WO2022151499A1 - 用于固体燃料燃烧炉的分料结构及燃烧炉 - Google Patents

用于固体燃料燃烧炉的分料结构及燃烧炉 Download PDF

Info

Publication number
WO2022151499A1
WO2022151499A1 PCT/CN2021/072564 CN2021072564W WO2022151499A1 WO 2022151499 A1 WO2022151499 A1 WO 2022151499A1 CN 2021072564 W CN2021072564 W CN 2021072564W WO 2022151499 A1 WO2022151499 A1 WO 2022151499A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid fuel
arm
arm group
distribution structure
material distribution
Prior art date
Application number
PCT/CN2021/072564
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
车战斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 车战斌 filed Critical 车战斌
Priority to CN202180000344.0A priority Critical patent/CN115119517A/zh
Priority to PCT/CN2021/072564 priority patent/WO2022151499A1/zh
Publication of WO2022151499A1 publication Critical patent/WO2022151499A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone

Definitions

  • the embodiments of the present application relate to the field of combustion equipment, and in particular, to a material distribution structure and a combustion furnace for a solid fuel combustion furnace.
  • Existing combustion equipment such as the use of grate spread combustion furnace
  • has disadvantages such as complex structure, high processing and production cost, poor use stability, and insufficient fuel combustion.
  • the fuel is accumulated on the grate for combustion in a shared-fired combustion furnace that uses the grate to carry the fuel.
  • the other part is easy to overburn, resulting in waste of resources and pollution.
  • the grate furnace with this structure often encounters problems such as flame failure and burnout during the working process, which requires staff to inspect and maintain in real time, so that the use cost remains high.
  • the embodiments of the present application provide a material distribution structure for a solid fuel combustion furnace and a combustion furnace, so as to at least partially solve the above problems.
  • a material distribution structure for a solid fuel combustion furnace wherein the combustion furnace includes a furnace body for accommodating a fuel stack formed by solid fuel, and the material distribution structure includes forming a first A first support arm group with an inclined plane and a second support arm group forming a second inclined plane; the first support arm group is used to be arranged in the furnace body to provide solid fuel entering the furnace body through the first inclined plane along the first inclined plane.
  • the guiding force, the first angle between the first inclined plane and the horizontal plane is smaller than the stacking slope of the fuel pile formed by the solid fuel stacked on the first arm group, and the first arm group has a first material passing gap to pass through
  • the first material passing gap sorts the solid fuel; the second arm set is located below the first arm set, and the second arm set provides the solid fuel falling from the first arm set through the second inclined plane along the
  • the guiding force of an inclined plane, and the second arm group is provided with a second material passing gap, so as to sort the solid fuel through the second material passing gap.
  • the first end of the second arm set is connected to the first end of the first arm set, or the second arm set and the first arm set are integrally formed.
  • the first support arm group includes a plurality of first support arms arranged at intervals, and there is a first material passing gap between two adjacent first support arms, and/or, the second support arm group includes a plurality of intervals
  • the set second support arm has a second material passing gap between two adjacent second support arms.
  • first support arm and/or the second support arm are refractory support arms made of refractory materials.
  • the first support arm is a water pipe
  • the material distribution structure further includes a first water collection tank and a second water collection tank, the first water collection tank is connected to the first end of the first support arm group, and the second water collection tank is connected to the first water collection tank. the second end of the arm set.
  • the second arm is a water pipe
  • the material distribution structure further includes a third water collection tank
  • the first end of the second arm group is connected to the first water collection tank
  • the second end of the second arm group is connected to the first water collection tank.
  • the first arm includes a first water pipe and a first refractory layer, the first water pipe is connected between the first water collecting tank and the second water collecting tank, and the first refractory layer is arranged on the first water pipe, so that the adjacent A first material passing gap is formed between the two first refractory layers; and/or, the second arm includes a second water pipe and a second refractory layer, and the second water pipe is connected between the first water collecting tank and the third water collecting tank, The second refractory layer is arranged on the second water pipe, so that a second material passing gap is formed between two adjacent second refractory layers.
  • the upper edge of the second end of the first water pipe is flush with the upper edge of the second water collecting tank; and/or the upper edge of the second end of the second water pipe is flush with the upper edge of the third water collecting tank.
  • the width of the first material passing gap of the first arm group gradually decreases along the falling direction of the solid fuel.
  • the upper part of the air inlet side wall of the furnace body is provided with an air inlet, and the length of the second arm group is greater than the length of the first arm group, so that the second end of the first arm group is connected to the air inlet side wall.
  • the distance therebetween is greater than the distance between the second end of the second arm group and the air inlet side wall.
  • the upper part of the first arm group is used to form a cracking area
  • the second arm group and the first arm group are used to form a fixed carbon combustion area
  • the ventilation gap between the solid fuels in the fixed carbon combustion area is used. Less than the ventilation gap for solid fuel in the cracking zone.
  • a combustion furnace includes a furnace body and a material distribution structure.
  • the material distribution structure is the above material distribution structure, and the material distribution structure is arranged in the furnace body.
  • the material distribution structure can be used in a solid fuel combustion furnace to receive the solid fuel entering the furnace body, and the first arm set and the second arm set divide the space in the furnace body into different areas (eg pyrolysis zone, fixed carbon combustion zone and anoxic combustion zone, etc.).
  • the first included angle ⁇ formed by the first arm group is smaller than the stacking slope ⁇ of the fuel stack formed by the solid fuel stacked on the first arm set (in this embodiment, the stacking slope is formed by the stacking of the fuel stack in the furnace body).
  • the slope can be considered as the angle between the slope of the fuel stack away from the air inlet of the combustion furnace and the horizontal plane), so that the thickness of the solid fuel above the first arm group gradually decreases along the direction away from the inlet Small, so that the passing gas velocity gradually increases in the direction away from the feed port, thus ensuring sufficient oxygen supply for the solid fuel in the cracking area, and according to the principle that the gas velocity is positively related to the temperature, the furnace can be effectively controlled.
  • the temperature in the body is controlled, so that a stable temperature field can be formed, and then the volume of the solid fuel is gradually reduced during the combustion process, and the gap between the solid fuel is gradually reduced, thereby reducing the airflow velocity, thereby preventing the solid fuel from overburning .
  • the gas flow rate in the combustion furnace is adapted to the temperature of the combustion furnace, so that a stable temperature field can be formed in the combustion furnace, so that the combustion furnace can carry out continuous and stable combustion.
  • Fig. 1 shows the three-dimensional schematic diagram of the first material distribution structure of the embodiment of the present application
  • Fig. 2 shows the front view structure schematic diagram of the second material distribution structure of the embodiment of the present application
  • Fig. 3 shows the three-dimensional structure schematic diagram of the first perspective of the second material distribution structure of the embodiment of the present application
  • Fig. 4 shows the three-dimensional structure schematic diagram of the second view angle of the second material distribution structure according to the embodiment of the present application
  • Fig. 5 shows the cross-sectional structural schematic diagram of the second material distribution structure according to the embodiment of the present application
  • FIG. 6 shows a schematic cross-sectional structure diagram of a combustion furnace according to an embodiment of the present application
  • FIG. 7 shows a schematic diagram of the connection between the combustion furnace and the boiler according to the embodiment of the present application.
  • a temperature field flow matching the solid fuel combustion process needs to be satisfied in the furnace, so as to achieve full combustion of the solid fuel.
  • the temperature field flow is as follows: the spatial distribution of the temperature area in the furnace meets the temperature conditions required for each combustion stage of the solid fuel, and the temperature field flow is formed by the solid fuel in the furnace during the combustion process.
  • the combustion that conforms to the combination of multiple inherent combustion properties of solid fuel can be realized in the furnace, that is, multi-factor coupled combustion can be realized.
  • a material distribution structure arranged in the furnace body of the combustion furnace is provided to establish the above-mentioned temperature field process in the furnace (the furnace chamber may be a combustion space of solid fuel, which may be at least part of the inner cavity of the furnace body).
  • an embodiment of the present application provides a material distribution structure for a solid fuel combustion furnace, the combustion furnace includes a furnace body for accommodating a fuel stack formed by solid fuel, and the material distribution structure includes a first support forming a first slope.
  • the arm group 10 and the second arm group 20 forming the second inclined surface; the first support arm group 10 is used to be arranged in the furnace body, so as to provide a guiding force along the first inclined surface for the solid fuel entering the furnace body through the first inclined surface , the first angle ⁇ between the first inclined plane and the horizontal plane 43 is smaller than the stacking slope ⁇ of the fuel pile formed by the solid fuel stacked on the first arm group 10 , and the first arm group 10 has a first material passing gap 31 , so as to sort the solid fuel through the first material passing gap 31; the second arm group 20 is located below the first arm group 10, and the second arm group 20 passes through the second inclined plane from the first arm group 10.
  • the falling solid fuel provides a guiding force along the first slope, and the second arm group 20 is provided with a second material passing gap 32 to sort the solid fuel through the second material passing gap 32 .
  • the first arm set 10 and the second arm set 20 may be integrally formed, such as by casting, integral bending, etc., or the first arm set 10 and the second arm set 20 may be formed by machining or the like Processed and formed, for example, the first arm group 10 and the second arm group 20 are connected by welding or the like.
  • the material distribution structure can be used in a solid fuel combustion furnace to receive the solid fuel entering the furnace body, and the first arm set 10 and the second arm set 20 divide the space in the furnace body into different areas (eg cracking area, fixed carbon combustion zone and anoxic combustion zone, etc.).
  • the first included angle ⁇ formed by the first arm group 10 is smaller than the stacking gradient ⁇ of the fuel stack formed by the solid fuel stacked on the first arm group 10 (in this embodiment, the stacking gradient is the stacking slope of the fuel stack in the furnace body)
  • the formed slope can be considered as the angle between the slope surface of the side of the fuel stack away from the air inlet of the combustion furnace and the horizontal plane), so that the thickness of the solid fuel above the first arm group 10 is along the distance away from the feed inlet 42.
  • the direction of the gas flow gradually decreases, so that the passing gas flow rate gradually increases in the direction away from the feed port 42, thereby ensuring sufficient oxygen supply for the solid fuel in the cracking area, and according to the principle that the gas flow rate is positively related to temperature
  • the temperature in the furnace body can be effectively controlled, so that a stable temperature field can be formed, and then the volume of solid fuel is gradually reduced during the combustion process, and the gap between the solid fuels is gradually reduced, thereby reducing the airflow velocity, thereby Prevent solid fuel from overburning.
  • the gas flow rate in the combustion furnace is adapted to the temperature of the combustion furnace, so that a stable temperature field can be formed in the combustion furnace, so that the combustion furnace can carry out continuous and stable combustion.
  • the stacking gradient (also called stacking gradient) is a stable gradient formed by the natural stacking (or stacking) of fuel.
  • Different types of fuels such as biomass and lignite, typically have different stacking slopes due to their inherent characteristics such as particle size.
  • grate furnaces operate with fuel spread on the grate.
  • the thickness of the fuel laid on the grate should not be too high, usually only a few tens of centimeters in thickness.
  • the fuel is laid flat on the grate, and the height is low, resulting in less calorific value that the fuel can provide, insufficient adaptability to changes in moisture in the new fuel, and new fuel is prone to appear when the humidity of the newly added fuel increases. It is difficult to ignite and the grate furnace is cut off.
  • the combustion furnace in the embodiment of the present application is a stack combustion furnace, that is, the solid fuel forms a fuel stack in the furnace body and is burned.
  • the space in the furnace body can be fully utilized, so that the space in the height direction of the furnace body can be fully utilized, forming a super large combustion space, thereby saving costs, and making the output power of the combustion furnace related to the volume of the furnace body.
  • the combustion furnace includes a furnace body, and the furnace body is provided with a feeding port 42 , an air inlet 41 and a discharging conveying mechanism 46 .
  • the feeding port 42 and the air inlet 41 are both arranged on the upper part of the furnace body.
  • the feeding port 42 is arranged on the top wall of the furnace body, and the air inlet 41 is arranged on one side wall of the furnace body ( For ease of description, it is referred to as the upper part of the air inlet side wall 44).
  • the discharging conveying mechanism 46 is arranged at the lower part of the furnace body.
  • the discharge conveying mechanism 46 is, for example, a conveyor belt or any other structure capable of providing thrust for the combustion residue.
  • the solid fuel enters the furnace body from the upper feed port 42 to form a fuel stack.
  • the solid fuel in the furnace body will gradually move downward, so that New solid fuel will continuously enter the furnace body from the feeding port 42 to supplement the solid fuel, and in the process of the solid fuel gradually moving downward, the material distribution structure passes through the first inclined plane, the second inclined plane, and the first feeding material.
  • the gap 31 and the second material passing gap 32 can guide and sort the solid fuel, so that the solid fuel of different volumes stays in the furnace for different times, and the ventilation gap and oxygen supply between the solid fuels at different positions in the furnace are different. Therefore, the organized and orderly combustion of solid fuel is realized.
  • the first end of the second arm set 20 is connected to the first end of the first arm set 10 , or the second arm set 20 and the first arm set 10 are integrally formed.
  • the first arm group 10 and the second arm group 20 can be processed by casting, bending or the like. If the two are connected, the two can be directly connected, for example, the first end of the first arm set 10 is directly connected to the first end of the second arm set 20, or the two can also be indirectly connected, such as through other structures To realize the connection, the connection methods include but are not limited to welding, screw connection, riveting and so on.
  • the first support arm group 10 may include a plurality of first support arms arranged at intervals, the plurality of first support arms may be parallel to each other, and there may be a first overfeed between two adjacent first support arms. In the gap 31, a plurality of first support arms are spatially distributed to form a first inclined plane.
  • the first arm group 10 may be an integral plate (eg, a metal plate), and a plurality of gaps are provided at intervals on the plate as the first material passing gap 31 .
  • the first arms are refractory arms made of refractory materials.
  • the refractory material can be refractory brick or refractory cement.
  • the first support arm may be rod-shaped, plate-shaped, sheet-shaped, tubular, etc., of any suitable structure and shape.
  • the plurality of first support arms included in the first support arm group 10 may be parallel to each other, and a predetermined first material passing gap 31 may be spaced between each of the first support arms.
  • the first support arm may be a water pipe, and the first support arm group 10 includes a plurality of parallel water pipes.
  • the material distribution structure may further include a first water collection tank 51 and a second water collection tank 52, the first water collection tank 51 is connected to the first end of the first arm group 10, and the second water collection tank 52 is connected to the first water collection tank 52. The second end of an arm set 10 .
  • the first water collecting tank 51 and/or the second water collecting tank 52 can be connected to the external system for supplying cooling liquid, so that cooling liquid can be passed into the distribution structure to cool it down, ensure reliability, and avoid excessive temperature And affect the service life of the distribution structure.
  • the first arm includes a plurality of first water pipes 11 and a first refractory layer 12, and the first water pipes 11 is connected between the first water collecting tank 51 and the second water collecting tank 52, and the first refractory layer 12 is arranged on the first water pipe 11, so that a first material passing gap 31 is formed between two adjacent first refractory layers 12 .
  • the plurality of first water pipes 11 may be arranged at intervals along the length direction of the first water collecting tank 51 (if the first water collecting tank 51 is a water pipe, the length direction is its axial direction).
  • One or more first refractory layers 12 may be provided on each of the first water pipes 11. In this way, water circulation is realized through the first water pipe 11 , and the first refractory layer 12 can not only protect the first water pipe 11 , but also form a first material passing gap 31 of required shape and width W between two adjacent first water pipes 11 .
  • the first material passing gap 31 is used for passing the solid fuel, and the speed of the passing air flow can also be adjusted.
  • the first refractory layer 12 may be a structure formed using refractory materials (eg, refractory cement).
  • the width W of the first feeding gap 31 gradually decreases along the falling direction of the solid fuel, and the minimum width W of the first feeding gap 31 is larger than the maximum particle size of the solid fuel.
  • the minimum width W of the first passing gap 31 is greater than the maximum particle size of the solid fuel, it is ensured that the solid fuel can pass smoothly, and the bridge phenomenon caused by the solid fuel adhering to the first arm group 10 can also be prevented.
  • the width W of the first material passing gap 31 gradually decreases along the direction in which the solid fuel falls (such as the direction from top to bottom), the width W of the first material passing gap 31 varies in the airflow direction, The airflow speed can thus be adjusted to suit the needs.
  • the width W of the first material passing gap 31 gradually increases along the airflow direction (because the airflow direction is opposite to the falling direction of the solid fuel), which means that the airflow needs to enter the first material passing gap from a small opening with a smaller width W 31.
  • the airflow speed will increase due to the reduction of the airflow passing area, so as to realize the airflow speed increase, and realize the effect of further increasing the airflow speed entering the cracking area, which is helpful for the cracking area.
  • Sufficient oxygen supply Avoid the problem of insufficient cracking and volatilization due to the high oxygen supply required for cracking and volatilizing the volatiles in the solid fuel.
  • the first material passing gap 31 in the present embodiment may have a gradually decreasing width W in the falling direction of the solid fuel, or may all have a gradually decreasing width W.
  • the cross-sectional area of the first refractory layer 12 is determined to be an appropriate shape.
  • the cross section of the first refractory layer 12 is triangular, so that the width W of the first material passing gap 31 formed by two adjacent first refractory layers 12 gradually decreases along the falling direction of the solid fuel, so that there is a It helps to increase the gas flow rate, increase the oxygen supply in the cracking area, ensure the oxygen demand in the cracking area, and increase the temperature of the temperature field in the cracking area.
  • the triangular first refractory layer 12 has low processing and production cost, which is convenient for production.
  • the cross-sectional shape of the first refractory layer 12 may also be an oval, circular, trapezoidal or other appropriate shape, which is not limited thereto.
  • the upper edge of the second end of the first water pipe 11 (the end close to the air inlet side wall 44 ) is flush with the upper edge of the second water collecting tank 52 . Since the material distribution structure will be covered by solid fuel during use, in order to avoid the solid fuel being stuck at the bends and transitions of the material distribution structure, and the solid fuel will stick to the material distribution structure to form a burning dead zone, the first water pipe The upper edge of the second end of 11 is flush with the upper edge of the second water collecting tank 52, which ensures that the first arm group 10 does not have a corner where the solid fuel is stuck at the second water collecting tank 52, so that the solid fuel can be It moves smoothly along the first slope of the first arm set 10 or passes through the first material passing gap 31 of the first arm set 10 .
  • the second end of the first arm group 10 may also be equipped with an adjustment baffle, which is used to control whether the solid fuel can pass through the second end, so as to adapt to the combustion of different solid fuels in the combustion furnace.
  • the adjusting baffle can be rotatably connected to the second end of the first arm group 10 through pins, etc., so that when the solid fuel needs to pass through the second end, the adjusting baffle can be lowered so that it can fall through the second end; otherwise , and when not needed, raise the adjusting baffle to prevent the solid fuel from falling through the second end.
  • the adjusting baffle can also be movably connected to the furnace body through a telescopic rod, etc., when the solid fuel does not need to fall through the second end, the adjusting baffle can be pushed to close the opening between the second end and the furnace body; The adjustment flap is pulled out of the opening when the solid fuel is required to drop through the second end.
  • the structure, shape, etc. of the second arm set 20 may be the same as or different from the first arm set 10 . In this embodiment, in order to reduce manufacturing, processing and other costs, the structures of the two are similar.
  • the second support arm group 20 includes a plurality of second support arms arranged at intervals, a second material passing gap 32 is provided between two adjacent second support arms, and the plurality of second support arms are spatially distributed. A second slope is formed.
  • the second arm may be a refractory arm made of refractory material.
  • the refractory material is, for example, refractory cement or the like.
  • the second arm is a water pipe
  • the material distribution structure further includes a third water collecting tank 53
  • the first end of the second arm group 20 is connected to the first water collecting tank 51
  • the second end of the second arm group 20 is connected On the third header tank 53 .
  • the second arm group 20 can be protected by the cooperation of the first water collecting tank 51 and the third water collecting tank 53 .
  • the first water collecting tank 51, the second water collecting tank 52 and the third water collecting tank 53 may be water tanks, water pipes with larger diameters, etc., and their structures may be the same or different. In this embodiment, in order to reduce the cost, the structures of the first water collecting tank 51 , the second water collecting tank 52 and the third water collecting tank 53 are the same.
  • the second arm includes a second water pipe 21 and a second refractory layer 22, the second water pipe 21 is connected between the first water collecting tank 51 and the third water collecting tank 53, and the second refractory layer 22 is arranged on the first water collecting tank 51 and the third water collecting tank 53. on the two water pipes 21 , so that a second material passing gap 32 is formed between two adjacent second refractory layers 22 . In this way, the second refractory layer 22 can protect the second water pipe 21 and form the required second material passing gap 32 .
  • the upper edge of the second end of the second water pipe 21 is flush with the upper edge of the third water collecting tank 53 .
  • the solid fuel can smoothly move along the second slope or fall from the second material passing gap 32 of the second arm set 20 , and will not accumulate on the second arm set 20 and the third water collecting tank 53 . at the connection location.
  • first arm set 10 and the second arm set 20 may be made of the same material, or may be made of different materials, as long as the structure can meet the requirements.
  • the width of the second material passing gap 32 of the second support arm group 20 is smaller than the width of the first material passing gap 31 of the first support arm group 10, so that the first support arm group 10 and the second support arm group 10 are The boom group 20 cooperates to sort the solid fuel step by step.
  • the material distribution structure may further include at least one third arm group, and the third arm group has a third inclined surface and a third material passing gap, and The width of the third material passing gap is smaller than the width of the second material passing gap.
  • the widths of the third material passing gaps of the multiple third support arm groups gradually decrease along the direction away from the air inlet side wall 44 .
  • the ventilation gap between the solid fuels in the fixed carbon combustion zone is smaller than the ventilation gap of the solid fuel in the cracking zone, and in order to ensure The time that the solid fuel stays in the fixed carbon combustion zone meets the requirements, so as to obtain a predetermined product such as carbon of a certain quality, that is, carbon with a certain adsorption.
  • the length of the second arm group 20 is greater than that of the first arm The length of the group 10, so that the distance L1 between the second end of the first arm group 10 and the air inlet side wall 44) (the air inlet side wall is the side wall where the air inlet 41 is set in the furnace body) is greater than the second The distance L2 between the second end of the support arm group 20 and the air inlet side wall 44 .
  • the distance between the second end of the first arm set 10 and the air inlet side wall 44 (such as the center axis of the second water collecting tank 52 of the first arm set 10 and the inlet side wall 44 )
  • the distance between the air inlet side walls 44) is smaller than the distance between the feed port 42 and the air inlet side wall 44 (such as the distance between the position of the feed port 42 closest to the air inlet side wall 44 and the air inlet side wall 44) .
  • the volume of the solid fuel below the first arm group 10 collapses faster than the solid fuel on the first arm group 10 falls downward, so that the first arm group A gap is formed at the lower surface of the 10 for the air flow to pass through, thereby helping the air flow to quickly reach the first end of the first arm group 10 and maintain a high air flow velocity.
  • a combustion furnace includes a furnace body and the above-mentioned material distribution structure.
  • the material distribution structure is arranged in the furnace body to receive solid fuel falling into the furnace body.
  • the combustion furnace provided with the material distribution structure can realize the stacking combustion of solid fuel, and can automatically establish a stable temperature field in the furnace body of the combustion furnace, so as to ensure the continuous and stable combustion of solid fuel and avoid the existing spread combustion furnace. There is a problem of easy fire breakage.
  • the airflow velocity at different positions in the furnace body of the combustion furnace is different, so that the oxygen supply amount is different, which not only ensures the full combustion of the solid fuel, but also can effectively avoid overburning and reduce nitrogen oxides. emissions, achieve clean combustion, and ensure environmental protection.
  • the material distribution structure divides the furnace body into a cracking area, a fixed carbon combustion area and an oxygen-deficient combustion area.
  • the cracking zone is located above the first arm group 10, close to the feed port 42. Due to the blocking effect of the first arm group 10 and the cracking zone is relatively close to the feed port 42, when the solid fuel is in the cracking zone , the volume is larger, so that the gap between the solid fuels is larger, and the first arm group 10 makes the thickness H of the solid fuel in the cracking area smaller, and cracks along the first slope formed by the first arm group 10 The thickness H of the solid fuel in the zone is gradually reduced, so that the wind resistance in the cracking zone is smaller than that of the fixed carbon combustion zone and the anoxic combustion zone, and the airflow velocity is higher and the temperature is higher.
  • the fixed carbon combustion zone is located between the first arm group 10 and the second arm group 20.
  • the fixed carbon in the solid fuel is mainly burned to produce a carbon flame (a carbon flame can be understood as a flame generated by carbon combustion. ). Since the volume of the solid fuel in this area is smaller than that of the solid fuel in the cracking area, the gaps between the solid fuels in this area are reduced, and the resistance to the passage of air flow increases, so that the air flow speed is gradually reduced, supplying The amount of oxygen is also reduced, so overburning is prevented.
  • the oxygen-deficient combustion area is located between the second arm group 20 and the discharge conveying mechanism 46 of the combustion furnace, and the solid fuel discharged from the fixed carbon combustion area enters the anoxic combustion area.
  • the solid fuel in this area has the smallest volume, the smallest gap and It is the farthest from the air inlet 41, so the oxygen supply is the least here.
  • the operation process of the combustion furnace can be divided into several stages of filling, ignition and operation.
  • the solid fuel enters from the feed port 42, and gradually falls and accumulates to form a fuel pile.
  • the fuel pile naturally forms a stacking slope ⁇ .
  • the fuel pile is schematically shown in FIG. Therefore, the stacking gradients ⁇ of the solid fuels piled up everywhere in the furnace body are similar.
  • the ignition stage close the air inlet 41, open the induced draft fan connected to the air outlet 47 (the induced draft fan communicates with the air outlet 47 through the channel), and put the ignition material at the inlet 42, and the furnace is under the action of the induced draft fan.
  • the body is in a negative pressure state, and the air flow enters from the feed port 42, so that the solid fuel is ignited by the pilot, and the solid fuel is ignited for a period of time (the time can be determined in an appropriate manner according to needs) and then enters the operation stage.
  • the material level of the feed port 42 is kept at the second material level, and the second material level is higher than the first material level, and the air inlet 41 is opened to allow the airflow to enter from the air inlet 41, and when running for a period of time
  • the discharging conveying mechanism 46 is activated, so that the discharging conveying mechanism 46 pushes the solid fuel to move toward the discharging port, wherein the moving direction of the discharging conveying mechanism 46 is the direction away from the air inlet 41 .
  • the fuel stack in the furnace body is continuously collapsed, and the discharge conveying mechanism 46 continuously drives the combustion residue to move toward the outside of the furnace.
  • the solid fuel at the furnace can continue to fall downwards to realize the replenishment of new solid fuel into the furnace body.
  • the solid fuel in the burning state is sufficient, which can provide enough heat to dry the newly entered solid fuel, and can satisfy the heat absorbed by the newly entered solid fuel to be ignited. This ensures the adaptability to solid fuels of different humidity, and ensures that the burner can burn smoothly and stably without the need for complex sensors for inspection and control.
  • the solid fuel entered by the feeding port 42 first absorbs heat in the cracking area and releases some gases, which include but are not limited to VOC (volatile organic compounds, English full name is volatile organic compounds), dioxins and water vapor.
  • the volume of the solid fuel also decreases during the process of the solid fuel absorbing heat in the cracking zone.
  • These released gases are carried by the airflow into the thermal storage cavity formed by the thermal storage device, where they are processed. Due to the arrangement of the heat storage device and its sufficient heat storage capacity, it is ensured that it can adapt to gases of different temperatures, and that the VOC in the gas can be fully treated.
  • the solid fuel When the solid fuel reaches the first slope of the first arm group 10 of the material distribution structure from the feed port 42, due to the blocking effect of the first arm group 10, the solid fuel whose volume is smaller than the first material passing gap 31 can pass through the first arm group 10.
  • An arm set 10 enters the fixed carbon combustion zone.
  • the solid fuel whose volume is larger than the first material passing gap 31 it will move downward along the first slope and gradually move to the first end of the first arm group 10 (that is, the one shown in the figure that is far from the air inlet side wall 44). In this process, the solid fuel can still absorb heat for cracking and water evaporation. If the solid fuel moves to a temperature range where the temperature field is higher than the ignition point of the fuel, the solid fuel will be ignited and begin to burn.
  • the water is evaporated and burned, and the volume of the solid fuel is continuously reduced until it is burned enough to fall through the first material passing gap 31 and enter the fixed carbon combustion zone.
  • the solid fuel is doped with incombustible and relatively large substances, since its volume will not decrease, it will move along the first inclined plane to the first end of the first arm group 10, and then fall to the oxygen-deficient combustion. zone, and with the collapse of the solid fuel in the oxygen-deficient combustion zone and the push of the discharge conveying mechanism 46, it is pushed to the discharge port and discharged from the furnace body.
  • the first arm group 10 Due to the blocking effect of the first arm group 10, there is a speed difference between the speed at which the solid fuel volume below the first arm group 10 collapses and the falling speed of the solid fuel above the first arm group 10.
  • a gap 90 for air to pass through is formed under the first arm group 10 , due to the existence of the gap 90 , the air entering from the air inlet 41 can quickly move from the gap 90 to the first end of the first arm group 10 , due to the presence of the stacking gradient ⁇ naturally formed by the solid fuel accumulation on the first arm group 10 and the existence of the first included angle ⁇ between the first arm group 10 and the horizontal plane, the first arm group 10
  • the thickness of the solid fuel at one end is the smallest, and the gap between the solid fuels is large, which makes the wind resistance there smaller, which in turn makes the airflow velocity larger, and the airflow velocity is positively correlated with the temperature, so the first The temperature at the first end of the arm group 10 is relatively high, and this region is also the region where the carbon flame generated by the combustion of the
  • this part of the solid fuel can obtain sufficient oxygen supply to burn , as the volume of the burning solid fuel decreases, the gap between the solid fuel going down is smaller, the wind resistance is larger, the wind speed is smaller and the temperature is lowered, so the solid fuel will not appear coking phenomenon, thus effectively It solves the problem that the solid fuel is easy to coke and cause blockage when the grate furnace in the prior art is burned when the coking temperature is below the ignition point.
  • the solid fuel Due to the volume reduction of the solid fuel caused by the combustion, combined with the pushing action of the discharge conveying mechanism 46, the solid fuel continuously moves downward.
  • the second slope of the second arm group 20 if it can pass through the second material passing gap 32 of the second arm group 20, it will enter the oxygen-deficient combustion area from the fixed carbon combustion area; if If the volume is not enough to pass through the second material passing gap 32, it will move down along the second slope until it can pass through the second material passing gap 32, or move to the second end of the second arm group 20 and fall down, it will It is pushed to the oxygen-deficient combustion zone by the discharge conveying mechanism 46 .
  • the air supply in the furnace belongs to the surface air supply, and the airflow speed is controlled by the gap between the solid fuels, so that the combustion volume of the solid fuel is reduced, while the The characteristics of reducing the gap and reducing the wind speed naturally control the combustion of the solid fuel, preventing the phenomenon of insufficient combustion in some parts and over-combustion in the other part.
  • the time that the solid fuel stays in the fixed carbon combustion zone can be controlled, thereby controlling the residual combustion
  • the fixed carbon content in the material so as to achieve the purpose of obtaining carbon of the required quality.
  • biomass fuel can be processed into carbon through the stack furnace, and the heat generated during the combustion process can also be used to generate electricity.
  • the oxygen-deficient combustion zone is far away from the air inlet 41 and the gap between the solid fuels is also small, the wind resistance here is high and the airflow velocity is low, so coking will not occur, and the oxygen supply is also small. , which can avoid over-burning, thereby preventing excessive nitrogen oxide emissions due to oxidizing nitrogen in the air.
  • a gap 90 is also formed below the second arm set 20, and the gap 90 enables the burning carbon flame to be collected to the first arm. at the first end of the arm set 10 .
  • the process of the solid fuel passing through the third arm group in the oxygen-deficient combustion zone is similar to the process of passing through the first arm group 10 and the second arm group 20 , so it is not repeated here.
  • the number of the third arm group can be set as required, or it can also not be set.
  • the combustion furnace solves the problem that the fuel is laid on the grate during operation of the existing grate furnace.
  • the thickness of the fuel laid on the grate is required. Not too high, usually the thickness of the fuel can only be a few tens of centimeters.
  • the solid fuel can be burned in a heap, it also solves the problem that the fuel is laid flat on the grate, and the height is low, resulting in less calorific value that the fuel can provide, and insufficient adaptability to changes in moisture in the new fuel.
  • the humidity of the newly added fuel increases, it is easy to cause the new fuel to be difficult to ignite and cause the grate furnace to break fire.
  • the humidity of the newly added fuel decreases, the air volume and wind speed cannot be adjusted in time, resulting in the local wind speed of the fuel being too high.
  • the fuel is overburned and coked, the grate is blocked, and the nitrogen in the air is oxidized, resulting in a large amount of polluting gases (such as nitrogen oxides).
  • the grate furnace is a local air intake (such as point air supply (single-point or multi-point air supply is formed by a fan) or line air supply (an air supply line is formed by a row of fans), which leads to the possibility of partial combustion of fuel. Full, while another problem with the phenomenon of localized overburning.
  • point air supply single-point or multi-point air supply is formed by a fan
  • line air supply an air supply line is formed by a row of fans
  • the embodiment of the present application also solves the problem that the output power of the grate furnace is positively correlated with the area of the grate. If a higher output power is required, a larger area of the grate is required, which further increases the production cost. .
  • the above-mentioned combustion furnace can meet the above-mentioned temperature field process in the furnace, that is, the spatial distribution of different temperature regions in the furnace can meet the temperature conditions required by different combustion stages of solid fuel, and in the furnace, it can meet multiple inherent combustion properties of solid fuel, and make these Combustion in which inherent combustion properties cooperate with each other, that is, multi-factor coupled combustion of multiple combustion properties.
  • inherent combustion properties of the solid fuels described above include:
  • the combustion process of solid fuel is a process of first absorbing heat and then releasing heat.
  • the heat capacity that is, the fuel enthalpy value
  • the embodiments of the present invention can ensure that the heat absorption required before the solid fuel is burned, thus ensuring that the combustion furnace can be stably and continuously The ground burns without breaking the fire.
  • the volume of solid fuel changes from large to small during the combustion process, so that the stacking slope of the solid fuel gradually decreases, the fluidity increases, the gap between the solid fuel gradually decreases, and the ventilation rate gradually decreases.
  • the present invention takes into account the above-mentioned at least two coupling factors, and realizes the organized combustion of the solid fuel by setting the material distribution structure and combining the gravity change of the solid fuel.

Abstract

一种用于固体燃料燃烧炉的分料结构及燃烧炉。燃烧炉包括用于容纳固体燃料形成的燃料堆的炉体,分料结构包括形成第一斜面的第一支臂组(10)和形成第二斜面的第二支臂组(20);第一支臂组(10)用于设置在炉体内,以通过第一斜面为进入炉体的固体燃料提供沿第一斜面的导向作用力,第一斜面与水平面之间的第一夹角(α)小于堆积在第一支臂组(10)上的固体燃料形成的燃料堆的堆放坡度(γ),第一支臂组(10)具有第一过料间隙(31),以通过第一过料间隙(31)对固体燃料进行分拣;第二支臂组(20)位于第一支臂组(10)的下方,第二支臂组(20)通过第二斜面为从第一支臂组(10)掉落的固体燃料提供沿第二斜面的导向作用力,且第二支臂组(20)设有第二过料间隙(32),以对固体燃料进行分拣。分料结构的使用效果更好。

Description

用于固体燃料燃烧炉的分料结构及燃烧炉 技术领域
本申请实施例涉及燃烧设备领域,尤其涉及一种用于固体燃料燃烧炉的分料结构及燃烧炉。
背景技术
随着近年来生物质和垃圾、污泥等固废的处理和发电技术,以及褐煤等低品质固体燃料发电技术等的快速发展,燃烧设备,例如锅炉,作为热能发电系统中的重要组成,其应用越来越广泛。
现有的燃烧设备,如利用炉排摊烧式燃烧炉,存在着结构复杂、加工生产成本高、使用稳定性差、燃料燃烧不充分等缺点。例如,炉排炉为了实现燃料的充分供氧,在使用炉排承载燃料的摊烧式燃烧炉中燃料堆积在炉排上进行燃烧,燃料厚度不能过厚,不然容易造成局部燃料燃烧不充分,而另一部分容易过燃,导致资源浪费和污染。而且这种结构的炉排炉在工作过程中时常出现断火、熄炉等问题,需要工作人员实时巡检和维护,使得使用成本也居高不下。
发明内容
为了解决上述问题,本申请实施例提供了一种用于固体燃料燃烧炉的分料结构及燃烧炉,以至少部分地解决上述问题。
根据本申请实施例的第一方面,提供一种用于固体燃料燃烧炉的分料结构,其特征在于,燃烧炉包括用于容纳固体燃料形成的燃料堆的炉体,分料结构包括形成第一斜面的第一支臂组和形成第二斜面的第二支臂组;第一支 臂组用于设置在炉体内,以通过第一斜面为进入炉体的固体燃料提供沿第一斜面的导向作用力,第一斜面与水平面之间的第一夹角小于堆积在第一支臂组上的固体燃料形成的燃料堆的堆放坡度,第一支臂组具有第一过料间隙,以通过第一过料间隙对固体燃料进行分拣;第二支臂组位于第一支臂组的下方,第二支臂组通过第二斜面为从第一支臂组掉落的固体燃料提供沿第一斜面的导向作用力,且第二支臂组设有第二过料间隙,以通过第二过料间隙对固体燃料进行分拣。
可选地,第二支臂组的第一端与第一支臂组的第一端连接,或者,第二支臂组与第一支臂组一体成型。
可选地,第一支臂组包括多个间隔设置的第一支臂,相邻两个第一支臂之间具有第一过料间隙,和/或,第二支臂组包括多个间隔设置的第二支臂,相邻两个第二支臂之间具有第二过料间隙。
可选地,第一支臂和/或第二支臂为耐火材料制作的耐火支臂。
可选地,第一支臂为水管,分料结构还包括第一集水箱和第二集水箱,第一集水箱连接在第一支臂组的第一端,第二集水箱连接在第一支臂组的第二端。
可选地,第二支臂为水管,分料结构还包括第三集水箱,第二支臂组的第一端连接在第一集水箱上,第二支臂组的第二端连接在第三集水箱上。
可选地,第一支臂包括第一水管和第一耐火层,第一水管连接在第一集水箱和第二集水箱之间,第一耐火层设置在第一水管上,以使相邻两个第一耐火层之间形成第一过料间隙;和/或,第二支臂包括第二水管和第二耐火层,第二水管连接在第一集水箱和第三集水箱之间,第二耐火层设置在第二水管上,以使相邻两个第二耐火层之间形成第二过料间隙。
可选地,第一水管的第二端的上边沿与第二集水箱的上边沿平齐;和/或,第二水管的第二端的上边沿与第三集水箱的上边沿平齐。
可选地,第一支臂组的第一过料间隙的宽度沿着固体燃料的掉落方向逐渐减小。
可选地,炉体的进风侧壁的上部设置有进风口,第二支臂组的长度大于第一支臂组的长度,以使第一支臂组的第二端与进风侧壁之间的距离大于第二支臂组的第二端与进风侧壁之间的距离。
可选地,第一支臂组的上方用于形成裂解区域,第二支臂组和第一支臂组之间用于形成固定碳燃烧区,固定碳燃烧区内固体燃料之间的通风间隙小于裂解区域内的固体燃料的通风间隙。
根据本申请的另一方面提供一种燃烧炉,燃烧炉包括炉体和分料结构,分料结构为上述的分料结构,分料结构设置在炉体内。
在本申请实施例中该分料结构可以用于固体燃料燃烧炉中,以承接进入炉体内的固体燃料,且第一支臂组和第二支臂组将炉体内的空间分成不同区域(如裂解区域、固定碳燃烧区和缺氧燃烧区等)。第一支臂组形成的第一夹角α小于堆积在第一支臂组上的固体燃料形成的燃料堆的堆放坡度γ(在本实施例中,堆放坡度为燃料堆在炉体内堆积形成的坡度,可以认为是燃料堆远离燃烧炉的进风口的一侧坡面与水平面之间的夹角),因此使得第一支臂组上方的固体燃料的厚度沿着远离进料口的方向逐渐减小,从而使通过的气流速度沿着远离进料口的方向逐渐增大,由此保证为裂解区域内的固体燃料进行充分供氧,以及根据气流速度与温度正相关的原理可以有效地对炉体内的温度进行控制,使得可以形成稳定的温度场,进而利用固体燃料在燃烧过程中体积逐渐减小、固体燃料之间的缝隙逐渐减小,进而使得气流速度减小,从而防止固体燃料过燃。
随着固体燃料的燃烧,其体积逐渐减小、流动性上升,从而堆积在第一斜面和第二斜面上的固体燃料在重力的作用下一部分沿着第一斜面和第二斜面逐渐下移,另一部分通过第一过料间隙和第二过料间隙下落。同时,来自进料口的新的固体燃料在重力作用下不断自动补充到第一斜面上,形成燃烧循环。通过设置分料结构使得燃烧炉内的气体流速与燃烧炉的温度适配,进而可以在燃烧炉内形成稳定的温度场,使得燃烧炉能够进行持续、稳定的燃烧。
附图说明
为以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的范围。
图1示出了本申请实施例的实施例的第一种分料结构的立体结构示意图;
图2示出了本申请实施例的第二种分料结构的主视结构示意图;
图3示出了本申请实施例的第二种分料结构的第一视角的立体结构示意图;
图4示出了本申请实施例的第二种分料结构的第二视角的立体结构示意图;
图5示出了本申请实施例的第二种分料结构的剖视结构示意图;
图6示出了本申请实施例的燃烧炉的剖视结构示意图;
图7示出了本申请实施例的燃烧炉与锅炉连接的示意图。
10、第一支臂组;11、第一水管;12、第一耐火层;20、第二支臂组;21、第二水管;22、第二耐火层;31、第一过料间隙;32、第二过料间隙;41、进风口;42、进料口;43、水平面;44、进风侧壁;45、堆放坡线;46、炉排;51、第一集水箱;52、第二集水箱;53、第三集水箱。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
在本实施例中,需要在炉膛内能够满足与固体燃料燃烧过程匹配的温度场流程,从而实现固体燃料的充分燃烧。该温度场流程为:炉膛内温度区域的空间分布满足固体燃料各燃烧阶段所需的温度条件,温度场流程是炉膛内 的固体燃料在燃烧过程中形成的。
为使燃烧炉满足上述的温度场流程,可以在炉膛内实现符合固体燃料多个固有燃烧属性配合的燃烧,即实现多因素耦合燃烧。为此设置了一种设置在燃烧炉炉体内的分料结构,以在炉膛(炉膛可以为固体燃料的燃烧空间,其可以是炉体的至少部分内腔)内建立上述的温度场流程。
下面对分料结构等进行说明:
参照图1,本申请实施例提供一种用于固体燃料燃烧炉的分料结构,燃烧炉包括用于容纳固体燃料形成的燃料堆的炉体,分料结构包括形成第一斜面的第一支臂组10和形成第二斜面的第二支臂组20;第一支臂组10用于设置在炉体内,以通过第一斜面为进入炉体的固体燃料提供沿第一斜面的导向作用力,第一斜面与水平面43之间的第一夹角α小于堆积在第一支臂组10上的固体燃料形成的燃料堆的堆放坡度γ,第一支臂组10具有第一过料间隙31,以通过第一过料间隙31对固体燃料进行分拣;第二支臂组20位于第一支臂组10的下方,第二支臂组20通过第二斜面为从第一支臂组10掉落的固体燃料提供沿第一斜面的导向作用力,且第二支臂组20设有第二过料间隙32,以通过第二过料间隙32对固体燃料进行分拣。
该第一支臂组10和第二支臂组20可以一体成型,如通过铸造、一体弯折等方式成型,或者,第一支臂组10和第二支臂组20可以通过机加工等方式加工形成,如第一支臂组10和第二支臂组20通过焊接等方式连接。
该分料结构可以用于固体燃料燃烧炉中,以承接进入炉体内的固体燃料,且第一支臂组10和第二支臂组20将炉体内的空间分成不同区域(如裂解区域、固定碳燃烧区和缺氧燃烧区等)。第一支臂组10形成的第一夹角α小于堆积在第一支臂组10上的固体燃料形成的燃料堆的堆放坡度γ(在本实施例中,堆放坡度为燃料堆在炉体内堆积形成的坡度,可以认为是燃料堆远离燃烧炉的进风口的一侧坡面与水平面之间的夹角),因此使得第一支臂组10上方的固体燃料的厚度沿着远离进料口42的方向逐渐减小,从而使通过的气 流速度沿着远离进料口42的方向逐渐增大,由此保证为裂解区域内的固体燃料进行充分供氧,以及根据气流速度与温度正相关的原理可以有效地对炉体内的温度进行控制,使得可以形成稳定的温度场,进而利用固体燃料在燃烧过程中体积逐渐减小、固体燃料之间的缝隙逐渐减小,进而使得气流速度减小,从而防止固体燃料过燃。
随着固体燃料的燃烧,其体积逐渐减小、流动性上升,从而堆积在第一斜面和第二斜面上的固体燃料在重力的作用下一部分沿着第一斜面和第二斜面逐渐下移,另一部分通过第一过料间隙31和第二过料间隙32下落。同时,来自进料口42的新的固体燃料在重力作用下不断自动补充到第一斜面上,形成燃烧循环。通过设置分料结构使得燃烧炉内的气体流速与燃烧炉的温度适配,进而可以在燃烧炉内形成稳定的温度场,使得燃烧炉能够进行持续、稳定的燃烧。
堆放坡度(又称堆积坡度)为燃料自然堆放(或者叫堆积)形成的稳定坡度。不同类型的燃料,例如生物质和褐煤,由于其粒径等固有特征的不同,其堆放坡度通常也不同。
为了便于理解,在说明分料结构的结构之前,对现有的炉排炉和分料结构应用的燃烧炉进行简要说明,以方便理解。
现有的炉排炉在运行时燃料是平铺在炉排上的。在炉排炉中为了保证燃料能够充分燃烧,防止局部供氧量不足导致的燃烧不充分,炉排上平铺的燃料的厚度不能过高,通常燃料的厚度只能为几十厘米。
这种炉排炉存在的问题主要在于:
其一,燃料在炉排上平铺,且高度较低,导致燃料能够提供的热值较少,对新燃料中水分变化的适应性不足,在新加入的燃料的湿度增加时容易出现新燃料难以点燃而使炉排炉断火的情况。
其二,为了提升炉排炉运行的可靠性,需要在炉排周围设置大量传感器检测炉排处的温度,进而控制对燃料的给风量,这一方面导致生产成本升高, 且控制逻辑复杂、可靠性降低;另一方面,由于炉排是点给风(由一个风机向外吹风)或线给风(由一排风机向外吹风),使得燃料很容易出现局部燃烧不充分,同时另一局部过燃的现象,而过燃容易产生结焦,还容易氧化空气中的氮气造成氮氧化物排放超标。
不同于炉排炉,本申请实施例中的燃烧炉是堆烧炉,即固体燃料在炉体内的形成燃料堆,并进行燃烧。这样使得可以充分利用炉体内的空间,使得炉体在高度方向上的空间可以被充分利用,形成超大的燃烧空间,从而节省成本,且使得燃烧炉输出功率与炉体的体积相关。
具体地,一种可行的燃烧炉的结构如图6或图7所示,燃烧炉包括炉体,炉体上设置有进料口42、进风口41和出料输送机构46。其中,进料口42和进风口41均设置在炉体的上部,例如,在本申请中,进料口42设置在炉体的顶壁上,进风口41设置在炉体的一个侧壁(为了便于描述记作进风侧壁44)的上部。出料输送机构46设置在炉体的下部。出料输送机构46例如为输送带等任何能够为燃烧剩余物提供推力的结构。
固体燃料从上方进料口42进入炉体内形成燃料堆,在燃料堆燃烧过程中,随着在燃状态的固体燃料的体积减小和塌缩,炉体内的固体燃料会逐渐向下运动,这样会不断地有新的固体燃料从进料口42进入炉体内进行固体燃料的补充,而在固体燃料逐渐向下运动的过程中,分料结构通过第一斜面、第二斜面、第一过料间隙31和第二过料间隙32可以对固体燃料进行导向和分拣,以使得不同体积的固体燃料在炉体内停留的时间不同,炉体内不同位置的固体燃料之间的通风间隙和供氧量不同,由此实现固体燃料的有组织、有序燃烧。
下面对分料结构的具体结构进行说明如下:
在本实施例中,第二支臂组20的第一端与第一支臂组10的第一端连接,或者,第二支臂组20与第一支臂组10一体成型。
若两者一体成型,则可以通过铸造、弯折等方式加工出第一支臂组10 和第二支臂组20。若两者连接,则两者可以是直接连接,如第一支臂组10的第一端与第二支臂组20的第一端直接连接,或者两者也可以间接连接,如通过其他结构实现连接,连接方式包括但不限于焊接、螺纹连接、铆接等等。
在一示例中,第一支臂组10可以包括多个间隔设置的第一支臂,这多个第一支臂可以相互平行,相邻两个第一支臂之间可以具有第一过料间隙31,多个第一支臂在空间上分布形成第一斜面。或者,在其他示例中,第一支臂组10可以是一体式的板材(例如一张金属板),板材上间隔地设有多个间隙,作为第一过料间隙31。
以第一支臂组10包括多个第一支臂为例,在一种情况中,第一支臂为耐火材料制作的耐火支臂。耐火材料可以是耐火砖或者耐火水泥等。就形状而言,第一支臂可以是杆状、板状、片状、管状等适当的结构和形状。第一支臂组10包括的多个第一支臂可以相互平行,并且各个第一支臂之间可以间隔预定的第一过料间隙31。
在一些实施例中,第一支臂可以为水管,第一支臂组10包括多个平行设置的水管。在一些实施例中,分料结构还可以包括第一集水箱51和第二集水箱52,第一集水箱51连接在第一支臂组10的第一端,第二集水箱52连接在第一支臂组10的第二端。
可以通过第一集水箱51和/或第二集水箱52与外部供冷却液的系统连接,从而向分料结构内通入冷却液,以此对其进行降温,保证可靠性,避免温度过高而影响分料结构的使用寿命。
可选地,为了进一步确保对第一支臂组10的防护效果,且使得第一过料间隙31满足需求,第一支臂包括多个第一水管11和第一耐火层12,第一水管11连接在第一集水箱51和第二集水箱52之间,第一耐火层12设置在第一水管11上,以使相邻两个第一耐火层12之间形成第一过料间隙31。
多个第一水管11可以沿第一集水箱51的长度方向(若第一集水箱51为水管,则长度方向为其轴向)依次间隔设置。每个第一水管11上可以设置 一个或多个第一耐火层12。这样通过第一水管11实现水循环,通过第一耐火层12不仅能够保护第一水管11,而且使得相邻两个第一水管11之间形成需要形状和宽度W的第一过料间隙31。第一过料间隙31用于使固体燃料通过,还可以对通过气流进行速度调节。第一耐火层12可以是采用耐火材料(如耐火水泥)形成的结构。
需要说明的是,在使用过程中,除了使用水作为冷却液外,也可以采用其他的冷却介质对分料结构进行冷却,本实施例对此不作限制。
优选地,为了使分料结构对炉体内的气流速度的调节效果更好,且保证固体燃料在通过第一过料间隙31时不会出现堵塞、搭桥等情况,第一支臂组10的第一过料间隙31的宽度W沿着固体燃料的掉落方向逐渐减小,且第一过料间隙31的最小宽度W大于固体燃料的最大粒径。
由于第一过间隙31的最小宽度W大于固体燃料的最大粒径,因此保证了固体燃料能够顺畅地通过,也可以防止固体燃料黏附在第一支臂组10上而形成搭桥现象。此外,由于第一过料间隙31的宽度W沿着固体燃料掉落的方向(如从上到下的方向)逐渐减小,使得第一过料间隙31的宽度W在气流方向上存在变化,因此能够调整气流速度,从而满足需求。
例如,第一过料间隙31的宽度W沿着气流方向(因为气流方向与固体燃料掉落方向相反)逐渐增大,也就意味着气流需要从宽度W较小的小口进入第一过料间隙31,而气流在经过小口时,由于气流通过面积减小使得气流速度会增加从而实现气流增速,实现进入裂解区域的气流速度进一步增加的效果,这有助于对裂解区域进行充分供氧,避免由于固体燃料中的挥发分进行裂解和挥发需要较高供氧量导致的裂解、挥发不充分的问题。
需要说明的是,本实施例中的第一过料间隙31可以在固体燃料掉落方向上仅有一部分是宽度W逐渐减小的,也可以全部是宽度W逐渐减小的。
为了使得第一过料间隙31的宽度W满足需求,若第一支臂组10由第一水管11和第一耐火层12形成,则第一耐火层12的截面积确定为适当的形状。
例如,第一耐火层12的横截面是三角形,这样相邻两个第一耐火层12形成的第一过料间隙31的宽度W沿着固体燃料的掉落方向是逐渐减小的,从而有助于增大气流速度、提升裂解区域的供氧量,确保裂解区域的氧气需求,并提升裂解区域的温度场的温度。
此外,三角形的第一耐火层12加工生产成本低,便于生产。当然,在其他实施例中,第一耐火层12的横截面形状也可以是椭圆形、圆形、梯形等等适当的形状,对此不作限制。
可选地,第一水管11的第二端(靠近进风侧壁44的一端)的上边沿与第二集水箱52的上边沿平齐。由于在使用过程中分料结构会被固体燃料覆盖, 为了避免分料结构的折弯处、过渡处等卡死固体燃料,造成固体燃料黏接在分料结构上形成燃烧死区,第一水管11的第二端的上边沿与第二集水箱52的上边沿平齐,保证了第一支臂组10在第二集水箱52处不会存在固体燃料卡死的弯角,使固体燃料可以沿着第一支臂组10的第一斜面顺畅移动或者是从第一支臂组10的第一过料间隙31内通过。
可选地,第一支臂组10的第二端上还可以配合设置调节挡板,调节挡板用于控制固体燃料是否可以通过第二端,以适配燃烧炉内燃烧不同的固体燃料。调节挡板可以通过销轴等可以转动地连接在第一支臂组10的第二端,从而在需要固体燃料通过第二端时放下调节挡板,使其可以通过第二端掉落;反之,不需要时则升起调节挡板,使其阻止固体燃料通过第二端掉落。
或者,调节挡板也可以通过伸缩杆等可移动地连接在炉体上,在不需要固体燃料通过第二端掉落时将调节挡板推动到封闭第二端与炉体之间的开口;在需要固体燃料通过第二端掉落时将调节挡板拉动到离开该开口。
第二支臂组20的结构、形状等可以与第一支臂组10相同,或者不同。在本实施例中,为了降低制造、加工等成本,两者的结构类似。
在一示例中,第二支臂组20包括多个间隔设置的第二支臂,相邻两个第二支臂之间具有第二过料间隙32,多个第二支臂在空间上分布形成第二斜面。
第二支臂可以是耐火材料制作的耐火支臂。耐火材料例如为耐火水泥等。或者,第二支臂为水管,分料结构还包括第三集水箱53,第二支臂组20的第一端连接在第一集水箱51上,第二支臂组20的第二端连接在第三集水箱53上。这样通过第一集水箱51和第三集水箱53配合可以对第二支臂组20进行保护。
第一集水箱51、第二集水箱52和第三集水箱53可以是水箱、直径较大的水管等,它们的结构可以相同或不同。在本实施例中,为了降低成本,第一集水箱51、第二集水箱52和第三集水箱53的结构相同。
在本实施例中,第二支臂包括第二水管21和第二耐火层22,第二水管21连接在第一集水箱51和第三集水箱53之间,第二耐火层22设置在第二水管21上,以使相邻两个第二耐火层22之间形成第二过料间隙32。这样第二耐火层22能够对第二水管21形成保护,并形成需要的第二过料间隙32。
而为了避免在第二支臂组20处于形成燃烧死区,第二水管21的第二端的上边沿与第三集水箱53的上边沿平齐。这样使得固体燃料可以顺畅地沿着第二斜面移动或者从第二支臂组20的第二过料间隙32中掉落,而不会堆积在第二支臂组20与第三集水箱53的连接位置处。
需要说明的是,第一支臂组10和第二支臂组20可以采用相同的材料制作,也可以采用不同的材料制作,只要结构能够满足需求即可。
在本实施例中,第二支臂组20的第二过料间隙32的宽度小于第一支臂组10的第一过料间隙31的宽度,这样使得第一支臂组10和第二支臂组20 配合对固体燃料进行逐步的分拣。若炉体的燃烧空间较大,为了对固体燃料进行更加精细的控制,分料结构还可以包括至少一个第三支臂组,第三支臂组具有第三斜面和第三过料间隙,且第三过料间隙的宽度小于第二过料间隙的宽度。当第三支臂组包括多个时,多个第三支臂组的第三过料间隙的宽度沿着远离进风侧壁44的方向逐渐减小。
由于第二支臂组20和第一支臂组10之间用于形成固定碳燃烧区,固定碳燃烧区内固体燃料之间的通风间隙小于裂解区域内的固体燃料的通风间隙,而为了保证固体燃料在固定碳燃烧区停留的时间满足需求,从而得到预定的产物如一定品质的碳,即吸附性一定的碳,在本实施例中,第二支臂组20的长度大于第一支臂组10的长度,以使第一支臂组10的第二端与进风侧壁44)(进风侧壁即为炉体中设置进风口41的侧壁)之间的距离L1大于第二支臂组20的第二端与进风侧壁44之间的距离L2。
通过调整距离L1和距离L2,可以控制固体燃料在固定碳燃烧区停留的时间,进而控制其燃烧剩余物中的碳的质量。
需要说明的是,在本实施例中,第一支臂组10的第二端与进风侧壁44之间的距离(如第一支臂组10的第二集水箱52的中心轴线与进风侧壁44之间的距离)小于进料口42与进风侧壁44之间的距离(如进料口42最靠近进风侧壁44的位置与进风侧壁44之间的距离)。这样保证固体燃料进入后会掉落到第一支臂组10的上方,进而沿着第一斜面向下运动或者通过第一过料间隙31掉落。
这样在燃烧炉运行过程中,第一支臂组10下方的固体燃料的体积塌缩的速度会大于第一支臂组10上的固体燃料向下掉落的速度,从而使得第一支臂组10的下表面处形成供气流通过空隙,从而有助于气流快速地到达第一支臂组10的第一端处且保持较高的气流速度。
根据本申请的另一方面,提供一种燃烧炉,燃烧炉包括炉体和上述的分料结构,分料结构设置在炉体内,以承接落入炉体内的固体燃料。
设置有该分料结构的燃烧炉能够实现固体燃料的堆烧,而且可以自动在燃烧炉的炉体内建立出稳定的温度场,从而保证固体燃料的持续稳定地燃烧,避免现有的摊烧炉存在的容易断火的问题。此外,通过设置分料结构,使得燃烧炉的炉体内的不同位置的气流速度不同,从而使得供氧量不同,既保证了固体燃料的充分燃烧,而且可以有效避免过燃,以减少氮氧化物的排放,实现清洁燃烧,保证环保。
分料结构将炉体分为裂解区域、固定碳燃烧区和缺氧燃烧区。
其中,裂解区位于第一支臂组10的上方,靠近进料口42的位置处,由于第一支臂组10的阻挡作用以及裂解区域比较靠近进料口42,因此固体燃料处于裂解区域时,体积较大,使得固体燃料之间的间隙较大,且第一支臂组10使得裂解区域内的固体燃料的厚度H较小,且沿着第一支臂组10形成的第一斜面裂解区域内的固体燃料的厚度H逐渐减小,因此使得裂解区域内 的风阻相较于固定碳燃烧区和缺氧燃烧区的风阻小,而气流速度更高从而使得温度较高。
固定碳燃烧区位于第一支臂组10和第二支臂组20之间,在该区域中主要是固体燃料中的固定碳燃烧,产生碳焰(碳焰可以理解为是碳燃烧产生的火焰)。由于本区域中的固体燃料的体积相较于裂解区域中的固体燃料的体积更小,因此本区域中的固体燃料之间的缝隙减小、气流通过的阻力上升,使得气流速度逐渐降低,供氧量也降低,因此可以防止过燃。
缺氧燃烧区位于第二支臂组20和燃烧炉的出料输送机构46之间,从固定碳燃烧区排出的固体燃料进入缺氧燃烧区,本区域中的固体燃料体积最小、缝隙最小且距离进风口41最远,因此此处供氧量最少。
燃烧炉的运行过程可以分为填料、点火和运行几个阶段。
在填料阶段,固体燃料从进料口42进入,并逐渐下落和堆积形成燃料堆,燃料堆自然形成堆放坡度γ,燃料堆如图6所示的示意,在此阶段由于固体燃料还未燃烧,因此炉体内各处堆积的固体燃料的堆放坡度γ相近。当固体燃料堆积到进料口42的第一料位P时,停止进料,准备点燃。
在点燃阶段,关闭进风口41、打开与出风口47连接的引风机(引风机通过通道与出风口47连通),在进料口42处放入引燃物,此时在引风机作用下炉体内为负压状态,气流从进料口42进入,使得引燃物将固体燃料点燃,在点燃一段时间(该时间可以根据需要采用适当的方式确定)后进入运行阶段。
在运行阶段,将进料口42的料位保持在第二料位,第二料位高于第一料位,并打开进风口41,使气流从进风口41进入,且在运行一段时间时启动出料输送机构46,使出料输送机构46推动固体燃料向出料口运动,其中出料输送机构46的运动方向为远离进风口41的方向。
此阶段中,由于固体燃料的不断燃烧而使得炉体内的燃料堆不断塌缩、以及出料输送机构46不断驱动燃烧剩余物向炉体外运动,在这双重动力作用下,使得上方进料口42处的固体燃料能够不断向下掉落,实现向炉体内补充新的固体燃料。
由于炉体内的固体燃料量多,因此处于在燃状态的固体燃料充足,能够提供足够的热量对新进入的固体燃料进行干燥,且能够满足新进入的固体燃料被点燃所需吸收的热量,由此保证了对不同湿度的固体燃料的适应性,确保燃烧炉能够在不需要复杂的传感器进行检查和控制的情况下,使燃烧炉能够顺利、稳定地燃烧。
进料口42进入的固体燃料首先在裂解区域内吸热而释出一些气体,这些气体包括但不限于VOC(挥发性有机化合物,英文全称为volatile organic compounds)、二噁英和水蒸气等。在固体燃料在裂解区域内吸热的过程中固体燃料的体积也会减小。这些释出的气体被气流携带而进入蓄热装置形成 的蓄热腔体内,其在蓄热腔体内被处理。由于蓄热装置的设置以及其具有足够的蓄热能力,因此保证了能够适应不同温度的气体,且保证能够对气体中的VOC进行充分处理。
当固体燃料自进料口42到达分料结构第一支臂组10的第一斜面时,由于第一支臂组10的阻挡作用,使得体积小于第一过料间隙31的固体燃料能够通过第一支臂组10而进入到固定碳燃烧区。对于体积大于第一过料间隙31的固体燃料,其会沿着第一斜面向下运动,逐渐运动到第一支臂组10的第一端(即图中显示的远离进风侧壁44的一端),在此过程中,固体燃料仍可以吸热进行裂解以及水分蒸发,若固体燃料运动到温度场高于燃料燃点的温度范围内,则固体燃料将会被点燃而开始燃烧。
伴随着固体燃料的裂解、水分被蒸发和燃烧,其体积也在不断地缩小,直到燃烧到能够通过第一过料间隙31掉落,进入到固定碳燃烧区。
若固体燃料中掺杂了不可燃且体积较大的物质,由于其体积不会减小因此会沿着第一斜面运动到第一支臂组10的第一端,然后掉落到缺氧燃烧区,并随着缺氧燃烧区的固体燃料的塌缩、出料输送机构46的推动被推动到出料口而排出炉体。这使得对燃烧炉对固体燃料的适应性极强,对于掺杂了不可燃物的固体燃料也能够兼容,且保证不会由于不可燃物的存在而造成卡死。
由于第一支臂组10的阻挡作用,使得第一支臂组10下方的固体燃料体积塌缩的速度和第一支臂组10上方固体燃料的掉落速度之间存在了速度差,进而在第一支臂组10的下方形成了供气流通过的空隙90,由于该空隙90的存在,使得从进风口41进入的气流能够从空隙90快速地运动到第一支臂组10的第一端处,又由于固体燃料堆积在第一支臂组10上自然形成的堆放坡度γ以及第一支臂组10和水平面之间的第一夹角α的存在,导致第一支臂组10的第一端处的固体燃料的厚度最小、且固体燃料之间的间隙较大,综合使得该处的风阻较小,进而使得气流流速较大,而气流流速与温度之间正相关,因此使得第一支臂组10的第一端处的温度较高,而且该区域也正是固体燃料燃烧产生的碳焰所在区域,可以充分地为点火体提供热量,帮助其维持一个稳定的温度场。
对于掉落到固定碳燃烧区的固体燃料,由于该区域与进风口41较近,且从进风口41进入的冷气流会先下沉,因此这部分固体燃料能够获得充足的供氧,从而燃烧,随着燃烧固体燃料的体积减小,越向下的固体燃料之间的缝隙越小,风阻就越大,风速就越小因而使得温度下降,因此固体燃料不会出现结焦的现象,从而有效解决了结焦温度在燃点以下导致现有技术中的炉排炉燃烧时固体燃料容易结焦导致堵塞的问题。
由于燃烧导致的固体燃料的体积减小、结合出料输送机构46的推动作用,使得固体燃料不断向下运动。一部分固体燃料运动到第二支臂组20的第二斜面上时,若能够通过第二支臂组20的第二过料间隙32,则会从固定碳燃烧区域进入到缺氧燃烧区;若体积不足以通过第二过料间隙32,则会沿着第二 斜面向下运动,直至能够通过第二过料间隙32,或者运动到第二支臂组20的第二端而掉落,会被出料输送机构46推动到缺氧燃烧区。
在此过程中,由于固体燃料的燃料堆本身的阻挡作用,使得炉体内的供风属于面给风,且气流速度受到固体燃料之间的间隙控制,实现了利用固体燃料燃烧体积减小,而使得缝隙减小、风速减小的特点对固体燃料的燃烧进行自然控制,防止了局部燃烧不充分,另一部分过燃的现象。
通过调整第二支臂组20的长度、以及第二支臂组20的第二端与进风侧壁44之间的距离就可以控制固体燃料在固定碳燃烧区停留的时间,进而控制燃烧剩余物中的固定碳含量,从而实现获得需要品质的碳的目的。例如,通过该堆烧炉可以将生物质燃料加工成碳,同时还可以利用燃烧过程中产生的热量进行发电。
由于缺氧燃烧区距离进风口41较远,且固体燃料之间的间隙也较小,此处的风阻较高,气流流速较低,因此不会出现结焦的现象,而且供氧量也较少,可以避免过燃,从而防止由于氧化空气中的氮气而造成氮氧化物排放超标。
与第一支臂组10类似地,由于第二支臂组20的阻挡作用,使得第二支臂组20的下方也会形成空隙90,该空隙90使得燃烧的碳焰能够汇集到第一支臂组10的第一端处。
在缺氧燃烧区固体燃料经过第三支臂组的过程与经过第一支臂组10和第二支臂组20类似,故不再赘述。第三支臂组的数量可以根据需要设置,或者也可以不设置。
通过该燃烧炉解决了现有的炉排炉在运行时燃料平铺在炉排上,为了保证燃料充分燃烧,防止局部供氧量不足导致的燃烧不充分,炉排上平铺的燃料的厚度不能过高,通常燃料的厚度只能为几十厘米的问题。
由于可以使固体燃料进行堆烧,因此也解决了燃料在炉排上平铺,且高度较低,导致燃料能够提供的热值较少,对新燃料中水分变化的适应性不足,在新加入的燃料的湿度增加时容易出现新燃料难以点燃而使炉排炉断火的情况,而新加入的燃料的湿度减少时不能及时调整给风的风量和风速等,导致燃料局部风速过高,而使燃料出现过燃而结焦,使炉排堵塞,并对空气中的氮气进行氧化,产生大量的污染气体(如氮氧化物)的问题。
进一步地,解决了现有炉排炉为了提升炉排炉运行的可靠性,需要在炉排周围设置大量传感器以检测炉排处的温度,进而控制对燃料的给风量,导致生产成本升高,且控制逻辑复杂、可靠性差的问题。另外,炉排炉是局部进风(例如点给风(由风机形成单点或者多点送风)或线给风(由一排风机形成一条送风线),这导致燃料容易出现局部燃烧不充分,同时另一局部过燃的现象的问题。
除此之外,本申请的实施例还解决了炉排炉的输出功率与炉排面积正相关,若需要较高的输出功率,就需要较大面积的炉排,进一步提升了生产成 本的问题。
上述燃烧炉在炉膛内能够满足上述温度场流程,即炉膛内不同温度区域的空间分布满足固体燃料不同燃烧阶段所需的温度条件,在炉膛内实现符合固体燃料多个固有燃烧属性、并且使这些固有燃烧属性相互配合的燃烧,即多个燃烧属性的多因素耦合燃烧。上述固体燃料的多个固有燃烧属性包括:
1、固体燃料的燃烧过程是先吸热后放热的过程。通过使炉膛内燃料的热容量(即燃料焓值)大于燃烧所需的吸热量,本发明的实施例能够确保提供固体燃料燃烧之前所需的吸热量,从而保证了燃烧炉可以稳定、连续地燃烧,不会断火。
2、固体燃料在燃烧过程中体积由大变小,使得固体燃料的堆放坡度逐渐变小,流动性增大,固体燃料之间的缝隙逐渐减小,通风率逐渐减小。
本发明考虑到上述至少两个耦合因素,通过设置分料结构,结合固体燃料的重力变化,实现固体燃料的有组织燃烧。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本申请实施例示意性的具体实施方式,并非用以限定本申请实施例的范围。任何本领域的技术人员,在不脱离本申请实施例的构思和原则的前提下所作的等同变化、修改与结合,均应属于本申请实施例保护的范围。

Claims (12)

  1. 一种用于固体燃料燃烧炉的分料结构,其特征在于,所述燃烧炉包括用于容纳固体燃料形成的燃料堆的炉体,所述分料结构包括形成第一斜面的第一支臂组(10)和形成第二斜面的第二支臂组(20);
    所述第一支臂组(10)用于设置在所述炉体内,以通过所述第一斜面为进入所述炉体的固体燃料提供沿所述第一斜面的导向作用力,所述第一斜面与水平面(43)之间的第一夹角(α)小于堆积在所述第一支臂组(10)上的固体燃料形成的燃料堆的堆放坡度(γ),所述第一支臂组(10)具有第一过料间隙(31),以通过所述第一过料间隙(31)对所述固体燃料进行分拣;
    所述第二支臂组(20)位于所述第一支臂组(10)的下方,所述第二支臂组(20)通过第二斜面为从所述第一支臂组(10)掉落的固体燃料提供沿所述第一斜面的导向作用力,且所述第二支臂组(20)设有第二过料间隙(32),以通过所述第二过料间隙(32)对固体燃料进行分拣。
  2. 根据权利要求1所述的分料结构,其特征在于,所述第二支臂组(20)的第一端与所述第一支臂组(10)的第一端连接,或者,所述第二支臂组(20)与所述第一支臂组(10)一体成型。
  3. 根据权利要求2所述的分料结构,其特征在于,所述第一支臂组(10)包括多个间隔设置的第一支臂,相邻两个所述第一支臂之间具有所述第一过料间隙(31),和/或,所述第二支臂组(20)包括多个间隔设置的第二支臂,相邻两个所述第二支臂之间具有所述第二过料间隙(32)。
  4. 根据权利要求3所述的分料结构,其特征在于,所述第一支臂和/或所述第二支臂为耐火材料制作的耐火支臂。
  5. 根据权利要求3所述的分料结构,其特征在于,所述第一支臂为水管,所述分料结构还包括第一集水箱(51)和第二集水箱(52),所述第一集水箱(51)连接在所述第一支臂组(10)的第一端,所述第二集水箱(52)连 接在所述第一支臂组(10)的第二端。
  6. 根据权利要求5所述的分料结构,其特征在于,第二支臂为水管,所述分料结构还包括第三集水箱(53),所述第二支臂组(20)的第一端连接在所述第一集水箱(51)上,所述第二支臂组(20)的第二端连接在所述第三集水箱(53)上。
  7. 根据权利要求6所述的分料结构,其特征在于,所述第一支臂包括第一水管(11)和第一耐火层(12),所述第一水管(11)连接在所述第一集水箱(51)和所述第二集水箱(52)之间,所述第一耐火层(12)设置在所述第一水管(11)上,以使相邻两个所述第一耐火层(12)之间形成所述第一过料间隙(31);
    和/或,
    所述第二支臂包括第二水管(21)和第二耐火层(22),所述第二水管(21)连接在所述第一集水箱(51)和第三集水箱(53)之间,所述第二耐火层(22)设置在所述第二水管(21)上,以使相邻两个所述第二耐火层(22)之间形成所述第二过料间隙(32)。
  8. 根据权利要求7所述的分料结构,其特征在于,所述第一水管(11)的第二端的上边沿与所述第二集水箱(52)的上边沿平齐;和/或,所述第二水管(21)的第二端的上边沿与所述第三集水箱(53)的上边沿平齐。
  9. 根据权利要求2-8中任一项所述的分料结构,其特征在于,所述第一支臂组(10)的第一过料间隙(31)的宽度沿着所述固体燃料的掉落方向逐渐减小。
  10. 根据权利要求1所述的分料结构,其特征在于,所述炉体的进风侧壁(44)的上部设置有进风口(41),所述第二支臂组(20)的长度大于所述第一支臂组(10)的长度,以使所述第一支臂组(10)的第二端与所述进风侧壁(44)之间的距离大于所述第二支臂组(20)的第二端与所述进风侧壁(44)之间的距离。
  11. 根据权利要求1所述的分料结构,其特征在于,所述第一支臂组(10) 的上方用于形成裂解区域,所述第二支臂组(20)和第一支臂组(10)之间用于形成固定碳燃烧区,所述固定碳燃烧区内固体燃料之间的通风间隙小于所述裂解区域内的固体燃料的通风间隙。
  12. 一种燃烧炉,其特征在于,所述燃烧炉包括炉体和分料结构,所述分料结构为权利要求1-11中任一项所述的分料结构,所述分料结构设置在所述炉体内。
PCT/CN2021/072564 2021-01-18 2021-01-18 用于固体燃料燃烧炉的分料结构及燃烧炉 WO2022151499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180000344.0A CN115119517A (zh) 2021-01-18 2021-01-18 用于固体燃料燃烧炉的分料结构及燃烧炉
PCT/CN2021/072564 WO2022151499A1 (zh) 2021-01-18 2021-01-18 用于固体燃料燃烧炉的分料结构及燃烧炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072564 WO2022151499A1 (zh) 2021-01-18 2021-01-18 用于固体燃料燃烧炉的分料结构及燃烧炉

Publications (1)

Publication Number Publication Date
WO2022151499A1 true WO2022151499A1 (zh) 2022-07-21

Family

ID=82446795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072564 WO2022151499A1 (zh) 2021-01-18 2021-01-18 用于固体燃料燃烧炉的分料结构及燃烧炉

Country Status (2)

Country Link
CN (1) CN115119517A (zh)
WO (1) WO2022151499A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2190745Y (zh) * 1994-04-28 1995-03-01 姜启民 层燃锅炉分层给煤设备
CN2328904Y (zh) * 1998-01-20 1999-07-14 程绍礼 锅炉原煤分层给料装置
CN101956993A (zh) * 2010-06-09 2011-01-26 广州迪森热能技术股份有限公司 一种用于生物质成型燃料的给料分料装置
US20120017811A1 (en) * 2010-06-22 2012-01-26 Stephen William John Grant Enclosed granular fuel burning boiler
CN202532518U (zh) * 2012-02-28 2012-11-14 浙江爱立美能源科技有限公司 一种分层给煤装置
CN105090935A (zh) * 2014-05-23 2015-11-25 车战斌 固体燃料的燃烧方法及燃烧装置
WO2019148462A1 (zh) * 2018-02-02 2019-08-08 北京能祺热能技术有限公司 分风管架、分风管架系统及分段式燃烧炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2190745Y (zh) * 1994-04-28 1995-03-01 姜启民 层燃锅炉分层给煤设备
CN2328904Y (zh) * 1998-01-20 1999-07-14 程绍礼 锅炉原煤分层给料装置
CN101956993A (zh) * 2010-06-09 2011-01-26 广州迪森热能技术股份有限公司 一种用于生物质成型燃料的给料分料装置
US20120017811A1 (en) * 2010-06-22 2012-01-26 Stephen William John Grant Enclosed granular fuel burning boiler
CN202532518U (zh) * 2012-02-28 2012-11-14 浙江爱立美能源科技有限公司 一种分层给煤装置
CN105090935A (zh) * 2014-05-23 2015-11-25 车战斌 固体燃料的燃烧方法及燃烧装置
WO2019148462A1 (zh) * 2018-02-02 2019-08-08 北京能祺热能技术有限公司 分风管架、分风管架系统及分段式燃烧炉

Also Published As

Publication number Publication date
CN115119517A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
KR100821124B1 (ko) 열회수용 연소장치
JP4766562B2 (ja) 木質ペレット焚き蒸気ボイラ
WO2016201740A1 (zh) 一种烟气再循环燃烧装置
CN103912866B (zh) 一种生物质颗粒燃料稳定高效燃烧装置及方法
CN104791775A (zh) 燃烧器底置的立式煤粉锅炉
JP4566043B2 (ja) 木質ペレット燃焼装置
WO2015176620A1 (zh) 固体燃料的燃烧方法及燃烧装置
JP5943574B2 (ja) 燃焼炉
CN107314374A (zh) 一种垃圾焚烧炉一次风进风管
CN203757694U (zh) 一种节能减排高效燃烧生物质锅炉
WO2022151499A1 (zh) 用于固体燃料燃烧炉的分料结构及燃烧炉
KR101677245B1 (ko) 사이클론 집진장치를 이용한 펠렛 보일러 설비
JP6887917B2 (ja) 焼却プラント
CN105698182A (zh) 用于处理垃圾的焚烧系统
WO2022151498A1 (zh) 固体燃料的燃烧组织方法及燃烧炉
CN105698183A (zh) 用于处理垃圾的焚烧炉
WO2022151497A1 (zh) 带蓄热装置的燃烧炉
JP5498434B2 (ja) バイオマス燃焼ボイラ
WO2022188177A1 (zh) 分选装置及具有其的燃烧炉
CN111720815A (zh) 一体式生物质气化低氮贫氧燃烧锅炉
KR20100132810A (ko) 톱밥 보일러
CN102425785B (zh) 一种双炉排燃烧生物质设备
CN103557518B (zh) 洗煤泥燃烧的有机工质锅炉
WO2022188178A1 (zh) 筛选装置及固体燃料的燃烧炉
CN205535839U (zh) 一种用于处理垃圾的焚烧系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918699

Country of ref document: EP

Kind code of ref document: A1