WO2022152264A1 - 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法 - Google Patents

一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法 Download PDF

Info

Publication number
WO2022152264A1
WO2022152264A1 PCT/CN2022/072124 CN2022072124W WO2022152264A1 WO 2022152264 A1 WO2022152264 A1 WO 2022152264A1 CN 2022072124 W CN2022072124 W CN 2022072124W WO 2022152264 A1 WO2022152264 A1 WO 2022152264A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
nicrbsi
zrb
high temperature
coating
Prior art date
Application number
PCT/CN2022/072124
Other languages
English (en)
French (fr)
Inventor
张世宏
刘侠
胡凯
薛召露
杨阳
杨康
Original Assignee
安徽工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽工业大学 filed Critical 安徽工业大学
Priority to JP2023501662A priority Critical patent/JP7341582B2/ja
Publication of WO2022152264A1 publication Critical patent/WO2022152264A1/zh
Priority to US18/161,816 priority patent/US20230193445A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0073Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/01Use of vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to the technical field of cermet coatings, in particular to a NiCrBSi-ZrB 2 cermet powder for high temperature protection, a composite coating and a preparation method thereof.
  • the metal-ceramic composite coating combines the strength and toughness of alloys with the high-temperature characteristics of ceramics, and has excellent high-temperature corrosion resistance and wear resistance, making it the first choice for high-temperature protective coatings in harsh environments.
  • the cermet coating prepared by supersonic flame spraying (HVOF) technology has the characteristics of small porosity and high bonding strength. It uses hydrocarbon fuels such as propane and propylene or liquid fuels such as aviation kerosene and high pressure oxygen to burn in the combustion chamber to generate high temperature and high pressure. The flame flow makes the particles hit the substrate at high speed to form a dense coating. The lower deposition temperature also reduces the oxidation of the coating. At the same time, its cost is low, the equipment is portable, and it is suitable for on-site repair operations. These are plasma spraying and arcing. Advantages that other thermal spray technologies such as spray do not have.
  • WC-Co, NiCr-Cr 3 C 2 , NiCrBSi(Fe)-WC, etc. are currently used as cermet coatings in large quantities. Due to the added carbide hard phase, the coatings have higher performance than alloy coatings. However, the WC phase in WC-Co coating is unstable and easy to decompose at high temperature (generally not higher than 500 °C); NiCr-Cr 3 C 2 coating can reach 900 °C although the use temperature , but the intrinsic hardness of the Cr 3 C 2 phase is relatively low, which makes the wear and erosion resistance of the coating unsatisfactory; the high temperature wear performance of the NiCrBSi(Fe)-WC coating is excellent, but the thermal expansion loss of the metal phase and the ceramic phase at 500 °C.
  • ZrB 2 As an ultra-high temperature material, ZrB 2 has high melting point (3246°C), high thermal conductivity (39W/mK), low density (6.12g/cm 3 ), low thermal expansion coefficient (6.88 ⁇ 10 -6 K -1 ), high hardness and relatively low density. Good oxidation resistance, thermal shock resistance and corrosion resistance. However, ZrB 2 has poor toughness and can be densified at very high temperatures, while the NiCrBSi self-fluxing alloy coating has excellent high temperature corrosion resistance, but its hardness is low and its high temperature wear resistance is poor.
  • the ZrB 2 phase is added to the ZrB 2 phase, and the low melting point of the nickel-based alloy metal bonding phase and the SiO 2 and B 2 O 3 formed by Si and B at high temperatures can be used to make up for the poor compactness of the ZrB 2 defect.
  • Cermet powder has a certain density and fluidity, making it suitable for surface treatment methods such as thermal spraying to prepare coatings to improve coating hardness and high temperature corrosion resistance and wear resistance.
  • the main methods for preparing cermet powder are melting method, sintering and crushing method, and coating method.
  • the powder prepared by the melting method and the sintering and crushing method has irregular morphology, poor sphericity and poor fluidity, and is not suitable for supersonic flame spraying; the powder prepared by the coating method has uneven composition and low structural strength.
  • the invention combines the advantages of the traditional cermet powder preparation method, and innovatively uses the combined method of mechanical ball milling, spray granulation and vacuum sintering to prepare cermet powder with better sphericity, better fluidity and higher density
  • the process parameters of supersonic flame spraying are optimized in a targeted manner, and a composite coating with low porosity and high bonding strength is obtained.
  • the creator of the present invention finally obtained the present invention after a long period of research and practice.
  • the purpose of the invention is to solve the problems of poor high-temperature compactness of ZrB 2 ceramics, corrosion and wear of high-temperature service parts in the energy and chemical fields, and to provide a NiCrBSi-ZrB 2 cermet powder for high temperature protection, a composite coating and a preparation method thereof.
  • the present invention discloses a preparation method of NiCrBSi-ZrB 2 cermet powder for high temperature protection, comprising the following steps:
  • the powder is evaporated to dryness: the mixed powder solution containing alcohol is placed in a constant temperature blast drying oven, the heating temperature is set to 50 °C, and the temperature is kept for 12 hours;
  • Spray granulation The water-based composite slurry is continuously stirred and sent to a high-speed centrifugal spray dryer through a constant flow pump, and atomized to form spherical powder particles.
  • the inlet temperature of the centrifugal spray dryer is 200-240 °C, and the outlet temperature is The temperature is 100 ⁇ 130°C, the frequency of the atomizing turntable of the centrifuge is 36Hz, and the speed of the constant current pump is 26r/min;
  • Vacuum sintering use a vacuum sintering furnace to perform vacuum sintering on the atomized powder particles;
  • the cermet powder obtained by sintering is sieved and classified with a vibrating screen and an ultrasonic vibrator.
  • the frequency of the ultrasonic vibrator is 2-3 Hz pulse frequency to obtain NiCrBSi-ZrB 2 with a particle size distribution of 15-45 ⁇ m. Cermet powder. .
  • the particle size of the NiCrBSi powder is 20-50 ⁇ m, and the element mass percentages are: C 0.3-1.0%, Cr 8-18%, Si 2.5-5.5%, B 1.8-4.5%, Ni 65-85%, Fe ⁇ 5%.
  • the particle size of ZrB 2 powder is 1-3 ⁇ m, and its purity is ⁇ 99.85%; the mass ratio of NiCrBSi and ZrB 2 is 6-8:4-2, the amount of alcohol added per 100g powder is 55.5ml, and the zirconia grinding ball is selected according to the diameter of 15mm, 13mm, 11mm, 10mm, 6mm, and mixed grinding balls in the ratio of 1:3:3:2:1, so that the mass ratio of grinding balls to powder is 2:1.
  • the addition amount of the adhesive polyvinyl alcohol is 3-3.5% of the total mass of the powder
  • the addition amount of the defoamer n-octanol is 0.4-0.5% of the total powder mass
  • the addition amount of deionized water is according to the amount of the slurry.
  • the solid content of the powder in the material reaches 40%.
  • the vacuum sintering adopts a gradient heating sintering method.
  • the powder is heated from room temperature to 300° C. for 40 minutes, and kept for 30 minutes, and then heated from 300° C. to 900 to 1100° C. for 80 minutes. .
  • the invention also discloses a NiCrBSi-ZrB 2 cermet powder for high temperature protection prepared by the above preparation method.
  • the NiCrBSi-ZrB 2 cermet powder has a particle size of 15-45 ⁇ m and a bulk density of 1.51-2.13 g/cm 2 , the fluidity is 69.8 ⁇ 98.3s/50g.
  • the invention also discloses a preparation method of the NiCrBSi- ZrB composite coating for high temperature protection, comprising the following steps:
  • step S3 Using oxygen-propane as fuel supersonic flame spraying technology, oxygen as combustion accelerant, propane as fuel, nitrogen as powder carrier gas, air as cooling medium, spray the cermet powder obtained in step S1 on the boiler steel substrate The surface was prepared to form a NiCrBSi-ZrB 2 composite coating.
  • the sandblasting material is brown corundum sand with a particle size of 25 meshes
  • the sandblasting pressure is 3-5MPa
  • the surface roughness of the substrate after sandblasting reaches 2.5-3 ⁇ m
  • the preheating temperature of the substrate reaches 80-120°C.
  • propane flow rate is 60 ⁇ 70L/min
  • oxygen flow rate is 230 ⁇ 250L/min
  • air flow rate is 320 ⁇ 350L/min
  • spraying distance is 230 ⁇ 250mm
  • spraying step distance is 3mm
  • spraying speed is 800mm/ s
  • the powder feeding voltage is 5 ⁇ 5.5V
  • the powder feeding rate is 50 ⁇ 60g/min.
  • the invention also discloses a NiCrBSi-ZrB 2 composite coating for high temperature protection, which is prepared by the above preparation method.
  • the porosity reaches 0.4 to 0.5%.
  • the prepared cermet powder has good sphericity, excellent bulk density and fluidity, and the powder composition is evenly distributed, which overcomes the traditional mechanical ball milling method.
  • the powder prepared by the sintering method has the disadvantages of poor sphericity, poor fluidity and non-uniform composition.
  • it uses the low melting point of the nickel-based alloy metal bonding phase and the fluidity of Si and B to form SiO 2 and B 2 O 3 at high temperatures.
  • the characteristics of ZrB 2 to make up for the poor compactness of ZrB 2 high temperature sintering.
  • the thickness of the prepared NiCrBSi-ZrB 2 composite coating is 200-300 ⁇ m, the hardness can reach 1000HV, the bonding strength between the coating and the substrate is greater than 75MPa, and the porosity of the coating is 0.4-0.5%.
  • m-ZrO 2 and SiO 2 are formed on the surface of the composite coating prepared by the present invention in a high temperature corrosion environment, which improves the high temperature corrosion resistance of the coating, and the less ZrB 2 loss during the spraying process makes the composite coating have high performance. Hardness and good high temperature wear resistance.
  • the preparation method of NiCrBSi-ZrB 2 composite coating is simple, the cost of raw materials is low, and the application range is expanded.
  • the supersonic flame spraying technology used in the present invention uses oxygen-propane as fuel. Compared with using oxygen-kerosene fuel, the oxygen-propane supersonic flame spraying technology has low cost, portable equipment, and is suitable for on-site repair operations and industrial Production and other characteristics, by adjusting the process parameters, to achieve similar performance to the oxygen-kerosene spray coating.
  • Fig. 1 is the preparation process of NiCrBSi-ZrB 2 cermet powder water-based composite slurry in the present invention
  • Figure 2 shows the surface morphology and EDS results of NiCrBSi-ZrB 2 powders in Examples 1, 2 and 3 of the present invention: (a) NiCrBSi-20ZrB 2 ; (b) NiCrBSi-30ZrB 2 ; (c) NiCrBSi-40ZrB 2 ;
  • Figure 3 is a macro picture of the bulk density and fluidity of NiCrBSi-ZrB 2 powder tested using a Hall flowmeter;
  • Figure 4 shows the cross-sectional morphology and EDS results of NiCrBSi-ZrB 2 composite coatings in Examples 1, 2 and 3 of the present invention: (a) NiCrBSi-20ZrB 2 ; (b) NiCrBSi-30ZrB 2 ; (c) NiCrBSi-40ZrB 2 ;
  • Figure 5 shows the XRD patterns of the surfaces of the NiCrBSi-ZrB 2 composite coatings in the sprayed state and after hot etching in Examples 1, 2 and 3 of the present invention: (a) (d) NiCrBSi-20ZrB 2 ; (b) (e) NiCrBSi-30ZrB 2 ; (c) (f) NiCrBSi-40ZrB 2 ;
  • FIG. 6 is a comparison diagram of the hot corrosion weight gain and hot corrosion kinetic constant of the NiCrBSi- ZrB composite coating and the Ni60-40TiB coating in Examples 1, 2 and 3 of the present invention
  • FIG. 7 is a comparison diagram of the high temperature wear volume and wear rate of the NiCrBSi-ZrB 2 composite coating and the NiCrBSi coating in Examples 1, 2 and 3 of the present invention.
  • NiCrBSi and 20 % of ZrB2 powder by mass respectively mix them into the ball mill jar, and add zirconia grinding balls whose mass is twice the mass of the powder into the ball mill jar.
  • the zirconia grinding balls are selected according to their diameters. 15mm, 13mm, 11mm, 10mm, 6mm, and configured according to the ratio of 1:3:3:2:1.
  • the mixed powder solution containing alcohol was placed in a constant temperature blast drying oven, the heating temperature was set to 50°C, and the temperature was kept for 12 hours.
  • the powder is dried, add the binder polyvinyl alcohol and 0.5% defoamer n-octanol in the total mass of the powder, and add deionized water to make the solid content of the powder reach 40%, and keep stirring to configure.
  • Good water-based composite slurry so that powder particles and binders are uniformly dispersed in the slurry.
  • the cermet powder after spray granulation is collected and placed in an alumina crucible for vacuum sintering.
  • the vacuum sintering program was set, and the powder was heated from room temperature to 300 °C for 40 minutes, kept for 30 minutes, and then heated from 300 °C to 1000 °C for 80 minutes, kept for 6 hours, and the powder was stopped to cool down to room temperature with the furnace.
  • the cermet powder obtained by vacuum sintering is sieved and classified, and the powder is sieved with metal screens with a mesh number of 15 ⁇ m and 45 ⁇ m respectively.
  • an ultrasonic vibrator is loaded on the edge of the screen frame to assist.
  • the powder is sieved, and the frequency of the ultrasonic vibrator is 3Hz.
  • NiCrBSi-ZrB 2 cermet powder with a particle size distribution of 15-45 ⁇ m is obtained.
  • the blasting material is brown corundum sand (Al 2 O 3 ) with a particle size of 25 meshes.
  • the air valve makes the blasting pressure reach 3MPa. After sandblasting, the surface roughness Ra of the substrate reaches 2.5 ⁇ m.
  • the spraying equipment use oxygen as the combustion accelerant, propane as the fuel, nitrogen as the powder carrier gas, and air as the cooling medium, fix the sample on the workbench, and modify the operation program of the robotic arm to make
  • the spraying distance reaches 250mm
  • the spraying speed is 800mm/s
  • the spraying step is 3mm.
  • Open the propane, oxygen and air flow valves adjust the propane flow rate to 65L/min, the oxygen flow rate to 240L/min, and the air flow rate to 350L/min.
  • the propane flame is used to preheat the surface of the substrate, so that the surface temperature reaches 80-120 °C, the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • After every 5 times of spraying use an air gun to cool down the coating surface, and use a spiral micrometer to measure the coating thickness.
  • start the spraying equipment to continue spraying, and repeat the operation to finally make the coating thickness to about 250 ⁇ m.
  • zirconia grinding balls Take 70% of NiCrBSi and 30% of ZrB2 powder by mass respectively, mix them into the ball mill jar, and add zirconia grinding balls whose mass is twice the mass of the powder into the ball mill jar.
  • the zirconia grinding balls are selected according to their diameters. 15mm, 13mm, 11mm, 10mm, 6mm, and configured according to the ratio of 1:3:3:2:1.
  • the mixed powder solution containing alcohol was placed in a constant temperature blast drying oven, the heating temperature was set to 50°C, and the temperature was maintained for 12h.
  • the powder is dried, add the binder polyvinyl alcohol and 0.4% defoamer n-octanol in the total mass of the powder, and add deionized water to make the solid content of the powder reach 40%, and keep stirring to configure.
  • Good water-based composite slurry so that powder particles and binders are uniformly dispersed in the slurry.
  • the cermet powder after spray granulation was collected and placed in an alumina crucible for vacuum sintering. Set up the vacuum sintering program, heat the powder from room temperature to 300 °C for 40 minutes, keep it for 30 minutes, then heat it from 300 °C to 900 °C for 80 minutes, keep it for 6 hours, stop heating and cool the powder to room temperature with the furnace.
  • the cermet powder obtained by vacuum sintering is sieved and classified, and the powder is sieved with metal screens with a mesh number of 15 ⁇ m and 45 ⁇ m respectively.
  • an ultrasonic vibrator is loaded on the edge of the screen frame to assist.
  • the powder is sieved, and the frequency of the ultrasonic vibrator is 2.5Hz.
  • NiCrBSi-ZrB 2 cermet powder with a particle size distribution of 15-45 ⁇ m is obtained.
  • the blasting material is brown corundum sand (Al 2 O 3 ) with a particle size of 25 meshes.
  • the air valve makes the blasting pressure reach 3MPa. After sandblasting, the surface roughness Ra of the substrate reaches 2.5 ⁇ m.
  • the spraying equipment use oxygen as the combustion accelerant, propane as the fuel, nitrogen as the powder carrier gas, and air as the cooling medium, fix the sample on the workbench, and modify the operation program of the robotic arm to make
  • the spraying distance reaches 230mm
  • the spraying speed is 800mm/s
  • the spraying step is 3mm.
  • Open the propane, oxygen, and air flow valves adjust the propane flow rate to 60L/min, the oxygen flow rate to 230L/min, and the air flow rate to 320L/min.
  • the propane flame is used to preheat the surface of the substrate, so that the surface temperature reaches 80-120 °C, the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • After every 5 times of spraying use an air gun to cool down the coating surface, and use a spiral micrometer to measure the coating thickness.
  • start the spraying equipment to continue spraying, and repeat the operation to finally make the coating thickness to about 250 ⁇ m.
  • zirconia grinding balls Take 60% of NiCrBSi and 40% of ZrB2 powder by mass respectively, mix them into the ball mill jar, and add zirconia grinding balls whose mass is twice the mass of the powder into the ball mill jar.
  • the zirconia grinding balls are selected according to their diameters. 15mm, 13mm, 11mm, 10mm, 6mm, and configured according to the ratio of 1:3:3:2:1.
  • the mixed powder solution containing alcohol was placed in a constant temperature blast drying oven, the heating temperature was set to 50°C, and the temperature was maintained for 12h.
  • the powder is dried, add the binder polyvinyl alcohol and 0.5% defoamer n-octanol in the total mass of the powder, and add deionized water to make the solid content of the powder reach 40%, and keep stirring to configure.
  • Good water-based composite slurry so that powder particles and binders are uniformly dispersed in the slurry.
  • the cermet powder after spray granulation was collected and placed in an alumina crucible for vacuum sintering.
  • the vacuum sintering program was set, the powder was heated from room temperature to 300 °C for 40 minutes, kept for 30 minutes, then heated from 300 °C to 1000 °C for 80 minutes, kept for 6 hours, and the powder was stopped to cool down to room temperature with the furnace.
  • the cermet powder obtained by vacuum sintering is sieved and classified, and the powder is sieved with metal screens with a mesh number of 15 ⁇ m and 45 ⁇ m respectively.
  • an ultrasonic vibrator is loaded on the edge of the screen frame to assist.
  • the powder is sieved, and the frequency of the ultrasonic vibrator is 3Hz.
  • NiCrBSi-ZrB 2 cermet powder with a particle size distribution of 15-45 ⁇ m is obtained.
  • the blasting material is brown corundum sand (Al 2 O 3 ) with a particle size of 25 meshes.
  • the air valve makes the blasting pressure reach 3MPa. After sandblasting, the surface roughness Ra of the substrate reaches 2.5 ⁇ m.
  • the spraying equipment use oxygen as the combustion accelerant, propane as the fuel, nitrogen as the powder carrier gas, and air as the cooling medium, fix the sample on the workbench, and modify the operation program of the robotic arm to make
  • the spraying distance reaches 250mm
  • the spraying speed is 800mm/s
  • the spraying step is 3mm.
  • Open the propane, oxygen, and air flow valves adjust the propane flow rate to 70L/min, the oxygen flow rate to 250L/min, and the air flow rate to 350L/min.
  • the propane flame is used to preheat the surface of the substrate, so that the surface temperature reaches 80-120 °C, the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • the powder feeder switch is turned on, the powder feeding voltage is adjusted to 5V, and the powder feeding rate is maintained at 50g/min.
  • After every 5 times of spraying use an air gun to cool down the coating surface, and use a spiral micrometer to measure the coating thickness.
  • start the spraying equipment to continue spraying, and repeat the operation to finally make the coating thickness to about 250 ⁇ m.
  • Example 1 Example 2 Example 3 Mobility (s/50g) 98.35 80.42 67.24 Bulk density (g/cm 3 ) 1.51 1.63 1.59
  • the microhardness of the coating was tested by a Vickers hardness tester, the load was 300gf, the loading time was 5s, 10 points were tested for each coating, and the average value was taken as the microhardness value of the coating.
  • the test results are shown in Table 2. Show.
  • Example 1 Example 2
  • Example 3 Microhardness (HV 300 ) 784 815 1006
  • the KCl molten salt hot corrosion resistance of the NiCrBSi-ZrB 2 composite coating was carried out in a tube furnace. There were 3 groups of each coating. The experimental temperature was 700 °C and the experimental time was 100 h. The samples were taken out and weighed every 10 h. The hot corrosion weight gain of the coating was recorded, and the average hot corrosion kinetic constant of the coating was calculated. The test results are shown in Figure 6. Compared with the Ni60-40TiB 2 coating, the NiCrBSi-40ZrB 2 coating prepared in Example 3 SiO 2 and m-ZrO 2 phases are formed in the process of thermal corrosion, and m-ZrO 2 does not undergo significant transformation to t-ZrO 2. The continuous and dense oxide film on the surface of the coating can effectively prevent the chloride molten salt from entering the coating. Corrosion diffusion within the layer makes the coating more excellent in hot corrosion resistance.
  • the high temperature wear performance of NiCrBSi-ZrB 2 composite coating was carried out in HT-1000 high temperature friction and wear machine, the wear load was 10N, the wear temperature was 700°C, the frequency was 5.7Hz, the friction radius was 3.5mm, and the wear time was 60min.
  • Al 2 O 3 ceramic balls with a diameter of 5 mm were used for the grinding balls, and the wear volume of the coating was calculated by a KLA-P7 probe profiler.
  • the test results are shown in Figure 7. Compared with the NiCrBSi coating, the test results show that the The NiCrBSi-40ZrB 2 coating prepared in Example 4 has high hardness and the best high temperature wear resistance due to its high content of ZrB 2 hard phase.
  • the NiCrBSi-ZrB 2 composite coating for high temperature protection prepared by the present invention meets the requirements of high temperature corrosion resistance and high temperature wear resistance of the steel base surface of energy and chemical equipment.
  • Layer preparation process When the mass ratio of NiCrBSi powder and ZrB 2 powder is 6:4, the cermet powder obtained after vacuum sintering at 1000 °C has the best fluidity and Loose density; by optimizing the spraying process parameters, the optimal spraying process parameters are obtained as propane flow rate of 70L/min, oxygen flow rate of 250L/min, air flow rate of 350L/min, spraying distance of 250mm, and spraying step distance of 3mm , the spraying speed is 800mm/s, the powder feeding voltage is 5V, and the powder feeding rate is 50g/min. There are SiO 2 and m-ZrO 2 phases in the composite coating prepared under these parameters, so that the composite coating has the best resistance High temperature corrosion performance, and more ZrB 2 phase in the composite coating makes it have the best high temperature wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法,包括金属陶瓷粉末的制备和复合涂层的制备,通过机械球磨、喷雾造粒和真空烧结相结合的方法制备出粒径在15~45μm的适用于热喷涂的金属陶瓷粉末,然后使用氧-丙烷为燃料的超音速火焰喷涂技术,氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将金属陶瓷粉末喷涂在钢基体表面,制备形成NiCrBSi-ZrB2复合涂层;本发明克服了ZrB2陶瓷在烧结过程中难以致密化的问题,提高了粉末结合强度和流动性,并使用超音速火焰喷涂技术制备涂层,其制备方法简单,涂层沉积效率高,设备操作方便,成本低廉,适用于提高锅炉设备表面的抗热腐蚀及抗高温磨损性能,提高锅炉服役寿命。

Description

一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末、复合涂层及其制备方法 技术领域
本发明涉及金属陶瓷涂层技术领域,具体涉及一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末、复合涂层及其制备方法。
背景技术
高温环境下的腐蚀和磨损问题已成为能源、化工领域面临的主要挑战,采用热喷涂技术在关键装备和备件表面沉积高温防护涂层以增强材料耐腐蚀、耐磨损性能成为一种经济实用的方法。目前国内外对高温防护涂层的研究主要集中在合金涂层、陶瓷涂层和金属陶瓷复合涂层上,虽然单一的合金涂层具有较好的耐高温腐蚀性能,但其硬度偏低,不能满足高温磨损环境中的使用要求;陶瓷涂层硬度较高,且具有良好的耐高温腐蚀和磨损性能,但其脆性大,抗冲击性能差,在使用过程中容易脆断。金属陶瓷复合涂层兼具合金的强韧性和陶瓷的高温特性,具有优良的高温耐腐蚀和耐磨损性能,使其成为严苛环境下首选的高温防护涂层。采用超音速火焰喷涂(HVOF)技术制备的金属陶瓷涂层具有孔隙率小、结合强度高等特点,利用丙烷、丙烯等碳氢系燃料或航空煤油等液体燃料与高压氧气在燃烧室燃烧产生高温高压焰流,使粒子高速撞击基体形成致密的涂层,较低的沉积温度也减轻了涂层的氧化,同时其成本较低、设备便携,适合在现场进行修复作业,这些都是等离子喷涂和电弧喷涂等其他热喷涂技术所不具备的优势。
WC-Co、NiCr-Cr 3C 2、NiCrBSi(Fe)-WC等作目前使用量较大的金属陶瓷涂层,涂层中由于添加的碳化物硬质相使得其比合金涂层具有更高的硬度和更好的耐磨性,然而WC-Co涂层中WC相在高温下不稳定容易分解(一般不高于500℃);NiCr-Cr 3C 2涂层虽然使用温度可以达到900℃,但Cr 3C 2相本征硬度偏低,使得涂层耐磨损冲蚀性能不理想;NiCrBSi(Fe)-WC涂层的高温磨损性能优异,但在500℃下金属相与陶瓷相热膨胀失配以及WC相低抗氧化性,导致其热腐蚀性能较差。因此需要寻找一种替代碳化物的陶瓷相来提高涂层的高温耐蚀及耐磨性能,使其能应用于能源、化工等高温腐蚀及磨损环境中。
ZrB 2作为超高温材料,具有高熔点(3246℃)、高热导率(39W/mK)低密度(6.12g/cm 3)低热膨胀系数(6.88×10 -6K -1)、高硬度及较好的抗氧化、抗热震及耐腐蚀性能。但ZrB 2韧性较差,其在非常高的温度下才能致密化,而NiCrBSi自熔性合金涂层具有较优异的抗高温腐蚀性能,但其硬度较低,耐高温磨损性能较差,在NiCrBSi中添加ZrB 2相,可以利用镍基合金金属粘接相的低熔点以及Si、B在高温下形成的SiO 2、B 2O 3,来弥补ZrB 2致密性较差的缺 陷,使制备得到的金属陶瓷粉末兼具一定的致密度和流动性,使其适用于热喷涂等表面处理方法来制备涂层,提高涂层硬度及高温耐腐蚀和耐磨损性能。目前制备金属陶瓷粉末的主要方法是熔化法、烧结破碎法、包覆法。熔化法和烧结破碎法制备的粉末形貌不规则,球形度较差,流动性差,不适合超音速火焰喷涂;包覆法制备的粉末成分不均匀,结构强度低。本发明结合传统的金属陶瓷粉末制备方法的优点,创新性地使用机械球磨、喷雾造粒、真空烧结相结合的方法制备了球形度较好、流动性较佳、致密度较高的金属陶瓷粉末,同时对于该方法制备的粉末,有针对性地优化了超音速火焰喷涂工艺参数,得到孔隙率低、结合强度高的复合涂层。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决ZrB 2陶瓷高温致密性差、能源化工领域高温服役部件腐蚀和磨损的问题,提供了一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末、复合涂层及其制备方法。
为了实现上述目的,本发明公开了一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,包括以下步骤:
a、机械球磨:将NiCrBSi、ZrB 2、酒精及氧化锆磨球按比例加入到球磨罐中,球磨速度设置为300~350r/min运行30~40h得到含酒精混合粉末溶液;
b、粉末蒸干:将含酒精的混合粉末溶液放置在鼓风恒温干燥箱中,设置加热温度为50℃,保温12h;
c、配置料浆:向干燥后的混合粉末中加入粘结剂聚乙烯醇、消泡剂正辛醇及去离子水,搅拌静置得到水基复合料浆;
d、喷雾造粒:将水基复合料浆不断搅拌并通过恒流泵送入高速离心喷雾干燥机中,雾化形成球型粉末颗粒,离心喷雾干燥机进口温度为200~240℃,出口温度为100~130℃,离心机雾化转盘频率为36Hz,恒流泵速度为26r/min;
e、真空烧结:使用真空烧结炉,对雾化后的粉末颗粒进行真空烧结处理;
f、过筛分级:将烧结得到的金属陶瓷粉末使用振动筛及超声波振动器进行过筛分级处理,超声波振动器频率选用2~3Hz的脉冲频率,得到粒度分布在15~45μm的NiCrBSi-ZrB 2金属陶瓷粉末。。
所述步骤a中NiCrBSi粉末粒径为20~50μm,其中元素质量百分比为:C 0.3~1.0%、Cr 8~18%、Si 2.5~5.5%、B 1.8~4.5%、Ni 65~85%、Fe≤5%。ZrB 2粉末粒径为1~3μm,其纯度≥99.85%;NiCrBSi与ZrB 2质量比为6~8:4~2,每100g粉末酒精加入量为55.5ml,氧化锆磨 球按直径选取15mm、13mm、11mm、10mm、6mm,且按1:3:3:2:1的比例配成混合磨球,使磨球与粉末质量比为2:1。
所述步骤c中粘接剂聚乙烯醇添加量为粉末总质量的3~3.5%,消泡剂正辛醇的添加量为粉末总质量的0.4~0.5%,去离子水添加量按使浆料中粉末固含量达到40%为准。
所述步骤e中真空烧结采用梯度升温烧结方式,粉末由室温经40min加热到300℃,保温30min,然后由300℃经80min加热到900~1100℃,保温6h,停止加热粉末随炉冷却至室温。
本发明还公开了一种由上述制备方法制得的高温防护用NiCrBSi-ZrB 2金属陶瓷粉末,NiCrBSi-ZrB 2金属陶瓷粉末粒径为15~45μm,松装密度为1.51~2.13g/cm 2,流动性为69.8~98.3s/50g。
本发明还公开了一种高温防护用NiCrBSi-ZrB 2复合涂层的制备方法,包括以下步骤:
S1:制备上述的高温防护用NiCrBSi-ZrB 2金属陶瓷粉末;
S2:在喷涂前,对锅炉钢基体表面进行除油净化处理,然后对表面进行喷砂处理,并对喷砂处理后的基体进行预热处理;
S3:使用氧-丙烷为燃料的超音速火焰喷涂技术,氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将步骤S1中得到的金属陶瓷粉末喷涂于锅炉钢基体表面,制备形成NiCrBSi-ZrB 2复合涂层。
所述步骤S2中喷砂材料为粒度为25目棕刚玉砂,喷砂压力为3~5MPa,喷砂后基体表面粗糙度达到2.5~3μm,基体预热温度达到80~120℃。
所述步骤S3中丙烷流速为60~70L/min,氧气流速为230~250L/min,空气流速为320~350L/min,喷涂距离为230~250mm,喷涂步距为3mm,喷涂速度为800mm/s,送粉电压为5~5.5V,送粉率为50~60g/min。
本发明还公开了一种高温防护用NiCrBSi-ZrB 2复合涂层,采用上述制备方法制得,涂层厚度达到200~300μm,硬度为700~1000HV,涂层与基体结合强度超过75MPa,涂层孔隙率达到0.4~0.5%。
与现有技术比较本发明的有益效果在于:
(1)采用机械球磨、喷雾造粒和真空烧结相结合的方法,制备得到的金属陶瓷粉末较好的球形度、优良的松装密度和流动性,粉末成份分布均匀,克服了传统机械球磨法和烧结法制备的粉末球形度较差、流动性差及成分不均匀的缺点,同时利用镍基合金金属粘接相的低熔点以及Si、B在高温下形成SiO 2及B 2O 3的流动性的特点,来弥补ZrB 2高温烧结致密性较差的缺陷。
(2)制备的NiCrBSi-ZrB 2复合涂层厚度为200~300μm,硬度可达到1000HV,涂层与基体结合强度大于75MPa,涂层孔隙率达到0.4~0.5%。
(3)本发明所制备的复合涂层在高温腐蚀环境中表面形成m-ZrO 2及SiO 2,提高了涂层耐高温腐蚀性能,喷涂过程中较少的ZrB 2损失使得复合涂层具有高硬度和良好的耐高温磨损性能。同时NiCrBSi-ZrB 2复合涂层制备方法简单,原料成本低,扩大了应用范围。
(4)本发明使用的超音速火焰喷涂技术,以氧-丙烷为燃料,相较于使用氧-煤油燃料,氧-丙烷超音速火焰喷涂技术具有成本低廉、设备便携,适合现场修复作业和工业生产等特点,通过调整工艺参数,使其达到和氧-煤油喷涂涂层相近的性能。
附图说明
图1为本发明中NiCrBSi-ZrB 2金属陶瓷粉末水基复合浆料制备流程;
图2为本发明实施例1、2、3中NiCrBSi-ZrB 2粉末表面形貌及EDS结果:(a)NiCrBSi-20ZrB 2;(b)NiCrBSi-30ZrB 2;(c)NiCrBSi-40ZrB 2
图3为使用霍尔流速计测试NiCrBSi-ZrB 2粉末的松装密度和流动性的宏观图片;
图4为本发明实施例1、2、3中NiCrBSi-ZrB 2复合涂层截面形貌及EDS结果:(a)NiCrBSi-20ZrB 2;(b)NiCrBSi-30ZrB 2;(c)NiCrBSi-40ZrB 2
图5为本发明实施例1、2、3中NiCrBSi-ZrB 2复合涂层喷涂态和热腐蚀后表面XRD图谱:(a)(d)NiCrBSi-20ZrB 2;(b)(e)NiCrBSi-30ZrB 2;(c)(f)NiCrBSi-40ZrB 2
图6为本发明实施例1、2、3中NiCrBSi-ZrB 2复合涂层与Ni60-40TiB 2涂层热腐蚀增重和热腐蚀动力学常数对比图;
图7为本发明实施例1、2、3中NiCrBSi-ZrB 2复合涂层与NiCrBSi涂层高温磨损体积与磨损率对比图。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例1
分别取质量百分比为80%的NiCrBSi和20%的ZrB 2粉末,将其混合加入球磨罐中,并向球磨罐中加入质量为粉末质量2倍的氧化锆磨球,氧化锆磨球按直径选取15mm、13mm、11mm、10mm、6mm,且按1:3:3:2:1的比例配置。并按每100g粉末中加入55.5mL酒精的比例向球磨罐中加入酒精。球磨40h,转速设置为320r/min。
球磨结束后,将含酒精的混合粉末溶液放置在鼓风恒温干燥箱中,设置加热温度为50℃, 保温12h。待粉末干燥后,向其中加入添加量为粉末总质量3.5%的粘接剂聚乙烯醇和0.5%的消泡剂正辛醇,并加入去离子水,使粉末固含量达到40%,不断搅拌配置好的水基复合浆料,使粉末颗粒和粘结剂均匀分散在浆料中。
不断搅拌将水基复合料浆并使用恒流泵送入高速离心喷雾干燥机中,雾化形成球型粉末颗粒,设置离心喷雾干燥机进口温度为240℃,出口温度为100℃,离心机雾化转盘频率为36Hz,恒流泵速度为26r/min。
收集喷雾造粒后的金属陶瓷粉末,将其盛放在氧化铝坩埚中进行真空烧结处理。设置真空烧结程序,将粉末由室温经40min加热到300℃,保温30min,然后由300℃经80min加热到1000℃,保温6h,停止加热粉末随炉冷却至室温。
将真空烧结得到的金属陶瓷粉末进行过筛分级处理,分别用目数为15μm和45μm的金属筛网对粉末进行筛分,使用小目数筛网时在筛网框边缘加载超声波振动器来辅助筛分粉末,超声波振动器频率选用3Hz的脉冲频率,通过不同目数筛网筛分后得到粒度分布在15~45μm的NiCrBSi-ZrB 2金属陶瓷粉末。
使用去污粉、酒精、丙酮对锅炉钢基体表面进行除油净化处理,然后对除油后的表面进行喷砂处理,喷砂材料为粒度为25目棕刚玉砂(Al 2O 3),调节气阀使喷砂压力达到3MPa。喷砂后基体表面粗糙度Ra达到2.5μm。打开喷涂设备电源、气路开关和冷却水开关,使用氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将试样固定于工作台,修改机械手臂运行程序,使喷涂距离达到250mm,喷涂速度为800mm/s,喷涂步距为3mm,打开丙烷、氧气、空气流量阀,调节丙烷流速达到65L/min,氧气流速为240L/min,空气流速为350L/min,引燃丙烷焰流对基体表面进行预热,使表面温度达到80~120℃,打开送粉器开关,调节送粉电压达到5V,使送粉率保持在50g/min。每喷涂5遍后,使用气枪对涂层表面吹扫降温,并使用螺旋测微仪测量涂层厚度,涂层温度降低到80℃左右时,启动喷涂设备继续喷涂,重复操作最终使涂层厚度达到250μm左右。
实施例2
分别取质量百分比为70%的NiCrBSi和30%的ZrB 2粉末,将其混合加入球磨罐中,并向球磨罐中加入质量为粉末质量2倍的氧化锆磨球,氧化锆磨球按直径选取15mm、13mm、11mm、10mm、6mm,且按1:3:3:2:1的比例配置。并按每100g粉末中加入55.5mL酒精的比例向球磨罐中加入酒精。球磨30h,转速设置为300r/min。
球磨结束后,将含酒精的混合粉末溶液放置在鼓风恒温干燥箱中,设置加热温度为50℃,保温12h。待粉末干燥后,向其中加入添加量为粉末总质量3%的粘接剂聚乙烯醇和0.4%的消泡剂正辛醇,并加入去离子水,使粉末固含量达到40%,不断搅拌配置好的水基复合浆料, 使粉末颗粒和粘结剂均匀分散在浆料中。
不断搅拌将水基复合料浆并使用恒流泵送入高速离心喷雾干燥机中,雾化形成球型粉末颗粒,设置离心喷雾干燥机进口温度为240℃,出口温度为110℃,离心机雾化转盘频率为36Hz,恒流泵速度为26r/min。
收集喷雾造粒后的金属陶瓷粉末,将其盛放在氧化铝坩埚中进行真空烧结处理。设置真空烧结程序,将粉末由室温经40min加热到300℃,保温30min,然后由300℃经80min加热到900℃,保温6h,停止加热粉末随炉冷却至室温。
将真空烧结得到的金属陶瓷粉末进行过筛分级处理,分别用目数为15μm和45μm的金属筛网对粉末进行筛分,使用小目数筛网时在筛网框边缘加载超声波振动器来辅助筛分粉末,超声波振动器频率选用2.5Hz的脉冲频率,通过不同目数筛网筛分后得到粒度分布在15~45μm的NiCrBSi-ZrB 2金属陶瓷粉末。
使用去污粉、酒精、丙酮对锅炉钢基体表面进行除油净化处理,然后对除油后的表面进行喷砂处理,喷砂材料为粒度为25目棕刚玉砂(Al 2O 3),调节气阀使喷砂压力达到3MPa。喷砂后基体表面粗糙度Ra达到2.5μm。打开喷涂设备电源、气路开关和冷却水开关,使用氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将试样固定于工作台,修改机械手臂运行程序,使喷涂距离达到230mm,喷涂速度为800mm/s,喷涂步距为3mm,打开丙烷、氧气、空气流量阀,调节丙烷流速达到60L/min,氧气流速为230L/min,空气流速为320L/min,引燃丙烷焰流对基体表面进行预热,使表面温度达到80~120℃,打开送粉器开关,调节送粉电压达到5V,使送粉率保持在50g/min。每喷涂5遍后,使用气枪对涂层表面吹扫降温,并使用螺旋测微仪测量涂层厚度,涂层温度降低到80℃左右时,启动喷涂设备继续喷涂,重复操作最终使涂层厚度达到250μm左右。
实施例3
分别取质量百分比为60%的NiCrBSi和40%的ZrB 2粉末,将其混合加入球磨罐中,并向球磨罐中加入质量为粉末质量2倍的氧化锆磨球,氧化锆磨球按直径选取15mm、13mm、11mm、10mm、6mm,且按1:3:3:2:1的比例配置。并按每100g粉末中加入55.5mL酒精的比例向球磨罐中加入酒精。球磨40h,转速设置为320r/min。
球磨结束后,将含酒精的混合粉末溶液放置在鼓风恒温干燥箱中,设置加热温度为50℃,保温12h。待粉末干燥后,向其中加入添加量为粉末总质量3.5%的粘接剂聚乙烯醇和0.5%的消泡剂正辛醇,并加入去离子水,使粉末固含量达到40%,不断搅拌配置好的水基复合浆料,使粉末颗粒和粘结剂均匀分散在浆料中。
不断搅拌将水基复合料浆并使用恒流泵送入高速离心喷雾干燥机中,雾化形成球型粉末 颗粒,设置离心喷雾干燥机进口温度为240℃,出口温度为100℃,离心机雾化转盘频率为36Hz,恒流泵速度为26r/min。
收集喷雾造粒后的金属陶瓷粉末,将其盛放在氧化铝坩埚中进行真空烧结处理。设置真空烧结程序,将粉末由室温经40min加热到300℃,保温30min,然后由300℃经80min加热到1000℃,保温6h,停止加热粉末随炉冷却至室温。
将真空烧结得到的金属陶瓷粉末进行过筛分级处理,分别用目数为15μm和45μm的金属筛网对粉末进行筛分,使用小目数筛网时在筛网框边缘加载超声波振动器来辅助筛分粉末,超声波振动器频率选用3Hz的脉冲频率,通过不同目数筛网筛分后得到粒度分布在15~45μm的NiCrBSi-ZrB 2金属陶瓷粉末。
使用去污粉、酒精、丙酮对锅炉钢基体表面进行除油净化处理,然后对除油后的表面进行喷砂处理,喷砂材料为粒度为25目棕刚玉砂(Al 2O 3),调节气阀使喷砂压力达到3MPa。喷砂后基体表面粗糙度Ra达到2.5μm。打开喷涂设备电源、气路开关和冷却水开关,使用氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将试样固定于工作台,修改机械手臂运行程序,使喷涂距离达到250mm,喷涂速度为800mm/s,喷涂步距为3mm,打开丙烷、氧气、空气流量阀,调节丙烷流速达到70L/min,氧气流速为250L/min,空气流速为350L/min,引燃丙烷焰流对基体表面进行预热,使表面温度达到80~120℃,打开送粉器开关,调节送粉电压达到5V,使送粉率保持在50g/min。每喷涂5遍后,使用气枪对涂层表面吹扫降温,并使用螺旋测微仪测量涂层厚度,涂层温度降低到80℃左右时,启动喷涂设备继续喷涂,重复操作最终使涂层厚度达到250μm左右。
一、本发明中实施例1~3制备的NiCrBSi-ZrB 2金属陶瓷粉末性能测试:
采用霍尔流速计测试了粉末流动性和松装密度,每种粉末样品测试3次,取平均值作为该粉末样品的流动性指标和松装密度,测试结果如表1所示:
表1实施例1~3制备的NiCrBSi-ZrB 2金属陶瓷粉末流动性和松装密度
  实施例1 实施例2 实施例3
流动性(s/50g) 98.35 80.42 67.24
松装密度(g/cm 3) 1.51 1.63 1.59
二、本发明中实施例1~3制备的NiCrBSi-ZrB 2复合涂层性能测试:
采用维氏硬度计测试涂层的显微硬度,载荷为300gf,加载时间为5s,每种涂层测试10个点,取平均值作为该涂层的显微硬度值,测试结果如表2所示。
表2实施例1~3制备的NiCrBSi-ZrB 2复合涂层显微硬度
  实施例1 实施例2 实施例3
显微硬度(HV 300) 784 815 1006
NiCrBSi-ZrB 2复合涂层的耐KCl熔盐热腐蚀性能在管式炉中进行,每种涂层3组,实验温度为700℃,实验时间为100h,每隔10h将试样取出称重,记录涂层的热腐蚀增重量,并计算涂层平均热腐蚀动力学常数,测试结果如图6所示,与Ni60-40TiB 2涂层相比,实施例3中制备的NiCrBSi-40ZrB 2涂层在热腐蚀过程中形成SiO 2和m-ZrO 2相,且m-ZrO 2未发生明显向t-ZrO 2转化的过程,涂层表面连续且致密的氧化膜能有效阻挡氯化物熔盐向涂层内的腐蚀扩散,使得涂层具有更优异的抗热腐蚀性能。
NiCrBSi-ZrB 2复合涂层的高温磨损性能在HT-1000高温摩擦磨损机中进行,磨损载荷为10N,磨损温度为700℃,频率为5.7Hz,摩擦半径为3.5mm,磨损时间为60min。对磨球采用直径为5mm的Al 2O 3陶瓷球,采用KLA-P7探针式轮廓仪计算涂层的磨损体积,测试结果如图7所示,与NiCrBSi涂层相比,测试结果显示实施例4中制备的NiCrBSi-40ZrB 2涂层由于其含有较多的ZrB 2硬质相使其具有高硬度和最佳的耐高温磨损性能。
综上所述,本发明制备的高温防护用NiCrBSi-ZrB 2复合涂层满足能源化工设备钢基表面耐高温腐蚀、耐高温磨损等要求,通过改进方法及工艺流程,得到最佳的粉末及涂层制备工艺。采用机械球磨、喷雾造粒及真空烧结相结合的方法制备得到NiCrBSi粉末与ZrB 2粉末质量比为6:4时、并在1000℃下真空烧结后得到的金属陶瓷粉末具有最佳的流动性和松装密度;通过对喷涂工艺参数进行优化,得到最优喷涂工艺参数为丙烷流速为70L/min,氧气流速为250L/min,空气流速为350L/min,喷涂距离为250mm,喷涂步距为3mm,喷涂速度为800mm/s,送粉电压为5V,送粉率为50g/min,在该参数下制备的复合涂层中存在SiO 2及m-ZrO 2相使复合涂层具有最佳的耐高温腐蚀性能,同时该复合涂层中较多的ZrB 2相使其具有最佳的耐高温磨损性能。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (10)

  1. 一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,其特征在于,包括以下步骤:
    a、机械球磨:将NiCrBSi、ZrB 2、酒精及氧化锆磨球按比例加入到球磨罐中,球磨速度设置为300~350r/min运行30~40h得到含酒精混合粉末溶液;
    b、粉末蒸干:将含酒精的混合粉末溶液放置在鼓风恒温干燥箱中,设置加热温度为50℃,保温12h;
    c、配置料浆:向干燥后的混合粉末中加入粘结剂聚乙烯醇、消泡剂正辛醇及去离子水,搅拌静置得到水基复合料浆;
    d、喷雾造粒:将水基复合料浆不断搅拌并通过恒流泵送入高速离心喷雾干燥机中,雾化形成球型粉末颗粒,离心喷雾干燥机进口温度为200~240℃,出口温度为100~130℃,离心机雾化转盘频率为36Hz,恒流泵速度为26r/min;
    e、真空烧结:使用真空烧结炉,对雾化后的粉末颗粒进行真空烧结处理;
    f、过筛分级:将烧结得到的金属陶瓷粉末使用振动筛及超声波振动器进行过筛分级处理,超声波振动器频率选用2~3Hz的脉冲频率,得到NiCrBSi-ZrB 2金属陶瓷粉末。
  2. 如权利要求1所述的一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,其特征在于,所述步骤a中NiCrBSi粉末粒径为20~50μm,其中元素质量百分比为:C 0.3~1.0%、Cr 8~18%、Si 2.5~5.5%、B 1.8~4.5%、Ni 65~85%、Fe≤5%。ZrB 2粉末粒径为1~3μm,其纯度≥99.85%。
  3. 如权利要求1所述的一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,其特征在于,所述步骤a中NiCrBSi与ZrB 2质量比为6~8:4~2,每100g粉末酒精加入量为55.5ml,氧化锆磨球按直径选取15mm、13mm、11mm、10mm、6mm,且按1:3:3:2:1的比例配成混合磨球,使磨球与粉末质量比为2:1。
  4. 如权利要求1所述的一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,其特征在于,所述步骤c中粘接剂聚乙烯醇添加量为粉末总质量的3~3.5%,消泡剂正辛醇的添加量为粉末总质量的0.4~0.5%,去离子水添加量按使浆料中粉末固含量达到40%为准。
  5. 如权利要求1所述的一种高温防护用NiCrBSi-ZrB 2金属陶瓷粉末的制备方法,其特征在于,所述步骤e中真空烧结采用梯度升温烧结方式,粉末由室温经40min加热到300℃,保温30min,然后由300℃经80min加热到900~1100℃,保温6h,停止加热粉末随炉冷却至室温。
  6. 一种如权利要求1~5任一项所述的制备方法制得的高温防护用NiCrBSi-ZrB 2金属陶瓷粉末,其特征在于,NiCrBSi-ZrB 2金属陶瓷粉末粒径为15~45μm,松装密度为1.51~2.13g/cm 2, 流动性为69.8~98.3s/50g。
  7. 一种高温防护用NiCrBSi-ZrB 2复合涂层的制备方法,其特征在于,包括以下步骤:
    S1:制备如权利要求6所述的高温防护用NiCrBSi-ZrB 2金属陶瓷粉末;
    S2:在喷涂前,对锅炉钢基体表面进行除油净化处理,然后对表面进行喷砂处理,并对喷砂处理后的基体进行预热处理;
    S3:使用氧-丙烷为燃料的超音速火焰喷涂技术,氧气作为助燃剂,丙烷作为燃料,氮气作为送粉载气,空气作为冷却介质,将步骤S1中得到的金属陶瓷粉末喷涂于锅炉钢基体表面,制备形成NiCrBSi-ZrB 2复合涂层。
  8. 如权利要求7所述的一种高温防护用NiCrBSi-ZrB 2复合涂层的制备方法,其特征在于,所述步骤S2中喷砂材料为粒度为25目棕刚玉砂,喷砂压力为3~5MPa,喷砂后基体表面粗糙度达到2.5~3μm,基体预热温度达到80~120℃。
  9. 如权利要求7所述的一种高温防护用NiCrBSi-ZrB 2复合涂层的制备方法,其特征在于,所述步骤S3中丙烷流速为60~70L/min,氧气流速为230~250L/min,空气流速为320~350L/min,喷涂距离为230~250mm,喷涂步距为3mm,喷涂速度为800mm/s,送粉电压为5~5.5V,送粉率为50~60g/min。
  10. 一种如权利要求7~9任一项所述的制备方法制得的高温防护用NiCrBSi-ZrB 2复合涂层,其特征在于,涂层厚度达到200~300μm,硬度为700~1000HV,涂层与基体结合强度超过75MPa,涂层孔隙率达到0.4~0.5%。
PCT/CN2022/072124 2021-01-18 2022-01-14 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法 WO2022152264A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023501662A JP7341582B2 (ja) 2021-01-18 2022-01-14 高温保護用NiCrBSi-ZrB2サーメット粉末、複合コーティング及びその製造方法
US18/161,816 US20230193445A1 (en) 2021-01-18 2023-01-30 NiCrBSi-ZrB2 METAL CERAMIC POWDER, COMPOSITE COATING FOR HIGH TEMPERATURE PROTECTION, AND PREPARATION METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110062825.6A CN112899604A (zh) 2021-01-18 2021-01-18 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法
CN202110062825.6 2021-01-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/161,816 Continuation US20230193445A1 (en) 2021-01-18 2023-01-30 NiCrBSi-ZrB2 METAL CERAMIC POWDER, COMPOSITE COATING FOR HIGH TEMPERATURE PROTECTION, AND PREPARATION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
WO2022152264A1 true WO2022152264A1 (zh) 2022-07-21

Family

ID=76115040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072124 WO2022152264A1 (zh) 2021-01-18 2022-01-14 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法

Country Status (4)

Country Link
US (1) US20230193445A1 (zh)
JP (1) JP7341582B2 (zh)
CN (1) CN112899604A (zh)
WO (1) WO2022152264A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351271A (zh) * 2022-08-31 2022-11-18 国家电投集团江西水电检修安装工程有限公司 一种叶轮耐蚀涂层粉末、叶轮耐蚀涂层及其制备方法
CN116921671A (zh) * 2023-06-06 2023-10-24 四川苏克流体控制设备股份有限公司 一种硅行业用金属硬密封耐磨控制阀制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112899604A (zh) * 2021-01-18 2021-06-04 安徽工业大学 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法
CN113403564A (zh) * 2021-06-15 2021-09-17 安徽工业大学 一种用于冷轧辊表面的纳米陶瓷颗粒增强金属基复合涂层及其制备方法
CN113954236B (zh) * 2021-11-01 2022-12-23 江苏四达重工有限公司 一种便于清洗的组合式混凝土搅拌机及其工作方法
CN117265458B (zh) * 2023-11-13 2024-01-23 成都成高阀门股份有限公司 一种陶瓷晶须增强高韧性超音速火焰喷涂涂层材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715326A1 (de) * 1987-05-08 1988-11-24 Castolin Sa Verfahren zum herstellen einer selbstschaerfenden schneid- oder messerkante
CN1886535A (zh) * 2003-09-29 2006-12-27 通用电气公司 纳米结构涂层体系、部件和相关制造方法
CN101884892A (zh) * 2010-06-25 2010-11-17 北京工业大学 一种超细及纳米WC-Co复合粉的团聚造粒方法
CN107914005A (zh) * 2016-10-08 2018-04-17 北京联合涂层技术有限公司 一种高b耐磨熔焊材料的制备方法
CN108115110A (zh) * 2017-12-22 2018-06-05 西安交通大学 一种具有拉伸预应力陶瓷层抗粘附压铸模具及其制备方法
CN112899604A (zh) * 2021-01-18 2021-06-04 安徽工业大学 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110643926A (zh) * 2019-10-25 2020-01-03 安徽马钢表面技术股份有限公司 一种连续退火炉高温炉辊ZrB2改性CoCrAlTaY-Y2O3防护涂层及制备方法
CN111334743B (zh) * 2020-03-15 2022-04-15 河北工业大学 硼化锆-碳化锆-碳化硅复合涂层的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715326A1 (de) * 1987-05-08 1988-11-24 Castolin Sa Verfahren zum herstellen einer selbstschaerfenden schneid- oder messerkante
CN1886535A (zh) * 2003-09-29 2006-12-27 通用电气公司 纳米结构涂层体系、部件和相关制造方法
CN101884892A (zh) * 2010-06-25 2010-11-17 北京工业大学 一种超细及纳米WC-Co复合粉的团聚造粒方法
CN107914005A (zh) * 2016-10-08 2018-04-17 北京联合涂层技术有限公司 一种高b耐磨熔焊材料的制备方法
CN108115110A (zh) * 2017-12-22 2018-06-05 西安交通大学 一种具有拉伸预应力陶瓷层抗粘附压铸模具及其制备方法
CN112899604A (zh) * 2021-01-18 2021-06-04 安徽工业大学 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351271A (zh) * 2022-08-31 2022-11-18 国家电投集团江西水电检修安装工程有限公司 一种叶轮耐蚀涂层粉末、叶轮耐蚀涂层及其制备方法
CN115351271B (zh) * 2022-08-31 2024-01-26 国家电投集团江西水电检修安装工程有限公司 一种叶轮耐蚀涂层粉末、叶轮耐蚀涂层及其制备方法
CN116921671A (zh) * 2023-06-06 2023-10-24 四川苏克流体控制设备股份有限公司 一种硅行业用金属硬密封耐磨控制阀制造方法
CN116921671B (zh) * 2023-06-06 2024-01-26 四川苏克流体控制设备股份有限公司 一种硅行业用金属硬密封耐磨控制阀制造方法

Also Published As

Publication number Publication date
CN112899604A (zh) 2021-06-04
JP7341582B2 (ja) 2023-09-11
JP2023532379A (ja) 2023-07-27
US20230193445A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2022152264A1 (zh) 一种高温防护用NiCrBSi-ZrB2金属陶瓷粉末、复合涂层及其制备方法
CN104195492B (zh) 耐磨耐蚀涂层材料及制备方法与涂层及制备方法
CN115233137B (zh) 低摩擦的超音速火焰喷涂耐磨涂层材料、制备方法及应用
CN102828137B (zh) 一种高温合金表面纳米复合涂层及其制备方法
CN110218962A (zh) 一种耐磨自润滑镍铬碳化铬金属陶瓷复合涂层及其制备方法
CN103009704A (zh) 一种纳米/类柱状晶混合结构热障涂层及其制备方法
CN106835112A (zh) 一种镁合金表面冷喷涂420不锈钢复合涂层的制备方法
CN110629153B (zh) 一种石墨烯纳米片/非晶铁基复合涂层的制备方法
CN106119762A (zh) 一种硼化物金属陶瓷涂层材料及制备方法
CN107236331B (zh) 耐高温腐蚀涂料及其制备方法以及耐高温腐蚀涂层及其制备方法
CN115121789B (zh) 一种抗热震性高耐磨涂层材料及其制备方法
CN112496329A (zh) 一种球形高松装密度Cr3C2-NiCr热喷涂粉的制备方法
CN113355625A (zh) 一种NbC增强的高熵合金基复合涂层及其制备方法
CN109023203B (zh) 稳定结晶态六铝酸盐热障涂层的制备方法
CN104498858A (zh) 一种纳米陶瓷热障涂层及其制备方法
CN110616393B (zh) 一种阀门过流表面耐磨耐腐蚀性喷涂层及其制备方法
CN111676439A (zh) 一种数控冲床浮动夹钳表面耐磨涂层的制备方法
CN113862599B (zh) 一种Al2O3-GdAlO3非晶氧化物陶瓷涂层及其制备方法
Hu et al. Microstructure and tribological properties of ZrB2-enhanced NiCrBSi coatings prepared by high-velocity oxy-fuel spraying
CN112275593B (zh) 一种改进涂层微观结构的方法
CN109023345B (zh) 三元硼化物强化铁基耐磨涂层及其制备方法
CN104651770B (zh) 一种具有高摩擦系数和低磨损率的无机涂层及其制备方法
CN114086102A (zh) 一种Ba(Mg1/3Ta2/3)O3-YSZ双陶瓷层热障涂层及其制备方法
CN112281106A (zh) 一种掺加石墨烯纳米片纳米氧化铝涂层的制备方法
CN105483596B (zh) 一种无机涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501662

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739139

Country of ref document: EP

Kind code of ref document: A1