WO2023284051A1 - 承压冷凝锅炉 - Google Patents

承压冷凝锅炉 Download PDF

Info

Publication number
WO2023284051A1
WO2023284051A1 PCT/CN2021/112436 CN2021112436W WO2023284051A1 WO 2023284051 A1 WO2023284051 A1 WO 2023284051A1 CN 2021112436 W CN2021112436 W CN 2021112436W WO 2023284051 A1 WO2023284051 A1 WO 2023284051A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
smoke
smoke outlet
exchange chamber
smoke inlet
Prior art date
Application number
PCT/CN2021/112436
Other languages
English (en)
French (fr)
Inventor
叶国领
张希军
叶青
叶辉
张兵
赵欣
王国磊
武怡旻
武建中
Original Assignee
廊坊劲华锅炉有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廊坊劲华锅炉有限公司 filed Critical 廊坊劲华锅炉有限公司
Priority to DE112021007981.6T priority Critical patent/DE112021007981T5/de
Publication of WO2023284051A1 publication Critical patent/WO2023284051A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • F24H8/006Means for removing condensate from the heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/16Arrangements for water drainage 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1832Arrangement or mounting of combustion heating means, e.g. grates or burners
    • F24H9/1836Arrangement or mounting of combustion heating means, e.g. grates or burners using fluid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of boilers, in particular to a pressure-bearing condensing boiler.
  • the condensing boiler achieves the purpose of improving the thermal efficiency of the boiler by absorbing the sensible heat in the high-temperature flue gas and the latent heat released by the condensation of the steam; its maximum thermal efficiency can reach 109%, which is 15-17% higher than that of ordinary gas-fired furnaces.
  • the exhaust gas temperature of the condensing boiler is greatly reduced, and the emission of nitrogen oxides (NOx) in the flue gas is ultra-low.
  • Condensing boilers have high application value because of their high efficiency and energy saving.
  • the existing pressure condensing boilers have low heat transfer efficiency and high exhaust gas temperature; most pressure condensing boilers will have additional condensing heat exchange equipment outside the furnace, which makes the overall structure of the pressure condensing boiler very complicated. Manufacturing, installation and application costs are high.
  • the embodiment of the present invention provides a pressure-bearing condensing boiler, which is based on the principles of countercurrent heat transfer, enhanced flue gas side heat transfer and enhanced convective heat transfer coefficient, develops a condensing boiler suitable for pressure-bearing operation, and increases its thermal efficiency to 100%
  • the above greatly reduces the manufacturing, installation and application costs of the pressure-bearing condensing boiler.
  • the present invention provides a pressure-bearing condensing boiler, which includes a pressure-bearing shell, a heat-exchanging furnace installed in the pressure-bearing shell, a combustion chamber communicated with the heat-exchanging furnace and fixed on the Cooling tube group in the hot furnace;
  • the pressure-bearing shell is provided with a burner joint connected to the combustion chamber, a smoke outlet pipe connected to the heat exchange furnace, a heat-exchange medium inlet and a heat-exchange medium outlet; It circulates in the body and the cooling tube group, and exchanges heat with the flue gas in the heat exchange furnace; it should be noted that the term burner joint should be understood in a broad sense; the combustion chamber joint is the connection structure between the combustion chamber and the external parts Any connection structure between the combustion chamber and external parts that can be obtained by those skilled in the art without creative work falls within the scope of protection of the present application.
  • the heat exchange furnace includes two or more cylindrical heat exchange chambers.
  • the upper end surface of the heat exchange chamber is provided with a smoke inlet, and the lower end surface is provided with a smoke outlet;
  • the heat chamber communicates with the flue; the final heat exchange chamber where the flue gas diffuses communicates with the smoke outlet pipe.
  • the high-temperature flue gas diffuses step by step from top to bottom, and the heat exchange medium forms countercurrent heat exchange from bottom to top;
  • the temperature of the heat medium is relatively high;
  • the heat exchange furnace adopts a pressure-bearing shell and a cylindrical structure, which is suitable for pressure-bearing operation;
  • the heat-exchange medium (usually water) discharged from the pressure-bearing condensing boiler in the embodiment of the present invention can be High and low temperature hot water can also be steam.
  • each stage of heat exchange chamber has a relatively independent heat exchange chamber, and high-temperature flue gas is forced to circulate in each stage of heat exchange chamber to improve heat exchange efficiency; moreover, the heat exchange chamber is cylindrical, which can realize the pressure-bearing operation of the boiler.
  • the condensing boiler adopted in the embodiment of the present invention can meet the requirements of the condensing boiler specified in the "Industrial Boiler Energy Efficiency Limits and Energy Efficiency Grades (GB24500-2020)". It meets the requirements of Grade 1 energy efficiency, and does not need to install additional condensing heat exchange equipment outside the furnace, and the structure is simple, and the manufacturing, installation and application costs are low.
  • the heat exchange furnace provided by this scheme has high heat exchange efficiency, so there is no need to install additional condensing heat exchange equipment outside the furnace.
  • the smoke inlet or the smoke outlet is circular, arc-shaped or oval-like; or, the smoke inlet or the smoke outlet includes a plurality of circular opening units, and the plurality of opening units are arranged in an arc or oval shape.
  • more than one partition is provided between the pressure-bearing shell and the heat exchange furnace.
  • the setting of the partition can prevent the heat exchange medium from flowing through the cooling tube group due to resistance, or a small amount of flow through the cooling tube group; on the other hand, it can prevent the overheated heat exchange medium from flowing back to the lower low-temperature heat exchange medium area, causing The temperature of the heat medium increases, which in turn leads to an increase in the exhaust gas temperature of the smoke outlet pipe.
  • each stage of heat exchange chamber is correspondingly provided with a partition. This not only ensures that the heat exchange chamber and the heat exchange chamber of each stage can fully contact the heat exchange medium, but also prevents the heat exchange medium with a higher temperature from flowing back to the heat exchange medium area with a lower temperature.
  • the heights of the heat exchange chambers at each stage decrease successively.
  • the heat exchange furnace includes a first heat exchange chamber, a second heat exchange chamber and a third heat exchange chamber which are sequentially communicated with the combustion chamber;
  • a first smoke inlet is provided in the middle of the upper end surface of the first heat exchange chamber, and an arc-shaped first smoke outlet along the peripheral wall is provided on the lower end surface, and a first cooling tube group is arranged around the first smoke inlet;
  • a second smoke inlet corresponding to the first smoke outlet is provided on the upper end surface of the second heat exchange chamber, and a second smoke outlet is provided on the lower end surface away from the second smoke inlet, and the second smoke inlet is connected to the second smoke inlet.
  • a second cooling tube group is arranged between the second smoke outlets;
  • a third smoke inlet corresponding to the second smoke outlet is provided on the upper end surface of the third heat exchange chamber, and a third smoke outlet is provided on the side far from the third smoke inlet on the lower end surface, and the third smoke inlet is connected to the second smoke outlet.
  • a third cooling pipe group is arranged between the third smoke outlets.
  • the high-temperature flue gas flows sequentially through the first heat exchange chamber, the second heat exchange chamber, and the third heat exchange chamber; in the first heat exchange chamber, the high-temperature flue gas diffuses radially from the first smoke inlet
  • the first cooling tube group surrounding the first smoke inlet is flushed laterally in a horizontal manner; through the first smoke outlet, high-temperature flue gas enters the second heat exchange chamber, and the second smoke outlet is set in the second smoke inlet in a way that is far away from each other.
  • the other side of the port so the flue gas can fully exchange heat with the second cooling tube group in the way of horizontal scour; the same principle is applicable to the third heat exchange chamber.
  • the heat exchange furnace further includes a fourth heat exchange chamber communicated with the third heat exchange chamber, and the upper end surface of the fourth heat exchange chamber is provided with The fourth smoke inlet, the side wall is provided with a fourth smoke outlet connected to the smoke outlet, and multiple sets of fourth cooling pipes are arranged between the fourth smoke inlet and the fourth smoke outlet Group.
  • Fig. 1 is a schematic diagram of the appearance structure of a pressure-bearing condensing boiler according to an embodiment of the present invention
  • Fig. 2 is the sectional structure schematic diagram of Fig. 1;
  • Fig. 3 is a three-dimensional structural schematic diagram of a heat exchange furnace in an embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the explosion structure of Fig. 3;
  • Fig. 5 is the second schematic diagram of the explosion structure in Fig. 3;
  • Fig. 6 is a schematic structural view of the first smoke outlet in another embodiment
  • Fig. 7 is a schematic structural view of a second smoke outlet in another embodiment
  • 10-pressure-bearing shell 11-heat exchange medium inlet, 12-heat exchange medium outlet, 13-baffle;
  • Heat exchange furnace 201-first transfer flue, 202-second transfer flue, 203-third transfer flue;
  • Pressure condensing boilers and atmospheric pressure condensing boilers are both types of boiler products.
  • the gauge pressure of the rated working pressure of the atmospheric boiler is 0, and the temperature of the medium at the outlet does not exceed 90°C.
  • the working pressure of the pressure boiler is ⁇ 0.1MPa, the temperature of the medium at the outlet can be higher than 100°C, and the pressure boiler can adjust the water temperature; the pressure boiler can not only provide high and low temperature hot water, but also provide high temperature steam ; At the same time, the pressure boiler can also be directly used in the environment of working under pressure. Therefore, pressure boilers have a wider range of applications.
  • the applicant has developed an atmospheric condensing boiler, which divides the square heat exchange furnace into continuous flue gas passages with at least one turning structure through flue gas baffles; but this structure cannot be applied to pressure-bearing boilers. Therefore, the embodiment of the present invention provides a pressure-bearing condensing boiler, which can be applied to a wider range of occasions.
  • the pressure-bearing condensing boiler of the embodiment of the present invention includes a pressure-bearing shell 10, a heat-exchanging furnace 20 arranged in the pressure-bearing shell 10, a combustion chamber 30 communicated with the heat-exchanging furnace 20 and The cooling tube group fixed in the heat exchange furnace 20.
  • the pressure-bearing shell 10 is roughly cylindrical, with an elliptical head with an integral structure at the upper and lower ends, as shown in FIG. 1 .
  • the upper part of the pressure housing 10 is provided with a burner connector 31 for connecting the combustion chamber 30
  • the lower part of the pressure housing 10 is provided with a smoke outlet pipe 32 communicating with the heat exchange furnace 20 .
  • the closed end of the combustion chamber 30 is a smooth end, and the other end of the combustion chamber 30 is an open end, which communicates with the burner joint 31 and is smoothly transitioned.
  • the premixed combustible gas is fully burned in the combustion chamber 30 , and the high-temperature flue gas diffuses from top to bottom through the heat exchange furnace 20 to the smoke outlet pipe 32 .
  • a heat exchange medium inlet 11 communicating with the heat exchange medium is provided at the lower part of the pressure bearing shell 10
  • a heat exchange medium outlet 12 is provided at the upper part of the pressure bearing shell 10 .
  • the heat exchange medium with a lower temperature enters through the heat exchange medium inlet 11, and then circulates in the pressure-bearing shell 10 and the cooling tube group from bottom to top;
  • the high temperature flue gas in 20 countercurrent heat exchange.
  • the heat exchange furnace 20 includes more than 2 levels of cylindrical heat exchange chambers, adjacent heat exchange chambers are connected through the transfer flue, and the adjacent transfer flues are set apart from each other; the flue gas In the last stage of diffusion, the heat exchange chamber communicates with the smoke outlet pipe 32 .
  • the cylindrical heat exchange chamber is suitable for bearing pressure, and a heat exchange space suitable for circulation of a heat exchange medium is formed between the heat exchange chamber and the pressure housing 10 .
  • Each heat exchange chamber has a relatively independent heat exchange chamber, and the adjacent heat exchange chambers are connected to a continuous flue through the flue; this increases the return of the flue gas, which is conducive to sufficient heat exchange and increases the outlet temperature of the heat exchange medium. Reduce the outlet temperature of flue gas, thereby improving thermal efficiency.
  • heat exchange chambers with 2 or more stages are set up, such as 2-stage heat exchange chambers or 3-stage heat exchange chambers or 4-stage heat exchange chambers or more heat exchange chambers;
  • the outlet and the smoke outlet are set in a way that is far away from each other, and the flue gas fully washes the cooling tube group in the heat exchange chamber of each stage to achieve effective heat exchange; the temperature of the flue gas in the heat exchange chamber decreases step by step, and the flue gas in the final heat exchange chamber lowest temperature.
  • each heat exchange chamber has a smooth transition structure on the corresponding heat exchange chamber, and the side wall of the flue that communicates with the corresponding smoke inlet and smoke outlet also has a smooth transition structure.
  • Each heat exchange chamber includes a cylindrical side wall and an upper tube sheet and a lower tube sheet that are airtightly connected with the side wall (the serial number is not marked in Figure 1 and Figure 2);
  • the tube plate is provided with a smoke outlet; the upper tube plate and the lower tube plate are also fixed at both ends of the cooling tube group by means of welding or the like.
  • the cooling tube group is vertically arranged in the heat exchange chamber, and the two ends protrude from the corresponding upper and lower tube plates;
  • the heat exchange medium (usually water) flows into the cooling tube group to exchange heat with the high-temperature flue gas in the heat exchange chamber, and then the heat exchange medium is discharged from the cooling tube group to mix with the heat exchange medium in the pressure housing 10 .
  • the smoke inlet and outlet adopt a smooth transition structure, such as circular (the first smoke inlet 212 shown in Figure 4), arc (the first smoke outlet 213 shown in Figure 5) or oval shape (the second smoke outlet 223 or the third smoke outlet 233 shown in FIG. 5 ); the smooth transition structure is suitable for bearing pressure.
  • the cross-section of the flue is adapted to the shape of the corresponding smoke inlet or smoke outlet, and is suitable for bearing pressure.
  • the shape of the smoke inlet and the smoke outlet can also be composed of a plurality of circular opening units; the plurality of opening units can be arranged in an arc or a quasi-ellipse, as shown in Figure 6 and Figure 7 .
  • a baffle 13 can be set above the final heat exchange chamber, the purpose of which is to prevent the high temperature heat exchange medium from flowing back; As the temperature of the heat medium increases, the heat exchange efficiency of the final heat exchange chamber decreases, which in turn leads to an increase in the exhaust gas temperature.
  • each stage of heat exchange chamber is correspondingly provided with a partition 13 .
  • the heat exchange medium entering from the heat exchange medium inlet 11 flows through the cooling tube group into the space between the heat exchange furnace 20 and the pressure housing 10 .
  • the separator 13 can prevent the upper-level heat exchange medium from flowing back to the lower-temperature heat exchange medium area, effectively improving the heat exchange efficiency.
  • the partition 13 can completely close the gap between the pressure-bearing shell 10 and the heat exchange furnace 20, or not completely close the gap between the pressure-bearing shell 10 and the heat-exchange furnace 20; when the partition 13 is completely When the gap is closed, the gap is divided into vertically adjacent and disconnected spaces by the partition plate 13.
  • the heat exchange medium cannot circulate in the gap, but can only circulate in the cooling tube group;
  • the gap is divided into vertically adjacent and interconnected spaces by the partition plate 13.
  • the heat exchange medium can circulate in the gap and the cooling tube group at the same time; the partition plate 13 can More than one is provided, but a closed space where the heat exchange medium cannot flow cannot be formed between adjacent partitions 13 .
  • the heights of the heat exchange chambers at all levels can be the same or different.
  • the heights of the heat exchange chambers at each level decrease successively along the direction of flue gas diffusion. Generally, when the flue gas flows from top to bottom, the flue gas temperature in the upper heat exchange chamber is high, and the height of the heat exchange chamber is relatively large; the flue gas temperature in the final heat exchange chamber is low, and the height of the heat exchange chamber is small.
  • the heat exchange furnace 20 is provided with three heat exchange chambers, and these three heat exchange chambers include the first heat exchange chamber 21 communicated with the combustion chamber 30 in turn, the second The heat exchange chamber 22 and the third heat exchange chamber 23 .
  • a first smoke inlet 212 is provided in the middle of the upper end surface of the first heat exchange chamber 21, and an arc-shaped first smoke outlet 213 along the peripheral wall is provided on the lower end surface of the first heat exchange chamber 21.
  • the first smoke inlet 212 is arranged with a first cooling tube group 211 .
  • a second smoke inlet corresponding to the first smoke outlet 213 is provided on the upper end surface of the second heat exchange chamber 22, and a second smoke outlet is provided on the lower end surface of the second heat exchange chamber 22 away from the second smoke inlet.
  • a smoke port 223; between the second smoke inlet and the second smoke outlet 223, multiple groups of second cooling tube groups 221 arranged in an arc are arranged.
  • a third smoke inlet corresponding to the second smoke outlet 223 is provided on the upper end surface of the third heat exchange chamber 23, and a third smoke outlet is provided on the side far from the third smoke inlet on the lower end surface of the third heat exchange chamber 23.
  • Smoke port 233 between the third smoke inlet and the third smoke outlet 233 , there are multiple sets of third cooling tube groups 231 .
  • the shape of the second smoke inlet and the first smoke outlet 213 are adapted, and the two are connected through the first turning flue 201; similarly, the shapes of the third smoke inlet and the second smoke outlet 223 are adapted, and both It communicates through the second transfer flue 202 .
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • the high-temperature flue gas discharged from the combustion chamber 30 diffuses radially in the first heat exchange chamber 21, and the flue gas in the first heat exchange chamber 21 is discharged through the first smoke outlet 213 on the lower end surface of the first heat exchange chamber 21.
  • To the second heat exchange chamber 22 After the smoke enters the second heat exchange chamber 22 from the second smoke inlet, it spreads in a wrapping manner and scours the second cooling tube group 221 laterally, then gathers at the second smoke outlet 223, and finally diffuses from the second transfer flue 202 To the third heat exchange chamber 23.
  • the flue gas flushes the third cooling tube group 231 laterally in the third heat exchange chamber 23; the third smoke inlet and the third smoke outlet 233 are arranged in a manner far away from each other, so as to increase the diffusion path of the flue gas and improve heat transfer efficiency.
  • the heat exchange furnace 20 further includes a fourth heat exchange chamber 24 communicating with the third heat exchange chamber 23 .
  • a fourth smoke inlet corresponding to the third smoke outlet 233 is provided on the upper end surface of the fourth heat exchange chamber 24
  • a fourth smoke outlet 243 connected to the smoke outlet pipe 32 is provided on the side wall of the fourth heat exchange chamber 24 ;
  • Multiple sets of fourth cooling tube groups 241 are arranged between the fourth smoke inlet and the fourth smoke outlet 243 .
  • the heat exchange furnace 20 may also include a fifth heat exchange chamber and a sixth heat exchange chamber.
  • the first smoke inlet 212 is circular; the two ends of the first cooling tube group 211 respectively pass through the upper tube plate and the lower tube plate of the first heat exchange chamber 21; the first cooling tube group 211 surrounds the first
  • the smoke inlets 212 are arranged in two circles in a circle, and the cooling pipes of the inner circle and the outer circle are dislocated in the circumferential direction.
  • the first smoke outlet 213 is arc-shaped as a whole, and fits with the outer wall of the first heat exchange chamber 21 , and the first smoke outlet 213 has a smooth transition structure.
  • the high-temperature flue gas enters the first heat exchange chamber 21 from the first smoke inlet 212, and scours the first cooling tube group 211 arranged around the first smoke inlet 212 radially to perform sufficient heat exchange.
  • first cooling tube group 211 may also be provided with three or four turns, or more. This application is not limited to this.
  • the first smoke outlet 213 can also be composed of a plurality of circular opening units; the plurality of opening units are arranged in an arc, as shown in FIG. 6; on the first lower tube plate 214, more The arrangement track of the opening units is adapted to the outer edge of the first lower tube plate 214 .
  • the shape of the second smoke inlet is adapted to that of the first smoke outlet 213 .
  • the cross-sectional shape of the first turning flue 201 is adapted to the shape of the first smoke outlet 213 , and the connecting surfaces are smoothly transitioned.
  • the second smoke outlet 223 is circular or oval; the second smoke outlet 223 is arranged on the lower end surface of the second heat exchange chamber 22 and is located on the side away from the second smoke inlet; the second cooling tube group 221 There are multiple groups arranged in an arc.
  • the second cooling tube group 221 is arranged so that the arc opening direction is the same as the arc opening direction of the second smoke inlet. As shown in FIG. 4 , the second cooling tube group 221 is arranged like a shield, wherein the protective surface of the shield faces the second smoke inlet, which is conducive to the full contact between the second cooling tube group 221 and the diffused smoke.
  • the second smoke outlet 223 can also be composed of a plurality of circular opening units; the plurality of opening units are arranged in a quasi-elliptic shape, as shown in Figure 7 (the cooling tube group is not marked in the figure); the second smoke outlet 223 includes a larger circular opening unit and two smaller circular opening units, wherein a larger opening unit and two smaller opening units are combined into a quasi-elliptical shape.
  • the shape of the third smoke inlet matches the shape of the second smoke outlet 223, and the third smoke outlet 233 is also similar to an ellipse; the third cooling pipe group 231 is arranged at the third smoke inlet and the third smoke outlet 233, the third cooling pipe group 231 has a plurality and is adapted to the third smoke outlet 233 and arranged in a hyperbolic shape.
  • the structure of the fourth smoke inlet is the same as that of the third smoke inlet.
  • a fourth smoke outlet 243 is opened on the side wall of the fourth heat exchange chamber 24 , and the fourth smoke outlet 243 communicates with the smoke outlet pipe 32 .
  • a condensed water discharge pipe is connected to the bottom of the heat exchange furnace 20 for discharging condensed water.
  • the condensed water discharge pipe passes through the pressure-bearing shell 10 and extends to the outside of the pressure-bearing shell 10, so that the condensed water can be discharged from the furnace body.
  • heat exchange fins may be provided on the outer walls of the second cooling tube group 221 , the third cooling tube group 231 and the fourth cooling tube group 241 .
  • the heat exchange fins are spirally distributed along the axial direction of the cooling tube.
  • the pressure-bearing condensing boiler provided in this application shall be tested according to GB/T10180-2017 "Industrial Boiler Thermal Test Regulations".
  • the pressure-bearing condensing boiler is operating at full load, when the return water temperature is 60°C, the flue gas outlet temperature is 61°C, and the thermal efficiency (calculated based on the low calorific value) is 100%;
  • the pressure-bearing condensing boiler is operating at full load, when the return water temperature is 30°C, The flue gas outlet temperature is 41°C, the thermal efficiency (calculated based on the low calorific value) is 105%;
  • the pressure-bearing condensing boiler operates at 30% load, and when the return water temperature is 30°C, the flue gas outlet temperature is 35°C, and the thermal efficiency (calculated based on the low calorific value) 108%;
  • the pressure-bearing condensing boiler is operating at full load to produce steam, the flue gas outlet temperature is

Abstract

一种承压冷凝锅炉,包括承压壳体10,设置在承压壳体10内的换热炉胆20,与换热炉胆20连通的燃烧室30以及固定在换热炉胆20内的冷却管组;承压壳体10上设有与燃烧室30连接的燃烧器接头31,与换热炉胆20连通的出烟管32,换热介质进口11和换热介质出口12;其中,换热介质自下而上在承压壳体10内及冷却管组内流通,与换热炉胆20内的烟气逆流换热;换热炉胆20包括2级以上圆柱状的换热室,换热室的上端面设有进烟口,换热室的下端面设有出烟口,进烟口和出烟口相互远离设置,相邻的换热室通过转烟道连通,烟气扩散的末级换热室与出烟管32连通。

Description

承压冷凝锅炉
本专利申请要求于2021年07月16日提交的中国专利申请No.CN202110807836.2的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本发明涉及锅炉技术领域,尤其涉及一种承压冷凝锅炉。
背景技术
冷凝锅炉通过吸收高温烟气中的显热和蒸汽凝结所释放的潜热,达到提高锅炉热效率的目的;其最大热效率可达109%,比普通燃气炉热效率高出15~17%。另一方面,冷凝锅炉的排烟温度大大降低,烟气中的氮氧化物(NOx)超低排放。
冷凝锅炉因其高效节能具有很高的应用价值。然而,现有的承压冷凝锅炉换热效率低,排烟温度高;大部分承压冷凝锅炉会在炉体外另设配套的冷凝换热设备,这导致承压冷凝锅炉的整体结构十分复杂,制造、安装和应用成本较高。
技术问题
本发明实施例提供一种承压冷凝锅炉,其基于逆流换热,增强烟气侧换热及增强对流换热系数原理,开发适于承压运行的冷凝锅炉,并将其热效率提高至100%以上,大幅降低了承压冷凝锅炉的制造、安装和应用成本。
技术解决方案
为实现上述目的,本发明提供了一种承压冷凝锅炉,其包括承压壳体,设置在承压壳体内的换热炉胆,与所述换热炉胆连通的燃烧室以及固定在换热炉胆内的冷却管组;
其中,承压壳体上设有与燃烧室连接的燃烧器接头,与换热炉胆连通的出烟管,换热介质进口和换热介质出口;换热介质自下而上在承压壳体内及冷却管组内流通,与所述换热炉胆内的烟气逆流换热;需要说明的是,燃烧器接头一词应作广义理解;燃烧室接头是燃烧室与外部零件的连接结构,凡本领域技术人员不经过创造性劳动即可得出的燃烧室与外部零件的连接结构,均落在本申请的保护范围内。
换热炉胆包括2级以上圆柱状的换热室,换热室的上端面设有进烟口,下端面设有出烟口;进烟口和出烟口相互远离设置,相邻的换热室通过转烟道连通;烟气扩散的末级换热室与出烟管连通。
本方案中,高温烟气自上而下逐级扩散,换热介质自下而上形成逆流换热;下部较低温的换热介质使得烟气排放温度较低,上部高温烟气使排出的换热介质温度较高;采用承压壳体和圆柱体结构的换热炉胆,适于承压运行;本发明实施例中的承压冷凝锅炉排出的换热介质(通常采用水)既可以为高、低温热水,也可为蒸汽。尤其是,每级换热室具有相对独立的换热腔,高温烟气强制在每级换热室内流通,提高换热效率;并且,换热室呈圆柱形,可实现锅炉的承压运行。与现有技术中需要在炉体外另设配套的冷凝换热设备相比,本发明实施例采用的冷凝锅炉既可达到《工业锅炉能效限定值及能效等级(GB24500-2020)》中对冷凝锅炉的1级能效的要求,又不需要在炉体外另设配套的冷凝换热设备,而且结构简单,制造、安装和应用成本较低。本方案提供的换热炉胆,换热效率高,因此无需在炉体外另设配套的冷凝换热设备。
示例性的,进烟口或出烟口为圆形、弧形或类椭圆形;或者,进烟口或出烟口包括多个圆形的开口单元,多个开口单元排布成弧形或类椭圆形。
在一些实施例中,环绕换热炉胆,在承压壳体和换热炉胆之间设有1个以上隔板。隔板的设置一方面可以防止换热介质因阻力原因而不流经或少量流经冷却管组,另一方面可以防止过热的换热介质返流到下部的低温换热介质区,导致底部换热介质的温度升高,进而导致出烟管的排烟温度升高。
示例性的,每级换热室对应设有一隔板。这样不仅能保障每级换热室内和换热室外均可与换热介质充分接触,而且防止较高温度的换热介质返流至较低温度的换热介质区。
在一些实施例中,沿烟气扩散的方向,各级换热室的高度依次递减。
在一些实施例中,换热炉胆包括依次与所述燃烧室连通的第一换热室,第二换热室和第三换热室;
在第一换热室上端面的中部设有第一进烟口,下端面设有沿周壁的弧状的第一出烟口,环第一进烟口布置第一冷却管组;
在第二换热室的上端面设有与第一出烟口对应的第二进烟口,下端面远离第二进烟口的一侧设有第二出烟口,第二进烟口与第二出烟口之间设置第二冷却管组;
在第三换热室的上端面设有与第二出烟口对应的第三进烟口,下端面远离第三进烟口的一侧设有第三出烟口,第三进烟口与第三出烟口之间排布第三冷却管组。
上述方案中,高温烟气依次折流流经第一换热室、第二换热室、第三换热室;在第一换热室内,高温烟气从第一进烟口呈辐射状扩散的方式横向冲刷环绕第一进烟口的第一冷却管组;经第一出烟口,高温烟气进入第二换热室,第二出烟口以相互远离的方式设置在第二进烟口的另一侧,因此烟气以横向冲刷的方式与第二冷却管组充分换热;相同的原理,适用于第三换热室。
在一些实施例中,换热炉胆还包括与所述第三换热室连通的第四换热室,在所述第四换热室的上端面设有与所述第三出烟口对应的第四进烟口,侧壁设有连通所述出烟管的第四出烟口,所述第四进烟口与所述第四出烟口之间排布有多组第四冷却管组。
附图说明
图1是本发明实施例的承压冷凝锅炉的外观结构示意图;
图2是图1的剖面结构示意图;
图3是本发明实施例中换热炉胆的立体结构示意图;
图4是图3的爆炸结构示意图一;
图5是图3的爆炸结构示意图二;
图6是另一实施例中第一出烟口的结构示意图;
图7是另一实施例中第二出烟口的结构示意图;
其中,10-承压壳体,11-换热介质进口,12-换热介质出口,13-隔板;
换热炉胆,201-第一转烟道,202-第二转烟道,203-第三转烟道;
21-第一换热室,211-第一冷却管组,212-第一进烟口,213-第一出烟口,214-第一下管板;
22-第二换热室,221-第二冷却管组,223-第二出烟口,224-第三下管板;
23-第三换热室,231-第三冷却管组,233-第三出烟口;
24-第四换热室,241-第四冷却管组,243-第四出烟口;
30-燃烧室,31-燃烧器接头,32-出烟管。
本申请的实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
承压冷凝锅炉和常压冷凝锅炉都是锅炉产品的一种。常压锅炉额定工作压力的表压力为0,其出口处的介质温度不超过90℃。承压锅炉的工作压力≥0.1MPa,其出口处的介质温度可高于100℃,并且承压锅炉可以进行水温的高低调节;承压锅炉不仅能提供高、低温热水,也能提供高温蒸汽;同时承压锅炉还能直接用于带压工作的环境。因此,承压锅炉具有更广的应用范围。
申请人曾研发了一种常压冷凝锅炉,其通过烟气折流板将方形的换热炉胆分隔成具有至少一级转弯结构的连续烟气通道;但该结构无法适用于承压锅炉。因此,本发明实施例提供一种承压冷凝锅炉,该承压冷凝锅炉可应用于更广的场合。
下面结合附图和具体实施方式对本发明作进一步详细的说明。
参见图1和图2,本发明实施例的承压冷凝锅炉包括承压壳体10,设置在承压壳体10内的换热炉胆20,与换热炉胆20连通的燃烧室30以及固定在换热炉胆20内的冷却管组。承压壳体10大致为圆柱形,上下两端为一体结构的椭圆封头,如图1所示。承压壳体10的上部设有用于连接燃烧室30的燃烧器接头31,承压壳体10的下部设有与换热炉胆20连通的出烟管32。燃烧室30的封闭端为圆滑端头,燃烧室30的另一端为开口端,该开口端与燃烧器接头31连通并且圆滑过渡连接。预混后的可燃气在燃烧室30内充分燃烧,高温烟气经换热炉胆20自上而下扩散至出烟管32。同时,在承压壳体10的下部还设有与换热介质连通的换热介质进口11,承压壳体10的上部设有换热介质出口12。温度较低的换热介质经换热介质进口11进入,然后自下而上在承压壳体10内,以及冷却管组内流通;换热介质自下而上流动过程中与换热炉胆20内的高温烟气逆流换热。
本实施例中,换热炉胆20包括2级以上圆柱状的换热室,相邻的换热室通过转烟道连通,相邻的转烟道之间以相互远离的方式设置;烟气扩散的末级,换热室与出烟管32连通。圆柱状的换热室适于承压,并且换热室与承压壳体10之间形成适于换热介质流通的换热空间。每级换热室具有相对独立的换热腔,相邻的换热腔通过转烟道连通为连续烟道;这增加了烟气的回程,利于充分换热,提高换热介质的出口温度,降低烟气的出口温度,从而提高热效率。
上述方案中,设置2级或2级以上换热室,如设置2级换热室或3级换热室或4级换热室或更多级换热室;每级换热室的进烟口和出烟口以相互远离的方式设置,烟气在每级换热室内充分冲刷冷却管组,实现有效换热;换热室内的烟气温度逐级降低,末级换热室的烟气温度最低。本申请中对换热室设置的级数不做限制。
其中,每级换热室的进烟口或出烟口在相应换热室上呈圆滑过渡结构,与相应进烟口和出烟口连通的转烟道侧壁也呈圆滑过渡结构。每级换热室包括筒形的侧壁和与侧壁密闭连接的上管板和下管板(图1和图2中未标出序号);在上管板上开设有进烟口,下管板上设有出烟口;上管板和下管板还通过焊接等方式固定冷却管组的两端。冷却管组竖直设置在换热室内,两端伸出相应的上下管板;冷却管组的管孔与承压壳体10的内部空间连通,与换热炉胆20的内部空间不连通。换热介质(通常用水)流入冷却管组与换热室的高温烟气换热,然后换热介质从冷却管组排出与承压壳体10内的换热介质混合。进烟口和出烟口采用圆滑过渡结构,如圆形(如图4所示的第一进烟口212),弧形(如图5所示的第一出烟口213)或类椭圆形(如图5所示的第二出烟口223或第三出烟口233);圆滑过渡结构适于承压。转烟道的横截面与相应的进烟口或出烟口形状适配,适于承压。进烟口和出烟口的形状还可以由多个圆形的开口单元组成;多个开口单元可以排布成弧形或类椭圆形,如图6和图7所示。
为了提高承压冷凝锅炉的换热效率,承压壳体10内设有1个以上隔板13;隔板13环绕换热炉胆20设置,并且位于承压壳体10和换热炉胆20之间,参见图2。末级换热室的上方可以设置1个隔板13,其目的是防止较高温度的换热介质返流;如果较高温度的换热介质返流,将导致承压壳体10下部的换热介质温度升高,末级换热室的换热效率降低,进而导致出烟温度升高。
在一些实施例中,每级换热室对应设有一隔板13。从换热介质进口11进入的换热介质,经冷却管组流通至换热炉胆20与承压壳体10之间的空间内。隔板13可防止上级的换热介质返流至较低温度的换热介质区,有效提高换热效率。当然,隔板13可以完全封闭承压壳体10与换热炉胆20之间的间隙,也可以不完全封闭承压壳体10与换热炉胆20之间的间隙;当隔板13完全封闭所述间隙时,所述间隙被隔板13分隔为上下相邻且互不连通的空间,此时换热介质无法在所述间隙内流通,而只能在冷却管组内流通;当隔板13不完全封闭所述间隙时,所述间隙被隔板13分隔为上下相邻且相互连通的空间,此时换热介质可以同时在所述间隙和冷却管组内流通;隔板13可以设置多个,但相邻隔板13之间不能形成换热介质无法流通到的封闭空间。
各级换热室的高度可以相同,也可以不同。在一些实施例中,为了调节各级换热室的烟气流速,使烟气流速均匀,沿烟气扩散的方向,各级换热室的高度依次递减。一般的,当烟气自上而下流动时,上部换热室内烟气温度高,换热室的高度较大;末级换热室内烟气温度较低,换热室的高度较小。
作为一个具体实施例,请参考图2至图5,换热炉胆20设置有3级换热室,这3级换热室包括依次与燃烧室30连通的第一换热室21,第二换热室22和第三换热室23。在第一换热室21上端面的中部设有第一进烟口212,第一换热室21的下端面设有沿周壁的弧状的第一出烟口213,第一换热室21中环第一进烟口212布置有第一冷却管组211。在第二换热室22的上端面设有与第一出烟口213对应的第二进烟口,第二换热室22的下端面远离第二进烟口的一侧设有第二出烟口223;第二进烟口与第二出烟口223之间设置多组呈弧形排布的第二冷却管组221。在第三换热室23的上端面设有与第二出烟口223对应的第三进烟口,第三换热室23的下端面远离第三进烟口的一侧设有第三出烟口233;第三进烟口与第三出烟口233之间排布有多组第三冷却管组231。第二进烟口与第一出烟口213的形状适配,两者通过第一转烟道201连通;同理,第三进烟口与第二出烟口223的形状适配,两者通过第二转烟道202连通。
需要说明的是,“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或隐含指明所指示的技术特征的数量。
从燃烧室30内排出的高温烟气在第一换热室21以辐射状扩散,第一换热室21内的烟气经第一换热室21的下端面的第一出烟口213排至第二换热室22。烟气从第二进烟口进入第二换热室22后,包绕式扩散并横向冲刷第二冷却管组221,然后汇集至第二出烟口223,最后从第二转烟道202扩散至第三换热室23。烟气在第三换热室23内横向冲刷第三冷却管组231;第三进烟口和第三出烟口233以相互远离的方式设置,从而能够增长烟气扩散的路径,提高换热效率。
根据换热效率和排烟温度的要求,在其他实施例中,如图2至图5,换热炉胆20还包括与第三换热室23连通的第四换热室24。在第四换热室24的上端面设有与第三出烟口233对应的第四进烟口,第四换热室24的侧壁设有连通出烟管32的第四出烟口243;第四进烟口与第四出烟口243之间排布有多组第四冷却管组241。当然,为了提升换热效率,换热炉胆20还可以包括第五换热室和第六换热室等。
以下以4级换热室为例说明换热室的设置。
如图4所示,第一进烟口212为圆形;第一冷却管组211两端分别贯穿第一换热室21的上管板和下管板;第一冷却管组211环绕第一进烟口212呈圆周排布,且排布有两圈,内圈和外圈的冷却管周向上错位设置。第一出烟口213整体上呈弧形,并且与第一换热室21的外壁适配,第一出烟口213为圆滑过渡结构。高温烟气从第一进烟口212进入第一换热室21,以辐射状冲刷设置在第一进烟口212四周的第一冷却管组211,进行充分换热。
需要说明的是,第一冷却管组211还可以设置三圈或四圈,或者更多。本申请对此不作限定。
在其他实施例中,第一出烟口213还可以由多个圆形的开口单元组成;多个开口单元排布成弧形,如图6所示;在第一下管板214上,多个开口单元的排布轨迹与第一下管板214的外缘适配。
第二进烟口与第一出烟口213形状适配。第一转烟道201横截面形状与第一出烟口213的形状适配,各连接面圆滑过渡。第二出烟口223为圆形或者类椭圆形;第二出烟口223设置在第二换热室22下端面上,并且位于远离第二进烟口的一侧;第二冷却管组221具有多组且弧形排布。第二冷却管组221排布成的弧形开口方向与第二进烟口的弧形开口方向相同。如图4所示,第二冷却管组221的排布如同一个盾,其中盾的防护面朝向第二进烟口,这样有利于第二冷却管组221与扩散烟气充分接触。
第二出烟口223还可以由多个圆形的开口单元组成;多个开口单元排布成类椭圆形,如图7所示(图中冷却管组未标出);第二出烟口223包括一较大圆形的开口单元和两较小圆形的开口单元,其中,一较大开口单元和两较小开口单元组合成类椭圆状。
第三进烟口的形状与第二出烟口223的形状适配,第三出烟口233也为类椭圆形;第三冷却管组231设置在第三进烟口和第三出烟口233之间,第三冷却管组231具有多个并且适配于第三出烟口233呈双曲线形排布。
第四进烟口的结构与第三进烟口的结构相同。在第四换热室24的侧壁上开设有第四出烟口243,第四出烟口243与出烟管32连通。
在换热炉胆20的底部连接有冷凝水排出管,用于排出冷凝水。冷凝水排出管穿过承压壳体10并延伸至承压壳体10的外部,从而使冷凝水能够排出炉体。
为了增加换热面积,可以在第二冷却管组221、第三冷却管组231和第四冷却管组241的外壁上设置换热翅片(图中未画出)。换热翅片沿冷却管轴向方向螺旋分布。
对本申请提供的承压冷凝锅炉,依据GB/T10180-2017《工业锅炉热工试验规程》进行测试。承压冷凝锅炉在满负荷运行,回水温度60℃时,烟气出口温度61℃,热效率(按低位发热值算)100%;承压冷凝锅炉在满负荷运行,回水温度30℃时,烟气出口温度41℃,热效率(按低位发热值算)105%;承压冷凝锅炉在30%负荷运行,回水温度30℃时,烟气出口温度35℃,热效率(按低位发热值算)108%;承压冷凝锅炉在满负荷运行出蒸汽时,烟气出口温度52℃,热效率(按低位发热值算)103%。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种承压冷凝锅炉,其特征在于,包括承压壳体(10),设置在所述承压壳体(10)内的换热炉胆(20),与所述换热炉胆(20)连通的燃烧室(30)以及固定在所述换热炉胆(20)内的冷却管组;
    所述承压壳体(10)上设有与所述燃烧室(30)连接的燃烧器接头(31),与所述换热炉胆(20)连通的出烟管(32),换热介质进口(11)和换热介质出口(12);其中,换热介质自下而上在所述承压壳体(10)内及冷却管组内流通,与所述换热炉胆(20)内的烟气逆流换热;
    所述换热炉胆(20)包括2级以上圆柱状的换热室,所述换热室的上端面设有进烟口,所述换热室的下端面设有出烟口,所述进烟口和所述出烟口相互远离设置,相邻的所述换热室通过转烟道连通,烟气扩散的末级所述换热室与所述出烟管(32)连通。
  2. 如权利要求1所述的承压冷凝锅炉,其特征在于,所述进烟口或所述出烟口为圆形、弧形或类椭圆形;或者,所述进烟口或所述出烟口包括多个圆形的第一开口单元,多个所述第一开口单元排布成弧形或类椭圆形。
  3. 如权利要求1所述的承压冷凝锅炉,其特征在于,环绕所述换热炉胆(20),在所述承压壳体(10)和所述换热炉胆(20)之间设有1个以上隔板(13)。
  4. 如权利要求3所述的承压冷凝锅炉,其特征在于,每级所述换热室对应设有一个所述隔板(13)。
  5. 如权利要求1所述的承压冷凝锅炉,其特征在于,沿烟气扩散的方向,各级所述换热室的高度依次递减。
  6. 如权利要求1所述的承压冷凝锅炉,其特征在于,所述换热炉胆(20)包括依次与所述燃烧室(30)连通的第一换热室(21),第二换热室(22)和第三换热室(23);
    在所述第一换热室(21)上端面的中部设有第一进烟口(212),所述第一换热室(21)下端面靠近周壁处设有第一出烟口(213),所述第一换热室(21)中环绕所述第一进烟口(212)布置第一冷却管组(211);
    在所述第二换热室(22)的上端面设有与所述第一出烟口(213)对应的第二进烟口,所述第二换热室(22)的下端面远离所述第二进烟口的一侧设有第二出烟口(223),所述第二进烟口与所述第二出烟口(223)之间设置有第二冷却管组(221);
    在所述第三换热室(23)的上端面设有与所述第二出烟口(223)对应的第三进烟口,所述第三换热室(23)的下端面远离所述第三进烟口的一侧设有第三出烟口(233),所述第三进烟口与所述第三出烟口(233)之间排布第三冷却管组(231)。
  7. 如权利要求6所述的承压冷凝锅炉,其特征在于,所述换热炉胆(20)还包括与所述第三换热室(23)连通的第四换热室(24),在所述第四换热室(24)的上端面设有与所述第三出烟口(233)对应的第四进烟口,所述第四换热室(24)的侧壁设有连通所述出烟管(32)的第四出烟口(243),所述第四进烟口与所述第四出烟口(243)之间排布有第四冷却管组(241)。
  8. 如权利要求7所述的承压冷凝锅炉,其特征在于,
    所述第一进烟口(212)为圆形,所述第一冷却管组(211)环绕所述第一进烟口(212)呈圆周排布,所述第一出烟口(213)为弧形并且位于所述第一换热室的下管板上;或者,所述第一出烟口(213)包括多个圆形的第二开口单元,多个所述第二开口单元排布成与所述第一换热室(21)的周壁适配的弧形;
    所述第二进烟口与所述第一出烟口(213)的位置对应,所述第二进烟口与所述第一出烟口(213)的形状适配,所述第二出烟口(223)为圆形或类椭圆形;或者,所述第二出烟口(223)包括多个圆形的第三开口单元,多个所述第三开口单元排布成类椭圆形。
  9. 如权利要求8所述的承压冷凝锅炉,其特征在于,
    所述第三进烟口或所述第四进烟口为类椭圆形;或者,所述第三进烟口或所述第四进烟口包括多个第四开口单元,多个所述第四开口单元排布成类椭圆形;
    所述第三冷却管组(231)或所述第四冷却管组(241)具有多个并且适配于相应的所述进烟口呈双曲线形排布。
  10. 如权利要求7所述的承压冷凝锅炉,其特征在于,在所述第二冷却管组(221)、所述第三冷却管组(231)和所述第四冷却管组(241)的外周壁设有换热翅片。
PCT/CN2021/112436 2021-07-16 2021-08-13 承压冷凝锅炉 WO2023284051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021007981.6T DE112021007981T5 (de) 2021-07-16 2021-08-13 Unter Druck stehender Kondensationskessel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110807836.2A CN113390184A (zh) 2021-07-16 2021-07-16 承压冷凝锅炉
CN202110807836.2 2021-07-16

Publications (1)

Publication Number Publication Date
WO2023284051A1 true WO2023284051A1 (zh) 2023-01-19

Family

ID=77626232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112436 WO2023284051A1 (zh) 2021-07-16 2021-08-13 承压冷凝锅炉

Country Status (3)

Country Link
CN (1) CN113390184A (zh)
DE (1) DE112021007981T5 (zh)
WO (1) WO2023284051A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097959A1 (en) * 2005-03-15 2006-09-21 Tec.Lab. S.C.R.L. Heat exchanger for condensing wall-mounted boilers
CN108826688A (zh) * 2018-06-08 2018-11-16 廊坊劲华锅炉有限公司 冷凝锅炉
CN111059759A (zh) * 2020-01-22 2020-04-24 喀什翰明燃气设备有限公司 一种全预混冷凝锅炉
CN113390185A (zh) * 2021-07-16 2021-09-14 廊坊劲华锅炉有限公司 一种承压冷凝锅炉
CN113390186A (zh) * 2021-07-16 2021-09-14 廊坊劲华锅炉有限公司 一体式承压冷凝锅炉
CN215176038U (zh) * 2021-07-16 2021-12-14 廊坊劲华锅炉有限公司 承压冷凝锅炉

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2450020B (en) 2006-02-06 2011-08-24 Smith International A method for aggregating data and an aggregating data store server

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006097959A1 (en) * 2005-03-15 2006-09-21 Tec.Lab. S.C.R.L. Heat exchanger for condensing wall-mounted boilers
CN108826688A (zh) * 2018-06-08 2018-11-16 廊坊劲华锅炉有限公司 冷凝锅炉
CN111059759A (zh) * 2020-01-22 2020-04-24 喀什翰明燃气设备有限公司 一种全预混冷凝锅炉
CN113390185A (zh) * 2021-07-16 2021-09-14 廊坊劲华锅炉有限公司 一种承压冷凝锅炉
CN113390186A (zh) * 2021-07-16 2021-09-14 廊坊劲华锅炉有限公司 一体式承压冷凝锅炉
CN215176038U (zh) * 2021-07-16 2021-12-14 廊坊劲华锅炉有限公司 承压冷凝锅炉

Also Published As

Publication number Publication date
DE112021007981T5 (de) 2024-05-02
CN113390184A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN112460567B (zh) 一种同心单管圈水冷燃烧及换热的燃气锅炉
WO2022012398A1 (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉
US20230027757A1 (en) Integrated Pressure Condensing Boiler
CN215176038U (zh) 承压冷凝锅炉
CN113390185B (zh) 一种承压冷凝锅炉
WO2023284051A1 (zh) 承压冷凝锅炉
JP4946594B2 (ja) ボイラ
CN113446619A (zh) 一种冷风蒸汽加热装置
KR200315197Y1 (ko) 급기예열케이싱을 구비한 콘덴싱보일러의 열교환기
CN105157220B (zh) 动态热交换节能环保锅炉
CN210662785U (zh) 一种蒸汽发生设备的热交换器
CN205939674U (zh) 一种水火管热水锅炉
CN212029889U (zh) 一种冷凝换热器及使用该换热器的加热设备
CN219589166U (zh) 换热器和热水器
CN219589168U (zh) 换热器和热水器
CN220601487U (zh) 一种生物质卧式蒸汽发生器
CN218565581U (zh) 一种燃气热水器
CN216953567U (zh) 一种倒置式热水模块
CN220817739U (zh) 一种圆柱形水冷燃烧器
CN218627296U (zh) 换热炉
CN211424347U (zh) 一种蒸汽驱热注锅炉
CN218237531U (zh) 一种空气预热器
CN214891854U (zh) 原油水套加热炉
CN220186939U (zh) 一种多折返散热管卧式环保高效取暖炉
CN212511815U (zh) 一种耦合预混水冷燃烧的单锅片串接铸铝硅热水炉结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574293

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021007981

Country of ref document: DE