WO2022153703A1 - はんだペースト及び接合構造体 - Google Patents

はんだペースト及び接合構造体 Download PDF

Info

Publication number
WO2022153703A1
WO2022153703A1 PCT/JP2021/044189 JP2021044189W WO2022153703A1 WO 2022153703 A1 WO2022153703 A1 WO 2022153703A1 JP 2021044189 W JP2021044189 W JP 2021044189W WO 2022153703 A1 WO2022153703 A1 WO 2022153703A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
solder paste
solder powder
mass
powder
Prior art date
Application number
PCT/JP2021/044189
Other languages
English (en)
French (fr)
Inventor
直倫 大橋
靖弘 大川
行壮 松野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2022575121A priority Critical patent/JPWO2022153703A1/ja
Priority to EP21919592.2A priority patent/EP4279621A1/en
Publication of WO2022153703A1 publication Critical patent/WO2022153703A1/ja
Priority to US18/346,297 priority patent/US20230347454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/108Mixtures obtained by warm mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3613Polymers, e.g. resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0483Alloys based on the low melting point metals Zn, Pb, Sn, Cd, In or Ga
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices

Definitions

  • the present invention relates to a solder paste for electrically joining a surface mount (SMT) component to a circuit board and a joining structure formed by using the solder paste.
  • SMT surface mount
  • solder paste is generally supplied to a printed circuit board by a screen printing method, a dispenser method, etc., surface mount components are mounted on it, and the solder is heated using a reflow furnace or the like. A method of melting and electrically joining parts is adopted.
  • the solder paste is produced by stirring and mixing a solder alloy powder and a flux composed of rosin (pine fat) or a liquid thermosetting resin, an activator such as an organic acid, a viscosity modifier, and the like.
  • Such a solder paste is required that the meltability of the solder powder during reflow does not decrease even if it is left in a room temperature environment, and that the viscosity of the paste is stable.
  • the main reason for the decrease in solder meltability in a room temperature environment is that the organic acid is consumed by the reaction of the organic acid contained in the oxide film of the solder powder and the flux forming a salt.
  • the organic acid salt produced by the above reaction promotes the cross-linking of the epoxy resin, and as a result, the paste thickens.
  • Patent Document 1 describes a carboxylic acid-based thickening having a low dissociation constant in the flux and compatibility with the resin component. It has been proposed to include an inhibitor. Further, Patent Document 2 discloses a method of coating an activator with a substance that is decomposed at a soldering temperature higher than the temperature at the time of preheating.
  • a means for adding In may be used to lower the melting point of the solder alloy.
  • In is added to the solder alloy, the melting point is lowered, while the free energy for forming oxide (In 2 O 3 ) of In at 298.15 ° K is as small as -830.7 kJ / mol, and Sn, Bi, Ag, Cu. It is more easily oxidized than the metal elements generally used for soldering. Therefore, the solder powder containing In easily forms an oxide film, and the reaction of the above-mentioned oxide film of the solder powder and the organic acid contained in the flux to form a salt easily proceeds.
  • One aspect of the present invention provides a solder paste comprising at least two types of solder powder, each containing at least two types of metallic elements, in the solder paste.
  • the molar ratio (Ai) of each metal element ( i ) based on all the metal elements constituting the solder powder contained in the solder paste and the free energy for forming the oxide of each metal element ( BikJ / mol).
  • the average free energy of the oxide of the solder powder on the molar basis which is the sum of the product of (Ai x Bi ), is -490 kJ / mol or more, and the total mass of the solder powder contained in the solder paste is calculated.
  • the average melting point of the mass-based solder powder which is the sum of the product (C j ⁇ D j ) of the mass ratio (C j ) of each reference solder powder (j) and the melting point (D j ° C) of the solder powder.
  • the temperature is 121 ° C. or lower.
  • FIG. 1 is a diagram showing an evaluation of a change in viscosity and meltability of a solder paste.
  • FIG. 2 is a diagram showing the free generation energy of the metal oxide.
  • the present invention has been made in view of the above-mentioned problems.
  • a solder alloy containing a metal element that lowers the melting point of an alloy such as In is used, and a solder paste containing an epoxy resin or the like is bonded at a low temperature. It is an object of the present invention to provide a solder paste capable of suppressing the influence on the meltability of a solder alloy even in a room temperature environment, and a mounting structure using the same.
  • one aspect of the present invention provides a solder paste containing at least two kinds of solder powder, each containing at least two kinds of metal elements.
  • solder paste The molar ratio (Ai) of each metal element ( i ) based on all the metal elements constituting the solder powder contained in the solder paste and the free energy for forming the oxide of each metal element ( BikJ / mol).
  • the average melting point of the mass-based solder powder which is the sum of the product (C j ⁇ D j ) of the mass ratio (C j ) of each reference solder powder (j) and the melting point (D j ° C) of the solder powder.
  • the temperature is 121 ° C. or lower.
  • solder powders mean different solder powders. Therefore, the two or more kinds of metal elements constituting the solder powder may be exactly the same between the solder powders, a part may be different and the other parts may be the same, or all the metal elements may be different. When two or more kinds of metal elements constituting each solder powder are the same between the solders, the composition of the metal elements is different between the solder powders. Such "at least two types of solder powder" have different characteristics from each other.
  • the average free energy of the oxide of the solder powder on the molar basis is expressed by the following formula (1):
  • m is an integer of at least 2 which is the number of types of metal elements constituting the solder powder contained in the solder paste, and i is a subscript for distinguishing those metal elements.
  • i 1,2,3, ..., m
  • a i is the molar ratio (non-dimensional) of the metal element i
  • Bi is the free oxide formation of the metal element i at 298.15 ° K. It is energy (kJ / mol)
  • means the sum of these products (A i ⁇ Bi ), that is, A 1 ⁇ B 1 + A 2 ⁇ B 2 + ... + A m B m .
  • the sum of the above products is the ratio of the number of each metal element based on the number of all metal elements constituting the solder powder contained in the solder paste, that is, the molar ratio (or atomic ratio). It is, so to speak, the average free energy of oxide formation of solder powder, weighted by. Therefore, in the above-mentioned solder paste of the present invention, the average oxide formation free energy of the solder powder is ⁇ -490 kJ / mol or more. In a preferred embodiment, the average oxide formation free energy of the solder powder is ⁇ -485 kJ / mol or more.
  • the average melting point of the mass-based solder powder is expressed by a mathematical formula as shown in the following formula (2):
  • C j is the mass ratio (dimensionless) of the solder powder j
  • D j is the melting point (° C.) of the solder powder j
  • is the product of these (C j ). It means the sum of ⁇ D j ), that is, C 1 ⁇ D 1 + C 2 ⁇ D 2 + ... + C n D n .
  • the average melting point of the solder paste is ⁇ 121 ° C.
  • the average melting point of the solder powder is ⁇ 110 ° C.
  • the solder paste of one aspect of the present invention further contains flux and removes the oxide film formed on the solder powder.
  • At least two types of solder powder include at least one type of solder powder containing In as a metal element.
  • solder paste of one aspect of the present invention 90% by mass or more of at least two kinds of solder powder has a particle size of 20 to 45 ⁇ m.
  • the flux contains an organic acid having a melting point of 60 ° C. or lower, and such an organic acid is a compound having an OH group in the molecule.
  • the flux comprises a thermosetting resin.
  • one aspect of the present invention is to join a bonded structure formed by joining electrical or electronic parts using the solder paste of one aspect of the present invention, for example, a substrate electrode and a component electrode.
  • a bonded structure formed by joining electrical or electronic parts using the solder paste of one aspect of the present invention for example, a substrate electrode and a component electrode.
  • an electrically conductive bonded structure is provided.
  • the solder paste of one aspect of the present invention contains two or more kinds of solder powders having different compositions. In one embodiment, even if the metal elements constituting the two or more kinds of solder powders are exactly the same, the composition may be different. In another aspect, at least one metal element of the metal elements constituting them may be the same among two or more kinds of solder powders.
  • the metal elements constituting the solder powder include, for example, two types of solder powder, and one of them is a solder alloy containing a metal element such as In which can lower the melting point (solder alloy).
  • the other is composed of a solder alloy (solder alloy ⁇ ) composed of a metal element that does not easily form an oxide.
  • the solder paste of one aspect of the present invention can have the characteristics of both solder alloys at least partially. That is, when the solder paste of one aspect of the present invention is used, for example, it is possible to solder at a temperature substantially equal to or close to the melting point of the solder alloy ⁇ , and further, the presence of the solder alloy ⁇ makes it possible to solder the solder oxide film. The reaction between the solder and the flux can be suppressed.
  • solder paste of one aspect of the present invention will be described in more detail by specifically explaining the solder paste of one aspect of the present invention.
  • the free energy ( BikJ / mol) of oxides of each metal element constituting the solder powder used in the above formula (1) is at 298.15 ° K, and is published in various handbooks, for example. There is. Specifically, the values of the standard generated Gibbs energy listed in Table 10.127 of the 5th edition of the Basic Edition of the Chemical Handbook (edited by the Chemical Society of Japan) can be used. When a plurality of oxides of metal elements are present, the one having the smaller absolute value of the standard generated Gibbs energy is selected as a reference.
  • the melting point of the solder powder used in the above formula (2) for example, information provided by the manufacturer of the solder powder can be used.
  • the solder paste of the present embodiment contains a flux component in addition to the solder powder satisfying the above formulas (1) and (2), but in addition to these, it is generally used for forming a solder paste. Other components may be included as needed.
  • solder powder contained in the solder paste of one aspect of the present invention for example, one formed from an alloy selected from two groups can be used.
  • One of them is, for example, Sn-Bi system, Sn-Bi-Sb system, Sn-Ag system, Sn-Cu system, Sn-Ag-Cu system, Sn-Ag-Bi system, Sn-Cu-Bi system, Sn.
  • At least one can be selected from various compositions of at least one solder alloy selected from the group consisting of -Ag-Cu-Bi system.
  • Sn-In system Sn-Bi-In system, Bi-In system, Sn-Ag system, Sn-Ag-Cu system, Sn-Ag-In system, Sn-Cu-In system, Sn- At least one can be selected from various compositions of at least one solder alloy selected from the group consisting of Ag-Cu-In series and Sn-Ag-Cu-Bi-In series. If the constituent elements are the same in both groups, the compositions are different.
  • At least three types of solder alloy solder powder may be mixed and used.
  • the flux component is, for example, an activator having a function of removing an oxide film formed on solder powder such as an organic acid or amine, a thermosetting resin (for example, an epoxy resin) as a binder for imparting the properties of a paste, and the like. It may be composed of rosin (pine fat), solvent or the like.
  • an electrode which is an adherend, an organic acid having a reducing power for removing an oxide film on the surface of alloy particles, a halogen salt of amine, an amine organic acid salt, etc. are used in a heating temperature range.
  • the organic acid include lauric acid, myristic acid, palmitic acid and stearic acid which are saturated aliphatic monocarboxylic acids; crotonic acid which is an unsaturated aliphatic monocarboxylic acid; oxalic acid and L (saturated aliphatic dicarboxylic acid).
  • -)-Apple acid malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid; unsaturated aliphatic dicarboxylic acids maleic acid, fumaric acid; aromatic carboxylic acids Examples thereof include phthalaldehyde acid, phenylbutyric acid, phenoxyacetic acid, phenylpropionic acid; diglycolic acid which is an ether-based dicarboxylic acid, and avietic acid and ascorbic acid which are other organic acids.
  • the halogen salts of amines include ethylamine hydrochloride, diethylamine hydrochloride, dimethylamine hydrochloride, cyclohexylamine hydrochloride, triethanolamine hydrochloride, glutamate, which are amine hydrochlorides; diethylamine odor, which is amine hydrobromide. Examples thereof include hydride and cyclohexylamine hydrobromide.
  • an organic acid having a melting point of 60 ° C. or lower such as levulinic acid, pyruvic acid, acetoacetic acid, and a compound having a melting point of 60 ° C. or lower and having an OH group in the molecule, such as glycerin and triethanolamine, can be used in combination.
  • thermosetting resin for example, a liquid epoxy resin
  • the epoxy resin is, for example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, glycidylamine type resin, alicyclic epoxy resin, aminopropane type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin.
  • Anthracene type epoxy resin, triazine type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, fluorene type epoxy resin, phenol aralkyl type epoxy resin, novolak type epoxy resin and the like can be used. These may be used alone or in combination of two or more. Further, although a solid epoxy resin and a liquid epoxy resin can be combined, it is necessary to make the liquid at 25 ° C.
  • thermosetting resin a compound selected from the group of thiol-based compounds, modified amine-based compounds, polyfunctional phenol-based compounds, imidazole-based compounds, and acid anhydride-based compounds may be used. can. These may be used alone or in combination of two or more.
  • a suitable curing agent is selected according to the usage environment and application of the solder paste.
  • an inorganic or organic additive can be used as the viscosity adjusting / epoxy property-imparting additive.
  • silica or alumina is used, and if it is organic, it is solid.
  • Epoxy resin, low molecular weight amide, polyester type, organic derivative of castor oil, organic solvent, etc. are used. These may be used alone or in combination of two or more.
  • the above-mentioned solder paste according to one aspect of the present invention has a characteristic that the viscosity of the solder paste is stable even in an environment of 25 ° C., and also exhibits appropriate meltability at a low temperature, so that the temperature is relatively low, 120. Conduction can be ensured by joining electronic elements (for example, electrodes, electronic components, etc.) at a temperature of ° C. or lower, preferably 110 ° C. or lower. Therefore, one aspect of the present invention provides a bonded structure in which objects are joined using the solder paste of the one aspect of the present invention. Further, one aspect of the present invention also provides a method of joining objects using the solder paste of the one aspect of the present invention.
  • solder paste containing two types of solder powder (first solder powder and second solder powder) in various mass ratios was prepared.
  • first solder powder and second solder powder solder powder
  • second solder powder solder powder
  • 42Sn-58Bi was used as the first solder powder
  • 25Sn-55Bi-20In was used as the second solder powder.
  • 96.5 Sn-3Ag-0.5Cu was used as the first solder powder.
  • 25Sn-55Bi-20In was used as the second solder powder.
  • the change in viscosity of the solder paste was evaluated as follows: After preparing the solder paste, it was left in a freezer at ⁇ 20 ° C. for 24 hours or more to stabilize the viscosity, and then thawed to room temperature to obtain the initial viscosity. Next, the viscosity after storing the paste in a constant temperature bath at 25 ° C. for 24 hours was measured, and the change in viscosity from the initial stage was evaluated. As a method for measuring the viscosity, a viscometer (RE550U) manufactured by Toki Sangyo was used, and the viscosity value after rotating at 5 rpm for 60 seconds was adopted. Pass A if the change in viscosity is within 20% of the initial value after storage at 25 ° C for 24 hours from the initial value, pass B if the change is within 20 to 30%, and fail if the change is 31% or more. It was evaluated as C.
  • the solder meltability was evaluated as follows: After transferring the solder paste onto a ceramic plate with a diameter of 6.5 mm and a thickness of 0.2 mm and a thickness of 0.1 mm using a metal mask, the ceramic plate is placed on a hot plate set at 120 ° C. for 5 minutes. By heating, the solder in the transferred solder paste was melted.
  • the solder in the transferred solder paste becomes one large sphere, and the solder balls with a diameter of 75 ⁇ m or less are not arranged in a semi-continuous ring shape. Passed if the solder balls are arranged in a ring of half a circle or less B, the solder becomes one large sphere, and the solder balls with a diameter of 75 ⁇ m or less are arranged in a ring larger than a half circle around it, and the diameter is more than 75 ⁇ m. Those produced by large solder balls or those in which the solder did not form one large ball were evaluated as rejected C.
  • Example 1 42Sn-58Bi (melting point 139 ° C.) was used as the first solder powder, and 25Sn-55Bi-20In (melting point 96 ° C.) was used as the second solder powder.
  • the average particle size of the solder powder was 20 to 30 ⁇ m, and 90% by mass or more of the solder particles had a particle size of 20 to 45 ⁇ m.
  • thermosetting resin "806” manufactured by Mitsubishi Chemical Corporation, which is a bisphenol F type epoxy resin, was used.
  • activator for removing the oxide film of the solder powder a mixture of levulinic acid as the first material and glycerin as the second material was used.
  • 2P4MHZ manufactured by Shikoku Chemicals Corporation, which is an imidazole-based curing agent, was used.
  • a method for preparing the solder paste of Example 1 20 parts by mass of a bisphenol F type epoxy resin and 0.5 parts by mass of a thixotropy-based additive (THIXCIN R, manufactured by Elementis Japan) were added thereto as a thixotropy-imparting agent. Then, the thixotropy-imparting agent was dissolved by heating and stirring at 120 ° C., and the mixture was allowed to cool to room temperature. A resin mixture was obtained by adding 1 part by mass of an imidazole-based curing agent, 3 parts by mass of levulinic acid, and 1.2 parts by mass of glycerin and kneading with a vacuum planetary mixer for 10 minutes.
  • the average oxide free generation energy of solder powder was calculated as follows.
  • the solder powder contained in the solder paste is composed of 30 parts by mass of the first solder powder 42Sn-58Bi and 70 parts by mass of the second solder powder 25Sn-55Bi-20In.
  • the mass ratio of each metal element contained in 30 parts by mass of 42Sn-58Bi solder and 70 parts by mass of 25Sn-55Bi-20In solder is calculated.
  • the change in viscosity of the solder paste of Example 1 after being left at 25 ° C. for 24 hours was less than 10%, which was a pass A, and the meltability of the solder was such that the solder became one large ball and the diameter was 75 ⁇ m or less around it. Solder balls did not line up in a semi-continuous ring, and passed A.
  • Examples 2 to 6 and Comparative Examples 1 to 3 Similar to Example 1, the solder powders shown in FIG. 1 were mixed at a predetermined ratio to prepare the solder pastes of Examples 2 to 6 and Comparative Examples 1 to 3, and stored at 25 ° C. by the same method. The change in viscosity and the meltability of the solder were evaluated.
  • Example 4 96.5 Sn-3Ag-0.5Cu was used as the first solder powder, and its melting point was 219 ° C.
  • the average particle size of the first solder powder was 20 to 30 ⁇ m, and 90% by mass or more of the solder particles had a particle size of 20 to 45 ⁇ m.
  • the calculation of the average oxide free generation energy of the metal elements of Example 4 is shown below as an example.
  • the atomic weight of Sn is 118.7, the atomic weight of Ag is 107.9, the atomic weight of Cu is 63.6, the atomic weight of Bi is 209.0, and the atomic weight of In is 114.8, Sn is 32.15 mass.
  • the molar ratio of each metal element in the mixed powder composed of%, Ag is 0.3% by mass, Cu is 0.05% by mass, Bi is 49.5% by mass, and In is 18% by mass is as follows.
  • solder paste containing two or more kinds of solder powder
  • the melted solder and other solid solder powder are melted. Since it is compatible with the surface of the solder powder, it may show appropriate meltability even if not all the solder powder is melted.
  • the solder paste according to one aspect of the present invention is heated at 120 ° C., the average melting point of the solder powder is 121 ° C. or lower, so that it has been found to have excellent solder meltability.
  • the solder paste of one aspect of the present invention has the characteristics that it can be joined at a low melting point and the viscosity of the solder paste is stable even in an environment of 25 ° C. It is useful as a structure or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

各々が少なくとも2種の金属元素を含む、少なくとも2種のはんだ粉を含んで成るはんだペーストは、はんだペーストに含まれるはんだ粉を構成する全ての金属元素を基準とする各金属元素(i)のモル比(Ai)と該各金属元素の酸化物の生成自由エネルギー(BikJ/mol)との積(Ai×Bi)の総和である、モル基準のはんだ粉の酸化物の平均生成自由エネルギーが-490kJ/mol以上であり、また、はんだペーストに含まれるはんだ粉の全質量を基準とする各はんだ粉(j)の質量比(Cj)と該はんだ粉の融点(Dj℃)との積(Cj×Dj)の総和である、質量基準のはんだ粉の平均融点が121℃以下である。

Description

はんだペースト及び接合構造体
 本発明は、表面実装(SMT)部品を、回路基板に電気的に接合するためのはんだペースト及びこれを用いて形成される接合構造体に関するものである。
 電子部品の表面実装(SMT)では、一般的にスクリーン印刷法やディスペンサ法等によってプリント回路基板にはんだペーストを供給し、その上に表面実装部品を搭載し、リフロー炉等を用いてはんだを加熱溶融させて部品を電気的に接合する方法が採られる。
 上記はんだペーストは、はんだ合金粉末とロジン(松脂)又は液状の熱硬化性樹脂、有機酸等の活性剤、粘度調整剤等から構成されるフラックスとを攪拌および混合して製造される。
 このようなはんだペーストには、室温環境下で放置してもリフロー時のはんだ粉の溶融性が低下しないこと、ペーストの粘度が安定であること等が求められる。室温環境下ではんだ溶融性が低下する主な要因としては、はんだ粉の酸化膜とフラックスに含まれる有機酸が塩を形成する反応が進むことによって有機酸が消費されることが挙げられる。また、ペースト中にエポキシ樹脂が含まれている場合、上述の反応で生成した有機酸塩がエポキシ樹脂の架橋を進め、その結果、ペーストが増粘する。
 室温環境下でのはんだ粉の酸化膜と有機酸との反応を抑制する為に、例えば、特許文献1には、フラックス中に解離定数の低く、樹脂成分と相溶性を有するカルボン酸系増粘抑制剤を含有させることが提案されている。また、特許文献2には、活性剤をプリヒート時の温度よりも高いはんだ付け温度で分解される物質によってコーティングする方法を開示している。
 ところで、はんだ合金の融点を下げる為にInを添加する手段が用いられることがある。はんだ合金にInを添加すると、融点が下がる一方で、Inの298.15°Kにおける酸化物(In)生成自由エネルギーは-830.7kJ/molと小さく、Sn、Bi、Ag、Cu等の一般的にはんだに使用される金属元素に比べて酸化されやすい。その為、Inを含有するはんだ粉は酸化膜を形成しやすく、上述のはんだ粉の酸化膜とフラックスに含まれる有機酸とが塩を形成する反応が進み易い。
特開平5-318176号公報 特開昭63-180396号公報
 本発明の一態様は、各々が少なくとも2種の金属元素を含む、少なくとも2種のはんだ粉を含んで成るはんだペーストを提供し、このはんだペーストにおいて、
 はんだペーストに含まれるはんだ粉を構成する全ての金属元素を基準とする各金属元素(i)のモル比(A)と該各金属元素の酸化物の生成自由エネルギー(BkJ/mol)との積(A×B)の総和である、モル基準のはんだ粉の酸化物の平均生成自由エネルギーが-490kJ/mol以上であること、および
 はんだペーストに含まれるはんだ粉の全質量を基準とする各はんだ粉(j)の質量比(C)と該はんだ粉の融点(D℃)との積(C×D)の総和である、質量基準のはんだ粉の平均融点が121℃以下であること
 を特徴とする。
図1は、はんだペーストの粘度変化および溶融性の評価を示す図である。 図2は、金属酸化物の自由生成エネルギーを示す図である。
 先行技術文献に記載されているような室温環境下でのはんだ合金粉末とフラックスとの反応を抑制するという対策は、リフロー時のはんだ粉の溶融性とトレードオフの関係になっている場合が多く、望ましくはリフロー時のはんだ粉の溶融性を確保しながらも、室温環境下でのはんだ合金粉末と活性剤との反応を抑制することが望まれている。
 従って、本発明は、前述の課題に鑑みてなされたもので、例えばIn等の合金の融点を下げる金属元素を含むはんだ合金を使用し、エポキシ樹脂等が含まれたはんだペーストにおいて、低温で接合でき、かつ、室温環境下であってもはんだ合金の溶融性への影響が抑制されたはんだペーストおよびそれを用いた実装構造体を提供することを目的とする。
 上述の課題について鋭意検討の結果、第1の要旨において、本発明の一態様は、各々が少なくとも2種の金属元素を含む、少なくとも2種のはんだ粉を含んで成るはんだペーストを提供し、このはんだペーストにおいて、
 はんだペーストに含まれるはんだ粉を構成する全ての金属元素を基準とする各金属元素(i)のモル比(A)と該各金属元素の酸化物の生成自由エネルギー(BkJ/mol)との積(A×B)の総和である、モル基準のはんだ粉の酸化物の平均生成自由エネルギーが-490kJ/mol以上であること、および
 はんだペーストに含まれるはんだ粉の全質量を基準とする各はんだ粉(j)の質量比(C)と該はんだ粉の融点(D℃)との積(C×D)の総和である、質量基準のはんだ粉の平均融点が121℃以下であること
 を特徴とする。
 本発明の一態様のはんだペーストにおいて、『少なくとも2種のはんだ粉』は、相互に異なるはんだ粉を意味する。従って、はんだ粉を構成する2種以上の金属元素は、はんだ粉間で全く同じであっても、一部分が異なってその他の部分が同じであっても、全ての金属元素が異なってもよい。各はんだ粉を構成する2種以上の金属元素がはんだ間で同じである場合は、金属元素の組成がはんだ粉間で異なる。このような『少なくとも2種のはんだ粉』は、相互に異なる特性を有する。
 本発明の一態様のはんだペーストにおいて、モル基準のはんだ粉の酸化物の平均生成自由エネルギーは、数式により表現すると、以下の式(1)のようになる:
Figure JPOXMLDOC01-appb-M000001
 上記式(1)中、mははんだペーストに含まれるはんだ粉を構成する金属元素の種類数である、少なくとも2の整数であり、iはそれらの金属元素を区別するための添字であって、i=1,2,3,・・・・,mであり、Aは金属元素iのモル比(無次元)であり、Bは金属元素iの298.15°Kにおける酸化物生成自由エネルギー(kJ/mol)であり、Σはこれらの積(A×B)の総和、即ち、A×B+A×B+・・・・・+Aを意味する。
 容易に理解できるように、上述の積の総和は、はんだペーストに含まれるはんだ粉を構成する全ての金属元素数を基準とする各金属元素の数の割合、即ち、モル比(または原子比)によって重み付けした、言わばはんだ粉の平均的な酸化物生成自由エネルギーである。従って、上記本発明のはんだペーストにおいて、はんだ粉の平均酸化物生成自由エネルギー≧-490kJ/mol以上である。好ましい態様では、はんだ粉の平均酸化物生成自由エネルギー≧-485kJ/mol以上である。
 本発明の一態様のはんだペーストにおいて、質量基準のはんだ粉の平均融点は、数式により表現すると、以下の式(2)のようになる:
Figure JPOXMLDOC01-appb-M000002
 上記式(2)中、nははんだペーストに含まれるはんだ粉の種類数である、少なくとも2の整数であり、jはそれらのはんだ粉を区別するための添字であって、j=1,2,3,・・・・,nであり、Cははんだ粉jの質量比(無次元)であり、Dははんだ粉jの融点(℃)であり、Σはこれらの積(C×D)の総和、即ち、C×D+C×D+・・・・・+Cを意味する。
 容易に理解できるように、上述の積の総和は、はんだペーストを構成するはんだ粉の全質量を基準とする各はんだ粉の質量比によって重み付けした、言わばはんだペーストの平均な融点である。従って、上記本発明のはんだペーストにおいて、はんだ粉の平均融点≦121℃である。好ましい態様では、はんだ粉の平均融点≦110℃である。
 本発明の一態様のはんだペーストは、フラックスを更に含んで成り、はんだ粉に生成する酸化膜を除去する。
 本発明の一態様のはんだペーストの1つの態様では、少なくとも2種のはんだ粉は、金属元素としてInを含む少なくとも1種のはんだ粉を含む。
 本発明の一態様のはんだペーストの1つの態様では、少なくとも2種のはんだ粉の90質量%以上が20~45μmの粒径を有する。
 本発明の一態様のはんだペーストの1つの態様では、フラックスとして融点が60℃以下の有機酸を含み、そのような有機酸は分子内にOH基を持つ化合物であるのが好ましい。
 本発明のはんだペーストの1つの態様では、フラックスは、熱硬化性樹脂を含む。
 第2の要旨において、本発明の一態様は、本発明の一態様のはんだペーストを用いて電気または電子部品接合して形成される接合体構造体、例えば基板電極と部品電極とを接合して電気的に導通させた接合構造体を提供する。
 本発明の一態様のはんだペーストは、2種以上の組成の異なるはんだ粉を含む。1つの態様では、2種以上のはんだ粉の間で、これらを構成する金属元素が全く同じであっても、組成が異なればよい。別の態様では、2種以上のはんだ粉の間で、これらを構成する金属元素の少なくとも1つの金属元素が同じであってもよい。
 より具体的な1つの態様では、はんだ粉を構成する金属元素は例えば、2種類のはんだ粉を含み、その一方は、Inのような融点を低融点化できる金属元素を含むはんだ合金(はんだ合金α)で構成され、他方は、酸化物を生成しにくい金属元素から構成されるはんだ合金(はんだ合金β)で構成する。
 上述のように、特性の異なる少なくとも2種のはんだ粉を組み合わせることによって、本発明の一態様のはんだペーストは、双方のはんだ合金の特性を少なくとも部分的に併せ持つことができる。即ち、本発明の一態様のはんだペーストを用いると、例えばはんだ合金αの融点と実質的に同等の温度またはそれに近い温度にてはんだ付け可能であり、更に、はんだ合金βの存在によってはんだ酸化膜とフラックスとの反応を抑制できる。
 以下、本発明の一態様のはんだペーストを具体的に説明することによって、本発明の一態様のはんだペーストをより詳細に説明する。
 上記式(1)において用いる、はんだ粉を構成する各金属元素の酸化物の生成自由エネルギー(BkJ/mol)は、298.15°Kにおけるものであり、例えば種々の便覧に掲載されている。具体的には、化学便覧基礎編改定5版(日本化学会編)の表10.127に掲載されている標準生成ギブズエネルギーの値を用いることができる。尚、金属元素の酸化物が複数存在する場合は、標準生成ギブズエネルギーの値の絶対値が小さい方を基準に選択する。
 また、上記式(2)において用いるはんだ粉の融点としては、例えばはんだ粉のメーカーから提供される情報を使用できる。
 本実施の形態のはんだペーストは、上述の式(1)および式(2)を満たすはんだ粉に加えてフラックス成分を含むが、これらの他に、はんだペーストを構成するために一般的に用いられる他の成分を必要に応じて含んでよい。
 本発明の一態様のはんだペーストに含まれるはんだ粉としては、例えば2つの群から選択される合金から形成されたものを使用できる。その一方は、例えば、Sn-Bi系、Sn-Bi-Sb系、Sn-Ag系、Sn-Cu系、Sn-Ag-Cu系、Sn-Ag-Bi系、Sn-Cu-Bi系、Sn-Ag-Cu-Bi系からなる群から選ばれる少なくとも1種のはんだ合金の種々の組成のものから少なくとも1種を選択できる。
 他方として、例えば、Sn-In系、Sn-Bi-In系、Bi-In系、Sn-Ag系、Sn-Ag-Cu系、Sn-Ag-In系、Sn-Cu-In系、Sn-Ag-Cu-In系、およびSn-Ag-Cu-Bi-In系からなる群から選ばれる少なくとも1種のはんだ合金の種々の組成のものから少なくとも1種を選択できる。尚、双方の群で構成元素が同じである場合は、組成が異なる。
 別の態様では、少なくとも3種のはんだ合金のはんだ粉を混合して使用してよい。
 フラックス成分は、例えば、有機酸、アミン等のはんだ粉に形成される酸化膜を除去する機能を有する活性剤、ペーストの性状を付与する為のバインダーとしての熱硬化性樹脂(例えばエポキシ樹脂)、ロジン(松脂)、溶剤等により構成してよい。
 活性剤としては、加熱させる温度域で、被着体である電極、合金粒子表面の酸化膜を除去する還元力を有する有機酸、アミンのハロゲン塩、アミン有機酸塩などが用いられる。有機酸としては、例えば飽和脂肪族モノカルボン酸であるラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸;不飽和脂肪族モノカルボン酸であるクロトン酸;飽和脂肪族ジカルボン酸であるシュウ酸、L(-)-リンゴ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸;不飽和脂肪族ジカルボン酸であるマレイン酸、フマル酸;芳香族系カルボン酸であるフタルアルデヒド酸、フェニル酪酸、フェノキシ酢酸、フェニルプロピオン酸;エーテル系ジカルボン酸であるジグリコール酸、その他の有機酸であるアビエチン酸、アスコルビン酸などが挙げられる。アミンのハロゲン塩としては、アミン塩酸塩であるエチルアミン塩酸塩、ジエチルアミン塩酸塩、ジメチルアミン塩酸塩、シクロヘキシルアミン塩酸塩、トリエタノールアミン塩酸塩、グルタミン酸塩酸塩;アミン臭化水素酸塩であるジエチルアミン臭化水素酸塩、シクロヘキシルアミン臭化水素酸塩などが挙げられる。
 より好ましくは、融点が60℃以下の有機酸、例えばレブリン酸や、ピルビン酸、アセト酢酸、融点が60℃以下で分子内にOH基を持つ化合物、例えばグリセリン、トリエタノールアミンを併用できる。
 熱硬化性樹脂としては、例えば液状のエポキシ樹脂を用いることができる。エポキシ樹脂は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルアミン型樹脂、脂環式エポキシ樹脂、アミノプロパン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、トリアジン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ノボラック型エポキシ樹脂などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。また、固形のエポキシ樹脂と液状のエポキシ樹脂を組み合わせることができるが、25℃で液状とする必要がある。
 上記の熱硬化性樹脂と組み合わせて用いる硬化剤としては、チオール系化合物、変性アミン系化合物、多官能フェノール系化合物、イミダゾール系化合物、および酸無水物系化合物の群から選ばれる化合物を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。硬化剤は、はんだペーストの使用環境や用途に応じて、好適なものが選択される。
 更に、必要に応じて、粘度調整/チクソ性付与添加剤として、無機系あるいは有機系のものが使用でき、例えば、無機系であれば、シリカやアルミナなどが用いられ、有機系であれば固形のエポキシ樹脂や低分子量のアマイド、ポリエステル系、ヒマシ油の有機誘導体、有機溶剤などが用いられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上述の本発明の一態様のはんだペーストは、25℃環境下でもはんだペーストの粘度が安定であるという特性を有し、また、低い温度で適度な溶融性を示すので、比較的低い温度、120℃以下の温度、好ましくは110℃以下の温度で電子要素(例えば電極、電子部品等)を接合して導通を確保できる。従って、本発明の一態様は、本発明の一態様のはんだペーストを用いて対象物を接合した接合構造体を提供する。更に、本発明の一態様は、本発明の一態様のはんだペーストを用いて対象物を接合する方法をも提供する。
 (実施例および比較例)
 下記の図1に示すように2種類のはんだ粉(第1はんだ粉および第2はんだ粉)を種々の質量割合で含むはんだペーストを調製した。実施例1~3ならびに比較例1および2では、第1はんだ粉として42Sn―58Biを使用し、第2はんだ粉として25Sn―55Bi―20Inを使用した。実施例4~6および比較例3では、第1はんだ粉として96.5Sn―3Ag―0.5Cuを使用した。また、全ての実施例および比較例では、第2はんだ粉として25Sn―55Bi―20Inを使用した。
 図1中の式(1)による平均酸化物生成自由エネルギーについては、上述の化学便覧に掲載された標準生成ギブスエネルギー(ΔG)の数値(必要な数値を抜粋して下記の図2に掲載)を用いて算出した。図1中の式(2)による平均融点については、はんだ粉の製造元から得た融点の情報を使用して算出した。
 尚、はんだペーストの粘度変化の評価は以下の要領で行った:
 はんだペーストを調製後、-20℃の冷凍庫にて24時間以上放置し、粘度を安定化させた後、常温まで解凍させた後を初期の粘度とした。次に、25℃の恒温槽中に24時間ペーストを保管した後の粘度を測定し、初期からの粘度変化を評価した。粘度の測定方法は、東機産業製の粘度計(RE550U)を用い、5rpmで60秒間回転後の粘度数値を採用した。初期から25℃24時間保管後で粘度変化が初期値に対して20%以内の変動であれば合格A、20~30%以内の変動であれば合格B、31%以上変化したものを不合格Cと評価した。
 はんだ溶融性の評価は以下の要領で行った:
 メタルマスクを用いて、直径6.5mm、厚さ0.2mmのサイズで厚み0.1mmのセラミック板上にはんだペーストを転写した後、セラミック板を120℃で設定されたホットプレート上で5分間加熱することによって、転写したはんだペースト中のはんだを溶融させた。
 転写したはんだペースト中のはんだが一つの大きな球となり、周囲に直径75μm以下のソルダボールが半連続の環状に並んではいないものを合格A、はんだが一つの大きな球となり,周囲に直径75μm以下のソルダボールが半円以下の環状に並んでいるものを合格B、はんだが一つの大きな球となり,周囲に直径75μm以下のソルダボールが半円より大きい環状に並んでいるもの、直径が75μmよりも大きいソルダボールが生成したもの、またははんだが一つの大きな球とならないものを不合格Cと評価した。
 (実施例1)
 第1はんだ粉として42Sn―58Bi(融点139℃)と、第2はんだ粉として25Sn―55Bi―20In(融点96℃)を用いた。このはんだ粉の平均粒径は、いずれも20~30μmであり、はんだ粒子の90質量%以上は、粒径が20~45μmであった。
 熱硬化性樹脂として、ビスフェノールF型エポキシ樹脂である三菱化学製「806」を用いた。はんだ粉の酸化膜除去のための活性剤としては、第一の材料としてレブリン酸、第二の材料としてグリセリンの混合物を用いた。また、エポキシ樹脂を硬化促進させる為に、イミダゾール系硬化剤である四国化成工業製「2P4MHZ」を用いた。
 実施例1のはんだペーストの調製方法としては、ビスフェノールF型エポキシ樹脂20質量部、これにチクソトロピー性付与剤としてヒマシ油系添加剤(エレメンティス・ジャパン製、THIXCIN R)を0.5質量部添加し、120℃で加熱撹拌することでチクソトロピー性付与剤を溶解させ、室温に放冷した。そこへイミダゾール系硬化剤を1質量部、レブリン酸を3質量部、グリセリンを1.2質量部添加し、真空プラネタリミキサで10分間混練することで樹脂混合物を得た。この樹脂混合物中に、42Sn―58Biの第1はんだ粉30質量部と、25Sn―55Bi―20Inの第2はんだ粉70質量部を添加し、真空プラネタリミキサで30分間混練することではんだペーストを得た。
 はんだ粉の平均酸化物自由生成エネルギーは次のように算出した。はんだペーストに含まれるはんだ粉は、第1はんだ粉42Sn―58Biが30質量部と、第2はんだ粉25Sn―55Bi―20Inが70質量部で構成されている。
 まず、42Sn―58Biはんだ30質量部と25Sn―55Bi―20Inはんだ70質量部に含まれる各金属元素の質量比を計算する。
 Snの質量比:0.3×0.42+0.7×0.25=0.301(30.1質量%)
 Biの質量比:0.3×0.58+0.7×0.55=0.559(55.9質量%)
 Inの質量比:0.7×0.2=0.14(14.0質量%)
 次に、各金属元素のモル比を算出する。
 Snの原子量が118.7であり、Biの原子量が209.0であり、Inの原子量が114.8であることから、Snが30.1質量%、Biが55.9質量%、Inが14.0質量%から構成される混合粉における各金属元素のモル比は次のようになる:
 Sn比:(30.1/118.7)/(30.1/118.7+55.9/209.0+14/114.8)=0.394
 Biモル比:(55.9/209.0)/(30.1/118.7+55.9/209.0+14/114.8)=0.416
 Inモル:(14/114.8)/(30.1/118.7+55.9/209.0+14/114.8)=0.190
 従って、はんだ粉の平均の酸化物自由生成エネルギーは、図2の値から、0.394×(―251.8)+0.416×(―493.7)+0.190×(―830.7)=-462.2kJ/molとなる。
 また、実施例1のはんだ粉の平均融点は次のように算出した。融点139℃の42Sn―58Biの第1はんだ粉が30質量部、融点96℃の25Sn―55Bi―20Inの第2はんだ粉が70質量部であるので、実施例1のはんだ粉の平均融点は、0.3×139+0.7×96=108.9℃となる。
 実施例1のはんだペーストの25℃で24時間放置後の粘度変化は、10%未満となり、合格Aであり、また、はんだの溶融性は、はんだが一つの大きな球となり、周囲に直径75μm以下のソルダボールが半連続の環状に並ばず、合格Aとなった。
 (実施例2~6および比較例1~3)
 実施例1と同様に、図1に示すはんだ粉を所定の割合で混合して実施例2~6及び比較例1~3のはんだペーストを調製し、同様の方法によって25℃で保管した際の粘度変化と、はんだの溶融性を評価した。
 但し、実施例4~6及び比較例3では、96.5Sn―3Ag―0.5Cuを第1はんだ粉として使用し、その融点は219℃であった。また、この第1はんだ粉の平均粒径は20~30μmであり、はんだ粒子の90質量%以上は、粒径が20~45μmであった。実施例4の金属元素の平均の酸化物自由生成エネルギーの計算を例として以下に示す。
 96.5Sn―3Ag―0.5Cuはんだ10質量部と25Sn―55Bi―20Inはんだ90質量部に含まれる各金属元素の質量比を計算する。
 Snの質量比:0.1×0.965+0.9×0.25=0.3215(32.15質量%)
 Agの質量比:0.1×0.03=0.003(0.3質量%)
 Cuの質量比:0.1×0.005=0.0005(0.05質量%)
 Biの質量比:0.9×0.55=0.495(49.5質量%)
 Inの質量比:0.9×0.2=0.18(18質量%)
 次に各金属元素のモル比を算出する。
 Snの原子量が118.7、Agの原子量が107.9、Cuの原子量が63.6、Biの原子量が209.0、Inの原子量が114.8であることから、Snが32.15質量%、Agが0.3質量%、Cuが0.05質量%、Biが49.5質量%、Inが18質量%から構成される混合粉における各金属元素のモル比は次のようになる:
 Snモル比:(32.15/118.7)/(32.15/118.7+0.3/107.9+0.05/63.6+49.5/209.0+18/114.8)=40.54(%)
 Agモル比:(0.3/107.9)/(32.15/118.7+0.3/107.9+0.05/63.6+49.5/209.0+18/114.8)=0.42(%)
 Cuモル比:(0.05/63.6)/(32.15/118.7+0.3/107.9+0.05/63.6+49.5/209.0+18/114.8)=0.12(%)
 Biモル:(49.5/209.0)/(32.15/118.7+0.3/107.9+0.05/63.6+49.5/209.0+18/114.8)=35.45(%)
 Inモル比:(18/114.8)/(32.15/118.7+0.3/107.9+0.05/63.6+49.5/209.0+18/114.8)=23.47(%)
 従って、Snが40.54mol%、Agが0.42mol%、Cuが0.12mol%、Biが35.45mol%、Inが23.47mol%から構成されるはんだ粉の平均酸化物自由生成エネルギーは、図2の値を用いて、0.4054×(―251.8)+0.0042×(―11.2)+0.0012×(―129.5)+0.3545×(―493.7)+0.2347×(―830.7)=-472.3(kJ/mol)となる。
 また、はんだ粉の平均融点は、融点219℃の96.5Sn―3Ag―0.5Cuの第1はんだ粉が10質量部、融点96℃の25Sn―55Bi―20Inの第2はんだ粉が90質量部であるので、実施例1のはんだ粉の平均融点は、0.1×219+0.9×96=108.3℃となる。
 他の実施例および比較例についても同様に計算した。
 図1の実施例1~6および比較例1~3の結果から、はんだ粉の平均酸化物自由生成エネルギーが-490kJ/mol以上で、かつ、はんだ粉の平均融点が121℃以下である場合、25℃で24時間保管した際のはんだペーストの粘度変化及び120℃でのはんだの溶融性の結果がともに合格となることが分かる。はんだペーストの25℃での粘度変化は、はんだ合金の酸化物がフラックスに含まれる有機酸と反応して塩を生成することに起因しており、これは、金属の酸化物の生成し易さと相関がある。金属の酸化物が生成しにくいほど、粘度変化しにくいと考えられ、本発明の一態様により、はんだ粉の平均の酸化物自由生成エネルギー(より詳しくは、はんだ粉の金属元素の平均の酸化物自由生成エネルギー)が-490kJ/mol以上であることで優れた粘度の安定性を有することが分かった。
 更に、2種以上のはんだ粉を含むはんだペーストの場合、少なくとも1種のはんだ粉が溶融すると、その他のはんだ粉が溶融していない場合でも、好ましい態様では溶融したはんだとその他の固形のはんだ粉の表面とが相溶する為、全てのはんだ粉が溶融しなくても適度な溶融性を示す場合がある。本発明の一態様のはんだペーストを120℃で加熱する場合、はんだ粉の平均融点は121℃以下であるため、優れたはんだ溶融性を有することが分った。
 本発明の一態様のはんだペーストは、低融点で接合でき、かつ、25℃環境下でもはんだペーストの粘度が安定であるという特性を有し、部品実装用はんだペースト及びこれらを用いて実装した実装構造体等として有用である。

Claims (7)

  1.  各々が少なくとも2種の金属元素を含む、少なくとも2種のはんだ粉を含んで成るはんだペーストであって、
     はんだペーストに含まれるはんだ粉を構成する全ての金属元素を基準とする各金属元素(i)のモル比(A)と該各金属元素の酸化物の生成自由エネルギー(BkJ/mol)との積(A×B)の総和である、モル基準のはんだ粉の酸化物の平均生成自由エネルギーが-490kJ/mol以上であること、および
     はんだペーストに含まれるはんだ粉の全質量を基準とする各はんだ粉(j)の質量比(C)と該はんだ粉の融点(D℃)との積(C×D)の総和である、質量基準のはんだ粉の平均融点が121℃以下であること
     を特徴とするはんだペースト。
  2.  前記少なくとも2種のはんだ粉は、金属元素としてInを含む少なくとも1種のはんだ粉を含むことを特徴とする請求項1に記載のはんだペースト。
  3.  前記少なくとも2種のはんだ粉の90質量%以上は、粒径が20~45μmであることを特徴とする請求項1または2に記載のはんだペースト。
  4.  フラックス成分を更に含み、フラックス成分は、融点が60℃以下の有機酸を含むことを特徴とする請求項1~3のいずれかに記載のはんだペースト。
  5.  前記フラックス成分は、融点が60℃以下で分子内にOH基を持つ化合物を含むことを特徴とする請求項4に記載のはんだペースト。
  6.  前記フラックス成分は、熱硬化性樹脂を含むことを特徴とする請求項4または5に記載のはんだペースト。
  7.  請求項1~6のいずれかに記載のはんだペーストを用いて基板電極と部品電極とが接合
    された接合構造体。
PCT/JP2021/044189 2021-01-18 2021-12-02 はんだペースト及び接合構造体 WO2022153703A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022575121A JPWO2022153703A1 (ja) 2021-01-18 2021-12-02
EP21919592.2A EP4279621A1 (en) 2021-01-18 2021-12-02 Solder paste and bonded structure
US18/346,297 US20230347454A1 (en) 2021-01-18 2023-07-03 Solder paste and bonded structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-005898 2021-01-18
JP2021005898 2021-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/346,297 Continuation US20230347454A1 (en) 2021-01-18 2023-07-03 Solder paste and bonded structure

Publications (1)

Publication Number Publication Date
WO2022153703A1 true WO2022153703A1 (ja) 2022-07-21

Family

ID=82448341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044189 WO2022153703A1 (ja) 2021-01-18 2021-12-02 はんだペースト及び接合構造体

Country Status (4)

Country Link
US (1) US20230347454A1 (ja)
EP (1) EP4279621A1 (ja)
JP (1) JPWO2022153703A1 (ja)
WO (1) WO2022153703A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180396A (ja) 1987-01-23 1988-07-25 Hitachi Ltd フラツクス
WO2008016140A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Bonding material, bonded portion and circuit board
JP2010285580A (ja) * 2009-06-15 2010-12-24 Panasonic Electric Works Co Ltd 熱硬化性樹脂組成物及び回路基板
JP2015530705A (ja) * 2012-08-09 2015-10-15 オーメット サーキッツ インク 非共晶はんだ合金を含む電気伝導性組成物
JP2019096616A (ja) * 2017-11-27 2019-06-20 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2020055032A (ja) * 2018-09-28 2020-04-09 株式会社タムラ製作所 成形はんだ及び成形はんだの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180396A (ja) 1987-01-23 1988-07-25 Hitachi Ltd フラツクス
WO2008016140A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Bonding material, bonded portion and circuit board
JP2010285580A (ja) * 2009-06-15 2010-12-24 Panasonic Electric Works Co Ltd 熱硬化性樹脂組成物及び回路基板
JP2015530705A (ja) * 2012-08-09 2015-10-15 オーメット サーキッツ インク 非共晶はんだ合金を含む電気伝導性組成物
JP2019096616A (ja) * 2017-11-27 2019-06-20 積水化学工業株式会社 導電材料、接続構造体及び接続構造体の製造方法
JP2020055032A (ja) * 2018-09-28 2020-04-09 株式会社タムラ製作所 成形はんだ及び成形はんだの製造方法

Also Published As

Publication number Publication date
JPWO2022153703A1 (ja) 2022-07-21
EP4279621A1 (en) 2023-11-22
US20230347454A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JP5373464B2 (ja) 導電性ペーストおよびこれを用いた実装構造体
JP5387732B2 (ja) 接続対象物の接続方法および電子装置の製造方法
WO2011027659A1 (ja) ソルダペースト、それを用いた接合方法、および接合構造
JP5756933B2 (ja) フラックス
JP6635986B2 (ja) はんだ組成物および電子基板
JP6337349B1 (ja) フラックス、ソルダペースト及び電子回路基板の製造方法
JP2006199937A (ja) 導電性接着剤、これを用いた導電部及び電子部品モジュール
WO2012118074A1 (ja) フラックス
JP2019055414A (ja) 接合材
JP6824208B2 (ja) フラックス及びソルダペースト
WO2018003820A1 (ja) フラックス組成物、ソルダペースト組成物及び電子回路基板
JP2018083211A (ja) ソルダペースト、フラックスおよび電子回路基板
JP2004188453A (ja) Sn系はんだ合金
WO2020262632A1 (ja) フラックス及びソルダペースト
JP6259623B2 (ja) 低酸価アクリル樹脂含有はんだ付け用フラックスおよびはんだペースト組成物
WO2022153703A1 (ja) はんだペースト及び接合構造体
JP6192444B2 (ja) 微細パターン塗布用はんだ組成物
JP4112546B2 (ja) 鉛フリー接合材の製造方法
JP2001018090A (ja) はんだペースト及びはんだ付け方法
US20210121992A1 (en) Solder paste and joining structure
JP3163506B2 (ja) クリームハンダ
JP6861688B2 (ja) 無残渣フラックス組成物及びソルダペースト
JP6071161B2 (ja) はんだ付け用フラックスおよびそれを用いたはんだペースト組成物
JP7427657B2 (ja) フラックス、ソルダペーストおよび電子回路基板
JP7437677B2 (ja) はんだ組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021919592

Country of ref document: EP

Effective date: 20230818