WO2017215143A1 - 基于热超导散热板的电控器及空调室外机 - Google Patents
基于热超导散热板的电控器及空调室外机 Download PDFInfo
- Publication number
- WO2017215143A1 WO2017215143A1 PCT/CN2016/099539 CN2016099539W WO2017215143A1 WO 2017215143 A1 WO2017215143 A1 WO 2017215143A1 CN 2016099539 W CN2016099539 W CN 2016099539W WO 2017215143 A1 WO2017215143 A1 WO 2017215143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- thermal
- thermal superconducting
- air conditioner
- superconducting heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/24—Cooling of electric components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/22—Arrangement or mounting thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/38—Fan details of outdoor units, e.g. bell-mouth shaped inlets or fan mountings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/025—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes having non-capillary condensate return means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0275—Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
Definitions
- the invention relates to the technical field of air conditioners, in particular to an electric controller based on a thermal superconducting heat sink and an outdoor unit of an air conditioner.
- the heat dissipation of the electronic controller usually uses aluminum extruded profile radiators.
- conventional aluminum profile radiators can no longer meet the heat dissipation requirements, and manufacturers have adopted liquid cooling heat dissipation, that is, from compressors.
- the bypass is connected to the refrigerant pipeline, connected to the liquid-cooled plate cooling pipeline of the electric controller, and the heat of the power device of the electric controller is taken away by the flow of the refrigerant to achieve the purpose of cooling and cooling of the electric controller.
- this cooling method requires the refrigerant to enter and exit the pipeline, which complicates the entire air-conditioning refrigerant piping system, and also increases the amount of refrigerant and compressor load, and requires joint connection and new piping because of the increase of the refrigerant branch, which not only increases the cost. It also increases the leakage point of the refrigerant system and reduces the reliability of the system.
- the thermal superconducting heat dissipating plate is a closed pipe which is arranged in a grid shape on a metal plate, and is filled with a working medium in the closed pipe, and has a heat conduction rate, a good temperature uniformity and a large heat transfer power.
- a new type of plate heat transfer device is a new type of plate heat transfer device.
- the invention is an electric controller and an air conditioner outdoor unit based on a thermal superconducting heat sink, which utilizes the rapid thermal conductivity of the thermal superconducting heat sink to heat-dissipate the air conditioner electric controller.
- the present invention provides an electric controller based on a thermal superconducting heat sink and an outdoor unit of an air conditioner, which is used for solving the high-performance variable frequency heat pump air conditioner electric controller using liquid cooling and heat dissipation in the prior art.
- the entire mechanism of heat dissipation is complicated, the amount of refrigerant and compressor load are increased, the entire system increases leakage points, and the reliability of the system is lowered.
- the present invention provides an electronic controller based on a thermal superconducting heat sink, the electronic controller based on the thermal superconducting heat sink comprising: an electronic controller body and a thermal superconducting heat sink;
- the electronic controller body includes a PCB circuit board and an electronic component; the PCB circuit board includes a first surface and a second surface opposite to the first surface; and the electronic component includes a power device having a large amount of heat And an electronic component having a small amount of heat generation, wherein the power device having a large amount of heat is located on a first surface of the PCB circuit board, and the electron element having a small amount of heat generation The device is located on the second surface of the PCB circuit board;
- the thermal superconducting heat dissipating plate is attached to the surface of the power device having a large amount of heat; the thermal superconducting heat dissipating plate is formed with a special shape of a super-superconductor path, and the hot super-ducting pipe is a closed pipe.
- the hot superconductor road is filled with heat transfer medium.
- the thermal superconducting heat sink is in the form of a curved sheet.
- the thermal superconducting heat dissipating plate includes a surface of the power device having a large amount of heat and is parallel to the surface of the PCB circuit board An upright portion, a lateral portion perpendicular to the surface of the PCB circuit board above the upright portion, and an arc portion connecting the upright portion and the lateral portion; the upright portion has a large power from the heat generation
- the device extends upwardly, and the lateral portion extends away from the power device having a large amount of heat away from the power device having a large amount of heat generation.
- the thermal superconducting heat sink is parallel to the surface of the PCB circuit board.
- the thermal superconducting heat sink extends from the vicinity of the power device having a large amount of heat to a direction away from the power device having a large amount of heat generation. .
- the thermal superconducting heat dissipating plate is provided with heat dissipating fins, and the heat dissipating fins are perpendicular to the surface of the thermal superconducting heat dissipating plate Or skewed.
- the thermal superconducting heat dissipating plate is provided with a heat dissipating fin device, and the heat dissipating fin device includes a substrate and heat dissipating fins, The substrate is placed on the surface of the thermal superconducting heat sink, and the heat dissipating fin is fixed on the substrate and perpendicular or oblique to the surface of the thermal superconducting heat dissipating plate.
- the thermal superconducting heat sink is a composite plate structure formed by an inflation process.
- the thermal superconductor path has a single-face expansion form, a double-sided expansion form or a double-sided flat form on the thermal superconducting heat dissipation plate. .
- the shape of the thermal superconductor path is a hexagonal honeycomb shape, a circular honeycomb shape, a quadrilateral honeycomb shape, and a plurality of Us connected end to end. Shape, diamond, triangle, toroid, or any combination of any of the above figures.
- an area between the thermal superconducting passages on the thermal superconducting heat dissipating plate is provided with an opening.
- the present invention also provides an air conditioner outdoor unit comprising the electric controller described in any of the above aspects.
- the air conditioner outdoor unit further includes: an outer casing, an air conditioning fan, An air conditioner partition bracket, an air conditioner compressor, and an air conditioner heat exchanger; the electric controller, the heat superconducting heat sink, the air conditioner fan, the air conditioner partition bracket, the air conditioner compressor, and the air conditioner heat
- the switch is located in the outer casing, and the electric controller body and the air conditioner compressor are located at one side of the air conditioner baffle bracket, the thermal superconducting heat sink, the air conditioner fan, and the air conditioner heat
- the exchanger is located on the other side of the air conditioning bulkhead bracket.
- the air conditioner outdoor unit further includes: an air conditioner fan bracket, the air conditioner fan bracket being located in the outer casing; the air conditioner fan being fixed to the air conditioner fan bracket An air conditioning heat exchanger and an inner wall of the outer casing.
- the PCB circuit board of the electric controller is parallel to the air conditioning partition bracket, and the thermal superconducting heat dissipation plate is away from one end of the power device with large heat generation. Extending to the air conditioner fan and the air conditioner fan bracket.
- the electric controller and the air conditioner outdoor unit based on the thermal superconducting heat sink of the present invention have the following beneficial effects:
- the heat sink structure is simple, and the heat can be quickly transmitted from the heat-generating electronic component and evenly distributed to the entire thermal superconducting heat sink board, thereby increasing the effective heat dissipation area and dissipating heat. Higher efficiency, thereby reducing the temperature of the heat-generating electronic components;
- the electric controller is erected to facilitate the installation of the thermal superconducting heat sink, which increases the available space of the thermal superconducting heat sink, and enables the heating electronic components to be at the lower end of the thermal superconducting heat sink, which is beneficial to the thermal super
- the heat dissipation plate conducts heat from bottom to top;
- the power device with large heat quantity in the electric controller is disposed on one surface of the PCB circuit board, and the electronic component with small heat generation is disposed on the other surface of the PCB circuit board, which is convenient for the heat superconducting heat dissipation plate and the heat generation
- the installation of power devices and the protection of other electronic components increase the reliability of the outdoor unit of the air conditioner
- the thermal superconducting heat dissipating plate is provided with an opening, which can increase the air convection on the surface of the thermal superconducting heat dissipating plate, and is beneficial to draining the accumulated water deposited on the surface of the thermal superconducting heat dissipating plate, which is more conducive to electricity
- the waterproofing of the controller makes the waterproofing of the electric controller simpler;
- the thermal superconducting heat sink is disposed in the gap between the outer edge of the fan and the outer casing, that is, the space of the outdoor unit is effectively utilized, and the air flow of the air-conditioning fan is utilized for heat dissipation, thereby enhancing the heat dissipation effect.
- the air conditioner outdoor unit of the present invention does not use the refrigerant cold plate heat dissipation structure, can reduce the refrigerant pipeline branch, and at the same time can meet the heat dissipation requirement of the high heat generation electronic controller, that is, the heat sink structure is simplified and the system leakage point is reduced. Improve the reliability of the system.
- FIG. 1 is a schematic structural view of an electric controller based on a thermal superconducting heat sink according to Embodiment 1 of the present invention.
- FIG. 2 is a partial cross-sectional enlarged view of a portion of a thermal superconducting heat pipe of a thermal superconducting heat sink in an electric controller based on a thermal superconducting heat sink according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic structural view of a heat-conductive heat dissipation plate having a hexagonal honeycomb shape in an internal thermal superconductor path in an electric controller based on a thermal superconducting heat sink according to Embodiment 1 of the present invention.
- Fig. 4 is a schematic enlarged view showing the area A of Fig. 3.
- FIG. 5 and FIG. 6 are schematic diagrams showing the structure of an electric controller based on a thermal superconducting heat sink according to Embodiment 2 of the present invention.
- FIG. 7 to FIG. 8 are schematic diagrams showing the structure of an outdoor unit of an air conditioner according to Embodiment 3 of the present invention.
- FIG. 1 to FIG. 8 it should be noted that the illustrations provided in the present embodiment merely illustrate the basic concept of the present invention in a schematic manner, although only the components related to the present invention are shown in the drawings instead of actually The number, shape and size of the components in the implementation, the actual implementation of each component type, number and proportion can be a random change, and its component layout can be more complicated.
- the present invention provides an electric controller based on a thermal superconducting heat sink
- the electric controller based on the thermal superconducting heat sink includes: an electric controller main body 1 and a thermal superconducting heat dissipating plate 2;
- the electronic controller main body 1 includes a PCB circuit board 11 and an electronic component 12;
- the PCB circuit board 11 includes a first surface and a second surface opposite to the first surface;
- the electronic component 12 includes a large amount of heat generation
- the power device 121 and the electronic component 122 having a small amount of heat, the power device 121 having a large amount of heat is located on the first surface of the PCB circuit board 11, and the electronic component 122 having a small heat generation is located in the PCB circuit a second surface of the board 11;
- the thermal superconducting heat sink 2 is attached to the surface of the power device 121 having a large amount of heat; and the heat superconducting heat sink 2 is formed with a heat superconductor path 26 of a specific shape.
- the device 121 refers to a power device such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), a Diode (Diode), an IPM (Intelligent Power Module) in the electronic controller main body 1, and the like.
- the electronic components include capacitors, inductors, transformers, resistors, etc., all of which are electronic components 122 having a small amount of heat generation.
- the heat generation amount in the main body 1 of the electric controller A large power device 121 is disposed on a surface of the PCB circuit board 11.
- the electronic component 122 with a small amount of heat is disposed on the other surface of the PCB circuit board 11 to facilitate the thermal superconducting heat sink 2 and
- the installation of the high-power device 121 and the protection of other electronic components increase the reliability of the outdoor unit of the air conditioner.
- the thermal superconducting heat sink 2 may be in the shape of a curved sheet.
- the thermal superconducting heat sink 2 includes an upright portion 21 attached to the surface of the power device 121 having a large amount of heat generation and parallel to the surface of the PCB circuit board 11, above the upright portion 21 and a lateral portion 22 perpendicular to the surface of the PCB circuit board 11 and an arcuate portion 23 connecting the vertical portion 21 and the lateral portion 22; the vertical portion 21 extends upward from the power device 121 having a large amount of heat generation The lateral portion 22 extends in a direction away from the power device 121 having a large amount of heat generation from the vicinity of the power device 121 having a large amount of heat generation.
- the heat conduction heat dissipation plate 2 is disposed in a curved sheet shape as described above, and the internal space of the air conditioner outdoor unit can be fully utilized to provide the heat conduction heat dissipation plate having a sufficient heat dissipation area in a limited space. 2.
- the thermal superconducting heat sink 2 is a composite plate structure, and the surface of the thermal superconducting heat sink 2 may be a double-sided expansion shape as shown in FIG. 2, and the thermal superconducting heat dissipation plate 2 includes a first a plate 24 and a second plate 25, the first plate 24 and the second plate 25 are compounded by a rolling process; the thermal superconductor path 26 is formed by an inflation process, and the hot superconductor path is formed At the same time as 26, a convex structure 28 corresponding to the thermal superconductor path 26 is formed on the surfaces of the first plate member 24 and the second plate member 25.
- the thermal superconducting heat dissipation plate 2 includes a first a plate 24 and a second plate 25, the first plate 24 and the second plate 25 are compounded by a rolling process; the thermal superconductor path 26 is formed by an inflation process, and the hot superconductor path is formed At the same time as 26, a convex structure 28 corresponding to the thermal superconduct
- the hot superconductor path 26 may be formed by an inflation process.
- Forming the convex structure 28 corresponding to the thermal superconductor path 26 on the surface of the first plate material 24 or the surface of the second plate material 25, that is, the surface of the thermal superconducting heat dissipation plate 2 is single The shape of the face is swollen.
- the surface of the thermal superconducting heat sink 2 may also be a double-sided flat shape, and the specific structure of the thermal superconducting heat sink 2 may be double-sided flat heat as described in the patent application No. 201511029540.3.
- the structure of the heat dissipation plate structure is the same. For details, please refer to the patent application file, which will not be repeated here.
- the heat transfer medium 29 is a fluid.
- the heat transfer medium 29 is a gas or a liquid or a mixture of a gas and a liquid. More preferably, in the embodiment, the heat transfer medium 29 is a mixture of liquid and gas.
- the shape of the thermal superconductor path 26 may be a hexagonal honeycomb shape, a crisscross network, a plurality of U-shaped, rhombic, triangular, circular, or any one of the end-to-end series. combination.
- FIG. 3 is exemplified by the shape of the hot superconductor path 26 being a hexagonal honeycomb shape.
- the hexagonal interior of FIG. 3 and the edge regions of the thermal superconducting heat sink 2 are both non-pipe portions 27, and the hexagons that communicate with each other are the hot superconductor paths 26 .
- the material of the thermal superconducting heat dissipation plate 2 should be a material with good thermal conductivity; preferably, in the embodiment, the material of the thermal superconducting heat dissipation plate 2 may be copper, copper alloy, aluminum or aluminum alloy. Or any combination of any one or more.
- an area between the thermal superconducting passages 26 on the thermal superconducting heat sink 2 is provided with an opening 4, that is, a hexagonal interior as shown in FIGS. 3 and 4.
- the opening 4 is formed, and the opening 4 is preferably a through hole penetrating the entire thickness of the thermal superconducting heat sink 2.
- the shape of the opening 4 can be set to various shapes such as a circle, a rectangle, a hexagon, and the like according to actual needs, and FIGS. 3 and 4 take the shape of the opening 4 as a circle as an example.
- the opening 4 is provided on the thermal superconducting heat dissipating plate 2, that is, the air convection of the upper surface of the thermal superconducting heat dissipating plate 2 can be increased, and the thermal superconducting heat dissipating plate 2 is deposited and discharged.
- the water accumulated on the surface is more advantageous for the waterproofing of the main body 1 of the electric controller, so that the waterproofing of the main body 1 of the electric controller is simpler.
- the present invention further provides an electric controller based on a thermal superconducting heat sink, and the electric controller based on the thermal superconducting heat sink in the embodiment is the same as described in the first embodiment.
- the structure of the electric controller based on the thermal superconducting heat sink is substantially the same, and the difference between the two is that in the first embodiment, the thermal superconducting heat sink 2 may be in the form of a curved sheet, and the thermal superconducting heat sink 2 includes a sticker.
- the direction of the power device 121 extends away from the power device 121 having a large amount of heat; in the embodiment, the heat conduction heat dissipation plate 2 is in a straight shape, and the heat conduction heat dissipation plate 2 and the PCB circuit board
- the surfaces of 11 are parallel, and the thermal superconducting heat sink 2 is heated from the heat
- Large power device 121 extends away from the attachment calorific power device 121 in the direction, particularly so as to extend upwardly from the heating device 121 is
- the thermal superconducting heat sink 2 is provided with a heat dissipating fin device 3, and the heat dissipating fin device 3 includes a substrate 31 and heat dissipating fins 32, and the substrate 31 is attached to the thermal superconductor
- the surface of the heat dissipation plate 2 is fixed to the substrate 31 and perpendicular or oblique to the surface of the thermal superconducting heat dissipation plate 2.
- the substrate 31 may be disposed on the surface of the thermal superconducting heat dissipation plate 2 by a process of soldering or bonding or screwing, and the surface of the substrate 31 is opposite to the surface of the thermal superconducting heat dissipation plate 2.
- the heat dissipating fins 32 may be fixed to the surface of the substrate 31 by a profile extrusion process, an extrusion inserting process, a thermal conductive adhesive bonding process, a brazing welding process, etc., and the heat dissipating fins 32 may be
- the surface of the substrate 31 and the thermal superconducting heat dissipation plate 2 are perpendicular to each other, as shown in FIG. 5, and may be oblique to the surface of the substrate 31 and the thermal superconducting heat dissipation plate 2, as shown in FIG. .
- the heat dissipating fins 32 when the heat dissipating fins 32 are obliquely intersected with the surfaces of the substrate 31 and the thermal superconducting heat dissipating plate 2, the heat dissipating fins 32 may be inclined downward or may be inclined upward, as shown in FIG.
- the heat radiating fins 32 are inclined downward as an example.
- the thermal superconducting heat sink 2 is provided with heat dissipating fins 32, and the heat dissipating fins 32 are directly welded.
- the bonding or bonding process is fixed to the surface of the thermal superconducting heat sink 2, and the heat dissipating fins 32 and the surface of the thermal superconducting heat dissipating plate 2 may be vertical or oblique.
- the heat dissipating fins 32 may be metal plates of a common metal material such as an aluminum plate, a copper plate, or the like.
- the heat dissipating fin device 3 or the heat dissipating fins 32 including the heat dissipating fins 32 are disposed on the thermal superconducting heat dissipating plate 2, thereby effectively increasing the heat dissipating area, improving the heat dissipating capability, and increasing the use range of the air conditioner electric controller.
- the number of the heat dissipating fins 32 is plural, and the plurality of the heat dissipating fins 32 are spaced apart in parallel, and the length of each of the heat dissipating fins 32 may be equal, or may be set to be unequal according to actual needs.
- the present invention further provides an outdoor unit for an air conditioner, comprising an electric controller based on a thermal superconducting heat sink as described in the first embodiment.
- an electric controller based on a thermal superconducting heat sink as described in the first embodiment.
- the air conditioner outdoor unit further includes a casing 5, an air conditioning fan 61, an air conditioning partition bracket 62, an air conditioning compressor 7, and an air conditioning heat exchanger 8; the electric controller, the The thermal superconducting heat dissipation plate 2, the air conditioning fan 61, the air conditioning partition bracket 62, the air conditioning compressor 7, and the air conditioning heat exchanger 8 are all located in the outer casing 5, and the electric controller main body 1 and the air conditioner compressor 7 is located at one side of the air conditioning baffle bracket 62, and the thermal superconducting heat dissipating plate 2, the air conditioning fan 61, and the air conditioning heat exchanger 8 are located in the air conditioning baffle bracket 62 The other side.
- the air conditioning heat exchanger 8 is fixed to the inner wall of the outer casing 5.
- the shape of the air conditioning heat exchanger 8 can be set according to actual needs. In the air conditioning heat exchanger 8 of FIG. 7 and FIG. The type is taken as an example, but the actual structure is not limited to this.
- the air conditioner outdoor unit further includes: an air conditioner fan bracket 63 and a heat conduction gasket 9 , wherein the air conditioner fan bracket 63 and the heat conduction gasket 9 are both located in the outer casing 5;
- An air-conditioning fan bracket 63 is fixed to the air-conditioning heat exchanger 8 and the inner wall of the outer casing 5, and the thermal superconducting heat-dissipating plate 2 is attached to the surface of the large-capacity power device 121 via the thermal conductive gasket 9. .
- the PCB circuit board 11 of the electric controller is parallel to the air conditioning baffle bracket 62, that is, the electric controller is erected, and the thermal superconducting heat sink 2 is away from the power device with large heat generation.
- One end of 121 extends above the air-conditioning fan 61 and the air-conditioning fan bracket 63, that is, the lateral portion 22 of the thermal superconducting heat sink 2 is located between the outer edge of the air-conditioning fan 61 and the outer casing 5 Within the gap.
- the electric controller is erected to facilitate the installation of the thermal superconducting heat sink 2, the available space of the thermal superconducting heat sink 2 is increased, and the power device 121 with large heat generation is
- the lower end of the thermal superconducting heat sink 2 facilitates heat conduction from the bottom to the top of the thermal superconducting heat sink 2.
- the lateral portion 22 of the thermal superconducting heat sink 2 is disposed in a gap between the outer edge of the air-conditioning fan 61 and the outer casing 5, that is, the space of the air-conditioner outdoor unit is effectively utilized, and at the same time,
- the air flow of the air conditioner fan 61 is used for heat dissipation, and the heat is enhanced. heat radiation.
- the present invention further provides an air conditioner outdoor unit, and the air conditioner outdoor unit in the embodiment is substantially the same as the air conditioner outdoor unit described in the third embodiment, and the difference between the two is that the air conditioner described in the third embodiment
- the thermal superconducting heat sink based electronic controller in the outdoor unit is the electric controller described in the first embodiment, and the thermal superconducting heat sink based in the air conditioning outdoor unit described in this embodiment
- the controller is the electronic controller described in the second embodiment.
- the other structure of the air conditioner outdoor unit in the embodiment is the same as that of the air conditioner outdoor unit described in the third embodiment. For details, refer to the third embodiment. Said.
- the heat dissipating fins 32 extend from the thermal superconducting heat dissipating plate 2 away from the power device 121 having a large amount of heat generation, that is, the thermal superconducting heat dissipating plate 2 is away from the One end of the power device 121 having a large amount of heat is extended above the air-conditioning fan 61 and the air-conditioning fan bracket 63, that is, the heat-dissipating fins 32 are located between the outer edge of the air-conditioning fan 61 and the outer casing 5. Inside the gap.
- the heat dissipating fins 32 are disposed in the gap between the outer edge of the air conditioner fan 61 and the outer casing 5, that is, the space of the air conditioner outdoor unit is effectively utilized, and the air flow of the air conditioning fan 61 is utilized. Heat dissipation for enhanced heat dissipation.
- the present invention provides an electric controller based on a thermal superconducting heat sink and an outdoor unit of an air conditioner, wherein the electronic controller based on the thermal superconducting heat sink comprises: an electronic controller body and a thermal superconducting heat sink;
- the electronic controller body includes a PCB circuit board and an electronic component;
- the PCB circuit board includes a first surface and a second surface opposite to the first surface;
- the electronic component includes a power device having a large amount of heat And an electronic component having a small amount of heat, wherein the power device having a large amount of heat is located on the first surface of the PCB circuit board, and the electronic component having a small amount of heat is located on the second surface of the PCB circuit board;
- a thermal superconducting heat sink is attached to the surface of the power device having a large amount of heat;
- a thermal superconductor path of a specific shape is formed in the thermal superconducting heat dissipating plate, and the hot superconducting circuit is a closed pipe,
- the thermal superconducting heat sink is used as the heat sink, so that the heat sink structure is simple, and the heat can be quickly transmitted from the heat-generating electronic component and evenly distributed to the entire thermal superconducting heat sink board, thereby increasing the effective heat dissipation area and improving the heat dissipation.
- the electronic controller is erected to facilitate the installation of the thermal superconducting heat sink, increasing the available space of the thermal superconducting heat sink, and enabling the heating electronic components to be located in the thermal superconducting
- the lower end of the heat dissipation plate is favorable for the thermal superconducting heat dissipation plate to perform thermal superconducting from bottom to top
- the power device with large heat generation in the electric controller is disposed on one surface of the PCB circuit board, and the electronic component with small heat generation is disposed on The other surface of the PCB circuit board facilitates the installation of the thermal superconducting heat sink and the power device with large heat generation and the protection of other electronic components, thereby increasing the reliability of the outdoor unit of the air conditioner
- Opening the hole which can increase the air convection on the surface of the heat superconducting heat sink plate, and is beneficial to drain the water deposited on the surface of the heat superconducting heat sink plate, which is more favorable for waterproofing of the electronic controller.
- the heat dissipation structure can reduce the branch line of the refrigerant pipeline, and at the same time can meet the heat dissipation requirement of the high-heating electronic controller, that is, the structure of the radiator is simplified, the leakage point of the system is reduced, and the reliability of the system is improved.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Sustainable Development (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
一种基于热超导散热板(2)的电控器,包括电控器主体(1)及热超导散热板(2);电控器主体(1)包括PCB电路板(11)及电子元器件(12);电子元器件(12)中包括发热量大的功率器件(121)及发热量小的电子元器件(122),发热量大的功率器件(121)位于PCB电路板(11)的第一表面,发热量小的电子元器件(122)位于PCB电路板(11)的第二表面;热超导散热板(2)贴附于发热量大的功率器件(121)表面。另外还公开了一种使用该电控器的空调室外机。
Description
本发明涉及空调设备技术领域,特别是涉及一种基于热超导散热板的电控器及空调室外机。
随着技术的发展,人们对生活品质的要求越来越高,高效、静音、变频、节能和智能控制的空调已经成为人们日常生活中必不可少的设备。随着空调电控器的功能越来越强大,电控器中的IGBT、MOSFET、Diode、IPM等功率模块的发热量越来越大、对散热的要求也越来越高,使得空调厂商对空调电控器的热设计越来越重视。
对家用空调器,电控器散热通常使用铝挤型材散热器,对高性能变频热泵空调,常规的铝型材散热器已不能满足散热需求,市场上已有厂商采用液冷散热,即从压缩机冷媒管路上引出旁路,连接至电控器的液冷板冷却管路,利用冷媒流动带走电控器功率器件的热量,达到电控器散热降温的目的。但这种散热方式需要设置冷媒进出管道,使的整个空调冷媒管路系统复杂,同时也增加了冷媒量及压缩机载荷,且因为增加冷媒支路需要接头连接和新的管道,不仅增加了成本,还增加了冷媒系统的泄漏点,降低了系统的可靠性。
热超导散热板是在一金属板上设置有网格状的相互连通的封闭管道,在封闭的管道内充装有工作介质,构成具有导热速率快,均温性好,传热功率大的一种新型板式传热器件。
本发明就是利用热超导散热板的快速导热特性对空调电控器进行散热冷却而提出的一种基于热超导散热板的电控器和空调室外机。
发明内容
为了解决现有技术的不足,本发明提出了一种基于热超导散热板的电控器及空调室外机,用于解决现有技术中采用液冷散热对高性能变频热泵空调电控器进行散热存在的整个机构系统复杂、增加了冷媒量及压缩机载荷、整个系统增加了泄漏点及降低系统的可靠性等问题。
为实现上述目的及其他相关目的,本发明提供一种基于热超导散热板的电控器,所述基于热超导散热板的电控器包括:电控器主体及热超导散热板;
所述电控器主体包括PCB电路板及电子元器件;所述PCB电路板包括第一表面及与所述第一表面相对的第二表面;所述电子元器件中包括发热量大的功率器件及发热量小的电子元器件,所述发热量大的功率器件位于所述PCB电路板的第一表面,所述发热量小的电子元
器件位于所述PCB电路板的第二表面;
所述热超导散热板贴附于所述发热量大的功率器件表面;所述热超导散热板内形成有特定形状的热超导管路,所述热超导管路为封闭管路,所述热超导管路内填充有传热工质。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板为弯曲片状。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板包括贴附于所述发热量大的功率器件表面并与所述PCB电路板表面相平行的竖立部分、位于所述竖立部分上方与所述PCB电路板表面相垂直的横向部分及连接所述竖立部分与所述横向部分的弧形部分;所述竖立部分自所述发热量大的功率器件向上延伸,所述横向部分自所述发热量大的功率器件上方向远离所述发热量大的功率器件的方向延伸。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板与所述PCB电路板的表面相平行。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板自所述发热量大的功率器件附近向远离所述发热量大的功率器件的方向延伸。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板上设有散热翅片,所述散热翅片与所述热超导散热板的表面垂直或斜交。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板上设有散热翅片装置,所述散热翅片装置包括基板及散热翅片,所述基板贴置于所述热超导散热板的表面,所述散热翅片固定于所述基板上,且与所述热超导散热板的表面垂直或斜交。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板为复合板式结构,所述热超导管路通过吹胀工艺形成。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导管路在所述热超导散热板上呈单面胀形态、双面胀形态或双面平形态。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导管路的形状为六边形蜂窝状、圆形蜂窝状、四边形蜂窝状、首尾串联的多个U形、菱形、三角形、圆环形,或其中任一种以上图形的任意组合。
作为本发明的基于热超导散热板的电控器的一种优选方案,所述热超导散热板上热超导管路之间的区域设有开孔。
本发明还提供一种空调室外机,所述空调室外机包括上述任一方案中所述的电控器。
作为本发明的空调室外机的一种优选方案,所述空调室外机还包括:外壳、空调风扇、
空调隔板支架、空调压缩机及空调热交换器;所述电控器、所述热超导散热板、所述空调风扇、所述空调隔板支架、所述空调压缩机及所述空调热交换器均位于所述外壳内,且所述电控器主体及所述空调压缩机位于所述空调隔板支架的一侧,所述热超导散热板、所述空调风扇及所述空调热交换器位于所述空调隔板支架的另一侧。
作为本发明的空调室外机的一种优选方案,所述空调室外机还包括:空调风扇支架,所述空调风扇支架位于所述外壳内;所述空调风扇经由所述空调风扇支架固定于所述空调热交换器及所述外壳内壁上。
作为本发明的空调室外机的一种优选方案,所述电控器的PCB电路板与所述空调隔板支架相平行,所述热超导散热板远离所述发热量大的功率器件的一端延伸至所述空调风扇及所述空调风扇支架的上方。
如上所述,本发明的基于热超导散热板的电控器及空调室外机,具有以下有益效果:
1)采用热超导散热板作为散热器,使得散热器结构简单的同时,可以将热量从发热电子元器件上快速传导并均匀分布到整个热超导散热板上,增加了有效散热面积,散热效率较高,从而降低发热电子元器件的温度;
2)电控器竖立设置,便于热超导散热板的安装,增大了热超导散热板的可利用空间,并能使得发热电子元器件在热超导散热板的下端,有利于热超导散热板由下至上进行热传导;
3)将电控器中的发热量大的功率器件设置于PCB电路板的一表面,发热量小的电子元器件设置于PCB电路板的另一表面,便于热超导散热板与发热量大的功率器件的安装以及其他电子元器件的防护,增加了空调室外机的可靠性;
4)在热超导散热板上设置散热翅片,有效增加散热面积,提高散热能力,增加空调电控器的使用范围。
5)所述热超导散热板上设有开孔,即能增加热超导散热板上表面的空气对流,又有利于排掉沉积在热超导散热板表面的积水,更有利于电控器的防水,使得电控器的防水更为简单;
6)热超导散热片设置在风扇外沿和外壳之间的空隙内,即有效利用了室外机的空间,同时又利用空调风扇的空气流来进行散热,增强了散热效果。
7)本发明的空调室外机不使用冷媒冷板散热结构,可以减少冷媒管路支路,同时又能满足高发热的电控器的散热需求,即简化了散热器结构又减少了系统泄漏点,提高了系统的可靠性。
图1显示为本发明实施例一中提供的基于热超导散热板的电控器的结构示意图。
图2显示为本发明实施例一中提供的基于热超导散热板的电控器中的热超导散热板的热超导管路部分局部截面放大图。
图3显示为本发明实施例一中提供的基于热超导散热板的电控器中的内部热超导管路的形状为六边形蜂窝状的热超导散热板的结构示意图。
图4显示为图3中A区域的放大结构示意图。
图5及图6显示为本发明实施例二中提供的基于热超导散热板的电控器的结构示意图。
图7至图8显示为本发明实施例三中提供的空调室外机的结构示意图。
元件标号说明
1 电控器主体
11 PCB电路板
12 电子元器件
121 发热量大的功率器件
122 发热量小的电子元器件
2 热超导散热板
21 竖立部分
22 横向部分
23 弧形部分
24 第一板材
25 第二板材
26 热超导管路
27 非管路部分
28 凸起结构
29 传热工质
3 散热翅片装置
31 基板
32 散热翅片
4 开孔
5 外壳
61 空调风扇
62 空调隔板支架
63 空调风扇支架
7 空调压缩机
8 空调热交换器
9 导热垫片
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1至图8,需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
请参阅图1,本发明提供一种基于热超导散热板的电控器,所述基于热超导散热板的电控器包括:电控器主体1及热超导散热板2;所述电控器主体1包括PCB电路板11及电子元器件12;所述PCB电路板11包括第一表面及与所述第一表面相对的第二表面;所述电子元器件12中包括发热量大的功率器件121及发热量小的电子元器件122,所述发热量大的功率器件121位于所述PCB电路板11的第一表面,所述发热量小的电子元器件122位于所述PCB电路板11的第二表面;所述热超导散热板2贴附于所述发热量大的功率器件121表面;所述热超导散热板2内形成有特定形状的热超导管路26,所述热超导管路26为封闭管路,所述热超导管路26内填充有传热工质29。
需要说明的是,所述发热量大的功率器件121中所谓发热量大是一个相对概念,是相较于发热量小的电子元器件而言;本实施例中,所述发热量大的功率器件121是指所述电控器主体1中的MOSFET(金属氧化物半导体场效应晶体管)、IGBT(绝缘栅双极型晶体管)、Diode(二极管)、IPM(智能功率模块)等功率器件,其他的电子元器件包括电容、电感、变压器、电阻等均为所述发热量小的电子元器件122。将所述电控器主体1中的所述发热量
大的功率器件121设置于所述PCB电路板11的一表面,所述发热量小的电子元器件122设置于所述PCB电路板11的另一表面,便于所述热超导散热板2与所述发热量大的功率器件121的安装以及其他电子元器件的防护,增加了空调室外机的可靠性。
作为示例,所述热超导散热板2可以为弯曲片状。
作为示例,所述热超导散热板2包括贴附于所述发热量大的功率器件121表面并与所述PCB电路板11表面相平行的竖立部分21、位于所述竖立部分21上方与所述PCB电路板11表面相垂直的横向部分22及连接所述竖立部分21与所述横向部分22的弧形部分23;所述竖立部分21自所述发热量大的功率器件121向上延伸,所述横向部分22自所述发热量大的功率器件121附近上方向远离所述发热量大的功率器件121的方向延伸。将所述热超导散热板2设置为如上所述的弯曲片状,可以充分利用所述空调室外机的内部空间,以在有限的空间内设置具有足够散热面积的所述热超导散热板2。
作为示例,所述热超导散热板2为复合板式结构,所述热超导散热板2的表面可以为如图2所示的双面胀形态,所述热超导散热板2包括第一板材24及第二板材25,所述第一板材24与所述第二板材25通过辊压工艺复合在一起;所述热超导管路26通过吹胀工艺形成,在形成所述热超导管路26的同时,在所述第一板材24及所述第二板材25的表面形成与所述热超导管路26相对应的凸起结构28。除了图2所示的结构,所述热超导散热板2包括所述第一板材24及所述第二板材25时,还可以通过吹胀工艺在形成所述热超导管路26的同时,在所述第一板材24的表面或所述第二板材25的表面形成与所述热超导管路26相对应的所述凸起结构28,即所述热超导散热板2的表面呈单面胀形态。所述热超导散热板2的表面还可以为双面平形态,此时所述热超导散热板2的具体结构可以与申请号为201511029540.3的专利申请文件中所述的双面平热超导散热板结构的结构相同,具体请参阅该专利申请文件,此处不再累述。
作为示例,所述传热工质29为流体,优选地,所述传热工质29为气体或液体或气体与液体的混合物,更为优选地,本实施例中,所述传热工质29为液体与气体的混合物。
作为示例,所述热超导管路26的形状可以为六边形蜂窝状、纵横交错的网状、首尾串联的多个U形、菱形、三角形、圆环形、或其中任一种以上的任意组合。图3以所述热超导管路26的形状为六边形蜂窝状作为示例。由图3可知,图3中六边形内部及所述热超导散热板2的边缘区域均为非管路部分27,各个相互连通的所述六边形即为所述热超导管路26。
作为示例,所述热超导散热板2的材料应为导热性良好的材料;优选地,本实施例中,所述热超导散热板2的材料可以为铜、铜合金、铝或铝合金或任一种以上的任意组合。
作为示例,请结合图3参阅图4,所述热超导散热板2上所述热超导管路26之间的区域设有开孔4,即在如图3及图4中六边形内部形成所述开孔4,所述开孔4优选为贯穿所述热超导散热板2整个厚度的通孔。所述空开4的形状可以根据实际需要设置为圆形、矩形、六边形等等各种形状,图3及图4以所述开孔4的形状为圆形作为示例。在所述热超导散热板2上设有所述开孔4,即能增加所述热超导散热板2上表面的空气对流,又有利于排掉沉积在所述热超导散热板2表面的积水,更有利于所述电控器主体1的防水,使得所述电控器主体1的防水更为简单。
实施例二
请参阅图5及图6,本发明还提供一种基于热超导散热板的电控器,本实施例中的所述基于热超导散热板的电控器与实施例一中所述的基于热超导散热板的电控器的结构大致相同,二者的区别在于:实施例一中,所述热超导散热板2可以为弯曲片状,所述热超导散热板2包括贴附于所述发热量大的功率器件121表面并与所述PCB电路板11表面相平行的竖立部分21、位于所述竖立部分21上方与所述PCB电路板11表面相垂直的横向部分22及连接所述竖立部分21与所述横向部分22的弧形部分23;所述竖立部分21自所述发热量大的功率器件121向上延伸,所述横向部分22自所述发热量大的功率器件121上方向远离所述发热量大的功率器件121的方向延伸;而本实施例中,所述热超导散热板2为直片状,所述热超导散热板2与所述PCB电路板11的表面相平行,所述热超导散热板2自所述发热量大的功率器件121附件向远离所述发热量大的功率器件121的方向延伸,具体为向远离所述发热量大的功率器件121的上方延伸。
在一示例中,所述热超导散热板2上设有散热翅片装置3,所述散热翅片装置3包括基板31及散热翅片32,所述基板31贴置于所述热超导散热板2的表面,所述散热翅片32固定于所述基板31上,且与所述热超导散热板2的表面垂直或斜交。具体的,所述基板31可以通过焊接或粘结或螺丝固定的工艺设置于所述热超导散热板2的表面,且所述基板31的表面与所述热超导散热板2的表面相接触;所述散热翅片32可以通过型材挤压工艺、挤压插片工艺、导热胶粘结工艺、钎焊焊接工艺等固定于所述基板31的表面,且所述散热翅片32可以与所述基板31及所述热超导散热板2的表面相垂直,如图5所示,也可以与所述基板31及所述热超导散热板2的表面斜交,如图6所示。
作为示例,所述散热翅片32与所述基板31及所述热超导散热板2的表面斜交时,所述散热翅片32可以向下倾斜,也可以向上倾斜,图6以所述散热翅片32向下倾斜作为示例。
在另一示例中,所述热超导散热板2上设有散热翅片32,所述散热翅片32直接通过焊
接或粘结工艺固定于所述热超导散热板2的表面,所述散热翅片32与所述热超导散热板2的表面同样可以为垂直或斜交。
作为示例,所述散热翅片32可以为普通金属材料的金属板,如铝板、铜板等等。在热超导散热板2上设置包括所述散热翅片32的所述散热翅片装置3或所述散热翅片32,有效增加散热面积,提高散热能力,增加空调电控器的使用范围。
作为示例,所述散热翅片32的数量为多个,多个所述散热翅片32平行间隔分布,且各个所述散热翅片32的长度可以相等,也可以根据实际需要设置为不等。
实施例三
请参阅图7及图8,本发明还提供一种空调室外机,所述空调室外机包括如实施例一中所述的基于热超导散热板的电控器。所述基于热超导散热板的电控器的具体结构请参阅实施例一,此处不再累述。
作为示例,请继续参阅图7及图8,所述空调室外机还外壳5、空调风扇61、空调隔板支架62、空调压缩机7及空调热交换器8;所述电控器、所述热超导散热板2、所述空调风扇61、所述空调隔板支架62、所述空调压缩机7及所述空调热交换器8均位于所述外壳5内,且所述电控器主体1及所述空调压缩机7位于所述空调隔板支架62的一侧,所述热超导散热板2、所述空调风扇61及所述空调热交换器8位于所述空调隔板支架62的另一侧。所述空调热交换器8固定于所述外壳5的内壁上,所述空调热交换器8的形状可以根据实际需要进行设定,图7及图8中以所述空调热交换器8为L型作为示例,但实际结构中并不以此为限。
作为示例,所述空调室外机还包括:空调风扇支架63及导热垫片9,所述空调风扇支架63及所述导热垫片9均位于所述外壳5内;所述空调风扇61经由所述空调风扇支架63固定于所述空调热交换器8及所述外壳5的内壁上,所述热超导散热板2经由所述导热垫片9贴附于所述发热量大的功率器件121表面。
作为示例,所述电控器的PCB电路板11与所述空调隔板支架62相平行,即所述电控器竖立设置,所述热超导散热板2远离所述发热量大的功率器件121的一端延伸至所述空调风扇61及所述空调风扇支架63的上方,即所述热超导散热板2的所述横向部分22位于所述空调风扇61外沿与所述外壳5之间的空隙内。将所述电控器竖立设置,便于所述热超导散热板2的安装,增大了所述热超导散热板2的可利用空间,并能使得发热量大的功率器件121在所述热超导散热板2的下端,有利于所述热超导散热板2由下至上进行热传导。所述热超导散热板2的所述横向部分22设置在所述空调风扇61外沿与所述外壳5之间的空隙内,即有效利用了所述空调室外机的空间,同时又利用所述空调风扇61的空气流来进行散热,增强了
散热效果。
实施例四
本发明还提供一种空调室外机,本实施例中的所述空调室外机与实施例三中所述的空调室外机的结构大致相同,二者的区别在于,实施例三中所述的空调室外机中的所述基于热超导散热板的电控器为实施例一中所述的电控器,而本实施中所述的空调室外机中的所述基于热超导散热板的电控器为实施例二中所述的电控器。除了所述电控器之外,本实施例中的所述空调室外机的其他结构均与实施例三中所述的空调室外机的结构相同,具体请参阅实施例三,此次不再累述。
作为示例,本实施例中,所述散热翅片32自所述热超导散热板2向远离所述发热量大的功率器件121的方向延伸,即所述热超导散热板2远离所述发热量大的功率器件121的一端延伸至所述空调风扇61及所述空调风扇支架63的上方,亦即所述散热翅片32位于所述空调风扇61外沿与所述外壳5之间的空隙内。所述散热翅片32设置在所述空调风扇61外沿与所述外壳5之间的空隙内,即有效利用了所述空调室外机的空间,同时又利用所述空调风扇61的空气流来进行散热,增强了散热效果。
综上所述,本发明提供一种基于热超导散热板的电控器及空调室外机,所述基于热超导散热板的电控器包括:电控器主体及热超导散热板;所述电控器主体包括PCB电路板及电子元器件;所述PCB电路板包括第一表面及与所述第一表面相对的第二表面;所述电子元器件中包括发热量大的功率器件及发热量小的电子元器件,所述发热量大的功率器件位于所述PCB电路板的第一表面,所述发热量小的电子元器件位于所述PCB电路板的第二表面;所述热超导散热板贴附于所述发热量大的功率器件表面;所述热超导散热板内形成有特定形状的热超导管路,所述热超导管路为封闭管路,所述热超导管路内填充有传热工质。采用热超导散热板作为散热器,使得散热器结构简单的同时,可以将热量从发热电子元器件上快速传导并均匀分布到整个热超导散热板上,增加了有效散热面积,提高了散热效率,从而降低发热电子元器件的温度;电控器竖立设置,便于热超导散热板的安装,增大了热超导散热板的可利用空间,并能使得发热电子元器件位于热超导散热板的下端,有利于热超导散热板由下至上进行热超导;将电控器中的发热量大的功率器件设置于PCB电路板的一表面,发热量小的电子元器件设置于PCB电路板的另一表面,便于热超导散热板与发热量大的功率器件的安装以及其他电子元器件的防护,增加了空调室外机的可靠性;所述热超导散热板上设有开孔,即能增加热超导散热板上表面的空气对流,又有利于排掉沉积在热超导散热板表面的积水,更有利于电控器的防水,使得电控器的防水更为简单;本发明的空调室外机不使用冷媒冷板
散热结构,可以减少冷媒管路支路,同时又能满足高发热的电控器的散热需求,即简化了散热器结构又减少了系统泄漏点,提高了系统的可靠性。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (15)
- 一种基于热超导散热板的电控器,其特征在于,所述基于热超导散热板的电控器包括:电控器主体及热超导散热板;所述电控器主体包括PCB电路板及电子元器件;所述PCB电路板包括第一表面及与所述第一表面相对的第二表面;所述电子元器件中包括发热量大的功率器件及发热量小的电子元器件,所述发热量大的功率器件位于所述PCB电路板的第一表面,所述发热量小的电子元器件位于所述PCB电路板的第二表面;所述热超导散热板贴附于所述发热量大的功率器件表面;所述热超导散热板内形成有特定形状的热超导管路,所述热超导管路为封闭管路,所述热超导管路内填充有传热工质。
- 根据权利要求1所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板为弯曲片状。
- 根据权利要求2所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板包括贴附于所述发热量大的功率器件表面并与所述PCB电路板表面相平行的竖立部分、位于所述竖立部分上方与所述PCB电路板表面相垂直的横向部分及连接所述竖立部分与所述横向部分的弧形部分;所述竖立部分自所述发热量大的功率器件向上延伸,所述横向部分自所述发热量大的功率器件上方向远离所述发热量大的功率器件的方向延伸。
- 根据权利要求1所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板与所述PCB电路板的表面相平行。
- 根据权利要求4所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板自所述发热量大的功率器件附近向远离所述发热量大的功率器件的方向延伸。
- 根据权利要求5所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板上设有散热翅片,所述散热翅片与所述热超导散热板的表面垂直或斜交。
- 根据权利要求5所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板上设有散热翅片装置,所述散热翅片装置包括基板及散热翅片,所述基板贴置于所述热超导散热板的表面,所述散热翅片固定于所述基板上,且与所述热超导散热板的表面垂直或斜交。
- 根据权利要求1至7中任一项所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板为复合板式结构,所述热超导管路通过吹胀工艺形成。
- 根据权利要求8所述的基于热超导散热板的电控器,其特征在于:所述热超导管路在所述热超导散热板上呈单面胀形态、双面胀形态或双面平形态。
- 根据权利要求1至7中任一项所述的基于热超导散热板的电控器,其特征在于:所述热超导管路的形状为六边形蜂窝状、圆形蜂窝状、四边形蜂窝状、首尾串联的多个U形、菱形、三角形、圆环形,或其中任一种以上图形的任意组合。
- 根据权利要求1至7中任一项所述的基于热超导散热板的电控器,其特征在于:所述热超导散热板上热超导管路之间的区域设有开孔。
- 一种空调室外机,其特征在于,所述空调室外机包括如权利要求1至11中任一项所述的电控器。
- 根据权利要求12所述的空调室外机,其特征在于:所述空调室外机还包括:外壳、空调风扇、空调隔板支架、空调压缩机及空调热交换器;所述电控器、所述热超导散热板、所述空调风扇、所述空调隔板支架、所述空调压缩机及所述空调热交换器均位于所述外壳内,且所述电控器主体及所述空调压缩机位于所述空调隔板支架的一侧,所述热超导散热板、所述空调风扇及所述空调热交换器位于所述空调隔板支架的另一侧。
- 根据权利要求13所述的空调室外机,其特征在于:所述空调室外机还包括:空调风扇支架,所述空调风扇支架位于所述外壳内;所述空调风扇经由所述空调风扇支架固定于所述空调热交换器及所述外壳内壁上。
- 根据权利要求14所述的空调室外机,其特征在于:所述电控器的PCB电路板与所述空调隔板支架相平行,所述热超导散热板远离所述发热量大的功率器件的一端延伸至所述空调风扇及所述空调风扇支架的上方。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/309,931 US20190234627A1 (en) | 2016-06-17 | 2016-09-21 | Electric controller based on thermally superconductive heat dissipating plate and air conditioner outdoor unit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610435757.2 | 2016-06-17 | ||
CN201610435757.2A CN106051956A (zh) | 2016-06-17 | 2016-06-17 | 基于热超导散热板的电控器及空调室外机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017215143A1 true WO2017215143A1 (zh) | 2017-12-21 |
Family
ID=57168344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/099539 WO2017215143A1 (zh) | 2016-06-17 | 2016-09-21 | 基于热超导散热板的电控器及空调室外机 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20190234627A1 (zh) |
CN (1) | CN106051956A (zh) |
WO (1) | WO2017215143A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110486849A (zh) * | 2019-09-29 | 2019-11-22 | 宁波奥克斯电气股份有限公司 | 一种电控盒以及空调器 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107621020A (zh) * | 2017-09-22 | 2018-01-23 | 广东美的制冷设备有限公司 | 空调器外机组件和空调器 |
CN107946690A (zh) * | 2017-11-03 | 2018-04-20 | 上海嘉熙科技有限公司 | 具有热超导换热器的动力电池包及动力电池包系统 |
CN110594989A (zh) * | 2018-06-13 | 2019-12-20 | 广东美的制冷设备有限公司 | 空调器和集成式空调控制器 |
CN110160384B (zh) * | 2019-01-11 | 2020-04-24 | 青岛海尔空调器有限总公司 | 芯片换热器及变频空调器 |
CN109974137B (zh) * | 2019-04-19 | 2024-05-17 | 青岛海尔智能技术研发有限公司 | 一种空调室外机和空调器 |
CN110296624A (zh) * | 2019-06-11 | 2019-10-01 | 深圳兴奇宏科技有限公司 | 流道型二相流散热器 |
CN111521051A (zh) * | 2020-04-09 | 2020-08-11 | 浙江嘉熙科技有限公司 | 热超导传热板及散热器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2571137Y (zh) * | 2002-09-17 | 2003-09-03 | 刘克文 | 新型超导散热器 |
EP1363326A2 (en) * | 2002-05-17 | 2003-11-19 | Chin-Kuang Luo | Heat-dissipating module |
US20040066628A1 (en) * | 2001-07-26 | 2004-04-08 | Jefferson Liu | Rapidly self-heat-conductive heat-dissipating module |
CN101819001A (zh) * | 2009-02-27 | 2010-09-01 | 陈文进 | 超导元件结构 |
CN103247584A (zh) * | 2013-05-15 | 2013-08-14 | 上海鹰峰电子科技有限公司 | 一种微槽群平板热管散片模块及其生产方法 |
CN104930603A (zh) * | 2014-03-18 | 2015-09-23 | Lg电子株式会社 | 空调的室外单元 |
CN105101751A (zh) * | 2015-07-03 | 2015-11-25 | 浙江嘉熙光电设备制造有限公司 | 热超导片式散热器及其制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104990050A (zh) * | 2015-07-27 | 2015-10-21 | 杨维举 | 超导散热板及其制造工艺及具有超导散热功能的led灯 |
CN205783408U (zh) * | 2016-06-17 | 2016-12-07 | 上海嘉熙科技有限公司 | 基于热超导散热板的电控器及空调室外机 |
-
2016
- 2016-06-17 CN CN201610435757.2A patent/CN106051956A/zh active Pending
- 2016-09-21 WO PCT/CN2016/099539 patent/WO2017215143A1/zh active Application Filing
- 2016-09-21 US US16/309,931 patent/US20190234627A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040066628A1 (en) * | 2001-07-26 | 2004-04-08 | Jefferson Liu | Rapidly self-heat-conductive heat-dissipating module |
EP1363326A2 (en) * | 2002-05-17 | 2003-11-19 | Chin-Kuang Luo | Heat-dissipating module |
CN2571137Y (zh) * | 2002-09-17 | 2003-09-03 | 刘克文 | 新型超导散热器 |
CN101819001A (zh) * | 2009-02-27 | 2010-09-01 | 陈文进 | 超导元件结构 |
CN103247584A (zh) * | 2013-05-15 | 2013-08-14 | 上海鹰峰电子科技有限公司 | 一种微槽群平板热管散片模块及其生产方法 |
CN104930603A (zh) * | 2014-03-18 | 2015-09-23 | Lg电子株式会社 | 空调的室外单元 |
CN105101751A (zh) * | 2015-07-03 | 2015-11-25 | 浙江嘉熙光电设备制造有限公司 | 热超导片式散热器及其制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110486849A (zh) * | 2019-09-29 | 2019-11-22 | 宁波奥克斯电气股份有限公司 | 一种电控盒以及空调器 |
Also Published As
Publication number | Publication date |
---|---|
US20190234627A1 (en) | 2019-08-01 |
CN106051956A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017215143A1 (zh) | 基于热超导散热板的电控器及空调室外机 | |
TWI525300B (zh) | 功率模組用複合式散熱器組件 | |
CN205783408U (zh) | 基于热超导散热板的电控器及空调室外机 | |
CN110030629B (zh) | 一种空调室外机和空调器 | |
WO2020211489A1 (zh) | 一种空调室外机和空调器 | |
CN1945814A (zh) | 散热片、循环热管散热器 | |
WO2018161498A1 (zh) | 热超导翅片式散热器及电器设备机箱 | |
CN106642407A (zh) | 基于热超导散热板的电控器及空调室外机 | |
CN110848822A (zh) | 散热构件、散热器和空调器 | |
CN105555102A (zh) | 具有热超导半导体制冷系统的密封机柜 | |
CN206042648U (zh) | 具有热超导散热器的大功率电源装置 | |
CN210014476U (zh) | 一种散热器、空调室外机和空调器 | |
CN210014475U (zh) | 一种散热器、空调室外机和空调器 | |
CN210014477U (zh) | 一种散热器、空调室外机和空调器 | |
CN210014478U (zh) | 一种散热器、空调室外机和空调器 | |
CN206018858U (zh) | 基于热超导散热板的电控器及空调室外机 | |
CN106766346B (zh) | 一种循环水冷式散热半导体制冷系统 | |
CN211822831U (zh) | 一种散热构件及空调室外机 | |
WO2017215160A1 (zh) | 一种可间断式工质接触式冷却系统 | |
CN210040176U (zh) | 一种氟冷变频板机组 | |
CN210014483U (zh) | 一种空调室外机和空调器 | |
CN210663105U (zh) | 一种空调室外机和空调器 | |
CN209882431U (zh) | 一种散热构件、空调室外机和空调 | |
CN1523300A (zh) | 散热翅片、热管、母板金属一体化散热器 | |
CN106132181A (zh) | 具有热超导散热器的大功率电源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16905255 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16905255 Country of ref document: EP Kind code of ref document: A1 |