WO2020262632A1 - フラックス及びソルダペースト - Google Patents
フラックス及びソルダペースト Download PDFInfo
- Publication number
- WO2020262632A1 WO2020262632A1 PCT/JP2020/025289 JP2020025289W WO2020262632A1 WO 2020262632 A1 WO2020262632 A1 WO 2020262632A1 JP 2020025289 W JP2020025289 W JP 2020025289W WO 2020262632 A1 WO2020262632 A1 WO 2020262632A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flux
- acid
- mass
- solder
- isocyanuric acid
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3612—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3612—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
- B23K35/3613—Polymers, e.g. resins
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
- B23K35/025—Pastes, creams, slurries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
Definitions
- the present invention relates to a flux used for soldering and a solder paste containing the flux.
- Solder paste which is a mixture of solder alloy and flux, is used as a mounting technology for mounting electronic components such as chip components and package substrates on electronic circuit boards such as printed wiring boards. Specifically, after screen-printing the solder paste on the pad on the surface of the electronic circuit board, the electronic component is mounted and heated (reflowed) to join the electronic component on the electronic circuit board.
- Patent Document 1 discloses a solder paste using a sugar fatty acid ester as a thixotropy contained in a flux.
- Patent Document 2 discloses a solder paste using an aromatic carboxylic acid having a hydroxyl group or an acyl group at the ortho-position or the pros-position as an activator contained in the flux.
- halogen has been widely used as an activator for improving the meltability of solder because it removes the oxide film on the surface of the solder and lowers the surface tension of the solder.
- the solder pastes of Patent Documents 1 and 2 also contain a halogen compound as an activator.
- halogen compounds may generate harmful substances such as dioxins during combustion, halogen-free compounds have been promoted in recent years. Therefore, there is a demand for the development of a solder paste that is halogen-free and exhibits excellent solder meltability for fine pads.
- the present invention has been made in view of the above circumstances, and a halogen-free flux that exhibits excellent solder meltability for fine pads when used together with a solder alloy, and a solder paste containing the flux are provided.
- the challenge is to provide.
- the flux according to the present invention is a halogen-free flux used for soldering, and is a thiox agent containing a polyamide compound in which one or more endothermic peaks obtained by differential thermal analysis are all observed in the range of 130 to 200 ° C. And an activator containing an isocyanuric acid derivative, and the content of the isocyanuric acid derivative is 5.0% by mass or less based on the total flux.
- the flux according to the present invention preferably contains the isocyanuric acid derivative in an amount of 0.5% by mass or more and 5.0% by mass or less with respect to the entire flux.
- the flux according to the present invention is at least one in which the isocyanuric acid derivative is selected from bis (2-carboxyethyl) isocyanuric acid, tris (2-carboxyethyl) isocyanuric acid, and tris (2-carboxypropyl) isocyanuric acid. Is preferable.
- the flux according to the present invention preferably contains the polyamide compound in an amount of 1.0% by mass or more and 7.0% by mass or less with respect to the entire flux.
- the solder paste according to the present invention contains the above-mentioned flux and a solder alloy.
- the flux according to the present embodiment contains, as a thixotropic agent, a polyamide compound in which one or more endothermic peaks obtained by differential thermal analysis are all observed in the range of 130 to 200 ° C.
- the endothermic peak means a peak having an endothermic amount of 10 J / g or more.
- the endothermic peak is an index showing a change of state of the thixotropic agent. It can be inferred that the thixotropic agent changes its state at the temperature at which the endothermic peak is observed, and changes from a solid state to a liquid state to a glass state.
- the endothermic peaks of the polyamide compound, which is a thixotropic agent are all observed in the range of 130 to 200 ° C., that is, the state of the thixotropic agent changes in the temperature range, so that the wet spread of the solder alloy is not hindered. Conceivable.
- the differential thermal analysis can be performed under the following conditions using, for example, a differential scanning calorimeter (Thermo plus DSC 8230, manufactured by Rigaku). Measurement temperature range: 30-300 ° C Heating rate: 10 ° C / min Measurement atmosphere: Under nitrogen atmosphere, flow rate 30 mL / min Sample amount: 10 mg
- polyamide compound examples include aromatic polyamide compounds (semi-aromatic polyamide compounds or total aromatic polyamide compounds) containing cyclic compounds such as a benzene ring and a naphthalene ring in the main chain, and aliphatic polyamide compounds.
- aromatic polyamide compound in which one or more endothermic peaks obtained by differential thermal analysis are all observed in the range of 130 to 200 ° C. include JH-180 (manufactured by Ito Oil Co., Ltd.) under the trade name. ..
- aliphatic polyamide compound in which one or more endothermic peaks obtained by differential thermal analysis are all observed in the range of 130 to 200 ° C.
- VA-79 manufactured by Kyoeisha Chemical Co., Ltd.
- AMX-6096A Korean Chemical Co., Ltd.
- SP-10 SP-500
- the content of the polyamide compound is preferably 1.0% by mass or more, more preferably 3.0% by mass or more, based on the total flux.
- the content of the polyamide compound is preferably 7.0% by mass or less, more preferably 5.0% by mass or less, based on the total flux. When two or more kinds of the polyamide compounds are contained, the content is the total content of the polyamide compounds.
- the flux according to the present embodiment may contain other thixotropic agents other than the above-mentioned polyamide compound.
- the other thixotropy is not particularly limited, and examples thereof include bisamide compounds, hardened castor oil, kaolin, colloidal silica, organic bentonite, and glass frit. These may be used alone or in combination of two or more.
- the content of the other thixotropy is preferably 80% by mass or less, more preferably 40% by mass or less, and further preferably not containing the other thixotropy with respect to the total thixotropy.
- the flux according to this embodiment contains an isocyanuric acid derivative as an activator.
- the isocyanuric acid derivative refers to a compound having an isocyanuric skeleton represented by the following general formula (1).
- R 1 , R 2 , and R 3 are the same or different, and are the same or different, a hydrogen atom, a carboxyl group, an alkyl group having 1 to 8 carbon atoms, and an organic group represented by ⁇ YX (in the formula, Y is An alkylene group having 1 to 6 carbon atoms, a phenylene group or a cycloalkylene group, and X is an organic group containing a carboxyl group, a hydroxyl group, an amino group, a phenyl group or a phosphorus atom).
- the isocyanuric acid derivative is a bis (2-carboxyethyl) isocyanuric acid (that is, R 1 in the general formula (1) is a hydrogen atom, and R 2 and R 3 are the same organic groups represented by ⁇ YX.
- Y is an ethylene group, X is a carboxyl group
- Tris (2-carboxyethyl) isocyanuric acid that is, R 1 , R 2 , and R 3 in the general formula (1) are represented by the same ⁇ YX.
- Y is an ethylene group, X is a carboxyl group
- tris (2-carboxypropyl) isocyanuric acid that is, R 1 , R 2 , and R 3 in the general formula (1) are the same. It is preferable that it is at least one selected from the organic group represented by —YX, where Y is a propylene group and X is a carboxyl group).
- the content of the isocyanuric acid derivative is 5.0% by mass or less, preferably 3.0% by mass or less, and more preferably 2.5% by mass or less, based on the total flux.
- the content of the isocyanuric acid derivative is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, based on the total flux.
- the content is the total content of the isocyanuric acid derivative.
- the flux according to the present embodiment may contain other activators other than the isocyanuric acid derivative.
- the other activator is not particularly limited, and examples thereof include an organic acid-based activator, an amine compound, and an amino acid compound.
- the organic acid-based activator is not particularly limited, and is not particularly limited, for example, formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, capric acid, lauric acid, myristic acid, pentadecylic acid and palmitic acid.
- the amine compound is not particularly limited, and for example, tetraacetylethylenediamine (N, N, N', N'-tetraacetylethylenediamine), N-acetylimidazole, N-acetylphthalimide, acedoben benzoic acid (3-).
- the amino acid compound is not particularly limited, and for example, N-acetylphenylalanine (N-acetyl-L-phenylalanine, N-acetyl-DL-phenylalanine, N-acetyl-D-phenylalanine), N-acetylglutamic acid ( N-acetyl-L-glutamic acid), N-acetylglycine, N-acetylleucine (N-acetyl-L-leucine, N-acetyl-DL-leucine, N-acetyl-D-leucine), or N-acetylphenyl Examples thereof include glycine (N-acetyl-N-phenylglycine, N-acetyl-L-phenylglycine, N-acetyl-DL-phenylglycine).
- the above-mentioned other activators may be used alone or in combination of two or more.
- the content of the other activator is preferably 15% by mass or less, and more preferably 10% by mass or less, based on the total flux.
- the flux according to this embodiment is halogen-free from the viewpoint of environmental load.
- halogen-free means that the content of halogen elements (F: fluorine, Cl: chlorine, Br: bromine, I: iodine) is 1000 ppm or less, respectively (JEITA ET-7304A).
- the flux according to the present embodiment may contain a halogen-based activator such as an amine halogen salt or a halogen compound as long as it satisfies the above-mentioned halogen-free conditions.
- amine of the amine halogen salt include diethylamine, dibutylamine, tributylamine, diphenylguanidine, cyclohexylamine and the like.
- halogen of the amine halogen salt examples include fluorine, chlorine, bromine and iodine.
- examples of the halogen compound include trisocyanurate (2,3-dibromopropyl), 2,3-dibromo-2-butene-1,4-diol, and 2-bromo-3-iodo-2-butene-1,4-diol. , TBA-bis (2,3-dibromopropyl ether) and the like.
- the flux according to this embodiment may contain a solvent.
- the solvent is not particularly limited, and a known solvent can be used.
- examples of the solvent include diethylene glycol monohexyl ether (hexyl diglycol), diethylene glycol dibutyl ether (dibutyl diglycol), diethylene glycol mono 2-ethylhexyl ether (2 ethyl hexyl diglycol), diethylene glycol monobutyl ether (butyl diglycol), and triethylene glycol.
- Glycol ethers such as monobutyl ether (butyltriglycol); aliphatic compounds such as n-hexane, isohexane, n-heptane; esters such as isopropyl acetate, methyl propionate, ethyl propionate; methyl ethyl ketone, methyl-n- Ketones such as propyl ketone and diethyl ketone; alcohols such as ethanol, n-propanol, isopropanol and isobutanol can be mentioned.
- the solvent one type may be used alone, or two or more types may be used in combination.
- the content of the solvent is not particularly limited, and for example, it is preferably 10.0% by mass or more, and more preferably 20.0% by mass or more, based on the entire flux.
- the solvent content is preferably 60.0% by mass or less, more preferably 45.0% by mass or less, based on the total flux. When two or more kinds of solvents are contained, the content is the total content of the solvents.
- the flux according to this embodiment may contain a resin.
- the resin include rosin-based resins and synthetic resins.
- the rosin-based resin is not particularly limited, and is, for example, one or more rosins selected from rosins and rosin derivatives (for example, hydrogenated rosins, polymerized rosins, disproportionated rosins, acrylic acid-modified rosins, etc.).
- a rosin can be used.
- the synthetic resin is not particularly limited, and for example, a known synthetic resin such as a terpene phenol resin can be used.
- As the resin one type may be used alone, or two or more types may be used in combination.
- the content of the resin is preferably 30% by mass or more, more preferably 40% by mass or more, based on the total flux.
- the resin content is preferably 70% by mass or less, and more preferably 50% by mass or less, based on the total flux. When two or more kinds of resins are contained, the content is the total content of the resins.
- the flux according to the present embodiment may contain at least one selected from, for example, a stabilizer, a surfactant, an antifoaming agent, and a corrosion inhibitor as other additives.
- the total content of the other additives is not particularly limited, and can be, for example, 5.0% by mass or less based on the total flux.
- the flux according to this embodiment is a halogen-free flux used for soldering, and contains a polyamide compound in which one or more endothermic peaks obtained by differential thermal analysis are all observed in the range of 130 to 200 ° C. It contains an agent and an activator containing an isocyanuric acid derivative, and the content of the isocyanuric acid derivative is 5.0% by mass or less based on the total flux. With such a configuration, the flux exhibits excellent solder meltability for fine pads when used with a solder alloy.
- the flux according to the present embodiment preferably contains the isocyanuric acid derivative in an amount of 0.5% by mass or more and 5.0% by mass or less with respect to the entire flux. With such a configuration, the flux improves the solder meltability for fine pads when used together with a solder alloy.
- the isocyanuric acid derivative is at least selected from bis (2-carboxyethyl) isocyanuric acid, tris (2-carboxyethyl) isocyanuric acid, and tris (2-carboxypropyl) isocyanuric acid. It is preferably one type. With such a configuration, the flux improves the solder meltability for fine pads when used together with a solder alloy.
- the flux according to the present embodiment preferably contains the polyamide compound in an amount of 1.0% by mass or more and 7.0% by mass or less with respect to the entire flux. With such a configuration, the flux improves the solder meltability for fine pads when used together with a solder alloy.
- the flux according to the present embodiment is, for example, a thixotropic agent, an activator, and if necessary, a solvent, a resin, and other additives are put into a heating container and then heated to 160 to 180 ° C. It can be obtained by melting all the raw materials and finally cooling to room temperature.
- the flux according to the present embodiment includes, but is not limited to, a thixotropic agent, an activator, a solvent, a resin, and other additives.
- the flux according to the other embodiment comprises a thixotropic agent, an activator, a solvent, a resin, and other additives.
- solder paste according to this embodiment contains the above-mentioned flux and a solder alloy. More specifically, the solder paste is obtained by mixing the solder alloy powder and the flux. The content of the flux is preferably 5 to 20% by mass with respect to the entire solder paste. The content of the solder alloy powder is preferably 80 to 95% by mass with respect to the entire solder paste.
- the powder size of the solder alloy is not particularly limited, but in order to improve printability on a fine pattern, the powder size may be 4 or more, that is, 50 ⁇ m or less as defined by JIS Z 3284-1. It is preferable that the symbol is 6 or more, that is, 25 ⁇ m or less.
- solder alloy examples include lead-free solder alloys and eutectic solder alloys containing lead, but lead-free solder alloys are preferable from the viewpoint of reducing the environmental load.
- lead-free solder alloy examples include alloys containing tin, silver, copper, indium, zinc, bismuth, antimony and the like.
- the solder alloy is a medium-temperature, medium-high temperature, and high-temperature lead-free solder alloy defined by JIS Z 3382: 2017 (ISO9453) from the viewpoint of improving the solder meltability for fine pads. preferable.
- Such alloys include Sn / Ag, Sn / Ag / Cu, Sn / Cu, Sn / Ag / Bi, Sn / Ag / Cu / Bi, Sn / Sb, Sn / Ag / Bi / In. , Sn / Ag / Cu / Bi / In / Sb and the like.
- the solder paste according to the present embodiment exhibits excellent solder meltability for fine pads by containing the above-mentioned flux and a solder alloy.
- ⁇ Making solder paste> The rosin, thixotropic agent, and solvent in the amounts shown in Table 1 were put into a heating container and heated to 180 ° C. to obtain a varnish component. Then, the varnish component and other components were mixed at room temperature to obtain a uniformly dispersed flux. The blending amount shown in Table 1 is equal to the content of each component contained in the flux. Next, each flux was mixed so as to be 13.0% by mass, and solder powder (Sn-3.0 wt% Ag-0.5 wt% Cu, size: 10-25 ⁇ m) was mixed so as to be 87.0% by mass. Solder pastes of Examples and Comparative Examples were obtained.
- KE-604 Acrylic acid-modified rosin, manufactured by Arakawa Chemical Industry Co., Ltd. S-145: Terpenphenol resin, manufactured by Yasuhara Chemical Co., Ltd. JH-180: Semi-aromatic polyamide compound, manufactured by Ito Oil Co., Ltd. VA-79: aliphatic polyamide compound, Kyoeisha Chemical Co., Ltd. AMX-6096A: aliphatic polyamide compound, Kyoeisha Chemical Co., Ltd. WH-255: aliphatic polyamide compound, Kyoeisha Chemical Co., Ltd.
- Tris (2- Carboxethyl) isocyanuric acid Tris (2-carboxypropyl) isocyanuric acid manufactured by Tokyo Chemical Industry Co., Ltd .: N-acetyl-L-glutamic acid manufactured by Tokyo Chemical Industry Co., Ltd .2,2'-methylenebis (6-tert- Butyl-4-methylphenol): Made by Tokyo Chemical Industry Co., Ltd.
- the endothermic peak temperature of each thixotropic agent was measured by differential thermal analysis. Specifically, it was carried out under the following conditions using a differential scanning calorimeter (Thermo plus DSC 8230, manufactured by Rigaku Co., Ltd.). Table 2 shows the endothermic peak temperatures of 10 J / g or more of the endothermic amount obtained by the differential thermal analysis. Measurement temperature range: 30-300 ° C Heating rate: 10 ° C / min Measurement atmosphere: Under nitrogen atmosphere, flow rate 30 mL / min Sample amount: 10 mg
- JH-180 is a polyamide compound in which one endothermic peak obtained by differential thermal analysis is observed in the range of 130 to 200 ° C.
- VA-79 and AMX-6096A are polyamide compounds in which all three endothermic peaks obtained by differential thermal analysis are observed in the range of 130 to 200 ° C. Therefore, JH-180, VA-79 and AMX-6096A are thixotropic agents that satisfy the requirements of the present invention.
- WH-255 is a polyamide compound in which two endothermic peaks of the three endothermic peaks obtained by differential thermal analysis are observed outside the range of 130 to 200 ° C. Therefore, WH-255 is a thixotropic agent that does not meet the requirements of the present invention.
- solder meltability The solder paste of each example and each comparative example was applied to a copper pad (0.2 mm ⁇ 0.2 mm square shape) on a substrate surface having a size of 100 mm ⁇ 100 mm and a thickness of 1.6 mm at a thickness of 80 ⁇ m. Next, the solder was melted by heating under the following temperature conditions. The heating was performed in the order of (i) ⁇ (ii).
- solder meltability was visually evaluated based on the following criteria. Table 1 shows the ratio of the number of pads corresponding to each criterion to all pads (50 pads). ⁇ : Solder melted (glossy) ⁇ : Some solder grains ⁇ : Solder unmelted (no gloss)
- the solder paste of each example satisfying all the requirements of the present invention exhibits excellent solder meltability for fine pads because the number of solder-melted pads is 60% or more. ..
- solder pastes of Comparative Examples 1 and 2 containing no isocyanuric acid derivative as an activator were fine because the number of solder-melted pads was less than 60% and some solder grains remained in many pads. It can be seen that the solder meltability to the pad is inferior. Further, as the thixotropic agent, the solder paste of Comparative Example 3 containing the polyamide compound whose endothermic peak obtained by differential thermal analysis was observed even outside the range of 130 to 200 ° C. was unmelted in many pads. It can be seen that the solder meltability for fine pads is inferior.
- solder paste of Comparative Example 4 in which the content of the isocyanuric acid derivative exceeds 5.0% by mass with respect to the entire flux was in a state in which some solder particles remained on many pads, so that the solder paste was on a fine pad. It can be seen that the solder meltability is inferior.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
(チキソ剤)
本実施形態に係るフラックスは、チキソ剤として、示差熱分析で得られる一又は複数の吸熱ピークがすべて130~200℃の範囲で観測されるポリアミド化合物を含む。なお、本明細書において吸熱ピークとは、吸熱量が10J/g以上のピークをいう。吸熱ピークは、チキソ剤の状態変化を示す指標である。チキソ剤は、吸熱ピークが観測された温度において状態が変化し、固体から液体、ガラス状態へと変化していると推測できる。よって、チキソ剤であるポリアミド化合物の吸熱ピークが、すべて130~200℃の範囲で観測される、すなわち、当該温度範囲においてチキソ剤が状態変化することにより、はんだ合金の濡れ広がりを阻害しなくなると考えられる。
測定温度範囲:30~300℃
昇温速度:10℃/min
測定雰囲気:窒素雰囲気下、流量30mL/min
試料量:10mg
本実施形態に係るフラックスは、活性剤として、イソシアヌル酸誘導体を含む。本明細書においてイソシアヌル酸誘導体とは、下記一般式(1)で示すイソシアヌル骨格を有する化合物をいう。
本実施形態に係るフラックスは、溶剤を含んでいてもよい。溶剤としては、特に限定されるものではなく、公知の溶剤を用いることができる。溶剤としては、例えば、ジエチレングリコールモノヘキシルエーテル(ヘキシルジグリコール)、ジエチレングリコールジブチルエーテル(ジブチルジグリコール)、ジエチレングリコールモノ2-エチルヘキシルエーテル(2エチルヘキシルジグリコール)、ジエチレングリコールモノブチルエーテル(ブチルジグリコール)、トリエチレングリコールモノブチルエーテル(ブチルトリグリコール)等のグリコールエーテル類;n-ヘキサン、イソヘキサン、n-ヘプタン等の脂肪族系化合物;酢酸イソプロピル、プロピオン酸メチル、プロピオン酸エチル等のエステル類;メチルエチルケトン、メチル-n-プロピルケトン、ジエチルケトン等のケトン類;エタノール、n-プロパノール、イソプロパノール、イソブタノール等のアルコール類等が挙げられる。なお、溶剤は、1種を単独で用いても、2種以上を併用してもよい。
本実施形態に係るフラックスは、樹脂を含んでいてもよい。樹脂としては、例えば、ロジン系樹脂、合成樹脂等が挙げられる。ロジン系樹脂としては、特に限定されるものではなく、例えば、ロジン及びロジン誘導体(例えば、水素添加ロジン、重合ロジン、不均化ロジン、アクリル酸変性ロジン等)から選択される1種以上のロジン系樹脂を用いることができる。また、合成樹脂としては、特に限定されるものではなく、例えば、テルペンフェノール樹脂等の公知の合成樹脂を用いることができる。なお、樹脂は、1種を単独で用いても、2種以上を併用してもよい。
本実施形態に係るソルダペーストは、上述のフラックスと、はんだ合金とを含有する。より具体的には、前記ソルダペーストは、はんだ合金の粉末と、前記フラックスとを混合することにより得られる。前記フラックスの含有量は、前記ソルダペースト全体に対して、5~20質量%であることが好ましい。また、前記はんだ合金の粉末の含有量は、前記ソルダペースト全体に対して、80~95質量%であることが好ましい。
表1に示す配合量のロジン、チキソ剤、溶剤を加熱容器に投入し、180℃まで加熱することにより、ワニス成分を得た。その後、ワニス成分とその他の成分とを室温で混合させることにより、均一に分散されたフラックスを得た。なお、表1に示す各配合量は、フラックスに含まれる各成分の含有量と等しい。次に、各フラックスを13.0質量%、はんだ粉(Sn-3.0wt%Ag-0.5wt%Cu、サイズ:10-25μm)を87.0質量%となるように混合して、各実施例及び各比較例のソルダペーストを得た。
KE-604:アクリル酸変性ロジン、荒川化学工業社製
S-145:テルペンフェノール樹脂、ヤスハラケミカル社製
JH-180:半芳香族ポリアミド化合物、伊藤製油社製
VA-79:脂肪族ポリアミド化合物、共栄社化学社製
AMX-6096A:脂肪族ポリアミド化合物、共栄社化学社製
WH-255:脂肪族ポリアミド化合物、共栄社化学社製
BTG:ブチルトリグリコール、日本乳化剤社製
HeDG:へキシルジグリコール、日本乳化剤社製
アジピン酸:東京化成工業社製
セバシン酸:東京化成工業社製
メチルコハク酸:東京化成工業社製
コハク酸:東京化成工業社製
ビス(2-カルボキシエチル)イソシアヌル酸:東京化成工業社製
トリス(2-カルボキシエチル)イソシアヌル酸:東京化成工業社製
トリス(2-カルボキシプロピル)イソシアヌル酸:東京化成工業社製
N-アセチル-L-グルタミン酸:東京化成工業社製
2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール):東京化成工業社製
各チキソ剤の吸熱ピーク温度は、示差熱分析により測定した。具体的には、示差走査熱量計(Thermo plus DSC 8230、リガク社製)を用いて、下記の条件で行った。示差熱分析で得られた吸熱量が10J/g以上の吸熱ピーク温度を表2に示す。
測定温度範囲:30~300℃
昇温速度:10℃/min
測定雰囲気:窒素雰囲気下、流量30mL/min
試料量:10mg
各実施例及び各比較例のソルダペーストを、サイズ100mm×100mm、厚み1.6mmの基板表面上の銅パッド(0.2mm×0.2mmの正方形状)に厚さ80μmで塗布した。次に、下記温度条件で加熱し、はんだを溶融させた。なお、加熱は、(i)→(ii)の順に行った。
(i)プリヒート時
昇温速度:1.0~3.0℃/秒
プリヒート温度:150~190℃/60~100秒
加熱環境:大気雰囲気
(ii)はんだ溶融時
昇温速度:1.0~2.0℃/秒
溶融温度:219℃以上30秒以上
ピーク温度:230~250℃
○:はんだ溶融した(光沢あり)
△:一部はんだ粒あり
×:はんだ未溶融(光沢なし)
Claims (5)
- はんだ付けに用いられるハロゲンフリーのフラックスであって、
示差熱分析で得られる一又は複数の吸熱ピークがすべて130~200℃の範囲で観測されるポリアミド化合物を含むチキソ剤と、
イソシアヌル酸誘導体を含む活性剤と、
を含有し、
前記イソシアヌル酸誘導体の含有量が、フラックス全体に対して、5.0質量%以下である、フラックス。 - 前記イソシアヌル酸誘導体の含有量が、フラックス全体に対して、0.5質量%以上5.0質量%以下である、請求項1に記載のフラックス。
- 前記イソシアヌル酸誘導体が、ビス(2-カルボキシエチル)イソシアヌル酸、トリス(2-カルボキシエチル)イソシアヌル酸、及び、トリス(2-カルボキシプロピル)イソシアヌル酸から選択される少なくとも一種である、請求項1又は2に記載のフラックス。
- 前記ポリアミド化合物の含有量が、フラックス全体に対して、1.0質量%以上7.0質量%以下である、請求項1~3のいずれか一つに記載のフラックス。
- 請求項1~4のいずれか一つに記載のフラックスと、はんだ合金とを含有する、ソルダペースト。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080031873.2A CN113766992B (zh) | 2019-06-27 | 2020-06-26 | 助焊剂和焊膏 |
KR1020217032338A KR102422105B1 (ko) | 2019-06-27 | 2020-06-26 | 플럭스 및 솔더 페이스트 |
JP2021516514A JP6899173B2 (ja) | 2019-06-27 | 2020-06-26 | フラックス及びソルダペースト |
EP20830502.9A EP3964594B1 (en) | 2019-06-27 | 2020-06-26 | Flux and solder paste |
US17/615,644 US11806818B2 (en) | 2019-06-27 | 2020-06-26 | Flux and solder paste |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019120024 | 2019-06-27 | ||
JP2019-120024 | 2019-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020262632A1 true WO2020262632A1 (ja) | 2020-12-30 |
Family
ID=74061274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/025289 WO2020262632A1 (ja) | 2019-06-27 | 2020-06-26 | フラックス及びソルダペースト |
Country Status (7)
Country | Link |
---|---|
US (1) | US11806818B2 (ja) |
EP (1) | EP3964594B1 (ja) |
JP (1) | JP6899173B2 (ja) |
KR (1) | KR102422105B1 (ja) |
CN (1) | CN113766992B (ja) |
TW (1) | TWI753469B (ja) |
WO (1) | WO2020262632A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7071686B1 (ja) | 2021-11-08 | 2022-05-19 | 千住金属工業株式会社 | フラックス及び接合体の製造方法 |
JP2022080429A (ja) * | 2020-11-18 | 2022-05-30 | 千住金属工業株式会社 | フラックス及びそれを用いたソルダペースト |
WO2023074812A1 (ja) * | 2021-10-28 | 2023-05-04 | 日産化学株式会社 | エポキシ樹脂組成物 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002043916A1 (fr) * | 2000-11-29 | 2002-06-06 | Senju Metal Industry Co., Ltd. | Pate a souder |
JP2014144473A (ja) | 2013-01-29 | 2014-08-14 | Tamura Seisakusho Co Ltd | フラックスおよびソルダペースト |
JP2017064784A (ja) | 2015-09-30 | 2017-04-06 | 株式会社タムラ製作所 | はんだ組成物および電子基板 |
JP2018047488A (ja) * | 2016-09-21 | 2018-03-29 | 株式会社タムラ製作所 | フラックス組成物及びソルダペースト |
WO2019009097A1 (ja) * | 2017-07-03 | 2019-01-10 | 株式会社弘輝 | フラックス及びはんだ材料 |
WO2019142826A1 (ja) * | 2018-01-16 | 2019-07-25 | 千住金属工業株式会社 | フラックス及びソルダペースト |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002146159A (ja) | 2000-11-08 | 2002-05-22 | Sumitomo Bakelite Co Ltd | 硬化性フラックス及びそれを用いた半田接合部 |
JP2012241178A (ja) * | 2011-05-24 | 2012-12-10 | Panasonic Corp | 半導体封止用エポキシ樹脂組成物および半導体装置 |
JP5594324B2 (ja) | 2012-06-22 | 2014-09-24 | 株式会社村田製作所 | 電子部品モジュールの製造方法 |
JP5590260B1 (ja) | 2014-02-04 | 2014-09-17 | 千住金属工業株式会社 | Agボール、Ag核ボール、フラックスコートAgボール、フラックスコートAg核ボール、はんだ継手、フォームはんだ、はんだペースト、Agペースト及びAg核ペースト |
CN105397343B (zh) * | 2015-11-26 | 2018-02-27 | 芜湖雅葆轩电子科技股份有限公司 | 信号处理基板用锡膏及其制备方法 |
JP6460198B1 (ja) * | 2017-10-11 | 2019-01-30 | 千住金属工業株式会社 | フラックス及びソルダペースト |
EP3712191B1 (en) * | 2017-11-14 | 2023-01-04 | Koki Company Limited | Resin composition for reinforcement and electronic component device |
CN108555475A (zh) * | 2018-04-27 | 2018-09-21 | 深圳市博士达焊锡制品有限公司 | 一种无铅无卤焊锡膏 |
JP7452834B2 (ja) * | 2019-09-19 | 2024-03-19 | 株式会社弘輝 | フラックス及びソルダペースト |
-
2020
- 2020-06-24 TW TW109121696A patent/TWI753469B/zh active
- 2020-06-26 KR KR1020217032338A patent/KR102422105B1/ko active IP Right Grant
- 2020-06-26 WO PCT/JP2020/025289 patent/WO2020262632A1/ja unknown
- 2020-06-26 EP EP20830502.9A patent/EP3964594B1/en active Active
- 2020-06-26 CN CN202080031873.2A patent/CN113766992B/zh active Active
- 2020-06-26 JP JP2021516514A patent/JP6899173B2/ja active Active
- 2020-06-26 US US17/615,644 patent/US11806818B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002043916A1 (fr) * | 2000-11-29 | 2002-06-06 | Senju Metal Industry Co., Ltd. | Pate a souder |
JP2014144473A (ja) | 2013-01-29 | 2014-08-14 | Tamura Seisakusho Co Ltd | フラックスおよびソルダペースト |
JP2017064784A (ja) | 2015-09-30 | 2017-04-06 | 株式会社タムラ製作所 | はんだ組成物および電子基板 |
JP2018047488A (ja) * | 2016-09-21 | 2018-03-29 | 株式会社タムラ製作所 | フラックス組成物及びソルダペースト |
WO2019009097A1 (ja) * | 2017-07-03 | 2019-01-10 | 株式会社弘輝 | フラックス及びはんだ材料 |
WO2019142826A1 (ja) * | 2018-01-16 | 2019-07-25 | 千住金属工業株式会社 | フラックス及びソルダペースト |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022080429A (ja) * | 2020-11-18 | 2022-05-30 | 千住金属工業株式会社 | フラックス及びそれを用いたソルダペースト |
JP7078872B1 (ja) | 2020-11-18 | 2022-06-01 | 千住金属工業株式会社 | フラックス及びそれを用いたソルダペースト |
WO2023074812A1 (ja) * | 2021-10-28 | 2023-05-04 | 日産化学株式会社 | エポキシ樹脂組成物 |
JP7071686B1 (ja) | 2021-11-08 | 2022-05-19 | 千住金属工業株式会社 | フラックス及び接合体の製造方法 |
WO2023080146A1 (ja) * | 2021-11-08 | 2023-05-11 | 千住金属工業株式会社 | フラックス及び接合体の製造方法 |
JP2023069919A (ja) * | 2021-11-08 | 2023-05-18 | 千住金属工業株式会社 | フラックス及び接合体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020262632A1 (ja) | 2021-09-13 |
US20220266397A1 (en) | 2022-08-25 |
EP3964594B1 (en) | 2024-04-17 |
TW202108280A (zh) | 2021-03-01 |
CN113766992A (zh) | 2021-12-07 |
KR102422105B1 (ko) | 2022-07-15 |
EP3964594A4 (en) | 2022-10-12 |
TWI753469B (zh) | 2022-01-21 |
EP3964594A1 (en) | 2022-03-09 |
JP6899173B2 (ja) | 2021-07-07 |
CN113766992B (zh) | 2022-06-10 |
US11806818B2 (en) | 2023-11-07 |
KR20210127769A (ko) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101653876B (zh) | 一种低银无卤素焊锡膏 | |
JP6899173B2 (ja) | フラックス及びソルダペースト | |
JP6310893B2 (ja) | フラックス組成物、はんだ組成物、および電子基板の製造方法 | |
JP5887330B2 (ja) | はんだ組成物およびそれを用いたプリント配線基板 | |
CN106001996B (zh) | 焊料组合物及使用了该焊料组合物的电子基板 | |
JP6337349B1 (ja) | フラックス、ソルダペースト及び電子回路基板の製造方法 | |
JP6392574B2 (ja) | フラックス組成物、はんだ組成物、および電子基板の製造方法 | |
JP6402148B2 (ja) | はんだ組成物および電子基板 | |
JP2024105652A (ja) | フラックス及びソルダペースト | |
JP7452834B2 (ja) | フラックス及びソルダペースト | |
WO2022065389A1 (ja) | フラックス及びソルダペースト | |
JP7478173B2 (ja) | フラックス組成物、およびはんだ組成物 | |
JP7503604B2 (ja) | はんだ組成物および電子基板の製造方法 | |
JP7554218B2 (ja) | はんだ組成物および電子基板 | |
JP7517669B2 (ja) | フラックス及びソルダペースト | |
JP2964419B2 (ja) | クリームはんだ | |
JP2024031830A (ja) | フラックス組成物、はんだ組成物、および電子基板 | |
EP4144477A1 (en) | Solder composition and method for manufacturing electronic board | |
CN114434046A (zh) | 助焊剂组合物、焊料组合物以及电子基板的制造方法 | |
JP2023132678A (ja) | フラックス及びソルダペースト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20830502 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516514 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20217032338 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020830502 Country of ref document: EP Effective date: 20211129 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |