WO2022154058A1 - 磁性複合体 - Google Patents

磁性複合体 Download PDF

Info

Publication number
WO2022154058A1
WO2022154058A1 PCT/JP2022/000988 JP2022000988W WO2022154058A1 WO 2022154058 A1 WO2022154058 A1 WO 2022154058A1 JP 2022000988 W JP2022000988 W JP 2022000988W WO 2022154058 A1 WO2022154058 A1 WO 2022154058A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferrite
magnetic
ferrite layer
base material
metal base
Prior art date
Application number
PCT/JP2022/000988
Other languages
English (en)
French (fr)
Inventor
一隆 石井
康二 安賀
Original Assignee
パウダーテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022001607A external-priority patent/JP2022109234A/ja
Application filed by パウダーテック株式会社 filed Critical パウダーテック株式会社
Priority to US18/261,237 priority Critical patent/US20240079172A1/en
Priority to EP22739463.2A priority patent/EP4280234A1/en
Priority to KR1020237019736A priority patent/KR20230129390A/ko
Priority to CN202280010058.7A priority patent/CN116848600A/zh
Publication of WO2022154058A1 publication Critical patent/WO2022154058A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/004Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems using non-directional dissipative particles, e.g. ferrite powders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0075Magnetic shielding materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding

Definitions

  • the present invention relates to a magnetic complex.
  • EMC Electromagnetic Compatibility
  • a material showing conductivity loss, dielectric loss, and / or magnetic loss is used for the electromagnetic wave absorber.
  • Ferrite having high magnetic permeability and high electrical resistance is often used as a material showing magnetic loss. Ferrite causes a resonance phenomenon at a specific frequency to absorb electromagnetic waves, convert the absorbed electromagnetic wave energy into heat energy, and radiate it to the outside.
  • an electromagnetic wave absorber using ferrite a composite material containing ferrite powder and a binder resin and a ferrite thin film have been proposed. Further, a technique for forming a ferrite film on a substrate is known for applications other than electromagnetic wave absorbers.
  • Patent Document 1 describes a coating composition containing a ferrite powder such as Mn—Zn-based ferrite: 20 to 80% by mass and a carbon black powder: 3 to 60% by mass, the balance of which is resin, in a metal plate. It is described that a coated metal plate is produced by coating at least one surface (claims 1 to 6 of Patent Document 1). Further, Patent Document 1 describes that the coating composition has excellent heat dissipation and good electromagnetic wave absorption performance in a wide frequency band (Patent Document 1 [0060]).
  • Patent Document 2 discloses an electromagnetic wave absorber characterized in that a ferromagnetic material is physically vapor-deposited on a substrate made of an organic polymer, and the electromagnetic wave absorber has good electromagnetic wave absorption characteristics. It is described that it is small, lightweight, flexible, and robust (Patent Document 2 claims 1 and [0008]). Further, in Patent Document 2, an oxide-based soft magnetic material is mainly used as the ferromagnetic material, ferrite is preferable as the oxide-based soft magnetic material, and EB vapor deposition, ion plating, etc. are used for the physical vapor deposition method. It is described that magnetron sputtering, opposed target type magnetron sputtering and the like can be mentioned (Patent Document 2 [0009], [0010] and [0017]).
  • Patent Document 3 describes a composite magnetic film having an electromagnetic wave absorbing function, which is composed of a magnetic phase made of a metallic magnetic material and a high electrical resistance phase of highly insulating ferrite dispersed in the magnetic phase in an island shape. It is disclosed (claim 1 of Patent Document 3). Further, in Patent Document 3, the composite magnetic film is formed by an aerosol deposition (AD) method in which raw material fine particle powder is aerosolized and collided with a substrate or the like as a film-deposited body to form a thick film. , It is described that a composite magnetic film having a desired film thickness can be formed at high speed by applying the AD method (Patent Documents 3 [0029] and [0033]).
  • AD aerosol deposition
  • Patent Document 4 discloses an electromagnetic wave absorber characterized by being a composite in which metal particles are dispersed in a ceramic matrix such as ferrite (claims 1 and 8 of Patent Document 4). Further, in Patent Document 4, the electromagnetic wave absorber is often used by being formed on a substrate. At this time, if the metal is a substrate, it is reflected at the interface between the electromagnetic wave absorber and the substrate, and the electromagnetic wave is absorbed again. It is described that absorption in the body can be expected, and that a gas deposition method or an aerosol deposition method can be used to produce an electromagnetic wave absorber (Patent Document 4 [0029] and Patent Document 4 [0029] and [0031]).
  • Patent Documents 1 to 4 propose that a ferrite-containing layer is formed on a substrate such as a metal plate to produce an electromagnetic wave absorber.
  • a ferrite-containing layer is formed on a substrate also for applications other than electromagnetic wave absorbers.
  • Patent Document 5 a magnetic substrate, a coil formed on the surface of the magnetic substrate by a conductor, and a coil formed on the magnetic substrate by an aerosol deposition method are formed so as to embed the coil on the magnetic substrate.
  • An inductor element having a magnetic material layer is disclosed (Patent Document 5 claim 1).
  • the composite material containing ferrite powder proposed in Patent Document 1 is inferior in magnetic properties because it contains a large amount of resin which is a non-magnetic material. Therefore, there is a limit in improving the electromagnetic wave absorption characteristics.
  • the ferrite thin film proposed in Patent Document 2 is difficult to form thickly in manufacturing, and there is also a limit in enhancing characteristics such as magnetic characteristics. Further, even if a thick film can be formed, there is a problem that the film is easily peeled off from the substrate. Since the composites proposed in Patent Document 3 and Patent Document 4 contain a highly conductive metal magnetic material, they cannot be applied to applications requiring electrical insulation. Further, the element proposed in Patent Document 5 also has a limit in improving characteristics such as electrical characteristics and adhesion.
  • the present inventors have conducted diligent studies in view of such problems.
  • the crystalline state of the ferrite layer is important, and by controlling this, it is dense and the film thickness is relatively thick, and the magnetic characteristics and electrical characteristics, It was found that a ferrite layer having excellent heat resistance and good adhesion can be obtained.
  • the present invention has been completed based on such findings, and is dense and has a relatively thick film thickness. It is an object of the present invention to provide a magnetic composite having a ferrite layer having high surface resistance), excellent heat resistance, and good adhesion.
  • the present invention includes the following aspects (1) to (6).
  • the expression "-" includes the numerical values at both ends thereof. That is, "X to Y” is synonymous with “X or more and Y or less”.
  • a magnetic composite comprising a metal base material and a ferrite layer provided on the surface of the metal base material.
  • the metal base material has a thickness ( dm ) of 0.001 ⁇ m or more, and has a thickness of 0.001 ⁇ m or more.
  • the ferrite layer has a thickness ( df ) of 2.0 ⁇ m or more, contains spinel-type ferrite as a main component, and has a (222) plane with respect to the integrated intensity (I 311 ) of the (311) plane in X-ray diffraction analysis.
  • a magnetic composite having a ratio of integrated strength (I 222 ) (I 222 / I 311 ) of 0.00 or more and 0.03 or less.
  • the ferrite layer is the magnetic composite according to (1) above, wherein the content of ⁇ -Fe 2 O 3 is 0.0% by mass or more and 20.0% by mass or less.
  • the ferrite layer contains iron (Fe) and oxygen (O), and further contains lithium (Li), magnesium (Mg), aluminum (Al), titanium (Ti), manganese (Mn), and zinc (Zn).
  • the ferrite layer has a ratio (Ra / d F ) of surface arithmetic mean roughness (Ra) to a thickness (d F ) of more than 0.00 and 0.20 or less.
  • the magnetic composite of any of 3).
  • a magnetic composite having a ferrite layer which is dense, has a relatively thick film thickness, has excellent magnetic and electrical characteristics, and has good adhesion.
  • An aspect of the magnetic complex is shown. Another aspect of the magnetic complex is shown. Other aspects of the magnetic complex are shown. Yet another aspect of the magnetic complex is shown. An example in which a magnetic composite is applied to an inductor is shown. An example in which a magnetic complex is applied to an LC filter is shown. Another example of applying a magnetic composite to an inductor is shown. An example in which a magnetic complex is applied to a magnetic sensor is shown. An example in which the magnetic complex is applied to the antenna element (UHF-ID tag) is shown. An example in which a magnetic complex is applied to an electromagnetic wave absorber is shown. An example in which a magnetic composite is applied to a housing for storing electronic components is shown. An example in which a magnetic composite is used as a cable covering material is shown.
  • Example 2 An example in which a magnetic composite is applied to a winding type inductor is shown. An example of applying a magnetic complex to a temperature sensor is shown. An example of the configuration of the aerosol deposition film forming apparatus is shown.
  • the cross-sectional element mapping image of the ferrite layer obtained in Example 2 is shown. It is a graph which shows the saturation magnetization temperature dependence of the magnetic complex obtained in Example 2. It is a graph which shows the saturation magnetization temperature dependence of the magnetic complex obtained in Example 10. It is a graph which shows the saturation magnetization temperature dependence of the magnetic complex obtained in Example 14. It is a graph which shows the saturation magnetization temperature dependence of the magnetic complex obtained in Example 15.
  • the magnetic permeability (real part ⁇ ′, imaginary part ⁇ ′′) of the magnetic composite obtained in Example 2 is shown.
  • the present embodiment A specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described.
  • the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.
  • the magnetic composite of the present embodiment includes a metal base material and a ferrite layer provided on the metal base material.
  • the thickness ( dm ) of the metal base material is 0.001 ⁇ m or more.
  • the ferrite layer has a thickness ( DF ) of 2.0 ⁇ m or more.
  • the ferrite layer contains spinel-type ferrite as a main component, and the ratio of the integrated intensity (I 222 ) of the (222) plane to the integrated intensity (I 311 ) of the (311) plane in the X-ray diffraction analysis (I 222 / I 311 ). Is 0.00 or more and 0.03 or less.
  • the magnetic complex will be described in detail below.
  • the metal base material functions as a support for the magnetic complex.
  • the shape of the metal base material is not particularly limited as long as it functions as a support. For example, it may be plate-shaped, foil-shaped, rod-shaped, box-shaped, thread-shaped, strip-shaped, or the like. Further, since the metal base material has conductivity, it can function as an electrode. Further, when the magnetic complex is used as an electromagnetic wave absorber, the metal base material can function as an electromagnetic wave reflector. That is, when the ferrite layer of the magnetic complex is directed toward the electromagnetic wave incident side, a part of the electromagnetic wave is incident on the ferrite layer. The intensity of the incident electromagnetic wave is attenuated while passing through the ferrite layer. The attenuated electromagnetic wave is reflected on the surface of the metal substrate, passes through the ferrite layer again, and is radiated from the surface.
  • the metal constituting the metal base material is not particularly limited. It may be a simple substance metal or an alloy.
  • the metal comprises the group consisting of copper (Cu), aluminum (Al), nickel (Ni), iron (Fe), cobalt (Co), chromium (Cr), gold (Au), and silver (Ag). At least one of the choices. These metals are inexpensive.
  • the metal may be at least one selected from the group consisting of nickel (Ni), iron (Fe) and cobalt (Co). It is more preferable that the metal base material is a ferromagnetic material. By using a ferromagnetic metal base material, it is possible to exert a synergistic effect with the excellent magnetic properties of the ferrite layer.
  • the metal base material may be composed of only metal, or may be a laminate of a non-metal base material and a metal layer.
  • the metal layer laminated on the non-metal base material corresponds to the metal base material.
  • a resin film such as a PET film can be used.
  • a metal layer formed on a non-metal base material by a thin film forming method may be used.
  • the thickness ( dm ) of the metal substrate is limited to 0.001 ⁇ m or more. If the metal base material is excessively thin, the effect of the metal base material may not be sufficiently obtained depending on the applied frequency.
  • the thickness of the metal substrate is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 1 ⁇ m or more, and particularly preferably 10 ⁇ m or more.
  • the upper limit of thickness is not limited. However, by appropriately thinning the metal base material, it becomes possible to impart flexibility to the magnetic complex. This effect is particularly remarkable when a metal base material is used.
  • the thickness may be 1000 ⁇ m or less, 500 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, and 50 ⁇ m or less.
  • the metal base material may be thread-shaped, strip-shaped, plate-shaped, or foil-shaped. However, it is preferably foil-like. For example, by using a foil-shaped metal base material (metal foil), it becomes possible to produce a magnetic composite having excellent flexibility.
  • the ferrite layer of this embodiment is a polycrystal containing spinel-type ferrite as a main component. That is, it is an aggregate of crystal particles composed of spinel-type ferrite.
  • Spinel-type ferrite is a composite oxide of iron (Fe) having a spinel-type crystal structure, and most of them exhibit soft magnetism.
  • Fe iron
  • the type of spinel-type ferrite is not particularly limited.
  • manganese (Mn) -based ferrite manganese zinc (MnZn) -based ferrite, magnesium (Mg) -based ferrite, magnesium zinc (MgZn) -based ferrite, nickel (Ni) -based ferrite, nickel-copper (NiCu) -based ferrite, nickel-copper zinc.
  • At least one selected from the group consisting of (NiCuZn) -based ferrite, cobalt (Co) -based ferrite, and cobalt-zinc (CoZn) -based ferrite can be mentioned.
  • the main component refers to a component having a content of 50.0% by mass or more.
  • the content ratio of spinel-type ferrite (ferrite phase) in the ferrite layer is preferably 60.0% by mass or more, more preferably 70.0% by mass or more, still more preferably. It is 80.0% by mass or more, particularly preferably 90.0% by mass or more.
  • the thickness ( DF ) of the ferrite layer of this embodiment is limited to 2.0 ⁇ m or more. If the ferrite layer is excessively thin, the film thickness of the ferrite layer becomes non-uniform, and the magnetic characteristics and electrical characteristics (electrical insulation) may deteriorate.
  • the thickness is preferably 3.0 ⁇ m or more, more preferably 4.0 ⁇ m or more.
  • the upper limit of thickness is not limited. However, it is difficult to form an excessively thick ferrite layer while maintaining its fineness. Further, if the ferrite layer is excessively thick, the internal stress of the ferrite layer becomes too large, and the ferrite layer may be peeled off. Further, when imparting flexibility to the magnetic composite, it is desirable that the ferrite layer is appropriately thin.
  • the thickness is preferably 100.0 ⁇ m or less, more preferably 50.0 ⁇ m or less, further preferably 20.0 ⁇ m or less, and particularly preferably 10.0 ⁇ m or less.
  • the ratio (I 222 / I 311 ) of the integrated intensity (I 222 ) of the (222) plane to the integrated intensity (I 311 ) of the (311) plane in the X-ray diffraction (XRD) analysis is 0. It is 0.00 or more and 0.03 or less (0.00 ⁇ I 222 / I 311 ⁇ 0.03). That is, when the ferrite layer is analyzed by the X-ray diffraction method, almost no diffraction peak based on the (222) plane of the spinel phase is observed in the X-ray diffraction profile. This is because the crystal particles constituting the ferrite layer are composed of microcrystals.
  • the crystal particles of the ferrite layer of the present embodiment undergo plastic deformation during the production of the magnetic complex. Therefore, the crystallite diameter is small and the distribution of lattice constants is wide. As a result, the XRD peak becomes broad and the (222) diffraction peak is not observed.
  • I 222 / I 311 is preferably 0.02 or less, more preferably 0.01 or less.
  • a general spinel-type ferrite material has high crystallinity even in a polycrystalline state. Therefore, the (222) plane diffraction peak is observed relatively strongly.
  • the XRD peak intensity ratio (I 222 / I 311 ) is about 0.04 to 0.05 (4 to 5%).
  • the ferrite layer of the present embodiment having a small XRD peak intensity ratio (I 222 / I 311 ) is characterized in that it is dense. This is because the crystal particles that have undergone plastic deformation tend to be densely packed. Further, the ferrite layer of the present embodiment has an effect of excellent adhesion to a metal base material. This is because the contact area with the metal substrate is increased due to the crystal particles undergoing plastic deformation. It is also considered that the bond with the metal constituting the base material becomes stronger due to the small crystallite diameter and the crystal structure in which the periodicity is disturbed. Moreover, the ferrite layer of the present embodiment is characterized in that the magnetic loss (tan ⁇ ) in the high frequency region of 500 MHz or more is small.
  • the correlation length of the magnetic moment becomes short due to the small crystallite diameter, and as a result, the domain wall moves smoothly in the high frequency region.
  • the correlation length of the magnetic moment is long.
  • the crystallite diameter of the ferrite layer is 1 nm or more and 10 nm or less.
  • the crystallite diameter is more preferably 1 nm or more and 5 nm or less, and further preferably 1 nm or more and 2 nm or less.
  • the lattice constant of the spinel-type ferrite contained in the ferrite layer is 8.30 ⁇ or more and 8.80 ⁇ or less.
  • the lattice constant is more preferably 8.30 ⁇ or more and 8.60 ⁇ or less, and further preferably 8.30 ⁇ or more and 8.50 ⁇ or less.
  • the ratio (d F / d M ) of the thickness of the ferrite layer (d F ) to the thickness of the metal substrate (d M ) is 0.05 or more and 200 or less (0.05 ⁇ d F / d M ). ⁇ 200). If the thickness ratio (d F / d M ) is excessively small, the film thickness of the ferrite layer becomes non-uniform, and the magnetic characteristics and electrical characteristics (electrical insulation) deteriorate.
  • the thickness ratio (d F / d M ) is more preferably 0.10 or more. On the other hand, if the thickness ratio (d F / d M ) is excessively large, the metal base material cannot withstand the internal stress of the ferrite layer, and the composite may be curved.
  • the thickness ratio (d F / d M ) is more preferably 10.0 or less, further preferably 1.00 or less, particularly preferably 0.50 or less, and most preferably 0.30 or less.
  • the thickness of the layer in which the ferrite layer is in direct contact corresponds to the base material thickness.
  • the arithmetic mean of the thinnest part and the thickest part of the base material on which the ferrite layer is formed is defined as the thickness dM of the base material, and the arithmetic of the thinnest part and the thickest part of the complex is performed.
  • the difference between the average and the thickness d M of the base material is defined as the thickness d F of the ferrite layer.
  • the thickness d F is calculated.
  • the thickness ratio (d F / d M ) is calculated by regarding the thickness d M of the base material as 2000 ⁇ m.
  • the ferrite layer has an ⁇ -Fe 2 O 3 (hematite) content of 0.0% by mass or more and 20.0% by mass or less.
  • ⁇ -Fe 2 O 3 is free iron oxide that did not enter the spinel phase.
  • ⁇ -Fe 2 O 3 is a paramagnetic material. Therefore, if the amount of ⁇ -Fe 2 O 3 is excessively large, the magnetic characteristics of the ferrite layer may deteriorate.
  • the amount of ⁇ -Fe 2 O 3 is more preferably 15.0% by mass or less, further preferably 10.0% by mass or less.
  • ⁇ -Fe 2 O 3 is a stable compound having high electrical resistance.
  • the conductive path in the ferrite layer can be cut off, and the electric resistance can be further increased.
  • manganese (Mn) -based ferrite and manganese-zinc (MnZn) -based ferrite tend to have low electrical resistance because they contain manganese (Mn) ions and iron (Fe) ions having unstable valences. Therefore, by including ⁇ -Fe 2 O 3 in these ferrites, the effect of improving the electric resistance can be remarkably exhibited. Further, by appropriately containing ⁇ -Fe 2 O 3 , it is possible to improve the densification and adhesion of the ferrite layer.
  • ⁇ -Fe 2 O 3 is produced in the ferrite layer film forming step during the production of the magnetic composite. That is, during the film forming process, the ferrite crystal particles undergo plastic deformation and reoxidation, and ⁇ -Fe 2 O 3 is produced. This plastic deformation and reoxidation play an important role in increasing the densification and adhesion of the ferrite layer. Therefore, the ferrite layer containing ⁇ -Fe 2 O 3 appropriately has high density and adhesion.
  • the amount of ⁇ -Fe 2 O 3 is more preferably 0.1% by mass or more, further preferably 1.0% by mass or more, and particularly preferably 5.0% by mass or more.
  • the ferrite layer contains iron (Fe) and oxygen (O), and further contains lithium (Li), magnesium (Mg), aluminum (Al), titanium (Ti), manganese (Mn), zinc (Zn), It contains at least one element selected from the group consisting of nickel (Ni), copper (Cu), and cobalt (Co).
  • the elements contained in the ferrite layer can be confirmed by using an analysis method / analyzer such as ICP, EDX, SIMS, and / or XRF.
  • the ferrite layer has a ratio (Ra / d F ) of the surface arithmetic mean roughness (Ra) to the thickness (d F ) of more than 0.00 and 0.20 or less (0.00 ⁇ Ra / d F ⁇ 0). .20). If the roughness ratio (Ra / d F ) is excessively large, the film thickness of the ferrite layer tends to be non-uniform. Therefore, when a high voltage is applied, the electric field is locally concentrated and a leak current may occur.
  • the roughness ratio (Ra / d F ) is more preferably more than 0.00 and 0.10 or less, and further preferably more than 0.00 and 0.05 or less.
  • the ferrite layer of this embodiment has a relatively high density. This is because the ferrite crystal particles constituting the ferrite layer are repeatedly subjected to plastic deformation, and as a result, small crystal particles are deposited as a ferrite layer.
  • the relative density of the ferrite layer (density of the ferrite layer / true specific gravity of the ferrite powder) is preferably 0.60 or more, more preferably 0.70 or more, still more preferably 0.80 or more, and particularly preferably 0.90 or more. Most preferably, it is 0.95 or more. By increasing the density, the effect of improving the magnetic characteristics, electrical characteristics, and adhesion of the ferrite layer becomes even more remarkable.
  • the ferrite layer of this embodiment has a relatively high electrical resistance. This is because the density of the ferrite layer is high, so that the adsorption of conductive components such as water, which causes deterioration of electrical resistance, is small. It is also considered that the small crystallite diameter of the ferrite crystal particles constituting the ferrite layer also has an effect. In fact, general MnZn ferrite materials are said to have relatively low electrical resistance, and their volume resistance is about 104 to 105 ⁇ ⁇ cm. On the other hand, the ferrite layer of the present embodiment shows a higher resistance value, and the cause can be determined by the size of the crystallite diameter.
  • the electrical resistance of the ferrite layer can be further increased.
  • the surface resistance of the ferrite layer is preferably 104 ⁇ or more, more preferably 105 ⁇ or more.
  • the ferrite layer preferably contains a ferrite constituent component, and the balance has a composition of unavoidable impurities. That is, it is preferable that the amount of unavoidable impurities is exceeded and no organic component or inorganic component other than the ferrite constituent component is contained.
  • the ferrite layer of the present embodiment can be sufficiently dense without adding a resin component such as a binder or an inorganic additive component such as a sintering aid. By minimizing the content of the non-magnetic material, the excellent magnetic properties based on ferrite can be fully utilized.
  • the ferrite component is a component that constitutes spinel-type ferrite, which is the main component.
  • the ferrite layer when the ferrite layer contains manganese zinc (MnZn) ferrite as a main component, the ferrite constituents are iron (Fe), manganese (Mn), zinc (Zn) and oxygen (O).
  • the ferrite layer contains nickel-copper-zinc (NiCuZn) ferrite as a main component, the ferrite constituents are iron (Fe), nickel (Ni), copper (Cu), zinc (Zn) and oxygen (O).
  • the unavoidable impurity is a component that is unavoidably mixed during production, and its content is typically 1000 ppm or less.
  • the ferrite layer preferably does not contain metal components other than oxides.
  • the magnetic composite is a step of preparing a metal base material and a spinel-type ferrite powder having an average particle diameter (D50) of 1.0 ⁇ m or more and 10.0 ⁇ m or less (preparation step), and the ferrite powder is subjected to an aerosol deposition method.
  • the ratio of the lattice constant (LCf) of the spinel phase contained in the ferrite layer to the lattice constant (LCp) of the spinel phase contained in the spinel-type ferrite powder It is preferably produced by a method in which (LCf / LCp) is 0.95 or more and 1.0.5 or less (0.95 ⁇ LCf / LCp ⁇ 1.05).
  • the form of the magnetic complex is not particularly limited.
  • a ferrite layer (ferrite film) may be provided on the entire surface of the metal base material.
  • the ferrite layer may be provided only on a part of the surface of the metal base material.
  • a ferrite layer may be provided not only on one side of the metal base material but also on both sides.
  • a ferrite layer having a partially changed thickness may be provided on the surface of the metal base material.
  • the ferrite layer may be wound around the outer periphery of the rod-shaped metal base material.
  • the magnetic complex can be applied to various applications.
  • Examples of such an application include an element or component having a coil and / or inductor function having a magnetic composite, an electronic device, a housing for storing electronic components, an electromagnetic wave absorber, an electromagnetic wave shield, or an element or component having an antenna function. be able to.
  • FIG. 5 shows an example in which the magnetic composite is applied to the inductor.
  • the magnetic composite includes a metal base material, a ferrite layer (ferrite film) provided on one surface of the metal base material, and a coil provided on the surface of the ferrite layer.
  • a metal base material made of a conductive material can function as a back electrode.
  • the coil is made of a conductive material such as metal and has a spiral circuit pattern. Therefore, the inductor function is exhibited.
  • the circuit pattern of the coil may be formed by methods such as electroless plating, screen printing using a paste containing metal colloidal particles, inkjet, sputtering, and vapor deposition. By forming a circuit pattern on the ferrite layer, an element having a thin inductor function can be obtained.
  • FIG. 6 shows an example in which the magnetic complex is applied to the LC filter.
  • the magnetic composite includes a metal base material made of a conductive material, a ferrite layer (ferrite film) provided on a part of the surface of the metal base material, and a coil provided on the surface of the ferrite layer. .. Further, a dielectric material and a capacitor electrode provided on the surface of the dielectric material are provided in a place where the ferrite layer of the metal base material is not provided.
  • the portion provided with the ferrite layer functions as an inductor element, while the portion provided with the dielectric function functions as a capacitor element.
  • a metal base material made of a conductive material can function as a common electrode for an inductor element and a capacitor element, and can be operated as an LC filter as a whole.
  • FIG. 7 shows another example in which the magnetic composite is applied to the inductor.
  • a ferrite layer (ferrite film) and a coil are provided on both sides of the metal base material. Further, the coil on the front surface side and the coil on the back surface side are electrically connected via a via hole (connection electrode) provided in the metal base material and the ferrite layer.
  • FIG. 8 shows an example in which the magnetic complex is applied to the magnetic sensor.
  • inductor elements having a ferrite layer (ferrite film) and a coil are arranged in an array on both sides of a metal substrate.
  • the transverse inductor electrodes A and B ... horizontal direction
  • the longitudinal inductor electrodes a and b arranged on the front surface of the base material while an external AC magnetic field is applied.
  • the generated voltage is measured in order.
  • the inductance shown by the inductor on the front surface of the base material and the inductor on the back surface are the same, so no voltage is generated.
  • a magnetic material is present, a voltage is generated because the inductance of the inductor near the magnetic material changes.
  • the position of the magnetic material can be detected based on the combination of inductors in which a voltage is generated.
  • FIG. 9 shows an example in which the magnetic complex is applied to the antenna element (UHF-ID tag).
  • the antenna element (magnetic composite) is for a metal base material formed in an antenna pattern, a ferrite layer (ferrite film) provided on the back surface of the metal base material, and an ID tag provided on the surface of the metal base material. It is equipped with a chip. Since the ferrite layer has a higher magnetic permeability than the surrounding space, electromagnetic waves tend to collect in the ferrite layer. By providing the antenna pattern on the ferrite layer, the antenna sensitivity can be improved.
  • FIG. 10 shows an example in which the magnetic complex is applied to the electromagnetic wave absorber.
  • the electromagnetic wave absorber (magnetic composite) has a structure in which a metal base material and a ferrite layer (ferrite film) provided on the surface of the metal base material are alternately laminated. Further, a base material having excellent thermal conductivity is provided on the lowermost surface.
  • FIG. 11 shows an example in which the magnetic composite is applied to the housing for storing electronic components.
  • a ferrite layer (ferrite film) is provided on the surface of the metal base material, and electronic components are mounted on the ferrite layer (ferrite film).
  • a ferrite layer is also provided on the inner surface side of the metal base material that serves as the lid of the housing.
  • FIG. 12 shows an example in which a magnetic composite is used for a signal cable.
  • a ferrite layer (ferrite film) is provided on the outer and inner surfaces of the tubular metal base material, and a signal line coated with a resin layer (insulating layer) is arranged inside the tubular metal base material. ..
  • a high frequency signal is applied to the signal line, leaked electromagnetic waves are radiated to the surroundings.
  • the ferrite layer it is possible to prevent the leakage electromagnetic wave from being radiated to the surroundings.
  • FIG. 13 shows an example in which the magnetic composite is applied to a winding type inductor.
  • ferrite layers ferrite films
  • a winding type inductor air core
  • a winding type inductor containing a magnetic core can be obtained.
  • FIG. 14 shows an example in which the magnetic complex is applied to the temperature sensor.
  • the temperature sensor (magnetic composite) is for a metal base material formed in an antenna pattern, a ferrite layer (ferrite film) provided on the back surface of the metal base material, and an ID tag provided on the surface of the metal base material.
  • a plurality of antenna elements including a chip are provided. Further, the ferrite layers provided in each antenna element have different compositions.
  • suitable production methods include the following steps; a step of preparing a metal substrate and a spinel-type ferrite powder having an average particle size (D50) of 2.5 ⁇ m or more and 10.0 ⁇ m or less (preparation step), and this ferrite.
  • a step (deposition step) of forming a powder on the surface of a metal substrate by an aerosol deposition method is provided.
  • a relatively thick ferrite layer can be produced at a high film formation rate by forming a film using the aerosol deposition method (AD method) using ferrite powder having a specific particle size as a raw material.
  • This ferrite layer is dense, has excellent magnetic properties, electrical properties, and heat resistance, and also has excellent adhesion to a base material. Therefore, it is suitable as a method for producing a magnetic composite. Each step will be described in detail below.
  • a metal base material and a spinel-type ferrite powder are prepared.
  • the details of the metal base material are as described above.
  • a spinel type ferrite powder a powder having an average particle size (D50) of 1.0 ⁇ m or more and 10.0 ⁇ m or less is prepared.
  • the average particle size is preferably 2.5 ⁇ m or more and 7.0 ⁇ m or less.
  • the method for producing ferrite powder is not limited.
  • the ferrite raw material mixture is main-fired in an atmosphere having an oxygen concentration lower than that of the atmosphere to prepare a fired product, and the obtained fired product is crushed to obtain particles having an indefinite shape having a specific particle size. It is better to make it.
  • the ferrite raw material mixture may be subjected to calcination, pulverization, and / or granulation treatment before calcination.
  • known ferrite raw materials such as oxides, carbonates, and hydroxides may be used.
  • the shape of the ferrite powder is preferably amorphous.
  • the average value of the shape coefficient (SF-2) of the ferrite powder is preferably 1.02 or more and 1.50 or less, more preferably 1.02 or more and 1.35 or less, and 1.02 or more and 1.25 or less. Is even more preferable.
  • SF-2 is an index indicating the degree of indeterminate form of the particle, and the closer it is to 1, the more spherical it is, and the larger it is, the more amorphous it is. If SF-2 is too small, the particles will be too round. Therefore, the particles do not stick to the substrate, and the film formation rate cannot be increased.
  • SF-2 is excessively large, the unevenness on the particle surface becomes too large. Therefore, although the film forming speed is high, voids tend to remain in the obtained ferrite layer due to the surface irregularities of the particles.
  • SF-2 is within the above range, a dense ferrite layer can be obtained at a high film forming rate.
  • SF-2 is obtained according to the following equation (1).
  • the average aspect ratio of the ferrite powder is preferably 1.00 or more and 2.00 or less, more preferably 1.02 or more and 1.50 or less, and further preferably 1.02 or more and 1.25 or less.
  • the aspect ratio is within the above range, the gas flow for supplying the raw material at the time of film formation is stable. On the other hand, if it exceeds the above range, the raw material is likely to be blocked in the piping from the raw material supply container to the nozzle. Therefore, the film forming speed may become unstable with the lapse of the film forming time.
  • the aspect ratio is obtained according to the following equation (2).
  • the CV value of the particle size of the ferrite powder is preferably 0.5 or more and 2.5 or less.
  • the CV value indicates the degree of variation in the particle size of the particles in the powder, and the more uniform the particle size, the smaller the value, and the more non-uniform the particle size, the larger the value. It is difficult to obtain a powder having a CV value of less than 0.5 by a general pulverization method (bead mill, jet mill, etc.) for obtaining amorphous particles. On the other hand, powder having a CV value of more than 2.5 tends to be clogged in the piping from the raw material supply container to the nozzle. Therefore, the film forming speed may become unstable with the lapse of the film forming time.
  • the CV value is obtained according to the following equation (3) using the 10% cumulative diameter (D10), the 50% cumulative diameter (D50; average particle size), and the 90% cumulative diameter (D90) in the volume particle size distribution.
  • the calcining may be carried out under the condition of 500 to 1100 ° C. ⁇ 1 to 24 hours in an atmospheric atmosphere.
  • This firing may be carried out under the conditions of 800 to 1350 ° C. ⁇ 4 to 24 hours in an atmosphere such as an atmosphere or a reducing atmosphere.
  • the oxygen concentration at the time of the main firing is low.
  • lattice defects can be intentionally generated in the spinel crystal of the ferrite powder. If the crystal contains lattice defects, when the raw material particles collide with the base material in the subsequent film forming step, plastic deformation is likely to occur starting from the lattice defects.
  • the oxygen concentration is preferably 0.001 to 10% by volume, more preferably 0.001 to 5% by volume, still more preferably 0.001 to 2% by volume.
  • Cu copper
  • the fired product is preferably crushed using a crusher such as a dry bead mill.
  • a crusher such as a dry bead mill.
  • the pulverized powder having high surface activity contributes to the densification of the ferrite layer obtained in the subsequent film forming step, in combination with the effect of an appropriate particle size.
  • the crystallite diameter (CSp) of the ferrite powder is preferably 2 nm or more and 100 nm or less. It is more preferably 2 nm or more and 50 nm or less, and further preferably 4 nm or more and 25 nm or less.
  • a dense ferrite layer can be obtained by using a ferrite powder having a fine crystallite diameter.
  • the ferrite powder is formed on the surface of the metal substrate by the aerosol deposition method.
  • the aerosol deposition method is a method of injecting aerosolized raw material fine particles onto a substrate at high speed to form a film by a normal temperature impact solidification phenomenon. Since the normal temperature impact solidification phenomenon is used, it is possible to form a dense film with high adhesion. Further, since fine particles are used as a feed material, a thick film can be obtained at a higher film formation rate than a thin film forming method such as a sputtering method or a vapor deposition method in which the raw materials are separated to the atomic level. Further, since the film can be formed at room temperature, it is not necessary to complicate the configuration of the apparatus, and there is an effect of reducing the manufacturing cost.
  • FIG. 15 shows an example of the configuration of the aerosol deposition film forming apparatus.
  • the aerosol deposition film forming apparatus (20) includes an aerosolizing chamber (2), a film forming chamber (4), a transport gas source (6), and a vacuum exhaust system (8).
  • the aerosolization chamber (2) includes a vibrator (10) and a raw material container (12) arranged on the vibrator (10).
  • a nozzle (14) and a stage (16) are provided inside the film forming chamber (4).
  • the stage (16) is configured to be movable perpendicular to the injection direction of the nozzle (14).
  • the transport gas is introduced into the raw material container (12) from the transport gas source (6) to operate the vibrator (10).
  • the raw material container (12) is charged with raw material fine particles (ferrite powder).
  • the raw material fine particles are mixed with the transport gas by vibration to be aerosolized.
  • the film forming chamber (4) is evacuated by the vacuum exhaust system (8) to reduce the pressure in the chamber.
  • the aerosolized raw material fine particles are conveyed to the inside of the film forming chamber (4) due to the pressure difference, and are ejected from the nozzle (14).
  • the injected raw material fine particles collide with the surface of the substrate (base material) placed on the stage (16) and are deposited there.
  • a dense ferrite layer can be obtained by the production method of this embodiment. That is, ceramic is usually said to be a material having a high elastic limit and being hard to be plastically deformed. However, if the raw material fine particles collide with the substrate at high speed during film formation by the aerodeposition method, the impact force is so large that the elastic limit is exceeded, and it is considered that the fine particles are plastically deformed. Specifically, defects such as crystal plane displacement and dislocation movement occur inside the fine particles, and in order to compensate for these defects, plastic deformation occurs and the crystal structure becomes fine. In addition, a new surface is formed and mass transfer occurs.
  • the average particle size of the raw material ferrite powder is important for obtaining a dense ferrite layer.
  • the average particle size (D50) of the ferrite powder is preferably 1.0 ⁇ m or more and 10.0 ⁇ m or less. If the average particle size is less than 1.0 ⁇ m, it becomes difficult to obtain a dense film. This is because a powder having a small average particle size has a small mass of particles constituting the powder.
  • the aerosolized raw material fine particles collide with the substrate at high speed together with the conveyed gas.
  • the conveyed gas that collides with the substrate changes its direction and flows as exhaust gas.
  • Particles with a small particle size and a small mass are swept away by the discharge flow of the conveyed gas, and the collision speed with the substrate surface and the impact force due to the collision speed are reduced. If the impact force is small, the plastic deformation received by the fine particles becomes insufficient, and the crystallite diameter does not decrease. The formed film does not become dense, and the powder becomes a compact powder that is simply compressed. Such a green compact contains a large number of pores inside, and is inferior in magnetic characteristics and electrical characteristics. Moreover, the adhesion to the base material does not increase. On the other hand, when the average particle size exceeds 10.0 ⁇ m and is excessively large, the impact force received by one particle is large, but the number of contact points between the particles is small. Therefore, plastic deformation and packing become insufficient, and it is also difficult to obtain a dense film.
  • the film formation conditions by the aerosol deposition method are not particularly limited as long as a dense ferrite layer having high adhesion can be obtained.
  • Air or an inert gas nitrogen, argon, helium, etc.
  • the transport gas can be used as the transport gas.
  • the flow rate of the transport gas may be, for example, 1.0 to 20.0 L / min.
  • the internal pressure of the film forming chamber may be, for example, 10 to 50 Pa before film formation and 50 to 400 Pa during film formation.
  • the scanning speed (moving speed) of the metal base material (stage) may be, for example, 1.0 to 10.0 mm / sec.
  • the coating (film formation) may be performed only once, or may be performed a plurality of times. In particular, it is preferable to carry out the process a plurality of times from the viewpoint of ensuring a sufficient film thickness of the obtained ferrite layer.
  • the number of coatings is, for example, 5 times or more and 100 times or less.
  • the ratio (LCf / LCp) of the lattice constant (LCf) of the spinel phase contained in the ferrite layer to the lattice constant (LCp) of the spinel phase contained in the raw material ferrite powder is preferably 0.95 or more and 1.05 or less (0. 95 ⁇ LCf / LCp ⁇ 1.05).
  • the spinel phase in the raw material ferrite powder has an oxygen-deficient composition and has lattice defects. Therefore, the lattice constant is larger than that in the state where no lattice defect exists.
  • plastic deformation occurs starting from a lattice defect.
  • the active surface is generated due to plastic deformation, and the active surface is oxidized.
  • the lattice constant changes due to the reconstruction of the crystal structure and the reoxidation of the active surface.
  • the degree of change in the lattice constant differs depending on the production conditions and composition of the raw material ferrite powder, and the material and type of the base material. Specifically, when the ferrite composition is a stoichiometric composition or an iron (Fe) rich composition (M x Fe 3-x O 4 : 0 ⁇ x ⁇ 1, M is a metal atom), it depends on the firing conditions. The amount of oxygen contained in the raw material ferrite powder tends to be substantially smaller than the stoichiometric ratio. Therefore, the lattice constant of the raw material ferrite powder tends to increase.
  • the crystal structure is reconstructed by oxidation accompanying the plastic deformation of the raw material particles, so that the lattice constant tends to be smaller than that of the raw material ferrite powder.
  • This tendency is particularly remarkable when a ferrite powder containing lithium (Li) or manganese (Mn) or a ferrite powder calcined under an oxygen concentration lower than that of the atmosphere is used. Therefore, in this case, LCf / LCp tends to be less than 1.00.
  • the amount of Fe is less than the chemical ratio of ferrite (M x Fe 3-x O 4 : 1 ⁇ x, M is a metal atom)
  • the amount of oxygen contained in ferrite is about the same as the chemical ratio. ..
  • the ferrite layer formed by the AD method lattice defects due to plastic deformation increase, so that the lattice constant tends to increase. This tendency is particularly remarkable when a ferrite powder containing Cu or a ferrite powder calcined in an atmospheric atmosphere is used. Therefore, in this case, LCf / LCp tends to exceed 1.00.
  • LCf / LCp tends to be small. This is because Cu and Ag are less likely to oxidize than ferrite particles and tend to give oxygen to the ferrite film. In this case, LCf / LCp tends to be less than 1.00.
  • the base material contains iron (Fe) or nickel (Ni)
  • LCf / LCp tends to be large, because Fe and Ni are more easily oxidized than ferrite particles and tend to deprive the ferrite film of oxygen. Is. In this case, LCf / LCp tends to exceed 1.00.
  • the lattice constant ratio (LCf / LCp) can also be adjusted by controlling the conditions for aerosol deposition film formation. That is, by increasing the collision rate of the raw material fine particles, the progress of strain and reoxidation can be promoted.
  • the collision speed of the raw material fine particles can be changed by adjusting the chamber internal pressure or the like. Further, by changing the film formation rate, it is possible to prevent excessive progress of reoxidation. This is because the reoxidation proceeds from the surface of the raw material fine particles, and if the film formation rate of the ferrite layer is increased to shorten the exposure time of the raw material fine particles to the atmosphere, the progress of the reoxidation is suppressed.
  • the ratio (CSf / CSp) of the crystallite diameter (CSf) of the spinel phase contained in the ferrite layer to the crystallite diameter (CSp) of the spinel phase contained in the raw material ferrite powder is preferably 0.01 or more and 0.50 or less (CSf / CSp). 0.01 ⁇ CSf / CSp ⁇ 0.50).
  • the crystallite diameter ratio (CSf / CSp) is more preferably 0.05 or more and 0.30 or less, and further preferably 0.10 or more and 0.20 or less.
  • the magnetic complex of the present embodiment can be obtained.
  • the ferrite layer is dense, so that it is excellent in magnetic properties and electrical properties (electrical insulation).
  • the adhesion to the metal base material is high.
  • the present inventors have succeeded in producing a magnetic composite having a ferrite layer having a relative density of 0.95 or more and a pencil hardness of 9H. Further, the ferrite layer has a relatively small magnetic loss in the high frequency region.
  • a thinned metal base material but not limited to, flexibility can be imparted to the magnetic complex, and a device having a complicated shape can be manufactured.
  • the magnetic composite provided with such a ferrite layer can be used not only for electromagnetic wave absorbers but also for electronic components such as transformers, inductance elements, and impedance elements, and in particular, UHF tags, 5G filters, and high frequency inductors. Is suitable for.
  • the technique for producing such a magnetic composite of the present embodiment has not been known conventionally.
  • the composite material containing ferrite powder proposed in Patent Document 1 is inferior in magnetic properties because it contains a large amount of a non-magnetic resin. Further, it is difficult to form a thick ferrite thin film proposed in Patent Document 2 in manufacturing. Further, since the composite magnetic material proposed in Patent Document 3 contains a highly conductive metal magnetic material, it cannot be applied to applications requiring electrical insulation.
  • the magnetic composite of the present embodiment is sufficiently applicable to applications in which the ferrite layer does not contain a resin or a metal component and electrical insulation is required.
  • Patent Document 3 also discloses that a composite magnetic film is produced by setting the content of iron powder (metal magnetic material) to 0% (Patent Document 3 [0048]). However, the peak of the (222) plane is present in the X-ray diffraction profile (Fig. 3 of Patent Document 3), and it is presumed that the ferrite layer in the magnetic film is not in a microcrystalline state and is inferior in denseness and adhesion. To. Further, Patent Document 3 exemplifies ⁇ -Fe 2 O 3 as a ferrite raw material together with NiZn ferrite, MnZn ferrite, and the like (Patent Document 3 [0036]).
  • Patent Document 3 teaches that a predetermined amount of ⁇ -Fe 2 O 3 is contained in the ferrite layer, thereby cutting off the conductive path in the ferrite layer and increasing the electrical resistance. is not.
  • the ferrite layer contains coarse ⁇ -Fe 2 O 3 , and this coarse ⁇ -Fe 2 O 3 hinders the movement of the ferrite component to the magnetic wall. As a result, it becomes a factor of deterioration of magnetic characteristics.
  • Example 1 a ferrite powder containing MnZn-based ferrite as a main component is prepared, and the obtained ferrite powder is deposited on the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m to form a magnetic film.
  • a complex was prepared.
  • the ferrite powder was prepared and formed according to the following procedure.
  • the granulated raw material mixture (temporary granulated product) was calcined to prepare a calcined product.
  • the calcination was carried out using a rotary kiln under the condition of 880 ° C. for 2 hours in an air atmosphere.
  • the obtained calcined product was crushed and granulated to prepare a granulated product (main granulated product).
  • the calcined product is roughly pulverized using a dry bead mill (3/16 inch ⁇ steel ball beads), then water is added, and finely pulverized using a wet bead mill (0.65 mm ⁇ zirconia beads) to form a slurry. It became.
  • the obtained slurry had a solid content concentration of 50% by mass, and the particle size of the pulverized powder (slurry particle size) was 2.15 ⁇ m.
  • An ammonium polycarboxylic acid salt as a dispersant was added to the obtained slurry at a ratio of 50 cc with respect to 25 kg of solid content in the slurry, and a 10 mass% aqueous solution of polyvinyl alcohol (PVA) as a binder was added in an amount of 500 cc. Then, the slurry to which the dispersant and the binder were added was granulated using a spray dryer to obtain the present granulated product.
  • PVA polyvinyl alcohol
  • the obtained granulated product was fired (mainly fired) in a non-oxidizing atmosphere at 1250 ° C. for 4 hours using an electric furnace to prepare a fired product.
  • the obtained calcined product was pulverized using a dry bead mill (3/16 inch ⁇ steel ball beads) to obtain a pulverized calcined product.
  • ferrite layers were formed on the front surface and the back surface of the metal substrate, respectively.
  • a copper (Cu) foil having a thickness of 30 ⁇ m was used as the metal base material. Further, the film formation was carried out according to the following conditions by the aerodeposition (AD) method. Further, the film formation was performed 30 times on each of the front surface and the back surface of the metal substrate.
  • AD aerodeposition
  • Example 2 In Example 2, the ferrite layer was formed only on the surface (one side) of the metal base material (Cu foil), and the number of coatings was changed to 15 times. A magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 3 In Example 3, the number of coatings at the time of film formation was changed to 40 times. A magnetic complex was produced in the same manner as in Example 2 except for the above.
  • Example 4 In Example 4, a laminate obtained by depositing aluminum (Al) having a thickness of 0.05 ⁇ m on a PET film having a thickness of 100 ⁇ m was used as the metal base material, and a ferrite layer was formed on the vapor-deposited surface of the laminate. A magnetic complex was produced in the same manner as in Example 3 except for the above.
  • Example 5 In Example 5, an aluminum (Al) foil having a thickness of 30 ⁇ m was used as the metal base material. A magnetic complex was produced in the same manner as in Example 3 except for the above.
  • Example 6 In Example 6, a nickel (Ni) foil having a thickness of 30 ⁇ m was used as the metal base material. A magnetic complex was produced in the same manner as in Example 3 except for the above.
  • Example 9 a raw material powder (ferrite powder) containing NiCuZn-based ferrite as a main component is prepared, and then the obtained ferrite powder is applied to the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m.
  • a magnetic composite was produced by forming a film.
  • the ferrite powder was prepared and formed according to the following procedure.
  • the raw materials were weighed and mixed so as to have a molar ratio of 16: 6.25. Further, the calcination was carried out under the condition of 850 ° C. ⁇ 2 hours in an air atmosphere, and the main calcination was carried out under the condition of 1100 ° C. ⁇ 4 hours in an oxidizing atmosphere.
  • a magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 11 In Example 11, the ferrite layer was formed only on the surface (one side) of the copper (Cu) foil (metal base material), and the number of coatings was changed to 15 times. A magnetic complex was produced in the same manner as in Example 10 except for the above.
  • Example 12 a raw material powder (ferrite powder) containing NiZn-based ferrite as a main component is prepared, and then the obtained ferrite powder is applied to the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m.
  • a magnetic composite was produced by forming a film.
  • the ferrite powder was prepared and formed according to the following procedure.
  • the raw materials were weighed and mixed. Further, the calcination was carried out under the condition of 950 ° C. ⁇ 2 hours in an air atmosphere, and the main calcination was carried out under the condition of 1250 ° C. ⁇ 4 hours in an oxidizing atmosphere.
  • a magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 13 a raw material powder (ferrite powder) containing MnMg-based ferrite as a main component is prepared, and then the obtained ferrite powder is formed on the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m. The film was used to prepare a magnetic composite. The ferrite powder was prepared and formed according to the following procedure.
  • the raw materials were weighed and mixed so as to have a molar ratio of: 10. Further, the calcination was carried out under the condition of 920 ° C. ⁇ 2 hours in an air atmosphere, and the main calcination was carried out under the condition of 1180 ° C. ⁇ 4 hours in a non-oxidizing atmosphere.
  • a magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 14 a raw material powder (ferrite powder) containing Mn-based ferrite as a main component was prepared, and then the obtained ferrite powder was applied to the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m. A magnetic composite was produced by forming a film. The ferrite powder was prepared and formed according to the following procedure.
  • Example 15 a raw material powder (ferrite powder) containing Zn-based ferrite as a main component is prepared, and then the obtained ferrite powder is applied to the front surface and the back surface of a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m.
  • a magnetic composite was produced by forming a film.
  • the ferrite powder was prepared and formed according to the following procedure.
  • carbon (carbon black) was added at a ratio of 1% by mass with respect to the total amount of Fe 2 O 3 and Zn O.
  • the preliminary firing was carried out under the condition of 1000 ° C. ⁇ 2 hours in a non-oxidizing atmosphere, the amount of the binder to be added was 1000 cc to obtain the present granulated product, and the main firing was carried out under the condition of 1300 ° C. ⁇ 4 hours in a non-oxidizing atmosphere. ..
  • the film formation was performed 20 times on each of the front surface and the back surface of the metal substrate.
  • a magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 16 a raw material powder (ferrite powder) containing Zn-based ferrite as a main component is prepared, and then the obtained ferrite powder is formed into a film on a copper (Cu) foil (metal base material) having a thickness of 30 ⁇ m to be magnetic. A complex was prepared. The ferrite powder was prepared and formed according to the following procedure.
  • a magnetic complex was produced in the same manner as in Example 15 except for the above.
  • Example 17 (Comparative example)
  • the ferrite layer was formed only on the surface (one side) of the copper (Cu) foil (metal base material), and the number of coatings was changed to one.
  • a magnetic complex was produced in the same manner as in Example 1 except for the above.
  • Example 18 (Comparative example)
  • a ferrite layer was prepared by a coating method. Specifically, a ferrite powder was prepared in the same manner as in Example 1, and 50 parts by mass of the obtained ferrite powder was dispersed and mixed together with 50 parts by mass of a photocurable resin. Then, the obtained mixture was applied onto a PET film. The coating was carried out using an applicator so as to obtain a coating film having a thickness of 12 ⁇ m. Next, the obtained coating film was cured with ultraviolet rays to form a film, which was peeled off from the PET film to obtain a magnetic sheet.
  • Example 19 (Comparative example)
  • a ferrite layer was prepared by a coating method. Specifically, a ferrite powder was prepared in the same manner as in Example 9, and 50 parts by mass of the obtained ferrite powder was dispersed and mixed together with 50 parts by weight of a photocurable resin. Then, the obtained mixture was applied onto a PET film. The coating was carried out using an applicator so as to obtain a coating film having a thickness of 12 ⁇ m. Next, the obtained coating film was cured with ultraviolet rays to form a film, which was peeled off from the PET film to obtain a magnetic sheet.
  • SMT Co., Ltd., UH-150 type an ultrasonic homogenizer
  • the 10% cumulative diameter (D10), the 50% cumulative diameter (D50; average particle size), and the 90% cumulative diameter (D90) in the volume particle size distribution were determined.
  • the measurement conditions were a pump speed of 7, a built-in ultrasonic irradiation time of 30, and a refractive index of 1.70-050i. Then, using D10, D50 and D90, the CV value was calculated according to the following formula (3).
  • ⁇ XRD raw material powder, ferrite layer
  • the ferrite powder and the ferrite layer of the magnetic complex were analyzed by the X-ray diffraction (XRD) method.
  • the analysis conditions are as shown below.
  • -X-ray diffractometer PANalytical X'pert MPD (including high-speed detector) -Radioactive source: Co-K ⁇ -Tube voltage: 45kV -Tube current: 40mA -Scan speed: 0.002 ° / sec (continuous scan) -Scan range (2 ⁇ ): 15-90 °
  • the integrated intensity (I 222 ) of the (222) plane diffraction peak and the integrated intensity (I 311 ) of the (311) plane diffraction peak of the spinel phase were obtained, and the XRD peak intensity ratio (I 222 ) was obtained. / I 311 ) was calculated. Further, based on the X-ray diffraction profile, the content ratios of the spinel phase and ⁇ -Fe 2 O 3 were determined.
  • the X-ray diffraction profile was Rietveld analyzed to estimate the lattice constants (LCp, LCf) of the spinel phase, and the crystallite diameter (CSp, CSf) of the spinel phase was obtained according to Scheller's formula. Then, the lattice constant change rate (LCf / LCp) and the crystallite diameter change rate (CSf / CSp) of the spinel phase before and after the film formation were calculated.
  • ⁇ Magnetic properties (raw material powder, metal base material, magnetic complex)> The magnetic properties (saturation magnetization, residual magnetization and coercive force) of the ferrite powder, the metal substrate, and the magnetic composite were measured as follows. First, the sample was packed in a cell having an inner diameter of 5 mm and a height of 2 mm, and set in a vibration sample type magnetic measuring device (Toei Kogyo Co., Ltd., VSM-C7-10A). An applied magnetic field was applied and swept to 5 kOe, then the applied magnetic field was reduced to draw a hysteresis curve. From the obtained curve data, the saturation magnetization ( ⁇ s), residual magnetization ( ⁇ r) and coercive force (Hc) of the sample were determined.
  • ⁇ s saturation magnetization
  • ⁇ r residual magnetization
  • Hc coercive force
  • ⁇ Thickness and element distribution (ferrite layer)> The cross section of the ferrite layer was observed using a field emission scanning electron microscope (FE-SEM) to determine the thickness. Then, using an energy dispersive X-ray analyzer (EDX) attached to the microscope, element mapping analysis was performed on the cross section to obtain a mapping image.
  • FE-SEM field emission scanning electron microscope
  • EDX energy dispersive X-ray analyzer
  • ⁇ Surface roughness (ferrite layer)> An arithmetic mean roughness (Ra) and a maximum height (Rz) of the ferrite layer surface were evaluated using a laser microscope (Lasertec Co., Ltd., OPTELICS HYBRID). For each sample, 10 points were measured and the average value was calculated. The measurement was performed in accordance with JIS B 0601-2001. Further, the roughness ratio (Ra / d F ) was calculated from the arithmetic mean roughness (Ra) and the thickness of the ferrite layer (d F ).
  • the magnetic permeability of the magnetic composite was measured by a microstripline complex magnetic permeability measurement method using a vector network analyzer (Keysight, PNA N5222B, 10 MHz to 26.5 GHz) and a magnetic permeability measuring tool (Keycom Co., Ltd.). .. Specifically, the magnetic composite was cut out and set on a magnetic permeability measuring jig as a measurement sample. At this time, the sheet-shaped sample was cut into a length of 16 mm and a width of 5 mm before use. When a toroidal sample was used, the sample shape was set to an outer diameter of 6.75 mm and an inner diameter of 3.05 mm.
  • the measurement frequency was swept in the range of 100 MHz to 10 GHz on a logarithmic scale.
  • the real part ⁇ 'and the imaginary part ⁇ '' of the complex magnetic permeability at a frequency of 1 GHz were obtained, and the loss coefficient (tan ⁇ ) was calculated according to the following equation (5).
  • ⁇ Flexibility (magnetic complex)>
  • the magnetic composite was wrapped around an inch tube and the flexibility was evaluated. Specifically, three types of inch tubes having an outer diameter of 1/16 inch, an outer diameter of 1/8 inch, and an outer diameter of 1/4 inch are prepared, a magnetic composite is attached to each inch tube, and the ferrite layer is on the outside. I wrapped it so that it became. Then, the state of the ferrite layer was visually observed and rated as ⁇ to ⁇ according to the following criteria.
  • No change was observed in the ferrite layer before and after winding.
  • The ferrite layer was cracked after winding.
  • X The ferrite layer was peeled off after winding.
  • ⁇ Adhesion (magnetic composite)> The adhesion between the ferrite layer and the metal substrate was evaluated by a pencil hardness test (pencil scratch test). The measurement was performed in accordance with the old JIS K5400. In each test, scratching with a pencil with the same density symbol was repeated 5 times. At that time, the tip of the pencil lead was sharpened each time it was scratched.
  • the Curie point (Tc) of the magnetic composite was measured using a vibrating sample magnet measuring apparatus (VSM). Specifically, a magnetic composite cut to a predetermined size (length 8 mm, width 6 mm) was placed in a measuring cell and set in a vibration sample type magnetic measuring device (Toei Kogyo Co., Ltd., VSM-5 type). The sample was heated from room temperature to 500 ° C. at a rate of 0.3 ° C./sec with an applied magnetic field of 10 kOe applied, and the saturation magnetization during heating was measured. The Curie point was calculated from the temperature dependence of the obtained saturation magnetization.
  • VSM vibrating sample magnet measuring apparatus
  • the ferrite powders used for film formation in Examples 1 to 19 all had a high spinel phase content of 90% by mass or more, and the synthesis of spinel-type ferrite was sufficiently advanced.
  • the XRD peak intensity ratio (I 222 / I 311 ) was about 2.5 to 5%, which was comparable to that of general spinel-type ferrite.
  • the average particle size (D50) was 3.6 to 5.2 ⁇ m, and the crystallite diameter was about 6 to 18 nm.
  • the metal substrate (Ni foil) of Example 6 which is a ferromagnet has a high saturation magnetization ( ⁇ s) of 56.6 emu / g, whereas the metal substrate (Ni foil) which is a ferromagnet is an ordinary magnetic material from Examples 1 to Example.
  • the metal substrates (Cu foil, Al foil) of Examples 5 and 7 to 17 had almost zero saturation magnetization.
  • the magnetic composites of Examples 1 to 16 have a relatively large ferrite layer thickness (dF) of 3.5 ⁇ m or more, and have an XRD peak intensity ratio (I 222 / I 311 ). ) was zero (0).
  • the amount of ⁇ -Fe 2 O 3 was 0.5 to 37.3% by mass, and the crystallite diameter was as small as 2.05 nm or less. Therefore, these samples had high relative density, adhesion, and surface resistance.
  • Examples 2 and 6 had a very high relative density of 0.96 to 0.97.
  • the pencil hardness was as high as 9H or more, and the result of the adhesion test was good.
  • the results of the flexibility test were good in Examples 1, 2 and 4 to 6 and 8 to 13.
  • the pencil hardness of Examples 4 and 5 was slightly low. This is because aluminum, which has low strength, is used as the base material.
  • Example 17 in which the thickness ( df ) of the ferrite layer was as small as 0.6 ⁇ m, the relative density was high, but the crystallite diameter was large. Further, since the ferrite layer could not be formed uniformly, the roughness ratio (Ra / d F ) was large and the surface smoothness was inferior. As a result, the influence of the base material was large and the surface resistance was small. Further, in Example 17, the formed ferrite layer was thin and the ferrite layer was inferior in uniformity, resulting in inferior flexibility. Further, it was found that in Examples 18 and 19 produced by the coating method, the complex magnetic permeability imaginary part ( ⁇ '') and tan ⁇ were large, and the magnetic loss was large. Further, it was found that the magnetic sheet was cracked due to the occurrence of pinholes, which was inferior in flexibility and the resin was decomposed at a temperature of more than 200 ° C., resulting in lack of temperature stability.
  • the complex magnetic permeability imaginary part ( ⁇ '') and tan ⁇ were
  • FIGS. 16 (a) to 16 (f) Cross-sectional element mapping images of the ferrite layer of the magnetic complex obtained in Example 2 are shown in FIGS. 16 (a) to 16 (f).
  • FIGS. 16A to 16F show an electron beam image (a), a carbon (C) mapping image (b), a copper (Cu) mapping image (c), and an iron (Fe) mapping image (d), respectively.
  • Mn mapping image (e) Manganese
  • O oxygen
  • the component elements of the metal base material (Cu foil) and the ferrite layer (MnZn-based ferrite layer) were clearly separated. That is, copper (Cu) was present on the substrate side, and manganese (Mn), iron (Fe), and oxygen (O) were present only on the ferrite layer side. From this, it was found that the element was not diffused by the reaction between the metal base material and the ferrite layer. In addition, carbon (C) was not confirmed in either the metal substrate or the ferrite layer.
  • Example 2 The temperature dependence of the saturation magnetization of the magnetic composites obtained for Example 2, Example 10, Example 14, and Example 15 is shown in FIGS. 17 to 20, respectively.
  • the saturation magnetization decreased with increasing temperature, showing typical temperature characteristics of ferrite.
  • the Curie points (Tc) are 310 ° C. (Example 2), 180 ° C. (Example 10), 320 ° C. (Example 14), and 470 ° C. (Example 15), respectively, and the composition of the ferrite layer contained in each sample. The value corresponding to was shown.
  • the magnetic permeability (real part ⁇ ′, imaginary part ⁇ ′′) of the magnetic complex obtained for Example 2 is shown in FIG. It was found that ⁇ ′′ shows a constant value while ⁇ ′′ remains almost 0 over a high frequency range of 1 GHz or more from the low frequency side, and that ⁇ ′′ has a maximum value at frequencies of 1 GHz or more. rice field.
  • the magnetic composite of the present embodiment includes a ferrite layer which is dense, has a relatively thick film thickness, and has excellent various characteristics such as magnetic characteristics.
  • a magnetic composite having a ferrite layer which is dense, has a relatively thick film thickness, has excellent magnetic characteristics and electrical characteristics, and has good adhesion.
  • Aerosolization chamber 4 Aerosolization chamber 4 Formation chamber 6 Conveyed gas source 8 Vacuum exhaust system 10 Vibrator 12 Raw material container 14 Nozzle 16 Stage 20 Aerosol deposition film formation device

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

緻密で膜厚が比較的厚く、磁気特性及び電気特性に優れ、さらに密着性が良好なフェライト層を備える磁性複合体を提供すること。 金属基材と、前記金属基材の表面上に設けられたフェライト層と、を備えた磁性複合体であって、前記金属基材は、その厚さ(dM)が20μm以上であり、前記フェライト層は、その厚さ(dF)が2.0μm以上であり、スピネル型フェライトを主成分とし、X線回折分析における(311)面の積分強度(I311)に対する(222)面の積分強度(I222)の比(I222/I311)が0.00以上0.03以下である、磁性複合体。

Description

磁性複合体
 本発明は、磁性複合体に関する。
 近年の電子情報通信技術の急速な進展に伴い、電磁波の利用が急速に増えるとともに、使用される電磁波の高周波化及び広帯域化が進んでいる、具体的には、携帯電話(1.5、2.0GHz)や無線LAN(2.45GHz)に代表される準マイクロ波帯域におけるシステムに加えて、高速無線LAN(65GHz)や衝突防止用レーダ(76.5GHz)などのミリ波帯域における電波を利用した新しいシステムの導入が進められている。
 電磁波の利用拡大及び高周波化が進むにつれて、電磁ノイズによる電子機器の誤作動や人体への悪影響といった電磁干渉の問題がクローズアップされ、EMC(Electromagnetic Compatibility)対策への要望が高まっている。EMC対策の一手段として、電磁波吸収体(電波吸収体)を用いて、不要な電磁波を吸収し、その侵入を防ぐ手法が知られている。
 電磁波吸収体には、導電損失、誘電損失、及び/又は磁性損失を示す材料が用いられている。磁性損失を示す材料として、透磁率が高く且つ電気抵抗の高いフェライトが多用されている。フェライトは、特定の周波数で共鳴現象を起こして電磁波を吸収し、吸収した電磁波エネルギーを熱エネルギーに変換して外部に放射する。フェライトを用いた電磁波吸収体として、フェライト粉末とバインダー樹脂とを含む複合材料やフェライト薄膜が提案されている。また電磁波吸収体以外の用途において、基板上にフェライト膜を形成する技術が知られている。
 例えば、特許文献1には、Mn-Zn系フェライトなどのフェライト粉末:20~80質量%、カーボンブラック粉末:3~60質量%を含有し、残部が樹脂である塗料組成物を、金属板の少なくとも片面に塗装して塗装金属板を作製することが記載されている(特許文献1の請求項1~6)。また特許文献1には、当該塗料組成物は、優れた放熱性と広範囲な周波数帯域において良好な電磁波吸収性能を有することが記載されている(特許文献1の[0060])。
 特許文献2には、有機高分子からなる基体上に、強磁性体を物理的に蒸着してなることを特徴とする電磁波吸収体が開示され、当該電磁波吸収体は、電磁波吸収特性がよく、小型で、軽量で、可撓性があり、堅牢であることが記載されている(特許文献2の請求項1及び[0008])。また特許文献2には、強磁性体として酸化物系軟磁性体が主に用いられること、酸化物系軟磁性体としてはフェライトが好ましいこと、物理蒸着法には、EB蒸着、イオンプレーティング、マグネトロンスパッタリング、対向ターゲット型マグネトロンスパッタリングなどが挙げられることが記載されている(特許文献2の[0009]、[0010]及び[0017])。
 特許文献3には、金属磁性体よりなる磁性相と、当該磁性相中に島状に分散した高絶縁性フェライトの高電気抵抗相とにより構成されている、電磁波吸収機能を有する複合磁性膜が開示されている(特許文献3の請求項1)。また特許文献3には、当該複合磁性膜について、原料微粒子粉末をエアロゾル化し、被成膜体である基板等に衝突させ、厚膜を形成するエアロゾルデポジション(AD)法を用いて形成すること、AD法を適用することにより、所望の膜厚の複合磁性膜を高速で形成できることが記載されている(特許文献3の[0029]及び[0033])。
 特許文献4には、フェライトなどのセラミックス母相に金属粒子が分散した複合体であることを特徴とする電磁波吸収体が開示されている(特許文献4の請求項1及び請求項8)。また特許文献4には、電磁波吸収体は、基板上に形成して使用される場合が多いが、このとき金属が基板であると電磁波吸収体と基板との界面で反射し、再度、電磁波吸収体内での吸収が期待できること、電磁波吸収体を製造するには、ガスデポジション法、もしくは、エアロゾルデポジション法を用いることが可能であることが記載されている(特許文献4の[0029]及び[0031])。
 このように、特許文献1~4では、フェライト含有層を金属板などの基板上に形成して電磁波吸収体を作製することが提案されている。一方で電磁波吸収体以外の用途においても、フェライト含有層を基板上に形成することが提案されている。例えば、特許文献5には、磁性体基板と、導電体によって前記磁性体基板の面上に形成されたコイルと、前記磁性体基板上に前記コイルを埋め込むようにエアロゾルデポジション法によって形成された磁性体層と、を有する、インダクタ素子が開示されている(特許文献5の請求項1)。
日本国特開2004-027064号公報 日本国特開2005-045193号公報 日本国特開2007-088121号公報 日本国特開2007-180289号公報 日本国特開2007-250924号公報
 フェライト含有層を基板上に形成して作製した複合体を、電磁波吸収体やインダクタをはじめとする電子デバイスの用途に適用することが提案されるものの、従来の技術には改良の余地があった。例えば、特許文献1で提案されるフェライト粉末を含む複合材料は、非磁性体である樹脂を多量に含むため、磁気特性に劣る。そのため電磁波吸収特性を高める上で限界があった。特許文献2で提案されるフェライト薄膜は、製造上、これを厚く成膜することが困難であり、やはり磁気特性などの特性を高める上で限界があった。また、たとえ厚く成膜することができたとしても、膜が基材から剥離し易いという問題があった。特許文献3や特許文献4で提案される複合体は、高導電性の金属磁性体を含むため、電気絶縁性が要求される用途には適用できなかった。さらに特許文献5で提案される素子も、電気特性や密着性などの特性向上を図る上で限界があった。
 本発明者らは、このような問題点に鑑みて、鋭意検討を行った。その結果、金属基材とフェライト層とを備えた磁性複合体において、フェライト層の結晶状態が重要であり、これを制御することで、緻密で膜厚が比較的厚く、磁気特性及び電気特性、耐熱性に優れ、さらに密着性が良好なフェライト層を得ることができるとの知見を得た。
 本発明は、このような知見に基づき完成されたものであり、緻密で膜厚が比較的厚く、磁気特性(500MHz以上の高い周波数においてtanδが小さく)及び電気特性(金属基材の影響を受けることなく表面抵抗が高い)、耐熱性に優れ、さらに密着性が良好なフェライト層を備える磁性複合体の提供を課題とする。
 本発明は、下記(1)~(6)の態様を包含する。なお、本明細書において、「~」なる表現は、その両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。
(1)金属基材と、前記金属基材の表面上に設けられたフェライト層と、を備えた磁性複合体であって、
 前記金属基材は、その厚さ(d)が0.001μm以上であり、
 前記フェライト層は、その厚さ(d)が2.0μm以上であり、スピネル型フェライトを主成分とし、X線回折分析における(311)面の積分強度(I311)に対する(222)面の積分強度(I222)の比(I222/I311)が0.00以上0.03以下である、磁性複合体。
(2)前記フェライト層は、α-Feの含有量が0.0質量%以上20.0質量%以下である、上記(1)の磁性複合体。
(3)前記フェライト層は、鉄(Fe)及び酸素(O)を含み、さらにリチウム(Li)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、銅(Cu)、及びコバルト(Co)からなる群から選ばれる少なくとも一種の元素を含む、上記(1)又は(2)の磁性複合体。
(4)前記フェライト層は、その厚さ(d)に対する表面算術平均粗さ(Ra)の比(Ra/d)が0.00超0.20以下である、上記(1)~(3)のいずれかの磁性複合体。
(5)前記フェライト層は、フェライト構成成分を含み、残部が不可避不純物の組成を有する、上記(1)~(4)のいずれかの磁性複合体。
(6)上記(1)~(5)のいずれかの磁性複合体を備えるコイル及び/又はインダクタ機能を有する素子又は部品、電子デバイス、電子部品収納用筐体、電磁波吸収体、電磁波シールド、あるいはアンテナ機能を有する素子又は部品。
 本発明によれば、緻密で膜厚が比較的厚く、磁気特性及び電気特性に優れ、さらに密着性が良好なフェライト層を備える磁性複合体が提供される。
磁性複合体の一態様を示す。 磁性複合体の別の態様を示す。 磁性複合体の他の態様を示す。 磁性複合体の更に他の態様を示す。 磁性複合体をインダクタに適用した例を示す。 磁性複合体をLCフィルタに適用した例を示す。 磁性複合体をインダクタに適用した別の例を示す。 磁性複合体を磁気センサーに適用した例を示す。 磁性複合体をアンテナ素子(UHF-IDタグ)に適用した例を示す。 磁性複合体を電磁波吸収体に適用した例を示す。 磁性複合体を電子部品収納用筐体に適用した例を示す。 磁性複合体をケーブル被覆材に使用した例を示す。 磁性複合体を巻き線タイプのインダクタに適用した例を示す。 磁性複合体を温度センサーに適用した例を示す。 エアロゾルデポジション成膜装置の構成の一例を示す。 例2で得られたフェライト層の断面元素マッピング像を示す。 例2で得られた磁性複合体の飽和磁化温度依存性を示すグラフである。 例10で得られた磁性複合体の飽和磁化温度依存性を示すグラフである。 例14で得られた磁性複合体の飽和磁化温度依存性を示すグラフである。 例15で得られた磁性複合体の飽和磁化温度依存性を示すグラフである。 例2で得られた磁性複合体の透磁率(実部μ’、虚部μ’’)を示す。
 本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
<<1.磁性複合体>>
 本実施形態の磁性複合体は、金属基材と、この金属基材の上に設けられたフェライト層と、を備える。金属基材は、その厚さ(d)が0.001μm以上である。フェライト層は、その厚さ(d)が2.0μm以上である。またフェライト層は、スピネル型フェライトを主成分とし、X線回折分析における(311)面の積分強度(I311)に対する(222)面の積分強度(I222)の比(I222/I311)が0.00以上0.03以下である。磁性複合体について、以下に詳細に説明する。
 金属基材は、磁性複合体の支持体として機能する。支持体として機能する限り、金属基材の形状は特に限定されない。例えば、板状、箔状、棒状、箱状、糸状、または帯状などであってよい。また金属基材は、導電性を有するが故に電極として機能させることができる。さらに磁性複合体を電磁波吸収体の用途に用いる場合には、金属基材を電磁波の反射体として機能させることができる。すなわち磁性複合体のフェライト層を電磁波入射側に向けると、電磁波の一部がフェライト層に入射する。入射した電磁波はフェライト層を通過する間に強度が減衰する。減衰した電磁波は金属基材の表面で反射し、フェライト層を再度通過して、その表面から放射される。
 金属基材を構成する金属は、特に限定されない。単体金属であってもよく、あるいは合金であってもよい。好ましくは、金属は、銅(Cu)、アルミニウム(Al)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)、クロム(Cr)、金(Au)、及び銀(Ag)からなる群から選択される少なくとも一種である。これらの金属は安価である。金属は、ニッケル(Ni)、鉄(Fe)及びコバルト(Co)からなる群から選択される少なくとも一種であってもよい。金属基材は強磁性体であることがより好ましい。強磁性金属基材を用いることで、フェライト層が有する優れた磁気特性との相乗効果を発揮させることが可能になる。
 金属基材は、金属のみから構成されてもよく、あるいは、非金属基材と金属層との積層体であってもよい。この場合には、非金属基材の上に積層された金属層が金属基材に相当する。非金属基材として、PETフィルムなどの樹脂フィルムを用いることができる。金属層として、非金属基材上に薄膜形成法で形成したものを用いればよい。
 金属基材の厚さ(d)は0.001μm以上に限定される。金属基材が過度に薄いと、適用する周波数によっては金属基材の効果を十分得られない恐れがある。金属基材の厚さは0.01μm以上が好ましく、0.1μm以上がより好ましく、1μm以上がさらに好ましく、10μm以上が特に好ましい。一方で厚さの上限は限定されない。しかしながら金属基材を適度に薄層化することで、磁性複合体に可撓性を付与することが可能になる。この効果は金属基材を用いた場合に特に顕著である。厚さは1000μm以下であってよく、500μm以下であってよく、200μm以下であってよく、100μm以下であってよく、50μm以下であってもよい。また金属基材は、糸状、帯状、板状であってもよく、あるいは箔状であってもよい。しかしながら好ましくは箔状である。例えば、箔状の金属基材(金属箔)を用いることで、可撓性に優れる磁性複合体を作製することが可能になる。
 本実施形態のフェライト層は、スピネル型フェライトを主成分とする多結晶体である。すなわちスピネル型フェライトから構成される結晶粒子の集合体である。スピネル型フェライトは、スピネル型結晶構造を有する鉄(Fe)の複合酸化物であり、その多くが軟磁性を示す。スピネル型フェライトを主成分とする層を備えることで、磁性複合体の磁気特性が優れたものになる。スピネル型フェライトの種類は、特に限定されない。例えば、マンガン(Mn)系フェライト、マンガン亜鉛(MnZn)系フェライト、マグネシウム(Mg)系フェライト、マグネシウム亜鉛(MgZn)系フェライト、ニッケル(Ni)系フェライト、ニッケル銅(NiCu)系フェライト、ニッケル銅亜鉛(NiCuZn)系フェライト、コバルト(Co)系フェライト、コバルト亜鉛(CoZn)系フェライトからなる群から選択される少なくとも一種が挙げられる。なお本明細書で、主成分とは、含有量50.0質量%以上の成分を指す。スピネル型フェライトの優れた磁気特性を活かすため、フェライト層中のスピネル型フェライト(フェライト相)の含有割合は、好ましくは60.0質量%以上、より好ましくは70.0質量%以上、さらに好ましくは80.0質量%以上、特に好ましくは90.0質量%以上である。
 本実施形態のフェライト層の厚さ(d)は2.0μm以上に限定される。フェライト層が過度に薄いと、フェライト層の膜厚が不均一になり、磁気特性及び電気特性(電気絶縁性)が劣化する恐れがある。厚さは3.0μm以上が好ましく、4.0μm以上がより好ましい。厚さの上限は限定されない。しかしながら、過度に厚いフェライト層を、緻密さを維持しながら成膜することは困難である。またフェライト層が過度に厚いと、フェライト層の内部応力が大きくなり過ぎてしまい、フェライト層が剥離する恐れがある。さらに磁性複合体に可撓性を付与する場合には、フェライト層が適度に薄いことが望ましい。厚さは100.0μm以下が好ましく、50.0μm以下がより好ましく、20.0μm以下がさらに好ましく、10.0μm以下が特に好ましい。
 本実施形態のフェライト層は、X線回折(XRD)分析における(311)面の積分強度(I311)に対する(222)面の積分強度(I222)の比(I222/I311)が0.00以上0.03以下(0.00≦I222/I311≦0.03)である。すなわちフェライト層をX線回折法で分析すると、X線回折プロファイルにおいて、スピネル相の(222)面に基づく回折ピークが殆ど観測されない。これはフェライト層を構成する結晶粒子が微結晶から構成されるためである。本実施形態のフェライト層の結晶粒子は、磁性複合体製造時に塑性変形を受けている。そのため結晶子径が小さいとともに、格子定数の分布が広い。その結果、XRDピークがブロードになり、(222)回折ピークが観測されなくなる。I222/I311は、好ましくは0.02以下、より好ましくは0.01以下である。これに対して、一般のスピネル型フェライト材料は、多結晶状態であっても結晶性が高い。そのため(222)面回折ピークが比較的強く観測される。具体的には、XRDピーク強度比(I222/I311)は0.04~0.05(4~5%)程度である。
 XRDピーク強度比(I222/I311)の小さい本実施形態のフェライト層は、緻密であるという特徴がある。塑性変形を受けた結晶粒子は密に充填されやすいためである。また本実施形態のフェライト層は、金属基材との密着性に優れるという効果がある。結晶粒子が塑性変形を受けることで、金属基材との接触面積が増大しているためである。また小さい結晶子径と周期性が乱れた結晶構造に起因して、基材を構成する金属との結合が強くなることも一因と考えている。その上、本実施形態のフェライト層は、500MHz以上の高周波領域での磁気損失(tanδ)が小さいという特徴がある。結晶子径が小さいことに起因して磁気モーメントの相関長が短くなり、その結果、高周波領域での磁壁移動がスムーズに行われるためと推測している。これに対して、一般のスピネル型フェライト材料では、磁気モーメントの相関長が長い。低周波領域では外部磁界による磁壁移動が可能であるものの、100MHz以上の高周波領域では外部磁界の変動に磁壁移動が追随できず、磁気損失が大きくなる。
 好ましくは、フェライト層の結晶子径は1nm以上10nm以下である。結晶子径を10nm以下に小さくすることで、フェライト層の密度及び密着性がより高くなるとともに、磁気損失増大を抑制する効果がより一層顕著になる。また結晶子径を1nm以上にすることで、フェライト層が非晶質化して磁気特性が劣化することを防ぐことができる。結晶子径は、より好ましくは1nm以上5nm以下、さらに好ましくは1nm以上2nm以下である。
 好ましくは、フェライト層に含まれるスピネル型フェライトの格子定数が8.30Å以上8.80Å以下である。格子定数を8.30Å以上8.80Å以下とすることで、原料粒子の磁気特性を高める効果が得られる。格子定数は、より好ましくは8.30Å以上8.60Å以下、さらに好ましくは8.30Å以上8.50Å以下である。
 好ましくは、金属基材の厚さ(d)に対するフェライト層の厚さ(d)の比(d/d)は、0.05以上200以下(0.05≦d/d≦200)である。厚さ比(d/d)が過度に小さいと、フェライト層の膜厚が不均一になり、磁気特性及び電気特性(電気絶縁性)が低下してしまう。厚さ比(d/d)は0.10以上がより好ましい。一方で厚さ比(d/d)が過度に大きいと、フェライト層の内部応力に金属基材が抗することができず、複合体が湾曲する恐れがある。厚さ比(d/d)は10.0以下がより好ましく、1.00以下がさらに好ましく、0.50以下が特に好ましく、0.30以下が最も好ましい。
 なお基材が複数の層で構成される積層体である場合には、フェライト層が直接接触する層の厚さが基材厚さに相当する。基材に凹凸がある場合にはフェライト層が形成される基材の最薄部と最厚部の算術平均を基材の厚さdとし、複合体の最薄部と最厚部の算術平均と基材の厚さdの差をフェライト層の厚さdとする。複合体の両面にフェライト層が形成されている場合には複合体の最薄部と最厚部の算術平均と基材の厚さdの差をフェライト層の厚さの2倍と見なして、厚さdを算出する。基材の厚さdが2000μmを超える場合には、基材の厚さdを2000μmと見なして厚さ比(d/d)を算出する。
 好ましくは、フェライト層は、α-Fe(ヘマタイト)の含有量が0.0質量%以上20.0質量%以下である。α-Feはスピネル相にならなかった遊離酸化鉄である。強磁性体であるスピネル相とは異なり、α-Feは常磁性体である。そのためα-Feが過度に多いと、フェライト層の磁気特性が劣化する恐れがある。α-Fe量は15.0質量%以下がより好ましく、10.0質量%以下がさらに好ましい。一方で、α-Feは電気抵抗の高い安定な化合物である。フェライト層にα-Feを適度に含ませることで、フェライト層中の導電経路を断ち切ることができ、電気抵抗をより一層高めることが可能になる。特に、マンガン(Mn)系フェライトやマンガン亜鉛(MnZn)系フェライトは、価数が不安定なマンガン(Mn)イオンと鉄(Fe)イオンを含むため、電気抵抗が低くなりがちである。したがってこれらのフェライトにα-Feを含ませることで、電気抵抗向上の効果を顕著に発揮させることが可能になる。またα-Feを適度に含ませることで、フェライト層の緻密化及び密着力の向上を図ることができる。α-Feは、磁性複合体製造時のフェライト層成膜工程で生じる。すなわち成膜工程の際にフェライト結晶粒子の塑性変形及び再酸化が起こり、α-Feが生成する。この塑性変形及び再酸化は、フェライト層の緻密化及び密着力を高める上で重要な働きをする。したがってα-Feを適度に含むフェライト層は、密度及び密着力が高い。α-Fe量は0.1質量%以上がより好ましく、1.0質量%以上がさらに好ましく、5.0質量%以上が特に好ましい。
 好ましくは、フェライト層は、鉄(Fe)及び酸素(O)を含み、さらにリチウム(Li)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、銅(Cu)、及びコバルト(Co)からなる群から選ばれる少なくとも一種の元素を含む。フェライト層に含まれる元素はICP、EDX、SIMS、及び/又はXRFなどの分析方法・分析装置を用いて確認することができる。
 好ましくは、フェライト層は、厚さ(d)に対する表面算術平均粗さ(Ra)の比(Ra/d)が0.00超0.20以下(0.00<Ra/d≦0.20)である。粗さ比(Ra/d)が過度に大きいと、フェライト層の膜厚が不均一になる傾向がある。そのため高電圧印加時に局所的に電界が集中し、リーク電流が発生する恐れがある。粗さ比(Ra/d)は0.00超0.10以下がより好ましく、0.00超0.05以下がさらに好ましい。
 本実施形態のフェライト層は、密度が比較的高い。これはフェライト層を構成するフェライト結晶粒子が塑性変形を繰り返し受けた結果、小さい結晶粒子がフェライト層として堆積したためである。フェライト層の相対密度(フェライト層の密度/フェライト粉末の真比重)は、好ましくは0.60以上、より好ましくは0.70以上、さらに好ましくは0.80以上、特に好ましくは0.90以上、最も好ましくは0.95以上である。密度を高めることで、フェライト層の磁気特性、電気特性及び密着力向上の効果がより一層顕著になる。
 本実施形態のフェライト層は、電気抵抗が比較的高い。これはフェライト層の密度が高いため、電気抵抗劣化の要因となる水分などの導電性成分の吸着が少ないためである。またフェライト層を構成するフェライト結晶粒子の結晶子径が小さいことも影響していると考えている。実際、一般のMnZnフェライト材料は、電気抵抗が比較的低いとされており、その体積抵抗は10~10Ω・cm程度である。これに対して、本実施形態のフェライト層は、それより高い抵抗値を示しており、その原因を結晶子径の大きさに求めることができる。さらに適切な量のα-Feを含有させることで、フェライト層の電気抵抗をより一層高めることが可能になる。フェライト層の表面抵抗は、好ましくは10Ω以上、より好ましくは10Ω以上である。表面抵抗を高くすることで、フェライト層の絶縁性を優れたものにすることができ、磁性複合体をデバイスに適用した際に、渦電流発生などの問題を抑えることが可能になる。
 フェライト層は、好ましくは、フェライト構成成分を含み、残部が不可避不純物の組成を有する。すなわち、不可避不純物量を超えてフェライト構成成分以外の有機成分や無機成分を含まないことが好ましい。本実施形態のフェライト層は、バインダーなどの樹脂成分又は焼結助剤などの無機添加成分を加えなくても十分に緻密にすることが可能である。非磁性体の含有量を最小限に抑えることで、フェライトに基づく優れた磁気特性を十分に活かすことができる。なおフェライト構成成分とは、主成分たるスピネル型フェライトを構成する成分のことである。例えばフェライト層がマンガン亜鉛(MnZn)フェライトを主成分とする場合には、フェライト構成成分は、鉄(Fe)、マンガン(Mn)、亜鉛(Zn)及び酸素(O)である。フェライト層がニッケル銅亜鉛(NiCuZn)フェライトを主成分とする場合には、フェライト構成成分は、鉄(Fe)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)及び酸素(O)である。さらに不可避不純物とは、製造時に不可避的に混入する成分であり、その含有量は典型的には1000ppm以下である。特にフェライト層は、酸化物以外の金属成分を含まないことが好ましい。
 磁性複合体は、金属基材と、平均粒径(D50)が1.0μm以上10.0μm以下のスピネル型フェライト粉末と、を準備する工程(準備工程)、及びこのフェライト粉末をエアロゾルデポジション法で金属基材の表面に成膜する工程(成膜工程)を備え、スピネル型フェライト粉末に含まれるスピネル相の格子定数(LCp)に対するフェライト層に含まれるスピネル相の格子定数(LCf)の比(LCf/LCp)が0.95以上1.0.5以下(0.95≦LCf/LCp≦1.05)となる方法で製造されたものであることが好ましい。
 磁性複合体の形態も特に限定されない。図1に示すように、フェライト層(フェライト膜)を金属基材の表面全体に設ける態様としてもよい。図2に示すように、フェライト層を金属基材表面の一部のみに設ける態様としてもよい。金属基材の片面のみならず、両面にフェライト層を設ける態様としてもよい。図3に示すように、厚さを部分的に変化させたフェライト層を金属基材の表面に設ける態様としてもよい。さらに図4に示すように、棒状の金属基材の外周にフェライト層を巻き付ける態様としてもよい。
 磁性複合体は、様々な応用に適用することができる。このような応用として、磁性複合体を備えるコイル及び/又はインダクタ機能を有する素子又は部品、電子デバイス、電子部品収納用筐体、電磁波吸収体、電磁波シールド、あるいはアンテナ機能を有する素子又は部品を挙げることができる。
 磁性複合体をインダクタに適用した例を図5に示す。磁性複合体は、金属基材と、この金属基材の一表面に設けられたフェライト層(フェライト膜)と、このフェライト層の表面に設けられたコイルと、を備える。導電性材料で構成される金属基材を背面電極として機能させることができる。コイルは金属等の導電性材料で構成されており、またスパイラル形状の回路パターンを有している。そのためインダクタ機能を発現する。コイルの回路パターンは、無電解メッキ、金属コロイド粒子含有ペーストを用いたスクリーン印刷、インクジェット、スパッタリング、蒸着等の手法で形成すればよい。フェライト層の上に回路パターンを形成することで、薄いインダクタ機能を有した素子を得ることができる。
 磁性複合体をLCフィルタに適用した例を図6に示す。磁性複合体は、導電性材料で構成された金属基材と、この金属基材表面の一部に設けられたフェライト層(フェライト膜)と、フェライト層の表面に設けられたコイルと、を備える。また金属基材のフェライト層が設けられていない箇所に誘電体と、この誘電体の表面に設けられたコンデンサー電極と、を備える。フェライト層が設けられた部分はインダクタ素子として機能する一方で、誘電体が設けられた部分はキャパシタ素子として機能する。導電性材料で構成される金属基材をインダクタ素子とキャパシタ素子の共通電極として機能させることができ、全体としてLCフィルタとして動作させることができる。
 磁性複合体をインダクタに適用した別の例を図7に示す。この例では、金属基材の両面にフェライト層(フェライト膜)及びコイルが設けられている。また表面側のコイルと裏面側のコイルは、金属基材及びフェライト層に設けられたヴィアホール(接続電極)を介して電気的に接続されている。金属基材の両面にインダクタ機能を付与することで、小型化されたインダクタを作製することが可能である。
 磁性複合体を磁気センサーに適用した例を図8に示す。この例では、フェライト層(フェライト膜)及びコイルを有するインダクタ素子が金属基材両面にアレイ状に配列されている。磁気センサー動作時には、外部交流磁場を印加した状態で、基材裏面に配置される横方向インダクタ電極A及びB・・・(横方向)と基材表面に配置される縦方向インダクタ電極a、b、c・・・の各組み合わせについて、発生する電圧を順番に測定する。コイル付近に磁性体が存在しない場合には、基材表面のインダクタと裏面のインダクタが示すインダクタンスが同一となるため、電圧は発生しない。磁性体が存在する場合には、磁性体付近のインダクタのインダクタンスが変化するため、電圧が発生する。電圧が発生したインダクタの組み合わせに基づき、磁性体の位置を検出することができる。
 磁性複合体をアンテナ素子(UHF-IDタグ)に適用した例を図9に示す。アンテナ素子(磁性複合体)は、アンテナパターンに形づくられた金属基材と、この金属基材の裏面に設けられたフェライト層(フェライト膜)と、金属基材の表面に設けられたIDタグ用チップと、を備える。フェライト層は周囲の空間よりも透磁率が高いため、フェライト層に電磁波が集まりやすい。フェライト層の上にアンテナパターンを設けることで、アンテナ感度を向上させることができる。
 磁性複合体を電磁波吸収体に適用した例を図10に示す。電磁波吸収体(磁性複合体)は、金属基材とこの金属基材の表面に設けられたフェライト層(フェライト膜)とが交互に積層された構造を有している。また最下面には、熱伝導性に優れた基材が設けられている。
 磁性複合体を電子部品収納用筐体に適用した例を図11に示す。この例では、金属基材の表面にフェライト層(フェライト膜)が設けられ、その上に電子部品が実装されている。また筐体の蓋部となる金属基材の内面側にもフェライト層が設けられている。電磁波シールド効果のあるフェライト層を筐体に設けることで、電子部品から放射される不要電磁波の周囲環境への漏洩を防ぐことができる。
 磁性複合体を信号ケーブルに使用した例を図12に示す。この例では、管状金属基材の外面及び内面にフェライト層(フェライト膜)が設けられており、この管状金属基材の内部に樹脂層(絶縁層)で被覆された信号線が配置されている。信号線に高周波信号を印加すると漏洩電磁波が周囲に放射される。フェライト層を設けることで、漏洩電磁波の周囲への放射を防ぐことができる。
 磁性複合体を巻き線タイプのインダクタに適用した例を図13に示す。この例では、(a)可撓性金属基材の両面にフェライト層(フェライト膜)が設けられている。そして、一面側に設けられたフェライト層が内部に配されるように金属基材を端から丸め込むことで、(b)巻き線タイプのインダクタ(空芯)を作製することができる。さらに(c)磁性フィラー含有ペーストで空芯部を充填すれば、磁芯の入った巻き線タイプのインダクタとなる。金属基材の一部分はフェライト層によって他の部分と直接接触しないため絶縁性を確保することが可能であるだけでなく、巻き線間にフェライト層が存在することで漏れ磁束を抑制する効果が得られる。
 磁性複合体を温度センサーに適用した例を図14に示す。温度センサー(磁性複合体)は、アンテナパターンに形づくられた金属基材と、この金属基材の裏面に設けられたフェライト層(フェライト膜)と、金属基材の表面に設けられたIDタグ用チップと、を備えるアンテナ素子を複数個備えている。また各アンテナ素子に設けられるフェライト層は、その組成が互いに異なっている。このような構成で温度センサーを構築することで、読み取り用配線を設けることができない環境、例えば真空下や大気以外のガス環境下の対象物に対して非接触で温度を計測することができる。また組成の異なるフェライト層で裏打ちされた複数のIDタグを組み合わせて使用することで、周波数特性の違いと温度特性の違いを利用して精度よく温度を測定することができる。金属基材を用いているため、樹脂では不可能な温度領域の測定が可能である。
<<2.磁性複合体の製造方法>>
 本実施形態の磁性複合体は、上述した要件を満足する限り、その製造方法は限定されない。しかしながら好適な製造方法は、以下の工程;金属基材と、平均粒径(D50)が2.5μm以上10.0μm以下のスピネル型フェライト粉末と、を準備する工程(準備工程)、及びこのフェライト粉末をエアロゾルデポジション法で金属基材の表面に成膜する工程(成膜工程)を備える。
 このように、特定の粒径をもつフェライト粉末を原料とし、エアロゾルデポジション法(AD法)で成膜を行うことで、比較的厚いフェライト層を高い成膜速度で作製することができる。このフェライト層は緻密であり、磁気特性及び電気特性、耐熱性に優れるとともに、基材との密着性に優れている。したがって磁性複合体の製造方法として好適である。各工程について、以下に詳細に説明する。
 <準備工程>
 準備工程では、金属基材とスピネル型フェライト粉末とを準備する。金属基材の詳細については、先述したとおりである。一方で、スピネル型フェライト粉末として、その平均粒径(D50)が1.0μm以上10.0μm以下の粉末を準備する。平均粒径は、好ましくは2.5μm以上7.0μm以下である。平均粒径を、上記範囲内に調整することで、後続する成膜工程で、緻密で密着力の高いフェライト層を得ることができる。
 フェライト粉末の作製手法は、限定されない。しかしながら、好適には、フェライト原料混合物を、大気よりも酸素濃度が低い雰囲気下で本焼成して焼成物を作製し、得られた焼成物を粉砕して、特定粒径の不定形状の粒子を作製するのがよい。また焼成前に、フェライト原料混合物に、仮焼成、粉砕、及び/又は造粒処理を施してもよい。フェライト原料として、酸化物、炭酸塩、及び水酸化物などの公知のフェライト原料を用いればよい。
 フェライト粉末の形状は不定形であることが好ましい。具体的には、フェライト粉末の形状係数(SF-2)の平均値は1.02以上1.50以下が好ましく、1.02以上1.35以下がより好ましく、1.02以上1.25以下がさらに好ましい。ここでSF-2は粒子の不定形の度合いを示す指標であり、1に近いほど真球状であることを意味し、また大きいほど不定形であることを意味する。SF-2が過度に小さいと、粒子が丸くなり過ぎてしまう。そのため粒子の基材への食い付きが悪くなり、成膜速度を高めることができない。一方でSF-2が過度に大きいと、粒子表面の凹凸が大きくなり過ぎてしまう。そのため成膜速度は高くなるものの、粒子の表面凹凸に起因して、得られるフェライト層中に空隙が残り易い。SF-2が上記範囲内であると、高い成膜速度で緻密なフェライト層を得ることが可能になる。なおSF-2は下記(1)式にしたがって求められる。
Figure JPOXMLDOC01-appb-M000001
 またフェライト粉末のアスペクト比の平均値は1.00以上2.00以下が好ましく、1.02以上1.50以下がより好ましく、1.02以上1.25以下がさらに好ましい。アスペクト比が上記範囲内であると、成膜時に原料を供給するガス流が安定する。一方で、上記範囲を上回ると、原料供給容器からノズルまでの配管中で原料が閉塞しやすくなる。そのため成膜時間の経過とともに成膜速度が不安定になる恐れがある。なおアスペクト比は下記(2)式にしたがって求められる。
Figure JPOXMLDOC01-appb-M000002
 さらにフェライト粉末の粒径のCV値は0.5以上2.5以下が好ましい。ここでCV値は粉末中粒子の粒径のバラツキ度合いを示すものであり、粒径が均一であるほど小さくなり、不均一であるほど大きくなる。不定形粒子を得るための一般的な粉砕法(ビーズミル、ジェットミル等)ではCV値0.5を下回る粉末を得ることが困難である。一方でCV値2.5超の粉末は、原料供給容器からノズルまでの配管中で閉塞しやすい。そのため成膜時間の経過とともに成膜速度が不安定になる恐れがある。なおCV値は、体積粒度分布における10%累積径(D10)、50%累積径(D50;平均粒径)、及び90%累積径(D90)を用いて下記(3)式にしたがって求められる。
Figure JPOXMLDOC01-appb-M000003
 フェライト粉末作製時に仮焼成を行う場合には、例えば、大気雰囲気下、500~1100℃×1~24時間の条件で仮焼成すればよい。本焼成は、例えば、大気又は還元性雰囲気などの雰囲気下、800~1350℃×4~24時間の条件で行えばよい。また本焼成時の酸素濃度は低いことが好ましい。これによりフェライト粉末のスピネル結晶中に意図的に格子欠陥を生成させることができる。結晶中に格子欠陥が含まれていると、後続する成膜工程で原料粒子が基材に衝突した際に、この格子欠陥を起点として塑性変形が起こり易い。そのため緻密で密着力の高いフェライト層を容易に得ることが可能になる。酸素濃度は0.001~10体積%が好ましく、0.001~5体積%がより好ましく、0.001~2体積%がさらに好ましい。さらにフェライトが銅(Cu)を含む組成を有する場合には、還元性雰囲気下で焼成を行うことが好ましい。還元性雰囲気下で焼成すると、酸化銅(II)(CuO)が酸素原子の一部を放出して酸化銅(I)(CuO)に変化する。この際、格子欠陥が生成し易い。またフェライト粉末を鉄(Fe)リッチな組成にすることも、緻密なフェライト層を得る上で有効である。
 焼成物の粉砕は、好ましくは、乾式ビーズミルなどの粉砕機を用いて行う。乾式粉砕することで、焼成物にメカノケミカル処理が施され、結晶子径が小さくなるとともに表面活性が高くなる。表面活性の高い粉砕粉は、適度な粒径の効果と相まって、後続する成膜工程で得られるフェライト層の緻密化に寄与する。フェライト粉末の結晶子径(CSp)は2nm以上100nm以下が好ましい。より好ましくは2nm以上50nm以下、さらに好ましくは4nm以上25nm以下である。結晶子径が微細なフェライト粉末を用いることで、緻密なフェライト層を得ることができる。
 <成膜工程>
 成膜工程(堆積工程)では、フェライト粉末をエアロゾルデポジション法で金属基材の表面に成膜する。エアロゾルデポジション法(AD法)は、エアロゾル化した原料微粒子を基板に高速噴射し、常温衝撃固化現象により被膜形成する手法である。常温衝撃固化現象を利用するため、緻密で密着力の高い膜の成膜が可能である。また微粒子を供給原料に用いるので、原子レベルにまで原料を分離するスパッタリング法や蒸着法などの薄膜形成法に比べて、厚い膜を高い成膜速度で得ることができる。さらに常温成膜が可能なため装置の構成を複雑にする必要がなく、製造コスト低減の効果もある。
 エアロゾルデポジション成膜装置の構成の一例を、図15に示す。エアロゾルデポジション成膜装置(20)はエアロゾル化チャンバー(2)、成膜チャンバー(4)、搬送ガス源(6)、及び真空排気系(8)を備える。エアロゾル化チャンバー(2)は、振動器(10)、及びその上に配置された原料容器(12)を備える。成膜チャンバー(4)の内部にはノズル(14)とステージ(16)とが備えられている。ステージ(16)は、ノズル(14)の噴射方向に対して垂直に移動できるように構成されている。
 成膜の際には、搬送ガス源(6)から搬送ガスを原料容器(12)に導入して、振動器(10)を作動させる。原料容器(12)には原料微粒子(フェライト粉末)が装入されている。振動により原料微粒子は搬送ガスと混合されて、エアロゾル化される。また真空排気系(8)により成膜チャンバー(4)を真空排気して、チャンバー内を減圧する。エアロゾル化した原料微粒子は圧力差により成膜チャンバー(4)内部に搬送され、ノズル(14)から噴射する。噴射した原料微粒子は、ステージ(16)上に載置された基板(基材)表面に衝突して、そこで堆積する。この際、ガス搬送により加速された原料微粒子において、基板との衝突時に運動エネルギーが局所的に開放されて、基板-粒子間、及び粒子-粒子間の結合が実現される。そのため緻密な膜の成膜が可能になる。成膜時にステージ(16)を移動させることで、面方向に拡がりをもった被膜形成が可能になる。
 本実施形態の製造方法で緻密なフェライト層が得られる理由として、次のように推察している。すなわち、セラミックは、通常は弾性限界が高く、塑性変形しにくい材料と言われている。しかしながら、エアロデポジション法での成膜時に原料微粒子が基板に高速衝突すると、弾性限界を超えるほど衝撃力が大きいため、微粒子が塑性変形すると考えている。具体的には、微粒子内部で結晶面ズレや転位移動などの欠陥が生じ、この欠陥を補償するために塑性変形が生じるとともに結晶組織が微細になる。また新生面が形成されるとともに物質移動が起きる。これらが複合的に作用する結果、基板-粒子間、及び粒子-粒子間の結合力が高まり、緻密な膜が得られると考えている。さらに塑性変形の際にフェライトの一部が分解及び再酸化されて、高抵抗化に寄与するα-Feが生成すると考えている。また成膜初期段階で基板たる金属基材に衝突した微粒子が基材内部に侵入し、この侵入した微粒子がアンカー効果を発現させることで、フェライト層と基材との密着力が高まるのではないかとも推測している。
 緻密なフェライト層を得る上で、原料フェライト粉末の平均粒径は重要である。本実施形態では、フェライト粉末の平均粒径(D50)を1.0μm以上10.0μm以下とすることが好ましい。平均粒径が1.0μm未満であると、緻密な膜を得ることが困難になる。平均粒径の小さい粉末は、これを構成する粒子の質量が小さいからである。エアロゾル化した原料微粒子は、搬送ガスとともに基板に高速衝突する。基板と衝突した搬送ガスは、その向きを変えて、排出ガスとして流れていく。粒径が小さく質量の小さい粒子は、搬送ガスの排出流に押し流されてしまい、基板表面への衝突速度、及びそれによる衝撃力が小さくなってしまう。衝撃力が小さいと、微粒子が受ける塑性変形が不十分になり、結晶子径が小さくならない。成膜された膜は緻密にならず、粉末が圧縮されただけの圧粉体になってしまう。このような圧粉体は、多数の空孔を内部に含んでおり、磁気特性及び電気特性に劣るものになる。その上、基材との密着力が高くならない。一方で平均粒径が10.0μmを超えて過度に大きい場合には、1個の粒子が受ける衝撃力は大きいものの、粒子同士の接触点の数が少なくなる。そのため塑性変形及びパッキングが不十分になり、緻密な膜を得ることがやはり困難になる。
 エアロゾルデポジション法による成膜条件は、緻密で密着力の高いフェライト層が得られる限り、特に限定されない。搬送ガスとして、空気や不活性ガス(窒素、アルゴン、ヘリウム等)を用いることができる。特に、ハンドリングの容易な大気が好ましい。搬送ガスの流量は、例えば1.0~20.0L/分であってよい。また成膜チャンバーの内圧は、例えば、成膜前で10~50Pa、成膜途中で50~400Paであってよい。金属基材(ステージ)の走査速度(移動速度)は、例えば1.0~10.0mm/秒であってよい。コーティング(成膜)は、1回のみ行ってもよく、あるいは複数回行ってもよい。特に、得られるフェライト層の膜厚を十分に確保する観点から複数回行うことが好ましい。コーティング回数は、例えば5回以上100回以下である。
 原料フェライト粉末に含まれるスピネル相の格子定数(LCp)に対するフェライト層に含まれるスピネル相の格子定数(LCf)の比(LCf/LCp)は、好ましくは0.95以上1.05以下(0.95≦LCf/LCp≦1.05)である。原料フェライト粉末中のスピネル相は、酸素欠乏組成になっており、格子欠陥が存在する。そのため格子欠陥が存在しない状態に比べて格子定数が大きい。一方で、原料フェライト粉末に、エアロゾルデポジション成膜処理を施すと、格子欠陥を起点とした塑性変形が起こる。また塑性変形に起因して活性面が生成するとともに、活性面が酸化する。結晶構造の再構築と活性な面の再酸化が起こるため、格子定数は変化する。格子定数比(LCf/LCp)を上記範囲内に制御することで、結晶構造の再構築及び活性面の再酸化に伴うα-Feの量を所望の範囲内に調整することができ、その結果、優れた磁気特性を維持しつつ電気特性(電気絶縁性)に優れたフェライト層を形成することができる。格子定数比(LCf/LCp)は、より好ましくは、0.99以上1.04以下である。
 格子定数の変化度合いは、原料フェライト粉末の製造条件や組成、並びに基材の材質及び種類によって異なる。具体的には、フェライト組成が化学量論組成又は鉄(Fe)リッチ組成(MFe3-x:0<x≦1、Mは金属原子)のときには、焼成条件にもよるが、原料フェライト粉末に含まれる酸素量が化学量論比よりも実質的に小さくなりやすい。そのため原料フェライト粉末の格子定数が大きくなる傾向にある。一方でAD法により成膜されたフェライト層では、原料粒子の塑性変形に伴う酸化により結晶構造の再構成が行われるため、原料フェライト粉末よりも格子定数が小さくなる傾向にある。特にリチウム(Li)やマンガン(Mn)を含有するフェライト粉末や大気よりも低い酸素濃度下で焼成したフェライト粉末を用いた場合に、この傾向は顕著である。したがって、この場合にはLCf/LCpが1.00未満になりやすい。
 Fe量がフェライトの化学量論比(MFe3-x:1<x、Mは金属原子)より少ない場合には、フェライトに含まれる酸素量が化学量論比と同程度になる。またAD法により成膜されたフェライト層では、塑性変形による格子欠陥が増えるため、格子定数が大きくなりやすい。特にCuを含有しているフェライト粉末や大気雰囲気下で焼成したフェライト粉末を用いた場合に、この傾向は顕著である。したがって、この場合にはLCf/LCpが1.00超になる傾向にある。
 基材が銅(Cu)や銀(Ag)を含む場合には、LCf/LCpが小さくなりやすい。CuやAgはフェライト粒子よりも酸化しにくく、フェライト膜に酸素を与える傾向になるからである。この場合にはLCf/LCpが1.00未満になりやすい。一方で、基材が鉄(Fe)やニッケル(Ni)を含む場合には、LCf/LCpが大きくなりやすい、FeやNiはフェライト粒子より酸化しやすく、フェライト膜から酸素を奪う傾向にあるからである。この場合にはLCf/LCpが1.00超になりやすい。
 格子定数比(LCf/LCp)は、エアロゾルデポジション成膜の条件を制御することでも調整可能である。すなわち原料微粒子の衝突速度を高めることで、歪み及び再酸化の進行を促すことができる。原料微粒子の衝突速度は、チャンバー内圧などを調整することで変化させることができる。また成膜速度を変えることで、再酸化の過度な進行を防ぐことができる。再酸化は原料微粒子の表面から進行するため、フェライト層の成膜速度を高めて原料微粒子の大気への暴露時間を短くすれば、再酸化の進行が抑制されるからである。
 原料フェライト粉末に含まれるスピネル相の結晶子径(CSp)に対するフェライト層に含まれるスピネル相の結晶子径(CSf)の比(CSf/CSp)は、好ましくは0.01以上0.50以下(0.01≦CSf/CSp≦0.50)である。エアロゾルデポジション成膜を経ることで、フェライトの結晶子径は変化する。基材との衝突時に歪みが生じるとともに活性な面が再酸化するためである。結晶子径比(CSf/CSp)が過度に小さくなる条件で成膜しても、緻密で密着力の高いフェライト層を得ることができない。フェライト層の内部応力が大きくなり過ぎてしまうからである。また、たとえ成膜できたとしても、内部応力によりフェライト層が容易に剥離してしまう。そのため経時安定性に欠ける。結晶子径比(CSf/CSp)は、より好ましくは0.05以上0.30以下、さらに好ましくは0.10以上0.20以下である。
 このようにして、本実施形態の磁性複合体を得ることができる。得られた磁性複合体では、フェライト層は、緻密であるため、磁気特性及び電気特性(電気絶縁性)に優れている。また金属基材との密着力が高い。実際、本発明者らは、相対密度0.95以上であり、密着力が鉛筆硬度で9Hのフェライト層を備えた磁性複合体の作製に成功している。さらにフェライト層は高周波領域における磁気損失が比較的小さい。その上、限定されるものではないが、薄層化した金属基材を用いることで、磁性複合体に可撓性を付与することができ、複雑形状のデバイス作製が可能になる。このようなフェライト層を備える磁性複合体は、電磁波吸収体のみならず、トランス、インダクタンス素子、及びインピーダンス素子などの電子部品の用途に使用でき、特にUHFタグ、5G用フィルタ、及び高周波用インダクタ―に好適である。
 このような本実施形態の磁性複合体を作製する技術は、本発明者らの知る限り、従来から知られていない。例えば、特許文献1で提案される、フェライト粉末を含む複合材料は、非磁性体である樹脂を多量に含むため磁気特性に劣る。また特許文献2で提案されるフェライト薄膜は、製造上、これを厚く成膜することが困難である。さらに特許文献3で提案される複合磁性体は、高導電性の金属磁性体を含むため、電気絶縁性が要求される用途には適用できない。本実施形態の磁性複合体は、フェライト層が樹脂や金属成分を含んでおらず、電気絶縁性が要求される用途にも十分に適用可能である。
 なお特許文献3には、鉄粉(金属磁性体)の含有量を0%にして複合磁性膜を作製することも開示されている(特許文献3の[0048])。しかしながら、X線回折プロファイルにおいて(222)面のピークが存在しており(特許文献3の図3)、磁性膜におけるフェライト層は微結晶状態にはなく、緻密性及び密着性に劣ると推察される。また特許文献3には、フェライト原料として、NiZnフェライトやMnZnフェライトなどともに、α-Feが例示されている(特許文献3の[0036])。しかしながら、特許文献3は、フェライト層中に所定量のα-Feを含有させること、及びそれにより、フェライト層中の導電経路が断ち切られて、電気抵抗が高くなることを教示するものではない。実際、原料としてα-Feを用いると、フェライト層に粗大なα-Feが含まれることになり、この粗大なα-Feが、フェライト成分の磁壁移動を妨げる結果、磁気特性が劣化する要因になる。
 本発明を、以下の実施例を用いて更に詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。
(1)磁性複合体の作製
 [例1]
 例1ではMnZn系フェライトを主成分とするフェライト粉末を作製し、得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)の表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 <フェライト粉末の作製>
 原料として、酸化鉄(Fe)と四酸化三マンガン(Mn)と酸化亜鉛(ZnO)を用い、Fe:Mn:ZnO=53:12.3:10のモル割合になるように原料の秤量及び混合を行った。混合はヘンシェルミキサーを用いて行った。得られた混合物を、ローラーコンパクターを用いて成型して、造粒物(仮造粒物)を得た。
 次いで、造粒した原料混合物(仮造粒物)を仮焼して、仮焼成物を作製した。仮焼成は、ロータリーキルンを用いて大気雰囲気下880℃×2時間の条件で行った。
 その後、得られた仮焼成物を粉砕及び造粒して、造粒物(本造粒物)を作製した。まず仮焼成物を、乾式ビーズミル(3/16インチφの鋼球ビーズ)を用いて粗粉砕した後、水を加えて、湿式ビーズミル(0.65mmφのジルコニアビーズ)を用いて微粉砕してスラリー化した。得られたスラリーは固形分濃度が50質量%であり、粉砕粉の粒径(スラリー粒径)は2.15μmであった。得られたスラリーに分散剤としてポリカルボン酸アンモニウム塩をスラリー中固形分25kgに対して50ccの割合で加え、さらにバインダーとしてポリビニルアルコール(PVA)の10質量%水溶液を500ccの添加量で加えた。その後、分散剤とバインダーを添加したスラリーを、スプレードライヤーを用いて造粒して、本造粒物を得た。
 そして、得られた本造粒物を、電気炉を用い、非酸化性雰囲気下1250℃×4時間の条件で焼成(本焼成)して、焼成物を作製した。次いで、得られた焼成物を、乾式ビーズミル(3/16インチφの鋼球ビーズ)を用いて粉砕して、粉砕焼成物を得た。
 <成膜>
 得られた粉砕焼成物を用いて、金属基材の表面及び裏面のそれぞれにフェライト層を成膜した。金属基材として、厚さ30μmの銅(Cu)箔を用いた。また成膜は、エアロデポジション(AD)法により以下の条件にしたがい行った。さらに成膜は、金属基材の表面及び裏面のそれぞれに30回ずつ行った。
 ‐キャリアガス(搬送ガス):空気
 ‐ガス流量:2.5L/分
 ‐成膜チャンバー内圧(成膜前):30Pa
 ‐成膜チャンバー内圧(成膜中):100Pa
 ‐基板走査速度:5mm/秒
 ‐コーティング回数:30回+30回
 ‐基材からノズルまでの距離:20mm
 ‐ノズル形状:10mm×0.4mm
 ‐膜形状:シート状
 [例2]
 例2では、フェライト層の成膜を金属基材(Cu箔)の表面(片面)のみに行い、コーティング回数を15回に変更した。それ以外は例1と同様にして、磁性複合体を作製した。
 [例3]
 例3では、成膜時のコーティング回数を40回に変更した。それ以外は例2と同様にして、磁性複合体を作製した。
 [例4]
 例4では、金属基材として、厚さ100μmのPETフィルムに厚さ0.05μmのアルミニウム(Al)を蒸着して得た積層体を用い、積層体の蒸着面にフェライト層を成膜した。それ以外は例3と同様にして、磁性複合体を作製した。
 [例5]
 例5では、金属基材として、厚さ30μmのアルミニウム(Al)箔を用いた。それ以外は例3と同様にして、磁性複合体を作製した。
 [例6]
 例6では、金属基材として、厚さ30μmのニッケル(Ni)箔を用いた。それ以外は例3と同様にして、磁性複合体を作製した。
 [例7]
 例7では、フェライト粉末作製時に、Fe:Mn:ZnO=51.5:9.3:20.5のモル割合になるように原料の秤量及び混合を行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例8]
 例8では、フェライト粉末作製時に、Fe:Mn:ZnO=52:8:24のモル割合になるように原料の秤量及び混合を行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例9]
 例9ではNiCuZn系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)の表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と酸化亜鉛(ZnO)と酸化ニッケル(NiO)と酸化銅(CuO)を用い、Fe:ZnO:NiO:CuO=48.5:29.25:16:6.25のモル割合になるように原料の秤量及び混合を行った。また仮焼成を大気雰囲気下850℃×2時間の条件で行い、本焼成を酸化性雰囲気下1100℃×4時間の条件で行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例10]
 例10では、フェライト粉末作製時に、Fe:ZnO:NiO:CuO=48.5:33:12.5:6のモル割合になるように原料の秤量及び混合を行った。また仮焼成を大気雰囲気下910℃×2時間の条件で行った。また、加えるバインダー量を250ccとして本造粒物を得た。それ以外は例9と同様にして、磁性複合体を作製した。
 [例11]
 例11では、フェライト層の成膜を銅(Cu)箔(金属基材)の表面(片面)のみに行い、コーティング回数を15回に変更した。それ以外は例10と同様にして、磁性複合体を作製した。
 [例12]
 例12ではNiZn系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)の表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と酸化亜鉛(ZnO)と酸化ニッケル(NiO)を用い、Fe:ZnO:NiO=48:32.5:19.5のモル割合になるように原料の秤量及び混合を行った。また仮焼成を大気雰囲気下950℃×2時間の条件で行い、本焼成を酸化性雰囲気下1250℃×4時間の条件で行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例13]
 例13ではMnMg系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と四酸化三マンガン(Mn)と酸化マグネシウム(MgO)を用い、Fe:Mn:MgO=50.1:13.3:10のモル割合になるように原料の秤量及び混合を行った。また仮焼成を大気雰囲気下920℃×2時間の条件で行い、本焼成を非酸化性雰囲気下1180℃×4時間の条件で行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例14]
 例14ではMn系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)の表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と四酸化三マンガン(Mn)を用い、Fe:Mn=80:6.67のモル割合になるように原料の秤量及び混合を行った。また仮焼成を大気雰囲気下900℃×2時間の条件で行い、本焼成温度を非酸化性雰囲気下1300℃×4時間の条件で行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例15]
 例15ではZn系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)の表面及び裏面のそれぞれに成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と酸化亜鉛(ZnO)を用い、Fe:ZnO=80.7:19.3のモル割合になるように原料の秤量及び混合を行った。この際、炭素(カーボンブラック)をFeとZnOの合計量に対して1質量%の割合で添加した。また仮焼成を非酸化性雰囲気下1000℃×2時間の条件で行い、加えるバインダー量を1000ccとして本造粒物を得、本焼成を非酸化性雰囲気下1300℃×4時間の条件で行った。さらに成膜は、金属基材の表面及び裏面のそれぞれに20回ずつ行った。それ以外は例1と同様にして、磁性複合体を作製した。
 [例16]
 例16ではZn系フェライトを主成分とする原料粉末(フェライト粉末)を作製し、次いで得られたフェライト粉末を、厚さ30μmの銅(Cu)箔(金属基材)上に成膜して磁性複合体を作製した。フェライト粉末の作製及び成膜は、以下の手順で行った。
 原料として、酸化鉄(Fe)と酸化亜鉛(ZnO)を用い、Fe:ZnO=85.7:14.3のモル割合になるように原料の秤量及び混合を行った。この際、炭素(カーボンブラック)をFeとZnOの合計量に対して1.2質量%の割合で添加した。それ以外は例15と同様にして、磁性複合体を作製した。
 [例17(比較例)]
 例17では、フェライト層の成膜を銅(Cu)箔(金属基材)の表面(片面)のみに行い、コーティング回数を1回に変更した。それ以外は例1と同様にして、磁性複合体を作製した。
 [例18(比較例)]
 例18では、フェライト層を塗工法で作製した。具体的には、例1と同様にしてフェライト粉末を作製し、得られたフェライト粉末50質量部を光硬化樹脂50質量部とともに分散混合した。その後、得られた混合物をPETフィルム上に塗工した。塗工は、アプリケーターを用い、厚さ12μmの塗膜が得られるように行った。次いで、得られた塗膜を紫外線で硬化させて製膜し、PETフィルムから剥離させたものを磁性シートとした。
 [例19(比較例)]
 例19では、フェライト層を塗工法で作製した。具体的には、例9と同様にしてフェライト粉末を作製し、得られたフェライト粉末50質量部を光硬化樹脂50重量部とともに分散混合した。その後、得られた混合物をPETフィルム上に塗工した。塗工は、アプリケーターを用い、厚さ12μmの塗膜が得られるように行った。次いで、得られた塗膜を紫外線で硬化させて製膜し、PETフィルムから剥離させたものを磁性シートとした。
 例1~例19につき、フェライト粉末及び磁性複合体の製造条件を表1及び表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(2)評価
 例1~例19につき、フェライト粉末、金属基材及び磁性複合体について、各種特性の評価を以下のとおり行った。
 <粒子形状(原料粉末)>
 フェライト粉末のSF-2の平均値及びアスペクト比の平均値を、次のようにして求めた。粒子画像分析装置(スペクトリス社、モフォロギG3)を用いてフェライト粉末を分析し、30000個の粒子について投影周囲長、投影面積、長軸フェレ径、及び短軸フェレ径を求めた。分析は倍率20倍の対物レンズを用いて行った。そして、得られたデータを用いて、各粒子について下記(1)式及び(2)式にしたがってSF-2及びアスペクト比を算出し、その平均値を求めた。
Figure JPOXMLDOC01-appb-M000006

Figure JPOXMLDOC01-appb-M000007
 <粒度分布(原料粉末)>
 フェライト粉末の粒度分布を、次のようにして測定した。まず試料0.1g及び水20mlを30mlのビーカーに入れ、分散剤としてヘキサメタリン酸ナトリウムを2滴添加した。次いで、超音波ホモジナイザー(株式会社エスエムテー、UH-150型)を用いて分散した。このとき、超音波ホモジナイザーの出力レベルを4に設定し、20秒間の分散を行った。その後、ビーカー表面にできた泡を取り除き、レーザー回折式粒度分布測定装置(島津製作所株式会社、SALD-7500nano)に導入して測定を行った。この測定により、体積粒度分布における10%累積径(D10)、50%累積径(D50;平均粒径)、及び90%累積径(D90)を求めた。測定条件は、ポンプスピード7、内蔵超音波照射時間30、屈折率1.70-050iとした。そしてD10、D50及びD90を用いて、下記式(3)にしたがってCV値を算出した。
Figure JPOXMLDOC01-appb-M000008
 <XRD(原料粉末、フェライト層)>
 フェライト粉末、及び磁性複合体のフェライト層について、X線回折(XRD)法による分析を行った。分析条件は以下に示すとおりにした。
 ‐X線回折装置:パナリティカル社製X’pertMPD(高速検出器含む)
 ‐線源:Co-Kα
 ‐管電圧:45kV
 ‐管電流:40mA
 ‐スキャン速度:0.002°/秒(連続スキャン)
 ‐スキャン範囲(2θ):15~90° 
 得られたX線回折プロファイルにおいて、スピネル相の(222)面回折ピークの積分強度(I222)と(311)面回折ピークの積分強度(I311)を求めて、XRDピーク強度比(I222/I311)を算出した。またX線回折プロファイルに基づき、スピネル相とα-Feのそれぞれの含有割合を求めた。
 さらにX線回折プロファイルをリートベルト解析して、スピネル相の格子定数(LCp、LCf)を見積もり、さらにシェラーの公式に従い、スピネル相の結晶子径(CSp、CSf)を求めた。そして成膜前後のスピネル相の格子定数変化率(LCf/LCp)、及び結晶子径変化率(CSf/CSp)を算出した。
 <磁気特性(原料粉末、金属基材、磁性複合体)>
 フェライト粉末、金属基材、及び磁性複合体の磁気特性(飽和磁化、残留磁化及び保磁力)を、次のようにして測定した。まず内径5mm、高さ2mmのセルに試料を詰めて、振動試料型磁気測定装置(東英工業株式会社、VSM-C7-10A)にセットした。印加磁場を加えて5kOeまで掃引し、次いで印加磁場を減少させて、ヒステリシスカーブを描かせた。得られたカーブのデータより、試料の飽和磁化(σs)、残留磁化(σr)及び保磁力(Hc)を求めた。
 <真比重(原料粉末)>
 原料粉末の真比重を、JIS Z8837:2018に準じてガス置換法で測定した。
 <厚さ及び元素分布(フェライト層)>
 フェライト層の断面を、電界放出型走査電子顕微鏡(FE-SEM)を用いて観察し、厚さを求めた。そして顕微鏡付属のエネルギー分散型X線分析装置(EDX)を用いて、断面における元素マッピング分析を行い、マッピング像を得た。
 <密度(フェライト層)>
 フェライト層の密度を、次のようにして測定した。まずフェライト層を成膜する前の金属基材単体の質量を測定した。次いで、フェライト層を成膜後の金属基材の質量を測定し、金属基材単体の質量との差を算出して、フェライト層の質量を求めた。またフェライト層の成膜面積と膜厚を測定した。膜厚は、フェライト層の断面を走査電子顕微鏡(SEM)で観察して求めた。そして、フェライト層の密度を、下記(4)式にしたがって算出した。
Figure JPOXMLDOC01-appb-M000009
 <表面粗さ(フェライト層)>
 レーザーマイクロスコープ(レーザーテック株式会社、OPTELICS HYBRID)を用いて、フェライト層表面の算術平均粗さ(Ra)と最大高さ(Rz)を評価した。各サンプルについては10点の測定を実施し、その平均値を求めた。測定はJIS B 0601-2001に準拠して行った。また算術平均粗さ(Ra)とフェライト層の厚さ(d)から、粗さ比(Ra/d)を算出した。
 <表面抵抗(フェライト層)>
 フェライト層の表面抵抗を、抵抗率計(三菱化学株式会社、LorestaHP MCP-T410)を用いて測定した。
 <透磁率(磁性複合体)>
 磁性複合体の透磁率を、ベクトルネットワークアナライザ(Keysight、PNA N5222B、10MHz~26.5GHz)と透磁率測定用治具(キーコム株式会社)を用いて、マイクロストリップライン複素透磁率測定法で行った。具体的には、磁性複合体を切り取り、測定用サンプルとして透磁率測定用治具にセットした。この際、シート状のサンプルは、長さ16mm、幅5mmに切断して使用した。またトロイダル状のサンプルを用いた場合には、サンプル形状を外径6.75mm、内径3.05mmとした。次いで、100MHz~10GHzの範囲を対数スケールで測定周波数を掃引した。周波数1GHzでの複素透磁率の実部μ’及び虚部μ’’を求め、損失係数(tanδ)を下記(5)式にしたがって算出した。
Figure JPOXMLDOC01-appb-M000010
 <屈曲性(磁性複合体)>
 磁性複合体をインチ管に巻き付けて屈曲性を評価した。具体的には、外径1/16インチ、外径1/8インチ、及び外径1/4インチの3種類のインチ管を用意し、それぞれのインチ管に磁性複合体を、フェライト層が外側になるように巻き付けた。そして、フェライト層の状態を目視にて観察し、以下の基準に従って○~×に格付けした。
 ○:巻き付け前後でフェライト層に変化が見られなかった。
 △:巻き付け後にフェライト層にひびが発生した。
 ×:巻き付け後にフェライト層が剥がれた。
 <密着性(磁性複合体)>
 フェライト層と金属基材の密着性を鉛筆硬度試験(鉛筆引っかき試験)で評価した。測定は旧JIS K5400に準拠して行った。各試験では、同一の濃度記号の鉛筆で引っかくことを5回繰り返した。その際、1回引っかくごとに鉛筆の芯の先端を研いだ。なお、鉛筆硬度は、3B、2B、B、HB、F、H、2H、3H、4H、5H、6H、7H、8H、9H、10Hの順に高くなり、硬度が高いほど密着性に優れることを意味する。
 <キュリー点(磁性複合体)>
 磁性複合体のキュリー点(Tc)を、振動試料型磁気測定装置(VSM)を用いて測定した。具体的には、所定サイズ(長さ8mm、幅6mm)に切断した磁性複合体を測定用セルに入れ、振動試料型磁気測定装置(東英工業株式会社、VSM-5型)にセットした。10kOeの印加磁場を加えた状態で試料を0.3℃/秒の速度で室温から500℃まで加熱し、加熱中の飽和磁化を測定した。得られた飽和磁化の温度依存性からキュリー点を算出した。
(3)評価結果
 例1~例19につき、フェライト粉末の特性と金属基材の特性を、それぞれ表3及び表4に示す。また磁性複合体の特性を表5及び表6に示す。
 表3に示されるように、例1~例19で成膜に用いたフェライト粉末は、いずれもスピネル相の含有割合は90質量%以上と高く、スピネル型フェライトの合成が十分に進んでいた。またXRDピーク強度比(I222/I311)は2.5~5%程度であり、一般のスピネル型フェライトと遜色がなかった。さらに平均粒径(D50)は3.6~5.2μmであり、結晶子径は6~18nm程度であった。
 表4に示されるように、強磁性体である例6の金属基材(Ni箔)は飽和磁化(σs)が56.6emu/gと高いのに対し、常磁性体である例1~例5、及び例7~例17の金属基材(Cu箔、Al箔)は飽和磁化がほぼゼロであった。
 表5及び表6に示されるように、例1~例16の磁性複合体は、フェライト層の厚さ(dF)が3.5μm以上と比較的大きく、XRDピーク強度比(I222/I311)がゼロ(0)であった。またα-Fe量が0.5~37.3質量%であり、結晶子径が2.05nm以下と小さかった。そのため、これらのサンプルは、相対密度、密着力、及び表面抵抗が高かった。特に、例2及び例6は相対密度が0.96~0.97と非常に高かった。また例1、例2、例6~例16は、鉛筆硬度が9H以上と高く、密着性試験の結果が良好であった。さらに例1、例2及び例4~6,例8~例13は屈曲性試験の結果が良好であった。なお例4及び例5の鉛筆硬度は若干低かった。これは強度の低いアルミニウムを基材に用いたためである。
 一方で、フェライト層の厚さ(d)が0.6μmと小さい例17は、相対密度は高いものの、結晶子径が大きかった。また均一にフェライト層が成膜できていなかったため粗さ比(Ra/d)が大きく、表面平滑性に劣り、その結果、基材の影響が大きく表面抵抗が小さかった。さらに例17は、形成されたフェライト層が薄く、且つフェライト層の均一性に劣るため屈曲性も劣る結果となった。また塗工法により作製した例18及び例19は、複素透磁率虚部(μ’’)及びtanδが大きく、磁気損失が大きいことが分かった。また磁性シートにピンホールが発生することで磁性シートにひび割れが発生しており、屈曲性に劣るとともに、200℃超の温度で樹脂が分解してしまい、温度安定性に欠けることが分かった。
 例2について得られた磁性複合体のフェライト層について、断面元素マッピング像を図16(a)~(f)に示す。ここで図16(a)~(f)は、それぞれ電子線像(a)、炭素(C)マッピング像(b)、銅(Cu)マッピング像(c)、鉄(Fe)マッピング像(d)、マンガン(Mn)マッピング像(e)、及び酸素(O)マッピング像(f)である。また図16(a)~(f)は、金属基材(Cu箔)を上側に、フェライト層(MnZn系フェライト層)は下側に示している。
 金属基材(Cu箔)とフェライト層(MnZn系フェライト層)は成分元素が明確に分かれていた。すなわち銅(Cu)は基材側に存在し、マンガン(Mn)、鉄(Fe)及び酸素(O)はフェライト層側のみに存在していた。このことから、金属基材とフェライト層との間で、反応による元素の拡散が生じていないことが分かった。また金属基材及びフェライト層のいずれにも炭素(C)は確認されなかった。
 例2、例10、例14及び例15について得られた磁性複合体の飽和磁化の温度依存性を図17~20のそれぞれに示す。いずれのサンプルでも温度上昇に伴い飽和磁化が減少し、フェライトの典型的な温度特性を示した。またキュリー点(Tc)は、それぞれ310℃(例2)、180℃(例10)、320℃(例14)、及び470℃(例15)であり、それぞれのサンプルに含まれるフェライト層の組成に応じた値を示していた。
 例2について得られた磁性複合体の透磁率(実部μ’、虚部μ’’)を図21に示す。低周波側から1GHz以上の高い周波数域にわたって、μ’’がほぼ0のままでμ’が一定の値を示すこと、及び、1GHz以上の周波数においてはμ’’が極大値を取ることが分かった。
 これらの結果から、本実施形態の磁性複合体は、緻密で膜厚が比較的厚く、磁気特性などの諸特性に優れたフェライト層を備えることが分かった。
Figure JPOXMLDOC01-appb-T000011


 
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 本発明によれば、緻密で膜厚が比較的厚く、磁気特性及び電気特性に優れ、さらに密着性が良好なフェライト層を備える磁性複合体を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年1月14日出願の日本特許出願(特願2021-004514)、及び2022年1月7日出願の日本特許出願(特願2022-001607)に基づくものであり、その内容はここに参照として取り込まれる。
 2  エアロゾル化チャンバー
 4  成膜チャンバー
 6  搬送ガス源
 8  真空排気系
 10 振動器
 12 原料容器
 14 ノズル
 16 ステージ
 20 エアロゾルデポジション成膜装置

 

Claims (6)

  1.  金属基材と、前記金属基材の表面上に設けられたフェライト層と、を備えた磁性複合体であって、
     前記金属基材は、その厚さ(d)が0.001μm以上であり、
     前記フェライト層は、その厚さ(d)が2.0μm以上であり、スピネル型フェライトを主成分とし、X線回折分析における(311)面の積分強度(I311)に対する(222)面の積分強度(I222)の比(I222/I311)が0.00以上0.03以下である、磁性複合体。
  2.  前記フェライト層は、α-Feの含有量が0.0質量%以上20.0質量%以下である、請求項1に記載の磁性複合体。
  3.  前記フェライト層は、鉄(Fe)及び酸素(O)を含み、さらにリチウム(Li)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、銅(Cu)、及びコバルト(Co)からなる群から選ばれる少なくとも一種の元素を含む、請求項1又は2に記載の磁性複合体。
  4.  前記フェライト層は、その厚さ(d)に対する表面算術平均粗さ(Ra)の比(Ra/d)が0.00超0.20以下である、請求項1~3のいずれか一項に記載の磁性複合体。
  5.  前記フェライト層は、フェライト構成成分を含み、残部が不可避不純物の組成を有する、請求項1~4のいずれか一項に記載の磁性複合体。
  6.  請求項1~5のいずれか一項に記載の磁性複合体を備えるコイル及び/又はインダクタ機能を有する素子又は部品、電子デバイス、電子部品収納用筐体、電磁波吸収体、電磁波シールド、あるいはアンテナ機能を有する素子又は部品。
PCT/JP2022/000988 2021-01-14 2022-01-13 磁性複合体 WO2022154058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/261,237 US20240079172A1 (en) 2021-01-14 2022-01-13 Magnetic composite
EP22739463.2A EP4280234A1 (en) 2021-01-14 2022-01-13 Magnetic composite
KR1020237019736A KR20230129390A (ko) 2021-01-14 2022-01-13 자성 복합체
CN202280010058.7A CN116848600A (zh) 2021-01-14 2022-01-13 磁性复合体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-004514 2021-01-14
JP2021004514 2021-01-14
JP2022-001607 2022-01-07
JP2022001607A JP2022109234A (ja) 2021-01-14 2022-01-07 磁性複合体

Publications (1)

Publication Number Publication Date
WO2022154058A1 true WO2022154058A1 (ja) 2022-07-21

Family

ID=82447584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000988 WO2022154058A1 (ja) 2021-01-14 2022-01-13 磁性複合体

Country Status (5)

Country Link
US (1) US20240079172A1 (ja)
EP (1) EP4280234A1 (ja)
KR (1) KR20230129390A (ja)
TW (1) TW202232521A (ja)
WO (1) WO2022154058A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11990422B2 (en) * 2022-03-14 2024-05-21 High Tech Technology Limited Ferrite electro-magnetic interference (EMI) shield between an integrated-circuit (IC) chip and an air-core inductor all inside a hybrid lead-frame package

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297629A (ja) * 2002-03-29 2003-10-17 Sony Corp 磁性膜
JP2004027064A (ja) 2002-06-26 2004-01-29 Nippon Steel Corp 放熱性と電磁波吸収性に優れた塗料及び塗装金属板
JP2004296609A (ja) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology 永久磁石膜
JP2005045193A (ja) 2003-03-25 2005-02-17 Shin Etsu Polymer Co Ltd 電磁波吸収体及び電磁波ノイズ制御電子機器
JP2007088121A (ja) 2005-09-21 2007-04-05 Sony Corp 複合磁性膜、及び複合磁性膜の製造方法
JP2007180289A (ja) 2005-12-28 2007-07-12 Jfe Steel Kk 電磁波吸収体
JP2007204817A (ja) * 2006-02-02 2007-08-16 Jfe Steel Kk フェライト被膜付き方向性電磁鋼板
JP2007250924A (ja) 2006-03-17 2007-09-27 Sony Corp インダクタ素子とその製造方法、並びにインダクタ素子を用いた半導体モジュール
JP2021004514A (ja) 2019-06-27 2021-01-14 東日本旅客鉄道株式会社 スラブ軌道用レール締結装置
JP2022001607A (ja) 2021-10-15 2022-01-06 住友化学株式会社 フェニルピラゾール化合物及びフェニル化合物を用いる植物病害防除方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297629A (ja) * 2002-03-29 2003-10-17 Sony Corp 磁性膜
JP2004027064A (ja) 2002-06-26 2004-01-29 Nippon Steel Corp 放熱性と電磁波吸収性に優れた塗料及び塗装金属板
JP2005045193A (ja) 2003-03-25 2005-02-17 Shin Etsu Polymer Co Ltd 電磁波吸収体及び電磁波ノイズ制御電子機器
JP2004296609A (ja) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology 永久磁石膜
JP2007088121A (ja) 2005-09-21 2007-04-05 Sony Corp 複合磁性膜、及び複合磁性膜の製造方法
JP2007180289A (ja) 2005-12-28 2007-07-12 Jfe Steel Kk 電磁波吸収体
JP2007204817A (ja) * 2006-02-02 2007-08-16 Jfe Steel Kk フェライト被膜付き方向性電磁鋼板
JP2007250924A (ja) 2006-03-17 2007-09-27 Sony Corp インダクタ素子とその製造方法、並びにインダクタ素子を用いた半導体モジュール
JP2021004514A (ja) 2019-06-27 2021-01-14 東日本旅客鉄道株式会社 スラブ軌道用レール締結装置
JP2022001607A (ja) 2021-10-15 2022-01-06 住友化学株式会社 フェニルピラゾール化合物及びフェニル化合物を用いる植物病害防除方法

Also Published As

Publication number Publication date
KR20230129390A (ko) 2023-09-08
US20240079172A1 (en) 2024-03-07
TW202232521A (zh) 2022-08-16
EP4280234A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
JP4686494B2 (ja) 高周波磁性材料及びその製造方法
US8305281B2 (en) Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
JP5175884B2 (ja) ナノ粒子複合材料、それを用いたアンテナ装置及び電磁波吸収体
JP5058031B2 (ja) コアシェル型磁性粒子、高周波磁性材料および磁性シート
JP5085471B2 (ja) コアシェル型磁性材料、コアシェル型磁性材料の製造方法、デバイス装置、およびアンテナ装置。
EP1641001A2 (en) High-frequency magnetic material, producing method for the same and high-frequency magnetic device
US7763094B2 (en) Method of manufacturing high frequency magnetic material
WO2022154058A1 (ja) 磁性複合体
JP2022122287A (ja) 磁性複合体
JP4017032B2 (ja) 磁性膜およびその形成方法
JP2006128278A (ja) 高周波磁性材料およびそれを用いた高周波磁性部品、並びにその製造方法
WO2023189359A1 (ja) 磁性複合体
JP2022109234A (ja) 磁性複合体
JP4444191B2 (ja) 高周波磁性材料、高周波磁性デバイス、及び高周波磁性材料の製造方法
JP2007088121A (ja) 複合磁性膜、及び複合磁性膜の製造方法
WO2022172939A1 (ja) 磁性複合体
CN116848600A (zh) 磁性复合体
WO2020158519A1 (ja) フェライト複合粉末、フェライト成型体の製造方法、フェライト焼結体の製造方法、成型体、及び焼結体
CN116830221A (zh) 磁性复合体
JP2024011072A (ja) 磁性複合体、並びに前記磁性複合体を備えるコイル及び/又はインダクタ機能を有する素子又は部品、電子デバイス、電子部品収納用筐体、電磁波吸収体、電磁波シールド、あるいはアンテナ機能を有する素子又は部品
US20160203908A1 (en) Method for producing a monolithic electromagnetic component and associated monolithic magnetic component
JP2024011071A (ja) 磁性複合体及びrfidタグ
JP3939088B2 (ja) 磁性材料とこれを用いたコイル部品と磁性材料の製造方法
US20200273610A1 (en) Composite magnetic material, magnetic core, and electronic component
JP2023136104A (ja) フェライト薄膜およびコイル部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739463

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18261237

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280010058.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022739463

Country of ref document: EP

Effective date: 20230814