WO2022160663A1 - 一体式承压冷凝锅炉 - Google Patents

一体式承压冷凝锅炉 Download PDF

Info

Publication number
WO2022160663A1
WO2022160663A1 PCT/CN2021/112442 CN2021112442W WO2022160663A1 WO 2022160663 A1 WO2022160663 A1 WO 2022160663A1 CN 2021112442 W CN2021112442 W CN 2021112442W WO 2022160663 A1 WO2022160663 A1 WO 2022160663A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat
exchange chamber
pressure
smoke
Prior art date
Application number
PCT/CN2021/112442
Other languages
English (en)
French (fr)
Inventor
叶国领
张希军
叶辉
叶青
张兵
赵欣
王国磊
姚卫东
武建中
武怡旻
杜亮
Original Assignee
廊坊劲华锅炉有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廊坊劲华锅炉有限公司 filed Critical 廊坊劲华锅炉有限公司
Priority to JP2022540982A priority Critical patent/JP7335660B2/ja
Priority to US17/858,837 priority patent/US20230027757A1/en
Publication of WO2022160663A1 publication Critical patent/WO2022160663A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/46Water heaters having plural combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of boilers, in particular to an integrated pressure-bearing condensing boiler.
  • the condensing boiler achieves the purpose of improving the thermal efficiency of the boiler by absorbing the sensible heat in the high temperature flue gas and the latent heat released by the condensation of the steam; its maximum thermal efficiency can reach 109%, which is 15-17% higher than the thermal efficiency of ordinary gas furnaces.
  • the exhaust gas temperature of the condensing boiler is greatly reduced, and the nitrogen oxides (NOx) in the flue gas is ultra-low emission.
  • Condensing boilers have high application value because of their high efficiency and energy saving.
  • the existing pressure condensing boilers have low heat exchange efficiency and high exhaust gas temperature; most of the pressure condensing boilers will have additional condensing heat exchange equipment outside the furnace, which makes the overall structure of the pressure condensing boilers very complex. Manufacturing, installation and application costs are high.
  • the embodiment of the present invention provides an integrated pressure condensing boiler, which is based on the principle of countercurrent heat exchange, enhanced flue gas side heat exchange and enhanced convective heat transfer coefficient to develop a condensing boiler suitable for pressure operation, and improve its thermal efficiency to 100% Above, the manufacturing, installation and application costs of the pressure condensing boiler are greatly reduced.
  • the present invention provides an integrated pressure-bearing condensing boiler, which includes a pressure-bearing shell, a heat-exchange furnace liner arranged in the pressure-bearing shell, a combustion chamber communicated with the heat-exchange furnace liner, and Cooling tube group in the furnace;
  • the pressure-bearing shell is provided with a smoke outlet pipe that communicates with the heat-exchange furnace, the heat-exchange medium inlet and the heat-exchange medium outlet;
  • the high temperature flue gas flowing from top to bottom in the hot furnace is countercurrently heat exchanged;
  • the heat exchange furnace includes multi-stage cylindrical heat exchange chambers, and the adjacent heat exchange chambers are communicated through the flue; wherein, the multi-stage heat exchange chambers are diffused from the middle to the surrounding according to the high temperature flue gas, and then The diffused forms gathered from the periphery to the middle are repeatedly set from top to bottom.
  • the high-temperature flue gas diffuses from the top to the bottom from the middle to the surrounding, and then gathers from the surrounding to the middle to form countercurrent heat exchange with the bottom-up heat exchange medium;
  • the lower temperature heat exchange medium makes the The discharge temperature of the flue gas is relatively low, and the high temperature flue gas in the upper part makes the temperature of the discharged heat exchange medium relatively high;
  • the heat exchange furnace with a pressure-bearing shell and a cylindrical structure is suitable for pressure-bearing operation;
  • the heat exchange medium (usually water) discharged from the integrated pressure condensing boiler can be either high or low temperature hot water or steam.
  • each stage of the heat exchange chamber has a relatively independent heat exchange chamber, and the high-temperature flue gas is forced to circulate in each stage of the heat exchange chamber to improve the heat exchange efficiency; and the heat exchange chamber is cylindrical, which can realize the pressure-bearing operation of the boiler. .
  • the embodiment of the present invention adopts an integrated pressure-bearing condensing boiler, which can meet the requirements in the "Industrial Boiler Energy Efficiency Limit Value and Energy Efficiency Grade (GB24500-2020)".
  • the requirements for the first-level energy efficiency of the condensing boiler do not require additional condensing heat exchange equipment outside the furnace, and the structure is simple, and the manufacturing, installation and application costs are low.
  • the heat exchange furnace provided by this scheme has high heat exchange efficiency, so there is no need to install additional condensing heat exchange equipment outside the furnace; "integrated" means that the pressure-bearing condensing boiler provided by this scheme can be used directly as a whole, while It does not have to be like the existing technology; the existing technology not only requires the manufacture and installation of the whole boiler, but also requires the manufacture and installation of supporting condensing heat exchange equipment; compared with the existing technology, the integrated pressure condensing boiler provided by this solution is more popular Value.
  • the first heat exchange chamber is communicated with the combustion chamber, and the second heat exchange chamber is communicated with the first heat exchange chamber;
  • the first heat exchange chamber is provided in the middle of the upper end face of the first heat exchange chamber a smoke port, the lower end face is provided with a first smoke outlet along the peripheral wall;
  • the upper end face of the second heat exchange chamber is provided with a second smoke inlet corresponding to the first smoke outlet, and the middle of the lower end face is provided with a second smoke outlet;
  • the second smoke outlet is used to communicate with the third heat exchange chamber or with the smoke outlet pipe arranged on the pressure-bearing shell; wherein, the high temperature flue gas enters the first heat exchange chamber from the middle and radiates to the surroundings, and in the second heat exchange chamber
  • the hot chamber enters from the surrounding and gathers toward the second smoke outlet in the middle, forming a lateral scouring for the corresponding cooling pipe group.
  • the high-temperature flue gas enters the first heat exchange chamber from the first flue gas inlet in the middle, and then diffuses to the surroundings and enters the second heat exchange room from the first flue gas outlet;
  • the second smoke inlet enters the second heat exchange chamber, and gathers towards the second smoke outlet in the middle;
  • the high temperature flue gas can form a lateral scour on the cooling pipe group, so as to be connected with the cooling pipes in each heat exchange chamber
  • the group is fully heat exchanged; the same principle applies to the third heat exchange chamber or other heat exchange chambers.
  • the heat exchange furnace can be provided with a 4-stage heat exchange chamber, wherein the middle part of the upper end surface of the third heat exchange chamber is provided with a third smoke inlet that matches the second smoke outlet, and the lower end surface is provided along the peripheral wall. There is a third smoke outlet; the upper end face of the fourth heat exchange chamber is provided with a fourth smoke inlet corresponding to the third smoke outlet, and the side wall is provided with a fourth smoke outlet communicated with the smoke outlet.
  • the number of heat exchange chambers is not limited in the present invention, and the heat exchange furnace can also be set into five or more-level heat exchange chambers according to the design principle of spreading from the middle to the surrounding and then gathering from the surrounding to the middle.
  • the cooling tube groups in each heat exchange chamber are circumferentially arranged around the corresponding smoke inlet or outlet.
  • the cooling pipe groups are circumferentially arranged 2-4 times around the corresponding smoke inlet or outlet.
  • the cooling tube group may also be set to 5 turns or more, which is not limited in this application.
  • the smoke inlet or outlet arranged in the middle of each heat exchange chamber is circular, and the smoke inlet or outlet arranged along the peripheral wall of each heat exchange chamber is arc-shaped;
  • the smoke inlet or outlet provided on the peripheral wall of each heat exchange chamber includes a plurality of circular opening units, and the plurality of opening units are arranged in an arc shape along the peripheral wall of the heat exchange chamber.
  • the smoke inlet of the last stage heat exchange chamber is arc-shaped or includes a plurality of the opening units arranged in an arc shape
  • the shape of the smoke inlet of the last stage heat exchange chamber or the plurality of the opening units is semi-arc or sub-arc
  • the smoke outlet pipe is arranged away from the smoke inlet of the last-stage heat exchange chamber.
  • more than one partition plate is provided between the pressure-bearing shell and the heat exchange furnace.
  • the setting of the baffle can prevent the heat exchange medium from flowing through the cooling tube group in a small amount due to resistance, and on the other hand, it can prevent the overheated heat exchange medium from flowing back to the lower low temperature heat exchange medium area, resulting in the bottom exchange.
  • the temperature of the heat medium increases, which in turn leads to an increase in the exhaust gas temperature of the flue pipe.
  • each stage of the heat exchange chamber is provided with a corresponding partition. This can not only ensure that the heat exchange medium and the heat exchange room of each stage can be fully contacted with the heat exchange medium, but also prevent the heat exchange medium of higher temperature from flowing back to the heat exchange medium area of lower temperature.
  • the heights of the heat exchange chambers at each stage decrease sequentially.
  • the integrated pressure-bearing condensing boiler provided by the present invention can improve the heat exchange efficiency through the cooperation of the pressure-bearing shell, the heat exchange furnace, the combustion chamber and the cooling tube group, and has a simple structure, and has Installation and application costs are low.
  • Fig. 1 is the appearance structure schematic diagram of the integrated pressure condensing boiler of the embodiment of the present invention
  • Fig. 2 is the sectional structure schematic diagram of Fig. 1;
  • Fig. 3 is the explosion structure schematic diagram 1 of the heat exchange furnace in the embodiment of the present invention.
  • Fig. 4 is the explosion structure schematic diagram II of the heat exchange furnace in the embodiment of the present invention.
  • Fig. 5 shows that the smoke inlet or outlet provided along the peripheral wall of the heat exchange chamber in the heat exchange furnace according to the embodiment of the present invention is composed of a plurality of circular opening units, and the plurality of opening units are arranged along the peripheral wall of the heat exchange chamber. Schematic diagram of the arc arrangement.
  • 10-pressure-bearing shell 11-heat exchange medium inlet, 12-heat exchange medium outlet, 13-partition plate;
  • 21-first heat exchange chamber 21-first heat exchange chamber, 211-first cooling tube group, 212-first smoke inlet, 213-first smoke outlet;
  • Pressure condensing boilers and atmospheric pressure condensing boilers are both types of boiler products.
  • the gauge pressure of the rated working pressure of the atmospheric boiler is 0, and the temperature of the medium at the outlet does not exceed 90 °C.
  • the working pressure of the pressure boiler is ⁇ 0.1MPa, the temperature of the medium at the outlet can be higher than 100°C, and the pressure boiler can adjust the water temperature; the pressure boiler can not only provide high and low temperature hot water, but also high temperature steam ; At the same time, the pressure boiler can also be directly used in the environment of working under pressure. Therefore, pressure boilers have a wider range of applications.
  • the applicant has developed a normal pressure condensing boiler, which divides the square heat exchange furnace into continuous flue gas passages with at least one-level turning structure through flue gas baffles; however, this structure cannot be applied to pressure boilers. Therefore, the embodiment of the present invention provides an integrated pressure-bearing condensing boiler, and the integrated pressure-bearing condensing boiler can be applied to a wider range of occasions.
  • the pressure-bearing condensing boiler includes a pressure-bearing shell 10 , a heat-exchange furnace 20 disposed in the pressure-bearing shell 10 , a combustion chamber 30 communicating with the heat-exchange furnace 20 , and The cooling pipe group fixed in the heat exchange furnace 20.
  • the pressure-bearing housing 10 is roughly cylindrical, and the upper and lower ends are elliptical heads with an integral structure, as shown in FIG. 1 .
  • the upper part of the pressure-bearing casing 10 is provided with a burner joint 31 connected with the combustion chamber 30
  • the lower part of the pressure-bearing casing 10 is provided with a smoke outlet pipe 32 which communicates with the heat exchange furnace 20 .
  • burner joint 31 should be understood in a broad sense; the burner joint 31 is the connection structure between the combustion chamber 30 and the external parts. The connection structure of the parts shall be deemed to have been disclosed by the present application.
  • the closed end of the combustion chamber 30 is a smooth end, and the other end of the combustion chamber 30 is an open end, the open end communicates with the burner joint 31 and is connected in a smooth transition.
  • the premixed combustible gas is fully combusted in the combustion chamber 30 , and the high-temperature flue gas diffuses from top to bottom through the heat exchange furnace 20 to the flue outlet pipe 32 .
  • a heat exchange medium inlet 11 communicating with the heat exchange medium is also provided at the lower part of the pressure-bearing shell 10 , and a heat-exchange medium outlet 12 is arranged at the upper part of the pressure-bearing shell 10 .
  • the heat exchange medium with lower temperature enters through the heat exchange medium inlet 11, and then circulates in the pressure-bearing shell 10 and the cooling tube group from bottom to top;
  • the high-temperature flue gas in 20 countercurrently exchanges heat;
  • the multi-stage heat exchange chambers are repeatedly set from top to bottom in the form of high-temperature flue gas diffusing from the middle to the surrounding, and then gathering from the surrounding to the middle.
  • the heat exchange furnace 20 includes multi-stage cylindrical heat exchange chambers, and adjacent heat exchange chambers are communicated through the flue flue;
  • the cylindrical heat exchange chamber is suitable for bearing pressure, and a heat exchange space suitable for the circulation of heat exchange medium is formed between the heat exchange chamber and the pressure bearing shell 10 .
  • Each stage of heat exchange chamber has a relatively independent heat exchange cavity, and the adjacent heat exchange cavity is connected to a continuous flue through the flue. Reduce the outlet temperature of the flue gas, thereby increasing the thermal efficiency.
  • a multi-stage heat exchange chamber is set up, such as a 2-stage heat exchange room or a 3-stage heat exchange room or a 4-stage heat exchange room;
  • the smoke inlet is located in the middle of the upper end face of the first-stage heat exchange chamber, and the smoke outlet of the first-stage heat exchange chamber is located at the lower end face of the first-stage heat exchange chamber, and is arranged along the peripheral wall of the first-stage heat exchange chamber; therefore , the high temperature flue gas enters from the middle of the first-stage heat exchange chamber, and then diffuses around;
  • the smoke inlet of the second-stage heat exchange chamber is located on the upper end face of the second-stage heat exchange chamber, and is connected with the
  • the shape and position of the smoke outlet are adapted;
  • the smoke outlet of the second-stage heat exchange chamber is located in the middle of the lower end face of the second-stage heat exchange chamber, and communicates with the smoke outlet pipe 32;
  • the stage heat exchange chamber enters from all sides, and then gathers to the middle.
  • the multi-stage heat exchange chambers are arranged in the form of high-temperature flue gas diffusing from the middle to the surrounding, and then gathering from the surrounding to the middle; the flue gas fully flushes the cooling tube group in each heat exchange chamber to achieve effective heat exchange; From top to bottom, the flue gas temperature in the heat exchange chamber decreases step by step, and the flue gas temperature in the final heat exchange chamber is lower than the flue gas temperature in each heat exchange chamber above the final heat exchange chamber.
  • each heat exchange chamber is in a smooth transition structure on the corresponding heat exchange chamber, and the side wall of the turning flue connected with the corresponding smoke inlet and outlet is also in a smooth transition structure.
  • Each stage of the heat exchange chamber includes a cylindrical side wall, an upper tube sheet and a lower tube sheet (serial number not marked) which are hermetically connected to the side wall; the upper tube sheet is provided with a smoke inlet, and the lower tube sheet is provided with a smoke outlet
  • the upper tube sheet and the lower tube sheet are also fixed at both ends of the cooling tube group by welding or the like.
  • the cooling tube group is vertically arranged in the heat exchange chamber, and the tube hole of the cooling tube group is communicated with the inner space of the pressure-bearing shell 10 , and is not communicated with the inner space of the heat exchange furnace 20 .
  • the heat exchange medium (usually water) flows into the cooling pipe group to exchange heat with the high temperature flue gas in the heat exchange chamber, and then the heat exchange medium is discharged from the cooling pipe group and mixed with the heat exchange medium in the pressure housing 10 .
  • the smoke inlet and outlet adopt a smooth transition structure, such as circular (the first smoke inlet 212 shown in Figure 3), arc (the first smoke outlet 213 shown in Figure 4); the smooth transition structure Suitable for pressure.
  • the cross section of the turning flue is adapted to the shape of the corresponding smoke inlet or outlet, and is suitable for bearing pressure.
  • partition plate 13 In order to improve the heat exchange efficiency of the pressure-bearing condensing boiler, more than one partition plate 13 is provided in the pressure-bearing shell 10; between, see Figure 2.
  • a partition 13 can be set above the last-stage heat exchange chamber, the purpose of which is to prevent the backflow of the heat exchange medium at a higher temperature; When the temperature of the heat medium increases, the heat exchange efficiency of the final heat exchange chamber decreases, which in turn leads to an increase in the temperature of the exhaust gas.
  • each stage of the heat exchange chamber is correspondingly provided with a partition 13 .
  • the heat exchange medium entering from the heat exchange medium inlet 11 flows into the space between the heat exchange furnace 20 and the pressure-bearing shell 10 through the cooling tube group.
  • the partition plate 13 can prevent the upper-stage heat exchange medium from flowing back to the lower temperature heat exchange medium area, thereby effectively improving the heat exchange efficiency.
  • the partition 13 can completely seal the gap between the pressure-bearing shell 10 and the heat exchange furnace 20, or it can not completely close the gap between the pressure-bearing shell 10 and the heat exchange furnace 20; when the partition 13 is completely closed When the gap is closed, the gap is divided by the partition plate 13 into spaces that are adjacent to each other and are not connected to each other.
  • the heat exchange medium cannot circulate in the gap, but can only circulate in the cooling tube group;
  • the gap is divided into upper and lower adjacent and interconnected spaces by the partition plate 13.
  • the heat exchange medium can circulate in the gap and the cooling tube group at the same time;
  • the partition plate 13 can A plurality of them are provided, but a closed space through which the heat exchange medium cannot flow cannot be formed between the adjacent partition plates 13 .
  • the heights of the heat exchange chambers at all levels can be the same or different.
  • the heights of the heat exchange chambers at all levels decrease sequentially along the direction of flue gas diffusion. Generally, when the flue gas flows from top to bottom, the flue gas temperature in the upper heat exchange room is high, and the height of the heat exchange room is large; the flue gas temperature in the final heat exchange room is low, and the height of the heat exchange room is small.
  • the first heat exchange chamber 21 communicates with the combustion chamber 30
  • the second heat exchange chamber 22 communicates with the first heat exchange chamber 21
  • the first heat exchange chamber 21 is provided with a first smoke inlet 212 in the middle of the upper end face
  • the lower end face of the first heat exchange chamber 21 is provided with a first smoke outlet 213 along the peripheral wall
  • the upper end face of the second heat exchange chamber 22 is provided with a first smoke outlet 213 213 corresponds to the second smoke inlet
  • the middle of the lower end face of the second heat exchange chamber 22 is provided with a second smoke outlet 222
  • the second smoke outlet 222 is used for communication with the third heat exchange chamber 23, or with the
  • the smoke outlet pipes 32 on the pressure shell 10 are connected; wherein, the high-temperature flue gas enters from the middle of the first heat exchange chamber 21 and then spreads to the periphery, and the high-temperature flue gas enters the second heat exchange chamber 22 from the periphery and then exits the
  • the high-temperature flue gas discharged from the combustion chamber 30 enters from the middle of the upper end face of the first heat exchange chamber 21, and then diffuses around in the first heat exchange chamber 21 and scours the first cooling tube group 211 laterally;
  • the first smoke outlet 213 at the edge of the lower end face of the first heat exchange chamber 21 enters the second heat exchange chamber 22; the flue gas gathers from the periphery to the middle in the second heat exchange chamber 22 and scours the second cooling tube group laterally 221;
  • the above-mentioned flue gas circulation mode can increase the path of flue gas diffusion, thereby improving the heat exchange efficiency.
  • the smoke inlet or outlet arranged in the middle of each heat exchange chamber is circular, and the smoke inlet or outlet arranged along the peripheral wall of each heat exchange chamber is arc-shaped; or, along the peripheral wall of each heat exchange chamber
  • the smoke inlet or outlet includes a plurality of circular opening units, and the plurality of opening units are arranged in an arc shape along the peripheral wall of the heat exchange chamber (as shown in FIG. 5 , the fourth smoke inlet 243 is composed of a plurality of circular openings.
  • the opening unit is composed of several opening units, and a plurality of opening units are arranged in an arc shape along the peripheral wall of the heat exchange chamber; the cooling tube group is not drawn in Figure 5).
  • the cooling tube groups in each heat exchange chamber are arranged in a circle around the corresponding smoke inlet or outlet; the cooling tube groups are arranged in a circle around the corresponding smoke inlet or outlet for 2-4 times.
  • the application does not limit the number of turns and the arrangement of the cooling pipe group; in addition, "the cooling pipe group is arranged around the corresponding smoke inlet or outlet" means (with the first heat exchange chamber 21 Taking the second heat exchange chamber 22 as an example) In the first heat exchange chamber 21 , the cooling pipe group is arranged around the first smoke inlet 212 , and in the second heat exchange chamber 22 , the cooling pipe group surrounds the second smoke outlet 222 That is, if the smoke outlet or the smoke inlet is arranged in the middle of the upper end face or the lower end face of the heat exchange chamber, the cooling pipe group can be arranged around the smoke outlet or the smoke inlet.
  • the heat exchange furnace 20 further includes a fourth heat exchange chamber 24 that communicates with the third heat exchange chamber 23;
  • the middle part of the upper end face of the heat exchange chamber 23 is provided with a third smoke inlet that matches the second smoke outlet 222, and the lower end face of the third heat exchange chamber 23 is provided with a third smoke outlet 232 along the peripheral wall;
  • the upper end surface of the heat chamber 24 is provided with a fourth smoke inlet 243 corresponding to the third smoke outlet 232
  • the side wall of the fourth heat exchange chamber 24 is provided with a fourth smoke outlet communicated with the smoke outlet pipe 32 . mouth 242.
  • the heat exchange furnace 20 may further include a fifth heat exchange chamber, a sixth heat exchange chamber, and the like.
  • the first smoke inlet 212 is circular, and both ends of the first cooling tube group 211 penetrate through the upper tube sheet and the lower tube sheet of the first heat exchange chamber 21 respectively; the first cooling tube group 211 surrounds the first
  • the smoke inlets 212 are arranged in a circle, and are arranged in three circles, and the cooling pipes of the adjacent circles are arranged in a circumferential direction dislocation.
  • the first smoke outlet 213 is arc-shaped as a whole, and is matched with the outer wall of the first heat exchange chamber 21 , and the first smoke outlet 213 has a smooth transition structure.
  • the high-temperature flue gas enters the first heat exchange chamber 21 from the first flue gas inlet 212, and scours the first cooling tube group 211 arranged around the first flue gas inlet 212 in a manner of diffusing to the surrounding, so as to conduct sufficient heat exchange.
  • the first cooling tube group 211 may also be provided with two or four turns.
  • the second smoke inlet matches the shape of the first smoke outlet 213 , the cross-sectional shape of the first turning flue 201 matches the shape of the first smoke outlet 213 , and each connecting surface transitions smoothly.
  • the second smoke outlet 222 is circular and is disposed in the middle of the lower end surface of the second heat exchange chamber 22; the second flue duct 202 communicates with the second smoke outlet 222 and the third smoke inlet; inside the second heat exchange chamber 22
  • the arrangement of the second cooling tube group 221 is the same as the arrangement of the first cooling tube group 211 in the first heat exchange chamber 21 .
  • the shape of the third smoke inlet matches the shape of the second smoke outlet 222, the third smoke outlet 232 is semi-arc or sub-arc, and the third turning flue 203 communicates with the third smoke outlet 232 and the fourth smoke inlet
  • the arrangement of the third cooling tube group 231 in the third heat exchange chamber 23 is the same as the arrangement of the first cooling tube group 211 in the first heat exchange chamber 21 .
  • the shape of the fourth smoke inlet 243 matches the shape of the third smoke outlet 232 .
  • the arrangement of the fourth cooling tube group 241 in the fourth heat exchange chamber 24 is the same as the arrangement of the first cooling tube group 211 in the first heat exchange chamber 21 ;
  • a fourth smoke outlet 242 is opened, and the fourth smoke outlet 242 communicates with the smoke outlet pipe 32 .
  • the fourth smoke outlet 242 and the smoke outlet pipe 32 are both disposed away from the fourth smoke inlet 243 .
  • the bottom of a part of the smoke outlet pipe 32 located outside the pressure housing 10 is connected with a condensate water discharge pipe 204; the condensate water discharge pipe 204 is used to discharge the condensed water.
  • heat exchange fins (not shown in the figure) can be arranged on the outer wall of the cooling tube group.
  • the heat exchange fins are helically distributed along the axial direction of the cooling tube.
  • the integrated pressure condensing boiler provided in this application is tested according to GB/T10180-2017 "Thermal Test Regulations for Industrial Boilers".
  • the integrated pressure condensing boiler is running at full load, when the return water temperature is 60 °C, the flue gas outlet temperature is 61 °C, and the thermal efficiency (calculated according to the low calorific value) is 100%; the integrated pressure condensing boiler is running at full load, and the return water temperature At 30°C, the flue gas outlet temperature is 41°C, and the thermal efficiency (calculated by the low calorific value) is 105%; the integrated pressure condensing boiler operates at 30% load, and when the return water temperature is 30°C, the flue gas outlet temperature is 35°C, and the thermal efficiency ( Calculated by low calorific value) 108%; when the integrated pressure condensing boiler is running at full load, the flue gas outlet temperature is 52°C, and the thermal efficiency (calculated by low calorific value) is 103%.

Abstract

一体式承压冷凝锅炉,涉及锅炉技术领域,包括承压壳体(10),设置在所述承压壳体(10)内的换热炉胆(20),与所述换热炉胆(20)连通的燃烧室(30),以及固定在所述换热炉胆(20)内的冷却管组;在承压壳体(10)上设有与所述换热炉胆(20)连通的出烟管(32),换热介质进口(11)和换热介质出口(12);换热介质自下而上在所述承压壳体(10)内以及冷却管组内流通,与换热炉胆(20)内自上而下的烟气逆流换热;所述换热炉胆(20)包括多级圆柱状的换热室,相邻换热室通过转烟道连通;其中,多级换热室之间按照高温烟气从中部向四周扩散,再从四周向中部聚拢的扩散形式自上而下顺次重复设置;通过承压壳体(10),换热炉胆(20),燃烧室(30)以及冷却管组的配合,能够提高换热效率,而且结构简单,制造、安装和应用成本较低。

Description

一体式承压冷凝锅炉
本专利申请要求于2021年07月16日提交的中国专利申请No.CN202110809174.2的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本发明涉及锅炉技术领域,尤其涉及一体式承压冷凝锅炉。
背景技术
冷凝锅炉通过吸收高温烟气中的显热和蒸汽凝结所释放的潜热,达到提高锅炉热效率的目的;其最大热效率可达109%,比普通燃气炉热效率高出15~17%。另一方面,冷凝锅炉排烟温度大大降低,烟气中的氮氧化物(NOx)超低排放。
冷凝锅炉因其高效节能具有很高的应用价值。然而,现有的承压冷凝锅炉换热效率低,排烟温度高;大部分承压冷凝锅炉会在炉体外另设配套的冷凝换热设备,这导致承压冷凝锅炉的整体结构十分复杂,制造、安装和应用成本较高。
技术问题
本发明实施例提供一体式承压冷凝锅炉,其基于逆流换热,增强烟气侧换热及增强对流换热系数原理,开发适于承压运行的冷凝锅炉,并将其热效率提高至100%以上,大幅降低了承压冷凝锅炉的制造、安装和应用成本。
技术解决方案
为实现上述目的,本发明提供了一体式承压冷凝锅炉,其包括承压壳体,设置在承压壳体内的换热炉胆,与换热炉胆连通的燃烧室,以及固定在换热炉胆内的冷却管组;
在承压壳体上设有与换热炉胆连通的出烟管,换热介质进口和换热介质出口;换热介质自下而上在承压壳体内以及冷却管组内流通,与换热炉胆内自上而下流动的高温烟气逆流换热;
换热炉胆包括多级圆柱状的换热室,相邻的所述换热室通过转烟道连通;其中,多级所述换热室之间按照高温烟气从中部向四周扩散,再从四周向中部聚拢的扩散形式自上而下顺次重复设置。
本方案中,高温烟气自上而下先由中部向四周扩散,然后由四周向中部聚拢的扩散方式,与自下而上的换热介质形成逆流换热;下部较低温的换热介质使得烟气的排放温度较低,上部高温烟气使排出的换热介质的温度较高;采用承压壳体和圆柱体结构的换热炉胆,适于承压运行;本发明实施例中的一体式承压冷凝锅炉排出的换热介质(通常采用水)既可以为高、低温热水,也可为蒸汽。尤其是,每级换热室均具有相对独立的换热腔,高温烟气强制在每级换热室内流通,提高换热效率;并且,换热室呈圆柱形,可实现锅炉的承压运行。与现有技术中需要在炉体外另设配套的冷凝换热设备相比,本发明实施例采用一体式承压冷凝锅炉既可达到《工业锅炉能效限定值及能效等级(GB24500-2020)》中对冷凝锅炉的1级能效的要求,又不需要在炉体外另设配套的冷凝换热设备,而且结构简单,制造、安装和应用成本较低。本方案提供的换热炉胆,换热效率高,因此无需在炉体外另设配套的冷凝换热设备;“一体式”是指本方案提供的承压冷凝锅炉作为整体直接使用即可,而不必像现有技术那样;现有技术不仅需要制造、安装锅炉整体,而且还需要制造、安装配套的冷凝换热设备;相比现有技术,本方案提供的一体式承压冷凝锅炉更具推广应用价值。
在一种可能的实现方式中,与燃烧室连通的为第一换热室,与第一换热室连通的为第二换热室;第一换热室的上端面中部设有第一进烟口,下端面沿周壁设有第一出烟口;第二换热室上端面设有与第一出烟口对应的第二进烟口,下端面中部设有第二出烟口;第二出烟口用于与第三换热室连通或者与设置在承压壳体上的出烟管连通;其中,高温烟气在第一换热室自中部进入向四周辐射,在第二换热室从四周进入向中部的第二出烟口聚拢,形成对相应冷却管组的横向冲刷。
上述方案中,高温烟气从中部的第一进烟口进入第一换热室,并向四周扩散后从第一出烟口进入到第二换热室;高温烟气从设置在边缘位置的第二进烟口进入到第二换热室,并向中部的第二出烟口聚拢;通过上述方式,能够使高温烟气对冷却管组形成横向冲刷,从而与各换热室内的冷却管组充分换热;相同的原理,适用于第三换热室或其他换热室。
一些实施例中,换热炉胆可以设置4级换热室,其中第三换热室上端面的中部设有与第二出烟口相适配的第三进烟口,下端面沿周壁设有第三出烟口;第四换热室的上端面设有与第三出烟口对应的第四进烟口,侧壁设有与出烟管连通的第四出烟口。本发明中对换热室的数量不做限定,换热炉胆还能够以自中部向四周扩散,再从四周向中部聚拢的设计原则设置成五级或更多级换热室。
在一种可能的实现方式中,各换热室内的冷却管组环绕相应的进烟口或出烟口呈圆周状排布。
示例性的,冷却管组环绕相应的进烟口或出烟口呈圆周状排布2-4圈。当然,冷却管组还可以设置成5圈或更多,本申请中对此不作限定。
在一种可能的实现方式中,设置在各换热室中部的进烟口或出烟口为圆形,沿各换热室周壁设置的进烟口或出烟口为弧形;或者,沿各换热室的周壁设置的进烟口或出烟口包括多个圆形的开口单元,多个所述开口单元沿换热室的周壁呈弧状排布。
其中,当末级换热室的进烟口为弧形或包括多个呈弧状排布的所述开口单元时,所述末级换热室的进烟口的形状或者多个所述开口单元的排布轨迹为半弧或劣弧状,出烟管远离所述末级换热室的进烟口设置。
在一种可能的实现方式中,环绕换热炉胆,在承压壳体和换热炉胆之间设有1个以上隔板。隔板的设置一方面可以防止换热介质因阻力原因而不流经或少量流经冷却管组,另一方面可以防止过热的换热介质返流到下部的低温换热介质区,导致底部换热介质的温度升高,进而导致出烟管的排烟温度升高。
一些实施例中,每级换热室对应设有一个隔板。这样不仅能保障每级换热室内和换热室外均可与换热介质充分接触,而且能防止较高温度的换热介质返流至较低温度的换热介质区。
一些实施例中,沿烟气扩散的方向,各级换热室的高度依次递减。
本发明提供的一体式承压冷凝锅炉,与现有技术相比,通过承压壳体,换热炉胆,燃烧室以及冷却管组的配合,能够提高换热效率,而且结构简单,制造、安装和应用成本较低。
附图说明
图1是本发明实施例的一体式承压冷凝锅炉的外观结构示意图;
图2是图1的剖面结构示意图;
图3是本发明实施例中换热炉胆的爆炸结构示意图一;
图4是本发明实施例中换热炉胆的爆炸结构示意图二;
图5是本发明实施例的换热炉胆中沿换热室的周壁设置的进烟口或出烟口由多个圆形的开口单元组成,并且多个开口单元沿换热室的周壁呈弧状排布的示意图。
其中,10-承压壳体,11-换热介质进口,12-换热介质出口,13-隔板;
20-换热炉胆,201-第一转烟道,202-第二转烟道,203-第三转烟道,204-冷凝水排出管;
21-第一换热室,211-第一冷却管组,212-第一进烟口,213-第一出烟口;
22-第二换热室,221-第二冷却管组,222-第二出烟口;
23-第三换热室,231-第三冷却管组,232-第三出烟口;
24-第四换热室,241-第四冷却管组,242-第四出烟口,243-第四进烟口;
30-燃烧室,31-燃烧器接头,32-出烟管。
本申请的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
承压冷凝锅炉和常压冷凝锅炉都是锅炉产品的一种。常压锅炉额定工作压力的表压力为0,其出口处的介质温度不超过90℃。承压锅炉的工作压力≥0.1MPa,其出口处的介质温度可高于100℃,并且承压锅炉可以进行水温的高低调节;承压锅炉不仅能提供高、低温热水,也能提供高温蒸汽;同时承压锅炉还能直接用于带压工作的环境。因此,承压锅炉具有更广的应用范围。
申请人曾研发了一种常压冷凝锅炉,其通过烟气折流板将方形的换热炉胆分隔成具有至少一级转弯结构的连续烟气通道;但该结构无法适用于承压锅炉。因此,本发明实施例提供了一体式承压冷凝锅炉,该一体式承压冷凝锅炉可应用于更广的场合。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
参见图1和图2,本发明实施例的承压冷凝锅炉包括承压壳体10,设置在承压壳体10内的换热炉胆20,与换热炉胆20连通的燃烧室30以及固定在换热炉胆20内的冷却管组。承压壳体10大致为圆柱形,上下两端为一体结构的椭圆封头,如图1所示。承压壳体10的上部设有与燃烧室30连接的燃烧器接头31,承压壳体10的下部设有与换热炉胆20连通的出烟管32。需要说明的是,燃烧器接头31一词应作广义理解;燃烧器接头31是燃烧室30与外部零件的连接结构,凡本领域技术人员不经过创造性劳动即可得出的燃烧室30与外部零件的连接结构,均应视为已被本申请公开。
燃烧室30的封闭端为圆滑端头,燃烧室30的另一端为开口端,该开口端与燃烧器接头31连通并且圆滑过渡连接。预混后的可燃气在燃烧室30内充分燃烧,高温烟气经换热炉胆20自上而下扩散至出烟管32。同时,在承压壳体10的下部还设有与换热介质连通的换热介质进口11,承压壳体10的上部设有换热介质出口12。温度较低的换热介质经换热介质进口11进入,然后自下而上在承压壳体10内,以及冷却管组内流通;换热介质自下而上流动过程中与换热炉胆20内的高温烟气逆流换热;多级换热室之间按照高温烟气从中部向四周扩散,再从四周向中部聚拢的扩散形式自上而下顺次重复设置。
本实施例中,换热炉胆20包括多级圆柱状的换热室,相邻的换热室通过转烟道连通;烟气扩散的末级,换热室与出烟管32连通。圆柱状的换热室适于承压,并且换热室与承压壳体10之间形成适于换热介质流通的换热空间。每级换热室具有相对独立的换热腔,相邻的换热腔通过转烟道连通为连续烟道;这增加了烟气的回程,利于充分换热,提高换热介质的出口温度,降低烟气的出口温度,从而提高热效率。
上述方案中,设置多级换热室,如设置2级换热室或3级换热室或4级换热室;以设置2级换热室为例进行说明,第一级换热室的进烟口位于第一级换热室的上端面的中部,第一级换热室的出烟口位于第一级换热室的下端面,且沿第一级换热室的周壁设置;因此,高温烟气在第一级换热室内从中部进入,然后向四周扩散;第二级换热室的进烟口位于第二级换热室的上端面,并与第一级换热室的出烟口的形状和位置相适配;第二级换热室的出烟口位于第二级换热室的下端面的中部,并与出烟管32连通;因此,高温烟气在第二级换热室内从四周进入,然后向中部聚拢。
综上,多级换热室之间按照高温烟气从中部向四周扩散,再从四周向中部聚拢的形式设置;烟气在每级换热室内充分冲刷冷却管组,实现有效换热;由上至下,换热室内的烟气温度逐级降低,末级换热室的烟气温度低于末级换热室上方的每一个换热室内的烟气温度。
其中,每级换热室的进烟口或出烟口在相应换热室上呈圆滑过渡结构,与相应进烟口和出烟口连通的转烟道侧壁也呈圆滑过渡结构。每级换热室包括筒形的侧壁和与侧壁密闭连接的上管板和下管板(未标出序号);在上管板上开设有进烟口,下管板设有出烟口;上管板和下管板还通过焊接等方式固定冷却管组的两端。冷却管组竖直设置在换热室内,冷却管组的管孔与承压壳体10的内部空间连通,与换热炉胆20的内部空间不连通。换热介质(通常用水)流入冷却管组与换热室的高温烟气换热,然后换热介质从冷却管组排出与承压壳体10内的换热介质混合。进烟口和出烟口采用圆滑过渡结构,如圆形(如图3所示的第一进烟口212)、弧形(如图4所示的第一出烟口213);圆滑过渡结构适于承压。转烟道的横截面与相应的进烟口或出烟口形状适配,适于承压。
为了提高承压冷凝锅炉的换热效率,承压壳体10内设有1个以上隔板13;隔板13环绕换热炉胆20设置,并且位于承压壳体10和换热炉胆20之间,参见图2。末级换热室的上方可以设置1个隔板13,其目的是防止较高温度的换热介质返流;如果较高温度的换热介质返流,将导致承压壳体10下部的换热介质温度升高,末级换热室的换热效率降低,进而导致出烟温度升高。
在一些实施例中,每级换热室对应设有一隔板13。从换热介质进口11进入的换热介质,经冷却管组流通至换热炉胆20与承压壳体10之间的空间内。隔板13可防止上级的换热介质返流至较低温度的换热介质区,有效提高换热效率。当然,隔板13可以完全封闭承压壳体10与换热炉胆20之间的间隙,也可以不完全封闭承压壳体10与换热炉胆20之间的间隙;当隔板13完全封闭所述间隙时,所述间隙被隔板13分隔为上下相邻且互不连通的空间,此时换热介质无法在所述间隙内流通,而只能在冷却管组内流通;当隔板13不完全封闭所述间隙时,所述间隙被隔板13分隔为上下相邻且相互连通的空间,此时换热介质可以同时在所述间隙和冷却管组内流通;隔板13可以设置多个,但相邻隔板13之间不能形成换热介质无法流通到的封闭空间。
各级换热室的高度可以相同,也可以不同。在一些实施例中,为了调节各级换热室的烟气流速,使烟气流速均匀,沿烟气扩散的方向,各级换热室的高度依次递减。一般的,当烟气自上而下流动时,上部换热室内烟气温度高,换热室的高度较大;末级换热室内烟气温度较低,换热室的高度较小。
作为一个具体实施例,请参考图2至图5,与燃烧室30连通的为第一换热室21,与第一换热室21连通的为第二换热室22;第一换热室21的上端面中部设有第一进烟口212,第一换热室21的下端面沿周壁设有第一出烟口213;第二换热室22上端面设有与第一出烟口213对应的第二进烟口,第二换热室22的下端面中部设有第二出烟口222;第二出烟口222用于与第三换热室23连通,或者与设置在承压壳体10上的出烟管32连通;其中,高温烟气在第一换热室21从中部进入然后向四周扩散,高温烟气在第二换热室22从四周进入然后向中部的出烟口聚拢,形成对相应冷却管组的横向冲刷。
从燃烧室30内排出的高温烟气从第一换热室21的上端面的中部进入,然后在第一换热室21内向四周扩散并横向冲刷第一冷却管组211;高温烟气最终从第一换热室21下端面的边缘处的第一出烟口213进入到第二换热室22;烟气在第二换热室22内由四周向中部聚拢并横向冲刷第二冷却管组221;上述烟气流通方式,能够增长烟气扩散的路径,从而提高换热效率。
设置在各换热室中部的进烟口或出烟口为圆形,沿各换热室的周壁设置的进烟口或出烟口为弧形;或者,沿各换热室的周壁设置的所述进烟口或出烟口包括多个圆形的开口单元,多个开口单元沿换热室的周壁呈弧状排布(如图5所示,第四进烟口243由多个圆形的开口单元组成,并且多个开口单元沿换热室的周壁呈弧状排布;图5中未画出冷却管组)。
各换热室内的冷却管组环绕相应的进烟口或出烟口呈圆周状排布;冷却管组环绕相应的进烟口或出烟口呈圆周状排布2-4圈。需要说明的是,本申请对冷却管组的圈数和设置形式不作限定;另外,“冷却管组环绕相应的进烟口或出烟口”排布,是指(以第一换热室21和第二换热室22为例)在第一换热室21内,冷却管组环绕第一进烟口212设置,在第二换热室22内,冷却管组环绕第二出烟口222设置;即,如果出烟口或进烟口设置在换热室的上端面或下端面的中部,冷却管组即可环绕该出烟口或进烟口设置。
根据换热效率和排烟温度的要求,在其他实施例中,如图2至图5,换热炉胆20还包括与第三换热室23连通的第四换热室24;其中第三换热室23上端面的中部设有与第二出烟口222相适配的第三进烟口,第三换热室23的下端面沿周壁设有第三出烟口232;第四换热室24的上端面设有与所述第三出烟口232对应的第四进烟口243,第四换热室24的侧壁设有与所述出烟管32连通的第四出烟口242。当然,为了提升换热效率,换热炉胆20还可以包括第五换热室和第六换热室等。
以下以4级换热室为例说明换热室的设置。
如图3所示,第一进烟口212为圆形,第一冷却管组211两端分别贯穿第一换热室21的上管板和下管板;第一冷却管组211环绕第一进烟口212呈圆周排布,且排布有三圈,相邻圈的冷却管周向上错位设置。第一出烟口213整体上呈弧形,并且与第一换热室21的外壁适配,第一出烟口213为圆滑过渡结构。高温烟气从第一进烟口212进入第一换热室21,以向四周扩散的方式冲刷设置在第一进烟口212四周的第一冷却管组211,进行充分换热。
需要说明的是,第一冷却管组211还可以设置两圈或四圈。
第二进烟口与第一出烟口213形状适配,第一转烟道201横截面形状与第一出烟口213的形状适配,各连接面圆滑过渡。第二出烟口222为圆形并且设置在第二换热室22下端面的中部;第二转烟道202连通第二出烟口222和第三进烟口;第二换热室22内的第二冷却管组221的排布方式与第一换热室21内的第一冷却管组211的排布方式相同。
第三进烟口的形状与第二出烟口222的形状适配,第三出烟口232为半弧或劣弧状,第三转烟道203连通第三出烟口232和第四进烟口243;第三换热室23内的第三冷却管组231的排布方式与第一换热室21内的第一冷却管组211的排布方式相同。
第四进烟口243的形状和第三出烟口232的形状相适配。第四换热室24内的第四冷却管组241的排布方式与第一换热室21内的第一冷却管组211的排布方式相同;在第四换热室24的侧壁上开设有第四出烟口242,第四出烟口242与出烟管32连通。第四出烟口242和出烟管32均远离第四进烟口243设置。
如图1和图2所示,位于承压壳体10外部的一部分出烟管32的底部,连接有冷凝水排出管204;冷凝水排出管204用于排出冷凝水。
为了增加换热面积,可以在冷却管组的外壁上设置换热翅片(图中未画出)。换热翅片沿冷却管轴向方向螺旋分布。
对本申请提供的一体式承压冷凝锅炉,依据GB/T10180-2017《工业锅炉热工试验规程》进行测试。一体式承压冷凝锅炉在满负荷运行,回水温度60℃时,烟气出口温度61℃,热效率(按低位发热值算)100%;一体式承压冷凝锅炉在满负荷运行,回水温度30℃时,烟气出口温度41℃,热效率(按低位发热值算)105%;一体式承压冷凝锅炉在30%负荷运行,回水温度30℃时,烟气出口温度35℃,热效率(按低位发热值算)108%;一体式承压冷凝锅炉在满负荷运行出蒸汽时,烟气出口温度52℃,热效率(按低位发热值算)103%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一体式承压冷凝锅炉,其特征在于,包括承压壳体(10),设置在所述承压壳体(10)内的换热炉胆(20),与所述换热炉胆(20)连通的燃烧室(30),以及固定在所述换热炉胆(20)内的冷却管组;
    在所述承压壳体(10)上设有与所述换热炉胆(20)连通的出烟管(32),换热介质进口(11)和换热介质出口(12);换热介质自下而上在所述承压壳体(10)内以及冷却管组内流通,与所述换热炉胆(20)内自上而下流动的高温烟气逆流换热;
    所述换热炉胆(20)包括多级圆柱状的换热室,相邻的所述换热室通过转烟道连通;其中,多级所述换热室之间按照高温烟气从中部向四周扩散,再从四周向中部聚拢的扩散形式自上而下顺次重复设置。
  2. 如权利要求1所述的一体式承压冷凝锅炉,其特征在于,多级所述换热室中,与所述燃烧室(30)连通的为第一换热室(21),与所述第一换热室(21)连通的为第二换热室(22);
    所述第一换热室(21)的上端面中部设有第一进烟口(212),所述第一换热室(21)的下端面沿周壁设有第一出烟口(213);所述第二换热室(22)上端面设有与所述第一出烟口(213)对应的第二进烟口,所述第二换热室(22)下端面中部设有第二出烟口(222),所述第二出烟口(222)用于与第三换热室(23)连通或者与设置在所述承压壳体(10)上的出烟管(32)连通;
    其中,高温烟气在所述第一换热室(21)自中部进入并向四周辐射;高温烟气在所述第二换热室(22)从四周进入并向中部的所述第二出烟口(222)聚拢,形成对相应冷却管组的横向冲刷。
  3. 如权利要求2所述的一体式承压冷凝锅炉,其特征在于,所述换热炉胆(20)设置4级换热室,所述第二换热室(22)连接有第三换热室(23),所述第三换热室(23)连接有第四换热室(24);其中所述第三换热室(23)上端面的中部设有与所述第二出烟口(222)相适配的第三进烟口,所述第三换热室(23)下端面沿周壁设有第三出烟口(232);所述第四换热室(24)的上端面设有与所述第三出烟口(232)对应的第四进烟口(243),所述第四换热室(24)的侧壁设有与所述出烟管(32)连通的第四出烟口(242)。
  4. 如权利要求2或3所述的一体式承压冷凝锅炉,其特征在于,各所述换热室内的所述冷却管组环绕相应的进烟口或出烟口呈圆周状排布。
  5. 如权利要求4所述的一体式承压冷凝锅炉,其特征在于,所述冷却管组环绕相应的进烟口或出烟口呈圆周状排布2-4圈。
  6. 如权利要求2或3所述的一体式承压冷凝锅炉,其特征在于,设置在各所述换热室的中部的进烟口或出烟口为圆形,沿各所述换热室的周壁设置的进烟口或出烟口为弧形;或者,沿各所述换热室的周壁设置的进烟口或出烟口包括多个圆形的开口单元,多个所述开口单元沿所述换热室的周壁呈弧状排布。
  7. 如权利要求6所述的一体式承压冷凝锅炉,其特征在于,当末级的所述换热室的进烟口为弧形或包括多个呈弧状排布的所述开口单元时,末级的所述换热室的进烟口的形状或者多个所述开口单元的排布轨迹为半弧或劣弧状,所述出烟管(32)远离末级的所述换热室的进烟口设置。
  8. 如权利要求1所述的一体式承压冷凝锅炉,其特征在于,环绕所述换热炉胆(20),在所述承压壳体(10)和所述换热炉胆(20)之间设有1个以上隔板(13)。
  9. 如权利要求8所述的一体式承压冷凝锅炉,其特征在于,每级所述换热室对应设有一个所述隔板(13)。
  10. 如权利要求4所述的一体式承压冷凝锅炉,其特征在于,沿烟气扩散的方向,各级所述换热室的高度依次递减。
PCT/CN2021/112442 2021-07-16 2021-08-13 一体式承压冷凝锅炉 WO2022160663A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022540982A JP7335660B2 (ja) 2021-07-16 2021-08-13 一体式耐圧凝縮ボイラー
US17/858,837 US20230027757A1 (en) 2021-07-16 2022-07-06 Integrated Pressure Condensing Boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110809174.2 2021-07-16
CN202110809174.2A CN113390186B (zh) 2021-07-16 2021-07-16 一体式承压冷凝锅炉

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/858,837 Continuation US20230027757A1 (en) 2021-07-16 2022-07-06 Integrated Pressure Condensing Boiler

Publications (1)

Publication Number Publication Date
WO2022160663A1 true WO2022160663A1 (zh) 2022-08-04

Family

ID=77626326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112442 WO2022160663A1 (zh) 2021-07-16 2021-08-13 一体式承压冷凝锅炉

Country Status (5)

Country Link
US (1) US20230027757A1 (zh)
JP (1) JP7335660B2 (zh)
CN (1) CN113390186B (zh)
WO (1) WO2022160663A1 (zh)
ZA (1) ZA202207117B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390184A (zh) * 2021-07-16 2021-09-14 廊坊劲华锅炉有限公司 承压冷凝锅炉

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2372614Y (zh) * 1999-02-02 2000-04-05 凤城市大方能源技术有限责任公司 立式多层热管热水锅炉
CN2532364Y (zh) * 2002-03-06 2003-01-22 凤城市大方能源技术有限责任公司 燃焦碳立式热管热水锅炉
CN102331085A (zh) * 2011-09-21 2012-01-25 西安交通大学 一种整体式冷凝锅炉
US20140373794A1 (en) * 2012-01-19 2014-12-25 Sung-hwan Choi Hot water storage tank-type condensing boiler having multi-stage structure
CN105004042A (zh) * 2015-08-22 2015-10-28 郑州大学 横向冲刷水管式三回程燃油燃气锅炉
CN207555992U (zh) * 2018-01-31 2018-06-29 苏州博墨热能产品有限公司 立式内管冷凝热水锅炉
CN108826688A (zh) * 2018-06-08 2018-11-16 廊坊劲华锅炉有限公司 冷凝锅炉
CN208720515U (zh) * 2018-06-08 2019-04-09 廊坊劲华锅炉有限公司 冷凝锅炉
CN208735899U (zh) * 2018-07-18 2019-04-12 扬州斯大锅炉有限公司 节能型超低氮立式锅炉
CN111059759A (zh) * 2020-01-22 2020-04-24 喀什翰明燃气设备有限公司 一种全预混冷凝锅炉
US20200355396A1 (en) * 2017-12-29 2020-11-12 Kyungdong Navien Co., Ltd. Smoke tube boiler

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2536425A (en) * 1948-04-05 1951-01-02 Charles F Daly Heater
US2622853A (en) * 1948-11-03 1952-12-23 Universal Oil Prod Co Heating apparatus
AT371235B (de) * 1981-01-15 1983-06-10 Stranzinger Hermann Verfahren und vorrichtung zur ausnutzung der abgaswaerme einer feuerungsanlage
JPH0612194B2 (ja) * 1989-12-11 1994-02-16 貞一 阿部 温水ボイラー
CN2088667U (zh) * 1990-12-08 1991-11-13 刘国强 高效节能系列常压热水锅炉
CN2269558Y (zh) * 1996-06-07 1997-12-03 王福利 多用立水管三回程无压锅炉
CN2270927Y (zh) * 1996-07-25 1997-12-17 乐山五通锅炉有限公司 燃油立式无脚圈锅炉
CN2344717Y (zh) * 1998-08-28 1999-10-20 蓝君德 全自动燃气燃油常压热水锅炉
CN1412500A (zh) * 2001-10-12 2003-04-23 长春市宽城锅炉排汽阀厂 燃气热水炉
JP2008241085A (ja) * 2007-03-26 2008-10-09 Showa Mfg Co Ltd 加熱装置
CN201269635Y (zh) * 2008-09-27 2009-07-08 杨文梁 易清灰式烟箱
US10753644B2 (en) * 2017-08-04 2020-08-25 A. O. Smith Corporation Water heater
CN208012083U (zh) * 2018-04-03 2018-10-26 山东岳华能源集团有限公司 无压清洁燃料密集烟气热水锅炉

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2372614Y (zh) * 1999-02-02 2000-04-05 凤城市大方能源技术有限责任公司 立式多层热管热水锅炉
CN2532364Y (zh) * 2002-03-06 2003-01-22 凤城市大方能源技术有限责任公司 燃焦碳立式热管热水锅炉
CN102331085A (zh) * 2011-09-21 2012-01-25 西安交通大学 一种整体式冷凝锅炉
US20140373794A1 (en) * 2012-01-19 2014-12-25 Sung-hwan Choi Hot water storage tank-type condensing boiler having multi-stage structure
CN105004042A (zh) * 2015-08-22 2015-10-28 郑州大学 横向冲刷水管式三回程燃油燃气锅炉
US20200355396A1 (en) * 2017-12-29 2020-11-12 Kyungdong Navien Co., Ltd. Smoke tube boiler
CN207555992U (zh) * 2018-01-31 2018-06-29 苏州博墨热能产品有限公司 立式内管冷凝热水锅炉
CN108826688A (zh) * 2018-06-08 2018-11-16 廊坊劲华锅炉有限公司 冷凝锅炉
CN208720515U (zh) * 2018-06-08 2019-04-09 廊坊劲华锅炉有限公司 冷凝锅炉
CN208735899U (zh) * 2018-07-18 2019-04-12 扬州斯大锅炉有限公司 节能型超低氮立式锅炉
CN111059759A (zh) * 2020-01-22 2020-04-24 喀什翰明燃气设备有限公司 一种全预混冷凝锅炉

Also Published As

Publication number Publication date
ZA202207117B (en) 2022-07-27
US20230027757A1 (en) 2023-01-26
CN113390186B (zh) 2022-06-17
JP2023505602A (ja) 2023-02-09
CN113390186A (zh) 2021-09-14
JP7335660B2 (ja) 2023-08-30

Similar Documents

Publication Publication Date Title
CA2413131A1 (en) One shot heat exchanger burner
WO2022160663A1 (zh) 一体式承压冷凝锅炉
CN215176038U (zh) 承压冷凝锅炉
CN113390185B (zh) 一种承压冷凝锅炉
JP4946594B2 (ja) ボイラ
WO2023284051A1 (zh) 承压冷凝锅炉
KR20120085445A (ko) 하이브리드 보일러
KR200315197Y1 (ko) 급기예열케이싱을 구비한 콘덴싱보일러의 열교환기
CN113153536A (zh) 一种燃气涡轮用回热器
CN105157220B (zh) 动态热交换节能环保锅炉
CN113446619A (zh) 一种冷风蒸汽加热装置
CN2473533Y (zh) 高风温热风炉
CN218565581U (zh) 一种燃气热水器
CN212029889U (zh) 一种冷凝换热器及使用该换热器的加热设备
CN220186939U (zh) 一种多折返散热管卧式环保高效取暖炉
CN220892314U (zh) 一种换热器炉灶
CN212511815U (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉结构
CN213020333U (zh) 一种用于全预混冷凝燃气热水炉的大功率热交换器
CN213020334U (zh) 一种用于全预混冷凝燃气热水炉的小功率热交换器
CN220417677U (zh) 一种节能冷凝锅炉
CN208886740U (zh) 高效低氮卧式水管锅炉
CN215809333U (zh) 一种高效全预混低氮冷凝燃气热水锅炉
CN219589166U (zh) 换热器和热水器
CN211424347U (zh) 一种蒸汽驱热注锅炉
CN109812976B (zh) 一种燃气壁挂炉和锅炉的多重冷凝结构

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022540982

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE