚ムラはより認識され易くなる。なお、後述するように、図18では、第1露光ヘッドで露光する予定の露光領域を第1予定露光領域ER1と表し、第2露光ヘッドで露光する予定の露光領域を第2予定露光領域ER2と表している。
 これに対して、本実施形態では、異なる露光ヘッドHUに対応する予定露光領域を交互に配置する設計によって、異なる露光ヘッドHUによって形成される露光パターンの形状変化が認識される可能性を低減することができる。
 例えば、図19に示すように、本実施形態の露光装置は、露光パターン形成装置12を含む露光光学系10が搭載される第1露光ヘッド及び露光パターン形成装置12を含む露光光学系10が搭載される第2露光ヘッドを含み、第1露光ヘッドは、露光用光ELの少なくとも一部の光をワークWの第1予定露光領域ER1に対応して照射することに用いられ、第2露光ヘッドは、露光用光ELの少なくとも別の一部の光をワークWの第2予定露光領域ER2に対応して照射することに用いられる。第1予定露光領域ER1と第2予定露光領域ER2は、主走査軸に沿って延伸し、主走査軸と直交する副走査軸に沿って並んで配置され、制御ユニット30は、主走査軸にワークWと露光パターン形成装置12が配置されている第1露光ヘッド及び第2露光ヘッドを相対移動させ続けることにより、露光用光ELを1つの第1予定露光領域ER1と1つの第2予定露光領域ER2に照射させ、且つ制御ユニット30は、上記工程の後、ワークW及び露光パターン形成装置12が配置された第1露光ヘッド及び第2露光ヘッドを副走査軸に相対移動させ、それから、制御ユニット30は、露光用光ELの複数の部分の光を別の第1予定露光領域ER1と別の第2予定露光領域ER2に照射させる。
 更に、図19に示すように、任意の第2予定露光領域ER2は、2つの第1予定露光領域ER1の間に位置する。例えば、上記配置を形成する方法は、第1露光ヘッドと第2露光ヘッドの間隔が第1予定露光領域ER1と第2予定露光領域ER2の間隔よりも広い間隔となっている場合、第1露光ヘッドは、主走査軸の第1方向への移動で第1予定露光領域ER1を露光して、副走査軸方向へ移動して、主走査軸の第1方向とは逆の第2方向への移動で別の第1予定露光領域ER1を露光することを繰り返す。
 制御ユニット30は2つの第1予定露光領域ER1間の間隔を1つの第2予定露光領域ER2の幅(サイズ)に相当するように制御する。第2露光ヘッドは、主走査軸の第1方向への移動でこの第2予定露光領域に相当する部分を露光して、2つの第1予定露光領域ER1に隣接する第2予定露光領域ER2への露光を完成することができる。次に、第2露光ヘッドは、副走査軸方向へ移動し、主走査軸の第1方向とは逆の第2方向への移動で別の2つの第1予定露光領域ER1間の間隔に次の第2予定露光領域ER2を露光することを繰り返す。このように、図19に示すように、異なる露光ヘッドに対応する予定露光領域がワークW上に交互に配置されるため、現像を経て形成される全体の露光パターンの形状変化の視覚的不均一性を平均化することができ、それによって視認できる欠陥(ムラ)の出現を回避することができる。
 また、本実施形態では、同じ露光ヘッドHUに対応する予定露光領域の部分を適切に接続させることもでき、接続された部分の予定露光領域によって形成される領域が一定の程度の幅よりも小さい限り、形成された全体の露光パターンの視覚的な不均一性を平均化させることができる。例えば、図20に示すように、本実施形態の別の例では、第1予定露光領域ER1が別の第1予定露光領域ER1と隣り合って第1予定露光領域群を形成し、且つ任意の第1予定露光領域群が2つの第2予定露光領域ER2の間に位置する。例えば、同様に、第1露光ヘッドは、主走査軸の第1方向への移動で第1予定露光領域ER1を露光して、副走査軸方向へ移動して、主走査軸の第1方向とは逆の第2方向への移動で別の第1予定露光領域ER1を露光することを繰り返す。且つ、制御ユニット30は、第1予定露光領域ER1が別の第1予定露光領域ER1と隣り合って第1予定露光領域群を形成し、2つの第1予定露光領域群間の間隔を2つの第2所定露光領域の幅に相当するように制御する。
 なお、第2露光ヘッドは、主走査軸の第1方向への移動でこの2つの第1予定露光領域群間の間隔を露光して、1つの第1予定露光領域ER1に隣接する1つの第2予定露光領域ER2への露光を完成する。次に、第2露光ヘッドは、副走査軸方向へ移動し、主走査軸の第1方向とは逆の第2方向への移動でこの第1予定露光領域ER1間の間隔の未露光部分を露光して、前記第2予定露光領域に隣接する別の第2予定露光領域ER2を露光する。次に、第2露光ヘッドは、副走査軸方向へ移動し、主走査軸への移動で別の2つの第1予定露光領域群間の間隔に次の第2予定露光領域ER2を露光することを繰り返す。
 このように、図20に示すように、異なる露光ヘッドHUが対応する予定露光領域において局部的に交互に配置されることもできるため、現像を経て形成される全体の露光パターンの形状変化の視覚的不均一性を平均化することができ、視認できる欠陥(ムラ)の出現を回避することができる。
 本実施形態では、露光装置1は、予定露光領域の各所定領域RXへの積算露光量を制御することによって、異なる所定領域RXにおける露光パターンの接続又は分離を形成し、それにより、ワークW上に精密なレイアウトのパターンを形成することができる。また、露光装置1は、変位光学系131により露光パターン形成装置12の露光用素子に反射される露光用光ELの副走査軸における移動を制御することによって、ワークW上により精密なレイアウトのパターンを形成することができる。更に、露光装置は、露光パターン形成装置の異なる領域の露光用素子を制御することによって、所定領域RXにおける露光パターンの欠陥領域への照射を完成することができ、ワークW上の予定露光領域に所望の露光パターンを形成することができる。また、露光装置は、異なる露光ヘッドHU(つまり、異なる露光パターン形成装置)に対応する予定露光領域の設計を交互に配置することにより、異なる露光ヘッドHU(つまり、異なる露光パターン形成装置)によって現像を経て形成される全体の露光パターンの形状変化が認識される可能性を低減することができ、視認できる欠陥(ムラ)の出現を回避することができる。
 本文は以上の実施例のように示したが、本発明を限定するためのものではなく、当業者が本発明の精神の範囲から逸脱しない範囲において、変更又は修正することが可能であるが故に、本発明の保護範囲は後続の特許請求の範囲に定義しているものを基準とする。
 例えば、本実施形態では、露光パターン形成装置12は、デジタルマイクロミラー装置の形態で例示されるが、他の実施形態では、露光パターン形成装置12は、別のタイプの空間光変調器(Spatial Light Modulator,SLM)であってもよく、例えば、露光パターン形成装置12は、光反射性の液晶オンシリコンパネル(liquid-crystal-on-silicon panel,LCOS panel)、光透過性液晶パネル又は他の光変調器であることができる。いずれのタイプの空間光変調器も複数の露光用画素を有する。各露光用画素の状態は第1状態(オン状態)と第2状態(オフ状態)とに切替え可能であって、第1状態では、その第1状態の露光用素子を介した露光用光ELの少なくとも一部の光がワークWに入射し、第2状態では、その第1状態の露光用素子を介した露光用光ELの少なくとも一部の光がワークWに入射しない。
 また、前記の実施例において、変位光学系131を変位させる方向は、副走査軸の方向であるが、他の実施例において、変位光学系131を変位させる方向は、副走査軸とはならない可能性もある。
 なお、前記の実施例において、基板ステージ20は、X軸方向及びY軸方向に沿って移動可能としたが、他の実施例において、基板ステージ20の移動に代えて/加えて、露光ヘッドHUが露光光学系10及びオートフォーカス光学系40を保持した状態で、X軸方向及びY軸方向に沿って移動可能であってもよい。例えば、露光ヘッドHUは、任意のモータを含む露光ヘッド駆動システムの動作により、X軸方向に沿って移動することができる。露光ヘッドHUは、X軸方向に移動可能であることに加えて、Y軸方向及びZ軸方向の少なくとも一方に沿って移動可能である。
 本発明は、微細なパターン成形が可能となる露光装置を提供する。
1 露光装置
10 露光光学系
11 露光光源
12 露光パターン形成装置
13 コリメート光学系
14 対物光学系
15 駆動装置
20 基板ステージ 
30 制御ユニット 
40 オートフォーカス光学系
41 オートフォーカス光源
42 オートフォーカス用コリメータレンズ群
43 第1オートフォーカス用検出光学系
44 第2オートフォーカス用検出光学系
50 検出光学系
51 検出用コリメータ光学系
52 検出用対物光学系
131 変位光学系
132 変倍光学系
132a 第1レンズ群
132b 第2レンズ群
132c 第3レンズ群
132d 第4レンズ群
AL オートフォーカスパターン画像ビーム
DL 検出用光
DN ダイクロイックミラー
DU 検出ユニット
EL 露光用光
EP、EP1、EP2、EP3、EP4 パターン
DM1、DM2、DM3、DM4 露光用素子
ER1 第1予定露光領域
ER2 第2予定露光領域
EU1 第1列の露光用素子
EU2 第2列の露光用素子
EU3 第3列の露光用素子
G 間隔
HU 露光ヘッド
O 光軸
Px1、Px2、Px3 サイズ
Td 閾値
R1 第1領域
R2 第2領域
W ワーク

Claims (29)

  1.  露光用光を射出する光源と、
     前記露光用光の少なくとも一部の光路上に配置される露光パターン形成装置と、
     前記露光パターン形成装置と電気的に接続される制御ユニットと、
     を備え、
     前記露光パターン形成装置は、複数の露光用素子を備え、
     前記複数の露光用素子の少なくとも一つの露光用素子は、ワークの予定露光領域に前記露光用光の少なくとも一部の光を照射させることに用いられ、
     前記制御ユニットは、
     各前記露光用素子を第1状態又は第2状態に切り替えることにより、各前記露光用素子を介した前記露光用光が前記ワークに照射されるか否かを制御し、
     前記複数の露光用素子のうちで前記第1状態の第1の露光用素子を介した前記露光用光の一部の光と、前記複数の露光用素子のうちで前記第1の露光用素子とは異なる前記第1状態の第2の露光用素子を介した前記露光用光の一部の光とを、前記ワークと前記露光パターン形成装置との相対移動に伴って順次、前記予定露光領域の所定領域に照射させることにより前記所定領域における露光量を積算させる、露光装置。
  2.  前記複数の露光用素子は、2次元に配列されており、
     前記第1の露光用素子と前記第2の露光用素子は、前記複数の露光用素子のうちで同じ列の互いに異なる露光用素子である、請求項1に記載の露光装置。
  3.  前記制御ユニットは、前記ワークと前記露光パターン形成装置との相対移動に伴って順次、前記予定露光領域の前記所定領域に前記露光用光の一部の光を照射する前記第1状態の露光用素子の数に基づいて前記所定領域における積算露光量を制御する、請求項1または2に記載の露光装置。
  4.  前記制御ユニットは、前記第1状態の露光用素子の数に基づいて、前記所定領域における積算露光時間を制御する、請求項3に記載の露光装置。
  5.  前記制御ユニットは、前記所定領域における積算露光量を制御することによって、前記所定領域への前記露光用光による露光工程を経て前記所定領域に形成されるパターンの幅を制御する、請求項1から4のいずれか1項に記載の露光装置。
  6.  前記露光用素子を介した前記露光用光の一部の光が前記予定露光領域に照射された領域における中心部分の光量は照射された領域における周辺部分の光量よりも大きい請求項1から5のいずれか1項に記載の露光装置。
  7.  前記露光パターン形成装置は、デジタルミラーデバイスであり、
     前記露光用素子は、前記露光用光の一部の光を反射する反射面を有するミラー素子である請求項6に記載の露光装置。
  8.  前記制御ユニットは、前記第1状態の第1の露光用素子を介した前記露光用光の一部の光と、前記第1状態の第2の露光用素子を介した前記露光用光の一部の光とを、前記ワークと前記露光パターン形成装置とを相対移動させつつ順次、前記予定露光領域の前記所定領域に照射させることにより前記所定領域における露光量を積算させる請求項1から7のいずれか1項に記載の露光装置。
  9.  前記露光パターン形成装置からの前記露光用光の少なくとも一部の光をコリメートするコリメート光学系と、
     前記コリメート光学系から射出された前記露光用光の少なくとも一部の光を前記ワークに向けて集光する対物光学系と、
     前記コリメート光学系の一部の光学部材を前記対物光学系の光軸に交差する軸に沿って変位させる駆動装置と、を更に備える、請求項1から請求項8のいずれか1項に記載の露光装置。
  10.  前記制御ユニットは、
     前記第1状態の前記第1の露光用素子を介した前記露光用光の一部の光と、前記第1状態の前記第2の露光用素子を介した前記露光用光の一部の光とを、前記ワークと前記露光パターン形成装置との主走査軸に沿った相対移動に伴って順次、前記所定領域に照射させることにより前記所定領域における露光量を積算させ、
     更に、前記複数の露光用素子の少なくとも一つの露光用素子を介した前記露光用光の少なくとも一部の光が、前記所定領域に対して前記主走査軸と交差する副走査軸に沿った前記予定露光領域の一部の領域に照射されるように、前記一部の光学部材を前記光軸に交差する軸に沿って変位させるように前記駆動装置を制御する、請求項9に記載の露光装置。
  11.  前記露光パターン形成装置の前記複数の露光用素子は、2次元に配列されており、
     前記駆動装置は、2次元に配列された互いに隣り合う露光用素子の間隔に対応する前記予定露光領域における前記露光用光の少なくとも一部の光の照射間隔よりも小さい照射間隔で前記露光用光の少なくとも一部の光の照射位置が変位するように、前記光軸に交差する軸に沿って前記一部の光学部材を変位させる、請求項9または10に記載の露光装置。
  12.  前記副走査軸は、前記主走査軸に直交する軸であり、
     前記制御ユニットは、
     前記光軸に交差する軸に沿った前記一部の光学部材の変位と、前記主走査軸に沿った前記ワークと前記露光パターン形成装置との相対移動とをそれぞれ繰り返すと共に、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置との前記相対移動に伴って順次、前記予定露光領域における複数の領域それぞれへ照射させることによって、前記複数の領域それぞれにおいて、互いに異なる複数の前記第1状態の前記露光用素子を介した前記光の照射により露光量を積算させて前記主走査軸と前記副走査軸に交差する軸に沿って露光領域を形成させる、請求項9から11のいずれか1項に記載の露光装置。
  13.  前記制御ユニットは、
     前記ワークと前記露光パターン形成装置とを主走査軸に沿って相対移動させ、
     更に、前記ワークと前記露光パターン形成装置とを前記主走査軸と交差する副走査軸に沿って相対移動させ、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置との前記副走査軸に沿った相対移動に伴って、順次、前記所定領域に対して前記副走査軸に沿った前記予定露光領域の一部領域に照射させることにより露光量を積算させる請求項1から8のいずれか1項に記載の露光装置。
  14.  前記副走査軸は、前記主走査軸に直交する軸であり、
     前記制御ユニットは、
     前記主走査軸に沿った前記ワークと前記露光パターン形成装置との相対移動と、前記副走査軸に沿った前記ワークと前記露光パターン形成装置との相対移動とをそれぞれ繰り返すと共に、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置との前記相対移動に伴って順次、前記予定露光領域における複数の領域それぞれへ照射させることによって、前記複数の領域それぞれにおいて、互いに異なる複数の前記第1状態の前記露光用素子を介した前記光の照射により露光量を積算させて前記主走査軸と前記副走査軸に交差する軸に沿って露光領域を形成させる、請求項12に記載の露光装置。
  15.  前記制御ユニットは、
     前記ワークと前記露光パターン形成装置とを主走査軸に沿って相対移動させ、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置との前記相対移動に伴って順次、前記予定露光領域において前記主走査軸に沿って前記所定領域に隣り合う領域に照射させることによって前記主走査軸に沿って前記所定領域に隣り合う領域における露光量を積算させる、請求項1から14のいずれか1項に記載の露光装置。
  16.  前記制御ユニットは、
     前記所定領域と前記主走査軸に沿って前記所定領域に隣り合う領域との積算露光量を制御することによって、前記主走査軸に沿って前記所定領域に隣り合う領域への前記露光用光による露光工程を経て前記所定領域に形成されるパターンと前記主走査軸に沿って前記所定領域に隣り合う領域に形成されるパターンとの前記主走査軸における間隔を制御する、請求項15に記載の露光装置。
  17.  前記制御ユニットは、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置とを前記相対移動させつつ順次、前記主走査軸に沿って前記所定領域に隣り合う領域に照射させることによって、前記主走査軸に沿って前記所定領域に隣り合う領域における露光量を積算させる、請求項15または16に記載の露光装置。
  18.  前記制御ユニットは、
     前記ワークと前記露光パターン形成装置とを主走査軸に沿って相対移動させ、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置との前記相対移動に伴って順次、前記予定露光領域における前記主走査軸に沿った前記所定領域とは異なる複数の領域へ照射させることによって、前記複数の領域それぞれにおいて、前記互いに異なる複数の前記第1状態の前記露光用素子を介した前記光の照射により露光量を積算させて前記主走査軸に沿って露光領域を形成させる、請求項1から14のいずれか1項に記載の露光装置。
  19.  前記制御ユニットは、
     互いに異なる複数の前記第1状態の前記露光用素子それぞれを介した前記露光用光の少なくとも一部の光を、前記ワークと前記露光パターン形成装置とを前記主走査軸に沿って相対移動させつつ順次、前記予定露光領域における前記主走査軸に沿った前記複数の領域へ照射させることによって、前記複数の領域それぞれにおいて、前記互いに異なる複数の前記第1状態の前記露光用素子を介した前記光の照射により露光量を積算させて前記主走査軸に沿って露光領域を形成させる、請求項18に記載の露光装置。
  20.  前記制御ユニットは、
     前記ワークと前記露光パターン形成装置と主走査軸に沿って相対移動させ、
     前記複数の露光用素子のうちで前記第1状態の第3の露光用素子を介した前記露光用光の一部の光と、前記複数の露光用素子のうちで前記第1状態の前記第4の露光用素子を介した前記露光用光の一部の光とを、前記ワークと前記露光パターン形成装置との前記主走査軸に沿った相対移動に伴って順次、前記予定露光領域において前記主走査軸と直交する副走査軸に沿って照射させることにより前記所定領域に隣り合う領域における露光量を積算させる、
     前記第3の露光用素子と前記第4の露光用素子はそれぞれ、前記第1の露光用素子と前記第2の露光用素子とは異なる露光用素子である、請求項1から19のいずれか1項に記載の露光装置。
  21.  前記制御ユニットは、
     前記所定領域と前記副走査軸に沿って前記所定領域に隣り合う領域の積算露光量を制御することによって、前記所定領域と前記副走査軸に沿って前記所定領域に隣り合う領域への前記露光用光による露光工程を経て前記所定領域に形成されるパターンと前記副走査軸に沿って前記所定領域に隣り合う領域に形成されるパターンとの前記副走査軸における間隔を制御する、請求項20に記載の露光装置。
  22.  前記制御ユニットは、前記ワーク上における前記予定露光領域の位置に関する情報と、前記予定露光領域の各領域における積算露光量に関する情報とを含む露光パターン情報に基づいて、前記ワークと前記露光パターン形成装置との前記相対移動に伴って、前記複数の露光用素子の少なくとも一部の露光用素子を前記第1状態又は前記第2状態に切り替える、請求項1から21のいずれか1項に記載の露光装置。
  23.  前記制御ユニットは、
     前記複数の露光用素子における欠陥露光用素子の情報に基づいて、前記予定露光領域の前記所定領域の積算露光量が所定の露光量になるように、前記複数の露光用素子のうち、前記欠陥露光用素子以外の前記第1状態の露光用素子を介した前記露光用光の一部の光を、前記ワークと前記露光パターン形成装置との相対移動に伴って、前記所定領域に照射させる、請求項1から22のいずれか1項に記載の露光装置。
  24.  前記露光パターン形成装置に含まれる前記複数の露光用素子のうちの第1部分の露光用素子の少なくとも一つの露光用素子が前記欠陥露光用素子の場合、前記複数の露光用素子のうちの前記第1部分とは異なる第2部分の露光用素子は、前記欠陥露光用素子の代わりに前記所定領域の積算露光量が前記所定の露光量になるように露光に用いられる、請求項23に記載の露光装置。
  25.  前記制御ユニットは、
     前記複数の露光用素子は、2次元に配列されており、
     前記複数の露光用素子のうちの同じ列に前記第1部分の一部と前記第2部分の一部が含まれ、
     前記列における前記第1部分の一部の前記露光用素子のうちで少なくとも一つの前記露光用素子が前記欠陥露光用素子の場合、前記欠陥露光用素子の代わりに前記列における前記第2部分の一部の前記露光用素子のうちで少なくとも一つの前記露光用素子を介した前記露光用光の一部の光を、前記ワークと前記露光パターン形成装置との相対移動に伴って、前記所定領域に照射させる、請求項23または24に記載の露光装置。
  26.  前記複数の露光用素子は、2次元に配列されており、
     さらに、前記複数の露光用素子の少なくとも一部を介した前記露光用光の少なくとも一部の光の強度分布を検出する光検出ユニットを備え、
     前記制御ユニットは、前記光検出ユニットで検出された前記光の強度分布に基づいて、前記2次元の配列における前記欠陥露光用素子の位置に関する情報を含む前記欠陥露光用素子の情報を生成する、請求項23から25のいずれか1項に記載の露光装置。
  27.  さらに、前記露光パターン形成装置と少なくとも一つの光学素子とを含む第1露光ヘッドと、
     前記露光パターン形成装置と少なくとも一つの光学素子とを含む第2露光ヘッドと、を備え、
     前記第1露光ヘッドにおける前記露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した前記露光用光の一部の光と、ワークの第1予定露光領域に前記露光用光の少なくとも一部の光を照射させることに用いられ、
     前記第2露光ヘッドにおける露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した前記露光用光の一部の光と、ワークの第2予定露光領域に前記露光用光の少なくとも一部の光を照射させることに用いられ、
     前記制御ユニットは、
     主走査軸に沿った前記ワークと、前記第1露光ヘッド及び前記第2露光ヘッドとの相対移動と、前記主走査軸に直交する軸である副走査軸に沿った前記ワークと、前記第1露光ヘッド及び前記第2露光ヘッドとの相対移動とをそれぞれ繰り返すと共に、
     前記ワークと前記第1露光ヘッド及び前記第2露光ヘッドとの前記相対移動に伴って順次、前記第1露光ヘッドにおける前記露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した前記露光用光の少なくとも一部の光を前記第1予定露光領域に照射させ、前記第2露光ヘッドにおける前記露光パターン形成装置の複数の露光用素子のうちで少なくとも一つの露光用素子を介した前記露光用光の少なくとも一部の光を前記第2予定露光領域に照射させることによって、
     前記副走査軸に沿って第1露光領域と第2露光領域を交互に並べて形成させる、請求項1から26のいずれか1項に記載の露光装置。
  28.  前記第1露光領域と前記第2露光領域はそれぞれ複数であり、且つ、
     何れか1つの前記第2予定露光領域は、2つの前記第1予定露光領域の間に位置する請求項27に記載の露光装置。
  29.  前記第1露光領域と前記第2露光領域はそれぞれ複数であり、
     前記1つの第1予定露光領域は、前記別の1つの第1の予定露光領域と隣り合って第1予定露光領域群を形成し、且つ何れか1つの第1予定露光領域群は、2つの前記第2予定露光領域の間に位置する請求項27に記載の露光装置。
     
PCT/JP2021/003347 2021-01-29 2021-01-29 露光装置 WO2022162896A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202180092160.1A CN116783554A (zh) 2021-01-29 2021-01-29 曝光装置
PCT/JP2021/003347 WO2022162896A1 (ja) 2021-01-29 2021-01-29 露光装置
EP21922911.9A EP4286947A1 (en) 2021-01-29 2021-01-29 Exposure apparatus
JP2022577969A JPWO2022162896A1 (ja) 2021-01-29 2021-01-29
KR1020237025621A KR20230122153A (ko) 2021-01-29 2021-01-29 노광 장치
TW111104129A TW202244629A (zh) 2021-01-29 2022-01-28 曝光裝置
US18/361,066 US20230367230A1 (en) 2021-01-29 2023-07-28 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/003347 WO2022162896A1 (ja) 2021-01-29 2021-01-29 露光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,066 Continuation US20230367230A1 (en) 2021-01-29 2023-07-28 Exposure apparatus

Publications (1)

Publication Number Publication Date
WO2022162896A1 true WO2022162896A1 (ja) 2022-08-04

Family

ID=82654344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003347 WO2022162896A1 (ja) 2021-01-29 2021-01-29 露光装置

Country Status (7)

Country Link
US (1) US20230367230A1 (ja)
EP (1) EP4286947A1 (ja)
JP (1) JPWO2022162896A1 (ja)
KR (1) KR20230122153A (ja)
CN (1) CN116783554A (ja)
TW (1) TW202244629A (ja)
WO (1) WO2022162896A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075396A1 (ja) * 2022-10-05 2024-04-11 株式会社ニコン 露光方法及び露光装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004304135A (ja) * 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
US7170584B2 (en) 2004-11-17 2007-01-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007049208A (ja) * 2006-11-21 2007-02-22 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2007140166A (ja) * 2005-11-18 2007-06-07 Shinko Electric Ind Co Ltd 直接露光装置および照度調整方法
JP2012094917A (ja) * 2004-06-08 2012-05-17 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2018036544A (ja) * 2016-09-01 2018-03-08 株式会社オーク製作所 露光装置
JP2019164238A (ja) * 2018-03-19 2019-09-26 キヤノン株式会社 露光装置、露光方法、および物品製造方法
US10522329B2 (en) 2017-08-25 2019-12-31 Ims Nanofabrication Gmbh Dose-related feature reshaping in an exposure pattern to be exposed in a multi beam writing apparatus
JP2020502577A (ja) * 2016-12-20 2020-01-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 感光性の層を露光するための装置および方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
JP2004304135A (ja) * 2003-04-01 2004-10-28 Nikon Corp 露光装置、露光方法及びマイクロデバイスの製造方法
JP2012094917A (ja) * 2004-06-08 2012-05-17 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US7170584B2 (en) 2004-11-17 2007-01-30 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007140166A (ja) * 2005-11-18 2007-06-07 Shinko Electric Ind Co Ltd 直接露光装置および照度調整方法
JP2007049208A (ja) * 2006-11-21 2007-02-22 Nikon Corp 露光装置、露光方法及びデバイス製造方法
JP2018036544A (ja) * 2016-09-01 2018-03-08 株式会社オーク製作所 露光装置
JP2020502577A (ja) * 2016-12-20 2020-01-23 エーファウ・グループ・エー・タルナー・ゲーエムベーハー 感光性の層を露光するための装置および方法
US10522329B2 (en) 2017-08-25 2019-12-31 Ims Nanofabrication Gmbh Dose-related feature reshaping in an exposure pattern to be exposed in a multi beam writing apparatus
JP2019164238A (ja) * 2018-03-19 2019-09-26 キヤノン株式会社 露光装置、露光方法、および物品製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075396A1 (ja) * 2022-10-05 2024-04-11 株式会社ニコン 露光方法及び露光装置

Also Published As

Publication number Publication date
JPWO2022162896A1 (ja) 2022-08-04
US20230367230A1 (en) 2023-11-16
KR20230122153A (ko) 2023-08-22
EP4286947A1 (en) 2023-12-06
CN116783554A (zh) 2023-09-19
TW202244629A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
US8390786B2 (en) Optical imaging writer system
US8670106B2 (en) Optical imaging writer system
US6552775B1 (en) Exposure method and apparatus
US8395752B2 (en) Optical imaging writer system
US8253923B1 (en) Optical imaging writer system
US8390781B2 (en) Optical imaging writer system
US9405203B2 (en) Pixel blending for multiple charged-particle beam lithography
WO2015138130A1 (en) Pixel blending for multiple charged-particle beam lithography
KR20140088166A (ko) 조명 광학계, 노광 장치, 및 디바이스 제조 방법
EP2745174B1 (en) Lithographic apparatus and device manufacturing method
JP2010217877A (ja) 露光装置、露光方法、およびデバイス製造方法
SG182908A1 (en) Illumination system, lithographic apparatus and method
JP2007121881A (ja) 画像記録装置
US20230367230A1 (en) Exposure apparatus
KR100718194B1 (ko) 투영광학계 및 패턴묘화장치
JP2007078764A (ja) 露光装置および露光方法
US8072580B2 (en) Maskless exposure apparatus and method of manufacturing substrate for display using the same
JP2010161246A (ja) 伝送光学系、照明光学系、露光装置、露光方法、およびデバイス製造方法
JP4376227B2 (ja) リソグラフィ装置用投影装置
JP5689535B2 (ja) リソグラフィ装置及びデバイス製造方法
JP2004319581A (ja) パターン描画装置及びパターン描画方法
JP5357617B2 (ja) 露光装置
TWI440991B (zh) 光學圖像寫成系統
JP2006350034A (ja) 露光装置および露光方法
JP2022117106A (ja) 露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237025621

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2022577969

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092160.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021922911

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021922911

Country of ref document: EP

Effective date: 20230829