WO2022083365A1 - 一种设备散热方法及散热设备 - Google Patents

一种设备散热方法及散热设备 Download PDF

Info

Publication number
WO2022083365A1
WO2022083365A1 PCT/CN2021/118579 CN2021118579W WO2022083365A1 WO 2022083365 A1 WO2022083365 A1 WO 2022083365A1 CN 2021118579 W CN2021118579 W CN 2021118579W WO 2022083365 A1 WO2022083365 A1 WO 2022083365A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
teeth
heat dissipation
source area
inner cavity
Prior art date
Application number
PCT/CN2021/118579
Other languages
English (en)
French (fr)
Inventor
段凯文
李帅
刘欣
刘帆
汪艳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21881784.9A priority Critical patent/EP4210444A4/en
Publication of WO2022083365A1 publication Critical patent/WO2022083365A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/20663Liquid coolant with phase change, e.g. heat pipes
    • H05K7/20681Liquid coolant with phase change, e.g. heat pipes within cabinets for removing heat from sub-racks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides

Definitions

  • the embodiments of the present application relate to the field of heat dissipation, and in particular, to a device heat dissipation method and a heat dissipation device.
  • the communication base station equipment dominated by AAU and RRU has high reliability requirements and application scenarios require maintenance-free, so natural cooling is usually used for cooling.
  • natural cooling is usually used for cooling.
  • the commonly used natural heat dissipation method cannot meet the increasing heat consumption demand of communication base station equipment.
  • the natural heat dissipation method of traditional communication base station equipment mainly includes two aspects: the heat is conducted layer by layer from the heating element to the radiator outside the equipment shell, and the temperature is as uniform as possible in the process (heat conduction, heat diffusion process); through natural convection and Radiant heat transfer dissipates the heat conducted to the radiator into the air (heat dissipation process).
  • the thermal resistance of diffusion and thermal conduction only account for about 30%, and the thermal resistance of convection heat transfer accounts for as high as 70%.
  • thermo conductivity interface materials are used to reduce the thermal conductivity and thermal resistance in the heat transfer path; uniform temperature characteristics to reduce the thermal diffusion resistance in the heat transfer path.
  • the above two technologies are only optimized for the thermal resistance part that accounts for 30%.
  • PCI fins is mainly rectangular flat metal fins with pipes.
  • the research status of PCI fins in the industry is as follows: on the one hand, pay attention to its internal pipeline shape, honeycomb pipeline, steepest drop line pipeline, partitioned pipeline, etc., and change two aspects of the internal working fluid through the optimization of pipeline shape. phase flow pattern, thereby improving the temperature uniformity of the PCI fins, that is, reducing the thermal diffusion resistance of the two-phase device.
  • PCI fins and the connection method with the radiator substrate such as single-sided inflation technology, double-sided inflation technology, cogging technology, tooth bonding technology, etc.
  • the traditional straight-tooth radiator is improved to a V-tooth radiator to reduce the system convection heat transfer thermal resistance and improve the system heat dissipation efficiency.
  • the V-teeth structure strengthens the vertical air intake of the radiator and increases the heat dissipation area; on the other hand, it increases the side air outlet, shortens the airflow heat dissipation path, and improves the thermal cascade problem.
  • the temperature of the key components of the V-tooth system is lower than that of the straight-tooth system by 1-3°C.
  • V-teeth radiator solution brings certain temperature benefits, it increases the process complexity in fin production and connection, resulting in higher costs.
  • the straight-tooth and V-tooth radiator schemes only use the airflow near the heat source area to dissipate and cool the system.
  • the system structure has a large resistance to the cooling airflow, and the airflow temperature is relatively high, resulting in low natural convection heat transfer efficiency.
  • the existing natural heat dissipation method can only solve the problem that the heat consumption of the system continues to rise by continuously increasing the tooth height.
  • the increase of the tooth height not only leads to a decrease in the efficiency of the cooling fins, but also significantly increases the total system volume and reduces the product market competitiveness.
  • the continuous increase in the heat dissipation of the system can only be solved by increasing the height of the teeth, resulting in low efficiency of the ribs of the heat dissipation teeth, and low volume and weight heat dissipation density of the system. No solution has been proposed yet. Program.
  • Embodiments of the present application provide a device heat dissipation method and heat dissipation device, so as to at least to a certain extent solve the problem that the continuous increase of system heat dissipation can only be solved by continuously increasing the tooth height in some situations in the art, and the heat dissipation teeth caused by The rib efficiency is low, and the volume heat dissipation density and weight heat dissipation density of the system are low.
  • a heat dissipation device includes: a casing 1, a heating device 2, a heat sink substrate 3 and a heat dissipation component 4, wherein the heating device 2 is arranged in the shell Inside the body 1, the radiator base plate 3 is fixedly connected to the housing 1, the heat dissipation member 4 is fixedly connected to the heat sink base plate 3, and the heat dissipation member 4 covers both the near heat source area and the far heat source area,
  • the heat dissipation component 4 is configured to absorb the heat generated by the heating device 2, transfer part of the heat from the near heat source area to the far heat source area, and utilize the air in the far heat source area for enhanced heat dissipation.
  • a method for dissipating heat from a device includes: absorbing heat generated by a heat-generating device 2 through a heat-dissipating component 4 , wherein the device includes a housing 1 , a heat-generating device 2 , and a heat sink radiator substrate 3 and the heat dissipation component 4, wherein the heating device 2 is arranged inside the housing 1, the heat sink substrate 3 is fixedly connected to the housing 1, and the heat dissipation component 4 is connected to the housing 1.
  • the heat sink base plate 3 is fixedly connected, and the heat dissipation member 4 covers both the near heat source area and the far heat source area; part of the heat is transferred from the near heat source area to the far heat source area, and the air in the far heat source area is used to carry out heat dissipation. Enhanced heat dissipation.
  • FIG. 1 is an outline structure diagram of a heat dissipation device according to an embodiment of the present application
  • FIG. 2 is a flowchart of a device cooling method according to an embodiment of the present application
  • FIG. 3 is a structural block diagram of a heat dissipation device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a heat dissipation area division according to an embodiment of the present application.
  • FIG. 5 is a block diagram of a heat dissipation tooth structure according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram illustrating the related dimensions of the heat dissipation teeth according to the embodiment of the present application.
  • FIG. 7 is a schematic diagram of a tubular flow channel lumen according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an outline structure of a deflector according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the profile structure of the bending auxiliary teeth according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a V-shaped auxiliary tooth profile structure according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a two-phase principle of a heat dissipation method according to an embodiment of the present application.
  • Embodiments of the present application provide a device heat dissipation method and heat dissipation device, so as to at least to a certain extent solve the problem that the continuous increase of system heat dissipation can only be solved by continuously increasing the tooth height in some situations in the art, and the heat dissipation teeth caused by The rib efficiency is low, and the volume heat dissipation density and weight heat dissipation density of the system are low.
  • FIG. 1 is an outline structure diagram of the heat dissipation device according to the embodiment of the present application.
  • the heat dissipation device includes: a housing 1 , a heating device 2 , A radiator substrate 3 and a heat dissipation component 4, wherein the heating device 2 is arranged inside the casing 1, the radiator substrate 3 is fixedly connected to the casing 1, and the heat dissipation component 4 is connected to the heat dissipation
  • the heat-dissipating component 4 covers both the near heat source area and the far heat source area, and the heat dissipating component 4 is arranged to absorb the heat generated by the heating device 2 and dissipate part of the heat from the near heat source area.
  • Migrate to the far heat source area and use the air in the far heat source area for enhanced heat dissipation, that is, migrate most of the heat from the near heat source area to the far heat source area, and utilize the sufficient and low temperature in the far heat source area. air for enhanced heat dissipation.
  • the heat dissipating component 4 includes a plurality of heat dissipating teeth 40 arranged in parallel and spaced apart;
  • the straight teeth 41 and the epitaxial teeth 42 are an integrated structure, and the outer shape of the epitaxial teeth 42 is not limited.
  • the straight teeth 41 are arranged within the outer edge of the base plate of the heat sink 3 , and the epitaxial teeth 42 partially exceed or all beyond the outer edge of the substrate of the heat sink substrate 3, the straight teeth 41 are located in the near heat source area, the epitaxial teeth 42 are located in the far heat source area, and the heat transfer medium 44 is filled in the The heat transfer medium 44 forms a pool boiling state in the inner cavity 43 after absorbing heat, and transfers the heat to the remote heat source area by means of vaporization.
  • the length of the straight teeth 41 is less than or equal to the longitudinal outer edge dimension of the housing 1 , and the length of the outer teeth 42 is a preset multiple of the length of the straight teeth 41 .
  • the inner cavity 43 is a one-piece communication structure, and the coverage of the inner cavity 43 includes the straight teeth 41 and the extension teeth 42 .
  • the inner cavity 43 is a cavity structure or a tubular flow channel structure.
  • the upper inner cavity located in the outer teeth 42 is set as an inclined structure, which transitions to and communicates with the lower inner cavity located in the straight teeth 41 .
  • the liquid level of the heat transfer medium 44 is higher than the main heating element and the heat sensitive element of the heating device 2 .
  • an array of reinforcing ribs is formed inside the inner cavity 43 by means of partial pressing, supporting columns, etc., to strengthen the structural strength of the heat dissipation teeth 40, wherein the structure of the reinforcing ribs includes but is not limited to One of the following: honeycomb, circle, triangle, square.
  • the heat dissipation device further includes a guide plate 5, wherein the guide plate 5 is fixedly connected with the heat dissipation component 4 by means of a snap, and the guide plate 5 is arranged on the straight teeth. 41 and the boundary area of the epitaxial teeth 42 .
  • an auxiliary heat dissipation member 6 is fixed on the epitaxial teeth 42, wherein the structure of the auxiliary heat dissipation member 6 includes but is not limited to V teeth or vertical teeth, or the auxiliary heat dissipation member 6 passes through the The epitaxial teeth 42 are formed by bending.
  • FIG. 2 is a flowchart of the device heat dissipation method according to the embodiment of the present application. As shown in FIG. 2 , the process includes the following steps:
  • step S202 the heat generated by the heating device 2 is absorbed by the heat dissipation component 4, wherein the device includes a housing 1, a heating device 2, a heat sink substrate 3 and the heat dissipation component 4, wherein the heating device 2 is arranged in the Inside the casing 1, the heat sink base plate 3 is fixedly connected to the casing 1, the heat dissipation member 4 is fixedly connected to the heat sink base plate 3, and the heat dissipation member 4 covers the near heat source area and the heat sink at the same time. remote heat source area;
  • the above step S202 may specifically include: absorbing the heat generated by the heating device 2 through the heat transfer medium 44 of the heat dissipation component 4, wherein the heat dissipation component 4 is composed of a plurality of heat dissipation components arranged in parallel and spaced apart.
  • the radiating teeth 40 are composed of teeth 40.
  • Each of the cooling teeth 40 includes a straight tooth 41, an epitaxial tooth 42, an inner cavity 43, and a heat transfer medium 44.
  • the straight teeth 41 and the epitaxial teeth 42 are an integrated structure. The shape and structure are not limited.
  • the straight teeth 41 are arranged within the outer edge of the radiator substrate 3, and the epitaxial teeth 42 partially or completely exceed the outer edge of the radiator substrate 3.
  • the teeth 41 are located in the near heat source area, the outer teeth 42 are located in the far heat source area, and the heat transfer medium 44 is filled in the inner cavity 43 .
  • the main evaporation area of the radiating teeth 40 is located in the lower inner cavity of the straight teeth 41 , and the main condensation area of the radiating teeth 40 is located in the upper inner cavity of the outer teeth 42 .
  • Step S204 part of the heat is transferred from the near heat source area to the far heat source area, and the air in the far heat source area is used for enhanced heat dissipation.
  • the above-mentioned step S204 may specifically include: after the heat transfer medium 44 absorbs heat, a pool boiling state is formed in the inner cavity 43, and part of the heat is transferred to the remote location by means of vaporization.
  • the heat dissipation device inhales air from the near heat source area to dissipate heat, it also inhales air from the far heat source area to enhance heat dissipation, and quickly dissipates the heat that migrates to the far heat source area.
  • the heat dissipation device in the embodiment of the present application may specifically be an AAU/RRU, that is, it is mainly applied to the natural heat dissipation of high heat consumption communication base station equipment, and is suitable for an application scenario in which natural air is used for heat dissipation and cooling of the device.
  • FIG. 3 is a structural block diagram of a heat dissipation device according to an embodiment of the present application. As shown in FIG. 3 , it includes an AAU/RRU housing 1 , a heating device 2 , a heat sink base plate 3 , a heat dissipation component 4 , a guide plate 5 , and a secondary tooth 6 .
  • the heat dissipation component 4 includes a plurality of heat dissipation teeth 40 , the plurality of heat dissipation teeth 40 may be arranged in parallel and spaced apart, and the distance between each two heat dissipation teeth may be the same or different.
  • the heat-generating device 2 is usually attached to the inside of the AAU/RRU housing 1 by means of thermally conductive adhesive or a heat-conducting medium, and the side where the heat-generating device 2 is arranged is called the heat source side.
  • the heat sink base plate 3 is usually attached to the outer surface of the AAU/RRU casing 1 near the heat source side, or is directly cast integrally with the AAU/RRU casing 1 .
  • the heat dissipation teeth 40 are connected and fixed with the radiator base plate 3 by cogging, bonding, etc., and together with the base plate form a high-efficiency heat dissipation structure.
  • FIG. 4 is a schematic diagram of the heat dissipation area division of the heat dissipation device according to the embodiment of the present application. As shown in FIG. 4 , according to the relative position of the device, the main heat dissipation space can be divided into two parts: a near heat source area 7 and a far heat source area 8 .
  • FIG. 5 is a block diagram of a heat dissipation tooth structure of a heat dissipation device according to an embodiment of the present application.
  • the heat dissipation teeth 40 are integrated heat dissipation fins, and the material is usually metal, such as aluminum or copper.
  • the radiating teeth 40 are composed of the lower straight teeth part (ie the straight teeth 41 ) near the heat source region, the upper epitaxial teeth part (ie the epitaxial teeth 42 ) in the far heat source region, the inner cavity 43 and the heat transfer medium 44 .
  • the straight teeth 41 near the heat source area are close to the heating device 2 , and their structural forms are not limited, and most of them are rectangular flat plates.
  • the length of the straight teeth 41 is usually less than or equal to the longitudinal outer edge dimension of the AAU/RRU housing 1; the height of the straight teeth 41 is preferably between 30mm and 110mm.
  • the epitaxial teeth 42 in the remote heat source region are not restricted in structure, and are preferably in the form of a rectangular flat plate (the form adopted in this embodiment).
  • FIG. 6 is a schematic diagram illustrating the size of the heat sink teeth according to the embodiment of the present application.
  • the length of the outer teeth 42 should be 0.1 to 0.4 times the length of the lower straight teeth; the height of the outer teeth 42 should be as large as possible. It is advisable to take the maximum to be flush with the lateral outer edge of the AAU/RRU housing 1.
  • the interior of the heat dissipation tooth 40 is formed into an inner cavity 43 through mold processing, inflation process, etc., and its structure is not limited, and may be a cavity structure or a tubular runner structure.
  • FIG. 7 is a schematic diagram of the inner cavity of the tubular flow channel according to the embodiment of the present application.
  • the design form of the flow channel is not limited;
  • the pipeline in the lower part of the inner cavity is connected in transition to help the condensate in the upper part of the inner cavity to quickly return and replenish to the lower part of the inner cavity.
  • the inner cavity 43 is a continuous one-piece structure, and its coverage includes both the straight teeth 41 and the outer teeth 42 .
  • the limit size of the left and right sides of the inner cavity 43 should be 2 to 6 mm away from the left and right outer edges of the heat dissipation teeth 40, and the size of the inner cavity 43 should be 2-6 mm.
  • the upper and lower limit dimensions should be 6 to 12 mm away from the upper and lower outer edges of the heat dissipation teeth 40 .
  • Array-type reinforcing ribs are formed inside the inner cavity 43 by means of partial pressing, supporting columns, etc., to strengthen the structural strength of the heat dissipation teeth 40, wherein the structure of the reinforcing ribs includes but is not limited to one of the following: honeycomb, circular, Triangular, square.
  • the heat transfer medium 44 is filled.
  • the filling liquid level should be higher than the main heating element and the heat sensitive element in the heating device 2.
  • the end of the filling port is mechanically or welded. seal.
  • FIG. 8 is a schematic diagram of the outline structure of the deflector according to the embodiment of the present application. As shown in FIG. 8 , the deflector 5 and the heat dissipation teeth 40 are fixed in the form of a buckle, and the height of the deflector is at the boundary between the straight teeth 41 and the extension teeth 42 . nearby.
  • the auxiliary heat dissipating components are usually auxiliary teeth, which can be independent metal fins with unlimited shape and structure, and are connected and fixed to the epitaxial teeth 42 by welding or the like.
  • FIG. 9 is a schematic diagram of the outer shape structure of the bending auxiliary teeth according to the embodiment of the present application, and the bending auxiliary teeth can be directly formed by side bending of the extension teeth 42 .
  • FIG. 10 is a schematic diagram of the outer shape structure of the V-shaped auxiliary teeth according to the embodiment of the present application, which is connected and fixed with the epitaxial teeth 42 by means of welding or the like.
  • the structures of the heat dissipation teeth 40 and the inner cavity 43 are not restricted, but the heat dissipation teeth 40 and the inner cavity 43 both have structural characteristics extending from the near heat source region to the far heat source region.
  • the radiating teeth 40 can form distinct evaporation and condensation zones: the main evaporation zone is located in the lower inner cavity of the straight teeth 41 , and the main condensation zone is located in the upper inner cavity of the epitaxial teeth 42 .
  • FIG. 11 is a schematic diagram of the two-phase principle of the heat dissipation method according to the embodiment of the present application.
  • the heat dissipation teeth 40 realize the long-distance, high-efficiency natural cooling effect as shown in FIG. 11 , which can be equivalent to the immersion liquid cooling effect.
  • Heat dissipation The liquid working medium in the lower part of the inner cavity continuously absorbs heat and vaporizes from the fin near the heat source side and forms a stable pool boiling state. The gaseous working medium carries a large amount of latent heat and quickly transfers to the upper part of the inner cavity for condensation and heat dissipation, thus realizing the heat from the near heat source area to the heat source. Rapid migration and efficient heat dissipation in the remote heat source area.
  • the heat dissipation method ensures that the space near the heat source side of the cavity is continuously infiltrated with enough liquid working medium to avoid dry burning and reduce the risk of overheating of the device at the corresponding position.
  • the system inhales air from the near heat source area to dissipate heat, it can also inhale air from the far heat source area to dissipate heat, thereby enhancing the heat dissipation effect.
  • the upper part of the inner cavity is located in the remote heat source area, the interior is filled with high-temperature gaseous working medium, and there is sufficient low-temperature air outside; Air can be drawn in from the back side of the radiator to increase airflow.
  • the heat dissipation performance of the epitaxial teeth portion can be further enhanced by introducing a baffle plate, adding auxiliary heat dissipation components (auxiliary teeth, bending teeth), etc.
  • the problem of low heat dissipation density and weight heat dissipation density also solves the problem of inconspicuous two-phase partitioning of traditional PCI fins, insufficient fluid replenishment in the pipeline near the heat source side, the pipeline only covers the area near the heat source, and the complex connection process of the V-tooth radiator fins Therefore, the heat-dissipating component 4 is freed from the constraints of the pipeline and the form of the pipeline, and under the structural support of the heat-dissipating component 4, the long-distance efficient natural heat dissipation of the equipment is realized.
  • the equipment heat dissipation method described in the embodiment of the present application solves the problems of the original PCI fin technology, the two-phase partition of the heat dissipation fin is not obvious, the pipeline near the heat source side is insufficiently replenished, and the pipeline only covers the near heat source area;
  • the processing and connection process of the tooth radiator is complicated; the height of the heat dissipation tooth is reduced, and the efficiency of the heat dissipation tooth rib is improved; the system volume heat dissipation density is increased by more than 10% and the weight heat dissipation density is increased by 5%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种设备散热方法及散热设备,该散热设备包括:壳体(1)、发热器件(2)、散热器基板(3)以及散热部件(4),发热器件(2)设置于壳体(1)的内部,散热器基板(3)与壳体(1)固定连接,散热部件(4)与散热器基板(3)固定连接,散热部件(4)同时覆盖近热源区与远热源区,散热部件(4)被设置成吸收发热器件(2)产生的热量,将部分热量从近热源区迁移到远热源区,利用远热源区的空气进行强化散热。

Description

一种设备散热方法及散热设备
相关申请的交叉引用
本申请基于申请号为202011148267.7、申请日为2020年10月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及散热领域,具体而言,涉及一种设备散热方法及散热设备。
背景技术
随着电力电子技术的高速发展,电子设备越来越向大容量、大功率、高集成、轻量化方向发展,由此导致了设备系统的热耗密度越来越大,环境适应性需求越来越高,电子设备的高可靠性散热问题已经逐渐成为遏制各相关行业发展的瓶颈。
以AAU和RRU为主的通讯基站设备的可靠性需求高、应用场景要求免维护,通常采用自然散热方式进行冷却。但是受到散热技术和散热方式限制,常用的自然散热方法无法满足通讯基站设备日益增长的热耗需求。
传统通讯基站设备的自然散热方法主要包括两方面:将热量从发热元件逐层传导至设备壳体外侧的散热器,并在此过程中尽量均温(热传导、热扩散过程);通过自然对流及辐射换热将传导至散热器的热量逸散至空气中(散热过程)。在整个传热路径中,扩散热阻及导热热阻仅约占30%,对流换热热阻占比高达70%。
针对现有的公开通讯基站设备自然散热方法,一方面利用高导热界面材料等来减小传热路径中的导热热阻,另一方面通过均温腔、热管、PCI翅片等两相传热器件的均温特性来减小传热路径中的扩散热阻。以上两方面技术均仅针对占比30%的热阻部分进行优化。
目前在各工业应用场景中,PCI翅片的结构形态主要为带管路的矩形平板式金属翅片。行业内针对PCI翅片的研究现状如下:一方面关注其内部管路形态,蜂窝式管路、最速降线式管路、分区式管路等,通过管路形态的优化改变内部工质的两相流型,从而提升PCI翅片的均温性,即降低该两相器件的扩散热阻。另一方面关注PCI翅片的加工工艺及与散热器基板的连接方式,如单面吹胀技术、双面吹胀技术、嵌齿工艺、粘齿工艺等。
在本领域一些情形中公开的通讯基站产品结构方案中,通过将传统直齿散热器改进为V齿散热器来降低系统对流换热热阻、提高系统散热效率。V齿结构一方面强化了散热器垂直方向的进风,并增加了散热面积;另一方面增加了侧出风口,缩短了气流散热路径,改善了热级联问题。在相同齿高条件下,V齿系统比直齿系统的关键器件温度降低了1~3℃。尽管V齿散热器方案带来了一定温度收益,但其增加了翅片生产及连接方面的工艺复杂度,导致了成本提高。同时,直齿、V齿散热器方案均仅利用了近热源区气流对系统进行散热冷却,系统结构对散热气流具有较大阻力,且气流温度相对较高,导致自然对流换热效率较低。
现有自然散热方法只能通过不断增加齿高的方式来解决系统热耗持续上升的问题。然而,齿高的增加不仅导致了散热齿肋效率的降低,更显著增加了系统总体积,降低了产品市场竞 争力。
针对本领域一些情形中针对系统散热量持续上升只能通过不断增加齿高的方式来解决,而导致的散热齿的肋效率低,且系统体积散热密度、重量散热密度低的问题,尚未提出解决方案。
发明内容
本申请实施例提供了一种设备散热方法及散热设备,以至少在一定程度上解决本领域一些情形中针对系统散热量持续上升只能通过不断增加齿高的方式来解决,而导致的散热齿的肋效率低,且系统体积散热密度、重量散热密度低的问题。
根据本申请的一个实施例,提供了一种散热设备,所述散热设备包括:壳体1、发热器件2、散热器基板3以及散热部件4,其中,所述发热器件2设置于所述壳体1的内部,所述散热器基板3与所述壳体1固定连接,所述散热部件4与所述散热器基板3固定连接,所述散热部件4同时覆盖近热源区与远热源区,所述散热部件4,被设置成吸收所述发热器件2产生的热量,将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热。
根据本申请的另一个实施例,还提供了一种设备散热方法,所述方法包括:通过散热部件4吸收发热器件2产生的热量,其中,所述设备包括壳体1、发热器件2、散热器基板3以及所述散热部件4,其中,所述发热器件2设置于所述壳体1的内部,所述散热器基板3与所述壳体1固定连接,所述散热部件4与所述散热器基板3固定连接,所述散热部件4同时覆盖近热源区与远热源区;将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热。
附图说明
图1是本申请实施例的散热设备的外形结构图;
图2是本申请实施例的设备散热方法的流程图;
图3是本申请实施例的散热设备的结构框图;
图4是本申请实施例的散热区域划分的示意图;
图5是本申请实施例的散热齿结构的框图;
图6是本申请实施例的散热齿相关尺寸说明的示意图;
图7是本申请实施例的管式流道内腔的示意图;
图8是本申请实施例的导流板外形结构的示意图;
图9是本申请实施例的折弯副齿外形结构的示意图;
图10是本申请实施例的V型副齿外形结构的示意图;
图11是本申请实施例的散热方法两相原理的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本申请的实施例。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本申请实施例提供了一种设备散热方法及散热设备,以至少在一定程度上解决本领域一些情形中针对系统散热量持续上升只能通过不断增加齿高的方式来解决,而导致的散热齿的肋效率低,且系统体积散热密度、重量散热密度低的问题。
根据本申请的一个实施例,提供了一种散热设备,图1是本申请实施例的散热设备的外形结构图,如图1所示,所述散热设备包括:壳体1、发热器件2、散热器基板3以及散热部件4,其中,所述发热器件2设置于所述壳体1的内部,所述散热器基板3与所述壳体1固定连接,所述散热部件4与所述散热器基板3固定连接,所述散热部件4同时覆盖近热源区与远热源区,所述散热部件4被设置成吸收所述发热器件2产生的热量,将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热,即将大部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区中充足且低温的空气进行强化散热。
在一实施例中,所述散热部件4包括平行间隔设置的多个散热齿40;每个所述散热齿40包括直齿41、外延齿42、内腔43、传热工质44,所述直齿41与外延齿42为一体化结构,所述外延齿42的外形结构不限,所述直齿41设置于所述散热器基板3的基板外缘范围内,所述外延齿42部分超出或全部超出所述散热器基板3的基板外缘范围,所述直齿41位于所述近热源区,所述外延齿42位于所述远热源区,所述传热工质44充灌于所述内腔43内;所述传热工质44吸热后在所述内腔43中形成池沸腾状态,通过汽化的方式将所述热量迁移到所述远热源区。
在一实施例中,所述直齿41的长度小于或等于所述壳体1的纵向外缘尺寸,所述外延齿42的长度为所述直齿41的长度的预设倍数。
在一实施例中,所述内腔43为一体式连通结构,所述内腔43的覆盖范围包括所述直齿41与所述外延齿42。
在一实施例中,所述内腔43为空腔结构或管式流道结构。
在一实施例中,位于所述外延齿42中的上部内腔设置为倾斜结构,向位于所述直齿41中的下部内腔过渡并连通。
在一实施例中,所述传热工质44的液位面高于所述发热器件2的主发热元件与热敏感元件。
在一实施例中,通过局部压合、支撑柱等方式在所述内腔43内部形成阵列式加强筋,强化所述散热齿40的结构强度,其中,所述加强筋的结构包括但不限于以下之一:蜂窝状、圆形、三角形、方形。
在一实施例中,所述散热设备还包括导流板5,其中,所述导流板5与所述散热部件4通过卡扣方式固定连接,所述导流板5设置于所述直齿41与所述外延齿42的分界区。
在一实施例中,所述外延齿42上固定设置有辅助散热部件6,其中,所述辅助散热部件6的结构包括但不限于V齿或垂直齿,或者,所述辅助散热部件6通过所述外延齿42折弯形成。
基于上述的散热设备,在本实施例中提供了一种设备散热方法,图2是本申请实施例的设备散热方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,通过散热部件4吸收发热器件2产生的热量,其中,所述设备包括壳体1、发热器件2、散热器基板3以及所述散热部件4,其中,所述发热器件2设置于所述壳体1的 内部,所述散热器基板3与所述壳体1固定连接,所述散热部件4与所述散热器基板3固定连接,所述散热部件4同时覆盖所述近热源区与远热源区;
在一实施例中,上述步骤S202具体可以包括:通过所述散热部件4的传热工质44吸收所述发热器件2产生的热量,其中,所述散热部件4由平行间隔设置的多个散热齿40组成,每个所述散热齿40包括直齿41、外延齿42、内腔43、传热工质44,所述直齿41与外延齿42为一体化结构,所述外延齿42的外形结构不限,所述直齿41设置于所述散热器基板3的基板外缘范围内,所述外延齿42部分超出或全部超出所述散热器基板3的基板外缘范围,所述直齿41位于所述近热源区,所述外延齿42位于所述远热源区,所述传热工质44充灌于所述内腔43内。散热齿40的主蒸发区位于所述直齿41中的下部内腔,散热齿40的主冷凝区位于所述外延齿42中的上部内腔。
步骤S204,将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热。
在一实施例中,上述步骤S204具体可以包括:通过所述传热工质44吸热后在所述内腔43中形成池沸腾状态,通过汽化的方式将部分所述热量迁移到所述远热源区,在所述散热设备从近热源区吸入空气散热的同时,也从远热源区吸入空气强化散热,快速逸散迁移至远热源区的热量。
通过上述步骤S202至S204,可以解决本领域一些情形中针对系统散热量持续上升只能通过不断增加齿高的方式来解决,而导致的散热齿的肋效率低,且系统体积散热密度、重量散热密度的问题,使散热部件摆脱管路及管路形式的束缚,在散热部件的结构支撑下实现了设备远距离高效自然散热。
本申请实施例的散热设备具体可以为AAU/RRU,即主要应用于高热耗通讯基站设备的自然散热,适用于利用自然空气对设备进行散热冷却的应用场景。图3是本申请实施例的散热设备的结构框图,如图3所示,包括AAU/RRU壳体1、发热器件2、散热器基板3、散热部件4、导流板5、副齿6,其中,散热部件4包括多个散热齿40,多个散热齿40可以平行间隔设置,每两个散热齿之间的间距可以相同也可以不同。
发热器件2通常利用导热胶或导热介质贴附于AAU/RRU壳体1内部,并称布置了发热器件2的一侧为热源侧。
散热器基板3通常贴附于AAU/RRU壳体1的近热源侧外表面,或与AAU/RRU壳体1直接铸为一体。
散热齿40通过嵌齿、粘接等方式与散热器基板3连接并固定,与基板一起构成一种高效散热结构;其放置方式可选择竖直放置,或与水平方向呈一定角度的倾斜放置。
图4是本申请实施例的散热设备的散热区域划分的示意图,如图4所示,根据与设备的相对位置,可以将主要散热空间划分为两部分:近热源区7、远热源区8。
图5是本申请实施例的散热设备的散热齿结构的框图,如图5所示,散热齿40为一体式散热翅片,其材质通常为金属,如铝、铜等。散热齿40由近热源区的下部直齿部分(即直齿41)、远热源区的上部外延齿部分(即外延齿42)、内腔43、传热工质44组成。近热源区的直齿41靠近发热器件2,其结构形态不限,多为矩形平板式。
直齿41的长度通常小于或等于AAU/RRU壳体1的纵向外缘尺寸;直齿41的高度取在30mm~110mm间为宜。
远热源区的外延齿42,结构形态不受约束,以矩形平板式为宜(本实施例所采用形式)。
图6是本申请实施例的散热齿尺寸说明的示意图,如图6所示,外延齿42的长度宜取0.1~0.4倍的下部直齿部分长度;外延齿42的高度宜尽可能取大,最大取至与AAU/RRU壳体1的横向外缘齐平为宜。
散热齿40的内部通过模具加工、吹胀工艺等形成内腔43,其结构形态不限,可以为空腔结构,也可以为管式流道结构。
图7是本申请实施例的管式流道内腔的示意图,如图7所示,内腔43采用管式流道结构时,流道设计形式不限;内腔上部管路通过倾斜结构设计与内腔下部管路过渡连通,以帮助内腔上部冷凝液快速回流并补充至内腔下部。
内腔43为连续一体式结构,其覆盖范围同时包括直齿41及外延齿42。
为保证内腔43的覆盖范围尽可能大且满足工艺加工要求,以图7为例,内腔43的左右侧极限尺寸宜距离散热齿40的左右侧外缘尺寸2~6mm,内腔43的上下侧极限尺寸宜距离散热齿40的上下侧外缘尺寸6~12mm。
通过局部压合、支撑柱等方式在内腔43内部形成阵列式加强筋,强化散热齿40的结构强度,其中,所述加强筋的结构包括但不限于以下之一:蜂窝状、圆形、三角形、方形。
内腔43抽真空之后充灌传热工质44,充灌液位应高于发热器件2中的主发热元件及热敏感元件,充灌完成后的充灌口末端通过机械或焊接方式将其密封。
图8是本申请实施例的导流板外形结构的示意图,如图8所示,导流板5与散热齿40形成卡扣形式固定,其高度位置在直齿41与外延齿42的分界区附近。
辅助散热部件通常为副齿,可为外形结构不限的独立金属翅片,通过焊接等方式与外延齿42连接并固定。图9是本申请实施例的折弯副齿外形结构的示意图,该折弯副齿可直接通过外延齿42的侧折弯形成。图10是本申请实施例的V型副齿外形结构的示意图,通过焊接等方式与外延齿42连接并固定。
本申请实施例中,散热齿40及内腔43的结构形态不受约束,但是散热齿40、内腔43均具有从近热源区延伸至远热源区的结构特性。受益于散热齿40的齿形结构特性,散热齿40可以形成明显的蒸发、冷凝分区:主蒸发区位于直齿41中的下部内腔,主冷凝区位于外延齿42中的上部内腔。
图11是本申请实施例的散热方法两相原理的示意图,在齿形及内腔结构支撑下,散热齿40实现了如图11所示的可以等效浸没式液冷效果的远距离高效自然散热:内腔下部的液态工质从翅片近热源侧持续吸热汽化并形成稳定池沸腾状态,气态工质携带大量潜热快速转移至内腔上部冷凝散热,从而实现了热量从近热源区向远热源区的快速迁移及高效散热。
由于腔内液位高于主发热器件的充液特性,本散热方法保证了内腔近热源侧空间持续浸润有足够液态工质来避免干烧现象,降低了相应位置处器件超温风险。
系统从近热源区吸入空气散热的同时,也可以从远热源区吸入空气散热,从而达到强化散热效果。由于齿形结构的外延特性,内腔上部位于远热源区,其内部充满高温气态工质,外部有充足的低温空气;散热齿间形成的流道前后通透无阻碍,气流阻力较小,并且可以从散热器背面侧吸入空气,提高气流流速。在大温差、高流速的气流条件下,散热齿外延部分表面可以形成较强的自然对流,从而使内腔上部的气态工质迅速散热、冷凝,为内腔下部持续补液,强化了两相换热程度、维持了两相循环、保证了稳定持续的热量迁移及散热齿均温 性。
在上述基础上,通过引入导流板、增加辅助散热部件(副齿、折弯齿)等方式,可进一步强化外延齿部分的散热性能。
通过本申请实施例的所述设备散热方法,可以解决本领域一些情形中针对系统散热量持续上升只能通过不断增加齿高的方式来解决,而导致的散热齿的肋效率低,且系统体积散热密度、重量散热密度低的问题,同时也解决了传统PCI翅片两相分区不明显、近热源侧管路补液不足、管路仅覆盖近热源区、V齿散热器翅齿片连接工艺复杂的问题,使散热部件4摆脱管路及管路形式的束缚,在散热部件4的结构支撑下实现了设备远距离高效自然散热。
本申请实施例所述的设备散热方法解决了原PCI翅片技术下,散热翅片的两相分区不明显、近热源侧管路补液不足、管路仅覆盖近热源区的问题;避免了V齿散热器散热齿加工、连接工艺的复杂化;降低了散热齿高度、提高了散热齿肋效率;提升超过了10%的系统体积散热密度、5%的重量散热密度。
以上所述仅为本申请的一些实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种散热设备,包括:壳体(1)、发热器件(2)、散热器基板(3)以及散热部件(4),其中,所述发热器件(2)设置于所述壳体(1)的内部,所述散热器基板(3)与所述壳体(1)固定连接,所述散热部件(4)与所述散热器基板(3)固定连接,所述散热部件(4)同时覆盖近热源区与远热源区,
    所述散热部件(4),被设置成吸收所述发热器件(2)产生的热量,将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热。
  2. 根据权利要求1所述的散热设备,其中,
    所述散热部件(4)包括平行间隔设置的多个散热齿(40);
    每个所述散热齿(40)包括直齿(41)、外延齿(42)、内腔(43)、传热工质(44),所述外延齿(42)超出所述散热器基板(3)的基板外缘,所述直齿(41)位于所述近热源区,所述外延齿(42)位于所述远热源区,所述传热工质(44)充灌于所述内腔(43)内;
    所述传热工质(44),被设置成吸收所述发热器件(2)产生的热量,并在所述内腔(43)中形成池沸腾状态,通过汽化的方式将所述热量迁移到所述远热源区。
  3. 根据权利要求2所述的散热设备,其中,
    所述直齿(41)的长度小于或等于所述壳体(1)的纵向外缘尺寸,所述外延齿(42)的长度为所述直齿(41)的长度的预设倍数,所述外延齿(42)与所述直齿(41)为一体化结构,所述直齿(41)设置于所述散热器基板(3)的基板外缘范围内,所述外延齿(42)部分超出或全部超出所述散热器基板(3)的基板外缘范围。
  4. 根据权利要求2所述的散热设备,其中,
    所述内腔(43)为一体式连通结构,所述内腔(43)的覆盖范围包括所述直齿(41)与所述外延齿(42)。
  5. 根据权利要求2所述的散热设备,其中,所述内腔(43)为空腔结构或管式流道结构。
  6. 根据权利要求2所述的散热设备,其中,位于所述外延齿(42)中的上部内腔设置为倾斜结构,向位于所述直齿(41)中的下部内腔过渡并连通。
  7. 根据权利要求2所述的散热设备,其中,所述传热工质(44)的液位面高于所述发热器件(2)的主发热元件与热敏感元件。
  8. 根据权利要求2所述的散热设备,其中,
    通过局部压合或支撑柱的方式在所述内腔(43)内部形成阵列式加强筋,强化所述散热齿(40)的结构强度,其中,所述加强筋的结构包括以下之一:蜂窝状、圆形、三角形、方形。
  9. 根据权利要求2所述的散热设备,其中,所述散热设备还包括导流板5,其中,所述导流板5与所述散热部件(4)通过卡扣方式固定连接,所述导流板5设置于所述直齿(41)与所述外延齿(42)的分界区。
  10. 根据权利要求2所述的散热设备,其中,所述外延齿(42)上固定设置有辅助散热部件6,其中,所述辅助散热部件6的结构包括V齿或垂直齿,或者,所述辅助散热部件6通过所述外延齿(42)折弯形成。
  11. 一种设备散热方法,包括:
    通过散热部件(4)吸收发热器件(2)产生的热量,其中,所述设备包括壳体(1)、发热器件(2)、散热器基板(3)以及所述散热部件(4),其中,所述发热器件(2)设置于所述壳体(1)的内部,所述散热器基板(3)与所述壳体(1)固定连接,所述散热部件(4)与所述散热器基板(3)固定连接,所述散热部件(4)同时覆盖近热源区与远热源区;
    将部分所述热量从所述近热源区迁移到所述远热源区,利用所述远热源区的空气进行强化散热。
  12. 根据权利要求11所述的方法,其中,所述散热部件(4)由平行间隔设置的多个散热齿(40)组成,每个所述散热齿(40)包括直齿(41)、外延齿(42)、内腔(43)、传热工质(44),所述外延齿(42)与所述直齿(41)为一体化结构,所述外延齿(42)的外形结构不限,所述直齿(41)设置于所述散热器基板(3)的基板外缘范围内,所述外延齿(42)部分超出或全部超出所述散热器基板(3)的基板外缘范围,所述直齿(41)位于所述近热源区,所述外延齿(42)位于所述远热源区,所述传热工质(44)充灌于所述内腔(43)内。
  13. 根据权利要求12所述的方法,其中,将部分所述热量从所述近热源区迁移到所述远热源区包括:
    通过所述传热工质(44)吸热后在所述内腔(43)中形成池沸腾状态,通过汽化的方式将部分所述热量迁移到所述远热源区。
  14. 根据权利要求12所述的方法,其中,所述散热齿(40)的主蒸发区位于所述直齿(41)中的下部内腔,所述散热齿(40)的主冷凝区位于所述外延齿(42)中的上部内腔。
PCT/CN2021/118579 2020-10-23 2021-09-15 一种设备散热方法及散热设备 WO2022083365A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21881784.9A EP4210444A4 (en) 2020-10-23 2021-09-15 APPARATUS HEAT DISSIPATION METHOD AND HEAT DISSIPATION APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011148267.7A CN114501916A (zh) 2020-10-23 2020-10-23 一种设备散热方法及散热设备
CN202011148267.7 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022083365A1 true WO2022083365A1 (zh) 2022-04-28

Family

ID=81291574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118579 WO2022083365A1 (zh) 2020-10-23 2021-09-15 一种设备散热方法及散热设备

Country Status (3)

Country Link
EP (1) EP4210444A4 (zh)
CN (1) CN114501916A (zh)
WO (1) WO2022083365A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117355080A (zh) * 2022-06-27 2024-01-05 中兴智能科技南京有限公司 散热器及通信设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204231194U (zh) * 2014-11-06 2015-03-25 江苏品源电子科技有限公司 一种自带散热功能的电源模块
CN110149783A (zh) * 2019-06-03 2019-08-20 西安交通大学 一种非均匀热源分布的自然对流强化散热结构及散热方法
JP2020107672A (ja) * 2018-12-26 2020-07-09 住友理工株式会社 放熱部材
CN211481798U (zh) * 2019-12-27 2020-09-11 大唐移动通信设备有限公司 一种散热装置
CN111741646A (zh) * 2020-05-26 2020-10-02 吴德坚 一种新型一体式相变超导热传超效散热结构兼产品壳体

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202008010977U1 (de) * 2008-08-14 2008-10-16 Asia Vital Components(Shen Zhen) Co., Ltd. Kühlmodul für Leuchtdiode
DE202009012555U1 (de) * 2009-09-17 2010-03-04 Kunstwadl, Hans Kühlvorrichtung
TWI476575B (zh) * 2012-05-04 2015-03-11 Inventec Corp 電子裝置及其散熱結構
CN204408824U (zh) * 2014-12-18 2015-06-17 热流动力能源科技股份有限公司 热交换装置
US10446960B2 (en) * 2017-05-21 2019-10-15 Foxconn Interconnect Technology Limited Electrical connector assembly equipped with heat pipe and additional heat sink
WO2019112401A1 (ko) * 2017-12-08 2019-06-13 주식회사 케이엠더블유 전장소자의 방열 장치
US11184997B2 (en) * 2018-04-23 2021-11-23 Intel Corporation System to reduce coolant use in an array of circuit boards
CN211348753U (zh) * 2020-01-22 2020-08-25 东莞立讯技术有限公司 连接器组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204231194U (zh) * 2014-11-06 2015-03-25 江苏品源电子科技有限公司 一种自带散热功能的电源模块
JP2020107672A (ja) * 2018-12-26 2020-07-09 住友理工株式会社 放熱部材
CN110149783A (zh) * 2019-06-03 2019-08-20 西安交通大学 一种非均匀热源分布的自然对流强化散热结构及散热方法
CN211481798U (zh) * 2019-12-27 2020-09-11 大唐移动通信设备有限公司 一种散热装置
CN111741646A (zh) * 2020-05-26 2020-10-02 吴德坚 一种新型一体式相变超导热传超效散热结构兼产品壳体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210444A4 *

Also Published As

Publication number Publication date
CN114501916A (zh) 2022-05-13
EP4210444A1 (en) 2023-07-12
EP4210444A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
US8737071B2 (en) Heat dissipation device
CN109673139B (zh) 散热系统及具有散热系统的飞行器
CN110043972B (zh) 一种散热器、空调室外机和空调器
CN104197612B (zh) 一种半导体冰箱的高效散热组件
CN110035642A (zh) 一种液冷式导热块及水冷式散热器
CN109974137B (zh) 一种空调室外机和空调器
WO2020211416A1 (zh) 空调室外机和空调器
WO2021253813A1 (zh) 热超导散热板、散热器及5g基站设备
WO2022007721A1 (zh) 一种散热器及通信设备
CN100489434C (zh) 适用于大功率高效热管散热器的板式整体结构散热方法及装置
CN111741650A (zh) 热超导散热板、散热器及5g基站设备
CN105517424B (zh) 双向互补电子器件基板防失效热管均温散热装置及其方法
WO2022083365A1 (zh) 一种设备散热方法及散热设备
CN202677290U (zh) 一种电子终端主机及其散热器
CN111741649A (zh) 热超导散热板及其制备方法、散热器及5g基站设备
CN217037749U (zh) 热虹吸散热器
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN215003107U (zh) 一种热管散热器
CN210014475U (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN110043973B (zh) 一种散热器、空调室外机和空调器
CN110043975B (zh) 一种散热器、空调室外机和空调器
CN110043974B (zh) 一种散热器、空调室外机和空调器
US20230354557A1 (en) Heat sink and communication device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021881784

Country of ref document: EP

Effective date: 20230405

NENP Non-entry into the national phase

Ref country code: DE