WO2022156255A1 - 双层多跨桥梁施工方法 - Google Patents

双层多跨桥梁施工方法 Download PDF

Info

Publication number
WO2022156255A1
WO2022156255A1 PCT/CN2021/119885 CN2021119885W WO2022156255A1 WO 2022156255 A1 WO2022156255 A1 WO 2022156255A1 CN 2021119885 W CN2021119885 W CN 2021119885W WO 2022156255 A1 WO2022156255 A1 WO 2022156255A1
Authority
WO
WIPO (PCT)
Prior art keywords
span
chord
bridge
frame
construction
Prior art date
Application number
PCT/CN2021/119885
Other languages
English (en)
French (fr)
Inventor
任敬磊
孙冰
高勇刚
沈洪宇
朱邵辉
亓建国
刘翠
闫瑞华
贺志强
李龙飞
杨思杰
张槐东
陈旭
姜伟
李文博
孙英武
张宇航
Original Assignee
中建科工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建科工集团有限公司 filed Critical 中建科工集团有限公司
Priority to US18/273,506 priority Critical patent/US20240093443A1/en
Publication of WO2022156255A1 publication Critical patent/WO2022156255A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D12/00Bridges characterised by a combination of structures not covered as a whole by a single one of groups E01D2/00 - E01D11/00

Definitions

  • the invention relates to the field of construction, in particular to a construction method for a double-layer multi-span bridge.
  • the construction method of multi-span and double-deck steel structure bridges currently adopts the bracket method.
  • the bracket method is to lay the tire frame before the construction of the double-layer multi-span bridge to support the construction of the double-layer multi-span bridge. After the double-layer multi-span bridge is completed, the tire frame is removed.
  • the number of tire frames required to support the double-layer multi-span bridge is high, the construction cost is high, and the construction period is long.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a construction method for a double-layer multi-span bridge, which can shorten the construction period of the double-layer multi-span bridge and reduce the construction cost of the construction period of the double-layer multi-span bridge.
  • the method includes:
  • Construction of the first span install the lower chord frame of the first span, and use the lower chord frame of the first span as a support to install the lower bridge structure of the first span;
  • Second span construction install the lower chord tire frame of the second span, and use the lower chord tire frame of the second span as a support to install the lower bridge structure of the second span;
  • the remaining spans of the bridge are sequentially constructed by using the construction method of unloading the tire frames across spans, and after the construction of all the spans of the double-layer multi-span bridge is completed, the remaining upper chord tire frames and the lower chord tire frames are disassembled;
  • the construction method for unloading the tire frame across the span includes the following steps:
  • the construction method for a double-layer multi-span bridge according to the embodiment of the present invention has at least the following beneficial effects: in the construction method for a double-layer multi-span bridge in the embodiment of the present invention, the upper chord frame and the lower chord of the completed span are unloaded in stages during construction.
  • the tire frame enables the upper string tire frame and the lower string tire frame to be used in turnaround, reducing the construction cost.
  • the construction period for building the upper and lower tire frames is short, and other construction operations can be carried out simultaneously on the span of the dismantled tire frame. Effectively reduce the construction period of double-layer multi-span bridges.
  • the bridge structure of the double-layer continuous steel truss structure does not have expansion joints.
  • the cross-bridge construction method can ensure that the bridge structure can be smoothly and safely transitioned to the design stress state by disassembling the top-chord tire frame and the bottom-chord tire frame in stages.
  • the double-layer multi-span bridge is constructed from both ends to the middle, and any span in the middle is closed.
  • the construction method of the second span construction is adopted for the adjacent spans of the spans at both ends, and the construction method of unloading the tire frame across the span is adopted for the remaining spans of the double-layer multi-span bridge.
  • a method of supporting and installing a lower bridge structure supported by the lower chord frame includes: installing a lower chord on top of the lower chord frame, and installing the lower bridge structure on the lower chord.
  • a method of installing an upper bridge structure supported by the upper chord frame comprises: installing a portal frame on the lower bridge structure, and on top of the portal frame and the top of the upper chord frame A supporting and distributing beam is installed therebetween, an upper chord is installed above the supporting and distributing beam, and the upper bridge structure is installed on the upper chord.
  • the method for installing the top chord above the support and distribution beam includes: installing a positioning block on the support and distribution beam, and positioning and installing the top chord by the positioning block.
  • the lower bridge structure of one or more of the spans of the double-deck multi-span bridge is arched.
  • a tire frame base is constructed at the installation position of the upper chord tire frame and the lower chord tire frame.
  • pre-compression is performed on the tire frame base.
  • FIG. 1 is a schematic structural diagram of a double-layer multi-span bridge in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the construction of the first span of a double-layer multi-span bridge in an embodiment of the present invention
  • Fig. 3 is the construction schematic diagram of the second span of the double-layer multi-span bridge in Fig. 2;
  • Fig. 4 is the construction schematic diagram of the third span of the double-layer multi-span bridge in Fig. 2;
  • Fig. 5 is the construction schematic diagram of the fourth span and the sixth span of the double-layer multi-span bridge in Fig. 2;
  • FIG. 6 is a schematic diagram of the construction of the fifth span of the double-layer multi-span bridge in FIG. 2 .
  • Bridge pier 100 upper chord frame 110, upper bridge structure 120, web 121, lower chord frame 130, lower bridge structure 140, lower chord 150, portal frame 161, support distribution beam 162, upper chord 163, first span 200,
  • the second span is 300
  • the third span is 400
  • the fourth span is 500
  • the fifth span is 600
  • the sixth span is 700.
  • the azimuth description such as the azimuth or position relationship indicated by up, down, front, rear, left, right, etc.
  • the azimuth description is based on the azimuth or position relationship shown in the drawings, only In order to facilitate the description of the present invention and simplify the description, it is not indicated or implied that the indicated device or element must have a particular orientation, be constructed and operated in a particular orientation, and therefore should not be construed as limiting the present invention.
  • an embodiment of the present invention proposes a construction method for a double-layer multi-span bridge, including: construction of the first span 200, construction of the second span 300, and unloading the tire frame across the span,
  • the construction of the first span includes: installing the lower chord frame 130 of the first span 200, and supporting and installing the lower bridge structure 140 of the first span 200 by the lower chord frame 130 of the first span 200;
  • the upper chord frame 110 of the first span 200 is installed, and the upper bridge structure 120 of the first span 200 is supported by the upper chord frame 110 of the first span 200 .
  • the construction of the second span includes: installing the lower chord frame 130 of the second span 300, and supporting and installing the lower bridge structure 140 of the second span 300 by the lower chord frame 130 of the second span 300;
  • the remaining spans of the bridge are constructed in sequence by the construction method of unloading the tire frames across spans. After the construction of all the spans of the double-span multi-span bridge is completed, the remaining upper chord tire frames 110 and lower chord tire frames 130 are removed;
  • the construction method for unloading the tire frame across the span includes the following steps:
  • the upper chord tire frame 110 of the adjacent span of the current construction span and the lower chord tire frame 130 of the span of the current construction span are unloaded.
  • the span refers to the bridge structure between two adjacent piers 100 .
  • the adjacent span of the current construction span refers to the span adjacent to the current construction span and the bridge structure has been installed.
  • Cross 300 The span that is one span apart from the current construction span refers to the span that is separated from the current construction span by the adjacent span and the bridge structure has been installed. For example, when the current construction span is the sixth span of 700, the current construction span is one span apart.
  • the span is the fourth span of 500.
  • Both the lower chord tire frame 130 and the upper chord tire frame 110 can be assembled by assembling standard sections step by step, and the height and load thereof are set according to the bridge structure.
  • the upper bridge structure 120 and the lower bridge structure 140 are connected as a whole through the web rods 121 .
  • the upper bridge structure 120 and the lower bridge structure 140 may be bridge decks formed by pouring concrete through reinforced formwork, segmented roadway slabs or integral bridge deck steel plates, which may be assembled by welding.
  • the upper chord frame 110 is disassembled.
  • the upper bridge structure 120 is supported by the lower bridge structure 140 and the lower chord frame 130 below, which will not affect the stability of the upper bridge structure 120 .
  • Both ends of the lower bridge structure 140 of the bridge are installed on the bridge piers 100, and the bridge piers 100 can support the bridge as a whole.
  • the two bridges are disassembled.
  • the bottom chord frame 130 of the span that is one span away from the current construction span and the bridge pier 100 has been connected at both ends, so that the load-bearing of the bridge can be safely transferred to the bridge pier 100 and prevent the double-layer multi-span bridge from collapsing.
  • the upper chord tire frame 110 and the lower chord tire frame 130 of the span that have been constructed during the construction by reasonably unloading the upper chord tire frame 110 and the lower chord tire frame 130 of the span that have been constructed during the construction, the upper chord tire frame 110 and the lower chord tire frame 130 can be used in turnaround, reducing the need for construction cost.
  • the construction period for building the upper chord frame 110 and the lower chord frame 130 is short, and other construction operations can be performed simultaneously on the span of the dismantled tire frame.
  • the installed bridge deck can be coated with fire retardant paint It can effectively reduce the construction period of double-layer multi-span bridges.
  • the bridge structure of the double-layer continuous steel truss structure does not have expansion joints.
  • the bridge structure cannot digest its internal deformation, which may cause the free end of the installation to warp.
  • the bridge structure can be smoothly and safely transitioned to the designed stress state.
  • the double-layer multi-span bridge is constructed from both ends to the middle, and any span in the middle is closed.
  • the adjacent span of the spans at both ends of the bridge adopts the construction method of the second span construction, and the remaining span of the double-span multi-span bridge adopts the construction method of unloading the tire frame between the spans.
  • the one-way construction of the bridge, the construction span is large, causing construction difficulties, the two-way construction of the bridge can reduce the one-way current construction span of the bridge, reduce the construction difficulty, and shorten the construction period of the bridge.
  • the double-layer multi-span bridge is constructed from both ends to the middle, and the construction methods at both ends are the same.
  • the method of reasonably disassembling the top-string tire frame 110 and the bottom-string tire frame 130 of the span that has been constructed can make the top-string tire frame 110 and the bottom-string tire frame 130. It can be used in turnaround, reducing construction cost and shortening construction period.
  • the selection of the position of the span of the bridge closure can be set according to the structure of the double-layer multi-span bridge and the terrain where the bridge is located.
  • the construction of both ends of the double-layer multi-span bridge can be started at the same time, or it can be carried out one after the other according to the construction needs. For example, for an 8-span double-span bridge, construction can be started at both ends at the same time; it can also be constructed from one end of the double-span multi-span bridge. At one end, construction begins.
  • a 6-span double-layer bridge is constructed using the double-layer multi-span bridge construction method in the present embodiment, and is constructed from both ends to the middle, and the fifth span is 600 closed, and the steps are as follows:
  • the method of installing the lower bridge structure 140 supported by the lower chord frame 130 includes installing a lower chord 150 on top of the lower chord frame 130 and installing the lower bridge structure 140 on the lower chord 150 .
  • the lower chord 150 is hoisted to the top of the lower chord frame 130, the lower chord frame 130 supports the lower chord 150, and then the lower bridge structure 140 is hoisted to the operating surface of the lower chord 150, and the lower bridge structure 140 and the lower chord are hoisted. 150 for installation and fixation.
  • the lower bridge structure 140 may be a bridge deck formed by pouring concrete through a reinforced formwork, a segmented roadway slab or an integral bridge deck steel plate.
  • the bridge deck steel plate or the roadway slab can be assembled by welding, and then combined with the lower chord 150 to be fixed. .
  • the method of installing the upper bridge structure 120 supported by the upper chord frame 110 includes: installing the portal frame 161 on the lower bridge structure 140, and on the top of the portal frame 161 and the upper chord frame 110 A support distribution beam 162 is installed between the tops, an upper chord 163 is installed above the support distribution beam 162 , and the upper bridge structure 120 is installed on the upper chord 163 .
  • the portal frame 161 is a portal-shaped structure composed of a cross bar and several uprights.
  • the upper chord 163 is connected to the support distribution beam 162, the support distribution beam 162 is connected to the portal frame 161, and the upper chord frame 110 can support the upper bridge structure 120.
  • the upper chord frame 110 can be adapted to different bridge structure.
  • the portal frame 161 passes through the web bars 121 of the upper bridge structure 120 and the lower bridge structure 140 , and the upper chord frame 110 is connected with the portal frame 161 to prevent interference between the upper chord frame 110 and the web bars 121 .
  • the way of installing the portal frame 161 , the supporting and distributing beam 162 and the upper chord 163 may be welding or fixing by bolts.
  • the method for installing the top chord 163 above the support and distribution beam 162 includes: installing a positioning block on the support and distribution beam 162, and positioning and installing the top chord 163 by the positioning block.
  • the chords in bridge steel structures are usually rigid members with parallelogram cross-sections, and it is difficult to install them at the set position accurately by direct installation.
  • the positioning block is set at the installation position of the upper chord 163 and can abut the upper chord 163 at the set position, so that the upper chord 163 is positioned at the set position, reducing the difficulty of manual adjustment and improving the construction efficiency.
  • the positioning block can be installed on the support distribution beam 162 by welding, bolting or the like.
  • the lower bridge structure 140 of one or more spans of a double-deck multi-span bridge is formed into an arched structure.
  • the arch bridge structure has large spanning capacity and uniform surface force, which is suitable for the middle span of the bridge with large span.
  • the arched bridge structure may be formed by making the lower chord 150 a parabolic change with an opening downward.
  • a tire frame base is constructed at the installation position of the upper chord tire frame 110 and the lower chord tire frame 130 .
  • the installation position of the upper chord tire frame 110 or the lower chord tire frame 130 is a land surface, and the method for constructing the tire frame base may be to pour concrete at the installation position of the upper chord tire frame 110 or the lower chord tire frame 130 to form a concrete base;
  • a steel base plate is installed at the installation position of the upper chord tire frame 110 or the lower chord tire frame 130 , and the upper chord tire frame 110 or the lower chord tire frame 130 is supported by the steel base plate.
  • the concrete base or the rigid base plate has better rigidity, so as to prevent the soil from being dented and deformed, so that the height of the upper chord frame 110 or the lower chord frame 130 changes.
  • the installation position of the upper chord tire frame 110 or the lower chord tire frame 130 is across the river, and the method for constructing the tire frame base may be to build a pipe pile at the installation position of the upper chord tire frame 110 or the lower chord tire frame 130, and support the upper chord tire through the pipe pile.
  • the frame 110 and the lower chord frame 130 .
  • preloading is performed on the tire frame base.
  • the tire frame base may appear partially dented and other changes. Applying pre-pressure in advance can make the tire frame base position is more stable.
  • the method of preloading the base of the tire frame may be to place concrete compacts or other heavy objects on the base of the tire frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

本发明公开了一种双层多跨桥梁施工方法。本发明的双层桥梁施工方法采用分级隔跨拆卸支承胎架的方法施工,使上弦胎架和下弦胎架可以周转使用,减少了施工成本。此外,搭建支撑胎架的施工周期缩短,且拆卸完胎架的跨可以同步进行其他施工操作,例如,胎架拆卸完后即可对已经安装好的桥面进行防火涂料施工,有效缩减双层多跨桥梁的施工周期。此外,本发明实施例中的双层多跨桥梁施工方法,通过分级拆卸上弦胎架和下弦胎架,能够保证桥梁结构平稳、安全的过度到设计受力状态。

Description

双层多跨桥梁施工方法 技术领域
本发明涉及建筑领域,尤其涉及一种双层多跨桥梁施工方法。
背景技术
目前,全国钢结构大力发展,多跨双层的钢结构桥梁不断增加。多跨双层的钢结构桥梁的施工方法,目前采用支架法。支架法是在双层多跨桥梁施工前铺设好胎架,以支撑双层多跨桥梁施工,双层多跨桥梁竣工后,再将胎架拆卸。但支撑双层多跨桥梁所需的胎架数量多,施工成本高,施工周期长。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种双层多跨桥梁施工方法,能够缩短双层多跨桥梁的施工周期,减少双层多跨桥梁的施工周期的施工成本。
根据本发明的第一方面实施例的双层多跨桥梁施工方法,包括:
第一跨施工:安装所述第一跨的下弦胎架,并以所述第一跨的所述下弦胎架为支撑安装所述第一跨的下层桥梁结构;
安装所述第一跨的上弦胎架,并以所述第一跨的所述上弦胎架为支撑安装所述第一跨的上层桥梁结构;
第二跨施工:安装第二跨的下弦胎架,并以所述第二跨的所述下弦胎架为支撑安装所述第二跨的下层桥梁结构;
安装所述第二跨的上弦胎架,并以所述第二跨的所述上弦胎架为支撑安装所述第二跨的上层桥梁结构;
卸载所述第一跨的所述上弦胎架;
采用隔跨卸载胎架的施工方法依次对桥梁的剩余跨施工,所述双层多跨桥梁的全部跨施工完成后,拆卸剩余的所述上弦胎架和所述下弦胎架;
隔跨卸载胎架的施工方法包括如下步骤:
安装所述当前施工跨的上弦胎架,并以所述当前施工跨的所述上弦胎架为支撑安装所述当前施工跨的上层桥梁结构;
卸载所述当前施工跨的相邻跨的上弦胎架和所述当前施工跨的相隔一跨的跨的下弦胎架。
根据本发明实施例的双层多跨桥梁施工方法,至少具有如下有益效果:本发明实施例中双层多跨桥梁施工方法,通过在施工中分级卸载已经施工完成的跨的上弦胎架和下弦胎架,使上弦胎架和下弦胎架可以周转使用,减少了施工成本。此外,搭建上弦胎架和下弦胎架的施工周期短,且拆卸完胎架的跨可以同步进行其他施工操作,例如,胎架拆卸完后即可对已经安装好的桥面进行防火涂料施工,有效缩减双层多跨桥梁的施工周期。此外,双层连续钢桁架结构的桥梁结构不具备伸缩缝,一次性拆卸全部支撑胎架,桥梁结构无法消化其内部形变,可能会导致安装自由端起翘,本发明实施例中的双层多跨桥梁施工方法,通过分级拆卸上弦胎架和下弦胎架,能够保证桥梁结构平稳、安全的过度到设计受力状态。
所述双层多跨桥梁自两端向中间施工,并于中间任一跨合龙,所述双层多跨桥梁两端的跨采用所述第一跨施工的施工方法,所述双层多跨桥梁两端的跨的相邻跨的采用所述第二跨施工的施工方法,所述所述双层多跨桥梁的剩余跨采用所述隔跨卸载胎架的施工方法。根据本发明的一些实施例,由所述下弦胎架支撑安装下层桥梁结构的方法包括:在所述下弦胎架的顶部安装下弦杆,并在所述下弦杆上安装所述下层桥梁结构。
根据本发明的一些实施例,由所述上弦胎架支撑安装上层桥梁结构的方法包括:在所述下层桥梁结构上安装门式架,并在所述门式架的顶部和上弦胎架的顶部之间安装支撑分配梁,在所述支撑分配梁的上方安装上弦杆,并在所述上弦杆上安装所述上层桥梁结构。
根据本发明的一些实施例,在所述支撑分配梁的上方安装所述上弦杆的方法包括:在所述支撑分配梁上安装定位挡,并由所述定位挡定位安装所述上弦杆。
根据本发明的一些实施例,使所述双层多跨桥梁的其中一个或多个跨的所述下层桥梁结构呈拱形结构。
根据本发明的一些实施例,在安装所述上弦胎架和所述下弦胎架前,在所述上弦胎架和所述下弦胎架的安装位置施工建设胎架基台。
根据本发明的一些实施例,安装所述上弦胎架和所述下弦胎架前,对所述胎架基台实施预压。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明一实施例中的双层多跨桥梁的结构示意图;
图2为本发明一实施例中的双层多跨桥梁的第一跨施工示意图;
图3为图2中的双层多跨桥梁的第二跨施工示意图;
图4为图2中的双层多跨桥梁的第三跨施工示意图;
图5为图2中的双层多跨桥梁的第四跨和第六跨施工示意图;
图6为图2中的双层多跨桥梁的第五跨施工示意图。
附图标记:
桥墩100,上弦胎架110,上层桥梁结构120,腹杆121,下弦胎架130,下层桥梁结构140,下弦杆150,门式架161,支撑分配梁162,上弦杆163,第一跨200,第二跨300,第三跨400,第四跨500,第五跨600,第六跨700。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明 的限制。
在本发明的描述中,若干的含义是一个以上,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
本发明的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
参照图1至图4,本发明一实施例中提出了一种双层多跨桥梁施工方法,包括:第一跨200施工、第二跨300施工和隔跨卸载胎架,
第一跨施工包括:安装第一跨200的下弦胎架130,并由第一跨200的下弦胎架130支撑安装第一跨200的下层桥梁结构140;
安装第一跨200的上弦胎架110,并由第一跨200的上弦胎架110支撑安装第一跨200的上层桥梁结构120。
第二跨施工包括:安装第二跨300的下弦胎架130,并由第二跨300的下弦胎架130支撑安装第二跨300的下层桥梁结构140;
安装第二跨300的上弦胎架110,并由第二跨300的上弦胎架110支撑安装第二跨300的上层桥梁结构120;
卸载第一跨200的上弦胎架110。
采用隔跨卸载胎架的施工方法依次对桥梁的剩余跨施工,双层多跨桥梁的全部跨施工完成后,拆卸剩余的上弦胎架110和下弦胎架130;
隔跨卸载胎架的施工方法包括如下步骤:
安装当前施工跨的上弦胎架110,并以当前施工跨的上弦胎架110为支撑安装当前施工跨的上层桥梁结构120;
卸载当前施工跨的相邻跨的上弦胎架110和当前施工跨的相隔一跨的跨的下弦胎架130。
其中,跨是指相邻的两个桥墩100之间的桥梁结构。当前施工跨的相邻跨是指当前施工跨相邻的已经安装好桥梁结构的跨,例如当前施工跨为第三跨400时,当前施工跨的相邻跨为已经安装好桥梁结构的第二跨300。当前施工跨的相隔一跨的跨是与指当前施工跨相隔当前施工跨的相邻跨并已经安装好桥梁结构的跨,例如当前施工跨为第六跨700时,当前施工跨的相隔一跨的跨为第四跨500。下弦胎架130和上弦胎架110均可通过逐级拼装标准节的方式进行组装,其高度和载荷根据桥梁结构设定。桥梁的施工过程中,安装完上层桥梁结构120后,上层桥梁结构120与下层桥梁结构140通过腹杆121连接为一体。上层桥梁结构120、下层桥梁结构140可以是通过钢筋模板浇筑混凝土形成的桥面板、分块的行车道板或者整体的桥面钢板,桥面钢板或者行车道板可通过焊接进行拼装。
上层桥梁结构120安装完成后拆卸上弦胎架110,上层桥梁结构120由下方的下层桥梁结构140和下弦胎架130支撑,不会影响上层桥梁结构120的稳定。桥梁的下层桥梁结构140的两端均安装在桥墩100上,桥墩100能够对桥梁整体支撑,本发明的实施例中的双层多跨桥梁施工方法,在当前施 工跨安装完成后,再拆卸两端均已连接好桥墩100的与当前施工跨相隔一跨的跨的下弦胎架130,可以使桥梁的承重安全地过渡到桥墩100上,防止双层多跨桥梁崩塌。
以下是一个5跨双层桥梁应用本发明实施例中的双层桥梁施工方法的一个示例:
安装第一跨200的下弦胎架130和上弦胎架110,并安装好第一跨200的上层桥梁结构120和下层桥梁结构140,
安装第二跨300的下弦胎架130和上弦胎架110,安装好第二跨300的上层桥梁结构120和下层桥梁结构140后,拆卸第一跨200的上弦胎架110;
安装第三跨400的下弦胎架130和上弦胎架110,安装好第二跨300的上层桥梁结构120和下层桥梁结构140后,拆卸第二跨300的上弦胎架110和第一跨200的下弦胎架130;
安装第四跨500的下弦胎架130和上弦胎架110,安装好第四跨500的上层桥梁结构120和下层桥梁结构140后,拆卸第三跨400的上弦胎架110和第二跨300的下弦胎架130;
安装第五跨600的下弦胎架130和上弦胎架110,安装好第五跨600的上层桥梁结构120和下层桥梁结构140后,桥梁结构施工完毕,拆除剩余的上弦胎架110和下弦胎架130。
现有技术中的双层多跨桥梁施工方法,在桥梁施工前铺设好全部胎架以支撑桥梁施工,双层多跨桥梁竣工后,再将胎架全部拆卸。这种方法胎架支承体系的胎架一次性投入量大,需要大面积的临时堆场,且施工周期长。
本发明实施例中双层多跨桥梁施工方法,通过在施工中合理卸载已经施工完成的跨的上弦胎架110和下弦胎架130,使上弦胎架110和下弦胎架130可以周转使用,减少了施工成本。此外,搭建上弦胎架110和下弦胎架130的施工周期短,且拆卸完胎架的跨可以同步进行其他施工操作,例如,胎架拆卸完后即可对已经安装好的桥面进行防火涂料施工,有效缩减双层多跨桥梁的施工周期。此外,双层连续钢桁架结构的桥梁结构不具备伸缩缝,一次性拆卸全部支撑胎架,桥梁结构无法消化其内部形变,可能会导致安装自由端起翘,本发明实施例中的双层多跨桥梁施工方法,通过分级拆卸上弦胎架110和下弦胎架130,能够保证桥梁结构平稳、安全的过度到设计受力状态。
在本发明的另一些实施例中,双层多跨桥梁自两端向中间施工,并于中间任一跨合龙,双层多跨桥梁两端的跨采用第一跨施工的施工方法,双层多跨桥梁两端的跨的相邻跨采用第二跨施工的施工方法,双层多跨桥梁的剩余跨采用隔跨卸载胎架的施工方法。桥梁单向施工,施工的跨度大,造成施工困难,桥梁双向施工可以减少桥梁的单向当前施工跨度,降低施工难度,并缩短桥梁的施工周期。
双层多跨桥梁自两端向中间施工,两端的施工方法相同,采取合理拆卸已经施工完成的跨的上弦胎架110和下弦胎架130的方法,能够使上弦胎架110和下弦胎架130可以周转使用,减少施工成本,并缩短施工周期。桥梁合龙的跨的位置的选择可以根据双层多跨桥梁的结构以及桥梁所在的地形设定。双层多跨桥梁两端的施工可以同时开始进行,也可以根据施工需求一先一后进行。例如一个8跨双层桥梁,可以两端同时开始进行施工;也可以自双层多跨桥梁的一端先施工,施工完成至合龙位置的跨的部分后或全部后,双层多跨桥梁的另一端再开始进行施工。
参照图2至图6,一个6跨双层桥梁应用本实施例中的双层多跨桥梁施工方法,自两端向中间施工,并于第五跨600合龙,其步骤如下:
安装第一跨200的下弦胎架130和上弦胎架110,并安装好第一跨200的上层桥梁结构120和下层桥梁结构140,
安装第二跨300的下弦胎架130和上弦胎架110,安装好第二跨300的上层桥梁结构120和下层 桥梁结构140后,拆卸第一跨200的上弦胎架110;
安装第三跨400的下弦胎架130和上弦胎架110,安装好第二跨300的上层桥梁结构120和下层桥梁结构140后,拆卸第二跨300的上弦胎架110和第一跨200的下弦胎架130;
安装第四跨500的下弦胎架130和上弦胎架110,安装好第四跨500的上层桥梁结构120和下层桥梁结构140后,拆卸第三跨400的上弦胎架110和第二跨300的下弦胎架130;
安装第六跨700的下弦胎架130和上弦胎架110,并安装好第六跨700的上层桥梁结构120和下层桥梁结构140;
安装第五跨600的下弦胎架130和上弦胎架110,安装好第五跨600的上层桥梁结构120和下层桥梁结构140后,使第四跨500与第五跨600合龙,并拆卸剩余的上弦胎架110和下弦胎架130。
在本发明的一些实施例中,由下弦胎架130支撑安装下层桥梁结构140的方法包括:在下弦胎架130的顶部安装下弦杆150,并在下弦杆150上安装下层桥梁结构140。具体地,将下弦杆150吊至下弦胎架130的顶部,下弦胎架130对下弦杆150进行支撑,然后将下层桥梁结构140吊装至下弦杆150的操作面,将下层桥梁结构140与下弦杆150进行安装固定。下层桥梁结构140可以是通过钢筋模板浇筑混凝土形成的桥面板、分块的行车道板或者整体的桥面钢板,桥面钢板或者行车道板可通过焊接进行拼装,进而与下弦杆150进行组合固定。
在本发明的一些实施例中,由上弦胎架110支撑安装上层桥梁结构120的方法包括:在下层桥梁结构140上安装门式架161,并在门式架161的顶部和上弦胎架110的顶部之间安装支撑分配梁162,在支撑分配梁162的上方安装上弦杆163,并在上弦杆163上安装上层桥梁结构120。门式架161是包括横杆与若干立柱组成的呈门型的结构。上弦杆163与支撑分配梁162连接,支撑分配梁162连接门式架161,上弦胎架110能对上层桥梁结构120进行支撑通过改变门式架161的结构,可以使上弦胎架110适应不同的桥梁结构。例如,门式架161穿过上层桥梁结构120与下层桥梁结构140的腹杆121,上弦胎架110再与门式架161连接,以防止上弦胎架110与腹杆121之间的干涉。其中,安装门式架161、支撑分配梁162和上弦杆163的方式可以是焊接,也可以是通过螺栓固定。
在本发明的一些实施例中,在支撑分配梁162的上方安装上弦杆163的方法包括:在支撑分配梁162上安装定位挡,并由定位挡定位安装上弦杆163。桥梁钢结构中的弦杆通常为平行四边形截面的刚杆件,直接安装难以准确地安装在设定位置。定位挡设定在上弦杆163的安装位置,并能够在设定位置抵持上弦杆163,从而使上弦杆163定位在设定的位置,减小人工调节的难度,提高施工效率。定位挡可以通过焊接、螺栓连接等方式安装在支撑分配梁162上。
参照图3,在本发明的一些实施例中,使双层多跨桥梁的其中一个或多个跨的下层桥梁结构140呈拱形结构。拱形桥梁结构跨越能力大,表面受力均匀,适用于跨度大的桥跨中。拱形桥梁结构的形成方法可以是使下弦杆150呈开口向下的抛物线变化。
在本发明的一些实施例中,在安装上弦胎架110和下弦胎架130前,在上弦胎架110和下弦胎架130的安装位置施工建设胎架基台。上弦胎架110或下弦胎架130的安装位置为陆地面,建设胎架基台的方法可以是在上弦胎架110或下弦胎架130的安装位置浇筑混凝土,形成混凝土基台;也可以是在上弦胎架110或下弦胎架130的安装位置安装钢基板,利用钢基板支撑上弦胎架110或下弦胎架130。混凝土基台或者刚基板相对于土壤,具有更好的刚度,以防止土壤发生凹陷变形,使上弦胎架110或下弦胎架130的高度发生变化。上弦胎架110或下弦胎架130的安装位置为跨河段,建设胎架基台的方法可以是建设在上弦胎架110或下弦胎架130的安装位置设置管桩,通过管桩支撑上弦胎架 110和下弦胎架130。
在本发明的一些实施例中,安装上弦胎架110和下弦胎架130前,对胎架基台实施预压。胎架基台建设完毕后,胎架基台上的上弦胎架110或下弦胎架130受力后,胎架基台可能会出现部分凹陷等变化,提前施加预压,可以使胎架基台的位置更稳定。对胎架基台实施预压的方法可以是在胎架基台上摆放混凝土压块或其他重物。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (8)

  1. 双层多跨桥梁施工方法,其特征在于,包括:
    第一跨施工:安装所述第一跨的下弦胎架,并以所述第一跨的所述下弦胎架为支撑安装所述第一跨的下层桥梁结构;
    安装所述第一跨的上弦胎架,并以所述第一跨的所述上弦胎架为支撑安装所述第一跨的上层桥梁结构;
    第二跨施工:安装第二跨的下弦胎架,并以所述第二跨的所述下弦胎架为支撑安装所述第二跨的下层桥梁结构;
    安装所述第二跨的上弦胎架,并以所述第二跨的所述上弦胎架为支撑安装所述第二跨的上层桥梁结构;
    卸载所述第一跨的所述上弦胎架;
    采用隔跨卸载胎架的施工方法依次对桥梁的剩余跨施工,所述双层多跨桥梁的全部跨施工完成后,拆卸剩余的所述上弦胎架和所述下弦胎架;
    隔跨卸载胎架的施工方法包括如下步骤:
    安装所述当前施工跨的上弦胎架,并以所述当前施工跨的所述上弦胎架为支撑安装所述当前施工跨的上层桥梁结构;
    卸载所述当前施工跨的相邻跨的上弦胎架和所述当前施工跨的相隔一跨的跨的下弦胎架。
  2. 根据权利要求1所述的双层多跨桥梁施工方法,其特征在于,所述双层多跨桥梁自两端向中间施工,并于中间任一跨合龙,所述双层多跨桥梁两端的跨采用所述第一跨施工的施工方法,所述双层多跨桥梁两端的跨的相邻跨的采用所述第二跨施工的施工方法,所述所述双层多跨桥梁的剩余跨采用所述隔跨卸载胎架的施工方法。
  3. 根据权利要求1所述的双层多跨桥梁施工方法,其特征在于,由所述下弦胎架支撑安装下层桥梁结构的方法包括:在所述下弦胎架的顶部安装下弦杆,并在所述下弦杆上安装所述下层桥梁结构。
  4. 根据权利要求3所述的双层多跨桥梁施工方法,其特征在于,由所述上弦胎架支撑安装上层桥梁结构的方法包括:在所述下层桥梁结构上安装门式架,并在所述门式架的顶部和上弦胎架的顶部之间安装支撑分配梁,在所述支撑分配梁的上方安装上弦杆,并在所述上弦杆上安装所述上层桥梁结构。
  5. 根据权利要求4所述的双层多跨桥梁施工方法,其特征在于,在所述支撑分配梁的上方安装所述上弦杆的方法包括:在所述支撑分配梁上安装定位挡,并由所述定位挡定位安装所述上弦杆。
  6. 根据权利要求5所述的双层多跨桥梁施工方法,其特征在于,使所述双层多跨桥梁的其中一个或多个跨的所述下层桥梁结构呈拱形结构。
  7. 根据权利要求1所述的双层多跨桥梁施工方法,其特征在于,在安装所述上弦胎架和所述下弦胎架前,在所述上弦胎架和所述下弦胎架的安装位置施工建设胎架基台。
  8. 根据权利要求7所述的双层多跨桥梁施工方法,其特征在于,安装所述上弦胎架和所述下弦胎架前,对所述胎架基台实施预压。
PCT/CN2021/119885 2021-01-25 2021-09-23 双层多跨桥梁施工方法 WO2022156255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/273,506 US20240093443A1 (en) 2021-01-25 2021-09-23 Double-deck multi-span bridge construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110099119.9 2021-01-25
CN202110099119.9A CN112921813B (zh) 2021-01-25 2021-01-25 双层多跨桥梁施工方法

Publications (1)

Publication Number Publication Date
WO2022156255A1 true WO2022156255A1 (zh) 2022-07-28

Family

ID=76165714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119885 WO2022156255A1 (zh) 2021-01-25 2021-09-23 双层多跨桥梁施工方法

Country Status (3)

Country Link
US (1) US20240093443A1 (zh)
CN (1) CN112921813B (zh)
WO (1) WO2022156255A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305826A (zh) * 2022-08-31 2022-11-08 中冶(上海)钢结构科技有限公司 一种大跨度高精度法兰连接桥梁的快速预拼装方法
CN117515281A (zh) * 2024-01-03 2024-02-06 河北省天然气有限责任公司 一种水上天然气管道支护结构
CN115305826B (zh) * 2022-08-31 2024-06-04 中冶(上海)钢结构科技有限公司 一种大跨度高精度法兰连接桥梁的快速预拼装方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112502043A (zh) * 2020-11-06 2021-03-16 中建科工集团有限公司 多层桥梁施工方法及施工支撑体系
CN112921813B (zh) * 2021-01-25 2022-06-21 中建科工集团有限公司 双层多跨桥梁施工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132462A (zh) * 2013-03-08 2013-06-05 中国建筑第六工程局有限公司 用于控制构件下挠的组合工具及其安装、使用方法
CN107044090A (zh) * 2017-05-09 2017-08-15 中铁大桥局集团有限公司 一种双层桥梁的施工方法
RU2651507C1 (ru) * 2017-01-17 2018-04-20 Борис Никифорович Сушенцев Несущая конструкция многоярусного моста
CN112921813A (zh) * 2021-01-25 2021-06-08 中建科工集团有限公司 双层多跨桥梁施工方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB661307A (en) * 1948-04-22 1951-11-21 Finsterwalder Ulrich Method of constructing a truss bridge of reinforced concrete
US5771518A (en) * 1989-06-16 1998-06-30 Roberts; Michael Lee Precast concrete bridge structure and associated rapid assembly methods
CN102691420B (zh) * 2012-06-21 2015-04-29 中国建筑第八工程局有限公司 多层大跨度钢桁架安装施工方法
CN104195946B (zh) * 2014-07-04 2017-03-15 林同棪国际工程咨询(中国)有限公司 多层桥面公轨两用悬索桥的分期实施方法
CN104695336B (zh) * 2015-01-15 2016-09-28 中铁大桥局集团第五工程有限公司 双层现浇梁先上后下支架施工方法
CN106988201B (zh) * 2017-03-16 2019-08-06 中铁大桥勘测设计院集团有限公司 一种双层桥面悬索桥主梁结构
CN109267439B (zh) * 2018-11-02 2024-03-15 江苏沪宁钢机股份有限公司 一种高效、稳定型三层高架桥及其施工工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103132462A (zh) * 2013-03-08 2013-06-05 中国建筑第六工程局有限公司 用于控制构件下挠的组合工具及其安装、使用方法
RU2651507C1 (ru) * 2017-01-17 2018-04-20 Борис Никифорович Сушенцев Несущая конструкция многоярусного моста
CN107044090A (zh) * 2017-05-09 2017-08-15 中铁大桥局集团有限公司 一种双层桥梁的施工方法
CN112921813A (zh) * 2021-01-25 2021-06-08 中建科工集团有限公司 双层多跨桥梁施工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DING RUIPING, ZHU CHUNJIN, ZHU JISHUN: "General Assembly Technology for Power Room Bay Yangtze River Bridge", CONSTRUCTION TECHNOLOGY, vol. 41, no. 366, 10 June 2012 (2012-06-10), pages 3 - 5, XP055951955, ISSN: 1002-8498 *
YAN RUIHUA, ET AL.: "Design and Implementation Technology of Support System of Large Span Variable Section Double Deck Steel Truss Bridge", 2021 CIVIL ENGINEERING CONSTRUCTION TECHNOLOGY (VOL. 1), 10 June 2021 (2021-06-10), pages 561 - 564, XP055951951 *
ZHEN YUJIE, ET AL.: "Research on Key Technology of Multi-span Double Deck Steel Truss Continuous Beam Bridge", CONSTRUCTION TECHNOLOGY, 21 December 2020 (2020-12-21), pages 120 - 123, XP055951957, ISSN: 1002-8498, DOI: 10.26914/c.cnkihy.2020.057837 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115305826A (zh) * 2022-08-31 2022-11-08 中冶(上海)钢结构科技有限公司 一种大跨度高精度法兰连接桥梁的快速预拼装方法
CN115305826B (zh) * 2022-08-31 2024-06-04 中冶(上海)钢结构科技有限公司 一种大跨度高精度法兰连接桥梁的快速预拼装方法
CN117515281A (zh) * 2024-01-03 2024-02-06 河北省天然气有限责任公司 一种水上天然气管道支护结构
CN117515281B (zh) * 2024-01-03 2024-03-19 河北省天然气有限责任公司 一种水上天然气管道支护结构

Also Published As

Publication number Publication date
CN112921813A (zh) 2021-06-08
CN112921813B (zh) 2022-06-21
US20240093443A1 (en) 2024-03-21

Similar Documents

Publication Publication Date Title
WO2022156255A1 (zh) 双层多跨桥梁施工方法
CN111364377B (zh) 一种混凝土连续梁桥改造施工方法
CN109440625B (zh) 钢混组合连续刚构钢桁梁桥
CN109082998A (zh) 整体预制钢板组合梁结构及施工方法
CN110230268B (zh) 先连续后简支的钢桁组合梁桥施工方法
CN112609595A (zh) 梁拱组合刚构桥合龙段施工方法
CN112144413B (zh) 一种山区钢混组合梁整跨原位拼装架设方法
JP4220295B2 (ja) 波形鋼板ウエブpc橋閉合部の施工方法
CN112160246B (zh) 组合梁安装方法
CN112982162A (zh) 一种钢筋桁架式钢-混组合桥面板及施工方法
CN110029569B (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁及其施工方法
CN209907208U (zh) 波形钢腹板连续梁桥边跨合拢现浇支架结构
CN111041986A (zh) 现浇连续箱梁支模体系及施工方法
CN110241728A (zh) 一种跨既有线路的钢梁临时支撑结构及钢梁施工方法
WO2022095618A1 (zh) 多层桥梁施工方法及施工支撑体系
CN113550230B (zh) 一种异形拱塔双索面钢斜拉桥装配式施工及控制方法
CN214737289U (zh) 一种装配式高架道路、桥梁安装结构
CN114214920A (zh) 大跨度双层合建钢桁架拱桥及其施工方法
CN114457667A (zh) 大跨度上承式开孔腹板梁拱组合刚构桥及其施工方法
CN113073541A (zh) 一种适用于桥面连续构造的组合盖梁、桥梁及施工工艺
AU2015268715B2 (en) Bridging method and composite girder and deck therefor
KR100650149B1 (ko) 밸러스트왜건을 이용한 연속 교량의 콘크리트슬래브 현장 타설 방법
CN216765560U (zh) 一种预制超高性能混凝土蜂窝拱桥桥梁结构
JP2019199711A (ja) 橋梁の架け替え方法
CN218989851U (zh) 全装配式钢-混凝土板桁组合桥梁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920633

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 05.12.2023)