WO2021253813A1 - 热超导散热板、散热器及5g基站设备 - Google Patents

热超导散热板、散热器及5g基站设备 Download PDF

Info

Publication number
WO2021253813A1
WO2021253813A1 PCT/CN2021/070652 CN2021070652W WO2021253813A1 WO 2021253813 A1 WO2021253813 A1 WO 2021253813A1 CN 2021070652 W CN2021070652 W CN 2021070652W WO 2021253813 A1 WO2021253813 A1 WO 2021253813A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
area
liquid phase
zone
phase evaporation
Prior art date
Application number
PCT/CN2021/070652
Other languages
English (en)
French (fr)
Inventor
仝爱星
Original Assignee
浙江嘉熙科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021149742.8U external-priority patent/CN212463857U/zh
Priority claimed from CN202010568097.1A external-priority patent/CN111741650A/zh
Application filed by 浙江嘉熙科技股份有限公司 filed Critical 浙江嘉熙科技股份有限公司
Publication of WO2021253813A1 publication Critical patent/WO2021253813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to the field of heat dissipation technology, in particular to a thermal superconducting heat sink, a radiator and 5G base station equipment.
  • Thermal superconducting heat transfer technology includes filling a working medium in a closed interconnected microchannel system, phase change heat transfer technology that realizes thermal superconducting heat transfer through the evaporation and condensation of the working medium; and through controlled airtightness
  • phase change heat transfer technology that realizes thermal superconducting heat transfer through the evaporation and condensation of the working medium; and through controlled airtightness
  • the microstructure state of the working medium in the system that is, during the heat transfer process, the boiling of the liquid medium (or the condensation of the gaseous medium) is suppressed, and on this basis, the uniformity of the working medium microstructure is achieved to realize the phase change of efficient heat transfer Inhibition (PCI) heat transfer technology.
  • PCI phase change of efficient heat transfer Inhibition Due to the rapid thermal conductivity of thermal superconducting technology, its equivalent thermal conductivity can reach more than 4000W/m°C, which can realize the uniform temperature of the entire thermal superconducting heat sink.
  • the thermal superconducting fin radiator is a radiator composed of a thermal superconducting heat sink as the heat dissipation fin. It is mainly composed of a radiator base plate and a plurality of thermal superconducting heat sink plates arranged on the heat sink base plate.
  • the heat source is arranged in the heat sink. On the other plane of the device substrate. The heat of the heat source is conducted to a plurality of heat dissipation fins through the substrate, and then the heat is dissipated to the surrounding environment through the heat dissipation fins.
  • the thermal superconducting heat sink is a thin plate structure, it has fast heat conduction rate, small size, light weight, high fin efficiency, and the fin efficiency does not change with the height of the fin, so it has been widely used in the heat dissipation of 5G communication equipment.
  • the structure of the thermal superconducting heat sink 1'currently used on the radiator of 5G base station equipment is shown in Figure 1. Most of them adopt a hexagonal honeycomb pipeline structure, and the pipeline structure covers the entire thermal superconducting heat sink 1'.
  • the amount of heat transfer working fluid filled in the pipeline is generally less than the total volume of the hexagonal honeycomb pipeline. Because the radiator is installed vertically, the heat transfer working medium is mainly concentrated in the lower space of the thermal superconducting heat sink 1'(such as the area A marked with a dashed frame in Fig. 1) under the influence of gravity.
  • the filling volume of the heat transfer fluid can be increased (as shown in Figure 1, the filling volume of the heat transfer fluid exceeds half of the total volume of the pipeline), but due to the influence of gravity, thermal superconductivity will be caused
  • the heat source at the lower part of the heat sink takes a long time to start up, the bottom thermal resistance is large, and the heat source at the upper part of the heat sink has a higher temperature, which leads to a large temperature difference between the upper and lower parts of the thermal superconducting heat sink, and the heat dissipation effect of the heat sink deteriorates.
  • the heating device is damaged.
  • the purpose of the present invention is to provide a thermal superconducting heat sink, a heat sink, and 5G base station equipment, which are used to solve the problem that the thermal superconducting heat sink in the prior art is prone to generate high temperature and local heat sources.
  • the thermal superconducting heat sink has a large temperature difference between the upper part and the lower part, the heat dissipation effect of the radiator is poor, and the heat dissipation requirements of different electronic components in different areas of the multi-heat source heat dissipation system are different.
  • the present invention provides a thermal superconducting heat sink
  • the thermal superconducting heat sink includes a first heat dissipation area, a second heat dissipation area, a first liquid phase evaporation isolation area, and a first connecting pipe
  • the second heat dissipation area is located above the first heat dissipation area
  • the first heat dissipation area includes a first liquid phase evaporation area and a first vapor phase condensation heat dissipation area located above the first liquid phase evaporation area
  • the first liquid phase evaporation zone and the first gas phase condensation heat dissipation zone are distributed with first heat dissipation pipelines communicating with each other
  • the second heat dissipation zone includes a second liquid phase evaporation zone, a second gas phase condensation heat dissipation zone and A second condensate diversion isolation zone
  • the second vapor phase condensation heat dissipation zone is located above the second liquid phase evaporation zone
  • the thermal superconducting heat dissipation plate further includes a third heat dissipation area, a second liquid phase evaporation isolation area, and a second connecting pipeline; the third heat dissipation area is located above the second heat dissipation area;
  • the third heat dissipation area includes a third liquid phase evaporation area, a third gas phase condensation heat dissipation area, and a third condensate diversion isolation area.
  • the third vapor phase condensation heat dissipation area is located above the third liquid phase evaporation area.
  • the third condensate diversion isolation zone is located in the third gas phase condensation heat dissipation zone, and third heat dissipation pipelines communicating with each other are distributed in the third liquid phase evaporation zone and the third gas phase condensation heat dissipation zone;
  • the second liquid phase evaporation isolation zone is located between the third liquid phase evaporation zone and the second gas phase condensation heat dissipation zone, and is used to isolate the third liquid phase evaporation zone from the second gas phase condensation heat dissipation zone ,
  • the second liquid phase evaporation isolation zone extends from the bottom of the third liquid phase evaporation zone to the side of the third liquid phase evaporation zone away from the heat source; the bottom edge of the third liquid phase evaporation zone is away from the heat source
  • the direction of the heat source is inclined upward;
  • the second connecting pipeline is located on the side of the second liquid phase evaporation isolation zone away from the third liquid phase evaporation zone, and the second connecting pipeline dissipates
  • the second condensate diversion isolation area is inclined upward in a direction away from the heat source and extends to a pipe-free area on the side of the thermal superconducting heat sink away from the heat source.
  • the third condensate diversion isolation area is inclined upward in a direction away from the heat source and extends to a pipe-free area on the side of the thermal superconducting heat sink away from the heat source.
  • the surface morphology of the thermal superconducting heat sink includes one of single-sided expansion, double-sided expansion, single-sided flat and double-sided flat.
  • the thermal superconducting heat dissipation plate further includes a pipe-less heat-receiving area, and the pipe-free heat-receiving area extends upward from one side of the first heat dissipation area to one side of the second heat dissipation area.
  • the first heat dissipation pipeline and the second heat dissipation pipeline are distributed in a hexagonal honeycomb shape.
  • the present invention also provides a thermal superconducting radiator.
  • the thermal superconducting radiator includes a radiator substrate and a plurality of thermal superconducting heat dissipation plates as described in any of the above solutions;
  • the radiator substrate has a first surface And a second surface opposite to the first surface, the first surface is provided with a plurality of mounting areas for placing devices from bottom to top;
  • the plurality of thermal superconducting heat dissipation plates are arranged on the heat sink in parallel and spaced in the lateral direction On the second surface of the substrate, each of the thermal superconducting heat dissipation plates extends in the longitudinal direction.
  • the second surface of the heat sink substrate has a channel
  • one end of the thermal superconducting heat dissipation plate has a bending part, and the bending part is inserted in the channel.
  • the present invention also provides a 5G base station equipment.
  • the 5G base station equipment includes a device and the thermal superconducting radiator as described in any of the above solutions, and the device of the 5G base station equipment is arranged in the mounting area of the radiator substrate .
  • thermal superconducting heat sink, heat sink and 5G base station equipment of the present invention have the following beneficial effects:
  • the present invention optimizes the structure of the existing thermal superconducting heat dissipation plate.
  • Different heat dissipation areas of the thermal superconducting heat dissipation plate are provided with liquid phase evaporation areas and gas phase condensation heat dissipation areas, and the gas phase condensation heat dissipation areas and liquid heat dissipation areas of adjacent heat dissipation areas are provided.
  • the phase evaporation zone is isolated by the liquid phase evaporation isolation zone, and the condensate diversion isolation zone is set in the gas phase condensation heat dissipation zone, which can effectively reduce the temperature difference between the upper and lower parts of the thermal superconducting heat sink and improve the performance of the thermal superconducting radiator.
  • the heat dissipation effect can avoid the problem of excessive heat concentration causing the device performance in the area to decrease or even fail. It can improve the heat dissipation efficiency and heat dissipation capacity of the entire thermal superconducting radiator, and can fully meet the miniaturization, light weight, and high integration of 5G base station equipment Development requirements such as temperature and homogenization.
  • the 5G base station equipment based on the thermal superconducting radiator of the present invention can significantly improve the heat dissipation performance, which helps to extend the service life of the equipment and improve the performance of the equipment.
  • FIG. 1 shows a schematic diagram of the structure of a thermal superconducting heat sink in the prior art.
  • FIG. 2 is a schematic diagram showing the structure of the thermal superconducting heat sink in the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the thermal superconducting heat sink in the second embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing the structure of a thermal superconducting heat sink based on the thermal superconducting heat sink of the first embodiment.
  • FIG. 5 is a partial enlarged schematic diagram showing the connection between the thermal superconducting heat sink in the thermal superconducting heat sink in FIG. 4 and the heat sink substrate.
  • the present invention provides a thermal superconducting heat sink 1, which includes a first heat dissipation area, a second heat dissipation area, a first liquid phase evaporation isolation area 13, and a first connecting pipe Road 14; the second heat dissipation area is located above the first heat dissipation area; the first heat dissipation area includes a first liquid phase evaporation zone 111 and a first vapor phase condensation located above the first liquid phase evaporation zone 111
  • the heat dissipation zone 112, the first liquid phase evaporation zone 111 and the first gas phase condensation heat dissipation zone 112 are distributed with first heat dissipation pipelines 113 (that is, the first liquid phase evaporation zone 111 and the first gas phase
  • the condensation and heat dissipation areas 112 are connected to each other), and a first condensate diversion isolation area (not shown) without pipes can be arranged in the first gas phase condensation and heat dissipation area 11
  • the second liquid phase evaporation zone 121 is located above the first gas phase condensation and heat dissipation zone 112), and the second condensate diversion isolation zone 123 is located in the second gas phase condensation and heat dissipation zone 122 and is preferably connected to The second liquid phase evaporation zone 121 is spaced apart (that is, there is still a communication pipeline for the heat transfer working medium 18 to circulate between the second gas phase condensation heat dissipation zone 122 and the second liquid phase evaporation zone 121, and the communication pipeline is actually
  • the above plays the role of separating the second condensate diversion isolation zone 123 and the first liquid phase evaporation isolation zone 13), there is no distribution pipeline in the second condensate diversion isolation zone 123, so the heat transfer working medium 18 is unable to flow in this area and has an isolation effect; the second liquid phase evaporation zone 121 and the second gas phase condensation heat dissipation zone 122 are distributed with a second heat dissipation pipeline 124 communicating
  • the thermal superconducting heat dissipation pipeline is filled with a heat transfer working medium 18, so
  • the heat transfer working medium 18 includes liquid.
  • the liquid phase evaporation zone and the gas phase condensation heat dissipation zone are arranged in different heat dissipation areas of the thermal superconducting heat dissipation plate.
  • the gas phase condensation heat dissipation zone and the liquid phase evaporation zone of the adjacent heat dissipation zone are separated by the liquid phase evaporation isolation zone, and are in the gas phase condensation heat dissipation zone.
  • the condensate diversion isolation zone is set inside, and the liquid condensed in the gas phase condensation heat dissipation zone flows to the liquid phase evaporation zone due to the isolation of the condensate diversion isolation zone, and the excess liquid passes through the upper end of the liquid phase evaporation isolation zone in an overflow manner.
  • the connecting pipeline flows to the gas phase condensation and heat dissipation area of the adjacent heat dissipation area below it, and merges with the condensed liquid in the gas phase condensation and heat dissipation area, and the liquid phase in the area is guided by the condensate diversion isolation area of this area.
  • the heat source is set at the position corresponding to the liquid phase evaporation zone to ensure that each heat source is close to the evaporation zone of the thermal superconducting heat sink, and the heat is quickly directed to the vapor phase condensation heat dissipation area through liquid phase evaporation and heat absorption to be dissipated, which can solve the conventional thermal superconducting heat sink
  • the upper heat source is far away from the evaporation zone and causes poor heat dissipation.
  • the lower heat source temperature is higher due to the high liquid level pressure difference and the long-distance gas-liquid flow resistance of the small pipes and long-distance channels, and the gas-phase condensation heat dissipation area is small
  • the resulting heat dissipation capacity is low, and the lower part has a low temperature zone of the liquid phase, which causes defects and deficiencies such as a large temperature difference between the upper and lower parts.
  • the present invention also has a uniform distribution of the liquid working medium and a small working medium filling amount (the working medium filling amount does not exceed one-third of the pipeline volume of the entire thermal superconducting heat sink, which can be reduced by about half compared with the existing design Above), the cost is lower, the heat dissipation capacity is strong, the temperature is uniform, the layout of electronic components (heat source) is less restricted, etc., which can effectively reduce the temperature difference between the upper and lower parts of the thermal superconducting heat sink and improve the thermal superconductivity
  • the heat dissipation effect of the heat dissipation plate thereby avoiding the problem of excessive heat concentration leading to the degradation or failure of the device performance in the area, can improve the heat dissipation efficiency and heat dissipation capacity of the entire thermal superconducting heat dissipation plate, and can fully meet the miniaturization and lightness of 5G base station equipment. Development requirements such as quantification, high integration and uniform temperature.
  • the thermal superconducting heat dissipation plate has only one filling and sealing opening 20, which is usually located at the uppermost part of the thermal superconducting heat dissipation plate and connected to the heat dissipation pipeline in the uppermost heat dissipation area.
  • the filling and sealing opening 20 is connected to the second heat dissipation pipeline 124 at the uppermost part of the second heat dissipation area. After the heat transfer working medium 18 is filled into the thermal superconducting heat sink, the filling and sealing opening 20 will be sealed. Filling the heat transfer working medium 18 through the filling and sealing port 20 has the advantages of simple process, high reliability, and good heat dissipation consistency.
  • the second condensate diversion isolation area 123 is inclined upward in a direction away from the heat source and extends to a pipe-free area on the side of the thermal superconducting heat sink 1 away from the heat source.
  • the condensate preferentially flows to the second liquid phase evaporation zone 121 along the inclined pipeline, and the excess liquid overflows to the second liquid phase evaporation zone 121 through the upper end of the first liquid phase evaporation isolation zone 13.
  • the adjacent first vapor phase condensation heat dissipation zone 112 below it ensures that the liquid volume in each liquid phase evaporation zone is balanced with the liquid volume in each vapor phase condensation heat dissipation zone.
  • the uncondensed excess steam (higher temperature and higher pressure) in the upper gas phase condensation heat dissipation zone will flow downwards through the connecting area to the next adjacent gas phase condensation heat dissipation zone for heat dissipation and cooling; similarly Yes, the uncondensed steam at the lower part (higher temperature and higher corresponding pressure) will also flow upwards through the communication area, and flow to the adjacent previous gas-phase condensation and heat dissipation area for heat dissipation and condensation. Of course, it can also be simultaneously directed to the adjacent The previous and next gas phase condensing and radiating areas flow. So as to ensure the internal pressure balance and temperature uniformity of the entire partitioned thermal superconducting heat sink.
  • the thermal superconducting heat dissipation plate realizes heat transfer based on thermal superconducting heat transfer technology; for example, the heat transfer working medium 18 is filled in the sealed interconnected microchannels, and the heat transfer working medium 18 is Evaporation or condensation phase change realizes the phase change heat transfer technology of thermal superconducting heat.
  • the thermal superconducting heat dissipation plate may be a single-sided expansion formed by a rolling and inflation process, that is, the thermal superconducting heat dissipation pipeline (including the first heat dissipation pipeline 113, the second heat dissipation pipeline 124 and the first connection The pipeline 14) only protrudes from one surface of the thermal superconducting heat sink, and it can also be in the form of double-sided expansion, that is, the thermal superconducting heat dissipation pipeline protrudes from both sides of the thermal superconducting heat sink at the same time. On each surface, it can also be welded single-sided flat, double-sided flat, and double-sided with pipeline protrusions, which are not strictly limited in this embodiment.
  • the surface of the thermal superconducting heat sink can be anodized to form an oxide film (not shown) on the surface of the thermal superconducting heat sink, or it can be powder sprayed or painted. This can not only improve the corrosion resistance of the thermal superconducting heat sink, but also increase the emissivity of the thermal superconducting heat sink, and enhance the heat exchange between the thermal superconducting heat sink and the surrounding air.
  • the heat source that is, the device is a component that can achieve preset functions, including but not limited to microprocessor, memory, radio frequency generator, power amplifier, filter, power manager, etc., which will generate The heat causes the temperature to rise, and excessively high temperature will reduce the operating speed of the device and even damage it. Therefore, these devices need to be dissipated in time.
  • the heat source is preferably arranged at a position corresponding to the liquid phase evaporation zone of each heat dissipation zone.
  • first and second are similar.
  • the definition is only for the convenience of description and does not have substantial limiting meaning.
  • the area composed of multiple liquid phase evaporation areas and multiple gas phase condensation heat dissipation areas can be defined as the first heat dissipation area, or the upper area can be defined as The first heat dissipation area and so on.
  • the thermal superconducting heat sink also includes a pipe-less heat-receiving area 19, which extends upward from one side of the first heat-radiating area to one side of the second heat-radiating area (
  • the pipe-less heat-receiving area 19 extends upward from one side of the first heat-dissipating area to one side of the second heat-dissipating area and the third heat-dissipating area
  • the pipe-less heat-receiving area can be easily accessible
  • the connection between the thermal superconducting heat sink and the heat sink substrate 3 avoids damage to the thermal superconducting heat dissipation pipeline when the thermal superconducting heat sink is connected to the heat sink substrate.
  • the first heat dissipation pipeline 113 and the second heat dissipation pipeline 124 are distributed in a hexagonal honeycomb shape, in other words, the first heat dissipation pipeline 113 and the second heat dissipation pipeline 124 enclose a hexagonal shape. Shaped island area without pipeline.
  • the first heat dissipation pipeline 113 is not distributed in the lower right area of the first heat dissipation area, but a pipeline-free island area 21 is formed at the lower right of the first heat dissipation area, or in other words
  • the first heat dissipation pipe 113 at the bottom of the first heat dissipation area is inclined upward in a direction away from the heat source; by arranging the first heat dissipation pipe 113 and the second heat dissipation pipe 124 to be distributed in a hexagonal honeycomb shape
  • the first heat dissipation pipeline 113 at the bottom is inclined upwards, so that more pipeline channels can be set in the limited heat dissipation area, and the channels are relatively smooth and have low fluid resistance, which is conducive to the detachment of the bubbles and the liquid work. Therefore, the vapor bubble can be moved away from the heat source in time and the condensed liquid working fluid can be promptly supplemented to the adjacent heat source in time.
  • the thermal superconducting heat sink of the present invention can directly contact the device to realize heat dissipation.
  • multiple devices can be directly attached to the position corresponding to each liquid phase evaporation zone (as shown in Figure 2).
  • the heat dissipation method of the heat sink is especially suitable for the heat dissipation of low-power devices.
  • the present invention also provides a thermal superconducting heat sink 1 of another structure.
  • the main difference between the thermal superconducting heat sink 1 of this embodiment and the first embodiment is that the thermal superconducting heat dissipation in the first embodiment
  • the plate 1 only includes a first heat dissipation area and a second heat dissipation area, and therefore only includes two liquid phase evaporation areas and two gas phase condensation heat dissipation areas.
  • the thermal superconducting heat dissipation plate of this embodiment also includes a third heat dissipation area, a second liquid phase evaporation isolation area 16 and a second connection pipe 17.
  • the third heat dissipation area is located above the second heat dissipation area (thus the filling and sealing port 20 is connected to the pipeline of the third heat dissipation area); the third heat dissipation area includes a third liquid phase The evaporation zone 151, the third gas phase condensation heat dissipation zone 152, and the third condensate diversion isolation zone 153, the third gas phase condensation heat dissipation zone 152 is located above the third liquid phase evaporation zone 151, and the third condensate The diversion isolation zone 153 is located in the third vapor phase condensation and heat dissipation zone 152 and is preferably separated from the third liquid phase evaporation zone 151 (that is, there is a circulation pipeline between the two,
  • the third heat dissipation pipeline 154 is preferably distributed in a polygonal honeycomb shape; the second liquid phase evaporation isolation zone 16 is located between the third liquid phase evaporation zone 151 and the second gas phase condensation heat dissipation Between the zones 122, the third liquid phase evaporation zone 151 is used to isolate the second gas phase condensation heat dissipation zone 122, and the second liquid phase evaporation isolation zone 16 is separated from the third liquid phase evaporation zone
  • the bottom of the third liquid phase evaporation zone 151 extends to the side of the third liquid phase evaporation zone 151 away from the heat source (in a nearly L-shaped structure); the bottom of the third liquid phase evaporation zone 151 inclines upward in the direction away from the heat source; the second The connecting pipeline 17 is located on the side of the second liquid phase evaporation isolation zone 16 away from the third liquid phase evaporation zone 151, and the second connecting pipeline 17 connects the third heat dissipation pipeline
  • the third heat dissipation pipeline 154 and the second connection pipeline 17 are both thermal superconducting heat dissipation pipelines, and the thermal superconducting heat dissipation pipeline is filled with a heat transfer working medium 18, and the heat transfer working medium 18 includes a liquid.
  • the third heat dissipation pipeline 154 is also preferably hexagonal honeycomb distribution to increase the pipeline area, reduce fluid resistance, and facilitate the uniform distribution of the heat transfer working medium 18.
  • the working principle of the thermal superconducting heat sink of this embodiment is the same as the working principle of the thermal superconducting heat sink of the first embodiment. For details, please refer to the description in the first embodiment. Dividing the thermal superconducting heat sink into three heat dissipation areas allows more devices to be arranged, which is beneficial to meet the requirements of high integration of 5G base equipment.
  • the thermal superconducting heat dissipation plate may also include 4 or more heat dissipation areas.
  • each heat dissipation area please refer to the foregoing content, that is, the thermal superconducting heat dissipation plate may include 4 or more heat dissipation areas.
  • the size of each area can be set according to the heat dissipation requirements of the heat source, and it is not strictly necessary in this embodiment. The restrictions are no longer expanded one by one.
  • the present invention also provides a thermal superconducting heat sink.
  • the thermal superconducting heat sink includes a heat sink substrate 3 and a plurality of thermal superconducting heat sinks as described in the first or second embodiment.
  • the heat dissipation plate (FIG. 4 is a thermal superconducting heat sink taking the thermal superconducting heat sink in FIG. 2 as an example); the heat sink substrate 3 has a first surface and a second surface opposite to the first surface.
  • the first surface is provided with a plurality of mounting regions for placing the devices 4 from bottom to top, and the mounting regions preferably correspond one-to-one with the aforementioned liquid phase evaporation zone, that is, if it corresponds to the thermal superconducting heat sink in the first embodiment, then There are two installation areas. If it corresponds to the thermal superconducting heat sink in the second embodiment, there are three installation areas.
  • the devices 4 installed in a single installation area can be single or multiple, and different installation areas
  • the types of the mounted devices 4 can be the same or different, which is not limited in this embodiment;
  • the plurality of thermal superconducting heat dissipation plates are arranged on the second surface of the heat sink substrate 3 in parallel and spaced in the lateral direction, and Each of the thermal superconducting heat dissipation plates extends in the longitudinal direction (that is, the device 4 is located on the side of the thermal superconducting heat sink, that is, the thermal superconducting heat sink is heat-conducted on the side).
  • the second surface of the radiator substrate 3 has a channel
  • one end of the thermal superconducting heat sink has a bent portion 22, and the bent portion 22 is inserted into the channel, and the bent portion 22 is inserted into the channel.
  • the folded portion 22 is usually formed by bending the pipeless heating zone 19 of the aforementioned thermal superconducting heat sink. Specifically, a plurality of slots are distributed in the channel at intervals, and the plurality of thermal superconducting heat sinks are inserted into the slots in a one-to-one correspondence through the bent portion 22, and the heat sink base plate 3 corresponds to each slot.
  • each groove is perpendicular to the surface of the heat sink substrate 3.
  • each groove may also be inclined at a certain angle compared to the surface of the heat sink substrate 3. The vertical is only used for Indicating the directional trend does not mean that it is at an angle of 90° to the horizontal plane in the strict sense.
  • the thermal superconducting heat sink can be fixedly connected to the heat sink substrate 3 through any one or more of a mechanical extrusion process, a thermally conductive adhesive bonding process, or a brazing process to increase the bonding strength as much as possible , Reduce the combined thermal resistance, and improve the heat dissipation capacity and efficiency of the thermal superconducting heat sink.
  • a sintered core heat pipe (not shown) is embedded in the heat sink substrate 3.
  • the sintered core heat pipe is a sintered powder tube integrated with the tube wall formed by sintering a certain mesh of metal powder on the inner wall of a metal tube, and the metal powder sintered on the inside of the metal tube forms a liquid wick capillary
  • the structure enables the sintered core heat pipe to have a higher capillary suction force, so that the heat conduction direction of the sintered core heat pipe is not affected by gravity, and the sintered wick capillary structure strengthens the evaporation heat absorption and condensation heat release, greatly
  • the thermal conductivity and transmission power of the heat pipe are improved, so that the sintered core heat pipe has a larger axial equivalent thermal conductivity (a few hundred to a thousand times that of copper).
  • Embedding the sintered core heat pipe in the radiator substrate 3 can make the heat generated by the device 4 arranged on the surface of the radiator substrate 3 quickly diffuse to other positions of the radiator substrate 3, so that the radiator The heat distribution on the substrate 3 is relatively uniform, which can effectively improve the heat dissipation efficiency and heat dissipation capacity of the thermal superconducting heat sink.
  • the heat generated by the heat source (device 4) on the surface of the heat sink substrate 3 is quickly transferred to the entire heat sink substrate 3 through the sintered core heat pipe, and the heat sink substrate 3 quickly conducts the heat to each of the heat sink substrates.
  • the thermal superconducting heat dissipation plate completes heat dissipation through the thermal superconducting heat dissipation plate.
  • the thermal superconducting heat sink of the present invention can be used for the heat dissipation of various high-power density electronic devices, can effectively improve the uniformity of heat dissipation and heat dissipation efficiency, and is especially suitable for high integration, high power, miniaturization, light weight, and high heat flow. Heat dissipation of high-density 5G communication base station equipment.
  • the present invention also provides a 5G base station equipment, the 5G base station equipment includes a device, and the thermal superconducting heat sink as described in the third embodiment, and the device of the 5G base station device is arranged in the mounting area of the heat sink substrate .
  • the devices include, but are not limited to, radio frequency generators, power amplifiers, filters, microprocessors, memories, power managers, etc.
  • the 5G base station equipment of the present invention can greatly improve its heat dissipation efficiency and heat dissipation uniformity without increasing the volume and weight of the equipment, which is beneficial to prolonging the service life of the equipment and improving the performance of the equipment.

Abstract

本发明提供一种热超导散热板、散热器及5G基站设备。热超导散热板包括第一散热区域、第二散热区域、第一液相蒸发隔离区及第一连接管路;第一散热区域包括第一液相蒸发区及第一气相冷凝散热区;第二散热区域包括第二液相蒸发区、第二气相冷凝散热区及第二冷凝液导流隔离区;第一液相蒸发隔离区位于第二液相蒸发区和第一气相冷凝散热区之间用于将两者相隔离;第一连接管路位于第一液相蒸发隔离区背离第二液相蒸发区的一侧;第一液相蒸发区及第二液相蒸发区的底部均沿背热源的方向向上倾斜;第一散热管路、第二散热管路和第一连接管路相互连通且均为热超导散热管路,热超导散热管路内填充有传热工质。本发明有助于提高散热效率和散热均匀性。

Description

热超导散热板、散热器及5G基站设备 技术领域
本发明涉及散热技术领域,特别是涉及一种热超导散热板、散热器及5G基站设备。
背景技术
随着科技的快速发展,5G及以上通讯应用越来越广泛,同时伴随着通讯设备电子元器件的功率密度越来越大,电子元器件分布越来越复杂多元化,对设备内部不同区域不同元器件有了不同的散热要求。
热超导传热技术,包括在密闭的相互连通的微槽道系统内充装工作介质,通过工作介质的蒸发与冷凝相变实现热超导传热的相变传热技术;以及通过控制密闭体系中工作介质微结构状态,即在传热过程中,液态介质的沸腾(或气态介质的冷凝)被抑制,并在此基础上达到工质微结构的一致性而实现高效传热的相变抑制(PCI)传热技术。由于热超导技术的快速导热特性,其当量导热系数可达4000W/m℃以上,可实现整个热超导散热板的均温。
热超导翅片散热器是用热超导散热板作为散热翅片而组成的散热器,主要由散热器基板,设置在散热器基板上的多个热超导散热板组成,热源设置在散热器基板的另一平面上。热源的热量通过基板传导至多个散热翅片,再通过散热翅片将热量散发到周围环境中。由于热超导散热板为薄板结构,导热速率快、体积小、重量轻、翅片效率高,且翅片效率不随翅片的高度而变化,因此在5G通讯设备散热上得到大量应用。
目前在5G基站设备散热器上使用的热超导散热板1’的结构如图1所示,多数采用六边形蜂窝状管路结构,管路结构布满整个热超导散热板1’,管路内充装的传热工质的量一般小于六边形蜂窝状管路的总容积。由于散热器是垂直安装使用,受重力的影响,传热工质主要集中在热超导散热板1’的下部空间(比如图1中用虚线框标记的A区域)。当充装量过低时,热超导散热板1’的上部会出现无工质的区域(比如图1中用虚线框标记的B区域),因而在散热器上部的热源产生的热量无法通过热超导散热板内部的传热工质进行热传导,导致局部热源高温。为了解决上部热源高温问题可增加传热工质的充装量(如图1所示,传热工质的充装量超过管路总容积的一半),但由于受重力影响会导致热超导散热板下部热源启动时间长,底部热阻大,而位于散热器上部的热源温度较高,因而导致热超导散热板的上部与下部温差大,散热器散热效果变差等缺陷,且容易导致发热器件损坏。
因此,如何解决局部热源高温、热超导散热板的上部与下部温差大、散热器散热效果差、 不同元器件的不同散热要求如何满足等问题,已成为本领域技术人员迫切需要解决的问题之一。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种热超导散热板、散热器及5G基站设备,用于解决现有技术中的热超导散热板容易产生局部热源高温、热超导散热板的上部与下部温差大、散热器散热效果差、多热源散热系统中不同区域的不同电子元器件的散热要求不同等问题。
为实现上述目的及其他相关目的,本发明提供一种热超导散热板,所述热超导散热板包括第一散热区域、第二散热区域、第一液相蒸发隔离区及第一连接管路;所述第二散热区域位于所述第一散热区域的上方;所述第一散热区域包括第一液相蒸发区及位于所述第一液相蒸发区上方的第一气相冷凝散热区,所述第一液相蒸发区及所述第一气相冷凝散热区内分布有相互连通的第一散热管路;所述第二散热区域包括第二液相蒸发区、第二气相冷凝散热区及第二冷凝液导流隔离区,所述第二气相冷凝散热区位于所述第二液相蒸发区的上方,所述第二冷凝液导流隔离区位于所述第二气相冷凝散热区内,所述第二液相蒸发区及所述第二气相冷凝散热区内分布有相互连通的第二散热管路;所述第一液相蒸发隔离区位于所述第二液相蒸发区和所述第一气相冷凝散热区之间,用于将所述第二液相蒸发区和所述第一气相冷凝散热区相隔离,且所述第一液相蒸发隔离区自所述第二液相蒸发区的底部延伸至所述第二液相蒸发区背离热源的一侧;所述第一连接管路位于所述第一液相蒸发隔离区背离所述第二液相蒸发区的一侧;所述第一液相蒸发区及第二液相蒸发区的底部均沿背热源的方向向上倾斜;所述第一散热管路、第二散热管路和第一连接管路相互连通且均为热超导散热管路,所述热超导散热管路内填充有传热工质。
可选地,所述热超导散热板还包括第三散热区域、第二液相蒸发隔离区及第二连接管路;所述第三散热区域位于所述第二散热区域的上方;所述第三散热区域包括第三液相蒸发区、第三气相冷凝散热区及第三冷凝液导流隔离区,所述第三气相冷凝散热区位于所述第三液相蒸发区的上方,所述第三冷凝液导流隔离区位于所述第三气相冷凝散热区内,所述第三液相蒸发区及所述第三气相冷凝散热区内分布有相互连通的第三散热管路;所述第二液相蒸发隔离区位于所述第三液相蒸发区和所述第二气相冷凝散热区之间,用于将所述第三液相蒸发区和所述第二气相冷凝散热区相隔离,且所述第二液相蒸发隔离区自所述第三液相蒸发区的底部延伸至所述第三液相蒸发区背离热源的一侧;所述第三液相蒸发区的底部沿背离热源 的方向向上倾斜;所述第二连接管路位于所述第二液相蒸发隔离区背离所述第三液相蒸发区的一侧,且所述第二连接管路将所述第三散热管路和所述第二散热管路相连通;所述第三散热管路和第二连接管路均为热超导散热管路。
可选地,所述第二冷凝液导流隔离区沿背离热源的方向向上倾斜并延伸至所述热超导散热板背离热源一侧的无管路区域。
可选地,所述第三冷凝液导流隔离区沿背离热源的方向向上倾斜并延伸至所述热超导散热板背离热源一侧的无管路区域。
可选地,所述热超导散热板的表面形态包括单面胀、双面胀、单面平及双面平中的一种。
可选地,所述热超导散热板还包括无管路受热区,所述无管路受热区自所述第一散热区域的一侧向上延伸到所述第二散热区域的一侧。
可选地,所述第一散热管路及第二散热管路呈六边形蜂窝状分布。
本发明还提供一种热超导散热器,所述热超导散热器包括散热器基板及多个如上述任一方案中所述的热超导散热板;所述散热器基板具有第一表面及与第一表面相对的第二表面,所述第一表面自下而上设置有多个放置器件的安装区域;所述多个热超导散热板在横向上平行间隔设置于所述散热器基板的第二表面上,且各所述热超导散热板沿纵向延伸。
可选地,所述散热器基板的第二表面具有槽道,所述热超导散热板的一端具有弯折部,所述弯折部插设于所述槽道内。
本发明还提供一种5G基站设备,所述5G基站设备包括器件及如上述任一方案中所述的热超导散热器,所述5G基站设备的器件设置于所述散热器基板的安装区域。
如上所述,本发明的热超导散热板、散热器及5G基站设备,具有以下有益效果:
本发明对现有的热超导散热板的结构进行了优化设计,在热超导散热板的不同散热区域设置液相蒸发区和气相冷凝散热区,相邻散热区域的气相冷凝散热区和液相蒸发区通过液相蒸发隔离区隔离,在气相冷凝散热区内设置冷凝液导流隔离区,由此可以有效减小热超导散热板的上部与下部的温差,改善热超导散热器的散热效果,从而可避免热量过度集中导致该区域的器件性能下降甚至失效的问题,可以提高整个热超导散热器的散热效率和散热能力,可以充分满足5G基站设备小型化、轻量化、高集成度和均温化等发展要求。基于本发明的热超导散热器的5G基站设备,散热性能可以显著改善,有助于延长设备使用寿命和提高设备性能。
附图说明
图1显示为现有技术中的热超导散热板的结构示意图。
图2显示为本发明实施例一中的热超导散热板的结构示意图。
图3显示为本发明实施例二中的热超导散热板的结构示意图。
图4显示为基于实施例一的热超导散热板的热超导散热器的结构示意图。
图5显示为图4中的热超导散热器中的热超导散热板与散热器基板连接的局部放大示意图。
元件标号说明
1’,1                 热超导散热板
111                    第一液相蒸发区
112                    第一气相冷凝散热区
113                    第一散热管路
121                    第二液相蒸发区
122                    第二气相冷凝散热区
123                    第二冷凝液导流隔离区
124                    第二散热管路
13                     第一液相蒸发隔离区
14                     第一连接管路
151                    第三液相蒸发区
152                    第三气相冷凝散热区
153                    第三冷凝液导流隔离区
154                    第三散热管路
16                     第二液相蒸发隔离区
17                     第二连接管路
18                     传热工质
19                     无管路受热区
20                     灌装封合口
21                     无管路孤岛区
22                     弯折部
3                      散热区基板
4                      器件
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图2~图5。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,图中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
如图2所示,本发明提供一种热超导散热板1,所述热超导散热板1包括第一散热区域、第二散热区域、第一液相蒸发隔离区13及第一连接管路14;所述第二散热区域位于所述第一散热区域的上方;所述第一散热区域包括第一液相蒸发区111及位于所述第一液相蒸发区111上方的第一气相冷凝散热区112,所述第一液相蒸发区111及所述第一气相冷凝散热区112内分布有相互连通的第一散热管路113(即第一液相蒸发区111及所述第一气相冷凝散热区112是相互连通的),所述第一气相冷凝散热区112内可以设置无管路的第一冷凝液导流隔离区(未图示);所述第二散热区域包括第二液相蒸发区121、第二气相冷凝散热区122及第二冷凝液导流隔离区123,所述第二气相冷凝散热区122位于所述第二液相蒸发区121的上方(结合图2可以看到,所述第二液相蒸发区121位于所述第一气相冷凝散热区112的上方),所述第二冷凝液导流隔离区123位于所述第二气相冷凝散热区122内且优选与第二液相蒸发区121有间距(即第二气相冷凝散热区122与第二液相蒸发区121两者之间仍有可供传热工质18流通的连通管路,该连通管路实际上起到了将第二冷凝液导流隔离区123和第一液相蒸发隔离区13相间隔的作用),所述第二冷凝液导流隔离区123内没有分布管路,因而传热工质18无法在该区域流动而起到隔离作用;所述第二液相蒸发区121及所述第二气相冷凝散热区122内分布有相互连通的第二散热管路124,所述第二散热管路124及第一散热管路113均优选呈多边形蜂窝状分布;所述第一液相蒸发隔离区13位于所述第二液相蒸发区121和所述第一气相冷凝散热区112之间,用于将所述第二液相蒸发区121和所述第一气相 冷凝散热区112相隔离,且所述第一液相蒸发隔离区13自所述第二液相蒸发区121的底部延伸至所述第二液相蒸发区121背离热源的一侧(即第一液相蒸发隔离区13呈近L型结构);所述第一液相蒸发隔离区13内没有分布流通管路,因而位于所述第二液相蒸发区121的传热工质18因所述第一液相蒸发隔离区13的隔离而不能直接向下流向所述第一气相冷凝散热区112而起到隔离作用;所述第一连接管路14位于所述第一液相蒸发隔离区13背离所述第二液相蒸发区121的一侧;所述第一液相蒸发区111及第二液相蒸发区121的底部均沿背热源(热源为在工作过程中会产生热量的器件4)的方向向上倾斜;所述第一散热管路113、第二散热管路124和第一连接管路14相互连通且均为热超导散热管路,所述热超导散热管路内填充有传热工质18,所述传热工质18包括液体。本发明在热超导散热板的不同散热区域设置液相蒸发区和气相冷凝散热区,相邻散热区域的气相冷凝散热区和液相蒸发区通过液相蒸发隔离区隔离,在气相冷凝散热区内设置冷凝液导流隔离区,在气相冷凝散热区冷凝的液体因为冷凝液导流隔离区的隔离而集中流向液相蒸发区,多余的液体通过液相蒸发隔离区的上端以溢流方式通过连接管路流向相邻的位于其下方的散热区域的气相冷凝散热区,与在该气相冷凝散热区的冷凝液体汇合一起,通过该区域的冷凝液导流隔离区的引导流向该区域的液相蒸发区,依次类推,直到热超导散热板底部的液相蒸发区。当任意一个气相冷凝散热区的温度较高,相应的气体压力较高,该区内的气体会自然流向压力较低(相应的温度也较低)的相邻区域进行散热冷凝,从而保证整个热超导散热板内压力比较一致,相应的温度均匀一致。热源设置在对应液相蒸发区的位置,保证各个热源靠近热超导散热板的蒸发区,通过液相蒸发吸热将热量快速导向气相冷凝散热区而散掉,可以解决常规热超导散热板上部的热源因远离蒸发区而导致的散热不良、下部由于高液位的压力差和小管路长距离的通道气液相流动阻力大而导致的下部热源温度较高,以及气相冷凝散热区域较小导致的散热能力较低,下部有液相的低温区而造成的上部和下部温差较大等缺陷与不足。同时本发明还具有液体工质分布均匀,工质充注量较少(工质填充量不超过整个热超导散热板管路容积的三分之一,相较于现有设计可以减少约一半以上),成本较低,散热能力较强,温度均匀,电子元器件(热源)布局受限较小等优点,由此可以有效减小热超导散热板的上部与下部的温差,改善热超导散热板的散热效果,由此避免热量过度集中导致该区域的器件性能下降甚至失效的问题,可以提高整个热超导散热板的散热效率和散热能力,可以充分满足5G基站设备小型化、轻量化、高集成度和均温化等发展要求。
作为示例,所述热超导散热板只有一个灌装封合口20,通常位于所述热超导散热板的最上部,且与最上部的散热区域内的散热管路相连接。比如本实施例中,所述灌装封合口20与 所述第二散热区域最上部的第二散热管路124相连接。在向所述热超导散热板内填充传热工质18后,所述灌装封合口20将被密封。通过灌装封合口20填充传热工质18具有工艺简单、可靠性高、散热一致性好等优点。
作为示例,所述第二冷凝液导流隔离区123沿背离热源的方向向上倾斜并延伸至所述热超导散热板1背离热源一侧的无管路区域。通过设置倾斜的第二冷凝液导流隔离区123,冷凝液沿倾斜的管路优先流到第二液相蒸发区121,多余液体再通过第一液相蒸发隔离区13的上端部溢流到相邻的位于其下方的第一气相冷凝散热区112,保证各个液相蒸发区内液体量和各气相冷凝散热区的液体量平衡。
所述热超导散热板内部各功能区的散热管路是相互连通的(为便于理解,本实施例的图2及图3中用虚线框大体示意了各个功能区的位置及形状,但实际上各功能区在实体上并没有严格的分隔界线)。根据压力平衡原则,上部气相冷凝散热区内未冷凝的多余蒸汽(温度较高,对应的压力也较高)会通过连通区域向下流动流向相邻的下一个气相冷凝散热区进行散热冷却;同样的,下部的未冷凝的蒸汽(温度较高,对应的压力也较高)也会通过连通区域向上流动,流向相邻的上一个气相冷凝散热区进行散热冷凝,当然也可以同时向相邻的上一个和下一个气相冷凝散热区流动。从而保证整个分区式热超导散热板内部压力的平衡和温度的均匀。
作为示例,所述热超导散热板基于热超导传热技术实现传热;比如在密封的相互连通的微槽道内充装所述传热工质18,通过所述传热工质18的蒸发或冷凝相变实现热超导传热的相变传热技术。所述热超导散热板可以为通过轧制吹胀工艺形成的单面胀形态,即所述热超导散热管路(包括第一散热管路113、第二散热管路124及第一连接管路14)仅凸出于所述热超导散热板的一个表面上,也可以为双面胀形式,即所述热超导散热管路同时凸出于所述热超导散热板的两个表面上,还可以是焊接式单面平、双面平及双面有管路凸起形态,本实施例中不做严格限制。作为示例,所述热超导散热板的表面可以做阳极氧化处理,以在所述热超导散热板的表面形成氧化膜(未示出),也可以做喷粉处理,或油漆处理,由此既可以提高所述热超导散热板的耐腐蚀性能,又可以提高所述热超导散热板的辐射率,增强其与周围空气的热交换。
需要说明的是,热源,也即器件为可以实现预设功能的部件,包括但不限于微处理器、存储器、射频发生器、功率放大器、滤波器、电源管理器等,其在工作过程会产生热量而造成温度升高,过高的温度会降低器件运行速度甚至损坏,因此这些器件需要及时散热。所述热源优选设置在对应各个散热区域的液相蒸发区的位置。
还需要特别说明的是,本说明书中类似“第一”、“第二”(比如第一散热区域、第二散热区域、第一液相蒸发区、第二液相蒸发区等)之类的定义仅是出于描述的方便而不具有实质性的限定意义,比如可以将多个液相蒸发区和多个气相冷凝散热区构成的区域定义为第一散热区域,或者把上部的区域定义为第一散热区域等等。
作为示例,所述热超导散热板还包括无管路受热区19,所述无管路受热区19自所述第一散热区域的一侧向上延伸到所述第二散热区域的一侧(实施例二中的无管路受热区19自所述第一散热区域的一侧向上延伸到所述第二散热区域和第三散热区域的一侧),所述无管路受热区可以便于所述热超导散热板和散热器基板3的连接,避免在将热超导散热板连接到散热器基板上时对热超导散热管路造成损伤。
作为示例,所述第一散热管路113和第二散热管路124呈六边形蜂窝状分布,或者说所述第一散热管路113和第二散热管路124围成一个个类六边形状的无管路孤岛区。且作为示例,所述第一散热管路113并未分布在所述第一散热区域的右下方区域而在所述第一散热区域的右下方形成了无管路孤岛区21,或者说位于所述第一散热区域最底部的第一散热管路113沿远离所述热源的方向向上倾斜;通过将所述第一散热管路113和第二散热管路124设置为呈六边形蜂窝状分布且最底部的第一散热管路113向上倾斜,使得在有限的散热区域内能设置更多的管路通道,且该通道相对较为平缓,流体阻力小,有利于汽泡的脱离移动和液体工质的补充,因而可以及时将汽泡移动到远离热源处且能及时将冷凝后的液态工质及时补充到临近热源处。
本发明的热超导散热板可以直接和器件相接触以实现散热,比如多个器件可以直接贴放于对应各液相蒸发区的位置(如图2所示),这种通过单一热超导散热板的散热方式尤其适用于小功率器件的散热。
实施例二
如图3所示,本发明还提供另一种结构的热超导散热板1,本实施例的热超导散热板1与实施例一的主要区别在于,实施例一中的热超导散热板1仅包括第一散热区域及第二散热区域,因而仅包括两个液相蒸发区和两个气相冷凝散热区。本实施例的热超导散热板除包括第一散热区域和第二散热区域,还包括第三散热区域、第二液相蒸发隔离区16及第二连接管路17。本实施例的第一散热区域和第二散热区域的结构与实施例一相同,具体请参考实施例一,出于简洁的目的不赘述。本实施例中,所述第三散热区域位于所述第二散热区域的上方(因而灌装封合口20与第三散热区域的管路相连接);所述第三散热区域包括第三液相蒸发 区151、第三气相冷凝散热区152及第三冷凝液导流隔离区153,所述第三气相冷凝散热区152位于所述第三液相蒸发区151的上方,所述第三冷凝液导流隔离区153位于所述第三气相冷凝散热区152内且优选与第三液相蒸发区151之间有间距(即两者之间设置有流通管路,该管路实质位于第二液相蒸发隔离区16的上方),所述第三冷凝液导流隔离区153同样优选沿背离热源的方向向上倾斜并延伸至所述热超导散热板背离热源一侧的无管路区域,所述第三液相蒸发区151及所述第三气相冷凝散热区152内分布有相互连通的第三散热管路154(即第三液相蒸发区151及所述第三气相冷凝散热区152之间是相互连通的),所述第三散热管路154优选呈多边形蜂窝状分布;所述第二液相蒸发隔离区16位于所述第三液相蒸发区151和所述第二气相冷凝散热区122之间,用于将所述第三液相蒸发区151和所述第二气相冷凝散热区122相隔离,且所述第二液相蒸发隔离区16自所述第三液相蒸发区151的底部延伸至所述第三液相蒸发区151背离热源的一侧(呈近L型结构);所述第三液相蒸发区151的底部沿背离热源的方向向上倾斜;所述第二连接管路17位于所述第二液相蒸发隔离区16背离所述第三液相蒸发区151的一侧,且所述第二连接管路17将所述第三散热管路154和所述第二散热管路124相连通。所述第三散热管路154和第二连接管路17均为热超导散热管路,所述热超导散热管路内填充有传热工质18,所述传热工质18包括液体;所述第三散热管路154同样优选为六边形蜂窝状分布以增大管路面积,减少流体阻力,且有利于传热工质18的均匀分布。本实施例的热超导散热板的工作原理与实施例一的热超导散热板的工作原理相同,具体请参考实施例一中的描述。将所述热超导散热板分成三个散热区域,可以布置更多的器件,有利于满足5G基座设备高集成度的要求。
当然,根据需要,所述热超导散热板还可以包括4个及4个以上数量的散热区域,各散热区域的设置请参考前述内容,即所述热超导散热板上可以包括4个或4个以上的液相蒸发区、气相冷凝散热区、冷凝液导流隔离区,以及更多个液相蒸发隔离区,各区域的大小可以根据热源散热需求来设置,本实施例中不做严格限制,也不再一一展开。
实施例三
如图4及图5所示,本发明还提供一种热超导散热器,所述热超导散热器包括散热器基板3及多个如实施例一或实施例二中所述的热超导散热板(图4为以图2中的热超导散热板为例的热超导散热器);所述散热器基板3具有第一表面及与第一表面相对的第二表面,所述第一表面自下而上设置有多个放置器件4的安装区域,所述安装区域优选与前述的液相蒸发区一一对应,即如果是对应实施例一中的热超导散热板,则所述安装区域为2个,如果是对应实施例二中的热超导散热板,则所述安装区域为3个,单个安装区域内安装的器件4可 以为单个或多个,不同的安装区域安装的器件4的类型可以相同或不同,本实施例中对此并不限制;所述多个热超导散热板在横向上平行间隔设置于所述散热器基板3的第二表面上,且各所述热超导散热板沿纵向延伸(即所述器件4位于所述热超导散热器的侧面,也即所述热超导散热器是侧面受热导热)。
作为示例,所述散热器基板3的第二表面具有槽道,所述热超导散热板的一端具有弯折部22,所述弯折部22插设于所述槽道内,且所述弯折部22通常是通过将前述的热超导散热板的无管路受热区19弯折而成。具体地,所述槽道内间隔分布有多个插槽,而所述多个热超导散热板经弯折部22一一对应插设于各插槽内,所述散热器基板3对应各所述热超导散热板的液相蒸发区所在的第一表面的位置即为放置器件4的安装区域,使得器件4散出的热量能够以较短的路径尽快传导至所述热超导散热器。本实施例中,各沟槽与所述散热器基板3的表面相垂直,在实际使用中,各沟槽也可相较于所述散热器基板3的表面倾斜一定的角度,垂直仅用于表示方向趋势,并不意味着严格意义上的与水平面呈90°夹角。作为示例,所述热超导散热板可以通过机械挤压工艺、导热胶粘结工艺或钎焊焊接工艺中的任意一种或多种与所述散热器基板3固定连接,以尽量增加结合强度,减小结合热阻,提高所述热超导散热器的散热能力和效率。
作为示例,所述散热器基板3内埋设有烧结芯热管(未示出)。所述烧结芯热管为由一定目数的金属粉末烧结在一金属管的内壁上而形成的与管壁一体的烧结粉末管芯,烧结于所述金属管内部上的金属粉末形成吸液芯毛细结构,使得所述烧结芯热管具有较高的毛细抽吸力,使所述烧结芯热管的导热方向不受重力的影响,且烧结吸液芯毛细结构强化了蒸发吸热和冷凝放热,大大提高了热管的导热能力和传输功率,使得所述烧结芯热管具有较大的轴向当量导热系数(是铜的几百倍到上千倍)。在所述散热器基板3内埋设所述烧结芯热管,可以使得设置于所述散热器基板3表面的器件4产生的热量快速扩散至所述散热器基板3的其他位置,使得所述散热器基板3上的热分布比较均匀,可以有效地提高所述热超导散热器的散热效率和散热能力。
位于所述散热器基板3表面的热源(器件4)工作时产生的热量经由所述烧结芯热管迅速传导至整个所述散热器基板3,所述散热器基板3将热量快速传导至各所述热超导散热板,经所述热超导散热板完成散热。
本发明的热超导散热器可以用于各类高功率密度的电子器件的散热,可以有效提高散热均匀性和散热效率,尤其适用于高集成度、高功率、小型化、轻量化、高热流密度的5G通讯基站设备的散热。
实施例四
本发明还提供一种5G基站设备,所述5G基站设备包括器件,以及如实施例三中所述的热超导散热器,所述5G基站设备的器件设置于所述散热器基板的安装区域。对所述热超导散热器的介绍还请参考前述内容,出于简洁的目的不赘述。所述器件包括但不限于射频发生器、功率放大器、滤波器、微处理器、存储器、电源管理器等。本发明的5G基站设备,在不增加设备体积和重量的情况下,其散热效率和散热均匀性可以得到极大改善,有利于延长设备使用寿命和提高设备性能。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种热超导散热板,其特征在于,所述热超导散热板包括第一散热区域、第二散热区域、第一液相蒸发隔离区及第一连接管路;所述第二散热区域位于所述第一散热区域的上方;所述第一散热区域包括第一液相蒸发区及位于所述第一液相蒸发区上方的第一气相冷凝散热区,所述第一液相蒸发区及所述第一气相冷凝散热区内分布有相互连通的第一散热管路;所述第二散热区域包括第二液相蒸发区、第二气相冷凝散热区及第二冷凝液导流隔离区,所述第二气相冷凝散热区位于所述第二液相蒸发区的上方,所述第二冷凝液导流隔离区位于所述第二气相冷凝散热区内,所述第二液相蒸发区及所述第二气相冷凝散热区内分布有相互连通的第二散热管路;所述第一液相蒸发隔离区位于所述第二液相蒸发区和所述第一气相冷凝散热区之间,用于将所述第二液相蒸发区和所述第一气相冷凝散热区相隔离,且所述第一液相蒸发隔离区自所述第二液相蒸发区的底部延伸至所述第二液相蒸发区背离热源的一侧;所述第一连接管路位于所述第一液相蒸发隔离区背离所述第二液相蒸发区的一侧;所述第一液相蒸发区及第二液相蒸发区的底部均沿背热源的方向向上倾斜;所述第一散热管路、第二散热管路和第一连接管路相互连通且均为热超导散热管路,所述热超导散热管路内填充有传热工质。
  2. 根据权利要求1所述的热超导散热板,其特征在于:所述热超导散热板还包括第三散热区域、第二液相蒸发隔离区及第二连接管路;所述第三散热区域位于所述第二散热区域的上方;所述第三散热区域包括第三液相蒸发区、第三气相冷凝散热区及第三冷凝液导流隔离区,所述第三气相冷凝散热区位于所述第三液相蒸发区的上方,所述第三冷凝液导流隔离区位于所述第三气相冷凝散热区内,所述第三液相蒸发区及所述第三气相冷凝散热区内分布有相互连通的第三散热管路;所述第二液相蒸发隔离区位于所述第三液相蒸发区和所述第二气相冷凝散热区之间,用于将所述第三液相蒸发区和所述第二气相冷凝散热区相隔离,且所述第二液相蒸发隔离区自所述第三液相蒸发区的底部延伸至所述第三液相蒸发区背离热源的一侧;所述第三液相蒸发区的底部沿背离热源的方向向上倾斜;所述第二连接管路位于所述第二液相蒸发隔离区背离所述第三液相蒸发区的一侧,且所述第二连接管路将所述第三散热管路和所述第二散热管路相连通;所述第三散热管路和第二连接管路均为热超导散热管路,所述热超导散热管路内填充有传热工质。
  3. 根据权利要求1所述的热超导散热板,其特征在于:所述第二冷凝液导流隔离区沿背离热源的方向向上倾斜并延伸至所述热超导散热板背离热源一侧的无管路区域。
  4. 根据权利要求1所述的热超导散热板,其特征在于:所述热超导散热板还包括无管路受热区,所述无管路受热区自所述第一散热区域的一侧向上延伸到所述第二散热区域的一 侧。
  5. 根据权利要求1所述的热超导散热板,其特征在于:所述第一散热管路及第二散热管路呈六边形蜂窝状分布。
  6. 根据权利要求2所述的热超导散热板,其特征在于:所述第三冷凝液导流隔离区沿背离热源的方向向上倾斜并延伸至所述热超导散热板背离热源一侧的无管路区域。
  7. 根据权利要求1或2任一项所述的热超导散热板,其特征在于:所述热超导散热板的表面形态包括单面胀、双面胀、单面平及双面平中的一种。
  8. 一种热超导散热器,其特征在于,所述热超导散热器包括散热器基板及多个如权利要求1-7任一项所述的热超导散热板;所述散热器基板具有第一表面及与第一表面相对的第二表面,所述第一表面自下而上设置有多个放置器件的安装区域;所述多个热超导散热板在横向上平行间隔设置于所述散热器基板的第二表面上,且各所述热超导散热板沿纵向延伸。
  9. 根据权利要求8所述的热超导散热器,其特征在于:所述散热器基板的第二表面具有槽道,所述热超导散热板的一端具有弯折部,所述弯折部插设于所述槽道内。
  10. 一种5G基站设备,所述5G基站设备包括器件,其特征在于:所述5G基站设备还包括如权利要求8或9任一项所述的热超导散热器,所述5G基站设备的器件设置于所述散热器基板的安装区域。
PCT/CN2021/070652 2020-06-19 2021-01-07 热超导散热板、散热器及5g基站设备 WO2021253813A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021149742.8U CN212463857U (zh) 2020-06-19 2020-06-19 热超导散热板、散热器及5g基站设备
CN202021149742.8 2020-06-19
CN202010568097.1 2020-06-19
CN202010568097.1A CN111741650A (zh) 2020-06-19 2020-06-19 热超导散热板、散热器及5g基站设备

Publications (1)

Publication Number Publication Date
WO2021253813A1 true WO2021253813A1 (zh) 2021-12-23

Family

ID=79269115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070652 WO2021253813A1 (zh) 2020-06-19 2021-01-07 热超导散热板、散热器及5g基站设备

Country Status (1)

Country Link
WO (1) WO2021253813A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220124945A1 (en) * 2020-10-16 2022-04-21 Honeywell International Inc. Novel heat pipe configurations
CN115295512A (zh) * 2022-07-07 2022-11-04 浙江嘉熙科技股份有限公司 一种高导热结构
WO2023187571A1 (en) * 2022-03-31 2023-10-05 Jio Platforms Limited System and design method of a thermally optimized combined centralized and distributed unit
CN115295512B (zh) * 2022-07-07 2024-04-30 浙江嘉熙科技股份有限公司 一种高导热结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487382B2 (ja) * 1994-12-28 2004-01-19 株式会社デンソー 沸騰冷却装置
TW201040478A (en) * 2010-07-21 2010-11-16 Asia Vital Components Co Ltd Structural improvement of thermosiphon panel
CN206061397U (zh) * 2016-08-31 2017-03-29 浙江嘉熙科技有限公司 环形热超导管路相变抑制散热板
CN108362144A (zh) * 2018-01-29 2018-08-03 北京雷格讯电子股份有限公司 复合平板热管
CN109442806A (zh) * 2018-09-03 2019-03-08 广东工业大学 一种分液相变板式换热器及其应用
CN109945704A (zh) * 2019-04-24 2019-06-28 常州恒创热管理有限公司 多段板式热管及散热器
CN111741650A (zh) * 2020-06-19 2020-10-02 浙江嘉熙科技有限公司 热超导散热板、散热器及5g基站设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487382B2 (ja) * 1994-12-28 2004-01-19 株式会社デンソー 沸騰冷却装置
TW201040478A (en) * 2010-07-21 2010-11-16 Asia Vital Components Co Ltd Structural improvement of thermosiphon panel
CN206061397U (zh) * 2016-08-31 2017-03-29 浙江嘉熙科技有限公司 环形热超导管路相变抑制散热板
CN108362144A (zh) * 2018-01-29 2018-08-03 北京雷格讯电子股份有限公司 复合平板热管
CN109442806A (zh) * 2018-09-03 2019-03-08 广东工业大学 一种分液相变板式换热器及其应用
CN109945704A (zh) * 2019-04-24 2019-06-28 常州恒创热管理有限公司 多段板式热管及散热器
CN111741650A (zh) * 2020-06-19 2020-10-02 浙江嘉熙科技有限公司 热超导散热板、散热器及5g基站设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220124945A1 (en) * 2020-10-16 2022-04-21 Honeywell International Inc. Novel heat pipe configurations
WO2023187571A1 (en) * 2022-03-31 2023-10-05 Jio Platforms Limited System and design method of a thermally optimized combined centralized and distributed unit
CN115295512A (zh) * 2022-07-07 2022-11-04 浙江嘉熙科技股份有限公司 一种高导热结构
CN115295512B (zh) * 2022-07-07 2024-04-30 浙江嘉熙科技股份有限公司 一种高导热结构

Similar Documents

Publication Publication Date Title
WO2010050129A1 (ja) 冷却構造及び電子機器並びに冷却方法
WO2021253813A1 (zh) 热超导散热板、散热器及5g基站设备
WO2020211416A1 (zh) 空调室外机和空调器
CN104197612B (zh) 一种半导体冰箱的高效散热组件
WO2020211489A1 (zh) 一种空调室外机和空调器
WO2008101384A1 (en) Heat transfer device and manufacturing method thereof
CN111521051A (zh) 热超导传热板及散热器
CN106304805A (zh) 一种板翅式微循环散热器及微循环换热系统
WO2017215143A1 (zh) 基于热超导散热板的电控器及空调室外机
CN111741649A (zh) 热超导散热板及其制备方法、散热器及5g基站设备
TWM505162U (zh) 冷媒式散熱裝置及其具有散熱鰭片的蒸發器
CN111473670A (zh) 热超导传热板及散热器
CN111741650A (zh) 热超导散热板、散热器及5g基站设备
KR20120020797A (ko) 열 확산 기능을 가지는 복합방열기구
CN210014475U (zh) 一种散热器、空调室外机和空调器
WO2021189726A1 (zh) 散热器和空调室外机
CN210014478U (zh) 一种散热器、空调室外机和空调器
CN210014477U (zh) 一种散热器、空调室外机和空调器
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN212463856U (zh) 热超导散热板、散热器及5g基站设备
WO2021217789A1 (zh) 热超导散热板、散热器及5g基站设备
CN212458057U (zh) 热超导散热板、散热器及5g基站设备
CN115881665A (zh) 一种通道壁面对流换热系数可调节的散热装置
WO2022083365A1 (zh) 一种设备散热方法及散热设备
CN214891554U (zh) 散热器和空调室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825206

Country of ref document: EP

Kind code of ref document: A1