WO2022158527A1 - 非導電性フラックス、接続構造体及び接続構造体の製造方法 - Google Patents

非導電性フラックス、接続構造体及び接続構造体の製造方法 Download PDF

Info

Publication number
WO2022158527A1
WO2022158527A1 PCT/JP2022/001988 JP2022001988W WO2022158527A1 WO 2022158527 A1 WO2022158527 A1 WO 2022158527A1 JP 2022001988 W JP2022001988 W JP 2022001988W WO 2022158527 A1 WO2022158527 A1 WO 2022158527A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive flux
flux
conductive
solder
Prior art date
Application number
PCT/JP2022/001988
Other languages
English (en)
French (fr)
Inventor
秀文 保井
清人 松下
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US18/271,531 priority Critical patent/US20240131633A1/en
Priority to JP2022534236A priority patent/JPWO2022158527A1/ja
Priority to KR1020237012117A priority patent/KR20230133835A/ko
Priority to CN202280009995.0A priority patent/CN116783702A/zh
Publication of WO2022158527A1 publication Critical patent/WO2022158527A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3489Composition of fluxes; Methods of application thereof; Other methods of activating the contact surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/368Assembling printed circuits with other printed circuits parallel to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/0566Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/0568Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05684Tungsten [W] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2741Manufacturing methods by blanket deposition of the material of the layer connector in liquid form
    • H01L2224/27422Manufacturing methods by blanket deposition of the material of the layer connector in liquid form by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29075Plural core members
    • H01L2224/29078Plural core members being disposed next to each other, e.g. side-to-side arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83009Pre-treatment of the layer connector or the bonding area
    • H01L2224/83024Applying flux to the bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83855Hardening the adhesive by curing, i.e. thermosetting
    • H01L2224/83862Heat curing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9211Parallel connecting processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0485Tacky flux, e.g. for adhering components during mounting

Definitions

  • the present invention relates to non-conductive flux.
  • the present invention also relates to a bonded structure using the non-conductive flux and a method for manufacturing the bonded structure.
  • an underfill material is filled between the surface mount type package and the wiring board and then hardened to reinforce the joint.
  • Patent Document 1 discloses a semiconductor package substrate on one side of which a semiconductor chip is flip-chip mounted.
  • the semiconductor package substrate is mounted on the printed wiring board from the other side of the semiconductor package substrate.
  • the semiconductor package substrate includes a core substrate, a buildup layer, and a stress buffer layer.
  • the buildup layer is a multilayer wiring layer in which wiring patterns and insulating resin layers are alternately laminated, and the uppermost layer of the buildup layer is the wiring pattern.
  • the stress buffer layer is provided on the surface of the buildup layer on the other surface side.
  • the stress buffering layer comprises a first stress buffering layer and a second stress buffering layer on the first stress buffering layer, wherein the first stress buffering layer and the second stress buffering layer are Each has vias and wiring patterns.
  • connection structure after a reflow process is performed to connect the electrodes, an underfill material is permeated and filled between the semiconductor chip and the semiconductor package substrate by capillary action.
  • the reflow process must be repeated to harden the material. That is, the conventional method for manufacturing a connection structure using an underfill material has a problem of low productivity because it is necessary to perform the reflow process twice.
  • the solder that connects the electrodes melts during the second reflow process, causing the solder to separate the underfill material and the component (or substrate). A phenomenon (solder flash) that progresses while destroying the interface of the solder may occur. When solder flash occurs, short or open defects may occur.
  • a non-conductive flux includes an epoxy compound, an acid anhydride curing agent, and an organophosphorus compound.
  • the adhesive force at 25°C is 100,000 N/m 2 or more and 210,000 N/m 2 or less.
  • the viscosity at 25°C is 400 Pa ⁇ s or less.
  • the viscosity at 25°C is 50 Pa ⁇ s or less.
  • the content of the organic phosphorus compound is 0.5 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the acid anhydride curing agent.
  • the content of the acid anhydride curing agent is 5% by weight or more and 50% by weight or less in 100% by weight of the non-conductive flux.
  • the non-conductive flux is paste.
  • a first member to be connected having a first electrode on its surface
  • a second member to be connected having a second electrode on its surface, the first member to be connected, a resin portion connecting the second member to be connected
  • the first electrode includes a first electrode body and solder particles on the surface of the first electrode body
  • a connection structure is provided in which the first electrode main body and the second electrode are electrically connected, and the material of the resin portion is the non-conductive flux described above.
  • a first electrode having a first electrode thereon, said first electrode comprising a first electrode body and solder particles on a surface of said first electrode body.
  • the first member to be connected on which the non-conductive flux is arranged and the second member to be connected having a second electrode on the surface thereof are arranged so that the first electrode and the second electrode face each other. and heating the solder particles and the non-conductive flux to electrically connect the first electrode and the second electrode, and forming a resin portion connecting the member to be connected and the second member to be connected using the non-conductive flux.
  • the non-conductive flux is placed by dipping.
  • the non-conductive flux according to the present invention contains an epoxy compound, an acid anhydride curing agent, and an organic phosphorus compound. Since the non-conductive flux according to the present invention has the above configuration, it is possible to improve the productivity and impact resistance of the obtained connection structure and suppress the occurrence of solder flash.
  • FIG. 1 is a cross-sectional view schematically showing a connected structure obtained using a non-conductive flux according to one embodiment of the present invention.
  • 2(a) to 2(d) are cross-sectional views for explaining each step of an example of a method of manufacturing a connection structure using non-conductive flux according to one embodiment of the present invention.
  • a non-conductive flux according to the present invention comprises an epoxy compound, an acid anhydride curing agent, and an organophosphorus compound.
  • the non-conductive flux has no electrical conductivity.
  • the non-conductive flux preferably does not contain a conductive substance.
  • the non-conductive flux preferably does not contain conductive particles.
  • the non-conductive flux preferably does not contain solder.
  • the non-conductive flux preferably does not contain solder particles.
  • the non-conductive flux is heat curable.
  • the non-conductive flux has the property of being cured by heating.
  • the non-conductive flux according to the present invention has the above configuration, when a connection structure is produced using the non-conductive flux, the solder can be melted by a single reflow process to form an electrode. can be connected together and the non-conductive flux can be cured. Therefore, it is not necessary to perform the reflow process twice. That is, with the non-conductive flux of the present invention, batch mounting is possible when manufacturing a connection structure, so productivity can be improved.
  • the non-conductive flux according to the present invention may be used by placing it on the surface of the solder particles before the reflow process performed to melt the solder and connect the electrodes. That is, the non-conductive flux according to the present invention may be used as a pre-inserted underfill material.
  • the non-conductive flux according to the present invention is preferably used as a pre-inserted underfill material. In this case, the number of reflow steps can be reduced compared to the case where the underfill material is filled after the reflow step for connecting the electrodes and the reflow step is performed again. That is, when the non-conductive flux according to the present invention is used as a pre-inserted underfill material, batch mounting is possible when manufacturing a connection structure, so productivity can be further improved.
  • the non-conductive flux according to the present invention since the non-conductive flux according to the present invention has the above configuration, a sufficient amount of the non-conductive flux can be placed in the package by dipping, for example.
  • a sufficient amount of the non-conductive flux can be placed in the package by dipping, for example.
  • an impact such as a drop
  • the connection target member when the non-conductive flux is applied to the connection target member, the connection target member can be easily pulled up from the dipping bath.
  • the non-conductive flux according to the present invention has the above configuration, it is possible to suppress the occurrence of solder flash in the resulting connection structure and improve solder flash resistance. As a result, in the connection structure using the non-conductive flux according to the present invention, it is possible to suppress the occurrence of short circuits and open defects.
  • the non-conductive flux according to the present invention has the above configuration, the connection resistance between the upper and lower electrodes in the resulting connection structure can be reduced, and as a result, the conduction reliability is improved. be able to.
  • the combined use of an acid anhydride curing agent and an organic phosphorus compound can significantly enhance the flux effect.
  • non-conductive means having an insulation resistance of 1.0 ⁇ 10 6 ⁇ or more.
  • the insulation resistance of non-conductive flux can be measured, for example, by the following method.
  • a non-conductive flux is applied to a thickness of 100 ⁇ m on the surface of a comb-shaped substrate having a copper electrode on the surface to obtain a specimen.
  • the obtained specimen was heated to 160°C at 2°C/sec in a nitrogen atmosphere (oxygen concentration of 100 ppm or less) using a reflow simulator (e.g., "Core9046a” manufactured by Cores Co., Ltd.), and then cooled to room temperature (23 °C). After that, a voltage of 5 V is applied, and the insulation resistance is measured using a measuring device (for example, "Electrochemical Migration Evaluation System” manufactured by ESPEC).
  • a measuring device for example, "Electrochemical Migration Evaluation System” manufactured by ESPEC).
  • flux refers to a composition with a solder wettability diameter of 600 ⁇ m or more in the following solder wettability test.
  • a composition is applied to a thickness of 150 ⁇ m on the surface of a gold-plated printed circuit board, and SnBi solder particles (particle diameter: 500 ⁇ m, melting point: 139° C.) are placed on the surface of the composition to obtain a test piece.
  • SnBi solder particles particle diameter: 500 ⁇ m, melting point: 139° C.
  • the obtained specimen was heated to 160°C at 2°C/sec in a nitrogen atmosphere (oxygen concentration of 100 ppm or less), and held for 3 minutes. , cool to room temperature (23° C.).
  • the shape of the solder that has spread by wetting is approximated by an ellipse, and the average of the minor axis and the major axis of the ellipse ((minor axis+major axis)/2) is defined as the solder wetting diameter of the composition.
  • the ellipse is a concept including a perfect circle, and when the ellipse is a perfect circle, the diameter of the soldering of the composition is the diameter of the perfect circle.
  • the non-conductive flux according to the present invention can be suitably used for connecting a surface mount package and a wiring board.
  • BGA, CSP, etc. are mentioned as the said surface mount type package.
  • the adhesive strength (tack force) of the non-conductive flux at 25° C. is preferably 50,000 N/m 2 or more, more preferably 100,000 N/m 2 or more, still more preferably 120,000 N/m 2 or more, and particularly preferably 140,000 N/m. 2 or more.
  • the adhesive strength (tack force) of the non-conductive flux at 25° C. is preferably 250,000 N/m 2 or less, more preferably 210,000 N/m 2 or less, still more preferably 170,000 N/m 2 or less, and particularly preferably 160,000 N/m. 2 or less.
  • the adhesive strength of the non-conductive flux at 25° C. is equal to or less than the upper limit, the package can be easily lifted out of the dipping tank.
  • the adhesive strength (tack strength) of the non-conductive flux at 25°C is measured as follows.
  • the above non-conductive flux is applied on the surface of a stainless steel plate to a thickness of 50 ⁇ m to obtain a laminate.
  • a probe (diameter 8 mm, 10 g) is pushed into the laminate for 10 seconds, and then the load is measured when the probe is lifted at a speed of 0.1 mm/second.
  • Examples of the tack tester include "TA-500" manufactured by UBM.
  • the viscosity ( ⁇ 25) of the non-conductive flux at 25° C. is preferably 5 Pa ⁇ s or more, more preferably 25 Pa ⁇ s or more. , preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less, still more preferably 50 Pa ⁇ s or less, and particularly preferably 40 Pa ⁇ s or less.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the types and amounts of ingredients to be blended.
  • the viscosity ( ⁇ 25) can be measured, for example, using an E-type viscometer ("TVE22L” manufactured by Toki Sangyo Co., Ltd.) under conditions of 25°C and 10 rpm.
  • E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) under conditions of 25°C and 10 rpm.
  • the non-conductive flux is preferably liquid at 25°C, and is preferably a paste.
  • the melting point of the non-conductive flux is preferably 40° C. or higher, more preferably 70° C. or higher, and preferably 350° C. or lower. More preferably, it is 310° C. or less.
  • the melting point of the non-conductive flux can be determined by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Examples of differential scanning calorimetry (DSC) devices include "EXSTAR DSC7020" manufactured by SII.
  • the reaction initiation temperature of the non-conductive flux is preferably 50° C. or higher, more preferably 70° C. or higher, still more preferably 80° C. or higher, and more preferably 250° C. or lower. is 200° C. or lower, more preferably 150° C. or lower, particularly preferably 140° C. or lower.
  • the epoxy compound is a compound having at least one epoxy group.
  • the epoxy compounds include bixylenol type epoxy compounds, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolak type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds.
  • epoxy compound naphthalene-type epoxy compound, fluorene-type epoxy compound, phenol aralkyl-type epoxy compound, naphthol aralkyl-type epoxy compound, dicyclopentadiene-type epoxy compound, anthracene-type epoxy compound, epoxy compound having adamantane skeleton, epoxy having tricyclodecane skeleton compound, a naphthylene ether type epoxy compound, and an epoxy compound having a triazine nucleus in its skeleton. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
  • the epoxy compound is preferably a bixylenol-type epoxy compound, a bisphenol F-type epoxy compound, or an epoxy compound having a triazine nucleus in its skeleton. is more preferable. More preferably, the epoxy compound is a bixylenol type epoxy compound.
  • the epoxy compound is preferably liquid at 25°C.
  • the content of the epoxy compound in 100% by weight of the non-conductive flux is preferably 15% by weight or more, more preferably 30% by weight or more, It is more preferably 50% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less, and even more preferably 55% by weight or less.
  • the acid anhydride curing agent thermally cures the epoxy compound.
  • the flux effect of the non-conductive flux can be significantly enhanced by using the acid anhydride curing agent and the organic phosphorus compound described later. As a result, oxide films on the surfaces of the electrodes and solder in the resulting connection structure can be removed satisfactorily.
  • Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and methylbutenyltetrahydrophthalic anhydride. , anhydrides of phthalic acid derivatives, maleic anhydride, nadic anhydride, methyl nadic anhydride, glutaric anhydride, succinic anhydride, glycerin bis trimellitic anhydride monoacetate, and ethylene glycol bis trimellitic anhydride.
  • acid anhydride curing agent trifunctional acid anhydride curing agent such as trimellitic anhydride, and pyromellitic anhydride, benzophenonetetracarboxylic anhydride, methylcyclohexenetetracarboxylic anhydride, and polyazelaic anhydride, etc. and a tetrafunctional or higher acid anhydride curing agent. Only one kind of the acid anhydride curing agent may be used, or two or more kinds thereof may be used in combination.
  • the acid anhydride curing agent is preferably tetrahydrophthalic anhydride or hexahydrophthalic anhydride, more preferably hexahydrophthalic anhydride.
  • the hexahydrophthalic anhydride is preferably methylhexahydrophthalic anhydride.
  • the content of the acid anhydride curing agent in 100% by weight of the non-conductive flux is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 25% by weight or more, and preferably 60% by weight. % or less, more preferably 50% by weight or less, and even more preferably 45% by weight or less.
  • the content of the acid anhydride curing agent is not less than the lower limit and not more than the upper limit, the impact resistance and solder flash resistance of the resulting connected structure can be further enhanced.
  • the content of the acid anhydride curing agent is preferably 50 parts by weight or more, more preferably 60 parts by weight or more, still more preferably 70 parts by weight or more, and preferably 120 parts by weight with respect to 100 parts by weight of the epoxy compound. parts or less, more preferably 110 parts by weight or less, and even more preferably 100 parts by weight or less.
  • the content of the acid anhydride curing agent is not less than the lower limit and not more than the upper limit, the impact resistance and solder flash resistance of the resulting connected structure can be further enhanced.
  • Organic phosphorus compound By using the organic phosphorus compound and the acid anhydride curing agent in combination, the flux property of the non-conductive flux can be enhanced. As a result, oxide films on the surfaces of the electrodes and solder in the resulting connection structure can be removed satisfactorily. Moreover, the impact resistance of the resulting bonded structure can be enhanced.
  • organic phosphorus compounds examples include organic phosphonium salts, organic phosphoric acids, organic phosphoric acid esters, organic phosphonic acids, organic phosphonic acid esters, organic phosphinic acids, and organic phosphinic acid esters. Only one type of the organic phosphorus compound may be used, or two or more types may be used in combination.
  • the organic phosphorus compound is preferably an organic phosphonium salt, an organic phosphoric acid or an organic phosphoric acid ester, more preferably an organic phosphonium salt.
  • organic phosphonium salts examples include organic phosphonium salts composed of a phosphonium ion and its counterion.
  • the organic phosphonium salt is preferably methyltributylphosphonium dimethyl phosphate, tributylmethylphosphonium bis(2-ethylhexyl)phosphate, or tetrabutylphosphonium bromide, and is methyltributylphosphonium dimethylphosphate. is more preferable.
  • the organic phosphoric acid, the organic phosphoric acid ester, the organic phosphonic acid, the organic phosphonic acid ester, the organic phosphinic acid, and the organic phosphinic acid ester are not particularly limited, and conventionally known compounds and commercially available products can be used. can be done.
  • the organophosphorus compound is preferably liquid at 25°C.
  • the content of the organic phosphorus compound in 100% by weight of the non-conductive flux is preferably 0.5% by weight or more, It is more preferably 0.8% by weight or more, preferably 10% by weight or less, more preferably 8.0% by weight or less, and still more preferably 4.0% by weight or less.
  • the content of the organic phosphorus compound is preferably 0.5 parts by weight with respect to 100 parts by weight of the acid anhydride curing agent. part or more, more preferably 1 part by weight or more, still more preferably 2 parts by weight or more, preferably 10 parts by weight or less, more preferably 5 parts by weight or less.
  • the above-mentioned non-conductive flux may optionally include fillers, extenders, softeners, plasticizers, thixotropic agents, leveling agents, polymerization catalysts, curing catalysts, colorants, antioxidants, heat stabilizers, light Various additives such as stabilizers, UV absorbers, lubricants, antistatic agents and flame retardants may be included.
  • the non-conductive flux may contain a compound having a carboxyl group, or may contain a carboxylic acid compound. Since the non-conductive flux has excellent flux properties, the non-conductive flux may not contain a compound having a carboxyl group, and may not contain a carboxylic acid compound.
  • a non-conductive flux according to the present invention is preferably used to obtain a connection structure.
  • the non-conductive flux according to the present invention is suitably used for coating on the solder surface (use of non-conductive flux on the solder surface).
  • the non-conductive flux according to the present invention is preferably used for coating on the surface of solder particles (use of non-conductive flux on the surface of solder particles).
  • the non-conductive flux according to the present invention may be a solder coating material.
  • the non-conductive flux according to the invention may be a coating material for solder particles.
  • the non-conductive flux according to the invention is also suitable for coating on the surface of the electrode (use of non-conductive flux on the surface of the electrode).
  • the non-conductive flux according to the present invention is also suitable for coating on the surface of conductive particles (use of non-conductive flux on the surface of conductive particles).
  • the non-conductive flux according to the invention may be a coating material for electrodes.
  • the non-conductive flux according to the present invention may be a coating material for conductive particles.
  • a connection structure according to the present invention includes a first connection object member having a first electrode on the surface, a second connection object member having a second electrode on the surface, the first connection object member, and a resin portion connecting the second member to be connected.
  • the first electrode includes a first electrode body and solder particles on the surface of the first electrode body.
  • the first electrode body and the second electrode are electrically connected.
  • the material of the resin portion is the non-conductive flux described above.
  • a first member to be connected having a first electrode on its surface is used, and the first electrode includes a first electrode main body and a first electrode main body.
  • solder particles on the surface of the In the method for manufacturing a connected structure according to the present invention, using the above-described first connection target member and using the above-described non-conductive flux, on the surface of the solder particles in the first connection target member 2, a first placement step of placing the non-conductive flux.
  • the first member to be connected on which the non-conductive flux is arranged, and the second member to be connected having a second electrode on the surface thereof are combined with the first member to be connected.
  • the solder particles and the non-conductive flux are heated to electrically connect the first electrode and the second electrode, and A step of forming a resin portion connecting the one connection object member and the second connection object member with the non-conductive flux.
  • the non-conductive flux in the first placement step, may be placed by dispensing, may be placed by screen printing, or may be placed by ejection using an inkjet device. may be placed by dipping. From the viewpoint of further improving productivity, it is preferable to apply the non-conductive flux by dipping in the first disposing step.
  • the conventional method for manufacturing a connected structure using an underfill material after performing a reflow process for connecting electrodes, the underfill material is permeated and filled between the members to be connected by capillary action, and the underfill material is It is necessary to repeat the reflow process to harden the That is, the conventional method for manufacturing a connection structure using an underfill material has a problem of low productivity because it is necessary to perform the reflow process twice. Furthermore, solder flash may occur in connection structures using conventional underfill materials. When solder flash occurs, short or open defects may occur.
  • the electrodes are electrically connected to each other and the non-conductive The flux can be hardened. Therefore, it is not necessary to perform the reflow process twice. That is, in the connection structure and the method for manufacturing the connection structure according to the present invention, collective mounting is possible, and as a result, productivity can be further improved. Further, in the bonded structure and the manufacturing method of the bonded structure according to the present invention, a specific non-conductive flux is used. can be placed. As a result, when an impact such as a drop is applied to the connection structure, it is possible to reduce the probability of failure of the connection structure due to connection failure or the like (increase impact resistance).
  • connection structure and the method for manufacturing the connection structure according to the present invention since the specific non-conductive flux is used, the occurrence of solder flash can be suppressed. As a result, it is possible to suppress the occurrence of short circuits or open defects in the resulting connection structure.
  • FIG. 1 is a cross-sectional view schematically showing a connected structure obtained using a non-conductive flux according to one embodiment of the present invention.
  • the resin portion 4 is formed of a non-conductive flux 4Xa (see FIGS. 2(a) to 2(d)).
  • the material of the resin portion 4 is non-conductive flux 4Xa.
  • the non-conductive flux 4Xa contains an epoxy compound, an acid anhydride curing agent, and an organophosphorus compound.
  • the non-conductive flux 4Xa is a paste.
  • the resin portion 4 is a hardened portion obtained by thermosetting the non-conductive flux 4Xa.
  • the first connection target member 2 has a plurality of first electrodes on its surface (lower surface).
  • the first electrode includes a first electrode body 2a and solder portions 2B (solder particles) on the surface of the first electrode body 2a.
  • the first electrode is a composite electrode composed of the first electrode main body 2a and the solder portion 2B.
  • the second connection target member 3 has a plurality of second electrodes 3a on its surface (upper surface). In the connection structure 1, the first electrode body 2a and the second electrode 3a are electrically connected. In the connection structure 1, the first electrode main body 2a and the second electrode 3a are electrically connected by the solder portion 2B.
  • connection structure 1 As shown in FIG. 1, in the connection structure 1, after at least the portions of the solder particles contacting the second electrode 3a are melted between the first electrode main body 2a and the second electrode 3a, the solder particles are A solder portion 2B is formed by solidification. Therefore, the connection area between the solder portion 2B and the second electrode 3a is increased. Solder particles may remain in the connection structure.
  • the connection structure may include solder particles and a solder portion.
  • FIGS. 2(a) to 2(d) are cross-sectional views for explaining each step of an example of a method of manufacturing a connection structure using non-conductive flux according to one embodiment of the present invention.
  • a first member to be connected 2 having a first electrode on its surface (lower surface) is prepared.
  • the first electrode comprises a first electrode body 2a and solder particles 2b on the surface of the first electrode body 2a.
  • a non-conductive flux 4Xa is prepared.
  • a non-conductive flux 4Xa is filled in the dipping tank 4X.
  • a non-conductive flux 4Xa is arranged on the surface of the solder particles 2b in the first connection object member 2 (first arrangement step).
  • the non-conductive flux 4Xa contains an epoxy compound, an acid anhydride curing agent, and an organic phosphorus compound.
  • the non-conductive flux 4Xa is placed on the surfaces of the solder particles 2b in the first member 2 to be connected by dipping.
  • the first connection target member 2 is immersed in a dipping bath 4X filled with non-conductive flux 4Xa to arrange the non-conductive flux 4Xa on the surface of the solder particles 2b in the first connection target member 2.
  • the non-conductive flux 4Xa covers the surfaces of the solder particles 2b and is a coating layer.
  • a coating layer of non-conductive flux 4Xa is arranged along the surfaces of the solder particles 2b.
  • the amount of the non-conductive flux placed on the surfaces of the solder particles is preferably an amount that can fill the gap between the first member to be connected and the second member to be connected in the resulting connection structure. .
  • a second member to be connected 3 having a second electrode 3a on its surface (upper surface) is prepared.
  • the first connection target member 2 in which the non-conductive flux 4Xa is arranged and the second connection target member 3 are connected to the first electrode (
  • the first electrode body 2a and the solder particles 2b) and the second electrode 3a are arranged so as to face each other (second arrangement step).
  • the second connection target member 3 is arranged from the second electrode 3 a side toward the first electrode side of the first connection target member 2 . At this time, the first electrode body 2a and the second electrode 3a are opposed to each other.
  • the solder particles 2b and the non-conductive flux 4Xa are heated (third step).
  • the non-conductive flux is heated to a temperature higher than the temperature at which the portions of the solder particles contacting the second electrode melt.
  • the non-conductive flux 4Xa is heated to a temperature higher than the curing temperature of the epoxy compound. This heating electrically connects the first electrode (the first electrode body 2a and the solder particles 2b or the solder portion 2B) and the second electrode 2a.
  • the non-conductive flux 4Xa is thermally cured. As a result, as shown in FIG.
  • the resin portion 4 connecting the first connection target member 2 and the second connection target member 3 is formed by the non-conductive flux 4Xa.
  • the resin portion 4 is formed by thermally curing the non-conductive flux 4Xa.
  • a solder portion 2B is formed by the solder particles 2b, and the first electrode main body 2a and the second electrode 3a are electrically connected by the solder portion 2B.
  • connection structure 1 shown in FIG. 1 is obtained.
  • the second step and the third step may be performed continuously.
  • the laminate of the first connection target member 2, the non-conductive flux 4Xa, and the second connection target member 3 is moved to the heating unit, and the third process may be performed.
  • the laminate may be placed on a heating member, or the laminate may be placed in a heated space.
  • the heating temperature in the third step is preferably 140°C or higher, more preferably 160°C or higher, preferably 450°C or lower, more preferably 250°C or lower, and even more preferably 200°C or lower.
  • the heating temperature in the third step is preferably the melting point of the solder particles or higher.
  • the heating temperature in the third step is preferably higher than the curing temperature of the epoxy compound.
  • the heating temperature in the third step is preferably higher than or equal to the temperature at which the portions of the solder particles in contact with the second electrode melt, and more preferably higher than or equal to the curing temperature of the epoxy compound.
  • a heating method in the third step a method of heating the entire laminate using a reflow furnace or using an oven, a method of heating the solder portion (solder particles) and the resin portion (non-conductive flux) of the laminate ) is locally heated only.
  • Equipment used for the local heating method includes hot plates, heat guns that apply hot air, soldering irons, and infrared heaters.
  • metal with high thermal conductivity is used for the area directly below the solder area (solder particles) and the resin area (non-conductive flux). It is preferable to form the upper surface of the hot plate with a material having low thermal conductivity such as fluororesin.
  • the thickness of the solder portion in the connection structure is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the thickness of the resin portion in the connection structure is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less.
  • the viscosity ( ⁇ mp) of the non-conductive flux at the melting point of the solder particles is preferably 0.1 Pa ⁇ s or more, more preferably 0.2 Pa ⁇ s or more, and preferably 50 Pa ⁇ s or less, more preferably 10 Pa ⁇ s. s or less, more preferably 1 Pa ⁇ s or less. If the viscosity ( ⁇ mp) is equal to or higher than the lower limit and equal to or lower than the upper limit, the conduction reliability can be further improved.
  • the above viscosity ( ⁇ mp) is measured, for example, using a Thermo Fisher Scientific rheometer "HAAKE MARS III" at a frequency of 2 Hz, a heating rate of 0.11°C/second, and a measurement temperature range of 25°C to 200°C (however, solder If the melting point of the particles exceeds 200° C., the melting point of the solder particles is used as the upper limit of the temperature). From the measurement results, the viscosity at the melting point (° C.) of the solder particles is evaluated.
  • the non-conductive flux is paste (liquid), it becomes easier to adjust the thickness of the resin part by the amount of the non-conductive flux applied.
  • the first and second members to be connected are not particularly limited.
  • the first and second members to be connected include electronic components such as semiconductor chips, semiconductor packages, LED chips, LED packages, capacitors and diodes, resin films, printed boards, flexible printed boards, flexible Examples include electronic components such as circuit boards such as flat cables, rigid flexible boards, glass epoxy boards and glass boards.
  • the first and second members to be connected are preferably electronic components.
  • the electrodes provided on the connection target members include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, it may be an electrode made of only aluminum, or an electrode in which an aluminum layer is laminated on the surface of a metal oxide layer.
  • materials for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal elements include Sn, Al and Ga.
  • Epoxy compounds Epoxy compound 1 (bisphenol F type epoxy compound, "YDF-8170C” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Epoxy compound 2 (bixylenol-type epoxy compound, "YX-4000HK” manufactured by Mitsubishi Chemical Corporation)
  • Acid anhydride curing agent 1 (a mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride, "Rikacid MH-700” manufactured by Shin Nippon Rika Co., Ltd.)
  • Acid anhydride curing agent 2 (tetrahydrophthalic anhydride, "Likacid TH” manufactured by Shin Nippon Rika Co., Ltd.)
  • Imidazole curing agent (“2E4MZ-A” manufactured by Shikoku Kasei Kogyo Co., Ltd.)
  • Organophosphorus compounds Organophosphorus compound 1 (tetrabutylphosphonium bromide, Nippon Kagaku Kogyo Co., Ltd. "Hishikorin PX-4B", melting point: 110 ° C.)
  • Organophosphorus compound 2 methyltributylphosphonium dimethyl phosphate, Nippon Kagaku Kogyo Co., Ltd. "Hishikorin PX-4MP", melting point: 10 ° C.
  • Examples 1 to 8 and Comparative Examples 1 and 2 (1) Preparation of Non-Conductive Flux or Composition Components shown in Tables 1 to 3 below were blended in amounts shown in Tables 1 to 3 below to obtain non-conductive fluxes or compositions.
  • a dipping tank was filled with the non-conductive flux (composition) immediately after fabrication.
  • a BGA (0.8 mm pitch, 100 electrodes) was prepared as a first connection target member (package) having a first electrode on its surface.
  • a printed circuit board (material: FR4, thickness: 1 mm) having on its surface a second electrode (gold electrode) corresponding to the first connection object member was prepared as the second connection object member.
  • the first member to be connected was immersed in the dipping bath for 1 second to place the non-conductive flux (composition) on the solder particles on the surface of the first electrode body (first placement step).
  • a second member to be connected was laminated on the lower surface of the non-conductive flux (composition) so that the electrodes faced each other (second placement step).
  • the weight of the second member to be connected is added to the solder particles and the non-conductive flux (composition). From this state, the temperature of the solder particles and the non-conductive flux was heated to reach the melting point of the solder particles 50 seconds after the start of heating. Furthermore, after 65 seconds from the start of heating, the temperature of the solder particles (solder portion) and the non-conductive flux (resin portion) was heated to 160°C. Thereafter, the temperature was maintained at 160° C. for 120 seconds to cure the non-conductive flux (composition), thereby obtaining a connection structure. No pressure was applied during heating.
  • Viscosity Using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.), the viscosity ( ⁇ 25) at 25°C of 0.1 mL of the obtained non-conductive flux (composition) was and 10 rpm. A cone rotor of 3° ⁇ R7.7 was used as the cone rotor.
  • Impact resistance (drop reliability) The resulting bonded structure was dropped 300 times at an acceleration of 1500G. The number of connection structures in which an open failure occurred among 20 connection structures after the drop test was defined as the number of failures. Impact resistance was determined according to the following criteria.
  • connection structure was heated so that the melting point of the solder particles reached the melting point 50 seconds after the start of the temperature rise. Furthermore, after 75 seconds from the start of temperature rise, the temperature of the solder portion and the resin portion was heated to 180° C. and held at 180° C. for 60 seconds. After that, it was cooled, and the number of connection structures with open defects or short circuits among the 20 connection structures was defined as the number of open defects or short circuits. The ability to suppress the occurrence of solder flash was evaluated according to the following criteria.
  • connection resistance The average value of connection resistance is 0.9 m ⁇ or less
  • connection resistance The average value of connection resistance exceeds 0.9 m ⁇ , or connection failure occurs
  • the first member to be connected can be lifted from the dipping bath, and a sufficient amount of non-conductive flux (composition) is placed on the surface of the solder particles to fill the gaps between the members to be connected.
  • the first member to be connected cannot be lifted from the dipping bath, or a sufficient amount of non-conductive flux (composition) on the surface of the solder particles to fill the gaps between the members to be connected cannot be placed
  • the obtained non-conductive flux (composition) was applied to a thickness of 150 ⁇ m on the surface of a gold-plated printed circuit board, and SnBi solder particles (particle diameter: 500 ⁇ m, melting point: 139° C.) were applied onto the surface of the composition. ) was arranged to obtain a test body. Using a reflow simulator (“Core 9046a” manufactured by Cores), the obtained specimen was heated to 160° C. at 2° C./sec in a nitrogen atmosphere (oxygen concentration of 100 ppm or less), held for 3 minutes, and then cooled to room temperature. Cooled to (23° C.).
  • the shape of the solder spread by wetting was approximated by an ellipse, and the average of the minor axis and the major axis of the ellipse ((minor axis + major axis)/2) was taken as the solder wetting diameter of the non-conductive flux (composition). .
  • the flux property was determined according to the following criteria. When the ellipse is a perfect circle, the soldering diameter of the non-conductive flux (composition) is the diameter of the perfect circle.
  • Soldering diameter is 600 ⁇ m or more
  • Soldering diameter is less than 600 ⁇ m
  • Non-conductivity A non-conducting flux (composition) was applied to a thickness of 100 ⁇ m on the surface of a comb-shaped substrate having a copper electrode on the surface to obtain a test specimen.
  • a reflow simulator (“Core9046a” manufactured by Cores Co.)
  • the obtained specimen was heated to 160° C. at 2° C./sec in a nitrogen atmosphere (oxygen concentration of 100 ppm or less), and then to room temperature (23° C.). cooled to After that, a voltage of 5 V was applied, and the insulation resistance was measured using a measuring device (“Electrochemical migration evaluation system” manufactured by ESPEC).
  • Non-conductivity was determined according to the following criteria.
  • Insulation resistance is 1.0 ⁇ 10 6 ⁇ or more ⁇ : Insulation resistance is less than 1.0 ⁇ 10 6 ⁇

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

得られる接続構造体の生産性及び耐衝撃性を高め、はんだフラッシュの発生を抑制することができる非導電性フラックスを提供する。 本発明に係る非導電性フラックスは、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む。

Description

非導電性フラックス、接続構造体及び接続構造体の製造方法
 本発明は、非導電性フラックスに関する。また、本発明は、上記非導電性フラックスを用いた接続構造体及び接続構造体の製造方法に関する。
 近年、データサーバー、パーソナルコンピューター(PC)及び携帯端末等の電子機器の小型化、軽量化、及び高機能化に伴い、プリント配線板等における配線のファインピッチ化が進んでいる。そのため、配線がチップの真下に伸びるボールグリッドアレイ(BGA)や、超小型のチップスケールパッケージ(CSP)等の表面実装型パッケージが注目されている。
 しかし、BGA等の表面実装型パッケージでは、従来のピン挿入型パッケージとは異なり、はんだボールにより配線基板の表面の電極同士が接続されているため、接着性が低くなり、落下した際に破損しやすい(耐衝撃性が低い)という問題がある。
 そこで、表面実装型パッケージと配線基板との間に、アンダーフィル材を充填した後に硬化させることで、接合部分を補強することがある。
 下記の特許文献1には、一方の面に半導体チップがフリップチップ実装される半導体パッケージ基板が開示されている。該半導体パッケージ基板は、該半導体パッケージ基板の他方の面側から、プリント配線板に実装される。上記半導体パッケージ基板は、コア基材と、ビルドアップ層と、応力緩衝層とを備える。上記ビルドアップ層は、配線パターンと絶縁樹脂層とが交互に積層された多層配線層であり、ビルドアップ層の最上層は配線パターンである。また、上記応力緩衝層は、上記他方の面側にてビルドアップ層の表面上に備えられている。上記応力緩衝層は、第一の応力緩衝層と、該第一の応力緩和層上に第二の応力緩衝層とを備え、上記第一の応力緩衝層と上記第二の応力緩衝層とはそれぞれ、ビアと配線パターンとを備える。上記半導体パッケージ基板の一方の面上に半導体チップが実装された後に、半導体チップと半導体パッケージ基板との間に、アンダーフィル材が封入される。
特開2018-186121号公報
 特許文献1のようなアンダーフィル材を封止剤として用いた場合には、半導体チップと半導体パッケージ基板との接着性を高め、得られる接続構造体(半導体パッケージ)の耐衝撃性を高めることができる。
 しかしながら、接続構造体の生産工程においては、電極同士を接続するためにリフロー工程を行った後に、半導体チップと半導体パッケージ基板との間にアンダーフィル材を毛細管現象により浸透させて充填し、アンダーフィル材を硬化させるためのリフロー工程を再度行う必要がある。すなわち、従来のアンダーフィル材を用いる接続構造体の製造方法では、リフロー工程を2回行う必要があるため、生産性が低いという課題がある。さらに、従来のアンダーフィル材を用いた接続構造体では、2回目のリフロー工程の際に、電極同士を接続しているはんだが溶融することによって、はんだがアンダーフィル材と部品(又は基板)との界面を破壊しながら進展する現象(はんだフラッシュ)が発生することがある。はんだフラッシュが発生すると、ショート又はオープン不良が発生することがある。
 本発明の目的は、得られる接続構造体の生産性及び耐衝撃性を高め、はんだフラッシュの発生を抑制することができる非導電性フラックスを提供することである。また、本発明の目的は、上記非導電性フラックスを用いた接続構造体及び接続構造体の製造方法を提供することである。
 本発明の広い局面によれば、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む、非導電性フラックスが提供される。
 本発明に係る非導電性フラックスのある特定の局面では、25℃での接着力が、100000N/m以上210000N/m以下である。
 本発明に係る非導電性フラックスのある特定の局面では、25℃での粘度が、400Pa・s以下である。
 本発明に係る非導電性フラックスのある特定の局面では、25℃での粘度が、50Pa・s以下である。
 本発明に係る非導電性フラックスのある特定の局面では、前記酸無水物硬化剤100重量部に対して、前記有機リン化合物の含有量が、0.5重量部以上10重量部以下である。
 本発明に係る非導電性フラックスのある特定の局面では、前記非導電性フラックス100重量%中、前記酸無水物硬化剤の含有量が、5重量%以上50重量%以下である。
 本発明に係る非導電性フラックスのある特定の局面では、前記非導電性フラックスは、ペーストである。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している樹脂部とを備え、前記第1の電極が、第1の電極本体と、前記第1の電極本体の表面上にはんだ粒子とを備え、前記第1の電極本体と前記第2の電極とが、電気的に接続されており、前記樹脂部の材料が、上述した非導電性フラックスである、接続構造体が提供される。
 本発明の広い局面によれば、第1の電極を表面に有し、前記第1の電極が、第1の電極本体と前記第1の電極本体の表面上にはんだ粒子とを備える第1の接続対象部材を用いて、かつ、上述した非導電性フラックスを用いて、前記第1の接続対象部材における前記はんだ粒子の表面上に、前記非導電性フラックスを配置する第1の配置工程と、前記非導電性フラックスが配置された前記第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材とを、前記第1の電極と前記第2の電極とが対向するように配置する第2の配置工程と、前記はんだ粒子及び前記非導電性フラックスを加熱することで、前記第1の電極と前記第2の電極とを電気的に接続し、かつ、前記第1の接続対象部材と前記第2の接続対象部材とを接続している樹脂部を前記非導電性フラックスにより形成する工程とを備える、接続構造体の製造方法が提供される。
 本発明に係る接続構造体の製造方法のある特定の局面では、前記第1の配置工程において、前記非導電性フラックスをディッピングにより配置する。
 本発明に係る非導電性フラックスは、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む。本発明に係る非導電性フラックスでは、上記の構成が備えられているので、得られる接続構造体の生産性及び耐衝撃性を高め、はんだフラッシュの発生を抑制することができる。
図1は、本発明の一実施形態に係る非導電性フラックスを用いて得られる接続構造体を模式的に示す断面図である。 図2(a)~(d)は、本発明の一実施形態に係る非導電性フラックスを用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。
 以下、本発明の詳細を説明する。
 (非導電性フラックス)
 本発明に係る非導電性フラックスは、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む。上記非導電性フラックスは、導電性を有しない。上記非導電性フラックスは、導電性物質を含まないことが好ましい。上記非導電性フラックスは、導電性粒子を含まないことが好ましい。上記非導電性フラックスは、はんだを含まないことが好ましい。上記非導電性フラックスは、はんだ粒子を含まないことが好ましい。また、上記非導電性フラックスは、熱硬化可能である。上記非導電性フラックスは、加熱により硬化する特性を有する。
 従来のようなアンダーフィル材を用いて封止を行った場合には、はんだ接合及びアンダーフィル材の硬化のためにリフロー工程を2回行うことになり、生産性が低いという課題がある。
 本発明に係る非導電性フラックスでは、上記の構成が備えられているので、上記非導電性フラックスを用いて接続構造体を作製する際に、1回のリフロー工程により、はんだを溶融させて電極同士を接続することができ、かつ、上記非導電性フラックスを硬化させることができる。このため、リフロー工程を2回行う必要がない。すなわち、本発明の非導電性フラックスでは、接続構造体を作製する際に一括実装が可能であるので、生産性を高めることができる。
 本発明に係る非導電性フラックスは、はんだを溶融させて電極同士を接続するために行われるリフロー工程の前に、はんだ粒子の表面上に配置されて用いられてもよい。すなわち、本発明に係る非導電性フラックスは、先入れアンダーフィル材として用いられてもよい。本発明に係る非導電性フラックスは、先入れアンダーフィル材として用いられることが好ましい。この場合、電極同士を接続するためのリフロー工程後にアンダーフィル材を充填し、再度リフロー工程を行う場合に比べて、リフロー工程の回数を減らすことができる。すなわち、本発明に係る非導電性フラックスが先入れアンダーフィル材として用いられる場合には、接続構造体を作製する際に一括実装が可能であるので、生産性をより一層高めることができる。
 また、本発明に係る非導電性フラックスでは、上記の構成が備えられているので、例えば、ディッピングによりパッケージに非導電性フラックスを配置する際に、十分な量を配置することができる。結果として、本発明に係る非導電性フラックスを用いた接続構造体に落下等の衝撃が加わった際に、接続不良等が発生して接続構造体が故障する確率を低くすることができる。すなわち、得られる接続構造体の耐衝撃性を高めることができる。また、接続対象部材に非導電性フラックスを配置する時に、接続対象部材をディッピング槽から容易に引き上げることができる。
 さらに、本発明に係る非導電性フラックスでは、上記の構成が備えられているので、得られる接続構造体のはんだフラッシュの発生を抑制することができ、耐はんだフラッシュ性を高めることができる。結果として、本発明に係る非導電性フラックスを用いた接続構造体において、ショート及びオープン不良の発生を抑制することができる。
 さらに、本発明に係る非導電性フラックスでは、上記の構成が備えられているので、得られる接続構造体における上下の電極間の接続抵抗を低くすることができ、結果として、導通信頼性を高めることができる。特に、本発明では、酸無水物硬化剤と有機リン化合物とが併用されていることで、フラックス効果をかなり高めることができる。
 本発明において、非導電性とは、絶縁抵抗が1.0×10Ω以上であることをいう。非導電性フラックスの絶縁抵抗は、例えば、以下の方法で測定することができる。銅電極を表面に有する櫛型基板の表面上に、非導電性フラックスを厚み100μmで塗布して試験体を得る。得られた試験体を、リフローシミュレーター(例えば、コアーズ社製「Core9046a」)を用いて、窒素雰囲気下(酸素濃度100ppm以下)で2℃/秒で160℃まで昇温させた後、室温(23℃)まで冷却する。その後、5Vの電圧を印加し、測定装置(例えば、ESPEC社製「エレクトロケミカルマイグレーション評価システム」)を用いて、絶縁抵抗を測定する。
 本発明において、フラックスとは、以下のはんだぬれ性試験におけるはんだぬれ径が600μm以上である組成物をいう。金メッキプリント基板の表面上に、組成物を厚み150μmで塗布し、該組成物の表面上に、SnBiはんだ粒子(粒子径500μm、融点139℃)を配置して、試験体を得る。得られた試験体を、リフローシミュレーター(例えば、コアーズ社製「Core9046a」)を用いて、窒素雰囲気下(酸素濃度100ppm以下)で2℃/秒で160℃まで昇温させ、3分間保持した後、室温(23℃)まで冷却する。その後、ぬれ拡がったはんだの形状を楕円で近似し、該楕円の短径と長径との平均((短径+長径)/2)を、組成物のはんだぬれ径とする。なお、上記楕円は正円を含む概念であり、上記楕円が正円である場合には、組成物のはんだぬれ径は、正円の直径となる。
 本発明に係る非導電性フラックスは、表面実装型パッケージと配線基板との接続に好適に用いることができる。上記表面実装型パッケージとしては、BGA、及びCSP等が挙げられる。
 上記非導電性フラックスの25℃での接着力(タック力)は、好ましくは50000N/m以上、より好ましくは100000N/m以上、さらに好ましくは120000N/m以上、特に好ましくは140000N/m以上である。上記非導電性フラックスの25℃での接着力(タック力)は、好ましくは250000N/m以下、より好ましくは210000N/m以下、さらに好ましくは170000N/m以下、特に好ましくは160000N/m以下である。上記非導電性フラックスの25℃での接着力が上記下限以上であると、ディッピングによりパッケージに上記非導電性フラックスを配置する際に、十分な量を配置することができる。結果として、得られる接続構造体の耐衝撃性をより一層効果的に高めることができる。また、上記非導電性フラックスの25℃での接着力が上記上限以下であると、ディッピング槽から容易にパッケージを引き上げることができる。
 上記非導電性フラックスの25℃での接着力(タック力)は、以下のようにして測定する。上記非導電性フラックスをステンレス板の表面上に厚み50μmで塗布し、積層体を得る。タック試験機を用いて、上記積層体にプローブ(直径8mm、10g)を10秒押し込んだ後、0.1mm/秒の速度でプローブを引き上げた時の荷重を測定する。タック試験機としては、UBM社製「TA-500」等が挙げられる。
 得られる接続構造体の耐衝撃性をより一層効果的に高める観点からは、上記非導電性フラックスの25℃での粘度(η25)は、好ましくは5Pa・s以上、より好ましくは25Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下、さらに好ましくは50Pa・s以下、特に好ましくは40Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び10rpmの条件で測定することができる。
 得られる接続構造体の耐衝撃性を高める観点からは、上記非導電性フラックスは、25℃で液状であることが好ましく、ペーストであることが好ましい。
 得られる接続構造体の耐衝撃性をより一層効果的に高める観点からは、上記非導電性フラックスの融点は、好ましくは40℃以上、より好ましくは70℃以上であり、好ましくは350℃以下、より好ましくは310℃以下である。
 上記非導電性フラックスの融点は、示差走査熱量測定(DSC)により求めることができる。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。
 導通信頼性を高める観点からは、上記非導電性フラックスの反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。
 <エポキシ化合物>
 上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビキシレノール型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。
 ディッピング性を高める観点からは、上記エポキシ化合物は、ビキシレノール型エポキシ化合物、ビスフェノールF型エポキシ化合物又はトリアジン核を骨格に有するエポキシ化合物であることが好ましく、ビキシレノール型エポキシ化合物又はビスフェノールF型エポキシ化合物であることがより好ましい。上記エポキシ化合物は、ビキシレノール型エポキシ化合物であることがさらに好ましい。
 得られる接続構造体の耐衝撃性をより一層高める観点からは、上記エポキシ化合物は、25℃で液状であることが好ましい。
 得られる接続構造体の耐衝撃性をより一層高める観点からは、上記非導電性フラックス100重量%中、上記エポキシ化合物の含有量は、好ましくは15重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下、さらに好ましくは55重量%以下である。
 <酸無水物硬化剤>
 上記酸無水物硬化剤は、上記エポキシ化合物を熱硬化させる。上記酸無水物硬化剤と、後述する有機リン化合物とを併用することにより、上記非導電性フラックスのフラックス効果をかなり高めることができる。結果として、得られる接続構造体中の電極及びはんだの表面の酸化膜を良好に除去することができる。
 上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。上記酸無水物硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 ディッピング性を高める観点からは、上記酸無水物硬化剤は、テトラヒドロ無水フタル酸又はヘキサヒドロ無水フタル酸であることが好ましく、ヘキサヒドロ無水フタル酸であることがより好ましい。ディッピング性をより一層高める観点からは、上記ヘキサヒドロ無水フタル酸は、メチルヘキサヒドロ無水フタル酸であることが好ましい。
 上記非導電性フラックス100重量%中、上記酸無水物硬化剤の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは25重量%以上であり、好ましくは60重量%以下、より好ましくは50重量%以下、さらに好ましくは45重量%以下である。上記酸無水物硬化剤の含有量が上記下限以上及び上記上限以下であると、得られる接続構造体の耐衝撃性及び耐はんだフラッシュ性をより一層高めることができる。
 上記エポキシ化合物100重量部に対して、上記酸無水物硬化剤の含有量は、好ましくは50重量部以上、より好ましくは60重量部以上、さらに好ましくは70重量部以上であり、好ましくは120重量部以下、より好ましくは110重量部以下、さらに好ましくは100重量部以下である。上記酸無水物硬化剤の含有量が上記下限以上及び上記上限以下であると、得られる接続構造体の耐衝撃性及び耐はんだフラッシュ性をより一層高めることができる。
 <有機リン化合物>
 上記有機リン化合物と、上記酸無水物硬化剤とを併用することにより、非導電性フラックスのフラックス性を高めることができる。結果として、得られる接続構造体中の電極及びはんだの表面の酸化膜を良好に除去することができる。また、得られる接続構造体の耐衝撃性を高めることができる。
 上記有機リン化合物としては、有機ホスホニウム塩、有機リン酸、有機リン酸エステル、有機ホスホン酸、有機ホスホン酸エステル、有機ホスフィン酸、及び有機ホスフィン酸エステル等が挙げられる。上記有機リン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 導通信頼性を高める観点からは、上記有機リン化合物は、有機ホスホニウム塩、有機リン酸又は有機リン酸エステルであることが好ましく、有機ホスホニウム塩であることがより好ましい。
 上記有機ホスホニウム塩としては、ホスホニウムイオンとその対イオンとで構成されている有機ホスホニウム塩が挙げられる。
 導通信頼性を高める観点からは、上記有機ホスホニウム塩は、メチルトリブチルホスホニウムジメチルホスフェート、トリブチルメチルホスホニウムビス(2-エチルヘキシル)ホスフェート、又はテトラブチルホスホニウムブロマイドであることが好ましく、メチルトリブチルホスホニウムジメチルホスフェートであることがより好ましい。
 上記有機ホスホニウム塩の市販品としては、日本化学工業社製「ヒシコーリン」シリーズ等が挙げられる。
 上記有機リン酸、上記有機リン酸エステル、上記有機ホスホン酸、上記有機ホスホン酸エステル、上記有機ホスフィン酸、及び上記有機ホスフィン酸エステルとしては特に限定されず、従来公知の化合物や市販品を用いることができる。
 得られる接続構造体の耐衝撃性をより一層高める観点からは、上記有機リン化合物は、25℃で液状であることが好ましい。
 得られる接続構造体の耐衝撃性及び耐はんだフラッシュ性をより一層高める観点からは、上記非導電性フラックス100重量%中、上記有機リン化合物の含有量は、好ましくは0.5重量%以上、より好ましくは0.8重量%以上であり、好ましくは10重量%以下、より好ましくは8.0重量%以下、さらに好ましくは4.0重量%以下である。
 得られる接続構造体の耐衝撃性及び耐はんだフラッシュ性をより一層高める観点からは、上記酸無水物硬化剤100重量部に対して、上記有機リン化合物の含有量は、好ましくは0.5重量部以上、より好ましくは1重量部以上、さらに好ましくは2重量部以上であり、好ましくは10重量部以下、より好ましくは5重量部以下である。
 <他の成分>
 上記非導電性フラックスは、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 フラックス性をより一層高める観点から、上記非導電性フラックスは、カルボキシル基を有する化合物を含んでいてもよく、カルボン酸化合物を含んでいてもよい。上記非導電性フラックスはフラックス性に優れているので、上記非導電性フラックスは、カルボキシル基を有する化合物を含んでいなくてもよく、カルボン酸化合物を含んでいなくてもよい。
 (接続構造体及び接続構造体の製造方法)
 本発明に係る非導電性フラックスは、接続構造体を得るために好適に用いられる。本発明に係る非導電性フラックスは、はんだの表面上に塗布するために好適に用いられる(非導電性フラックスのはんだの表面への使用)。本発明に係る非導電性フラックスは、はんだ粒子の表面上に塗布するために好適に用いられる(非導電性フラックスのはんだ粒子の表面への使用)。本発明に係る非導電性フラックスは、はんだの被覆材料であってもよい。本発明に係る非導電性フラックスは、はんだ粒子の被覆材料であってもよい。本発明に係る非導電性フラックスは、電極の表面上に塗布するためにも好適に用いられる(非導電性フラックスの電極の表面への使用)。本発明に係る非導電性フラックスは、導電性粒子の表面上に塗布するためにも好適に用いられる(非導電性フラックスの導電性粒子の表面への使用)。本発明に係る非導電性フラックスは、電極の被覆材料であってもよい。本発明に係る非導電性フラックスは、導電性粒子の被覆材料であってもよい。
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している樹脂部とを備える。本発明に係る接続構造体では、上記第1の電極は、第1の電極本体と、上記第1の電極本体の表面上にはんだ粒子とを備える。本発明に係る接続構造体では、上記第1の電極本体と上記第2の電極とが、電気的に接続されている。本発明に係る接続構造体では、上記樹脂部の材料が、上述した非導電性フラックスである。
 本発明に係る接続構造体の製造方法では、第1の電極を表面に有する第1の接続対象部材が用いられ、上記第1の電極は、第1の電極本体と、上記第1の電極本体の表面上にはんだ粒子とを備える。本発明に係る接続構造体の製造方法では、上述した第1の接続対象部材を用いて、かつ、上述した非導電性フラックスを用いて、上記第1の接続対象部材における上記はんだ粒子の表面上に、上記非導電性フラックスを配置する第1の配置工程を備える。本発明に係る接続構造体の製造方法は、上記非導電性フラックスが配置された上記第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材とを、上記第1の電極と上記第2の電極とが対向するように配置する第2の配置工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子及び上記非導電性フラックスを加熱することで、上記第1の電極と上記第2の電極とを電気的に接続し、かつ、上記第1の接続対象部材と上記第2の接続対象部材とを接続している樹脂部を上記非導電性フラックスにより形成する工程を備える。
 本発明に係る接続構造体の製造方法では、上記第1の配置工程において、上記非導電性フラックスを、ディスペンスにより配置してもよく、スクリーン印刷により配置してもよく、インクジェット装置による吐出により配置してもよく、ディッピングにより配置してもよい。生産性をより一層高める観点からは、上記第1の配置工程において、上記非導電性フラックスをディッピングにより配置することが好ましい。
 従来のアンダーフィル材を用いる接続構造体の製造方法では、電極同士を接続するためのリフロー工程を行った後、接続対象部材間にアンダーフィル材を毛細管現象により浸透させて充填し、アンダーフィル材を硬化させるためのリフロー工程を再度行う必要がある。すなわち、従来のアンダーフィル材を用いる接続構造体の製造方法では、リフロー工程を2回行う必要があるため、生産性が低いという課題がある。さらに、従来のアンダーフィル材を用いた接続構造体では、はんだフラッシュが発生することがある。はんだフラッシュが発生すると、ショート又はオープン不良が発生することがある。
 本発明に係る接続構造体及び接続構造体の製造方法では、特定の非導電性フラックスを用いているので、1回のリフロー工程により、電極同士を電気的に接続し、かつ、上記非導電性フラックスを硬化させることができる。このため、リフロー工程を2回行う必要がない。すなわち、本発明に係る接続構造体及び接続構造体の製造方法では、一括実装が可能であるので、結果として、生産性をより一層高めることができる。また、本発明に係る接続構造体及び接続構造体の製造方法では、特定の非導電性フラックスを用いているので、例えば、ディッピングによりパッケージに非導電性フラックスを配置する際に、十分な量を配置することができる。結果として、接続構造体に落下等の衝撃が加わった際に、接続不良等が発生して接続構造体が故障する確率を低くする(耐衝撃性を高める)ことができる。さらに、本発明に係る接続構造体及び接続構造体の製造方法では、特定の非導電性フラックスを用いているので、はんだフラッシュの発生を抑制することができる。結果として、得られる接続構造体において、ショート又はオープン不良の発生を抑制することができる。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の一実施形態に係る非導電性フラックスを用いて得られる接続構造体を模式的に示す断面図である。
 図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している樹脂部4とを備える。樹脂部4は、非導電性フラックス4Xa(図2(a)~(d)参照)により形成されている。樹脂部4の材料は、非導電性フラックス4Xaである。本実施形態では、非導電性フラックス4Xaは、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む。本実施形態では、非導電性フラックス4Xaは、ペーストである。
 樹脂部4は、非導電性フラックス4Xaが熱硬化された硬化物部である。
 第1の接続対象部材2は表面(下面)に、複数の第1の電極を有する。上記第1の電極は、第1の電極本体2aと、第1の電極本体2aの表面上にはんだ部2B(はんだ粒子)とを備える。上記第1の電極は、第1の電極本体2aとはんだ部2Bとの複合電極である。第2の接続対象部材3は表面(上面)に、複数の第2の電極3aを有する。接続構造体1では、第1の電極本体2aと第2の電極3aとが、電気的に接続されている。接続構造体1では、第1の電極本体2aと第2の電極3aとが、はんだ部2Bにより電気的に接続されている。
 図1に示すように、接続構造体1では、第1の電極本体2aと第2の電極3aとの間で、はんだ粒子の少なくとも第2の電極3aに接する部分が溶融した後、はんだ粒子が固化して、はんだ部2Bが形成されている。このため、はんだ部2Bと第2の電極3aとの接続面積が大きくなる。上記接続構造体では、はんだ粒子が残存していてもよい。上記接続構造体では、はんだ粒子とはんだ部とが存在してもよい。
 次に、図2(a)~(d)を用いて、接続構造体の製造方法の一例を具体的に説明する。図2(a)~(d)は、本発明の一実施形態に係る非導電性フラックスを用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。
 先ず、図2(a)及び図2(b)に示すように、第1の電極を表面(下面)に有する第1の接続対象部材2を用意する。上記第1の電極は、第1の電極本体2aと、第1の電極本体2aの表面上にはんだ粒子2bとを備える。また、非導電性フラックス4Xaを用意する。非導電性フラックス4Xaは、ディッピング槽4X内に充填されている。第1の接続対象部材2におけるはんだ粒子2bの表面上に、非導電性フラックス4Xaを配置する(第1の配置工程)。非導電性フラックス4Xaは、エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む。
 第1の配置工程において、第1の接続対象部材2におけるはんだ粒子2bの表面上に、非導電性フラックス4Xaをディッピングにより配置する。第1の接続対象部材2を、非導電性フラックス4Xaが充填されたディッピング槽4Xに浸漬させて、第1の接続対象部材2におけるはんだ粒子2bの表面上に非導電性フラックス4Xaを配置する。非導電性フラックス4Xaは、はんだ粒子2bの表面を被覆しており、被覆層である。非導電性フラックス4Xaである被覆層は、はんだ粒子2bの表面に沿って配置されている。
 はんだ粒子の表面上に配置する非導電性フラックスの量は、得られる接続構造体において、第1の接続対象部材と第2の接続対象部材との空隙を埋めることができる量であることが好ましい。
 また、第2の電極3aを表面(上面)に有する第2の接続対象部材3を用意する。次に、図2(b)及び(c)に示すように、非導電性フラックス4Xaが配置された第1の接続対象部材2と、第2の接続対象部材3とを、第1の電極(第1の電極本体2a及びはんだ粒子2b)と第2の電極3aとが対向するように配置する(第2の配置工程)。第1の接続対象部材2の第1の電極側に向けて、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極本体2aと第2の電極3aとを対向させる。
 次に、図2(d)に示すように、はんだ粒子2b及び非導電性フラックス4Xaを加熱する(第3の工程)。好ましくは、上記はんだ粒子の第2の電極と接する部分が溶融する温度以上に上記非導電性フラックスを加熱する。より好ましくは、上記エポキシ化合物の硬化温度以上に非導電性フラックス4Xaを加熱する。この加熱によって、第1の電極(第1の電極本体2a、及び、はんだ粒子2b又ははんだ部2B)と第2の電極2aとが電気的に接続される。また、非導電性フラックス4Xaは熱硬化する。この結果、図2(d)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している樹脂部4が、非導電性フラックス4Xaにより形成される。非導電性フラックス4Xaが熱硬化することによって樹脂部4が形成される。また、図2(d)に示すように、はんだ粒子2bによってはんだ部2Bが形成され、第1の電極本体2aと第2の電極3aとが、はんだ部2Bにより電気的に接続される。
 このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、第1の接続対象部材2と非導電性フラックス4Xaと第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。
 上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。上記第3の工程における上記加熱温度は、上記はんだ粒子の融点以上に加熱することが好ましい。上記第3の工程における上記加熱温度は、上記エポキシ化合物の硬化温度以上に加熱することが好ましい。上記第3の工程における上記加熱温度は、上記はんだ粒子の第2の電極と接する部分が溶融する温度以上であることが好ましく、上記エポキシ化合物の硬化温度以上であることがより好ましい。
 上記第3の工程における加熱方法としては、上記積層体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、上記積層体のはんだ部(はんだ粒子)及び樹脂部(非導電性フラックス)のみを局所的に加熱する方法が挙げられる。
 局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。
 また、ホットプレートにて局所的に加熱する際、はんだ部(はんだ粒子)及び樹脂部(非導電性フラックス)直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。
 接続構造体におけるはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。
 接続構造体における樹脂部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。
 はんだ粒子の融点での非導電性フラックスの粘度(ηmp)は、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上であり、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下である。上記粘度(ηmp)が、上記下限以上及び上記上限以下であれば、導通信頼性をより一層良好にすることができる。
 上記粘度(ηmp)は、例えば、Thermo Fisher Scientific社製レオメーター「HAAKE MARS III」を用いて、周波数2Hz、昇温速度0.11℃/秒、測定温度範囲25℃~200℃(但し、はんだ粒子の融点が200℃を超える場合には温度上限をはんだ粒子の融点とする)の条件で測定可能である。測定結果から、はんだ粒子の融点(℃)での粘度が評価される。
 非導電性フラックスがペースト(液状)である場合、非導電性フラックスの塗布量によって、樹脂部の厚みを調整することが容易になる。
 上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 エポキシ化合物:
 エポキシ化合物1(ビスフェノールF型エポキシ化合物、新日鉄住金化学社製「YDF-8170C」)
 エポキシ化合物2(ビキシレノール型エポキシ化合物、三菱ケミカル社製「YX-4000HK」)
 硬化剤:
 酸無水物硬化剤1(ヘキサヒドロ無水フタル酸とメチルヘキサヒドロ無水フタル酸との混合物、新日本理化社製「リカシッドMH-700」)
 酸無水物硬化剤2(テトラヒドロ無水フタル酸、新日本理化社製「リカシッドTH」)
 イミダゾール硬化剤(四国化成工業社製「2E4MZ-A」)
 有機リン化合物:
 有機リン化合物1(テトラブチルホスホニウムブロマイド、日本化学工業社製「ヒシコーリン PX-4B」、融点:110℃)
 有機リン化合物2(メチルトリブチルホスホニウムジメチルホスフェート、日本化学工業社製「ヒシコーリン PX-4MP」、融点:10℃)
 (実施例1~8及び比較例1,2)
 (1)非導電性フラックス又は組成物の作製
 下記の表1~3に示す成分を下記の表1~3に示す配合量で配合して、非導電性フラックス又は組成物を得た。
 (2)接続構造体の作製
 作製直後の非導電性フラックス(組成物)を、ディッピング槽に充填した。第1の電極を表面に有する第1の接続対象部材(パッケージ)として、BGA(0.8mmピッチ、100電極)を用意した。第2の接続対象部材として、第1の接続対象部材に対応する第2の電極(金電極)を表面に有するプリント基板(材質:FR4、厚み:1mm)を用意した。上記第1の接続対象部材を、ディッピング槽に1秒間浸漬し、非導電性フラックス(組成物)を第1の電極本体の表面上のはんだ粒子に配置した(第1の配置工程)。次に、非導電性フラックス(組成物)の下面に、第2の接続対象部材を電極同士が対向するように積層した(第2の配置工程)。はんだ粒子及び非導電性フラックス(組成物)には、第2の接続対象部材の重量は加わる。その状態から、はんだ粒子及び非導電性フラックスの温度が、昇温開始から50秒後にはんだ粒子の融点となるように加熱した。さらに、昇温開始から65秒後に、はんだ粒子(はんだ部)及び非導電性フラックス(樹脂部)の温度が160℃となるように加熱した。その後、120秒間160℃で保持し、非導電性フラックス(組成物)を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。
 (評価)
 (1)粘度
 得られた非導電性フラックス(組成物)0.1mLについて、E型粘度計(東機産業社製「TVE22L」)を用いて、25℃での粘度(η25)を、25℃及び10rpmの条件で測定した。なお、コーンロータは、3°×R7.7のコーンロータを用いた。
 (2)接着力
 得られた非導電性フラックス(組成物)をステンレス板の表面上に厚み50μmで塗布し、積層体を得た。タック試験機(UBM社製「TA-500」)を用いて、上記積層体にプローブ(直径8mm、10g)を10秒押し込んだ後、0.1mm/秒の速度でプローブを引き上げた時の荷重を測定し、25℃での接着力とした。
 (3)耐衝撃性(落下信頼性)
 得られた接続構造体を、1500Gの加速度で300回落下させた。落下試験後の接続構造体20個中、オープン不良が発生している接続構造体の数を故障数とした。耐衝撃性を、以下の基準で判定した。
 [耐衝撃性の判定基準]
 ○○:故障数が0個
 ○:故障数が1個
 △:故障数が2個
 ×:故障数が3個以上
 (4)はんだフラッシュ発生の抑制性
 得られた接続構造体について、昇温開始から50秒後にはんだ粒子の融点となるように加熱した。さらに、昇温開始から75秒後に、はんだ部及び樹脂部の温度が180℃となるように加熱し、60秒間180℃で保持した。その後冷却し、接続構造体20個中、オープン不良又はショートが発生している接続構造体の個数を、オープン不良又はショートの発生数とした。はんだフラッシュ発生の抑制性を、以下の基準で判定した。
 [はんだフラッシュ発生の抑制性の判定基準]
 ○:オープン不良又はショートの発生数が0個
 ×:オープン不良又はショートの発生数が1個以上
 (5)導通信頼性(上下の電極間)
 得られた接続構造体20個において、上下の電極間の接続抵抗100箇所について、2端子の抵抗計で測定し、接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を、以下の基準で判定した。
 [導通信頼性の判定基準]
 ○:接続抵抗の平均値が0.9mΩ以下
 ×:接続抵抗の平均値が0.9mΩを超える、又は接続不良が生じている
 (6)ディッピング性
 上記接続構造体の作製において、第1の接続対象部材を、ディッピング槽に1秒間浸漬した後、第1の接続対象部材を引き上げた。はんだ粒子に付着した非導電性フラックス(組成物)の量を目視で確認した。ディッピング性を、下記の基準で判定した。
 [ディッピング性の判定基準]
 ○:ディッピング槽から第1の接続対象部材を引き上げることができ、かつ、はんだ粒子の表面に、接続対象部材間の空隙を埋めるのに十分な量の非導電性フラックス(組成物)を配置することができる
 ×:ディッピング槽から第1の接続対象部材を引き上げることができない、又は、はんだ粒子の表面に、接続対象部材間の空隙を埋めるのに十分な量の非導電性フラックス(組成物)を配置することができない
 (7)フラックス性
 金メッキプリント基板の表面上に、得られた非導電性フラックス(組成物)を厚み150μmで塗布し、該組成物の表面上に、SnBiはんだ粒子(粒子径500μm、融点139℃)を配置して、試験体を得た。得られた試験体を、リフローシミュレーター(コアーズ社製「Core9046a」)を用いて、窒素雰囲気下(酸素濃度100ppm以下)で2℃/秒で160℃まで昇温させ、3分間保持した後、室温(23℃)まで冷却した。その後、ぬれ広がったはんだの形状を楕円で近似し、該楕円の短径と長径との平均((短径+長径)/2)を、非導電性フラックス(組成物)のはんだぬれ径とした。フラックス性を、下記の基準で判定した。なお、上記楕円が正円である場合には、非導電性フラックス(組成物)のはんだぬれ径は、正円の直径とした。
 [フラックス性の判定基準]
 〇:はんだぬれ径が、600μm以上
 ×:はんだぬれ径が、600μm未満
 (8)非導電性
 銅電極を表面に有する櫛型基板の表面上に、非導電性フラックス(組成物)を厚み100μmで塗布して試験体を得た。得られた試験体を、リフローシミュレーター(コアーズ社製「Core9046a」)を用いて、窒素雰囲気下(酸素濃度100ppm以下)で2℃/秒で160℃まで昇温させた後、室温(23℃)まで冷却した。その後、5Vの電圧を印加し、測定装置(ESPEC社製「エレクトロケミカルマイグレーション評価システム」)を用いて、絶縁抵抗を測定した。非導電性を、下記の基準で判定した。
 [非導電性の判定基準]
 〇:絶縁抵抗が1.0×10Ω以上
 ×:絶縁抵抗が1.0×10Ω未満
 結果を下記の表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、いずれの実施例においても、リフロー工程は1回のみであった。
 1…接続構造体
 2…第1の接続対象部材
 2a…第1の電極本体
 2b…はんだ粒子
 2B…はんだ部
 3…第2の接続対象部材
 3a…第2の電極
 4…樹脂部
 4X…ディッピング槽
 4Xa…非導電性フラックス

Claims (10)

  1.  エポキシ化合物と、酸無水物硬化剤と、有機リン化合物とを含む、非導電性フラックス。
  2.  25℃での接着力が、100000N/m以上210000N/m以下である、請求項1に記載の非導電性フラックス。
  3.  25℃での粘度が、400Pa・s以下である、請求項1又は2に記載の非導電性フラックス。
  4.  25℃での粘度が、50Pa・s以下である、請求項3に記載の非導電性フラックス。
  5.  前記酸無水物硬化剤100重量部に対して、前記有機リン化合物の含有量が、0.5重量部以上10重量部以下である、請求項1~4のいずれか1項に記載の非導電性フラックス。
  6.  非導電性フラックス100重量%中、前記酸無水物硬化剤の含有量が、5重量%以上50重量%以下である、請求項1~5のいずれか1項に記載の非導電性フラックス。
  7.  ペーストである、請求項1~6のいずれか1項に記載の非導電性フラックス。
  8.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材とを接続している樹脂部とを備え、
     前記第1の電極が、第1の電極本体と、前記第1の電極本体の表面上にはんだ粒子とを備え、
     前記第1の電極本体と前記第2の電極とが、電気的に接続されており、
     前記樹脂部の材料が、請求項1~7のいずれか1項に記載の非導電性フラックスである、接続構造体。
  9.  第1の電極を表面に有し、前記第1の電極が、第1の電極本体と前記第1の電極本体の表面上にはんだ粒子とを備える第1の接続対象部材を用いて、かつ、請求項1~7のいずれか1項に記載の非導電性フラックスを用いて、前記第1の接続対象部材における前記はんだ粒子の表面上に、前記非導電性フラックスを配置する第1の配置工程と、
     前記非導電性フラックスが配置された前記第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材とを、前記第1の電極と前記第2の電極とが対向するように配置する第2の配置工程と、
     前記はんだ粒子及び前記非導電性フラックスを加熱することで、前記第1の電極と前記第2の電極とを電気的に接続し、かつ、前記第1の接続対象部材と前記第2の接続対象部材とを接続している樹脂部を前記非導電性フラックスにより形成する工程とを備える、接続構造体の製造方法。
  10.  前記第1の配置工程において、前記非導電性フラックスをディッピングにより配置する、請求項9に記載の接続構造体の製造方法。
PCT/JP2022/001988 2021-01-20 2022-01-20 非導電性フラックス、接続構造体及び接続構造体の製造方法 WO2022158527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/271,531 US20240131633A1 (en) 2021-01-20 2022-01-20 Non-electroconductive flux, connected structure, and method for producing connected structure
JP2022534236A JPWO2022158527A1 (ja) 2021-01-20 2022-01-20
KR1020237012117A KR20230133835A (ko) 2021-01-20 2022-01-20 비도전성 플럭스, 접속 구조체 및 접속 구조체의 제조 방법
CN202280009995.0A CN116783702A (zh) 2021-01-20 2022-01-20 非导电性助焊剂、连接结构体及连接结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021007135 2021-01-20
JP2021-007135 2021-01-20

Publications (1)

Publication Number Publication Date
WO2022158527A1 true WO2022158527A1 (ja) 2022-07-28

Family

ID=82549508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001988 WO2022158527A1 (ja) 2021-01-20 2022-01-20 非導電性フラックス、接続構造体及び接続構造体の製造方法

Country Status (6)

Country Link
US (1) US20240131633A1 (ja)
JP (1) JPWO2022158527A1 (ja)
KR (1) KR20230133835A (ja)
CN (1) CN116783702A (ja)
TW (1) TW202244104A (ja)
WO (1) WO2022158527A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183480A (ja) * 2001-12-25 2003-07-03 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及びフリップチップ型半導体装置
JP2005039206A (ja) * 2003-07-18 2005-02-10 Samsung Electronics Co Ltd 半導体チップ表面実装方法
WO2009147828A1 (ja) * 2008-06-05 2009-12-10 住友ベークライト株式会社 半導体装置の製造方法および半導体装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186121A (ja) 2017-04-24 2018-11-22 凸版印刷株式会社 半導体パッケージ基板、半導体パッケージ、および半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183480A (ja) * 2001-12-25 2003-07-03 Shin Etsu Chem Co Ltd 液状エポキシ樹脂組成物及びフリップチップ型半導体装置
JP2005039206A (ja) * 2003-07-18 2005-02-10 Samsung Electronics Co Ltd 半導体チップ表面実装方法
WO2009147828A1 (ja) * 2008-06-05 2009-12-10 住友ベークライト株式会社 半導体装置の製造方法および半導体装置

Also Published As

Publication number Publication date
CN116783702A (zh) 2023-09-19
JPWO2022158527A1 (ja) 2022-07-28
TW202244104A (zh) 2022-11-16
KR20230133835A (ko) 2023-09-19
US20240131633A1 (en) 2024-04-25

Similar Documents

Publication Publication Date Title
JP7356217B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
TWI758335B (zh) 導電材料、連接構造體及連接構造體之製造方法
TWI798321B (zh) 焊料粒子、導電材料、焊料粒子之保管方法、導電材料之保管方法、導電材料之製造方法、連接構造體及連接構造體之製造方法
JP7184758B2 (ja) 導電材料、導電材料の保管方法、導電材料の製造方法及び接続構造体の製造方法
JP2019096616A (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2022158527A1 (ja) 非導電性フラックス、接続構造体及び接続構造体の製造方法
TWI793307B (zh) 導電材料、連接構造體及連接構造體之製造方法
TWI663900B (zh) 連接構造體之製造方法
JP4976257B2 (ja) 導電性ペーストおよびこれを用いた実装体
JP2018126787A (ja) はんだペーストとそれにより得られる実装構造体
JP2019096550A (ja) 導電材料、接続構造体及び接続構造体の製造方法
TWI834887B (zh) 導電材料、連接構造體及連接構造體之製造方法
JP7368947B2 (ja) 電子部品
JP7389657B2 (ja) 導電ペースト及び接続構造体
WO2024034516A1 (ja) 導電ペースト及び接続構造体
JP7303675B2 (ja) 導電材料、接続構造体及び接続構造体の製造方法
WO2024009498A1 (ja) 半導体装置の製造方法、基板及び半導体素子
TW202111732A (zh) 導電材料、連接構造體及連接構造體之製造方法
TW202418301A (zh) 導電膏及連接構造體
JP2015108155A (ja) アンダーフィル用液状エポキシ樹脂組成物、並びにそれを用いた実装部品構造体及び実装部品の表面実装方法
JP2020047590A (ja) 導電フィルム及び接続構造体
JP2019145501A (ja) 導電材料、接続構造体及び接続構造体の製造方法
JP2016076354A (ja) 接続構造体の製造方法及び接続構造体
JP2016076557A (ja) 接続構造体の製造方法及び接続構造体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022534236

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742649

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18271531

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280009995.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742649

Country of ref document: EP

Kind code of ref document: A1