WO2022161342A1 - 散热装置、散热装置的制备方法及无线通信基站 - Google Patents

散热装置、散热装置的制备方法及无线通信基站 Download PDF

Info

Publication number
WO2022161342A1
WO2022161342A1 PCT/CN2022/073693 CN2022073693W WO2022161342A1 WO 2022161342 A1 WO2022161342 A1 WO 2022161342A1 CN 2022073693 W CN2022073693 W CN 2022073693W WO 2022161342 A1 WO2022161342 A1 WO 2022161342A1
Authority
WO
WIPO (PCT)
Prior art keywords
side plate
rib
evaporator
heat dissipation
dissipation device
Prior art date
Application number
PCT/CN2022/073693
Other languages
English (en)
French (fr)
Inventor
王萌
胡卫峰
鹿化文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22745217.4A priority Critical patent/EP4274395A4/en
Publication of WO2022161342A1 publication Critical patent/WO2022161342A1/zh
Priority to US18/359,937 priority patent/US20230371201A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/025Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20309Evaporators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems

Definitions

  • the present application relates to the technical field of terminals, and in particular, to a heat dissipation device, a preparation method of the heat dissipation device, and a wireless communication base station.
  • base station equipment is also developing in the direction of large capacity, high power and high integration, and the heat generated by the base station during operation is also increasing. It is one of the important factors affecting the performance and reliability of base stations; at present, base stations mainly dissipate heat through natural wind, but the natural wind heat dissipation method cannot meet the heat dissipation needs of existing base stations.
  • the present application provides a heat dissipation device, which can improve the heat dissipation capability of a wireless communication base station and improve the working stability of the wireless communication base station.
  • the present application provides a heat dissipation device, comprising an evaporator and a plurality of rib plates connected to the evaporator;
  • the rib plate includes a first side plate and a second side plate, wherein a second cavity is formed between the first side plate and the second side plate, and the side of the first side plate facing the second side plate has a plurality of The first protruding part, the side of the second side plate facing the first side plate has a plurality of second protruding parts, and each first protruding part is fixedly connected with a corresponding second protruding part, so that all the first protruding parts are fixedly connected.
  • the second cavity between the side plate and the second side plate is divided into a flow channel communicating with the first cavity.
  • the heat source provides heat for the evaporator
  • the liquid-phase working medium located in the first cavity is heated and vaporized, and the vaporized working medium enters the second cavity, because the outer surface of the rib can conduct convection and radiation with the outside air Heat dissipation, the working medium entering the second cavity is liquefied, and the liquefied working medium is returned to the cavity.
  • the working medium converts the heat generated by the heat source through the two processes of vaporization and liquefaction, and the heat generated by the heat source is quickly dissipated, so that the heat source can work continuously and stably.
  • the heat dissipation device needs to have sufficient strength.
  • the fixed connection of the first protruding portion and the second protruding portion can improve the strength of the rib plate and ensure the stability of the rib plate in operation.
  • this structure is also easy to realize with some existing processes, thereby reducing the processing cost.
  • the rib in the heat dissipation device can be prepared by a hot rolling and inflation process or a stamping and brazing process. When these processes are used, the processing cost can be reduced.
  • a first pair of ports may be provided on the evaporator, the first pair of ports is communicated with the first cavity, and a second pair of ports is provided on the rib plate.
  • the second pair of ports is in communication with the flow channel; the rib plate can be installed on the evaporator by butting the first pair of ports with the second pair of ports.
  • the evaporator may include a third side plate and a fourth side plate, and the edges of the third side plate and the fourth side plate are sealed and fit so that there is a gap between the third side plate and the fourth side plate.
  • a first cavity is formed; wherein, the first pair of ports is arranged on the fourth side plate.
  • the height of the first cavity in the evaporator may be lower than the height of the second cavity in the rib. That is, in practical application, since the working fluid of the liquid phase can be located in the first cavity, and the second cavity is used to provide space for the working fluid in the gas phase, therefore, in order to prevent the working fluid of the liquid phase from completely filling the second cavity, the second cavity is The highest point of the cavity is higher than the highest point of the first cavity. Alternatively, it can also be understood that the liquid level of the liquid-phase working medium is lower than the highest point of the second cavity.
  • a flow channel structure may also be formed in the second cavity.
  • the working fluid in the first cavity is heated by the heat of the heat source, the working fluid in the liquid phase is vaporized, and the vaporized working fluid can enter the flow channel, so the flow rate of the working fluid can be increased to a certain extent, which is beneficial to improve the working fluid
  • the heat exchange effect between the rib and the rib is beneficial to improve the working fluid The heat exchange effect between the rib and the rib.
  • the first protruding portion may be formed by pressing a partial area of the first side plate to one side of the second side plate. That is, a concave portion is formed on the side of the first side plate facing away from the second side plate, wherein the contour of the concave portion corresponds to the contour of the first protruding portion.
  • the forming manner of the second protruding portion may also be the same as or similar to that of the first protruding portion, which will not be repeated here.
  • the liquefied working medium flows back into the first cavity under the action of gravity, and partially covers the heat source again. form a stable working state.
  • the specific form of the flow channel may be various, for example, the flow channel is one or a combination of linear pipelines, U-shaped pipelines or grid-shaped pipelines.
  • the grid-like pipelines include at least one of right-angle grid-like pipelines, diamond-shaped grid-like pipelines, triangular grid-like pipelines, circular grid-like pipelines, and honeycomb grid-like pipelines.
  • each rib when the rib is specifically communicated with the evaporator, each rib is provided with a second pair of ports, in this case, the evaporator may be provided with a first pair of ports, and the first pair of ports is Extending along the height direction, a first pair of ports corresponds to a plurality of second pairs of ports, so as to realize the connection between the evaporator and the rib.
  • the number of the first pair of ports provided on the evaporator is the same as the number of the rib plates.
  • one first pair of ports may be connected to one rib plate
  • the number of the second abutting ports provided on each rib can be one or more.
  • the rib only needs to be It is only necessary to form a second pair of ports to communicate with a first pair of ports on the fourth side plate, which can reduce the complexity of the rib plate in the manufacturing process.
  • the multiple first paired ports are divided into multiple groups, and each group of first paired ports Corresponding to a rib, the number of the second paired ports on each rib is the same as the number of the first paired ports in each group, so that after the rib is docked with the evaporator, the first paired ports on the evaporator are the same as The ribs are connected.
  • the working fluid in the first cavity is heated and starts to vaporize, and the vaporized working fluid enters the flow channel through the parts of the second pair of ports that are not covered by the working fluid, or the vaporized working fluid directly
  • the vaporization enters the flow channel in a plurality of second pairs of ports.
  • the first pair of ports on the fourth side plate may be It is a round hole that fits with the tubular structure.
  • the rib plate is inserted into the evaporator, the plurality of rib plates are arranged at an angle (0-90°) with the evaporator in the height direction, and the plurality of rib plates are arranged in parallel.
  • the rib plate can make the evaporator and the rib can conduct low thermal resistance and heat conduction, so as to make full use of the layout of the heat exchange rib on the evaporator, achieve better convection heat transfer of the external air duct, and reduce the influence of the upper and lower heat series of the rib. , to improve the condensation heat exchange of the working fluid in the first cavity and the flow channel (second cavity).
  • the form of the plurality of ribs distributed in the evaporator can also be various.
  • the plurality of ribs can also form two groups of ribs.
  • each group of ribs includes a plurality of ribs parallel to each other.
  • the two sets of rib plates are arranged on the evaporator in a V-shape, or they can be arranged on the evaporator in an inverted V-shape.
  • the first pair of interfaces of the two groups are arranged in a V-shape or an inverted V-shape.
  • a plurality of rib plates can also form four groups of rib plates, among the four groups of rib plates, each group of rib plates includes a plurality of rib plates parallel to each other, and the four groups of rib plates are arranged on the evaporator in a W-shape; , the plurality of first pairs of ports on the evaporator matched with the rib plates are also divided into four groups, and the four groups of first pairs of ports are also arranged in a W-shape.
  • This arrangement can improve the heat exchange capacity of the rib.
  • a plurality of rib plates can form three groups of ribs, five groups of ribs, or six groups of ribs, etc.
  • the number of groups of ribs and the way of arrangement need to be adjusted according to specific use conditions.
  • the ribs may be rectangular, inverted L-shaped, or inverted Z-shaped. And when the rib is in an inverted L shape or an inverted Z shape, the height of the vertex of the rib can be higher than the height of the evaporator. In this way, when the heat source works, the working medium in the first cavity is heated and starts to vaporize, and the vaporized working medium starts to vaporize.
  • the material will pass through the flow channel higher than the evaporator, and the surface of the rib will convect with the external air and radiate heat dissipation, so that the working medium passing through the flow channel in the rib will be condensed into a liquid, and the liquid working medium will be condensed along the flow channel in the direction of gravity. flow into the cavity in the evaporator under the action.
  • rib may also have other shapes, which are not listed here.
  • a boss is provided on the surface of the evaporator, and the first pair of ports is arranged on the boss; the part of the second pair of ports inserted into the first pair of ports is bell-shaped, so as to improve the Stability of the connection between the rib and the evaporator.
  • a plurality of rib plates can be arranged in parallel, and the rib plates are arranged perpendicular to the evaporator; the parallel arrangement of the rib plates can make the assembled heat sink more beautiful.
  • the present application also provides a method for preparing a heat sink, comprising the following steps:
  • a first cavity for accommodating the working medium for vapor-liquid two-phase conversion is formed in the evaporator
  • a rib plate is formed, wherein the rib plate includes a first side plate and a second side plate, a plurality of first protrusions are formed on the side of the first side plate facing the second side plate, and the second side plate faces the first side plate
  • a second protrusion is formed on one side of the side plate, wherein each of the first protrusions is fixedly connected with one of the second protrusions, so as to divide the second cavity in the rib into flow road;
  • the rib is installed on the evaporator, and the flow channel communicates with the first cavity.
  • the specific method of forming the rib can include various forms, such as:
  • the first side plate and the second side plate are closely attached by high temperature hot rolling;
  • the concave parts on the side plate cooperate to form the flow channel; the part other than the printed graphite powder on the first side plate forms the plurality of first protrusions, and the part other than the printed graphite powder on the second side plate forms the the plurality of second protrusions;
  • the fitted first side plate and the second side plate are trimmed to form a rib plate, and a portion communicating with the evaporator is reserved on the rib plate.
  • the first depression is formed on the first surface of the first side plate by a punching process
  • the second depression is formed on the first surface of the second side plate by a punching process, so that the first surface of the first side plate is separated from the first
  • the regions other than the depressions form the plurality of first protrusions
  • the regions of the first surface of the second side plate other than the second depressions form the plurality of second protrusions
  • the fitted first side plate and the second side plate are cut to form a rib plate, and a portion communicating with the evaporator is reserved on the rib plate.
  • first side plate and the second side plate can be aluminum sheets, and can also be replaced with other thermally conductive materials.
  • the rib plate Since the rib plate is prepared by the above-mentioned method, the rib plate can have higher strength, and the cost of the rib plate can also be reduced, so that the cost of the whole heat sink can be reduced.
  • the present application provides a wireless communication base station, including a box body, a heat source and any of the above cooling devices; specifically, the heat source is arranged in the box body, and the box body is provided with a mounting device for installing the cooling device and part of the heat source can be in contact with the heat dissipation device located at the installation port, the heat dissipation device can effectively conduct the heat generated by the heat source in contact with the heat dissipation device and the heat in the box to improve the reliability of the wireless communication base station.
  • FIG. 1a is a schematic partial structure diagram of a box in a wireless communication base station provided by an embodiment of the application;
  • FIG. 1b is a schematic partial structure diagram of a wireless communication base station provided by an embodiment of the application.
  • FIG. 2a is a schematic structural diagram of a heat dissipation device provided by an embodiment of the present application.
  • FIG. 2b is a schematic structural diagram of an evaporator in a heat dissipation device provided by an embodiment of the present application
  • FIG. 2c is a schematic structural diagram of a rib in a heat dissipation device provided by an embodiment of the present application.
  • FIG. 3 a is a first structural schematic diagram of the connection between the rib plate and the evaporator in the heat dissipation device provided by the embodiment of the application;
  • FIG. 3b is a second structural schematic diagram of the connection between the rib plate and the evaporator in the heat dissipation device provided by the embodiment of the application;
  • FIG. 3c is a third structural schematic diagram of the connection between the rib plate and the evaporator in the heat dissipation device provided by the embodiment of the application;
  • FIG. 3d is a fourth schematic structural diagram of the connection between the rib plate and the evaporator in the heat dissipation device provided by the embodiment of the application;
  • 4a is a schematic diagram 1 of the distribution of ribs in the evaporator cavity in the heat sink provided by the embodiment of the present application;
  • 4b is a second schematic diagram of the distribution of ribs in the evaporator cavity in the heat sink provided by the embodiment of the application;
  • 4c is a schematic diagram 3 of the distribution of the rib plate in the evaporator cavity in the heat dissipation device provided by the embodiment of the application;
  • 4d is a schematic diagram 4 of the distribution of the rib in the evaporator cavity in the heat dissipation device provided by the embodiment of the application;
  • Fig. 5a is a side view 1 of a heat sink provided by an embodiment of the present application.
  • FIG. 5b is a second middle side view of the heat sink provided by the embodiment of the application.
  • Fig. 5c is a third middle side view of the heat dissipation device provided by the embodiment of the application.
  • FIG. 5d is a fourth middle side view of the heat dissipation device provided by the embodiment of the application.
  • FIG. 5e is a fifth middle side view of the heat dissipation device provided by the embodiment of the application.
  • FIG. 5f is a sixth middle side view of the heat sink provided by the embodiment of the application.
  • FIG. 6 is a schematic diagram of a connection structure of a rib plate and an evaporator in a heat sink provided by an embodiment of the application;
  • FIG. 7 is a flowchart of a method for manufacturing a heat sink provided by an embodiment of the present application.
  • the existing wireless communication base station mainly includes components such as transmitter and power supply. Components such as transmitter and power supply will generate a lot of heat during operation. In order to ensure the normal operation of the transmitter and power supply, it is necessary to dissipate heat from the transmitter, power supply and other devices in the wireless communication base station. At present, the way of dissipating heat for the devices in the wireless communication base station is mainly the way of natural wind. With the continuous improvement of product performance, the pressure of the existing heat dissipation methods is constantly increasing, and the self-heating air heat dissipation method cannot meet the heat dissipation needs of wireless communication base stations.
  • the heat dissipation method for the components of the wireless communication base station may also be to partially embed a heat pipe in the side wall of the wireless communication base station to improve the thermal conductivity of this part, so that the heat generated by the high-power and high-heat-consuming components corresponding to the side wall can be reduced. Transfer to a lower temperature location, thereby reducing the temperature of the heat source and the wireless communication base station.
  • this method of embedding the heat pipe has a high cost, and when there are many devices with high power and high heat consumption, and the arrangement length is long, the heat dissipation efficiency is low.
  • the present application provides a heat dissipation device to improve the heat dissipation capability of a wireless communication base station.
  • references in this specification to "one embodiment” or “some embodiments” and the like mean that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically emphasized otherwise.
  • the terms “including”, “including”, “having” and their variants mean “including but not limited to” unless specifically emphasized otherwise.
  • the wireless communication base station in the present application may include a box body 20, a heat source (not shown in the figure) and a heat sink 10, the heat source is arranged in the box body 20, and the heat sink device 10 is installed in the installation of the box body 20 In the port 21, at least part of the heat source is thermally connected to the evaporator 11 on the heat dissipation device; specifically, the evaporator of the heat dissipation device 10 is installed in the installation port 21 of the box body 20, and the rib plate 12 of the heat dissipation device 10 is disposed in the box body.
  • heat source can be duplexer, power amplifier, transmitter and power supply module (not limited to duplexer, power amplifier, transmitter and power supply module); duplexer, power amplifier, transmitter and power supply module can be set It is connected to the box body 20 and is thermally connected with the part of the evaporator 11 located in the box body 20.
  • the heat generated can be transferred to the first cavity of the evaporator 11,
  • the vapor-liquid two-phase conversion working medium in the first cavity is heated and vaporized, and the vaporized working medium enters the flow channel of the rib plate 12 of the heat dissipation device 10, and is then dissipated into the external environment through natural convection and thermal radiation, so that the passing The vaporized working medium in the rib plate 12 is condensed and liquefied; in this way, the heat dissipation capability of the wireless communication base station can be improved, so that the wireless communication base station can work stably.
  • the heat dissipation device when the heat dissipation device is specifically installed on the box, the heat dissipation device may only perform heat exchange with a part of the heat source.
  • the heat dissipation device 10 includes an evaporator 11 and a plurality of rib plates 12; show).
  • the rib plate 12 includes a first side plate 121 and a second side plate 122.
  • the side of the first side plate 121 facing the second side plate 122 has a plurality of first protrusions 1210, and the second side plate 122 is facing the first side plate.
  • One side of the 121 has a plurality of second protruding parts 1220, and each first protruding part 1210 is fixedly connected with a corresponding second protruding part 1220, so that the space between the first side plate 121 and the second side plate 122 can be
  • the second cavity (not shown in the figure) is divided into a flow channel communicating with the first cavity.
  • the working medium in the liquid phase in the first cavity is heated and vaporized, and the vaporized working medium can enter the second cavity. Due to the convection and radiation heat dissipation between the outer surface of the rib plate and the external air, it flows in the second cavity.
  • the vaporized working fluid is liquefied, and in the process of liquefaction and vaporization of the working fluid, heat is lost.
  • the evaporator 11 is in contact with the heat source 30, and the working medium is in the process of gas-liquid two-phase conversion, which can effectively dissipate the heat generated by the heat source 30 that provides heat to the evaporator 11, so that the heat source 30 can Stable job.
  • the working medium entering the flow channel is vaporized, so that the rib 12 forming the flow channel is subjected to a relatively large pressure. Therefore, the heat dissipation device 10 needs to have sufficient strength.
  • the arrangement of the first protruding portion 1210 and the second protruding portion 1220 in the rib plate 12 can increase the strength of the rib plate 12 and ensure the working stability of the rib plate 12 .
  • this structure is also easy to realize with some existing processes, thereby reducing the processing cost.
  • the rib 12 in the heat dissipation device 10 can be prepared by a hot rolling and inflation process or a stamping and brazing process. When these processes are used, the processing cost can be reduced. .
  • the evaporator 11 may include a third side plate 110 and a fourth side plate 111 .
  • the edges of the third side plate 110 and the fourth side plate 111 are sealed and adhered by brazing, so that a first cavity is formed between the third side plate 110 and the fourth side plate 111 .
  • the third side plate 110 is used for conducting thermal contact with the heat source 30 .
  • the evaporator 11 also includes a pipeline 112 for injecting liquid and vacuuming the first cavity, and a valve body may be provided on the pipeline 112 for vacuuming and injecting the first cavity. After the liquid is complete, the line 112 is closed.
  • a first docking port 1110 may be provided on the evaporator 11 (the first docking port 1110 may be provided on the fourth side plate 111 ), and the first docking port 1110 and the The first cavity is connected, the rib 12 is provided with a second port 123, and the second port 123 is communicated with the flow channel; the first port 1110 is connected with the second port 123, and the rib 12 can be installed on the Evaporator 11.
  • the first protruding part 1210 may be formed by extruding a part of the first side plate 121 to the side of the second side plate 122
  • the second protruding part 1220 may be formed by extruding the part of the second side plate 122 . It is partially extruded to one side of the first side plate 121 . That is, the side of the first side plate 121 facing away from the second side plate 122 and the side of the second side plate 122 facing away from the first side plate 121 will form recessed portions, wherein the contour of the recessed portion on the first side plate 121 is the same as the first side plate 121 .
  • the contour of a protruding portion 1210 corresponds to the contour
  • the contour of the concave portion located on the second side plate 122 corresponds to the contour of the second protruding portion 1220 .
  • the form of the flow channel can be various, for example: for example, the flow channel can be one or a combination of linear pipelines, U-shaped pipelines or grid-shaped pipelines; Type management or the setting of grid-like pipelines can increase the length of the flow channel to improve the speed of convection and radiation heat dissipation between the vaporized working fluid and the outside air, and to speed up the liquefaction of the vaporized working fluid.
  • grid-shaped pipelines may specifically include right-angle grid-shaped pipelines, diamond-shaped grid-shaped pipelines, triangular grid-shaped pipelines, circular grid-shaped pipelines, and honeycomb grid-shaped pipelines. at least one.
  • the arrows in FIG. 2a point in the height direction, and the height of the vertex of the second cavity is greater than the height of the first cavity (the height of the rib 12 is greater than the height of the evaporator 11 ), that is, the first cavity
  • the arrows in FIG. 2a point in the height direction, and the height of the vertex of the second cavity is greater than the height of the first cavity (the height of the rib 12 is greater than the height of the evaporator 11 ), that is, the first cavity
  • the speed of convection and radiation heat dissipation between the vaporized working medium and the outside air makes the vaporized working medium rapidly liquefy, and the liquefied working medium will quickly merge with the liquid-phase working medium under the action of gravity; this setting In this way, the heat dissipation speed can be effectively improved, and when the working medium in the first cavity is too much, since part of the second cavity is located above the first cavity, the vaporized working medium entering the second cavity will be lost. The mass can still be quickly liquefied, which improves the applicability of the heat sink.
  • each rib is provided with a second docking port.
  • the evaporator is specifically There may be only one first pairing port, and one pairing port is butted with multiple second pairing ports on a plurality of second ribs, so as to realize the communication between the first cavity and the second cavity; or, referring to FIG. 3a,
  • the number of the first abutting ports 1110 (arranged on the fourth side plate 111 ) provided on the evaporator is the same as the number of the ribs 12 , that is, each first abutting port 1110 corresponds to a second abutting port 123 .
  • each rib 12 only needs to form a second port 123 and a first port on the fourth side panel 111 during the manufacturing process. 1110 can be connected, which can reduce the complexity of the rib 12 in the manufacturing process; when the heat source starts to work, the working medium in the first cavity is heated and starts to vaporize, and the vaporized working medium passes through the second pairing port 123. The unqualified part enters the flow channel, or the vaporized working medium is directly vaporized in the second pairing port 123 and enters the flow channel (second cavity).
  • the evaporator is provided with a plurality of first paired ports 1110 (the first paired ports 1110 are arranged on the fourth side plate 111), and the plurality of first paired ports 1110 extend in the direction of height, and each first pair of ports 1110 extends along the height direction.
  • the interface 1110 is butted with a rib 12, and each rib 12 is provided with a plurality of second abutting ports 123, that is, a plurality of second abutting ports 123 set on a rib 12 corresponding to a first abutting port 1110.
  • the working medium in the first cavity is heated and starts to vaporize, and the vaporized working medium enters the flow channel through the parts of the second pairing ports 123 that are not covered by the working medium, or the vaporized working medium directly Vaporization into the flow channel in a plurality of second pairs of ports 123 .
  • the evaporator is provided with a plurality of first paired ports 1110 (the first paired ports 1110 are arranged on the fourth side plate 111), the plurality of first paired ports 1110 extend in the direction of height, and the plurality of first paired ports 1110
  • the number of the second abutting ports 123 provided on each rib 12 is the same as the number of the corresponding first abutting ports 1110, that is, a plurality of first abutting ports 1110 and one rib
  • the plurality of second paired ports 123 on the 12 are set in one-to-one correspondence; when the heat source is working, the working medium in the first cavity is heated and starts to vaporize, and the vaporized working medium passes through the plurality of second paired ports 123 without the working medium.
  • the unpassed part enters the flow channel, or the vaporized working medium is directly vaporized into the flow channel in the plurality of second paired ports 123 .
  • first pair of ports and the second pair of ports are used to connect the rib plate to the evaporator, and the specific forms of the first pair of ports and the second pair of ports may also be other structures.
  • the first abutting port 1110 located on the fourth side plate 111 can be a circular hole matched with the tubular structure , and when the rib plate 12 is specifically arranged, through the improvement of the process, the outer surface of the rib plate can also be arranged as a plane structure.
  • the arrangement of the ribs 12 on the evaporator 11 can be in various forms.
  • the first butt joint on the second side plate of the evaporator 11 is at an angle with the height direction.
  • the angle between the first pair of ports and the height direction is 0-90°
  • the plurality of first pairs of ports are arranged in parallel; at this time, the rib 12 is inserted into the evaporator 11
  • the rib 12 is also arranged at an angle with the height direction, and a plurality of rib 12 are arranged in parallel; in this arrangement, the evaporator 11 and the rib 12 can conduct low thermal resistance and heat conduction, so as to make full use of the heat exchange fins
  • the layout of 12 on the evaporator 11 can achieve better convective heat exchange of the external air duct, reduce the influence of the upper and lower heat series of the rib 12, and improve the condensation of the working medium in the first cavity and the flow channel (the second cavity). heat exchange.
  • a plurality of ribs 12 can also form two groups of ribs.
  • each group of ribs includes a plurality of ribs 12 parallel to each other, and the two groups of ribs 12 are V-shaped It is arranged on the evaporator 11, and can also be arranged on the evaporator 11 in an inverted V shape.
  • the plurality of first pairs of ports on the evaporator 11 that cooperate with the rib 12 are also divided into two groups.
  • the interface is set in a V-shaped or inverted V-shaped configuration. This arrangement can improve the heat exchange capacity of the rib plate 12 .
  • a plurality of rib plates 12 can also form four groups of rib plates, among the four groups of rib plates, each group of rib plates includes a plurality of rib plates 12 parallel to each other, and the four groups of rib plates are arranged in a W shape on the evaporator 11; at this time, the plurality of first paired ports on the evaporator 11 matched with the rib 12 are also divided into four groups, and the four groups of first paired ports are arranged in a W-shape. This arrangement can improve the heat exchange capacity of the rib plate 12 .
  • the plurality of rib plates 12 may form three groups of ribs, five groups of ribs, or six groups of ribs, etc.
  • the number of groups and the arrangement of the ribs 12 need to be adjusted according to specific usage conditions.
  • the shape of the rib 12 can be set to various, for example: the shape of the rib 12 can be inverted L-shaped, inverted Z-shaped or rectangular. Specifically, when the shape of the rib plate 12 is an inverted L shape, in the height direction, the height of the vertex of the rib plate 12 (second cavity) can be higher than the height of the evaporator 11, and the ribs arranged in an inverted L shape One side of the plate 12 can extend directly above the evaporator 11, or one side of the rib plate arranged in an inverted L shape is higher than the height of the evaporator 11, and the side extends to the side away from the evaporator 11; When the plate 12 is in an inverted zigzag shape, one side of the rib plate 12 arranged in an inverted zigzag shape is located directly above the evaporator 11, or the height of one side of the rib plate 12 arranged in an inverted zigzag shape is higher than that of the evaporator 11.
  • one side of the rib 12 does not coincide with the evaporator 11 ; when the rib 12 is rectangular, the rib 12 can be arranged in parallel with the evaporator 11 .
  • the apex of the rib 12 (the second cavity) may be higher than the evaporator 11, that is, at least part of the rib 12 is located above the first cavity, so that when the heat source works, the work in the first cavity
  • the heat begins to vaporize, and the vaporized working medium will pass through the flow channel higher than the evaporator 11, and the surface of the rib 12 will convect with the outside air and radiate heat dissipation, so that the working medium passing through the flow channel in the rib 12 will be condensed into liquid, condensed Afterwards, the liquid working medium will flow into the cavity in the evaporator 11 under the action of gravity along the flow channel, so that the part of the heat source in contact with the evaporator 11 is covered by the liquid working medium, and in this way, the evaporator 11 and the rib are covered by the liquid working medium.
  • a stable working state is formed between 12.
  • the specific shape of the rib can also be in various forms, which are not listed here; in addition, the top of the rib and the top of the evaporator can be at the same height. Referring to FIG. 5f, the rib 12 and the evaporator The height of 11 is the same. At this time, the working medium is vaporized under the action of the heat source. Because the flow channel on the rib 12 is formed by the bulging of the third side plate and or the fourth side plate to the outside, so that the flow channel and the external environment are connected. The contact space between them increases, which accelerates the liquefaction of the vaporized working medium.
  • a boss 113 may be provided on the surface of the evaporator (the fourth side plate 111 ), and the boss 113 is formed with a first pair of ports for mating with the rib plate 12, and the second pair of ports is used to be inserted into the first cavity in a bell mouth shape, so that the second pair of ports is inserted into the second pair of ports.
  • the bell mouth-shaped part of the second pair of interfaces can be in contact with the inner wall of the evaporator, so as to improve the stability of the connection between the plug-in part and the evaporator.
  • the rib plate 12 is also welded with the outer wall surface formed by the boss 113 or with the inner wall surface formed by the boss 113.
  • the rib 12 also includes a welding portion welded with the outer wall surface.
  • an evaporation structure for enhancing evaporation can be provided on the side of the evaporator close to the heat source. It is combined with one or more of the groove on the side of the evaporator close to the heat source, and the capillary wick (wire mesh or burning powder) arranged on the side of the evaporator close to the heat source.
  • the above-mentioned heat dissipation device is installed in the heat-concentrated area of the outdoor base station. Compared with the outdoor base station using conventional heat dissipation device, the actual measurement in this solution can improve the local heat source temperature by more than 5°C.
  • the present application also provides a method for preparing a heat sink, comprising the following steps:
  • a first cavity for accommodating the working fluid for vapor-liquid two-phase conversion is formed in the evaporator
  • rib includes a first side plate and a second side plate, a plurality of first protrusions are formed on the side of the first side plate facing the second side plate, and a plurality of first protrusions are formed on the side of the first side plate facing the second side plate, A plurality of second protruding parts are formed on one side of the first side plate, wherein each of the first protruding parts and the second protruding parts are fixedly connected to connect the second cavity in the rib plate divided into flow channels;
  • the method of forming the rib may include:
  • the method of forming the rib may also include:
  • first side plate and the second side plate may be aluminum sheets, and may also be replaced with other thermally conductive materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种散热装置、散热装置的制备方法及无线通信基站;散热装置包括蒸发器(11)和多个肋板(12);蒸发器(11)具有第一腔体,第一腔体用于容纳汽液两相转换的工质;肋板(12)包括第一侧板(121)和第二侧板(122),第一侧板(121)朝向第二侧板(122)的一侧具有多个第一凸出部(1210),第二侧板(122)朝向第一侧板(121)的一侧具有多个第二凸出部(1220),每个第一凸出部(1210)和一个对应的第二凸出部(1220)固定连接,以使第一侧板(121)和第二侧板(122)之间的第二腔体分隔成与第一腔体连通的流道;利用此散热装置能有效对基站进行散热。

Description

散热装置、散热装置的制备方法及无线通信基站
相关申请的交叉引用
本申请要求在2021年01月28日提交中国专利局、申请号为202110119093.X、申请名称为“散热装置、散热装置的制备方法及无线通信基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及到一种散热装置、散热装置的制备方法及无线通信基站。
背景技术
随着通信系统从2G、3G逐渐发展到4G、5G,基站设备也越来越向大容量、大功率、高集成度方向发展,基站在工作过程中产生的热量也不断增加,而环境温度是影响基站性能和可靠性的重要因素之一;目前,基站主要是通过自然风进行散热,但是,自然风散热的方式不能够满足现有基站的散热需要。
因此,亟待一种散热装置以对基站进行散热。
发明内容
本申请提供了一种散热装置,能够提高无线通讯基站的散热能力,提高无线通讯基站工作的稳定性。
第一方面,本申请提供了一种散热装置,包括蒸发器和连接于蒸发器上的多个肋板;蒸发器具有第一腔体,第一腔体用于容纳汽液两相转换的工质;肋板包括第一侧板和第二侧板,其中,第一侧板和第二侧板之间形成第二腔体,且第一侧板朝向第二侧板的一侧具有多个第一凸出部,第二侧板朝向第一侧板的一侧具有多个第二凸出部,每个第一凸出部和一个对应的第二凸出部固定连接,以使所第一侧板和第二侧板之间的第二腔体分隔成与第一腔体连通的流道。热源为蒸发器提供热量时,位于第一腔体中的液相工质受热汽化,汽化后的工质进入到第二腔体中,由于肋板的外表面可以与外部的空气进行对流和辐射散热,进入到第二腔体中的工质液化,液化后的工质回流至腔体中,此过程中,工质将热源产生的热量通过汽化和液化两个过程转化,将热源产生热量快速的散出,以使热源能够持续稳定的工作。另外,由于进入到流道中的工质汽化,使形成流道的肋板承受的压力增加,因此,需要散热装置具有足够的强度。本申请中,第一凸出部和第二凸出部固定连接可以提高肋板的强度,保证肋板工作的稳定性。此外,这种结构还容易用一些现有的工艺来实现,从而减少了加工成本。
在一种实施例中,为了降低散热装置的成本,散热装置中的肋板可以通过热轧吹胀工艺或通过冲压钎焊工艺进行制备,通过这些工艺来实现时,能够减少加工成本。
需要说明的是,在具体将多个肋板安装于蒸发器上时,可以在蒸发器上设置有第一对接口,第一对接口与第一腔体连通,肋板上设有第二对接口,第二对接口与流道连通;将第一对接口与第二对接口对接,即可将肋板安装于蒸发器上。
在一些可能的实施例中,蒸发器可以包括第三侧板和第四侧板,第三侧板和第四侧板 的边缘密封贴合,以使第三侧板和第四侧板之间形成有第一腔体;其中,第一对接口设置于第四侧板上。
需要说明的是,在具体设置蒸发器和多个肋板时,蒸发器中第一腔体的高度可以低于肋板中第二腔体的高度。即实际应用时,由于液相的工质可以位于第一腔体内,第二腔体用于为工质提供气相的空间,因此,为了避免液相的工质完全填充第二腔体,第二腔体最高点要高于第一腔体的最高点。或者,也可以理解为,液相工质的液面高度要低于第二腔体的最高点。
另外,在具体实施时,第二腔体内还可以形成有流道结构。当第一腔体中的工质受到热源的热量加热时,液相的工质汽化,汽化的工质可以进入到流道内,因此可以在一定程度上提升工质的流速,有利于提升工质与肋板之间的换热效果。
在对流道进行设置时。以第一侧板为例,第一凸出部可以是将第一侧板的局部区域向第二侧板的一侧挤压而形成的。即在第一侧板背离第二侧板的一侧会形成凹陷部,其中,凹陷部的轮廓与第一凸出部的轮廓相对应。
在第四侧板中,第二凸出部的成型方式也可以与第一凸出部相同或相类似,在此不作赘述。
由于流道的高度高于第一腔体的高度,液化后的工质在重力的作用下回流至第一腔体中,并重新的将热源部分覆盖,如此循环,使蒸发器与肋板之间形成稳定的工作状态。
在一些可能的实施例中,流道具体的形式可以为多种,例如:所述流道为直线型管路、U型管路或网格状管路中的一种或几种的组合。所述网格状管路包括直角网格状管路、菱形网格状管路、三角形网格状管路、圆形网格状管路、蜂窝网格状管路中的至少一个。
在一些可能的实施例中,肋板与蒸发器具体连通时,每个肋板上均设有第二对接口,此时,蒸发器上可以设置有一个第一对接口,第一对接口的沿高度的方向延伸,一个第一对接口对应有多个第二对接口,以实现蒸发器与肋板的连接。
在一些可能的实施例中,肋板与蒸发器具体连通时,蒸发器上设置的第一对接口的数量与肋板的数量相同,此时,一个第一对接口可以对接有一个肋板,每个肋板上设置的第二对接口的数量可以为一个,也可以为多个,当每个肋板上设置的第二对接口的数量为一个时,肋板在制作的过程中只需要形成一个第二对接口与第四侧板上的一个第一对接口连通即可,可以降低肋板在制作过程中的复杂程度。
在一些可能的实施例中,肋板与蒸发器具体连通时,蒸发器上设置的第一对接口的数量为多个时,多个第一对接口分为多组,每组第一对接口对应一个肋板,每个肋板上设置的第二对接口的数量与每组中第一对接口的数量相同,以使肋板与蒸发器对接后,蒸发器上的第一对接口均与肋板连通。当热源工作时,第一腔体中的工质受热开始汽化,汽化后的工质通过多个第二对接口中未被工质没过的部分进入到流道中,或汽化后的工质直接在多个第二对接口中汽化进入流道中。
在第一可能的实施例中,肋板与蒸发器具体连通时,设置于肋板上的第二对接口还可以为凸出的管状结构时,位于第四侧板上的第一对接口可以为与管状结构配合的圆孔。
在上述的实施例中,肋板插接于蒸发器上,多个肋板在高度方向上与蒸发器呈夹角设置(0-90°),且多个肋板平行设置,此种设置方式,可以使蒸发器和肋板能够进行低热阻均温导热,以充分利用换热肋板位于蒸发器上的布局,实现较好的外部风道的对流换热,降低肋板的上下热串联影响,提高第一腔体和流道(第二腔体)内工质的冷凝换热。
另外,多个肋板分布于蒸发器的形式还可以为多种,例如:多个肋板也可以形成两组肋板,在两组肋板中,每组肋板包括多个相互平行的肋板,两组肋板呈V字型设置于蒸发器上,也可以呈倒V字型设置于蒸发器上,此时,蒸发器上与肋板配合的多个第一对接口也分为两组,两组第一对接口的呈V字型或倒V字型设置。或者,多个肋板也可以形成四组肋板,在四组肋板中,每组肋板包括多个相互平行的肋板,四组肋板呈W字型设置于蒸发器上;此时,蒸发器上与肋板配合的多个第一对接口也分为四组,四组第一对接口也呈W型设置。此种设置方式,可以提高肋板的换热能力。
需要说明的是,多个肋板可以形成三组肋板、五组肋板或六组肋板等,肋板的组数以及布设的方式需要根据具体的使用情况进行调整。
在一些可能的实施例中,肋板可以呈矩形、倒L型或倒Z字型。且当肋板呈倒L型或倒Z字型时,肋板顶点的高度可以高于蒸发器的高度,这样,当热源工作,第一腔体中的工质受热开始汽化,汽化后的工质会经过高于蒸发器的流道,肋板的表面与外部空气对流和辐射散热,以使经过肋板中流道的工质冷凝为液体,冷凝后液态的工质会沿流道在重力的作用下流动到蒸发器中的腔体内。
需要说明的是,肋板还可以为其他的形状,此处不进行列举。
在一些可能的实施例中,蒸发器的表面设置有凸台,第一对接口设置于所述凸台上;第二对接口插接于第一对接口中的部分呈喇叭口状,以提高肋板与蒸发器之间连接的稳定性。
在一些可能的实施例中,多个肋板可以平行设置,且肋板与蒸发器垂直设置;肋板平行设置可以使装配完成的散热装置更加美观。
第二方面,本申请还提供散热装置的制备方法,包括如下的步骤:
在蒸发器中形成有用于容纳汽液两相转换的工质的第一腔体;
形成肋板,其中,所述肋板包括第一侧板和第二侧板,第一侧板朝向第二侧板的一侧形成多个第一凸出部,在第二侧板朝向第一侧板的一侧形成第二凸出部,其中,每个所述第一凸出部和一个所述第二凸出部固定连接,以将所述肋板中的第二腔体分隔成流道;
将所述肋板安装于所述蒸发器,所述流道与所述第一腔体连通。
具体形成肋板的方法可以包括多种形式,例如:
在第一侧板和第二侧板上按照预设管路印刷石墨粉;
第一侧板和第二侧板通过高温热轧紧密贴合;
对预留管路进行吹涨,以使第一侧板和第二侧板印刷石墨粉的部分向彼此相背的方向形成凹陷部,所述第一侧板上的凹陷部与所述第二侧板上的凹陷部配合形成所述流道;第一侧板上除印刷石墨粉以外的部分形成所述多个第一凸出部,第二侧板上除印刷石墨粉以外的部分形成所述多个第二凸出部;
对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板预留与蒸发器连通的部位。
或者,在第一侧板的第一表面通过冲压工艺形成第一凹陷,且对第二侧板的第一表面通过冲压工艺形成第二凹陷,以使第一侧板的第一表面除第一凹陷之外的区域形成所述多个第一凸出部,且使第二侧板的第一表面除第二凹陷之外的区域形成所述多个第二凸出部;
将第一侧板的第一凸出部与第二侧板的第二凸出部通过铝钎焊工艺进行焊接,且使第一凹陷与第二凹陷配合形成流道;
对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板上预留与蒸发器连通的部位。
需要说明是,第一侧板和第二侧板可以为铝片,还可以更换为其他的导热材料。
由于肋板通过的上述的方法制备成,可以使肋板具有较高的强度,还可以使肋板的成本降低,以使整个散热装置的成本降低。
第三方面,本申请提供了一种无线通信基站,包括箱体、热源和上述任一种的散热装置;具体而言,热源设置于箱体中,箱体上设有用于安装散热装置的安装口,且部分热源可以与位于安装口处的散热装置接触,该散热装置能够有效的将与散热装置接触的热源产生的热量以及箱体中的热量传导出,以提高无线通信基站工作的可靠性。
附图说明
图1a为本申请实施例提供的无线通信基站中箱体的局部结构示意图;
图1b为本申请实施例提供的无线通信基站的局部结构示意图;
图2a为本申请实施例提供的散热装置的结构示意图;
图2b为本申请实施例提供的散热装置中蒸发器的结构示意图;
图2c为本申请实施例提供的散热装置中肋板的结构示意图;
图3a为本申请实施例提供的散热装置中肋板与蒸发器连通处的结构示意图一;
图3b为本申请实施例提供的散热装置中肋板与蒸发器连通处的结构示意图二;
图3c为本申请实施例提供的散热装置中肋板与蒸发器连通处的结构示意图三;
图3d为本申请实施例提供的散热装置中肋板与蒸发器连通处的结构示意图四;
图4a为本申请实施例提供的散热装置中肋板位于蒸发器腔体中的分布示意图一;
图4b为本申请实施例提供的散热装置中肋板位于蒸发器腔体中的分布示意图二;
图4c为本申请实施例提供的散热装置中肋板位于蒸发器腔体中的分布示意图三;
图4d为本申请实施例提供的散热装置中肋板位于蒸发器腔体中的分布示意图四;
图5a为本申请实施例提供的散热装置的侧视图一;
图5b为本申请实施例提供的散热装置中侧视图二;
图5c为本申请实施例提供的散热装置中侧视图三;
图5d为本申请实施例提供的散热装置中侧视图四;
图5e为本申请实施例提供的散热装置中侧视图五;
图5f为本申请实施例提供的散热装置中侧视图六;
图6为本申请实施例提供的散热装置中肋板与蒸发器的一种连接结构示意图;
图7为本申请实施例提供的散热装置制备方法的流程图。
附图标记:
10-散热装置;11-蒸发器;110-第三侧板;111-第四侧板;1110-第一对接口;112-管路;113-凸台;12-肋板;121-第一侧板;1210-第一凸出部;122-第二侧板;1220-第二凸出部;123-第二对接口;20-箱体;21-安装口;30-热源。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
现有的无线通讯基站中,主要包括发射机和电源等部件。发射器和电源等部件在运行过程中会产生大量的热量为了保证发射器和电源正常的运行,需要对发射器、电源以及无线通讯基站中其他的器件进行散热。目前,对无线通讯基站中的器件进行散热的方式主要是自然风的方式。随着产品性能的不断提高,现有的散热方式的压力在不断的增加,自热风散热的方式不能够满足无线通讯基站的散热需要。另外,对无线通讯基站的器件进行散热方式还可以是在无线通讯基站的侧壁中局部内嵌热管,提升该部分的导热系数,以使侧壁对应的高功率热耗高的器件产生的热量传递至温度较低的位置,从而降低热源以及无线通讯基站的温度。但是,此种嵌入热管的方式成本较高,且当高功率热耗高的器件较多,排布的长度较长时,散热效率较低。
为此,本申请提供一种散热装置,以提高无线通讯基站的散热能力。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
参照图1a和图1b,本申请中的无线通信基站可以包括箱体20、热源(图中未显示)和散热装置10,热源设置于箱体20中,散热装置10安装于箱体20的安装口21中,至少部分的热源与散热装置上的蒸发器11导热连接;具体而言,散热装置10的蒸发器安装于箱体20的安装口21,散热装置10的肋板12设置于箱体20的外侧;热源可以为双工器、功率放大器、发射机和电源模块(不限于双工器、功率放大器、发射机和电源模块);双工器、功率放大器、发射机和电源模块可以设置于箱体20并与蒸发器11位于箱体20中的部分导热连接,当双工器、功率放大器发射机和电源模块工作时,产生的热量可以传递至蒸发器11的第一腔体中,第一腔体中的汽液两相转化工质受热汽化,汽化后的工质进入到散热装置10的肋板12的流道中,再通过自然对流和热辐射散发到外界环境中,以使经过肋板12中的汽化后的工质冷凝液化;通过此种方式可以提高无线通讯基站的散热能力,使无线通讯基站稳定的工作。
需要说明的是,在散热装置具体安装于箱体上时,散热装置可以仅与部分热源进行热交换。
请参照图2a-图2c,本申请的一个实施例中,散热装置10包括蒸发器11和多个肋板12;蒸发器11具有用于容纳液相工质的第一腔体(图中未显示)。肋板12包括第一侧板121和第二侧板122,第一侧板121朝向第二侧板122的一侧具有多个第一凸出部1210,第二侧板122朝向第一侧板121的一侧具有多个第二凸出部1220,每个第一凸出部1210和一个对应的第二凸出部1220固定连接,可以使第一侧板121和第二侧板122之间的第二腔体(图中未显示)分隔成与第一腔体连通的流道。第一腔体中液相的工质受热汽化,汽化后的工质可以进入到第二腔体中,由于肋板的外表面与外部的空气对流和辐射散热, 使在第二腔体中流动的汽化的工质液化,在工质的液化和汽化的过程中,使热量散失。具体而言,蒸发器11与热源30接触,工质在气液两相转换的过程,可以有效的将对蒸发器11提供热量的热源30产生的热量能够被快速的散出,使热源30能够稳定的工作。另外,在工作时,进入到流道中的工质汽化,使形成流道的肋板12承受的压力较大,因此,需要散热装置10具有足够的强度。本申请中,肋板12中第一凸出部1210和第二凸出部1220的设置,可以使肋板12的强度增加,保证肋板12工作的稳定性。此外,这种结构还容易用一些现有的工艺来实现,从而减少了加工成本。
在一种实施例中,为了降低散热装置10的成本,散热装置10中的肋板12可以通过热轧吹胀工艺或通过冲压钎焊工艺进行制备,通过这些工艺来实现时,能够减少加工成本。
在具体设置蒸发器11时,蒸发器11可以包括第三侧板110和第四侧板111。第三侧板110和第四侧板111的边缘之间通过钎焊的方式密封贴合,以使第三侧板110和第四侧板111之间形成第一腔体。其中,第三侧板110用于和热源30导热接触。另外,蒸发器11上还包括用于对第一腔体进行注液和抽真空的管路112,且可以在管路112上设置有阀体,以用使对第一腔体抽真空以及注液完成后,将该管路112闭合。
具体将多个肋板12安装于蒸发器11上时,可以在蒸发器11上设置有第一对接口1110(第一对接口1110可以设置在第四侧板111),第一对接口1110与第一腔体连通,肋板12上设有第二对接口123,第二对接口123与流道连通;将第一对接口1110与第二对接口123对接,即可将肋板12安装于蒸发器11上。
在具体设置流道时,第一凸出部1210可以是将第一侧板121的局部向第二侧板122一侧挤压形成,第二凸出部1220可以是将第二侧板122的局部向第一侧板121一侧挤压形成的。即第一侧板121背离第二侧板122的一侧以及第二侧板122背离第一侧板121的一侧会形成凹陷部,其中,位于第一侧板121上凹陷部的轮廓与第一凸出部1210的轮廓相对应,位于第二侧板122上凹陷部的轮廓与第二凸出部1220的轮廓对应。此种方式在形成用于汽相工质流通的流道时,还可以保证第一侧板121和第二侧板122之间具有较多的连接点,以保证肋板12的强度。
在上述实施例中,流道的形式可以为多种,例如:例如,流道可以为直线型管路、U型管路或网格状管路中的一种或几种的组合;而U型管理或网格状管路的设置,可以提高流道的长度,以提高汽化后的工质与外部空气的对流和辐射散热的速度,加快汽化后的工质液化。
需要说明的是,网格状管路具体可以包括直角网格状管路、菱形网格状管路、三角形网格状管路、圆形网格状管路、蜂窝网格状管路中的至少一个。
在一些可能的实施例中,图2a中箭头的指向为高度方向,第二腔体的顶点高度大于第一腔体的高度(肋板12的高度大于蒸发器11的高度),即第一腔体中充完液相工质后,第二腔体中至少有部分的空间中未被液相工质填充,以使液相的工质汽化后,在第二腔体中移动的路径增加,提高汽化后的工质与外部空气对流和辐射散热的速度,使汽化后的工质快速的液化,且液化后的工质在重力的作用下会快速的与液相的工质汇合;此种设置方式,可以有效的提高散热速度,且当第一腔体中的工质过多时,由于部分的第二腔体位于第一腔体的上方,使进入到第二腔体中的汽化后的工质依然能够快速的液化,提高了散热装置的适用性。
在上述的实施例中,蒸发器与肋板对接的方式具体可以为多种,例如:在多个肋板中, 每个肋板上均设有第二对接口,此时,蒸发器上具体可以仅设置有一个第一对接口,一个对接口与多个第二肋板上的多个第二对接口对接,以实现第一腔体和第二腔体的连通;或,参照图3a,在蒸发器设有的第一对接口1110(设置于第四侧板111)的数量与肋板12的数量相同,即每个第一对接口1110对应一个第二对接口123,此时,第一对接口110的延伸方向与高度的方向相同,此种设置方式,每个肋板12在制作的过程中只需要形成一个第二对接口123与第四侧板111上的一个第一对接口1110连通即可,可以降低肋板12在制作过程中的复杂程度;当热源开始工作时,第一腔体中的工质受热开始汽化,汽化后的工质通过第二对接口123未被工质没过的部分进入到流道中,或汽化后的工质直接在第二对接口123中汽化进入流道(第二腔体)中。
参照图3b,蒸发器上设置有多个第一对接口1110(第一对接口1110设置于第四侧板111上),多个第一对接口1110沿高度的方向延伸,每个第一对接口1110对接有一个肋板12,每个肋板12上设置有多个第二对接口123,即一个第一对接口1110对应的一个肋板12上设的多个第二对接口123,当热源工作时,第一腔体中的工质受热开始汽化,汽化后的工质通过多个第二对接口123中未被工质没过的部分进入到流道中,或汽化后的工质直接在多个第二对接口123中汽化进入流道中。
参照图3c,蒸发器上设置有多个第一对接口1110(第一对接口1110设置于第四侧板111上),多个第一对接口1110沿高度的方向延伸,多个第一对接口1110对应有一个肋板12时,每个肋板12上的设置的第二对接口123的数量与其对应的第一对接口1110的数量相同,即多个第一对接口1110与一个肋板12上的多个第二对接口123一一对应设置;当热源工作时,第一腔体中的工质受热开始汽化,汽化后的工质通过多个第二对接口123中未被工质没过的部分进入到流道中,或汽化后的工质直接在多个第二对接口123中汽化进入流道中。
需要说明的是,第一对接口和第二对接口用于将肋板与蒸发器连接,第一对接口和第二对接口具体的形式还可以为其他的结构。例如,参照图3d,设置于肋板12上的第二对接口123还可以为凸出的管状结构时,位于第四侧板111上的第一对接口1110可以为与管状结构配合的圆孔,且在具体设置肋板12时,通过工艺的改善,也可以将肋板的外表面设置为平面结构。
在上述的实施例中,参照图4a,肋板12位于蒸发器11上的布设方式可以有多种形式,例如,位于蒸发器11第二侧板上的第一对接口与高度方向呈夹角设置(第一对接口与高度方向呈夹角为0-90°),当第一对接口为多个时,多个第一对接口平行设置;此时,肋板12插接于蒸发器11上,肋板12也与高度方向呈夹角设置,且多个肋板12平行设置;此种设置方式,蒸发器11和肋板12能够进行低热阻均温导热,以充分利用换热肋板12位于蒸发器11上的布局,实现较好的外部风道的对流换热,降低肋板12的上下热串联影响,提高第一腔体和流道(第二腔体)内工质的冷凝换热。
参照图4b和图4c,多个肋板12也可以形成两组肋板,在两组肋板中,每组肋板包括多个相互平行的肋板12,两组肋板12呈V字型设置于蒸发器11上,也可以呈倒V字型设置于蒸发器11上,此时,蒸发器11上与肋板12配合的多个第一对接口也分为两组,两组第一对接口的呈V字型或倒V字型设置。此种设置方式,可以提高肋板12的换热能力。
参照图4d,多个肋板12也可以形成四组肋板,在四组肋板中,每组肋板包括多个相互平行的肋板12,四组肋板呈W字型设置于蒸发器11上;此时,蒸发器11上与肋板12 配合的多个第一对接口也分为四组,四组第一对接口呈W型设置。此种设置方式,可以提高肋板12的换热能力。
需要说明的是,多个肋板12可以形成三组肋板、五组肋板或六组肋板等,肋板12的组数以及布设的方式需要根据具体的使用情况进行调整。
参照图5a-图5e,在一些可能的实施例中,肋板12的形状可以设置为多种,例如:肋板12的形状可以为倒L型、倒Z字型或矩形。具体而言,当肋板12的形状为倒L型时,在高度方向上,肋板12(第二腔体)顶点的高度可以高于蒸发器11的高度,且呈倒L型设置的肋板12的一个边可以向蒸发器11的正上方延伸,或呈倒L型设置的肋板的一个边高于蒸发器11的高度,且该边向远离蒸发器11的一侧延伸;当肋板12呈倒Z字型时,呈倒Z字型设置的肋板12的一个边位于蒸发器11的正上方,或呈倒Z字型设置的肋板12的一边的高度高于蒸发器11,并沿竖直方向延伸,且在水平面的投影,肋板12的一边与蒸发器11不重合;当肋板12呈矩形时,肋板12可以与蒸发器11平行设置。由于肋板12(第二腔体)的顶点可以高于蒸发器11,即设置于肋板12中的至少部分位于第一腔体的上方,这样,当热源工作,第一腔体中的工质受热开始汽化,汽化后的工质会经过高于蒸发器11的流道,肋板12的表面与外部空气对流和辐射散热,以使经过肋板12中流道的工质冷凝为液体,冷凝后液态的工质会沿流道在重力的作用下流动到蒸发器11中的腔体内,使热源与蒸发器11接触的部分被液态的工质覆盖,如此循环,使蒸发器11与肋板12之间形成稳定的工作状态。
需要说明的是,肋板具体的形状还可以为多种形式,此处不进行列举;另外,肋板的顶部与蒸发器的顶部可以在相同的高度,参照图5f,肋板12与蒸发器11的高度相同,此时,工质在热源的作用下汽化,由于,肋板12上流道是第三侧板和或第四侧板向外侧鼓起形成的,这样,流道与外部环境之间的接触空间增加,加快汽化后的工质液化。
参照图6,在一些可能的实施例中,为了提高肋板12插接于蒸发器中的可靠性,可以在蒸发器(第四侧板111)的表面设置有凸台113,并在凸台113上形成有用于和肋板12配合的第一对接口,第二对接口用于插接于第一腔体中呈喇叭口状,以使第二对接口插接于第二对接口中后,第二对接口呈喇叭口状的部分能够与蒸发器的内壁接触,提高插接部与蒸发器连接的稳定。
需要说明的是,为了使蒸发器与肋板12之间的连接为密封连接,肋板12还与凸台113形成的外壁面或与凸台113形成的内壁面焊接,在于凸台113形成的外壁面焊接时,肋板12还包括与外壁面焊接的焊接部,在与凸台113的内壁面焊接时,第二对接口的部分与凸台113的内壁面焊接即可。
在上述的实施例中,为了提高散热装置的散热效率,可以在蒸发器靠近热源的一侧设置有强化汽化的蒸发结构,蒸发结构具体可以为位于蒸发器靠近热源一侧上的圆柱体、形成与蒸发器靠近热源一侧的凹槽、设置于蒸发器靠近热源一侧的毛细吸液芯(丝网或烧粉)中的一种或几种的组合。
上述散热装置设置于户外基站的热耗集中区域,对比采用常规散热装置的户外基站,本方案中经过实测可改善局部热源温度5℃以上。
参照图7,本申请还提供了一种散热装置的制备方法,包括如下的步骤:
S10:在蒸发器中形成有用于容纳汽液两相转换的工质的第一腔体;
S20:形成肋板,其中,所述肋板包括第一侧板和第二侧板,第一侧板朝向第二侧板 的一侧形成多个第一凸出部,在第二侧板朝向第一侧板的一侧形成多个第二凸出部,其中,每个所述第一凸出部和所述第二凸出部固定连接,以将所述肋板中的第二腔体分隔成流道;
S30:将所述肋板安装于所述蒸发器,所述流道与所述第一腔体连通。
具体而言,形成肋板的方法可以包括:
S21:在第一侧板和第二侧板上按照预设管路印刷石墨粉;
S22:第一侧板和第二侧板通过高温热轧紧密贴合;
S23:对预留管路进行吹涨,以使第一侧板和第二侧板印刷石墨粉的部分向彼此相背的方向形成凹陷部,所述第一侧板上的凹陷部与所述第二侧板上的凹陷部配合形成所述流道;第一侧板上除印刷石墨粉以外的部分形成所述多个第一凸出部,第二侧板上除印刷石墨粉以外的部分形成所述多个第二凸出部;
S24:对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板预留与蒸发器连通的部位。
形成肋板的方法还可以包括:
S201:在第一侧板的第一表面通过冲压工艺形成第一凹陷,且对第二侧板的第一表面通过冲压工艺形成第二凹陷,以使第一侧板的第一表面除第一凹陷之外的区域形成所述多个第一凸出部,且使第二侧板的第一表面除第二凹陷之外的区域形成所述多个第二凸出部;
S202:将第一侧板的第一凸出部与第二侧板的第二凸出部通过铝钎焊工艺进行焊接,且使第一凹陷与第二凹陷配合形成流道;
S203:对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板上预留与蒸发器连通的部位。
需要说明是,第一侧板和第二侧板可以是铝片,还可以更换为其他的导热材料。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种散热装置,其特征在于,包括蒸发器和连接于所述蒸发器上的多个肋板;
    所述蒸发器具有第一腔体,所述第一腔体用于容纳汽液两相转换的工质;
    所述肋板包括第一侧板和第二侧板,所述第一侧板朝向所述第二侧板的一侧具有多个第一凸出部,所述第二侧板朝向所述第一侧板的一侧具有多个第二凸出部,每个所述第一凸出部和一个对应的所述第二凸出部固定连接,以使所述第一侧板和所述第二侧板之间的第二腔体分隔成与所述第一腔体连通的流道。
  2. 根据权利要求1所述的散热装置,其特征在于,所述肋板通过热轧吹胀工艺形成;或,所述肋板通过冲压钎焊工艺形成。
  3. 根据权利要求1所述的散热装置,其特征在于,所述蒸发器包括第三侧板和第四侧板,所述第三侧板和所述第四侧板的边缘密闭贴合,所述第一腔体形成在所述第一侧板和所述第二侧板之间;其中,所述第三侧板用于与热源接触。
  4. 根据权利要求1至3任一项所述的散热装置,其特征在于,所述第二腔体的高度大于所述第一腔体的高度。
  5. 根据权利要求1至4任一项所述的散热装置,其特征在于,所述流道为直线型管路、U型管路或网格状管路中的一种或几种的组合。
  6. 根据权利要求5所述的散热装置,其特征在于,所述网格状管路包括直角网格状管路、菱形网格状管路、三角形网格状管路、圆形网格状管路、蜂窝网格状管路中的至少一个。
  7. 根据权利要求1至6任一项所述的散热装置,其特征在于,所述蒸发器上设置有第一对接口,所述第一对接口与所述第一腔体连通,所述肋板上设有第二对接口,所述第二对接口与所述流道连通;
    其中,所述第一对接口与所述第二对接口对接。
  8. 根据权利要求7所述的散热装置,其特征在于,所述蒸发器具有一个所述第一对接口,且所述第一对接口与多个所述第二对接口对接。
  9. 根据权利要求7所述的散热装置,其特征在于,所述蒸发器具有的第一对接口为多个,且所述第一对接口的数量少于所述第二对接口的数量;
    其中,至少一个所述第一对接口与多个所述第二对接口对接。
  10. 根据权利要求7所述的散热装置,其特征在于,所述第一对接口的数量与所述第二对接口的数量相同;多个所述第一对接口与多个所述第二对接口一一对接。
  11. 根据权利要求7至10中任一所述的散热装置,其特征在于,所述第二对接口位于所述肋板的边缘。
  12. 根据权利要求3所述的散热装置,其特征在于,所述第四侧板的外表面设置有凸台,所述第一对接口位于所述凸台的顶部。
  13. 根据权利要求7至12中任一所述的散热装置,其特征在于,所述第二对接口对接于所述第一对接口的部分呈喇叭口状。
  14. 根据权利要求3所述的散热装置,其特征在于,所述肋板与所述第四侧板相互垂直。
  15. 根据权利要求1至14中任一所述的散热装置,其特征在于,多个所述肋板相互平行设置或呈夹角设置。
  16. 根据权利要求1至15任一项所述的散热装置,其特征在于,所述肋板为矩形、倒 L形或倒Z字形。
  17. 一种散热装置的制备方法,其特征在于,包括如下步骤:
    在蒸发器中形成有用于容纳汽液两相转换的工质的第一腔体;
    形成肋板,其中,所述肋板包括第一侧板和第二侧板,第一侧板朝向第二侧板的一侧形成多个第一凸出部,在第二侧板朝向第一侧板的一侧形成多个第二凸出部,其中,每个所述第一凸出部和一个所述第二凸出部固定连接,以将所述肋板中的第二腔体分隔成流道;
    将所述肋板安装于所述蒸发器,所述流道与所述第一腔体连通。
  18. 根据权利要求17所述的散热装置的制备方法,其特征在于,形成肋板的方法包括:
    在第一侧板和第二侧板上按照预设管路印刷石墨粉;
    第一侧板和第二侧板通过高温热轧紧密贴合;
    对预留管路进行吹涨,以使第一侧板和第二侧板印刷石墨粉的部分向彼此相背的方向形成凹陷部,所述第一侧板上的凹陷部与所述第二侧板上的凹陷部配合形成所述流道;第一侧板上除印刷石墨粉以外的部分形成所述多个第一凸出部,第二侧板上除印刷石墨粉以外的部分形成所述多个第二凸出部;
    对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板预留与蒸发器连通的部位。
  19. 根据权利要求17所述的散热装置的制备方法,其特征在于,形成肋板的方法包括:
    在第一侧板的第一表面通过冲压工艺形成第一凹陷,且对第二侧板的第一表面通过冲压工艺形成第二凹陷,以使第一侧板的第一表面除第一凹陷之外的区域形成所述多个第一凸出部,且使第二侧板的第一表面除第二凹陷之外的区域形成所述多个第二凸出部;
    将第一侧板的第一凸出部与第二侧板的第二凸出部通过铝钎焊工艺进行焊接,且使第一凹陷与第二凹陷配合形成流道;
    对贴合的第一侧板和第二侧板进行裁剪以形成肋板,并在肋板上预留与蒸发器连通的部位。
  20. 一种无线通信基站,其特征在于,包括:箱体、热源和如权利要求1-16任一项所述的散热装置以及根据权利要求17-19任一项所述的散热装置的制备方法制造的散热装置,所述箱体上设有用于安装所述散热装置的安装口,所述热源设置于所述箱体中,至少部分所述热源与所述蒸发器导热连接。
PCT/CN2022/073693 2021-01-28 2022-01-25 散热装置、散热装置的制备方法及无线通信基站 WO2022161342A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22745217.4A EP4274395A4 (en) 2021-01-28 2022-01-25 HEAT DISSIPATION DEVICE, PREPARATION METHOD FOR HEAT DISSIPATION DEVICE, AND WIRELESS COMMUNICATION BASE STATION
US18/359,937 US20230371201A1 (en) 2021-01-28 2023-07-27 Heat dissipation apparatus, heat dissipation apparatus preparation method, and wireless communication base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110119093.X 2021-01-28
CN202110119093.XA CN114812234A (zh) 2021-01-28 2021-01-28 散热装置、散热装置的制备方法及无线通信基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/359,937 Continuation US20230371201A1 (en) 2021-01-28 2023-07-27 Heat dissipation apparatus, heat dissipation apparatus preparation method, and wireless communication base station

Publications (1)

Publication Number Publication Date
WO2022161342A1 true WO2022161342A1 (zh) 2022-08-04

Family

ID=82526811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073693 WO2022161342A1 (zh) 2021-01-28 2022-01-25 散热装置、散热装置的制备方法及无线通信基站

Country Status (4)

Country Link
US (1) US20230371201A1 (zh)
EP (1) EP4274395A4 (zh)
CN (1) CN114812234A (zh)
WO (1) WO2022161342A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075650A1 (en) * 2000-07-31 2002-06-20 Morris Terrel L. Integrated EMI containment and spray cooling module utilizing a magnetically coupled pump
JP2007115917A (ja) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd 熱分散プレート
US20100139888A1 (en) * 2008-12-08 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader and heat dissipation device using same
CN106686958A (zh) * 2017-03-07 2017-05-17 上海嘉熙科技有限公司 热超导翅片式散热器及电器设备机箱
CN106885485A (zh) * 2017-02-25 2017-06-23 长沙理工大学 一种热端变截面多脉动冷端热管散热器
CN111256505A (zh) * 2020-03-13 2020-06-09 上海合辰科新材料有限公司 一种异形多维相变散热器
CN111504095A (zh) * 2020-04-27 2020-08-07 浙江嘉熙科技有限公司 热超导散热板、散热器及5g基站设备
CN212211744U (zh) * 2020-04-21 2020-12-22 深圳市英维克科技股份有限公司 散热器和通讯设备
CN113916027A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 一种散热器及通信设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2677261B1 (en) * 2012-06-20 2018-10-10 ABB Schweiz AG Two-phase cooling system for electronic components

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075650A1 (en) * 2000-07-31 2002-06-20 Morris Terrel L. Integrated EMI containment and spray cooling module utilizing a magnetically coupled pump
JP2007115917A (ja) * 2005-10-20 2007-05-10 Fuji Electric Holdings Co Ltd 熱分散プレート
US20100139888A1 (en) * 2008-12-08 2010-06-10 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat spreader and heat dissipation device using same
CN106885485A (zh) * 2017-02-25 2017-06-23 长沙理工大学 一种热端变截面多脉动冷端热管散热器
CN106686958A (zh) * 2017-03-07 2017-05-17 上海嘉熙科技有限公司 热超导翅片式散热器及电器设备机箱
CN111256505A (zh) * 2020-03-13 2020-06-09 上海合辰科新材料有限公司 一种异形多维相变散热器
CN212211744U (zh) * 2020-04-21 2020-12-22 深圳市英维克科技股份有限公司 散热器和通讯设备
CN111504095A (zh) * 2020-04-27 2020-08-07 浙江嘉熙科技有限公司 热超导散热板、散热器及5g基站设备
CN113916027A (zh) * 2020-07-10 2022-01-11 华为技术有限公司 一种散热器及通信设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4274395A4 *

Also Published As

Publication number Publication date
CN114812234A (zh) 2022-07-29
EP4274395A1 (en) 2023-11-08
EP4274395A4 (en) 2024-06-26
US20230371201A1 (en) 2023-11-16

Similar Documents

Publication Publication Date Title
CN103167780A (zh) 功率模块用复合式散热器及复合式散热器组件
CN209820015U (zh) 半导体制冷冷却装置
CN106304805A (zh) 一种板翅式微循环散热器及微循环换热系统
CN212211744U (zh) 散热器和通讯设备
WO2022007721A1 (zh) 一种散热器及通信设备
CN111741650A (zh) 热超导散热板、散热器及5g基站设备
WO2023010836A1 (zh) 散热模组和电子设备
CN110567301A (zh) 一种散热板及其制造方法
WO2022148435A1 (zh) 散热器及通信设备
CN215725361U (zh) 一种高导热型散热器
WO2022161342A1 (zh) 散热装置、散热装置的制备方法及无线通信基站
CN113543575A (zh) 散热器和通讯设备
CN209416117U (zh) 一种高强化传热结构的冷板
WO2022083365A1 (zh) 一种设备散热方法及散热设备
CN104619156A (zh) 散热装置及通信产品
CN210900093U (zh) 鳍片散热器
CN212458062U (zh) 热超导传热板及散热器
KR101676882B1 (ko) 차량용 열전발전장치
CN211210332U (zh) 一种壳体散热的电子设备
CN211210330U (zh) 一种风冷相变散热的电子设备
CN211792578U (zh) 一种散热装置及散热系统
CN211578734U (zh) 用于电子器件的导热装置
CN114096134A (zh) 散热器及电子设备
CN111076574A (zh) 一种传热组件、换热组件、平行流换热器和空气加热器
CN217694134U (zh) 相变散热器及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022745217

Country of ref document: EP

Effective date: 20230804

NENP Non-entry into the national phase

Ref country code: DE