WO2022153497A1 - 媒体搬送装置、制御方法及び制御プログラム - Google Patents

媒体搬送装置、制御方法及び制御プログラム Download PDF

Info

Publication number
WO2022153497A1
WO2022153497A1 PCT/JP2021/001333 JP2021001333W WO2022153497A1 WO 2022153497 A1 WO2022153497 A1 WO 2022153497A1 JP 2021001333 W JP2021001333 W JP 2021001333W WO 2022153497 A1 WO2022153497 A1 WO 2022153497A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
inclination
sensor
amount
control unit
Prior art date
Application number
PCT/JP2021/001333
Other languages
English (en)
French (fr)
Inventor
修一 森川
Original Assignee
株式会社Pfu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Pfu filed Critical 株式会社Pfu
Priority to PCT/JP2021/001333 priority Critical patent/WO2022153497A1/ja
Publication of WO2022153497A1 publication Critical patent/WO2022153497A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H7/00Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles
    • B65H7/02Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors
    • B65H7/14Controlling article feeding, separating, pile-advancing, or associated apparatus, to take account of incorrect feeding, absence of articles, or presence of faulty articles by feelers or detectors by photoelectric feelers or detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H9/00Registering, e.g. orientating, articles; Devices therefor

Definitions

  • the present disclosure relates to a medium transport device, and more particularly to a medium transport device that corrects the inclination of the medium.
  • a medium transport device such as a scanner that captures an image while transporting the medium and discharges it to the discharge table
  • skew in which the medium is tilted and transported occurs, and the medium comes into contact with the side wall of the transport path to jam the medium.
  • Paper jam may occur.
  • the medium to be conveyed is a long medium
  • the medium is conveyed for a long period of time, so that the amount of inclination of the medium becomes large during the transfer, and there is a high possibility that the medium is jammed.
  • a slanting amount detecting means for detecting the skewing amount of the sheet is provided in the vicinity of the paper ejection roller, and a plurality of paper ejection rollers are provided so as to correct the skewing amount of the sheet based on the detected skewing amount.
  • An image reader that rotates at different speeds is disclosed (see Patent Document 1).
  • An image forming apparatus is disclosed that is configured to be swingable in the paper width direction within a predetermined swing allowable range with reference to the home position, and is provided with a fixing portion for fixing a toner image on a long paper passed through a fixing nip. (See Patent Document 2). This image forming apparatus swings the fixing portion based on the detection result of the inclination of the paper between the transfer nip and the fixing nip.
  • the medium transport device it is desired to correct the inclination of the medium more appropriately.
  • the purpose of the medium transfer device, the control method, and the control program is to make it possible to more appropriately correct the inclination of the medium.
  • the medium transfer device is a medium transfer device that conveys a long medium, and is for detecting a transfer roller that conveys the medium and a first inclination amount at the rear end of the medium to be conveyed.
  • the first sensor, the second sensor arranged on the downstream side of the first sensor in the medium transport direction and for detecting the second tilt amount at the rear end of the transported medium, and the transported medium are discharged. It has a discharge roller and a control unit that controls the discharge roller so as to correct the tilt of the medium based on the first tilt amount and the second tilt amount.
  • control method includes a transport roller for transporting the medium, a first sensor for detecting the amount of first inclination at the rear end of the transported medium, and a first sensor in the medium transport direction.
  • a long medium is provided with a second sensor arranged on the downstream side and for detecting a second inclination amount at the rear end of the transported medium, and a discharge roller for discharging the transported medium. It is a control method of the medium transport device for transporting, and controls the discharge roller so as to correct the tilt of the medium based on the first tilt amount and the second tilt amount.
  • control program includes a transport roller for transporting the medium, a first sensor for detecting the first tilt amount at the rear end of the transported medium, and a first sensor in the medium transport direction.
  • a long medium is provided with a second sensor arranged on the downstream side and for detecting a second tilt amount at the rear end of the transported medium, and a discharge roller for discharging the transported medium. It is a control program of the medium transport device for transporting, and causes the media transporting device to control the discharge roller so as to correct the tilt of the medium based on the first tilt amount and the second tilt amount.
  • the medium transfer device, the control method, and the control program can more appropriately correct the inclination of the medium.
  • FIG. 1 is a perspective view showing a medium transfer device 100 configured as an image scanner.
  • the medium transport device 100 transports a medium as a document and takes an image.
  • the medium is paper, thick paper, a card, or the like.
  • the medium includes a long medium.
  • the long medium is a medium longer than a predetermined size, for example, A4 size (297 x 210 mm) or A3 size (420 x 297 mm).
  • the medium transfer device 100 may be a facsimile, a copying machine, a multifunction printer (MFP, Multifunction Peripheral) or the like.
  • the medium to be conveyed may be a print object or the like instead of the original, and the medium transfer device 100 may be a printer or the like.
  • the medium transfer device 100 includes a first housing 101, a second housing 102, a mounting table 103, a discharge table 104, an operating device 105, a display device 106, and the like.
  • the first housing 101 is arranged above the medium transporting device 100, and is engaged with the second housing 102 by a hinge so that the first housing 101 can be opened and closed when the medium is, that is, when the inside of the medium transporting device 100 is cleaned.
  • the mounting table 103 is engaged with the second housing 102 so that the medium to be transported can be mounted.
  • the mounting table 103 is provided on the side surface of the second housing 102 on the medium supply side so as to be movable in the substantially vertical direction A1.
  • the mounting table 103 is arranged at the lower end position so that the medium can be easily mounted when the medium is not conveyed, and the medium is conveyed so that the placed medium is fed when the medium is conveyed. Ascend to approximately the same height as the road.
  • the discharge table 104 is a tray formed on the first housing 101 so that the medium discharged from the discharge port 107 can be held, and the discharged medium is loaded.
  • the operation device 105 has an input device such as a button and an interface circuit that acquires a signal from the input device, receives an input operation by the user, and outputs an operation signal according to the input operation of the user.
  • the display device 106 has a display including a liquid crystal display, an organic EL (Electro-Luminescence), and an interface circuit for outputting image data to the display, and displays the image data on the display.
  • the arrow A2 indicates the medium transport direction
  • the arrow A3 indicates the medium discharge direction
  • the arrow A4 indicates the width direction orthogonal to the medium transport direction.
  • the upstream means the upstream of the medium transport direction A2 or the medium discharge direction A3
  • the downstream means the downstream of the medium transport direction A2 or the medium discharge direction A3.
  • FIG. 2 is a diagram for explaining a transport path inside the medium transport device 100.
  • the transfer paths inside the medium transfer device 100 are the first medium sensor 111, the pick roller 112, the feed roller 113, the brake roller 114, the second medium sensor 115, the first to seventh transfer rollers 116a to g, and the first to first. It has 7 driven rollers 117a to g, a third medium sensor 118, a first imaging device 119a, a second imaging device 119b, a skew sensor 120, a discharge roller 121, an opposing roller 122 and the like.
  • the plurality of feeding rollers 113, the brake rollers 114, the first to seventh conveying rollers 116a to g, the first to seventh driven rollers 117a to g, the discharging rollers 121 and / or the opposing rollers 122 are in the width direction, respectively. They are arranged side by side at intervals in A4.
  • the first imaging device 119a and the second imaging device 119b may be collectively referred to as an imaging device 119.
  • the surface of the first housing 101 facing the second housing 102 forms the first guide 101a of the medium transport path, and the surface of the second housing 102 facing the first housing 101 transports the medium.
  • the second guide 102a of the road is formed.
  • the first medium sensor 111 is arranged on the mounting table 103, that is, on the upstream side of the feeding roller 113 and the brake roller 114, and detects the mounting state of the medium on the mounting table 103.
  • the first medium sensor 111 determines whether or not the medium is mounted on the mounting table 103 by a contact detection sensor that applies a predetermined current when the medium is in contact with or is not in contact with the medium. do.
  • the first medium sensor 111 generates and outputs a first medium signal whose signal value changes depending on whether the medium is mounted on the mounting table 103 or not.
  • the first medium sensor 111 is not limited to the contact detection sensor, and any other sensor capable of detecting the presence or absence of a medium, such as a light detection sensor, may be used as the first medium sensor 111.
  • the pick roller 112 comes into contact with the medium mounted on the mounting table 103, which is provided in the first housing 101 and has risen to substantially the same height as the medium transport path, and feeds the medium toward the downstream side. ..
  • the feeding roller 113 is provided in the first housing 101 on the downstream side of the pick roller 112, and feeds the medium fed by the pick roller 112 toward the downstream side.
  • the brake roller 114 is arranged in the second housing 102 so as to face the feeding roller 113. The feeding roller 113 and the brake roller 114 separate the media, separate the media, and feed the media one by one.
  • the second medium sensor 115 is arranged on the downstream side of the feeding roller 113 and the brake roller 114 and on the upstream side of the first conveying roller 116a and the first driven roller 117a, and detects the medium conveyed at that position.
  • the second medium sensor 115 is located at a position facing the light emitter and the light receiver provided on one side (the first housing 101 side) with respect to the medium transport path and the light emitter and the light receiver across the medium transport path. Includes a reflective member such as a mirror provided on (the second housing 102 side).
  • the light emitter is an LED (Light Emitting Diode) or the like, and irradiates light toward the medium transport path.
  • the light receiver receives the light emitted by the light emitter and reflected by the reflecting member.
  • the medium is present at a position facing the second medium sensor 115, the light emitted from the light emitter is blocked by the medium, so that the light receiver does not detect the light emitted from the light emitter.
  • the receiver generates and outputs a second medium signal whose signal value changes depending on whether the medium is present or not at the position of the second medium sensor 115, based on the intensity of the light received.
  • the light emitter and the light receiver may be provided so as to face each other with the medium transport path interposed therebetween. Further, the second medium sensor 115 may detect the presence of the medium by a contact detection sensor or the like that allows a predetermined current to flow when the medium is in contact with or is not in contact with the medium.
  • the first to seventh transport rollers 116a to 116a to g and the first to seventh driven rollers 117a to 117a to g are provided on the downstream side of the feeding roller 113 and the brake roller 114, and are fed by the feeding roller 113 and the brake roller 114.
  • the medium is transported toward the downstream side.
  • the first image sensor 119a has an image sensor (line sensor) by a 1x optical system type CIS (Contact Image Sensor) having a CMOS (Complementary Metal Oxide Semiconductor) image sensor arranged linearly in the main scanning direction. .. Further, the first image pickup device 119a includes a lens that forms an image on the image pickup element and an A / D converter that amplifies an electric signal output from the image pickup element and converts it into analog / digital (A / D). The first image pickup apparatus 119a images a region facing the image pickup sensor on the surface of the conveyed medium at regular intervals, sequentially generates an input image, and outputs the input image. That is, the number of pixels in the vertical direction (sub-scanning direction) of the input image is 1, and the number of pixels in the horizontal direction (main scanning direction) is a plurality.
  • CIS Contact Image Sensor
  • CMOS Complementary Metal Oxide Semiconductor
  • the second image pickup device 119b has a 1x optical system type CIS image pickup sensor (line sensor) having CMOS image pickup elements linearly arranged in the main scanning direction. Further, the second image pickup apparatus 119b includes a lens that forms an image on the image pickup element and an A / D converter that amplifies an electric signal output from the image pickup element and performs A / D conversion. At regular intervals, the area facing the image sensor on the back surface of the transported medium is imaged, and input images are sequentially generated and output.
  • CIS image pickup sensor line sensor
  • a / D converter that amplifies an electric signal output from the image pickup element and performs A / D conversion.
  • the image pickup device 119 is an example of a first sensor for detecting the first tilt amount at the rear end of the conveyed medium.
  • the medium transfer device 100 only one of the first image pickup device 119a and the second image pickup device 119b may be arranged, and only one side of the medium may be read.
  • the line sensor by the same magnification optical system type CIS including the image sensor by CMOS the line sensor by the same magnification optical system type CIS including the image pickup element by CCD (Charge Coupled Device) may be used.
  • CCD Charge Coupled Device
  • a reduction optical system type line sensor including a CMOS or CCD image sensor may be used.
  • the discharge roller 121 is provided in the first housing 101 on the downstream side of the first to seventh transport rollers 116a to 116a to g.
  • the opposing roller 122 is arranged in the second housing 102 so as to face the discharge roller 121.
  • the discharge roller 121 and the opposing roller 122 discharge the medium conveyed by the first to seventh transport rollers 116a to 116a to g and the first to seventh driven rollers 117a to g to the discharge base 104.
  • the discharge roller 121 rotates according to the driving force from the motor, and the opposing roller 122 rotates drivenly according to the rotation of the discharge roller 121.
  • the medium mounted on the mounting table 103 is moved between the first guide 101a and the second guide 102a in the medium transport direction A2 by rotating the pick roller 112 and the feed roller 113 in the media feed directions A5 and A6, respectively. Is transported toward.
  • the feeding roller among the media mounted on the mounting table 103 Only the medium in contact with 113 is separated.
  • the medium is fed to the imaging position of the imaging device 119 by rotating the first to second transport rollers 116a to 116a in the directions of arrows A8 to 9 while being guided by the first guide 101a and the second guide 102a.
  • the image is taken by the image pickup device 119.
  • the medium is discharged from the discharge port 107 onto the discharge table 104 by rotating the third to seventh transport rollers 116c to g and the discharge rollers 121 in the directions of arrows A10 to 15, respectively.
  • the discharge table 104 loads the medium discharged by the discharge roller 121.
  • FIG. 3 is a schematic diagram for explaining the arrangement positions of the third medium sensor 118, the skew sensor 120, and the like.
  • FIG. 3 is a schematic view of the first housing 101 in an open state as viewed from the transport path side.
  • the medium transfer device 100 has two supply rollers 113, two first to seventh transfer rollers 116a to g, and two discharge rollers 121.
  • the medium transfer device 100 has a plurality of third medium sensors 118.
  • the medium transfer device 100 has five third medium sensors 118, but the number of the third medium sensors 118 may be arbitrary.
  • Each third medium sensor 118 is arranged between the first transfer roller 116a and the second transfer roller 116b in the medium transfer direction A2, that is, on the downstream side of the feed roller 113 and on the upstream side of the image pickup device 119.
  • Each third medium sensor 118 may be arranged on the downstream side of the image pickup apparatus 119 in the medium transport direction A2. Further, the third medium sensors 118 are arranged side by side at intervals in the width direction A4.
  • Each third medium sensor 118 faces a light emitter and a light receiver provided on one side (first housing 101 side) with respect to the medium transport path, and faces the light emitter and the light receiver with the medium transport path interposed therebetween. Includes a reflective member such as a mirror provided at the position (on the side of the second housing 102).
  • the light emitter is an LED or the like, and irradiates light toward the medium transport path.
  • the light receiver receives the light emitted by the light emitter and reflected by the reflecting member.
  • the medium is present at a position facing the third medium sensor 118, the light emitted from the light emitter is blocked by the medium, so that the light receiver does not detect the light emitted from the light emitter.
  • the receiver generates and outputs a third medium signal whose signal value changes depending on whether the medium is present or not at the position of the third medium sensor 118 based on the intensity of the light received.
  • the light emitter and the light receiver may be provided so as to face each other with the medium transport path interposed therebetween. Further, the third medium sensor 118 may detect the presence of the medium by a contact detection sensor or the like that allows a predetermined current to flow when the medium is in contact with the medium or when the medium is not in contact with the third medium sensor 118.
  • the skew sensor 120 is an example of a second sensor for detecting the amount of second inclination at the rear end of the conveyed medium.
  • the medium transfer device 100 has a plurality of skew sensors 120. In the example shown in FIG. 3, the medium transfer device 100 has five skew sensors 120, but the number of skew sensors 120 may be arbitrary.
  • Each skew sensor 120 is arranged between the fifth transfer roller 116e and the sixth transfer roller 116f in the medium transfer direction A2, that is, on the downstream side of the image pickup apparatus 119 and the third medium sensor 118 and on the upstream side of the discharge roller 121. Further, the skew sensors 120 are arranged side by side at intervals in the width direction A4.
  • Each skew sensor 120 has a light emitter and a light receiver provided on one side (first housing 101 side) with respect to the medium transport path, and a position facing the light emitter and the light receiver across the medium transport path ( Includes a reflective member such as a mirror provided on the second housing 102 side).
  • the light emitter is an LED or the like, and irradiates light toward the medium transport path.
  • the light receiver receives the light emitted by the light emitter and reflected by the reflecting member.
  • the medium is present at a position facing the skew sensor 120, the light emitted from the light emitter is blocked by the medium, so that the light receiver does not detect the light emitted from the light emitter.
  • the receiver generates and outputs a skew signal whose signal value changes depending on whether the medium is present or not at the position of the skew sensor 120 based on the intensity of the received light.
  • the light emitter and the light receiver may be provided so as to face each other with the medium transport path interposed therebetween. Further, the skew sensor 120 may detect the presence of the medium by a contact detection sensor or the like that allows a predetermined current to flow when the medium is in contact with the medium or when the medium is not in contact with the skew sensor 120.
  • 4A and 4B are schematic views for explaining the discharge roller 121.
  • 4A and 4B are schematic views of the first housing 101 in an open state as viewed from the transport path side.
  • the discharge mechanism of the medium transport device 100 includes a discharge shaft 121a, a support member 121b, an engagement member 121c, a guide member 121d, and the like, in addition to the discharge roller 121 and the opposing roller 122.
  • the discharge shaft 121a is a rotating shaft of the discharge roller 121, and rotatably supports the discharge roller 121.
  • the support member 121b is arranged outside the side wall W1 arranged on one end side of the medium transport path in the width direction A4, and is rotatably provided by a motor that rotates according to control from a processing circuit described later.
  • the support member 121b is a swing shaft of the discharge shaft 121a, and supports one end of the discharge shaft 121a so that the discharge shaft 121a swings in a direction parallel to the medium transport surface.
  • the guide member 121d is a rail extending in an arc around the support member 121b, and is arranged outside the side wall W2 arranged on the opposite side of the side wall W1 in the width direction A4.
  • the engaging member 121c is provided at the other end of the discharge shaft 121a so as to be movable along the guide member 121d.
  • the direction in which the discharge shaft 121a extends at the start of medium feeding is the direction in which the rotation shafts of the pick roller 112, the feeding roller 113, the brake roller 114, and the first to seventh transport rollers 116a to g extend. It is placed in the initial position that is almost parallel to.
  • the discharge shaft 121a is arranged in the initial position, the medium faces in the same direction as the direction conveyed by the pick roller 112, the feeding roller 113, the brake roller 114, and the first to seventh conveying rollers 116a to g. Is discharged.
  • the medium When the discharge shaft 121a is arranged in the moving position, the medium is in the direction conveyed by the pick roller 112, the feed roller 113, the brake roller 114 and / or the first to seventh transfer rollers 116a to g. It is discharged so as to tilt.
  • the discharge roller 121 is provided so as to be able to correct the inclination of the discharge medium.
  • An opposed shaft (not shown), which is a rotation shaft of the opposing roller 122, is also provided so as to be swingable together with the discharge shaft 121a in the same manner as the discharge shaft 121a.
  • the facing shaft may be provided so as not to swing.
  • the medium transporting device 100 may correct the inclination of the ejected medium by another method.
  • a plurality of discharge rollers 121 may be independently rotatably provided by separate motors. In that case, the medium transport device 100 corrects the inclination of the discharged medium by making the rotation speeds of the discharge rollers 121 different from each other.
  • the plurality of discharge rollers 121 are provided so as to be independently pressed toward the opposing roller 122 by the plurality of pressing members provided so as to move independently according to the control from the processing circuit. good. In general, the greater the force applied between two rollers facing each other, the higher (faster) the transport speed of the medium by the two rollers. Therefore, the medium transporting device 100 can correct the inclination of the discharged medium by making the pressing pressure applied to each discharge roller 121 different from each other.
  • FIG. 5 is a block diagram showing a schematic configuration of the medium transfer device 100.
  • the medium transfer device 100 further includes a motor 131, an interface device 132, a storage device 140, a processing circuit 150, and the like, in addition to the above-described configuration.
  • the motor 131 includes one or more motors, and rotates the pick roller 112, the feeding roller 113, the brake roller 114, the first to seventh conveying rollers 116a to g, and the discharging roller 121 by a control signal from the processing circuit 150.
  • the medium is transported and discharged.
  • the first to seventh driven rollers 117a to 117a to g or the opposing rollers 122 do not rotate according to the rotation of the first to seventh conveying rollers 116a to g or the discharge roller 121, but are rotated by the driving force from the motor 131.
  • the motor 131 includes a motor for moving the mounting table 103.
  • the motor 131 includes a motor for rotating the support member 121b, and swings the discharge shaft 121a by a control signal from the processing circuit 150.
  • the interface device 132 has an interface circuit similar to a serial bus such as USB, and is electrically connected to an information processing device (for example, a personal computer, a personal digital assistant, etc.) (not shown) to read images and various information. Send and receive. Further, instead of the interface device 132, a communication unit having an antenna for transmitting and receiving wireless signals and a wireless communication interface circuit for transmitting and receiving signals through a wireless communication line according to a predetermined communication protocol may be used.
  • the predetermined communication protocol is, for example, a wireless LAN (Local Area Network).
  • the storage device 140 includes a memory device such as a RAM (RandomAccessMemory) and a ROM (ReadOnlyMemory), a fixed disk device such as a hard disk, or a portable storage device such as a flexible disk and an optical disk. Further, the storage device 140 stores computer programs, databases, tables, etc. used for various processes of the medium transfer device 100.
  • the computer program may be installed in the storage device 140 from a computer-readable portable recording medium using a known setup program or the like.
  • the portable recording medium is, for example, a CD-ROM (compact disc read only memory), a DVD-ROM (digital versatile disc read only memory), or the like.
  • the processing circuit 150 operates based on a program stored in the storage device 140 in advance.
  • the processing circuit 150 is, for example, a CPU (Central Processing Unit).
  • a DSP digital signal processor
  • an LSI large scale integration
  • an ASIC Application Specific Integrated Circuit
  • an FPGA Field-Programmable Gate Array
  • the processing circuit 150 includes an operation device 105, a display device 106, a first medium sensor 111, a second medium sensor 115, a third medium sensor 118, an image pickup device 119, a skew sensor 120, a motor 131, an interface device 132, a storage device 140, and the like. It is connected to and controls each of these parts.
  • the processing circuit 150 controls the motor 131 to convey the medium, controls the image pickup device 119 to acquire an input image, generates a medium image based on the acquired input image, and processes information via the interface device 132. Send to the device.
  • the processing circuit 150 detects the first tilt amount of the medium based on the input image acquired from the image pickup apparatus 119, and detects the second tilt amount of the medium based on the skew signal acquired from the skew sensor 120.
  • the processing circuit 150 controls the discharge roller 121 so as to correct the inclination of the medium based on the detected first inclination amount and the second inclination amount.
  • FIG. 6 is a diagram showing a schematic configuration of a storage device 140 and a processing circuit 150.
  • each program such as the control program 141 and the image generation program 142 is stored in the storage device 140.
  • Each of these programs is a functional module implemented by software running on the processor.
  • the processing circuit 150 reads each program stored in the storage device 140 and operates according to each read program, thereby functioning as a control unit 151 and an image generation unit 152.
  • FIG 7 and 8 are flowcharts showing an example of the operation of the medium reading process.
  • the operation flow described below is executed mainly by the processing circuit 150 in cooperation with each element of the medium transfer device 100 based on the program stored in the storage device 140 in advance.
  • the discharge shaft 121a of the discharge roller 121 is arranged at the initial position. Further, the medium transport device 100 transports a medium longer than the distance between the image pickup position of the image pickup device 119 and the discharge roller 121 as a long medium.
  • control unit 151 receives an operation signal instructing the reading of the medium from the operation device 105 or the interface device 132 when the user inputs an instruction to read the medium using the operation device 105 or the information processing device. Wait until (step S101).
  • control unit 151 acquires the first medium signal from the first medium sensor 111, and determines whether or not the medium is mounted on the mounting table 103 based on the acquired first medium signal (step). S102). When the medium is not mounted on the mounting table 103, the control unit 151 returns the process to step S101 and waits until a new operation signal is received from the operating device 105.
  • the control unit 151 drives the motor 131 to start feeding and transporting the medium (step S103).
  • the control unit 151 drives a motor for moving the mounting table 103, and moves the mounting table 103 to a position where the medium can be fed.
  • the control unit 151 drives a motor for rotating each roller to rotate the pick roller 112, the feeding roller 113, the brake roller 114, the first to seventh conveying rollers 116a to g, and the discharging roller 121.
  • the medium mounted on the mounting table 103 is fed and conveyed.
  • the control unit 151 waits until the tip of the medium passes through the first nip position, which is the nip position of the first transport roller 116a and the first driven roller 117a (step S104).
  • the control unit 151 periodically receives a third medium signal from each third medium sensor 118, and a value indicating that the signal value of any third medium signal exists from a value indicating that the medium does not exist.
  • the control unit 151 may determine whether or not the tip of the medium has passed the first nip position based on the second medium signal output from the second medium sensor 115.
  • control unit 151 periodically receives the second medium signal from the second medium sensor 115, and the signal value of the second medium signal is changed from a value indicating that the medium does not exist to a value indicating that the medium exists. If it changes, it is determined that the tip of the medium has passed the position of the second medium sensor 115. The control unit 151 determines that the tip of the medium has passed the first nip position when the first time has elapsed since the tip of the medium passed the position of the second medium sensor 115. The first time is set to the time required for the medium to travel the distance between the second medium sensor 115 and the first nip position.
  • the control unit 151 stops the motor for rotating the pick roller 112, the feeding roller 113, and the brake roller 114, and stops the feeding of the medium (step S105). ). This prevents the next medium from being fed while the medium is being conveyed.
  • the medium currently being conveyed is subsequently conveyed by the first to seventh transfer rollers 116a to g and the discharge roller 121.
  • the control unit 151 waits until the tip of the medium passes the imaging position of the imaging device 119 (step S106).
  • the control unit 151 takes an image of the tip of the medium when the second time elapses after the signal value of any of the third medium signals changes from a value indicating that the medium does not exist to a value indicating that the medium exists. It is determined that the position has been passed.
  • the second time is set to the time required for the medium to travel the distance between the third medium sensor 118 and the imaging position.
  • the control unit 151 may determine whether or not the tip of the medium has passed the imaging position based on the input image captured by the imaging device 119. In that case, the control unit 151 determines that the tip of the medium has passed the imaging position when the tip of the medium is detected from the input image in the same manner as in the process of step S113 described later.
  • control unit 151 sequentially acquires the input image captured by the medium from the imaging device 119 (step S107).
  • control unit 151 sequentially detects the third inclination amount on the side side of the medium based on the input images sequentially acquired (step S108).
  • the control unit 151 combines (combines) the most recent predetermined number of input images among the input images acquired so far to generate a combined image, and detects the left side and / or the right side of the medium from the generated combined image. ..
  • the control unit 151 determines the difference in the gradation values of the pixels on both sides of the horizontal direction of each pixel in each horizontal line in order from the left side for each horizontal line extending in the horizontal direction (main scanning direction).
  • the absolute value (hereinafter referred to as the adjacent difference value) is calculated.
  • the control unit 151 detects pixels in each horizontal line whose adjacent difference value exceeds the gradation threshold value as edge pixels.
  • the control unit 151 detects the first detected edge pixel in each horizontal line, that is, the pixel located on the leftmost side as the leftmost edge pixel, and the last detected edge pixel in each horizontal line, that is, on the rightmost side.
  • the positioned pixel is detected as the rightmost edge pixel.
  • the gradation value is a luminance value or a color value (R value, G value or B value) or the like.
  • the gradation threshold value is set to, for example, a difference in brightness value (for example, 20) that allows a person to visually discriminate the difference in brightness on an image.
  • control unit 151 may calculate the absolute value of the difference between the gradation values of the two pixels horizontally separated from each pixel in the combined image by a predetermined distance as the adjacent difference value. Further, the control unit 151 may detect the edge pixel by comparing the gradation value of each pixel in the combined image with the threshold value. For example, in the control unit 151, when the gradation value of a specific pixel is less than the threshold value and the gradation value of a pixel horizontally adjacent to the specific pixel or a pixel separated by a predetermined distance is equal to or more than the threshold value. , The specific pixel is detected as an edge pixel.
  • control unit 151 uses the least squares method to detect a straight line passing through each left end edge pixel as the left side of the medium, and detects a straight line passing through each right end edge pixel as the right side of the medium.
  • the control unit 151 may detect a straight line passing through each edge pixel as a side side of the medium by using the Hough transform.
  • the control unit 151 detects the detected tilt angle of the left side or the right side with respect to the vertical direction (sub-scanning direction) as the third tilt amount of the medium.
  • the control unit 151 determines whether or not the cumulative skew of the medium has occurred based on the amount of change in the third inclination amount detected sequentially (step S109).
  • the cumulative skew means a skew in which the inclination of the medium gradually changes with the passage of time (the amount of the medium conveyed).
  • the control unit 151 calculates the absolute value of the difference between the third tilt amount detected this time and the third tilt amount detected last time as the change amount of the third tilt amount.
  • the control unit 151 determines that the cumulative skew of the medium has occurred when the calculated change amount is equal to or more than the predetermined value, and when the calculated change amount is less than the predetermined value, the cumulative skew of the medium has occurred. It is determined that there is no such thing.
  • the predetermined value is, for example, 1/2 of the distance between the medium and the side wall of the medium transport path in the width direction A4 when the maximum size medium supported by the medium transport device 100 is transported. It is set to the amount of inclination that shifts
  • 9A and 9B are schematic views for explaining a normal skew.
  • FIG. 9A shows the medium M1 at the time T1 and the medium M1 at the time T2 after a predetermined time from the time T1 in a state where the normal skew is generated.
  • FIG. 9B shows an image P1 in which the medium M1 is captured.
  • the medium M1 is tilted and conveyed, but the inclination angle ⁇ 1 of the medium M1 with respect to the medium transfer direction A2 at time T1 and the inclination angle ⁇ 2 of the medium M1 with respect to the medium transfer direction A2 at time T2 are It is similar, and the amount of third inclination has hardly changed. In this case, as shown in FIG.
  • the medium transfer device 100 can acquire an image in a state in which the medium M1 is not tilted by rotating the image P1 using a known image processing technique.
  • 10A and 10B are schematic views for explaining the cumulative skew.
  • FIG. 10A shows the medium M2 at the time T1 and the medium M2 at the time T2 in a state where the cumulative skew is generated.
  • FIG. 10B shows an image P2 in which the medium M2 is captured.
  • the medium M2 is conveyed so that its inclination increases with the passage of time, and the medium transfer direction A2 at the time T2 is relative to the inclination angle ⁇ 1 of the medium M2 with respect to the medium transfer direction A2 at the time T1.
  • the inclination angle ⁇ 2 of the medium M2 with respect to the medium is large.
  • the medium M2 appears curved (non-rectangular) in the image P2.
  • the medium transport device 100 corrects the inclination of the medium so that the cumulative skew does not occur.
  • FIG. 11 is a schematic diagram for explaining the conditions under which cumulative skew occurs.
  • the force F1 in the medium transport direction A2 is applied to the position L1 on one end side of the medium M3, and the force F2 in the medium transport direction A2 is applied to the position L2 on the other end side.
  • a force Fb in the direction opposite to the medium transport direction A2 by the brake roller 114 is applied to the position Lb between the positions L1 and L2 in the width direction A4. That is, the force F1 and the force F2 are the forces that try to send the medium to the downstream side, and the force Fb is the force that tries to return the medium to the upstream side.
  • the position Lb is approximately the center position of the positions L1 and L2 (when the distance x in FIG.
  • control unit 151 shifts the process to step S111.
  • control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium based on the amount of change in the third inclination amount detected sequentially (step S110). ..
  • the control unit 151 corrects the inclination of the medium by driving a motor for rotating the support member 121b so as to swing the discharge shaft 121a.
  • the control unit 151 sets the discharge shaft 121a so that the discharge roller 121 on the side where the medium is delayed approaches the discharge port 107, or the discharge roller 121 on the side where the medium precedes is separated from the discharge port 107. Swing.
  • the control unit 151 swings the discharge shaft 121a by the amount of change in the third tilt amount with respect to the current arrangement position of the discharge shaft 121a.
  • control unit 151 corrects the inclination of the medium by making the rotation speeds of the motors different. May be good.
  • FIG. 12 is a schematic diagram for explaining a process of correcting the inclination of the medium by changing the speed of the discharge roller 121.
  • FIG. 12 shows an example in which the medium M4 is tilted by an inclination angle ⁇ 3 with respect to the medium transport direction A2. That is, in this example, when the distance between the two discharge rollers 121 in the width direction A4 is L, at the two positions facing each discharge roller 121 in the medium M4, the distance (L. The deviation occurs only by tan ⁇ 3). In order to eliminate this deviation, it is necessary to increase the transport distance by the discharge roller 121 on the side where the medium is behind by the distance (L ⁇ tan ⁇ 3) from the transport distance by the discharge roller 121 on the side where the medium is ahead. There is. That is, when the correction time for correcting the inclination is t, the speed difference between the two discharge rollers 121 needs to be set to ⁇ (L ⁇ tan ⁇ 3) / t ⁇ .
  • the control unit 151 sets the speed difference Vd of the two discharge rollers 121 according to the following equation (3) in order to eliminate the cumulative skew.
  • Vd ⁇ (L ⁇ tan ⁇ ) / t ⁇ (3)
  • L is the distance between the two discharge rollers 121
  • is the amount of change in the third inclination amount
  • t is the correction time for correcting the inclination.
  • the control unit 151 changes the rotation speed of the motor that drives each discharge roller 121 so that the speed difference between the two discharge rollers 121 becomes the set speed difference Vd during the correction time t.
  • the transport speed of the discharge roller 121 on the side where the medium is delayed is set to the normal transport speed, and the transport speed of the discharge roller 121 on the side where the medium is ahead is set lower (slower) by the speed difference Vd. Is desirable.
  • the medium transfer device 100 determines the force applied to each discharge roller 121 and the medium transfer speed.
  • the relationship is stored in the storage device 140 in advance.
  • the control unit 151 controls the pressing force by each pressing member so that the speed difference between the two discharge rollers 121 becomes the set speed difference Vd during the correction time t according to the relationship stored in the storage device 140. ..
  • control unit 151 determines whether or not the tip of the medium has passed the position of the discharge roller 121, and corrects the inclination of the medium only when the tip of the medium has passed the position of the discharge roller 121.
  • the discharge roller 121 may be controlled. In that case, when the signal value of any of the third medium signals changes from a value indicating that the medium does not exist to a value indicating that the medium exists, the control unit 151 determines that the medium has a third time. It is determined that the tip has passed the position of the discharge roller 121. The third time is set to the time required for the medium to travel the distance between the positions of the third medium sensor 118 and the discharge roller 121.
  • control unit 151 sequentially detects the third tilt amount after the front end of the medium passes the imaging position of the imaging device 119, that is, before the rear end of the medium passes the imaging position of the imaging device 119.
  • the discharge roller 121 is controlled so as to correct the inclination of the medium based on the amount of change in.
  • the control unit 151 detects the amount of change in the third tilt amount of the medium in small steps and corrects the tilt of the medium in small steps to suppress the occurrence of distortion of the medium in the medium image and damage the medium (damage to the medium). The occurrence of wrinkles or tears) can be suppressed.
  • control unit 151 determines whether or not the rear end of the medium has passed the imaging position of the imaging device 119 (step S111).
  • the control unit 151 sets the rear end of the medium when the second time elapses. It is determined that the image has passed the imaging position.
  • the control unit 151 may determine whether or not the rear end of the medium has passed the imaging position based on the input image captured by the imaging device 119.
  • control unit 151 detects the rear end of the medium from the input image in the same manner as in the process of step S113 described later, and when the rear end of the medium is detected, the rear end of the medium has passed the imaging position. judge. When the rear end of the medium has not passed the imaging position, the control unit 151 returns the process to step S107 and repeats the processes of steps S107 to S111.
  • the image generation unit 152 combines (combines) the input images acquired so far to generate a medium image, and the generated medium image is used by the interface device 132. It is output by transmitting it to the information processing apparatus via the device (step S112).
  • the information processing device displays the received medium image so that the user can view it.
  • control unit 151 detects the first tilt amount at the rear end of the conveyed medium based on the generated medium image (step S113).
  • the control unit 151 determines the difference in the gradation values of the pixels on both sides of the vertical direction of each pixel in each vertical line in order from the upper side for each vertical line extending in the vertical direction (sub-scanning direction).
  • the absolute value (hereinafter referred to as the adjacent difference value) is calculated.
  • the control unit 151 detects pixels in each vertical line whose adjacent difference value exceeds the gradation threshold value as edge pixels.
  • the control unit 151 detects the first detected edge pixel in each vertical line, that is, the pixel located at the uppermost side as the uppermost edge pixel, and the last detected edge pixel in each vertical line, that is, the lowermost side.
  • the pixel located at is detected as the lower end edge pixel.
  • the control unit 151 determines the absolute value of the difference between the gradation values of the two pixels vertically separated from each pixel in the medium image by a predetermined distance, as in the case of detecting the left end edge pixel and the right end edge pixel. It may be calculated as an adjacent difference value. Further, the control unit 151 may detect the edge pixel by comparing the gradation value of each pixel in the medium image with the threshold value.
  • control unit 151 uses the least squares method to detect a straight line passing through each upper end edge pixel as the upper side of the medium, and detects a straight line passing through each lower end edge pixel as the lower side of the medium.
  • the control unit 151 may detect the straight line passing through each edge pixel as the upper side and the lower side of the medium by using the Hough transform.
  • the control unit 151 detects the tilt angle of the detected lower side with respect to the horizontal direction (main scanning direction) as the first tilt amount of the medium.
  • control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium based on the detected first inclination amount (step S114).
  • the control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium in the same manner as in the process of step S110.
  • control unit 151 corrects the inclination of the medium by swinging the discharge shaft 121a
  • the control unit 151 swings the discharge shaft 121a by the first tilt amount with respect to the current arrangement position of the discharge shaft 121a.
  • the rear end of the medium has passed the imaging position, and even if the tilt of the medium is greatly corrected, the medium image is not affected. Therefore, the control unit 151 can greatly change the tilt of the medium. ..
  • control unit 151 may correct the inclination of the medium by dividing it into a predetermined number of times (an integer of 2 or more, for example, 10 times) until the discharge of the medium is completed. In that case, the control unit 151 swings the discharge shaft 121a by an angle obtained by dividing the first inclination amount by a predetermined number of times. As a result, the control unit 151 can gradually correct the inclination of the medium to suppress the occurrence of damage to the medium, and completely eliminate the inclination of the medium when the medium is ejected.
  • the control unit 151 corrects the inclination of the medium by making the rotation speeds of the motors different
  • the control unit 151 sets the speed difference Vd of the two discharge rollers 121 according to the above equation (3).
  • the first inclination amount is set as ⁇ in the equation (3).
  • the correction time t is set to, for example, the time from when the rear end of the medium passes through the imaging position to when it passes through the position of the discharge roller 121.
  • control unit 151 may correct the inclination of the medium by dividing it into a predetermined number of times until the discharge of the medium is completed.
  • the angle obtained by dividing the first inclination amount by a predetermined number of times is set as ⁇ .
  • the correction time t is set to a value smaller than the time obtained by dividing the time from when the rear end of the medium passes through the imaging position to when passing through the position of the discharge roller 121 by a predetermined number of times.
  • the control unit 151 can gradually correct the inclination of the medium to suppress the occurrence of damage to the medium, and completely eliminate the inclination of the medium when the medium is ejected.
  • control unit 151 corrects the inclination of the medium by making the pressing force of each pressing member different, each of the control units 151 so that the speed difference between the two discharge rollers 121 becomes the speed difference Vd during the correction time t. Controls the pressing force of the pressing member.
  • control unit 151 may control the discharge roller 121 so as to correct the inclination of the medium only when the tip of the medium passes the position of the discharge roller 121.
  • the tip of the medium is at the position of the discharge roller 121 when the rear end of the medium passes the image pickup position. Is passing through. Therefore, the control unit 151 may correct the inclination of the medium without determining whether or not the tip of the medium has passed the position of the discharge roller 121.
  • control unit 151 waits until the rear end of the medium passes the position of the skew sensor 120 (step S115).
  • the control unit 151 receives a skew signal from each skew sensor 120 and the signal value of any two skew signals changes from a value indicating the presence of the medium to a value indicating the absence of the medium, the control unit 151 receives the skew signal periodically. It is determined that the rear end of the medium has passed the position of the skew sensor 120.
  • control unit 151 detects the second tilt amount at the rear end of the conveyed medium based on the skew signal received from each skew sensor 120 (step). S116).
  • the tip of the medium moves from the position where the tip of the medium passes first to the position of the skew sensor 120 which has passed next to the position where the tip of the medium passes the position of the skew sensor 120 which has passed next.
  • the moving distance in the medium transport direction A2 is calculated.
  • the control unit 151 detects the inverse tangent of the divided value obtained by dividing the calculated movement distance by the distance between the two skew sensors 120 as the second inclination amount.
  • the control unit 151 multiplies the drive time in which the motor 131 is driven from the time when the tip of the medium passes through the position of one skew sensor 120 to the time when the tip of the medium passes through the position of the other skew sensor 120 by the transport speed of the medium.
  • the multiplied value is specified as the moving distance.
  • control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium based on the detected second inclination amount (step S117).
  • the control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium in the same manner as in the process of step S114.
  • control unit 151 corrects the inclination of the medium by swinging the discharge shaft 121a
  • the control unit 151 swings the discharge shaft 121a by a second tilt amount with respect to the current arrangement position of the discharge shaft 121a. Further, when the control unit 151 corrects the inclination of the medium by dividing it into a predetermined number of times, the control unit 151 swings the discharge shaft 121a by an angle obtained by dividing the second inclination amount by a predetermined number of times.
  • the control unit 151 corrects the inclination of the medium by making the rotation speeds of the motors different, the control unit 151 sets the speed difference Vd of the two discharge rollers 121 according to the above equation (3).
  • the second inclination amount is set as ⁇ in the equation (3).
  • the correction time t is set to, for example, the time from when the rear end of the medium passes through the position of the skew sensor 120 to when it passes through the position of the discharge roller 121.
  • the control unit 151 sets an angle obtained by dividing the second inclination amount by a predetermined number of times as ⁇ .
  • the correction time t is set to a value smaller than the time obtained by dividing the time from when the rear end of the medium passes through the imaging position to when passing through the position of the discharge roller 121 by a predetermined number of times.
  • control unit 151 corrects the inclination of the medium by making the pressing force of each pressing member different, each of the control units 151 so that the speed difference between the two discharge rollers 121 becomes the speed difference Vd during the correction time t. Controls the pressing force of the pressing member.
  • control unit 151 may control the discharge roller 121 so as to correct the inclination of the medium only when the tip of the medium passes the position of the discharge roller 121.
  • control unit 151 waits until the rear end of the medium passes the position of the discharge roller 121, that is, until the discharge of the medium is completed (step S118).
  • the control unit 151 determines that the rear end of the medium has passed the position of the discharge roller 121 when the fourth time has elapsed after determining that the rear end of the medium has passed the position of the skew sensor 120.
  • the fourth time is set to the time required for the medium to travel the distance between the positions of the skew sensor 120 and the discharge roller 121.
  • control unit 151 determines whether or not the medium remains on the mounting table 103 based on the first medium signal received from the first medium sensor 111 (step S119). When the medium remains on the mounting table 103, the control unit 151 returns the process to step S103 and repeats the processes of steps S103 to S119.
  • control unit 151 stops the motors for rotating the first to seventh transfer rollers 116a to g and the discharge roller 121 to stop the transfer of the medium (step). S120), the series of steps is completed.
  • control unit 151 controls the discharge roller 121 so as to correct the tilt of the medium based on the first tilt amount when the rear end of the medium passes the imaging position of the image pickup device 119. Then, when the rear end of the medium passes through the position of the skew sensor 120 arranged on the downstream side of the image pickup apparatus 119, the control unit 151 discharges the medium so as to correct the inclination of the medium based on the second inclination amount. Controls the roller 121.
  • FIG. 13 is a schematic diagram for explaining the technical significance of correcting the inclination of the medium in two steps.
  • FIG. 13 shows a state in which the rear end of the medium M5 has passed the imaging position of the imaging device 119
  • the figure on the right side of FIG. 13 shows a state in which the rear end of the medium M5 has passed the position of the skew sensor 120. Is shown.
  • the medium M5 is tilted by the tilt angle ⁇ a when the rear end passes through the imaging position of the imaging device 119, and only the tilt angle ⁇ b when the rear end passes through the position of the skew sensor 120. It is tilted.
  • the medium transfer device 100 When the rear end of the medium passes the imaging position of the image pickup device 119, the medium transfer device 100 starts correcting the inclination of the medium so as to eliminate the inclination angle ⁇ a of the medium at that time. Since the medium transport device 100 starts the correction of the inclination of the medium at an early stage, it is possible to suppress the occurrence of jam in the long medium. Further, since the medium transport device 100 gradually corrects the inclination of the medium over a long period of time, it is possible to suppress the occurrence of damage to the medium. After that, when the rear end of the medium passes the position of the skew sensor 120, the medium transfer device 100 corrects the inclination of the medium so as to eliminate the inclination angle ⁇ b of the medium at that time. As a result, the medium transfer device 100 can reduce the influence of the cumulative skew generated after the rear end of the medium has passed the image pickup position of the image pickup device 119, and can satisfactorily align the medium on the discharge table 104.
  • control unit 151 may correct the inclination of the medium by another method. For example, the control unit 151 does not cause the discharge roller 121 to correct the inclination of the medium when the rear end of the medium passes the imaging position of the image pickup apparatus 119. On the other hand, the control unit 151 adjusts the discharge roller 121 so as to correct the inclination of the medium based on the amount of change in the second inclination amount with respect to the first inclination amount when the rear end of the medium passes the position of the skew sensor 120. Control. That is, the control unit 151 does not correct the inclination of the medium in step S114 of FIG. 8, but corrects the inclination of the medium in step S117 based on the amount of change in the second inclination amount with respect to the first inclination amount.
  • FIG. 14 shows that the tilt of the medium is not corrected when the rear end of the medium passes through the imaging position of the imaging device 119, and the tilt of the medium is tilted based on the amount of change when the rear end of the medium passes through the position of the skew sensor 120. It is a schematic diagram for demonstrating an example of correcting.
  • the figure on the left side of FIG. 14 shows a state in which the rear end of the medium M6 has passed the imaging position of the imaging device 119
  • the figure in the center of FIG. 14 shows a state in which the rear end of the medium M6 has passed the position of the skew sensor 120. Is shown.
  • the figure on the right side of FIG. 14 shows a state in which the rear end of the medium M6 has passed the position of the discharge roller 121 without correcting the inclination.
  • the medium M6 is tilted by the tilt angle ⁇ a when the rear end passes through the imaging position of the imaging device 119, and only the tilt angle ⁇ b when the rear end passes through the position of the skew sensor 120. It is tilted.
  • the tilt of the medium is not corrected when the rear end of the medium passes the imaging position of the imaging device 119, cumulative skew may occur and the tilt angle ⁇ b may be larger than the tilt angle ⁇ a. If the inclination of the medium is not corrected, the inclination angle ⁇ c at the time when the rear end of the medium M6 passes the position of the discharge roller 121 becomes larger than the inclination angle ⁇ b.
  • the control unit 151 controls the discharge roller 121 so as to correct the inclination of the medium by the calculated inclination angle ⁇ c when the rear end of the medium passes the position of the skew sensor 120 in step S117 of FIG. do. That is, the control unit 151 corrects the inclination of the medium by the inclination angle ⁇ c calculated based on the change amount ( ⁇ b ⁇ a) of the second inclination amount ⁇ b with respect to the first inclination amount ⁇ a.
  • the control unit 151 corrects the inclination of the medium by swinging the discharge shaft 121a
  • the control unit 151 swings the discharge shaft 121a by an inclination angle ⁇ c with respect to the current arrangement position of the discharge shaft 121a.
  • the control unit 151 sets the speed difference Vd of the two discharge rollers 121 according to the above equation (3).
  • the inclination angle ⁇ c is set as ⁇ in the equation (3).
  • control unit 151 corrects the inclination of the medium by dividing it into a predetermined number of times
  • the control unit 151 sets an angle obtained by dividing the inclination angle ⁇ c by a predetermined number of times as ⁇ .
  • the control unit 151 corrects the inclination of the medium by making the pressing force of each pressing member different, each pressing member so that the speed difference between the two discharge rollers 121 becomes the speed difference Vd during the correction time t. Controls the pressing force by.
  • the control unit 151 has a first tilt amount when the rear end of the medium passes the imaging position of the image pickup device 119 and a second tilt amount when the rear end of the medium passes the position of the skew sensor 120. From, the tendency of the inclination of the medium is estimated. The control unit 151 can satisfactorily correct the inclination of the medium so that the amount of inclination of the medium becomes 0 when the rear end of the medium passes the position of the discharge roller 121.
  • control unit 151 may further correct the inclination of the medium by another method.
  • the control unit 151 controls the discharge roller 121 so as to correct the tilt of the medium based on the first tilt amount when the rear end of the medium passes the imaging position of the image pickup device 119.
  • the control unit 151 corrects the inclination of the medium so that the amount of inclination of the medium becomes 0 when the rear end of the medium passes the position of the skew sensor 120.
  • the control unit 151 adjusts the discharge roller 121 so as to correct the inclination of the medium based on the amount of change in the second inclination amount with respect to the first inclination amount when the rear end of the medium passes the position of the skew sensor 120. Control.
  • step S114 of FIG. 8 the control unit 151 corrects the inclination of the medium based on the first inclination amount, and in step S117, the inclination of the medium is based on the change amount of the second inclination amount with respect to the first inclination amount. To correct.
  • FIG. 15 is a schematic diagram for explaining an example of correcting the inclination of the medium so that the inclination of the medium becomes 0 when the rear end of the medium passes the position of the skew sensor 120.
  • the figure on the left side of FIG. 15 shows a state in which the rear end of the medium M7 has passed the imaging position of the imaging device 119
  • the figure in the center of FIG. 15 shows a state in which the rear end of the medium M7 has passed the position of the skew sensor 120. Is shown.
  • the figure on the right side of FIG. 15 shows a state in which the inclination angle ⁇ c of the medium is 0 when the rear end of the medium M7 passes the position of the skew sensor 120.
  • the medium M7 is tilted by the tilt angle ⁇ a when the rear end passes through the imaging position of the imaging device 119.
  • the rear end of the medium M7 determines the position of the skew sensor 120. At the time of passing, it is tilted by the tilt angle ⁇ b.
  • the control unit 151 corrects the inclination of the medium by swinging the discharge shaft 121a
  • the control unit 151 swings the discharge shaft 121a by an inclination angle ⁇ b'with respect to the current arrangement position of the discharge shaft 121a.
  • the control unit 151 sets the speed difference Vd of the two discharge rollers 121 according to the above equation (3). In this case, the inclination angle ⁇ b'is set as ⁇ in the equation (3).
  • control unit 151 corrects the inclination of the medium by dividing it into a predetermined number of times
  • the control unit 151 sets an angle obtained by dividing the inclination angle ⁇ b'by a predetermined number of times as ⁇ .
  • the control unit 151 corrects the inclination of the medium by making the pressing force of each pressing member different, each pressing member so that the speed difference between the two discharge rollers 121 becomes the speed difference Vd during the correction time t. Controls the pressing force by.
  • control unit 151 has a first tilt amount when the rear end of the medium passes the imaging position of the image pickup device 119 and a second tilt amount when the rear end of the medium passes the position of the skew sensor 120. From, the tendency of the inclination of the medium is estimated. The control unit 151 can satisfactorily correct the inclination of the medium so that the inclination of the medium becomes 0 when the rear end of the medium passes the position of the discharge roller 121.
  • the medium transport device 100 may use a third medium sensor 118 instead of the image pickup device 119 as the first sensor for detecting the first tilt amount at the rear end of the transported medium.
  • the control unit 151 periodically receives the third medium signal from each third medium sensor 118.
  • step S108 of FIG. 7 when the signal value of each third medium signal changes from a value indicating that the medium does not exist to a value indicating that the medium exists, the tip of the medium is the third. It is determined that the position of the third medium sensor 118 corresponding to the medium signal has been passed.
  • the control unit 151 passes through the position of the third medium sensor 118 through which the tip of the medium first passes, and before the tip of the medium passes through the position of the third medium sensor 118 through which the tip of the medium passes next. Calculates the moving distance of the medium transporting direction A2 that has moved. The control unit 151 detects the inverse tangent of the divided value obtained by dividing the calculated movement distance by the distance between the two third medium sensors 118 as the first inclination amount.
  • control unit 151 may determine whether or not cumulative skew of the medium has occurred based on the third medium signal from the third medium sensor 118.
  • FIG. 16 is a schematic diagram for explaining an example of determining whether or not cumulative skew of the medium is generated based on the third medium signal.
  • the upper view of FIG. 16 shows the state immediately after the tip of the medium M8 has passed the position of the third medium sensor 118
  • the lower view of FIG. 16 shows the state where the tip of the medium M8 has passed the position of the third medium sensor 118.
  • the signal values of the plurality of third medium signals are from the values indicating that the medium does not exist. The timing of changing to the value indicating the existence is substantially the same.
  • the signal value of the specific third medium signal changes from a value indicating that the medium does not exist to a value indicating that the medium exists after that, when a predetermined time elapses, it corresponds to the third medium signal.
  • the side side of the medium M8 has passed the position of the third medium sensor 118.
  • the control unit 151 has substantially the same timing (constant) in which the signal values of the plurality of third medium signals acquired immediately after the tip of the medium passes change from a value indicating that the medium does not exist to a value indicating that the medium exists. (Within time) is determined.
  • the control unit 151 sets the signal value of the other third medium signal acquired after a predetermined time has elapsed from the value indicating that the medium does not exist to the value indicating that the medium exists. Determine if it has changed.
  • the timing of the control unit 151 is substantially the same and the signal value of the other third medium signal changes from a value indicating that the medium does not exist to a value indicating that the medium exists, cumulative skew of the medium occurs. Judge that it is.
  • steps S108 to S110 in FIG. 7 are omitted, and the control unit 151 does not have to correct the inclination of the medium based on the third inclination amount. Further, the control unit 151 detects the amount of inclination of the tip of the medium in the same manner as the amount of the first inclination or the amount of the second inclination before correcting the inclination of the medium based on the amount of the third inclination, and the tip of the medium. The inclination of the medium may be corrected based on the amount of inclination of.
  • the medium transfer device 100 uses the discharge roller 121 to transfer the medium based on the amount of inclination at the rear end of the long medium detected by the two sensors. Correct the tilt. This makes it possible for the medium transfer device 100 to more appropriately correct the inclination of the medium.
  • the medium transfer device 100 can suppress the occurrence of jam in the medium and suppress the occurrence of damage to the medium by correcting the inclination of the medium during transfer. Further, the user does not need to support the medium so that the medium is not skewed when the long medium is conveyed, and the medium transfer device 100 can improve the convenience of the user. rice field. Further, the medium transport device 100 does not need to use a special jig so as not to cause skew of the medium when transporting a long medium, and it is possible to suppress an increase in device size and device cost. became.
  • the medium transfer device 100 corrects the skew of the medium by the discharge roller 121.
  • the medium transfer device 100 can align the directions of the discharged media, and can satisfactorily align the media on the discharge table 104.
  • various parts such as various rollers, motors, sensors, and printed circuit boards are arranged between a feed roller for feeding a medium and an image pickup device, and around the image pickup device.
  • the mechanism necessary for correcting the skew of the medium is installed between the feeding roller 113 and the image pickup device 119 and around the image pickup device 119 by correcting the skew of the medium by the discharge roller 121. No need to place. Therefore, in the medium transport device 100, parts can be efficiently arranged, and an increase in the device size can be suppressed.
  • the medium transport device if the pressure applied to the medium is too large in the feed roller for feeding the medium and the transport roller arranged around the image pickup device, the medium is not stably fed and transported. ..
  • the medium transfer device 100 can correct the medium by correcting the skew of the medium by the discharge roller 121 without changing the pressure applied to the feed roller 113 and the first to seventh transfer rollers 116a to 116g. can. Therefore, the medium transporting device 100 can satisfactorily correct the inclination of the medium while stably feeding and transporting the medium.
  • FIG. 17 is a diagram showing a schematic configuration of a processing circuit 250 of a medium transfer device according to still another embodiment.
  • the processing circuit 250 is used in place of the processing circuit 150 of the medium transfer device 100, and executes a medium reading process or the like in place of the processing circuit 150.
  • the processing circuit 250 includes a control circuit 251 and an image generation circuit 252 and the like. Each of these parts may be composed of independent integrated circuits, microprocessors, firmware, and the like.
  • the control circuit 251 is an example of the control unit, and has the same function as the control unit 151.
  • the control circuit 251 receives an operation signal from the operation device 105, a first medium signal from the first medium sensor 111, and a second medium signal from the second medium sensor 115, and feeds the medium based on each received signal.
  • the motor 131 is controlled so as to control the transfer.
  • the control circuit 251 receives a third medium signal from the third medium sensor 118, a skew signal from the skew sensor 120, and an input image from the image pickup device 119, and detects the amount of tilt of the medium based on each received information. Then, the motor 131 is controlled so as to correct the inclination of the medium.
  • the image generation circuit 252 is an example of an image generation unit, and has the same function as the image generation unit 152.
  • the image generation circuit 252 acquires an input image from the image pickup device 119 and outputs the input image to the interface device 132.
  • the medium transfer device can more appropriately correct the inclination of the medium even when the medium reading process is executed by the processing circuit 250.

Landscapes

  • Controlling Sheets Or Webs (AREA)

Abstract

媒体の傾きをより適切に補正することが可能な媒体搬送装置、制御方法及び制御プログラムを提供する。媒体搬送装置は、長尺媒体を搬送する媒体搬送装置であって、媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、第1傾き量及び第2傾き量に基づいて媒体の傾きを補正するように排出ローラを制御する制御部と、を有する。

Description

媒体搬送装置、制御方法及び制御プログラム
 本開示は、媒体搬送装置に関し、特に、媒体の傾きを補正する媒体搬送装置に関する。
 媒体を搬送しながら撮像して排出台に排出するスキャナ等の媒体搬送装置では、媒体が傾いて搬送されるスキュー(斜行)が発生し、媒体が搬送路の側壁に当接して媒体のジャム(紙詰まり)が発生する場合がある。特に搬送される媒体が長尺媒体である場合、媒体は長期間にわたって搬送されるため、搬送中に媒体の傾き量が大きくなって媒体のジャムが発生する可能性が高い。
 排紙ローラの近傍にシートの斜行量を検知する斜行量検知手段を有し、検出した斜行量に基づいて、シートの斜行量を補正するように、複数の排紙ローラを夫々異なる速度で回転させる画像読取装置が開示されている(特許文献1を参照)。
 ホームポジションを基準として所定の揺動許容範囲で用紙幅方向に揺動可能に構成されるとともに、定着ニップに通紙される長尺紙にトナー像を定着させる定着部を備える画像形成装置が開示されている(特許文献2を参照)。この画像形成装置は、転写ニップと定着ニップとの間における用紙の傾きの検出結果に基づいて定着部を揺動させる。
特開2017-208628号公報 特開2007-331908号公報
 媒体搬送装置では、媒体の傾きをより適切に補正することが望まれている。
 媒体搬送装置、制御方法及び制御プログラムの目的は、媒体の傾きをより適切に補正することを可能とすることにある。
 実施形態の一側面に係る媒体搬送装置は、長尺媒体を搬送する媒体搬送装置であって、媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、第1傾き量及び第2傾き量に基づいて媒体の傾きを補正するように排出ローラを制御する制御部と、を有する。
 また、実施形態の一側面に係る制御方法は、媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、を有し、長尺媒体を搬送する媒体搬送装置の制御方法であって、第1傾き量及び第2傾き量に基づいて媒体の傾きを補正するように排出ローラを制御する。
 また、実施形態の一側面に係る制御プログラムは、媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、を有し、長尺媒体を搬送する媒体搬送装置の制御プログラムであって、第1傾き量及び第2傾き量に基づいて媒体の傾きを補正するように排出ローラを制御することを媒体搬送装置に実行させる。
 本実施形態によれば、媒体搬送装置、制御方法及び制御プログラムは、媒体の傾きをより適切に補正することが可能となる。
 本発明の目的及び効果は、特に請求項において指摘される構成要素及び組み合わせを用いることによって認識され且つ得られるだろう。前述の一般的な説明及び後述の詳細な説明の両方は、例示的及び説明的なものであり、特許請求の範囲に記載されている本発明を制限するものではない。
実施形態に係る媒体搬送装置100を示す斜視図である。 媒体搬送装置100内部の搬送経路を説明するための図である。 スキューセンサ120等の配置位置について説明するための模式図である。 排出ローラ121について説明するための模式図である。 排出ローラ121について説明するための模式図である。 媒体搬送装置100の概略構成を示すブロック図である。 記憶装置140及び処理回路150の概略構成を示す図である。 媒体読取処理の動作の例を示すフローチャートである。 媒体読取処理の動作の例を示すフローチャートである。 通常のスキューについて説明するための模式図である。 通常のスキューについて説明するための模式図である。 累積スキューについて説明するための模式図である。 累積スキューについて説明するための模式図である。 累積スキューが発生する条件について説明するための模式図である。 媒体の傾きを補正する処理について説明するための模式図である。 技術的意義について説明するための模式図である。 媒体の傾き補正の他の例について説明するための模式図である。 媒体の傾き補正のさらに他の例について説明するための模式図である。 累積スキュー判定の他の例について説明するための模式図である。 他の媒体搬送装置における処理回路250の概略構成を示す図である。
 以下、本開示の一側面に係る媒体搬送装置、制御方法及び制御プログラムについて図を参照しつつ説明する。但し、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 図1は、イメージスキャナとして構成された媒体搬送装置100を示す斜視図である。媒体搬送装置100は、原稿である媒体を搬送し、撮像する。媒体は、用紙、厚紙又はカード等である。媒体は、長尺媒体を含む。長尺媒体は、所定サイズ、例えばA4サイズ(297×210ミリメートル)又はA3サイズ(420×297ミリメートル))より長い媒体である。媒体搬送装置100は、ファクシミリ、複写機、プリンタ複合機(MFP、Multifunction Peripheral)等でもよい。なお、搬送される媒体は、原稿でなく印刷対象物等でもよく、媒体搬送装置100はプリンタ等でもよい。
 媒体搬送装置100は、第1筐体101、第2筐体102、載置台103、排出台104、操作装置105及び表示装置106等を備える。
 第1筐体101は、媒体搬送装置100の上側に配置され、媒体つまり時、媒体搬送装置100内部の清掃時等に開閉可能なようにヒンジにより第2筐体102に係合している。
 載置台103は、搬送される媒体を載置可能に第2筐体102に係合している。載置台103は、第2筐体102の媒体供給側の側面に、略鉛直方向A1に移動可能に設けられる。載置台103は、媒体を搬送していないときは媒体が容易に載置されるように下端の位置に配置され、媒体を搬送するときは載置された媒体が給送されるように媒体搬送路と略同一の高さまで上昇する。排出台104は、排出口107から排出された媒体を保持可能に第1筐体101上に形成され、排出された媒体を積載するトレイである。
 操作装置105は、ボタン等の入力デバイス及び入力デバイスから信号を取得するインタフェース回路を有し、利用者による入力操作を受け付け、利用者の入力操作に応じた操作信号を出力する。表示装置106は、液晶、有機EL(Electro-Luminescence)等を含むディスプレイ及びディスプレイに画像データを出力するインタフェース回路を有し、画像データをディスプレイに表示する。
 図1において矢印A2は媒体搬送方向を示し、矢印A3は媒体排出方向を示し、矢印A4は媒体搬送方向と直交する幅方向を示す。以下では、上流とは媒体搬送方向A2又は媒体排出方向A3の上流のことをいい、下流とは媒体搬送方向A2又は媒体排出方向A3の下流のことをいう。
 図2は、媒体搬送装置100内部の搬送経路を説明するための図である。
 媒体搬送装置100内部の搬送経路は、第1媒体センサ111、ピックローラ112、給送ローラ113、ブレーキローラ114、第2媒体センサ115、第1~第7搬送ローラ116a~g、第1~第7従動ローラ117a~g、第3媒体センサ118、第1撮像装置119a、第2撮像装置119b、スキューセンサ120、排出ローラ121及び対向ローラ122等を有している。
 なお、ピックローラ112、給送ローラ113、ブレーキローラ114、第1~第7搬送ローラ116a~g、第1~第7従動ローラ117a~g、排出ローラ121及び/又は対向ローラ122のそれぞれの数は一つに限定されず、複数でもよい。その場合、複数の給送ローラ113、ブレーキローラ114、第1~第7搬送ローラ116a~g、第1~第7従動ローラ117a~g、排出ローラ121及び/又は対向ローラ122は、それぞれ幅方向A4に間隔を空けて並べて配置される。以下では、第1撮像装置119a及び第2撮像装置119bをまとめて撮像装置119と称する場合がある。
 第1筐体101の、第2筐体102と対向する面は媒体の搬送路の第1ガイド101aを形成し、第2筐体102の、第1筐体101と対向する面は媒体の搬送路の第2ガイド102aを形成する。
 第1媒体センサ111は、載置台103に、即ち給送ローラ113及びブレーキローラ114より上流側に配置され、載置台103における媒体の載置状態を検出する。第1媒体センサ111は、媒体が接触している場合、又は、媒体が接触していない場合に所定の電流を流す接触検知センサにより、載置台103に媒体が載置されているか否かを判別する。第1媒体センサ111は、載置台103に媒体が載置されている状態と載置されていない状態とで信号値が変化する第1媒体信号を生成して出力する。なお、第1媒体センサ111は接触検知センサに限定されず、第1媒体センサ111として、光検知センサ等の、媒体の有無を検出可能な他の任意のセンサが使用されてもよい。
 ピックローラ112は、第1筐体101に設けられ、媒体搬送路と略同一の高さまで上昇した載置台103に載置された媒体と接触して、その媒体を下流側に向けて給送する。給送ローラ113は、第1筐体101内に、ピックローラ112より下流側に設けられ、ピックローラ112により給送された媒体を、さらに下流側に向けて給送する。ブレーキローラ114は、第2筐体102内に、給送ローラ113と対向して配置される。給送ローラ113及びブレーキローラ114は、媒体の分離動作を行い、媒体を分離して一枚ずつ給送する。
 第2媒体センサ115は、給送ローラ113及びブレーキローラ114より下流側且つ第1搬送ローラ116a及び第1従動ローラ117aより上流側に配置され、その位置に搬送された媒体を検出する。第2媒体センサ115は、媒体搬送路に対して一方の側(第1筐体101側)に設けられた発光器及び受光器と、媒体搬送路を挟んで発光器及び受光器と対向する位置(第2筐体102側)に設けられたミラー等の反射部材とを含む。発光器は、LED(Light Emitting Diode)等であり、媒体搬送路に向けて光を照射する。一方、受光器は、発光器により照射され、反射部材により反射された光を受光する。第2媒体センサ115と対向する位置に媒体が存在するときは、発光器から照射された光は媒体により遮られるため、受光器は発光器から照射された光を検出しない。受光器は、受光する光の強度に基づいて、第2媒体センサ115の位置に媒体が存在する状態と存在しない状態とで信号値が変化する第2媒体信号を生成して出力する。
 なお、発光器及び受光器は、媒体搬送路を挟んで対向して設けられてもよい。また、第2媒体センサ115は、媒体が接触している場合、又は、媒体が接触していない場合に所定の電流を流す接触検知センサ等により、媒体の存在を検出してもよい。
 第1~第7搬送ローラ116a~g及び第1~第7従動ローラ117a~gは、給送ローラ113及びブレーキローラ114より下流側に設けられ、給送ローラ113及びブレーキローラ114により給送された媒体を下流側に向けて搬送する。
 第1撮像装置119aは、主走査方向に直線状に配列されたCMOS(Complementary Metal Oxide Semiconductor)による撮像素子を有する等倍光学系タイプのCIS(Contact Image Sensor)による撮像センサ(ラインセンサ)を有する。また、第1撮像装置119aは、撮像素子上に像を結ぶレンズと、撮像素子から出力された電気信号を増幅し、アナログ/デジタル(A/D)変換するA/D変換器とを有する。第1撮像装置119aは、一定間隔毎に、搬送される媒体の表面の撮像センサと対向する領域を撮像して入力画像を順次生成し、出力する。即ち、入力画像の垂直方向(副走査方向)の画素数は1であり、水平方向(主走査方向)の画素数は複数である。
 同様に、第2撮像装置119bは、主走査方向に直線状に配列されたCMOSによる撮像素子を有する等倍光学系タイプのCISによる撮像センサ(ラインセンサ)を有する。また、第2撮像装置119bは、撮像素子上に像を結ぶレンズと、撮像素子から出力された電気信号を増幅し、A/D変換するA/D変換器とを有する。一定間隔毎に、搬送される媒体の裏面の撮像センサと対向する領域を撮像して入力画像を順次生成し、出力する。
 撮像装置119は、搬送される媒体の後端における第1傾き量を検出するための第1センサの一例である。媒体搬送装置100は、第1撮像装置119a及び第2撮像装置119bを一方だけ配置し、媒体の片面だけを読み取ってもよい。また、CMOSによる撮像素子を備える等倍光学系タイプのCISによるラインセンサの代わりに、CCD(Charge Coupled Device)による撮像素子を備える等倍光学系タイプのCISによるラインセンサが利用されてもよい。また、CMOS又はCCDによる撮像素子を備える縮小光学系タイプのラインセンサが利用されてもよい。
 排出ローラ121は、第1筐体101内に、第1~第7搬送ローラ116a~gより下流側に設けられる。対向ローラ122は、第2筐体102内に、排出ローラ121と対向して配置される。排出ローラ121及び対向ローラ122は、第1~第7搬送ローラ116a~g及び第1~第7従動ローラ117a~gにより搬送される媒体を排出台104に排出する。排出ローラ121はモータからの駆動力に従って回転し、対向ローラ122は排出ローラ121の回転に従って従動回転する。
 載置台103に載置された媒体は、ピックローラ112、給送ローラ113がそれぞれ媒体給送方向A5、A6に回転することによって、第1ガイド101aと第2ガイド102aの間を媒体搬送方向A2に向かって搬送される。一方、ブレーキローラ114が媒体給送方向の反対方向A7に回転することによって、載置台103に複数の媒体が載置されている場合、載置台103に載置されている媒体のうち給送ローラ113と接触している媒体のみが分離される。
 媒体は、第1ガイド101aと第2ガイド102aによりガイドされながら、第1~第2搬送ローラ116a~bが矢印A8~9の方向に回転することによって、撮像装置119の撮像位置に送り込まれ、撮像装置119によって撮像される。さらに、媒体は、第3~第7搬送ローラ116c~g及び排出ローラ121がそれぞれ矢印A10~15の方向に回転することによって排出口107から排出台104上に排出される。排出台104は、排出ローラ121によって排出された媒体を積載する。
 図3は、第3媒体センサ118及びスキューセンサ120等の配置位置について説明するための模式図である。図3は、開いた状態の第1筐体101を搬送路側から見た模式図である。
 図3に示す例では、媒体搬送装置100は、給送ローラ113、第1~第7搬送ローラ116a~g及び排出ローラ121を二つずつ有している。
 媒体搬送装置100は、複数の第3媒体センサ118を有する。図3に示す例では、媒体搬送装置100は五つの第3媒体センサ118を有しているが、第3媒体センサ118の数は任意でよい。各第3媒体センサ118は、媒体搬送方向A2において第1搬送ローラ116aと第2搬送ローラ116bの間、即ち給送ローラ113より下流側且つ撮像装置119より上流側に配置される。なお、各第3媒体センサ118は、媒体搬送方向A2において、撮像装置119より下流側に配置されてもよい。また、各第3媒体センサ118は、幅方向A4に間隔を空けて並べて配置される。
 各第3媒体センサ118は、媒体搬送路に対して一方の側(第1筐体101側)に設けられた発光器及び受光器と、媒体搬送路を挟んで発光器及び受光器と対向する位置(第2筐体102側)に設けられたミラー等の反射部材とを含む。発光器は、LED等であり、媒体搬送路に向けて光を照射する。一方、受光器は、発光器により照射され、反射部材により反射された光を受光する。第3媒体センサ118と対向する位置に媒体が存在するときは、発光器から照射された光は媒体により遮られるため、受光器は発光器から照射された光を検出しない。受光器は、受光する光の強度に基づいて、第3媒体センサ118の位置に媒体が存在する状態と存在しない状態とで信号値が変化する第3媒体信号を生成して出力する。
 なお、発光器及び受光器は、媒体搬送路を挟んで対向して設けられてもよい。また、第3媒体センサ118は、媒体が接触している場合、又は、媒体が接触していない場合に所定の電流を流す接触検知センサ等により、媒体の存在を検出してもよい。
 スキューセンサ120は、搬送される媒体の後端における第2傾き量を検出するための第2センサの一例である。媒体搬送装置100は、複数のスキューセンサ120を有する。図3に示す例では、媒体搬送装置100は、五つのスキューセンサ120を有しているが、スキューセンサ120の数は任意でよい。各スキューセンサ120は、媒体搬送方向A2において第5搬送ローラ116eと第6搬送ローラ116fの間、即ち撮像装置119及び第3媒体センサ118より下流側且つ排出ローラ121より上流側に配置される。また、各スキューセンサ120は、幅方向A4に間隔を空けて並べて配置される。
 各スキューセンサ120は、媒体搬送路に対して一方の側(第1筐体101側)に設けられた発光器及び受光器と、媒体搬送路を挟んで発光器及び受光器と対向する位置(第2筐体102側)に設けられたミラー等の反射部材とを含む。発光器は、LED等であり、媒体搬送路に向けて光を照射する。一方、受光器は、発光器により照射され、反射部材により反射された光を受光する。スキューセンサ120と対向する位置に媒体が存在するときは、発光器から照射された光は媒体により遮られるため、受光器は発光器から照射された光を検出しない。受光器は、受光する光の強度に基づいて、スキューセンサ120の位置に媒体が存在する状態と存在しない状態とで信号値が変化するスキュー信号を生成して出力する。
 なお、発光器及び受光器は、媒体搬送路を挟んで対向して設けられてもよい。また、スキューセンサ120は、媒体が接触している場合、又は、媒体が接触していない場合に所定の電流を流す接触検知センサ等により、媒体の存在を検出してもよい。
 図4A及び図4Bは、排出ローラ121について説明するための模式図である。図4A及び図4Bは、開いた状態の第1筐体101を搬送路側から見た模式図である。
 図4A及び図4Bに示すように、媒体搬送装置100の排出機構は、排出ローラ121及び対向ローラ122に加えて、排出シャフト121a、支持部材121b、係合部材121c及び案内部材121d等を有する。
 排出シャフト121aは、排出ローラ121の回転軸であり、排出ローラ121を回転可能に支持する。支持部材121bは、幅方向A4において媒体搬送路の一端側に配置された側壁W1の外側に配置され、後述する処理回路からの制御に従って回転するモータにより回転可能に設けられる。支持部材121bは、排出シャフト121aの揺動軸であり、排出シャフト121aが媒体搬送面と平行な方向に揺動するように、排出シャフト121aの一端を支持する。案内部材121dは、支持部材121bを中心として円弧上に延伸するレールであり、幅方向A4において側壁W1の反対側に配置された側壁W2の外側に配置される。係合部材121cは、案内部材121dに沿って移動可能に、排出シャフト121aの他端に設けられる。
 排出シャフト121aは、媒体給送開始時、排出シャフト121aが延伸する方向が、ピックローラ112、給送ローラ113、ブレーキローラ114及び第1~第7搬送ローラ116a~gの回転軸が延伸する方向と略平行となる初期位置に配置される。排出シャフト121aが初期位置に配置されている場合、媒体は、ピックローラ112、給送ローラ113、ブレーキローラ114及び第1~第7搬送ローラ116a~gによって搬送されてきた方向と同一方向に向かって排出される。
 一方、図4A及び図4Bに示すように、支持部材121bが回転すると、排出シャフト121aが媒体搬送面に沿って揺動し、係合部材121cが案内部材121dに沿って移動する。これにより、排出シャフト121aは、排出シャフト121aが延伸する方向が、ピックローラ112、給送ローラ113、ブレーキローラ114及び第1~第7搬送ローラ116a~gの回転軸が延伸する方向に対して傾く移動位置に配置される。排出シャフト121aが移動位置に配置されている場合、媒体は、ピックローラ112、給送ローラ113、ブレーキローラ114及び/又は第1~第7搬送ローラ116a~gによって搬送されてきた方向に対して傾くように排出される。
 このように、排出ローラ121は、排出する媒体の傾きを補正可能に設けられている。対向ローラ122の回転軸である不図示の対向シャフトも、排出シャフト121aと同様にして、排出シャフト121aとともに揺動可能に設けられる。なお、対向シャフトは、揺動しないように設けられてもよい。
 また、媒体搬送装置100は、他の方法により、排出する媒体の傾きを補正してもよい。例えば、複数の排出ローラ121が、別個のモータにより、それぞれ独立して回転可能に設けられてもよい。その場合、媒体搬送装置100は、各排出ローラ121の回転速度を相互に異ならせることにより、排出する媒体の傾きを補正する。また、複数の排出ローラ121が、処理回路からの制御に従ってそれぞれ独立して移動するように設けられた複数の押圧部材により、それぞれ独立して対向ローラ122側に押圧されるように設けられてもよい。一般に、相互に対向する二つのローラ間にかかる力が大きいほど、その二つのローラによる媒体の搬送速度は高く(速く)なる。したがって、媒体搬送装置100は、各排出ローラ121にかかる押圧力を相互に異ならせることにより、排出する媒体の傾きを補正することができる。
 図5は、媒体搬送装置100の概略構成を示すブロック図である。
 媒体搬送装置100は、前述した構成に加えて、モータ131、インタフェース装置132、記憶装置140及び処理回路150等をさらに有する。
 モータ131は、一又は複数のモータを含み、処理回路150からの制御信号によって、ピックローラ112、給送ローラ113、ブレーキローラ114、第1~第7搬送ローラ116a~g及び排出ローラ121を回転させて媒体を搬送及び排出させる。なお、第1~第7従動ローラ117a~g又は対向ローラ122は、第1~第7搬送ローラ116a~g又は排出ローラ121の回転に従って従動回転するのでなく、モータ131からの駆動力によって回転するように設けられてもよい。また、モータ131は、載置台103を移動させるためのモータを含む。さらに、モータ131は、支持部材121bを回転させるためのモータを含み、処理回路150からの制御信号によって、排出シャフト121aを揺動させる。
 インタフェース装置132は、例えばUSB等のシリアルバスに準じるインタフェース回路を有し、不図示の情報処理装置(例えば、パーソナルコンピュータ、携帯情報端末等)と電気的に接続して読取画像及び各種の情報を送受信する。また、インタフェース装置132の代わりに、無線信号を送受信するアンテナと、所定の通信プロトコルに従って、無線通信回線を通じて信号の送受信を行うための無線通信インタフェース回路とを有する通信部が用いられてもよい。所定の通信プロトコルは、例えば無線LAN(Local Area Network)である。
 記憶装置140は、RAM(Random Access Memory)、ROM(Read Only Memory)等のメモリ装置、ハードディスク等の固定ディスク装置、又はフレキシブルディスク、光ディスク等の可搬用の記憶装置等を有する。また、記憶装置140には、媒体搬送装置100の各種処理に用いられるコンピュータプログラム、データベース、テーブル等が格納される。コンピュータプログラムは、コンピュータ読み取り可能な可搬型記録媒体から、公知のセットアッププログラム等を用いて記憶装置140にインストールされてもよい。可搬型記録媒体は、例えばCD-ROM(compact disc read only memory)、DVD-ROM(digital versatile disc read only memory)等である。
 処理回路150は、予め記憶装置140に記憶されているプログラムに基づいて動作する。処理回路150は、例えばCPU(Central Processing Unit)である。処理回路150として、DSP(digital signal processor)、LSI(large scale integration)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等が用いられてもよい。
 処理回路150は、操作装置105、表示装置106、第1媒体センサ111、第2媒体センサ115、第3媒体センサ118、撮像装置119、スキューセンサ120、モータ131、インタフェース装置132及び記憶装置140等と接続され、これらの各部を制御する。処理回路150は、モータ131を制御して媒体を搬送し、撮像装置119を制御して入力画像を取得し、取得した入力画像に基づいて媒体画像を生成し、インタフェース装置132を介して情報処理装置に送信する。また、処理回路150は、撮像装置119から取得した入力画像に基づいて媒体の第1傾き量を検出し、スキューセンサ120から取得したスキュー信号に基づいて媒体の第2傾き量を検出する。処理回路150は、検出した第1傾き量及び第2傾き量に基づいて、媒体の傾きを補正するように排出ローラ121を制御する。
 図6は、記憶装置140及び処理回路150の概略構成を示す図である。
 図6に示すように、記憶装置140には、制御プログラム141及び画像生成プログラム142等の各プログラムが記憶される。これらの各プログラムは、プロセッサ上で動作するソフトウェアにより実装される機能モジュールである。処理回路150は、記憶装置140に記憶された各プログラムを読み取り、読み取った各プログラムに従って動作することにより、制御部151及び画像生成部152として機能する。
 図7及び図8は、媒体読取処理の動作の例を示すフローチャートである。
 以下、図7及び図8に示したフローチャートを参照しつつ、媒体搬送装置100の媒体読取処理の動作の例を説明する。なお、以下に説明する動作のフローは、予め記憶装置140に記憶されているプログラムに基づき主に処理回路150により媒体搬送装置100の各要素と協働して実行される。なお、このフローチャートが実行される前に、排出ローラ121の排出シャフト121aは初期位置に配置されている。また、媒体搬送装置100は、撮像装置119の撮像位置と排出ローラ121の間の距離より長い媒体を長尺媒体として搬送する。
 最初に、制御部151は、利用者により操作装置105又は情報処理装置を用いて媒体の読み取りの指示が入力されて、媒体の読み取りを指示する操作信号を操作装置105又はインタフェース装置132から受信するまで待機する(ステップS101)。
 次に、制御部151は、第1媒体センサ111から第1媒体信号を取得し、取得した第1媒体信号に基づいて、載置台103に媒体が載置されているか否かを判定する(ステップS102)。載置台103に媒体が載置されていない場合、制御部151は、処理をステップS101へ戻し、操作装置105から新たに操作信号を受信するまで待機する。
 一方、載置台103に媒体が載置されている場合、制御部151は、モータ131を駆動し、媒体の給送及び搬送を開始させる(ステップS103)。制御部151は、載置台103を移動させるためのモータを駆動し、媒体を給送可能な位置に載置台103を移動させる。次に、制御部151は、各ローラを回転させるためのモータを駆動し、ピックローラ112、給送ローラ113、ブレーキローラ114、第1~第7搬送ローラ116a~g及び排出ローラ121を回転させ、載置台103に載置された媒体を給送及び搬送させる。
 次に、制御部151は、媒体の先端が第1搬送ローラ116aと第1従動ローラ117aのニップ位置である第1ニップ位置を通過するまで待機する(ステップS104)。制御部151は、各第3媒体センサ118から第3媒体信号を定期的に受信し、何れかの第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化した場合、媒体の先端が第1ニップ位置を通過したと判定する。なお、制御部151は、第2媒体センサ115から出力される第2媒体信号に基づいて、媒体の先端が第1ニップ位置を通過したか否かを判定してもよい。その場合、制御部151は、第2媒体センサ115から第2媒体信号を定期的に受信し、第2媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化した場合、媒体の先端が第2媒体センサ115の位置を通過したと判定する。制御部151は、媒体の先端が第2媒体センサ115の位置を通過してから第1時間が経過した時に、媒体の先端が第1ニップ位置を通過したと判定する。第1時間は、媒体が、第2媒体センサ115と第1ニップ位置の間の距離を移動するために必要な時間に設定される。
 媒体の先端が第1ニップ位置を通過した場合、制御部151は、ピックローラ112、給送ローラ113及びブレーキローラ114を回転させるためのモータを停止させ、媒体の給送を停止させる(ステップS105)。これにより、媒体の搬送中に次の媒体が給送されることが防止される。現在搬送されている媒体は、以降、第1~第7搬送ローラ116a~g及び排出ローラ121によって搬送される。
 次に、制御部151は、媒体の先端が撮像装置119の撮像位置を通過するまで待機する(ステップS106)。制御部151は、何れかの第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化してから第2時間が経過した時に、媒体の先端が撮像位置を通過したと判定する。第2時間は、媒体が、第3媒体センサ118と撮像位置の間の距離を移動するために必要な時間に設定される。なお、制御部151は、撮像装置119により撮像された入力画像に基づいて、媒体の先端が撮像位置を通過したか否かを判定してもよい。その場合、制御部151は、後述するステップS113の処理と同様にして、入力画像から媒体の先端を検出した時に、媒体の先端が撮像位置を通過したと判定する。
 媒体の先端が撮像装置119の撮像位置を通過した場合、制御部151は、撮像装置119から、媒体が撮像された入力画像を順次取得する(ステップS107)。
 次に、制御部151は、順次取得した入力画像に基づいて、媒体の側辺における第3傾き量を順次検出する(ステップS108)。制御部151は、これまでに取得した入力画像の内、直近の所定数の入力画像を結合(合成)して結合画像を生成し、生成した結合画像から媒体の左辺及び/又は右辺を検出する。
 制御部151は、結合画像内で、水平方向(主走査方向)に延伸する水平ライン毎に、左側から順に、各水平ライン内の各画素の水平方向の両隣の画素の階調値の差の絶対値(以下、隣接差分値と称する)を算出する。制御部151は、各水平ライン内で隣接差分値が階調閾値を越える画素をエッジ画素として検出する。制御部151は、各水平ライン内で最初に検出されたエッジ画素、即ち最も左側に位置する画素を左端エッジ画素として検出し、各水平ライン内で最後に検出されたエッジ画素、即ち最も右側に位置する画素を右端エッジ画素として検出する。階調値は、輝度値又は色値(R値、G値又はB値)等である。階調閾値は、例えば、人が画像上の輝度の違いを目視により判別可能な輝度値の差(例えば20)に設定される。
 なお、制御部151は、結合画像内の各画素から水平方向に所定距離だけ離れた二つの画素の階調値の差の絶対値を隣接差分値として算出してもよい。また、制御部151は、結合画像内の各画素の階調値を閾値と比較することによりエッジ画素を検出してもよい。例えば、制御部151は、特定の画素の階調値が閾値未満であり、その特定の画素に対して水平方向に隣接する画素又は所定距離だけ離れた画素の階調値が閾値以上である場合、その特定の画素をエッジ画素として検出する。
 次に、制御部151は、最小二乗法を用いて、各左端エッジ画素を通過する直線を媒体の左辺として検出し、各右端エッジ画素を通過する直線を媒体の右辺として検出する。なお、制御部151は、ハフ変換を用いて、各エッジ画素を通過する直線を媒体の側辺として検出してもよい。制御部151は、検出した左辺又は右辺の垂直方向(副走査方向)に対する傾斜角を媒体の第3傾き量として検出する。
 次に、制御部151は、順次検出した第3傾き量の変化量に基づいて、媒体の累積スキューが発生しているか否かを判定する(ステップS109)。累積スキューとは、時間の経過(媒体の搬送量)とともに、媒体の傾きが徐々に変化していくスキューを意味する。制御部151は、今回検出した第3傾き量と前回検出した第3傾き量との差の絶対値を、第3傾き量の変化量として算出する。制御部151は、算出した変化量が所定値以上である場合、媒体の累積スキューが発生していると判定し、算出した変化量が所定値未満である場合、媒体の累積スキューが発生していないと判定する。所定値は、例えば、媒体搬送装置100がサポートする最大サイズの媒体が搬送された場合に、幅方向A4において、その媒体が、その媒体と媒体搬送路の側壁との間の距離の1/2だけずれる傾き量に設定される。
 図9A及び図9Bは、通常のスキューについて説明するための模式図である。
 図9Aは、通常のスキューが発生している状態の、時刻T1における媒体M1と、時刻T1から所定時間後の時刻T2における媒体M1とを示している。図9Bは、媒体M1が撮像された画像P1を示す。図9Aに示すように、媒体M1は傾いて搬送されているが、時刻T1における媒体搬送方向A2に対する媒体M1の傾斜角θ1と、時刻T2における媒体搬送方向A2に対する媒体M1の傾斜角θ2とは近似しており、第3傾き量はほとんど変化していない。この場合、図9Bに示すように、画像P1において媒体M1は傾いて写っているが、媒体M1は矩形状に写っている。そのため、媒体搬送装置100は、公知の画像処理技術を用いて画像P1を回転させることにより、媒体M1が傾いていない状態の画像を取得することができる。
 図10A及び図10Bは、累積スキューについて説明するための模式図である。
 図10Aは、累積スキューが発生している状態の、時刻T1における媒体M2と、時刻T2における媒体M2とを示している。図10Bは、媒体M2が撮像された画像P2を示す。図10Aに示すように、媒体M2は時間の経過とともに傾きが大きくなるように搬送されており、時刻T1における媒体搬送方向A2に対する媒体M2の傾斜角θ1に対して、時刻T2における媒体搬送方向A2に対する媒体M2の傾斜角θ2は大きくなっている。この場合、図9Bに示すように、画像P2において媒体M2は曲がって(非矩形状に)写っている。画像P2において媒体M2を矩形状に変換することは困難であり、媒体搬送装置100は、画像P2に対して複雑な画像処理を実施する必要がある。したがって、媒体搬送装置100は、累積スキューが発生しないように、媒体の傾きを補正することが好ましい。
 図11は、累積スキューが発生する条件について説明するための模式図である。
 図11に示す例では、幅方向A4において、媒体M3の一端側の位置L1に媒体搬送方向A2の力F1がかかり、他端側の位置L2に媒体搬送方向A2の力F2がかかっている。また、幅方向A4において位置L1と位置L2の間の位置Lbには、ブレーキローラ114による媒体搬送方向A2と反対方向の力Fbがかかっている。即ち、力F1及び力F2は、媒体を下流側に送ろうとする力であり、力Fbは、媒体を上流側に戻そうとする力である。位置Lbが位置L1と位置L2の略中心位置である場合(図11の距離xが略0である場合)、力F1と力F2の大きさの合計と力Fbの大きさとが近似していると(以下の式(1)が満たされると)、媒体の搬送が不安定になり累積スキューが発生する可能性が高い。
 (F1+F2)-Fb≦m   (1)
ここで、mは定数である。
 また、力F1と力F2の大きさの差が十分に大きく、以下の式(2)が満たされる場合、媒体と、媒体搬送路の搬送面又は撮像装置119のガラス面との間の摩擦の影響により媒体の幅方向A4の重心位置がずれてしまい、累積スキューが発生する可能性が高い。
 |F1-F2|±2・Fb・x≧n   (2)
ここで、xは、幅方向A4における、力F1がかかる位置L1と力F2がかかる位置L2の中心位置と、力Fbがかかる位置Lbとの間の距離であり、nは定数である。力F1及び力F2のうち、小さい方の力がかかる位置側に、力Fbがかかる位置Lbが位置する場合、式(2)の±は+となり、力F1及び力F2のうち、大きい方の力がかかる位置側に、力Fbがかかる位置Lbが位置する場合、式(2)の±は-となる。
 媒体の累積スキューが発生していない場合、制御部151は、処理をステップS111へ移行する。
 一方、媒体の累積スキューが発生している場合、制御部151は、順次検出した第3傾き量の変化量に基づいて媒体の傾きを補正するように、排出ローラ121を制御する(ステップS110)。
 例えば、制御部151は、排出シャフト121aを揺動させるように、支持部材121bを回転させるためのモータを駆動することにより、媒体の傾きを補正する。制御部151は、媒体が遅れている側の排出ローラ121が排出口107に近付くように、又は、媒体が先行している側の排出ローラ121が排出口107から離れるように、排出シャフト121aを揺動させる。制御部151は、排出シャフト121aを、現在の排出シャフト121aの配置位置に対して、第3傾き量の変化量だけ揺動させる。
 なお、複数の排出ローラ121が、別個のモータにより、それぞれ独立して回転可能に設けられている場合、制御部151は、各モータの回転速度を異ならせることにより、媒体の傾きを補正してもよい。
 図12は、排出ローラ121の速度を変更することにより媒体の傾きを補正する処理について説明するための模式図である。
 図12は、媒体M4が媒体搬送方向A2に対して傾斜角θ3だけ傾いている例を示す。即ち、この例では、幅方向A4における二つの排出ローラ121の間の距離がLである場合、媒体M4内で各排出ローラ121と対向する二つの位置では、媒体搬送方向A2において距離(L・tanθ3)だけ、ずれが発生している。このずれを解消するためには、媒体が遅れている側の排出ローラ121による搬送距離を、媒体が先行している側の排出ローラ121による搬送距離より、距離(L・tanθ3)だけ大きくする必要がある。即ち、傾きを補正する補正時間がtである場合、二つの排出ローラ121の速度差は{(L・tanθ3)/t}に設定される必要がある。
 したがって、制御部151は、累積スキューを解消するために、以下の式(3)に従って、二つの排出ローラ121の速度差Vdを設定する。
 Vd={(L・tanθ)/t}  (3)
ここで、Lは二つの排出ローラ121の間の距離であり、θは第3傾き量の変化量であり、tは傾きを補正する補正時間である。制御部151は、補正時間tの間、二つの排出ローラ121の速度差が、設定した速度差Vdとなるように、各排出ローラ121を駆動するモータの回転速度を変更する。
 なお、媒体の傾きを補正する際の媒体の搬送速度を通常の搬送速度より高速にすると、媒体の損傷が発生する可能性が高い。そのため、媒体が遅れている側の排出ローラ121の搬送速度が通常の搬送速度に設定され、媒体が先行している側の排出ローラ121の搬送速度が速度差Vdだけ低く(遅く)設定されることが望ましい。
 また、各排出ローラ121が各押圧部材により独立して対向ローラ122側に押圧されるように設けられている場合、媒体搬送装置100は、各排出ローラ121にかける力と、媒体の搬送速度との関係を事前に記憶装置140に記憶しておく。制御部151は、記憶装置140に記憶された関係に従って、補正時間tの間、二つの排出ローラ121の速度差が、設定した速度差Vdとなるように、各押圧部材による押圧力を制御する。
 また、制御部151は、媒体の先端が排出ローラ121の位置を通過したか否かを判定し、媒体の先端が排出ローラ121の位置を通過した場合に限り、媒体の傾きを補正するように排出ローラ121を制御してもよい。その場合、制御部151は、何れかの第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化してから第3時間が経過した時に、媒体の先端が排出ローラ121の位置を通過したと判定する。第3時間は、媒体が、第3媒体センサ118と排出ローラ121の位置の間の距離を移動するために必要な時間に設定される。
 このように、制御部151は、媒体の先端が撮像装置119の撮像位置を通過してから、即ち媒体の後端が撮像装置119の撮像位置を通過する前に、順次検出した第3傾き量の変化量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。制御部151は、媒体の第3傾き量の変化量を小刻みに検出し、媒体の傾きを小刻みに補正することにより、媒体画像内での媒体の歪みの発生を抑制するとともに、媒体の損傷(しわ又は破れ)の発生を抑制することができる。
 次に、制御部151は、媒体の後端が撮像装置119の撮像位置を通過したか否かを判定する(ステップS111)。制御部151は、何れかの第3媒体信号の信号値が、媒体が存在することを示す値から存在しないことを示す値に変化してから第2時間が経過した時に、媒体の後端が撮像位置を通過したと判定する。なお、制御部151は、撮像装置119により撮像された入力画像に基づいて、媒体の後端が撮像位置を通過したか否かを判定してもよい。その場合、制御部151は、後述するステップS113の処理と同様にして、入力画像から媒体の後端を検出し、媒体の後端を検出した時に、媒体の後端が撮像位置を通過したと判定する。媒体の後端が撮像位置を通過していない場合、制御部151は、処理をステップS107に戻し、ステップS107~S111の処理を繰り返す。
 一方、媒体の後端が撮像位置を通過した場合、画像生成部152は、これまでに取得した入力画像を結合(合成)して媒体画像を生成し、生成した媒体画像を、インタフェース装置132を介して情報処理装置に送信することにより出力する(ステップS112)。情報処理装置は、受信した媒体画像をユーザが閲覧できるように表示する。
 次に、制御部151は、生成された媒体画像に基づいて、搬送される媒体の後端における第1傾き量を検出する(ステップS113)。
 制御部151は、媒体画像内で、垂直方向(副走査方向)に延伸する垂直ライン毎に、上側から順に、各垂直ライン内の各画素の垂直方向の両隣の画素の階調値の差の絶対値(以下、隣接差分値と称する)を算出する。制御部151は、各垂直ライン内で隣接差分値が階調閾値を越える画素をエッジ画素として検出する。制御部151は、各垂直ライン内で最初に検出されたエッジ画素、即ち最も上側に位置する画素を上端エッジ画素として検出し、各垂直ライン内で最後に検出されたエッジ画素、即ち最も下側に位置する画素を下端エッジ画素として検出する。なお、制御部151は、左端エッジ画素及び右端エッジ画素を検出する場合と同様に、媒体画像内の各画素から垂直方向に所定距離だけ離れた二つの画素の階調値の差の絶対値を隣接差分値として算出してもよい。また、制御部151は、媒体画像内の各画素の階調値を閾値と比較することによりエッジ画素を検出してもよい。
 次に、制御部151は、最小二乗法を用いて、各上端エッジ画素を通過する直線を媒体の上辺として検出し、各下端エッジ画素を通過する直線を媒体の下辺として検出する。なお、制御部151は、ハフ変換を用いて、各エッジ画素を通過する直線を媒体の上辺及び下辺として検出してもよい。制御部151は、検出した下辺の水平方向(主走査方向)に対する傾斜角を媒体の第1傾き量として検出する。
 次に、制御部151は、検出した第1傾き量に基づいて媒体の傾きを補正するように、排出ローラ121を制御する(ステップS114)。制御部151は、ステップS110の処理と同様にして、媒体の傾きを補正するように排出ローラ121を制御する。
 制御部151は、排出シャフト121aを揺動させることにより媒体の傾きを補正する場合、排出シャフト121aを、現在の排出シャフト121aの配置位置に対して、第1傾き量だけ揺動させる。この時点で、媒体の後端は撮像位置を通過しており、媒体の傾きを大きく補正しても媒体画像に影響が及ばないため、制御部151は、媒体の傾きを大きく変更することができる。
 なお、制御部151は、媒体の排出が完了するまでに、所定回数(2以上の整数であり、例えば10回)に分けて媒体の傾きを補正してもよい。その場合、制御部151は、排出シャフト121aを、第1傾き量を所定回数で除算した角度ずつ揺動させる。これにより、制御部151は、媒体の傾きを徐々に補正して媒体の損傷の発生を抑制しつつ、媒体排出時には媒体の傾きを完全に解消させることが可能となる。
 また、制御部151は、各モータの回転速度を異ならせることにより媒体の傾きを補正する場合、上記した式(3)に従って、二つの排出ローラ121の速度差Vdを設定する。但し、この場合、式(3)のθとして、第1傾き量が設定される。また、補正時間tは、例えば、媒体の後端が撮像位置を通過してから排出ローラ121の位置を通過するまでの時間に設定される。これにより、制御部151は、媒体の傾きを徐々に補正して媒体の損傷の発生を抑制しつつ、媒体排出時には媒体の傾きを完全に解消させることが可能となる。また、制御部151は、媒体の排出が完了するまでに、所定回数に分けて媒体の傾きを補正してもよい。その場合、θとして、第1傾き量を所定回数で除算した角度が設定される。補正時間tは、媒体の後端が撮像位置を通過してから排出ローラ121の位置を通過するまでの時間を所定回数で除算した時間より小さい値に設定される。この場合も、制御部151は、媒体の傾きを徐々に補正して媒体の損傷の発生を抑制しつつ、媒体排出時には媒体の傾きを完全に解消させることが可能となる。
 また、制御部151は、各押圧部材による押圧力を異ならせることにより媒体の傾きを補正する場合、補正時間tの間、二つの排出ローラ121の速度差が速度差Vdとなるように、各押圧部材による押圧力を制御する。
 また、制御部151は、媒体の先端が排出ローラ121の位置を通過した場合に限り、媒体の傾きを補正するように排出ローラ121を制御してもよい。但し、撮像装置119の撮像位置と排出ローラ121の間の距離より長い長尺媒体が搬送されている場合、媒体の後端が撮像位置を通過した時点で、媒体の先端は排出ローラ121の位置を通過している。そのため、制御部151は、媒体の先端が排出ローラ121の位置を通過したか否かを判定することなく、媒体の傾きを補正してもよい。
 次に、制御部151は、媒体の後端がスキューセンサ120の位置を通過するまで待機する(ステップS115)。制御部151は、各スキューセンサ120からスキュー信号を定期的に受信し、何れか二つのスキュー信号の信号値が、媒体が存在することを示す値から存在しないことを示す値に変化した場合、媒体の後端がスキューセンサ120の位置を通過したと判定する。
 媒体の後端がスキューセンサ120の位置を通過した場合、制御部151は、各スキューセンサ120から受信したスキュー信号に基づいて、搬送される媒体の後端における第2傾き量を検出する(ステップS116)。
 制御部151は、例えば、媒体の先端が最初に通過したスキューセンサ120の位置を通過してから、媒体の先端が次に通過したスキューセンサ120の位置を通過するまでに、媒体の先端が移動した媒体搬送方向A2の移動距離を算出する。制御部151は、算出した移動距離を、二つのスキューセンサ120の間の距離で除算した除算値の逆正接を第2傾き量として検出する。制御部151は、媒体の先端が一方のスキューセンサ120の位置を通過してから他方のスキューセンサ120の位置を通過するまでに、モータ131が駆動された駆動時間に、媒体の搬送速度を乗算した乗算値を移動距離として特定する。
 次に、制御部151は、検出した第2傾き量に基づいて媒体の傾きを補正するように、排出ローラ121を制御する(ステップS117)。制御部151は、ステップS114の処理と同様にして、媒体の傾きを補正するように排出ローラ121を制御する。
 制御部151は、排出シャフト121aを揺動させることにより媒体の傾きを補正する場合、排出シャフト121aを、現在の排出シャフト121aの配置位置に対して、第2傾き量だけ揺動させる。また、制御部151は、所定回数に分けて媒体の傾きを補正する場合、排出シャフト121aを、第2傾き量を所定回数で除算した角度ずつ揺動させる。
 また、制御部151は、各モータの回転速度を異ならせることにより媒体の傾きを補正する場合、上記した式(3)に従って、二つの排出ローラ121の速度差Vdを設定する。但し、この場合、式(3)のθとして、第2傾き量が設定される。また、補正時間tは、例えば、媒体の後端がスキューセンサ120の位置を通過してから排出ローラ121の位置を通過するまでの時間に設定される。また、制御部151は、所定回数に分けて媒体の傾きを補正する場合、θとして、第2傾き量を所定回数で除算した角度を設定する。その場合、補正時間tは、媒体の後端が撮像位置を通過してから排出ローラ121の位置を通過するまでの時間を所定回数で除算した時間より小さい値に設定される。
 また、制御部151は、各押圧部材による押圧力を異ならせることにより媒体の傾きを補正する場合、補正時間tの間、二つの排出ローラ121の速度差が速度差Vdとなるように、各押圧部材による押圧力を制御する。
 また、制御部151は、媒体の先端が排出ローラ121の位置を通過した場合に限り、媒体の傾きを補正するように排出ローラ121を制御してもよい。
 次に、制御部151は、媒体の後端が排出ローラ121の位置を通過するまで、即ち媒体の排出が完了するまで待機する(ステップS118)。制御部151は、媒体の後端がスキューセンサ120の位置を通過したと判定してから第4時間が経過した時に、媒体の後端が排出ローラ121の位置を通過したと判定する。第4時間は、媒体が、スキューセンサ120と排出ローラ121の位置の間の距離を移動するために必要な時間に設定される。
 次に、制御部151は、第1媒体センサ111から受信する第1媒体信号に基づいて、載置台103に媒体が残っているか否かを判定する(ステップS119)。載置台103に媒体が残っている場合、制御部151は、ステップS103へ処理を戻し、ステップS103~S119の処理を繰り返す。
 一方、載置台103に媒体が残っていない場合、制御部151は、第1~第7搬送ローラ116a~g及び排出ローラ121を回転させるためのモータを停止させ、媒体の搬送を停止させ(ステップS120)、一連のステップを終了する。
 このように、制御部151は、媒体の後端が撮像装置119の撮像位置を通過したときに、第1傾き量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。そして、制御部151は、媒体の後端が、撮像装置119より下流側に配置されたスキューセンサ120の位置を通過したときに、第2傾き量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。
 図13は、媒体の傾きを二段階で補正することの技術的意義について説明するための模式図である。
 図13の左側の図は、媒体M5の後端が撮像装置119の撮像位置を通過した状態を示し、図13の右側の図は、媒体M5の後端がスキューセンサ120の位置を通過した状態を示す。図13に示すように、媒体M5は、後端が撮像装置119の撮像位置を通過した時点で傾斜角θaだけ傾いており、後端がスキューセンサ120の位置を通過した時点で傾斜角θbだけ傾いている。上記したように、媒体搬送中に媒体の累積スキューが発生する可能性があり、あるタイミングで媒体の傾きを補正しても、媒体の搬送完了時(排出完了時)に媒体の傾きが解消されていない可能性がある。したがって、排出台104において、排出される媒体を良好に整列させるためには、媒体の傾きの補正は、媒体の排出直前の状態に基づいて実行されることが望ましい。しかしながら、長尺媒体が搬送される場合、媒体は長時間にわたって搬送されるため、搬送中に、媒体の傾き量が大きくなっていき、媒体が搬送路の側壁に当接して媒体のジャムが発生する可能性がある。また、媒体の傾き量が大きい場合に媒体の傾きの補正が一度に行われると、媒体の損傷(しわ又は破れ)が発生する可能性がある。
 媒体搬送装置100は、媒体の後端が撮像装置119の撮像位置を通過したときに、その時点での媒体の傾斜角θaを解消するように媒体の傾きの補正を開始する。媒体搬送装置100は、媒体の傾きの補正を早期に開始するため、長尺媒体のジャムの発生を抑制できる。また、媒体搬送装置100は、長時間にわたって徐々に媒体の傾きを補正するため、媒体の損傷の発生を抑制できる。その後、媒体搬送装置100は、媒体の後端がスキューセンサ120の位置を通過したときに、その時点での媒体の傾斜角θbを解消するように媒体の傾きを補正する。これにより、媒体搬送装置100は、媒体の後端が撮像装置119の撮像位置を通過した後に発生した累積スキューの影響を低減させて、排出台104において媒体を良好に整列させることができる。
 なお、制御部151は、他の方法により媒体の傾きを補正してもよい。例えば、制御部151は、媒体の後端が撮像装置119の撮像位置を通過したときには、排出ローラ121に媒体の傾きを補正させない。一方、制御部151は、媒体の後端がスキューセンサ120の位置を通過したときに、第1傾き量に対する第2傾き量の変化量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。即ち、制御部151は、図8のステップS114では媒体の傾きを補正せずに、ステップS117において、第1傾き量に対する第2傾き量の変化量に基づいて媒体の傾きを補正する。
 図14は、媒体の後端が撮像装置119の撮像位置を通過したときには媒体の傾きを補正させず、媒体の後端がスキューセンサ120の位置を通過したときに変化量に基づいて媒体の傾きを補正する例について説明するための模式図である。
 図14の左側の図は、媒体M6の後端が撮像装置119の撮像位置を通過した状態を示し、図14の中央の図は、媒体M6の後端がスキューセンサ120の位置を通過した状態を示す。また、図14の右側の図は、傾きの補正が行われないまま、媒体M6の後端が排出ローラ121の位置を通過した状態を示す。図14に示すように、媒体M6は、後端が撮像装置119の撮像位置を通過した時点で傾斜角θaだけ傾いており、後端がスキューセンサ120の位置を通過した時点で傾斜角θbだけ傾いている。媒体の後端が撮像装置119の撮像位置を通過したときに媒体の傾きが補正されない場合、累積スキューが発生し、傾斜角θbは傾斜角θaより大きくなる可能性がある。仮に媒体の傾きの補正が行われなかった場合、媒体M6の後端が排出ローラ121の位置を通過した時点での傾斜角θcは傾斜角θbよりさらに大きくなる。
 媒体の傾斜角の変化量は、媒体の搬送距離に対して線形に変化する可能性が高い。したがって、傾斜角θa、θb、θcの間には、以下の式(4)が成立すると推定される。
 La:(θb-θa)=L:(θc-θa)  (4)
ここで、θaは第1傾き量であり、θbは第2傾き量であり、Laは撮像装置119の撮像位置からスキューセンサ120の位置までの距離であり、Lは撮像装置119の撮像位置から排出ローラ121の位置までの距離である。
 式(4)から以下の式(5)が成立する。
 θc=(θb-θa)×(L/La)+θa  (5)
したがって、制御部151は、図8のステップS117において、媒体の後端がスキューセンサ120の位置を通過したときに、算出した傾斜角θcだけ媒体の傾きを補正するように、排出ローラ121を制御する。即ち、制御部151は、第1傾き量θaに対する第2傾き量θbの変化量(θb-θa)に基づいて算出される傾斜角θcだけ媒体の傾きを補正する。
 制御部151は、排出シャフト121aを揺動させることにより媒体の傾きを補正する場合、排出シャフト121aを、現在の排出シャフト121aの配置位置に対して、傾斜角θcだけ揺動させる。制御部151は、各モータの回転速度を異ならせることにより媒体の傾きを補正する場合、上記した式(3)に従って、二つの排出ローラ121の速度差Vdを設定する。この場合、式(3)のθとして、傾斜角θcが設定される。また、制御部151は、所定回数に分けて媒体の傾きを補正する場合、θとして、傾斜角θcを所定回数で除算した角度を設定する。制御部151は、各押圧部材による押圧力を異ならせることにより媒体の傾きを補正する場合、補正時間tの間、二つの排出ローラ121の速度差が速度差Vdとなるように、各押圧部材による押圧力を制御する。
 このように、制御部151は、媒体の後端が撮像装置119の撮像位置を通過した時点の第1傾き量と、媒体の後端がスキューセンサ120の位置を通過した時点の第2傾き量とから、媒体の傾きの傾向を推定する。制御部151は、媒体の後端が排出ローラ121の位置を通過する時点で媒体の傾き量が0になるように、媒体の傾きを良好に補正することが可能となる。
 また、制御部151は、さらに他の方法により媒体の傾きを補正してもよい。例えば、制御部151は、媒体の後端が撮像装置119の撮像位置を通過したときに、第1傾き量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。但し、制御部151は、媒体の後端がスキューセンサ120の位置を通過する時点で媒体の傾き量が0になるように媒体の傾きを補正する。一方、制御部151は、媒体の後端がスキューセンサ120の位置を通過したときに、第1傾き量に対する第2傾き量の変化量に基づいて媒体の傾きを補正するように排出ローラ121を制御する。即ち、制御部151は、図8のステップS114において、第1傾き量に基づいて媒体の傾きを補正し、ステップS117において、第1傾き量に対する第2傾き量の変化量に基づいて媒体の傾きを補正する。
 図15は、媒体の後端がスキューセンサ120の位置を通過する時点で媒体の傾きが0になるように媒体の傾きを補正する例について説明するための模式図である。
 図15の左側の図は、媒体M7の後端が撮像装置119の撮像位置を通過した状態を示し、図15の中央の図は、媒体M7の後端がスキューセンサ120の位置を通過した状態を示す。また、図15の右側の図は、媒体M7の後端がスキューセンサ120の位置を通過した時に媒体の傾斜角θcが0になっている状態を示す。図15に示すように、媒体M7は、後端が撮像装置119の撮像位置を通過した時点で傾斜角θaだけ傾いている。媒体の後端がスキューセンサ120の位置を通過する時点で媒体の傾きが0になるように媒体の傾きを補正しているにもかかわらず、媒体M7は、後端がスキューセンサ120の位置を通過した時点で傾斜角θbだけ傾いている。
 媒体の傾斜角の変化量は、媒体の搬送距離に対して線形に変化する可能性が高い。したがって、傾斜角θa、θb、θcの間には、以下の式(6)が成立すると推定される。
 θa’:(θb-θa)=θb’:(θc-θb)  (6)
ここで、θaは第1傾き量であり、θbは第2傾き量であり、θcは後端がスキューセンサ120の位置を通過した時点での傾斜角である。また、θa’は媒体の後端が撮像装置119の撮像位置を通過したときに補正した媒体の傾き量であり、θb’は媒体の後端がスキューセンサ120の位置を通過するときに補正する媒体の傾き量である。
 式(6)から以下の式(7)が成立する。
 θb’={θa’×(θc-θb)}/(θb-θa)  (7)
媒体の後端が撮像装置119の撮像位置を通過したときに補正した媒体の傾き量θa’は、その時点での第1傾き量θaである。媒体の傾きを傾き量θb’だけ補正することにより傾斜角θcを0にするためには、以下の式(8)で算出される傾き量θb’だけ媒体の傾きを補正する必要がある。
 θb’={θa×θb}/(θa-θb)  (8)
 制御部151は、排出シャフト121aを揺動させることにより媒体の傾きを補正する場合、排出シャフト121aを、現在の排出シャフト121aの配置位置に対して、傾斜角θb’だけ揺動させる。制御部151は、各モータの回転速度を異ならせることにより媒体の傾きを補正する場合、上記した式(3)に従って、二つの排出ローラ121の速度差Vdを設定する。この場合、式(3)のθとして、傾斜角θb’が設定される。また、制御部151は、所定回数に分けて媒体の傾きを補正する場合、θとして、傾斜角θb’を所定回数で除算した角度を設定する。制御部151は、各押圧部材による押圧力を異ならせることにより媒体の傾きを補正する場合、補正時間tの間、二つの排出ローラ121の速度差が速度差Vdとなるように、各押圧部材による押圧力を制御する。
 このように、制御部151は、媒体の後端が撮像装置119の撮像位置を通過した時点の第1傾き量と、媒体の後端がスキューセンサ120の位置を通過した時点の第2傾き量とから、媒体の傾きの傾向を推定する。制御部151は、媒体の後端が排出ローラ121の位置を通過する時点で媒体の傾きが0になるように、媒体の傾きを良好に補正することが可能となる。
 また、媒体搬送装置100は、搬送される媒体の後端における第1傾き量を検出するための第1センサとして、撮像装置119の代わりに、第3媒体センサ118を用いてもよい。その場合、制御部151は、各第3媒体センサ118から第3媒体信号を定期的に受信する。図7のステップS108において、制御部151は、各第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化した場合、媒体の先端が、その第3媒体信号に対応する第3媒体センサ118の位置を通過したと判定する。制御部151は、媒体の先端が最初に通過した第3媒体センサ118の位置を通過してから、媒体の先端が次に通過した第3媒体センサ118の位置を通過するまでに、媒体の先端が移動した媒体搬送方向A2の移動距離を算出する。制御部151は、算出した移動距離を、二つの第3媒体センサ118の間の距離で除算した除算値の逆正接を第1傾き量として検出する。
 また、図7のステップS109において、制御部151は、第3媒体センサ118からの第3媒体信号に基づいて、媒体の累積スキューが発生しているか否かを判定してもよい。
 図16は、第3媒体信号に基づいて媒体の累積スキューが発生しているか否かを判定する例について説明するための模式図である。
 図16の上側の図は、媒体M8の先端が第3媒体センサ118の位置を通過した直後の状態を示し、図16の下側の図は、媒体M8の先端が第3媒体センサ118の位置を通過してから所定時間が経過した状態を示す。図16に示すように、先端が第3媒体センサ118の位置を通過した時に媒体のスキューが発生していない場合、複数の第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化するタイミングは略同一となる。一方、その後、所定時間が経過した時に、特定の第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化した場合、その第3媒体信号に対応する第3媒体センサ118の位置を媒体M8の側辺が通過している可能性が高い。
 制御部151は、媒体の先端が通過した直後に取得した複数の第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化するタイミングが略同一(一定時間以内)であるか否かを判定する。制御部151は、そのタイミングが略同一である場合、それから所定時間が経過した後に取得した他の第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化したか否かを判定する。制御部151は、そのタイミングが略同一であり且つ他の第3媒体信号の信号値が、媒体が存在しないことを示す値から存在することを示す値に変化した場合、媒体の累積スキューが発生していると判定する。
 また、図7のステップS108~S110の処理は省略され、制御部151は、第3傾き量に基づいて媒体の傾きを補正しなくてもよい。また、制御部151は、第3傾き量に基づいて媒体の傾きを補正する前に、第1傾き量又は第2傾き量と同様にして、媒体の先端の傾き量を検出し、媒体の先端の傾き量に基づいて媒体の傾きを補正してもよい。
 以上詳述したように、媒体搬送装置100は、長尺媒体が搬送された場合に、二つのセンサでそれぞれ検出された長尺媒体の後端における傾き量に基づいて、排出ローラ121で媒体の傾きを補正する。これにより、媒体搬送装置100は、媒体の傾きをより適切に補正することが可能となった。
 特に、長尺媒体が搬送される場合、搬送中に媒体が傾いていき、媒体が媒体搬送路に当接して媒体のジャムが発生する可能性が高い。媒体搬送装置100は、搬送中に媒体の傾きを補正することによって、媒体のジャムの発生を抑制し、媒体の損傷の発生を抑制することが可能となった。また、利用者は、長尺媒体を搬送する際に、媒体のスキューが発生しないように媒体を支持する必要がなくなり、媒体搬送装置100は、利用者の利便性を向上させることが可能となった。また、媒体搬送装置100は、長尺媒体を搬送する際に、媒体のスキューが発生しないように特別な治具を使用する必要がなくなり、装置サイズ及び装置コストの増大を抑制することが可能となった。
 また、媒体搬送装置100は、排出ローラ121により、媒体のスキューを補正する。これにより、媒体搬送装置100は、排出される媒体の向きを揃えることが可能となり、排出台104上で媒体を良好に整列させることが可能となった。また、一般に、媒体搬送装置では、媒体を給送させる給送ローラと撮像装置の間、及び、撮像装置の周辺には、各種のローラ、モータ、センサ及びプリント基板等の様々な部品が配置される。媒体搬送装置100では、排出ローラ121によって媒体のスキューを補正することにより、媒体のスキューを補正するために必要な機構を給送ローラ113と撮像装置119の間、及び、撮像装置119の周辺に配置する必要がない。したがって、媒体搬送装置100は、効率良く部品を配置することができ、装置サイズの増大を抑制することが可能となった。
 また、媒体搬送装置において、媒体を給送させる給送ローラ、及び、撮像装置の周辺に配置された搬送ローラにおいて媒体にかける付圧力を大きくしすぎると、媒体は安定して給送及び搬送されない。媒体搬送装置100は、排出ローラ121により、媒体のスキューを補正することにより、給送ローラ113及び第1~第7搬送ローラ116a~116gにおける付圧力を変化させることなく、媒体を補正することができる。したがって、媒体搬送装置100は、媒体を安定して給送及び搬送させつつ、媒体の傾きを良好に補正することが可能となった。
 図17は、さらに他の実施形態に係る媒体搬送装置の処理回路250の概略構成を示す図である。
 処理回路250は、媒体搬送装置100の処理回路150の代わりに使用され、処理回路150の代わりに、媒体読取処理等を実行する。処理回路250は、制御回路251及び画像生成回路252等を有する。なお、これらの各部は、それぞれ独立した集積回路、マイクロプロセッサ、ファームウェア等で構成されてもよい。
 制御回路251は、制御部の一例であり、制御部151と同様の機能を有する。制御回路251は、操作装置105から操作信号を、第1媒体センサ111から第1媒体信号を、第2媒体センサ115から第2媒体信号を受信し、受信した各信号に基づいて媒体の給送及び搬送を制御するようにモータ131を制御する。また、制御回路251は、第3媒体センサ118から第3媒体信号を、スキューセンサ120からスキュー信号を、撮像装置119から入力画像を受信し、受信した各情報に基づいて媒体の傾き量を検出し、媒体の傾きを補正するようにモータ131を制御する。
 画像生成回路252は、画像生成部の一例であり、画像生成部152と同様の機能を有する。画像生成回路252は、撮像装置119から入力画像を取得し、インタフェース装置132に出力する。
 以上詳述したように、媒体搬送装置は、処理回路250によって媒体読取処理を実行する場合も、媒体の傾きをより適切に補正することが可能となった。
 100 媒体搬送装置、116a~g 第1~第7搬送ローラ、118 第3媒体センサ、119 撮像装置、120 スキューセンサ、121 排出ローラ、151 制御部

Claims (9)

  1.  長尺媒体を搬送する媒体搬送装置であって、
     媒体を搬送する搬送ローラと、
     搬送される媒体の後端における第1傾き量を検出するための第1センサと、
     媒体搬送方向において前記第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、
     搬送される媒体を排出する排出ローラと、
     前記第1傾き量及び前記第2傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御する制御部と、
     を有することを特徴とする媒体搬送装置。
  2.  前記媒体搬送装置は、長尺媒体として、前記第1センサと前記排出ローラの間の距離より長い媒体を搬送する、請求項1に記載の媒体搬送装置。
  3.  前記制御部は、媒体の後端が前記第1センサの位置を通過したときに、前記第1傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御し、媒体の後端が前記第2センサの位置を通過したときに、前記第2傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、請求項1または2に記載の媒体搬送装置。
  4.  前記制御部は、媒体の後端が前記第1センサの位置を通過したときには、前記排出ローラに媒体の傾きを補正させず、媒体の後端が前記第2センサの位置を通過したときに、前記第1傾き量に対する前記第2傾き量の変化量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、請求項1または2に記載の媒体搬送装置。
  5.  前記制御部は、媒体の後端が前記第1センサの位置を通過したときに、前記第1傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御し、媒体の後端が前記第2センサの位置を通過したときに、前記第1傾き量に対する前記第2傾き量の変化量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、請求項1または2に記載の媒体搬送装置。
  6.  前記第1センサは、搬送される媒体を撮像して入力画像を生成する、請求項1~5の何れか一項に記載の媒体搬送装置。
  7.  前記制御部は、
      前記入力画像に基づいて媒体の側辺における第3傾き量を順次検出し、
      媒体の後端が前記第1センサの位置を通過する前に、前記順次検出した第3傾き量の変化量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、請求項6に記載の媒体搬送装置。
  8.  媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において前記第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、を有し、長尺媒体を搬送する媒体搬送装置の制御方法であって、
     前記第1傾き量及び前記第2傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、
     ことを特徴とする制御方法。
  9.  媒体を搬送する搬送ローラと、搬送される媒体の後端における第1傾き量を検出するための第1センサと、媒体搬送方向において前記第1センサより下流側に配置され、且つ、搬送される媒体の後端における第2傾き量を検出するための第2センサと、搬送される媒体を排出する排出ローラと、を有し、長尺媒体を搬送する媒体搬送装置の制御プログラムであって、
     前記第1傾き量及び前記第2傾き量に基づいて媒体の傾きを補正するように前記排出ローラを制御する、
     ことを前記媒体搬送装置に実行させることを特徴とする制御プログラム。
PCT/JP2021/001333 2021-01-15 2021-01-15 媒体搬送装置、制御方法及び制御プログラム WO2022153497A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001333 WO2022153497A1 (ja) 2021-01-15 2021-01-15 媒体搬送装置、制御方法及び制御プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001333 WO2022153497A1 (ja) 2021-01-15 2021-01-15 媒体搬送装置、制御方法及び制御プログラム

Publications (1)

Publication Number Publication Date
WO2022153497A1 true WO2022153497A1 (ja) 2022-07-21

Family

ID=82448131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001333 WO2022153497A1 (ja) 2021-01-15 2021-01-15 媒体搬送装置、制御方法及び制御プログラム

Country Status (1)

Country Link
WO (1) WO2022153497A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193264A (ja) * 2005-01-12 2006-07-27 Canon Inc シート処理装置
JP2020146848A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006193264A (ja) * 2005-01-12 2006-07-27 Canon Inc シート処理装置
JP2020146848A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像形成装置

Similar Documents

Publication Publication Date Title
JP7047318B2 (ja) 搬送装置、プログラム及び搬送装置の制御方法
JP2006335516A (ja) シート斜行修正搬送装置と画像形成装置
JP7414574B2 (ja) 媒体搬送装置、制御方法及び制御プログラム
US11140296B2 (en) Image reading apparatus
JP7467694B2 (ja) 画像読取装置、制御方法及び制御プログラム
JP7258700B2 (ja) 媒体搬送装置、制御方法及び制御プログラム
WO2022153497A1 (ja) 媒体搬送装置、制御方法及び制御プログラム
JP2011166267A (ja) 画像読取装置
US20220234856A1 (en) Medium conveying apparatus to correct skew of medium using second roller while moving first roller to be spaced apart from medium
WO2020188817A1 (ja) 媒体搬送装置、制御方法及び制御プログラム
JP2012151631A (ja) 画像読取装置および画像形成装置
JP7349585B2 (ja) 媒体搬送装置、制御方法及び制御プログラム
JP7207979B2 (ja) 原稿搬送装置、制御方法及び制御プログラム
JP2021197715A (ja) 媒体搬送装置、制御方法及び制御プログラム
JP2021014328A (ja) 媒体排出装置、制御方法及び制御プログラム
WO2023188389A1 (ja) 媒体排出装置、制御方法及び制御プログラム
WO2023131991A1 (ja) 媒体排出装置、制御方法及び制御プログラム
JP7453423B2 (ja) 媒体搬送装置、制御方法及び制御プログラム
WO2023175863A1 (ja) 媒体搬送装置、媒体搬送方法及び制御プログラム
JP7337727B2 (ja) 媒体搬送装置、制御方法及び制御プログラム
JP6758528B1 (ja) 媒体搬送装置、制御方法及び制御プログラム
WO2023175866A1 (ja) 媒体搬送装置、媒体搬送方法及び制御プログラム
JP7423246B2 (ja) 原稿読取装置
WO2022195685A1 (ja) 媒体搬送装置、制御方法及び制御プログラム
JPH11298682A (ja) 画像読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP