WO2015176620A1 - 固体燃料的燃烧方法及燃烧装置 - Google Patents

固体燃料的燃烧方法及燃烧装置 Download PDF

Info

Publication number
WO2015176620A1
WO2015176620A1 PCT/CN2015/078865 CN2015078865W WO2015176620A1 WO 2015176620 A1 WO2015176620 A1 WO 2015176620A1 CN 2015078865 W CN2015078865 W CN 2015078865W WO 2015176620 A1 WO2015176620 A1 WO 2015176620A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
furnace
solid fuel
layer
wall
Prior art date
Application number
PCT/CN2015/078865
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
车战斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 车战斌 filed Critical 车战斌
Publication of WO2015176620A1 publication Critical patent/WO2015176620A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/04Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the movement of combustion air and flue gases being substantially transverse to the movement of the fuel

Definitions

  • the present invention relates to the field of solid fuel combustion, and in particular to a solid fuel combustion method and a combustion apparatus.
  • the inventors have found through careful study that the main difference between biomass burning materials and low-grade coal (such as lignite, peat, etc.) and high-grade coal is that high-grade coal has a high fixed carbon content (generally over 90%). Therefore, it is mainly fixed carbon combustion mode when burning; while biomass combustion materials and low-grade coal have relatively low fixed carbon content and relatively high volatile content (about 50%-70%).
  • the solid fuel with high volatile content mainly has two characteristics: 1) the volatile matter precipitation temperature is lower than the volatile ignition point; 2) the volatile matter has a higher ignition point than the ash melting point.
  • the current combustion furnaces are generally classified into two types: a forward combustion furnace and a reverse combustion furnace. Due to the above characteristics of biomass fuel and low-grade coal, continuous combustion can not be achieved by using these two combustion furnaces.
  • the existing forward combustion furnace generally supplies air from below the furnace, and the air generated by the wind entering the furnace passes through the furnace from bottom to top, so that the flame generated by the combustion of the fuel on the furnace is burned upward and forward.
  • the forward combustion device is burned, there are the following problems:
  • the forward combustion device forms a high temperature fire bed at the furnace location due to the supply of air through the furnace. Since the ash melting point of the fuel is lower than the ignition point of the volatile matter and the fixed carbon, the temperature of the fire bed is higher than the ash melting point in the high temperature environment in which the carbon is burned on the furnace, and the ash after combustion is in a viscous molten state. Will paste on the hearth, can not be normally discharged through the furnace or other ash removal mechanism (such as gray ash bar). The viscous soot is mixed in the burning fuel, which not only greatly affects the fuel combustion efficiency. Moreover, the viscous ash adheres to the furnace raft and blocks the air inlet passage on the furnace. After a period of time, the furnace is pasted, so that the furnace cannot continue to work.
  • the characteristic of the trans-burning furnace is that the outlet of the fire is lower than the furnace, and the air generated by the wind entering the furnace passes through the furnace from the top to the bottom and exits through the outlet of the outlet, so that the flame generated by the combustion is reversed. After the furnace, it will reach the fire exit.
  • the trans combustion mode can be ignited by the flame when passing through the furnace as compared with the forward combustion, and the combustion efficiency is improved.
  • the high temperature flame is located in the furnace position, this also makes the temperature of the furnace position very high.
  • the burnt ash is in a viscous molten state, which will paste on the furnace and block the furnace. The air flow passage will soon ruin the furnace, making the furnace unable to continue working.
  • the existing forward combustion and trans-combustion devices are ignited, the fuel first reaches the volatile matter precipitation temperature and then enters the combustion state, and the first precipitated volatiles are black.
  • black smoke is formed during ignition, which not only causes serious environmental pollution, but also ignites only by gradually burning the fixed carbon fuel, which is not easy to ignite, and the temperature rises slowly and the ignition time is long.
  • An object of the present invention is to provide a method and a combustion apparatus for burning a solid fuel, which not only can fully burn volatile matter in a solid fuel, but also solve the problem of welding, thereby ensuring continuous combustion of the fuel.
  • the present invention provides a method for burning a solid fuel, in which a feed port is provided at the top of the furnace, and a corresponding furnace inlet is provided with a furnace for receiving fuel entering from the feed port.
  • the solid fuel entering the feed port forms a stack layer on the furnace extending from the feed port to the furnace; the furnace on one side of the pile layer is provided with a combustion chamber connected to the outlet of the exhaust gas, and the stack layer is adjacent to the combustion chamber
  • the side surface is formed as a combustion side, wherein only the upper part of the other side of the stack layer opposite to the combustion side is supplied with air to the pile layer, the pile layer is ignited, the wind passes through the pile layer, and the side of the pile is burned.
  • the combustion flame is formed on the combustion side of the stack layer toward the combustion chamber, the fuel gradually moves down as the volume becomes smaller, and the new fuel is automatically replenished to the stack layer under the action of gravity, and the new fuel is heated and precipitated and volatilized.
  • the volatiles from the wind exit from the burning side of the pile layer and flow toward the combustion chamber.
  • the volatiles are ignited by the heat generated by the combustion flame, enter the combustion chamber for combustion, and the combustion exhaust gas is discharged from the exhaust gas outlet; at the same time, the volatiles are separated.
  • the ash generated after the burnout is discharged through the furnace at the bottom of the pile layer. As the combustion progresses, the new fuel is continuously replenished to the pile layer to form a combustion cycle. .
  • the invention also provides a solid fuel combustion device, comprising a furnace, an air inlet and a solid fuel feed port are arranged on the furnace, wherein the feed port is arranged at the top of the furnace, and the feed is corresponding to the feed in the furnace
  • the port is provided with a furnace for receiving solid fuel entering from the feed port, and the solid fuel forms a pile layer extending from the feed port to the furnace, and the furnace on one side of the pile layer is connected to the outlet of the exhaust gas.
  • a combustion chamber, a side of the pile layer adjacent to the combustion chamber is formed as a combustion side, and the other side of the pile layer opposite to the combustion side is formed as an inlet side, and on the inlet side, only the upper part of the pile layer is allowed to supply air.
  • the main airflow generated by the side wall, and thus the wind entering the furnace enters the stacking layer from the upper part of the inlet side of the stacking layer, passes through the stacking layer, enters the combustion chamber from the burning side, and is finally discharged from the exhaust gas outlet.
  • the air flow generated by the wind entering the furnace is mainly caused by the air inlet side of the pile layer.
  • the upper part enters the stacking layer and, As the height decreases, the airflow entering the furnace will slowly diminish, and there is almost no airflow through the furnace at the bottom of the stack.
  • the main gas flows through the upper part of the stack and mixes with the volatiles.
  • the mixed gas enters the combustion chamber from the combustion side and forms a high-temperature flame zone in the upper part of the combustion side and the combustion chamber, and the fixed carbon of the volatile matter is precipitated.
  • a small amount of gas is slowly burned in the lower part of the pile layer, and the fixed carbon combustion in the lower part of the pile layer only serves to heat the pile layer to accelerate the precipitation of volatiles and provide the required high temperature environment for volatile combustion, thus in the pile layer.
  • the fixed carbon fuel gradually decreases in size, and the longer the burning time, the lower the fixed carbon fuel is located, so that the lower fixed carbon combustion layer is lower in temperature, the combustion is generated.
  • the ash is discharged into the lower ash chamber through the bottom furnace under the action of gravity, which effectively solves the problem of the existing ash in the existing combustion furnace and ensures the continuation of the combustion furnace. Stable combustion.
  • the fuel newly added to the pile layer is heated by the lower layer of fixed carbon fuel, and the volatile matter is discharged toward the combustion chamber, and the lower layer of fixed carbon fuel is burned to generate flame.
  • the flame is also driven toward the combustion chamber by the air flow.
  • the volatile matter passes through the combustion flame, it is ignited by the high temperature generated by the combustion flame, thereby achieving full combustion of the volatile matter.
  • the combustion apparatus of the present invention can automatically and orderly feed by gravity with the progress of combustion, the combustion furnace can be placed in an unattended operation state, which not only saves labor, but also causes the pile layer to be in a dynamic equilibrium state.
  • the fixed carbon combustion and volatile matter precipitation have been in a continuous and stable combustion state, which effectively ensures the full combustion of the volatiles, improves the combustion efficiency, and realizes the orderly controllable combustion of the combustion furnace.
  • the stack layer is joined to the inner wall of the furnace at opposite sides between the inlet side and the combustion side to isolate the inlet side from the combustion side. Since the stack layer of the present invention constitutes a partition between the inlet side and the combustion side, the wind on the inlet side can only enter the combustion side through the stack layer, thereby achieving wind-to-fuel combustion and volatiles on the inlet side. An effective supply of combustion.
  • the side wall faces of the two opposite side inner walls between the inlet and the furnace side of the furnace and the furnace, and the stack layer on the inlet side and the combustion side
  • the natural stacking slopes formed by the two sides of the gap are uniform or located inside the natural stacking slope, so that the two sides of the stacking layer between the inlet side and the burning side are in contact with the inner wall of the furnace.
  • the side wall of the air inlet side is disposed such that a flow allowing structure for allowing airflow to pass therethrough is formed at an upper portion of the air inlet side, and a flow blocking structure for blocking airflow is formed at a lower portion of the air inlet side.
  • the air inlet side wall is integrally formed as a flow blocking structure, and the top of the side wall is spaced from the top wall of the furnace, and the space is formed as the current permitting structure.
  • the top side of the inlet side wall is in contact with the top wall of the furnace, wherein the upper part is a flow-receiving structure and the lower part is a flow-blocking structure.
  • the flow-receiving structure is an opening disposed at an upper portion of the side wall of the inlet side or a void structure allowing passage of airflow.
  • the void structure is a fence structure, a grid structure, or a grid structure.
  • the side walls are vertical side walls, sloped side walls, or curved side walls.
  • the side wall is formed by a portion of the side wall of the grate.
  • the side wall is formed by a side wall member disposed on the air inlet side.
  • a material dispensing mechanism is provided in the stacking area of the solid fuel above the furnace to control the movement of the dispensing mechanism to loosen the fuel in the burning state.
  • the dispensing mechanism consists of a rotary dispenser or a mobile dispenser.
  • the dispenser includes a feed roller having a feed fin arranged thereon.
  • the feed fin is comprised of a drawbar or a draw ring.
  • the feed fins are axially symmetrically arranged along the draw rolls, or are arranged asymmetrically or spirally.
  • the materializing roller is rotated by the rotating shaft to form a rotary type shifter; or the materializing roller is moved by the moving rod to form a mobile type of material.
  • the rotational axis of the rotary dispenser is disposed substantially perpendicular to the direction of flow of the primary airflow, and the rotation of the selector is controlled to move the fuel toward the combustion side.
  • the furnace is spaced from the inner wall of the furnace at one side edge of the combustion chamber, and the rotational axis of the rotary cutter is substantially parallel to the furnace edge spaced from the inner wall of the furnace chamber.
  • two or more material dispensing mechanisms are disposed above the furnace.
  • an ignition port is provided on the furnace side of the combustion side.
  • the ignition port is disposed on the top of the furnace on the combustion side; or the ignition port is disposed on the side wall of the furnace on the combustion side.
  • the ignition port is disposed adjacent to the side of the stack layer on the combustion side.
  • the air inlet is disposed on the top of the furnace on the inlet side.
  • the air inlet is provided on the side wall of the furnace on the inlet side.
  • an air inlet passage is formed between the air inlet on the furnace and the air inlet side of the furnace to provide wind to the air inlet side through the air inlet passage.
  • combustion furnace of the present invention the volatile matter can be almost completely burned, the combustion efficiency of the combustion furnace is over 95%, and there is no black smoke emission, and the clean discharge of solid fuel combustion with high volatile content is realized.
  • the combustion furnace of the invention fully utilizes the characteristics of gravity and heat transfer, can not only meet the requirements of the fuel principle, realizes automatic and orderly combustion of fuel, has simple structure, low manufacturing cost, convenient use, and thus is a solid with high volatile matter.
  • the promotion and application of fuel provides favorable conditions.
  • Figure 1 is a schematic view showing the structure of the side wall of the combustion apparatus of the present invention spaced from the top wall of the furnace;
  • FIG. 2 is a schematic structural view showing the ignition port of the combustion device of the present invention disposed on the sidewall of the furnace;
  • Figure 3 is a cross-sectional structural view of A-A of Figure 1;
  • Figure 4 is a schematic view showing the structure of the side wall of the combustion apparatus of the present invention having an opening
  • Figure 5 is a schematic view showing the structure of the side wall of the combustion apparatus of the present invention having a void structure
  • Figure 6 is a schematic view showing the structure of the side wall of the burning device of the present invention as an inclined side wall;
  • Figure 7 is a schematic view showing the structure of the side wall of the combustion device of the present invention.
  • Figure 8 is a schematic structural view showing a side wall of a combustion apparatus of the present invention as a part of a side wall of the furnace;
  • Figure 9 is a schematic view showing the structure of the air inlet of the combustion device of the present invention disposed on the top wall of the furnace;
  • Figure 10 is a schematic view showing the structure of the air inlet of the combustion device of the present invention disposed on the side wall of the furnace;
  • Figure 11 is a schematic view showing the structure of the combustion device of the present invention having an air inlet passage
  • Figure 12 is a schematic view showing the structure of a burning device of the present invention.
  • Figure 13 is a cross-sectional structural view of B-B of Figure 12;
  • Figure 14 is a schematic view showing the structure of a burning device of the present invention having two material structures
  • Figure 15 is a schematic structural view of an embodiment of the dispenser of the present invention.
  • Figure 16 is a schematic structural view of another embodiment of the dispenser shown in Figure 15;
  • Figure 17 is a schematic structural view of still another embodiment of the dispenser shown in Figure 15;
  • Figure 18 is a schematic structural view of a third embodiment of the dispenser of Figure 15;
  • Figure 19 is a schematic structural view of another embodiment of the material feeder of the present invention.
  • Figure 20 is a schematic structural view of another embodiment of the dispenser shown in Figure 19;
  • Figure 21 is a schematic structural view of still another embodiment of the dispenser shown in Figure 19;
  • Figure 22 is a schematic structural view of a third embodiment of the dispenser of the present invention.
  • Figure 23 is a schematic view showing the structure of a fourth embodiment of the dispenser of the present invention.
  • Combustion device 100 heat exchange device 200; exhaust gas discharge port 201;
  • Furnace 10 air inlet side 101; combustion side 102; two opposite side inner wall surfaces 103, 104;
  • Stack layer 1 two opposite sides 161, 162; natural stacking slope 16; feed port 11; air inlet 12; inlet channel 121; block wall 122; furnace 14;
  • Solid fuel 5 volatile matter 51; fixed carbon fuel 52 after volatilization; furnace ash 53;
  • a dispensing mechanism 7 a rotary dispensing mechanism 7'; a movable dispensing mechanism 7", a skip roller 71; a feed fin 72; a skip bar 721; a feed ring 722; a rotating shaft 73; a moving shaft 74;
  • the present invention provides a method for burning a solid fuel.
  • a feed port 11 is provided at the top of the furnace 10, and a corresponding feed port 11 is provided in the furnace 10 to receive from the feed port 11.
  • the furnace 14 of the fuel, the solid fuel 5 entering from the feed port 11 forms a pile layer 1 extending from the feed port 11 to the furnace 14 on the furnace 14; the furnace 10 on one side of the pile layer 1
  • a combustion chamber 3 is provided which is connected to the outlet of the exhaust gas.
  • the stack layer 1 is formed as a combustion side 102 adjacent to the side of the combustion chamber 3, and only from the upper side of the other side of the stack layer 1 opposite the combustion side 102 to the stack layer 1
  • the wind is supplied to ignite the stack layer 1, the wind passes through the stack layer 1, and exits from the combustion side 102 of the pile layer 1, and a combustion flame toward the combustion chamber 3 is formed on the combustion side 102 of the pile layer 1, with the fuel
  • the volume becomes smaller and gradually moves downward, and the new fuel is automatically replenished to the pile layer 1 under the action of gravity.
  • the new fuel is heated to precipitate the volatile portion 51; the wind carries the precipitated volatile matter 51 from the combustion side of the pile layer 1 102 flows out and flows toward the combustion chamber 3, and the volatile matter 51 is ignited by the heat generated by the combustion flame, enters the combustion chamber 3 to burn, and the combustion exhaust gas is from the tail.
  • the outlet 201 is discharged; at the same time, the fixed carbon fuel 52 after the volatile matter is ignited, carbon combustion is performed, and a new combustion flame is generated, and the ash 53 generated after the burnout is discharged through the furnace 14 at the bottom of the pile layer 1, with combustion.
  • the new fuel is continuously replenished on the pile layer 1 to form a combustion cycle.
  • the present invention also provides a solid fuel combustion apparatus 100 using the above combustion method.
  • the combustion apparatus 100 includes a furnace 10 on which an air inlet 12 and a solid fuel feed port are provided. 11.
  • the feed port 11 is provided at the top of the furnace 10, and the corresponding feed port 11 in the furnace 10 is provided with a furnace 14 for receiving the solid fuel 5 entering from the feed port 11, and the solid fuel 5 is formed to extend from the feed port 11.
  • the furnace chamber on one side of the stack layer 1 is provided with a combustion chamber 3 communicating with the exhaust gas outlet 201, and the side of the stack layer 1 adjacent to the combustion chamber 3 is formed as a combustion side 102,
  • the other side of the pile layer 1 opposite to the combustion side 102 is formed as the inlet side 101, and on the inlet side 101 there is a side wall 6 which is only allowed to supply air to the upper portion of the pile layer 1, so that the wind entering the furnace 10 is generated.
  • the main gas stream enters the stock layer 1 from the upper portion of the inlet side 101 of the stacking layer, passes through the stock layer 1, enters the combustion chamber 3 from the combustion side, and is finally discharged from the exhaust gas outlet 201.
  • the main air flow generated by the wind entering the furnace 10 of the present invention refers to the main air flow generated by the wind, which flows from the air inlet side 101 of the pile area 1 substantially transversely through the pile area 1 from the combustion side 102; during the combustion process
  • the wind entering the furnace 10 mainly produces airflow transversely through the stacking zone 1, and there is almost no airflow through the bottom furnace 14 of the stacking zone 1 or a weak airflow passes through the bottom furnace 14 as long as the weak
  • the airflow does not affect the main airflow direction, and does not affect the effect of the combustion apparatus of the present invention, that is, the combustion apparatus of the present invention can ensure that the main airflow direction in the combustion process enters from the inlet side 101 of the pile layer 1 and passes through the combustion side 102. It is within the scope of the invention to form a lateral combustion pattern substantially transversely through the stock layer 1.
  • the stock layer 1 in the present invention refers to a pile formed of a solid fuel between the feed port 11 and the furnace 14.
  • the newly introduced fuel in the upper layer is first heated to a temperature at which the volatile matter is precipitated to precipitate volatiles, and then ignited for fixed carbon combustion, and gradually decreases as the volume of the fuel becomes smaller as the combustion progresses.
  • the ash 53 generated after the burnout is discharged through the furnace 14; at the same time, the new fuel is automatically replenished to the pile layer 1 under the action of gravity, so that the pile layer 1 between the feed port 11 and the furnace 14 is burning.
  • the process is in a state of dynamic equilibrium, maintaining a stable stock shape.
  • the upper side wall 6 for supplying air such that the main air flow generated by the wind entering the furnace 10 enters the pile layer 1 from the upper portion of the inlet side 101 of the pile layer, and enters the wind chamber of the furnace 10 as the height decreases.
  • the resulting airflow will slowly diminish and there will be almost no airflow through the furnace 14 at the bottom of the stack.
  • the main gas stream passes through the upper portion of the pile layer 1 and is mixed with the volatile matter 51.
  • the mixed gas enters the combustion chamber 3 from the combustion side 102 and forms a high temperature flame region in the upper portion of the combustion side 102 and the combustion chamber 3, and precipitates.
  • the ash 53 produced by the combustion is also discharged into the lower ash chamber 4 through the bottom furnace 14 under the action of gravity under the action of the fixed carbon fuel moving downward, thereby effectively solving the problem of the ash existing in the existing combustion furnace. To ensure the continuous and stable combustion of the furnace.
  • the volatile matter 51 which is heated and precipitated by the lower fixed carbon fuel 52 is flowed toward the combustion chamber 3, and the lower fixed carbon fuel 52 is burned to generate a flame.
  • the combustion is driven toward the combustion chamber 3, and when the volatile matter 51 passes through the combustion flame, it is ignited by the high temperature generated by the combustion flame, thereby achieving full combustion of the volatile matter.
  • the combustion device can be placed in an unattended operating state, which not only saves manpower, but also because the stack layer 1 is in a state of dynamic equilibrium, the stack layer 1 Maintaining a stable stock shape during the combustion process, so that the fixed carbon combustion and volatile matter precipitation in the furnace 1 are always in a continuous stable combustion state, effectively ensuring full combustion of volatiles, improving combustion efficiency, and achieving combustion. Orderly controlled combustion of the device.
  • the two opposite sides 161, 162 of the stack layer 1 between the inlet side 101 and the combustion side 102 are in contact with the inner wall of the furnace to feed the furnace above the furnace 14 into the air.
  • the space of side 101 is separated from combustion side 102 by stack layer 1.
  • the airflow generated by the wind entering the air inlet side 101 can only pass through the stack layer 1 to reach the combustion side 102, avoiding the wind from passing outside the stack layer 1 and doing useless work, ensuring the wind passing through the stack layer 1. Effective supply.
  • the natural stacking slopes 16 that may be formed by the two sides 161, 162 between 102 are coincident or located inside the natural stacking slope 16, such that the two side wall faces 103, 104 of the stacking layer 1 between the inlet side 101 and the burning side 102. It is connected to the inner wall of the furnace.
  • the shape of the side wall faces 103, 104 of the opposite side inner walls between the inlet side 101 and the combustion side 102 of the furnace 10 above the grate 14 can be set as needed, as long as the outer side of the natural stacking slope 16 is not exceeded, enabling the stacking
  • the two opposite side faces 161, 162 of the layer 1 may be in contact with the furnace sidewall faces 103, 104, and the specific shape thereof may not be limited.
  • the shapes of the opposite side inner wall surfaces 103, 104 between the air inlet side 101 and the combustion side 102 of the furnace above the furnace 14 are not limited to the shapes shown in the drawings, and can also be set. In many other shapes, they are not listed here.
  • the side wall 6 is only required to be allowed to supply air only to the upper portion of the stack layer 1, and its specific shape and position may not be limited.
  • the side wall 6 of the air inlet side 101 of the combustion apparatus 100 is disposed such that a flow allowing structure 61 for allowing airflow to pass therethrough is formed at an upper portion of the air inlet side 101, and a blocking airflow is formed at a lower portion of the air inlet side.
  • the flow blocking structure 62 when After the airflow enters the furnace 10, the choke structure 62 located at the lower portion of the air inlet side 101 blocks the airflow from proceeding, and the airflow can only enter the stacking layer 1 through the flow-receiving structure 61 located at the upper portion of the air inlet side 101, thereby realizing only the stacking material.
  • the upper part of the layer 1 is supplied with air.
  • the side wall 6 of the inlet side 101 is integrally formed as a flow blocking structure 62 having a space 63 between the top of the side wall 6 and the top wall of the furnace. It is formed as a flow allowing structure 61. After the gas stream enters the furnace 10, it can only enter the upper portion of the pile layer 1 through the space 63 at the upper portion of the inlet side 101.
  • the top of the side wall 6 may be disposed not in contact with the furnace 10; or, as shown in FIG. 1, the top of the side wall 6 may also be provided to have a flow guiding contact with the side wall of the furnace 10.
  • the wall, the diversion wall and the top wall and the side wall of the furnace are combined to form a flow guiding passage through which the airflow passes.
  • the top of the side wall 6 of the air inlet side 101 is in contact with the top wall of the furnace 10, and the upper middle portion of the side wall 6 is a flow allowing structure 61, and the side wall 6 is The lower portion is a flow blocking structure 62.
  • the flow restricting structure 61 may be an opening 64 disposed at an upper portion of the side wall 6 of the air inlet side 101, and the airflow enters the furnace 10 and enters the upper portion of the stock layer 1 via the opening 64.
  • the flow-receiving structure 61 is not limited to the one shown in the drawing, and the specific shape may be not limited as long as it is set to allow the airflow to pass.
  • the flow-removing structure 61 is disposed as a void structure 65 at the upper portion of the side wall 6 of the inlet side 101 to allow airflow therethrough, and the airflow enters the furnace 10 and enters the stack via the void structure 65.
  • the void structure 65 may be provided as a fence structure, a lattice structure, or a mesh structure, as long as the airflow can be allowed to pass, and the specific structure thereof may be not limited.
  • the shape of the air inlet side wall 6 can be set as needed.
  • the side wall 6 may be a vertical side wall, or the side wall 6 may be provided as an inclined side wall as shown in Fig. 6, or an arcuate side wall as shown in Figs.
  • the side wall 6 can also be provided in other forms familiar to those skilled in the art of cost.
  • the side wall 6 may be formed by a portion of the side wall of the grate 10.
  • the side wall 6 is formed by a side wall member 66 provided on the air inlet side 101.
  • a material discharging mechanism 7 can be disposed in the stacking area of the solid fuel above the furnace 14, and the fuel in the burning state can be loosened by controlling the movement of the discharging mechanism 7 to ensure that the fuel can be more fully charged. combustion.
  • the dispensing mechanism 7 may be constituted by a rotary dispenser 7', or the dispensing mechanism 7 may be constituted by a movable dispenser 7".
  • the dispensing mechanism 7 is substantially in the position of the combustion layer of the fixed carbon, and is controlled to realize the movement of the material.
  • the fuel of the combustion layer of the fixed carbon can be loosened to increase the gap of the fuel in the combustion state, which is beneficial to improving the combustion of the combustion layer of the fixed carbon, and at the same time, is beneficial for burning the fuel in the combustion layer after burning off.
  • the ash is discharged from the gap after loosening.
  • the dispenser 7 includes a skip roller 71 on which the skip fins 72 are arranged.
  • the materializing fins 72 may be provided so as to be able to loosen the fuel, and the specific form thereof is not limited. Specifically, as shown in FIGS. 13 to 16, the paddle fins 72 may be constituted by the bar 721, or as shown in FIGS. 17 to 21, the paddle fins may be provided to be constituted by the material 722. Specifically, in this embodiment, the annular material wing 722 is a U-shaped ring or a semi-circular ring, or Other shapes of the material wing 722 of the same principle and function.
  • the material-shaping fin 72 of the present invention is used to disturb the fuel in the burning state during the movement, and is loosened to increase the gap between the fuels.
  • the material-feeding fin can also be set as shown in FIG.
  • the material ring, or the spiral strip as shown in Fig. 23, can be any shape that achieves the above functions, and is not limited to the specific shape shown in the drawings of the present invention.
  • the feed fins 72 are axially symmetrically arranged along the skip roller 71, as shown in FIG. 15, FIG. 17, or FIG. 18.
  • the feed fins 72 may also be asymmetric. Arrangements, spiral arrangements or other arrangements familiar to those skilled in the art.
  • the setting roller 71 can be rotated by the rotating shaft 73 to constitute the rotary type shifter 7'; or the setting roller 71 can also be moved by the moving rod 74. It constitutes a mobile dispenser 7".
  • the rotational axis of the rotary dispenser 7' is disposed substantially perpendicular to the flow direction of the main airflow, and the fuel is turned to the combustion side 102 by controlling the rotation of the dispenser 7. To ensure more complete combustion of fuel.
  • the furnace 14 is spaced from the inner wall of the furnace 10 at one edge of the combustion chamber 3, and the axis of rotation of the rotary feeder 7' is substantially parallel to the furnace 14 spaced from the inner wall of the furnace 10. edge.
  • two or more material dispensing mechanisms 7 are disposed above the furnace 14.
  • an ignition port 8 may be provided on the furnace of the combustion side 102.
  • the position of the ignition port 8 is set as long as it can be ignited on the combustion side 102 of the stock layer 1, and its specific installation position can be omitted. Since the ignition is performed on the combustion side of the stack layer, the ignition flame is located on the flow path of the volatile matter, and thus the volatile matter of the volatile fuel precipitated by the stack layer under the heating of the ignition flame is carried by the main gas stream from the stack. The burning side of the layer penetrates, and the volatiles after the passage are extremely ignited by the ignition flame and are ignited when passing through the ignition flame; and a new combustion flame is generated due to the combustion of the volatiles, so that more fuel is accumulated in the stack layer.
  • the stacking layer can be ignited quickly, the temperature inside the furnace is rapidly increased, the stacking layer is quickly ignited, the time required for ignition is greatly shortened, and the problem of slow ignition of the existing burning stove is effectively overcome or improved.
  • the firing port 8 is disposed on the top of the furnace side of the combustion side 102. At the time of ignition, the fire is sent into the furnace 10 through the ignition port 8 at the top of the furnace, which ignites the pile layer 1 from the combustion side 102 of the pile layer 1.
  • the firing port 8 can be disposed on the sidewall of the furnace side of the combustion side 102.
  • the fire can be introduced into or onto the combustion side 102 of the stock layer 1 through the ignition port 8 on the side wall of the furnace to ignite the stock layer 1 from the combustion side.
  • the firing port 8 can be disposed adjacent the side of the stack layer 1 of the combustion side 102.
  • the fire input to the combustion side 102 is more likely to contact the solid fuel of the pile layer 1, thereby facilitating the ignition of the pile layer 1.
  • the air inlet 12 may be provided on the side wall of the furnace 10 as shown in Figs. 7 and 10, or may be provided on the top of the furnace 10 as shown in Figs.
  • the air inlet side 101 supplies air to the stack layer 1 to form a main air flow substantially transversely through the stack layer, and the specific arrangement position thereof may be not limited.
  • the air inlet 12 can directly supply the wind to the air inlet side 101 of the stock layer 1, thereby supplying air to the stack layer 1 to the side of the stock layer 1.
  • an air inlet passage 121 may be formed between the air inlet 12 on the furnace 10 and the air inlet side 101 for supplying air to the side of the stack layer 1 so as to pass through the air inlet passage.
  • the wind is supplied to the wind side 101.
  • the setting of the feed port 12 is not limited. For example, in a specific example, as shown in FIG.
  • the air inlet 12 may even be disposed on the side wall of the furnace 10 below the hearth of the air inlet side 101, and the furnace 14 and the furnace 10 on the air inlet side 101.
  • a blocking wall 122 for blocking the passage of airflow is disposed between the bottom portions, and both sides of the blocking wall 122 are in contact with the inner wall of the furnace 10, so that a space between the blocking wall 122 and the inner wall of the furnace 10 is formed as an air inlet passage 121.
  • the wind entering from the air inlet 12 enters the side of the stock layer 1 via the air inlet passage 121 formed between the choke wall 122 and the inner wall of the furnace, thereby supplying air from the air inlet side 101 to the pile layer 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

一种固体燃料燃烧方法及燃烧装置(100)。该燃烧装置(100)包括炉膛(10),堆料层(1)邻近燃烧腔(3)的侧面形成为燃烧侧(102),与该燃烧侧(102)相对的另一侧形成为进风侧(101),在进风侧(101)具有仅允许向堆料层(1)上部供风的侧壁(6)。

Description

固体燃料的燃烧方法及燃烧装置 技术领域
本发明涉及固体燃料燃烧领域,具体地讲,有关于一种固体燃料燃烧方法及燃烧装置。
背景技术
从燃料分类角度来看,固体燃料因资源丰富、使用安全,是现代人类使用最为广泛的一种燃烧材料,特别是煤。另外,随着以煤为代表的矿物质固体燃料的需求量的增大、资源的减少,以及全球新能源运动的展开,可再生的生物质燃烧材料,如秸杆、稻草、木材、木屑、枯枝等得到人们的高度重视。
目前使用生物质燃烧材料的主要方式直接点燃燃烧,这种方式燃烧效率非常低,并产生大量的黑烟,造成环境污染。
一直以来,很多人都试图采用现有的燃煤炉具来燃烧生物质燃料。由于生物质燃烧材料与固定碳含量较高的矿物质燃烧材料的燃烧特性具有比较大的区别,现有的燃烧炉具并不能适应由可再生的生物质材料构成的固体燃料的燃烧,造成燃烧效率低,存在排放污染等问题,从而制约了生物质燃烧材料的应用。另外,现在大量使用的煤都是固定碳含量比较高的高级煤,例如无烟煤、烟煤等,一些低级煤,例如褐煤、泥煤等,利用现有的燃烧装置,也同样存在燃烧效率低,冒黑烟等问题,因此目前还没有得到广泛应用。
本发明人在仔细研究后发现,生物质燃烧材料和低级煤(例如褐煤、泥煤等)与高级煤的相比,主要的区别是,高级煤的固定碳含量很高(一般在90%以上),因此在燃烧时主要是固定碳燃烧方式;而生物质燃烧材料和低级煤的固定碳含量比较低,而挥发份含量比较高(大概在50%-70%)。这种挥发份含量高的固体燃料,主要存在两个特点:1)挥发份析出温度低于挥发份燃点;2)挥发份的燃点高于灰熔点。
目前的燃烧炉一般分为正向燃烧炉和反式燃烧炉两种,由于生物质燃料和低级煤存在上述特点,采用这两种燃烧炉都无法实现持续高效燃烧。
现有的正向燃烧炉一般是从炉箅下方供风,进入炉膛的风产生的气流由下而上穿过炉箅,使炉箅上的燃料燃烧产生的火焰向上正向燃烧。该正向燃烧装置燃烧时,存在如下问题:
1)燃烧效率低。在燃烧时,由于挥发份的析出温度低于挥发份的燃点,挥发份首先析出并以黑烟的方式排放到空气中,剩余的固定碳部分再进行燃烧,这样只利用了其中的固定碳燃烧产生的热量,不但燃烧效率比较低,而且存在排放污染。
2)不能持续燃烧。该正向燃烧装置由于通过炉箅供风,在炉箅位置形成高温火床。而由于燃料的灰熔点低于挥发份和固定碳的燃点,在炉箅上固定碳燃烧的高温环境下,火床温度高于灰熔点,燃烧后的炉灰处于呈粘稠状的熔融状态,会糊在炉箅上,无法通过炉箅或者其它排灰机构(例如拨灰棒)正常排出。该粘稠状的炉灰混合在正在燃烧的燃料中,不但极大地影响了燃料的燃烧效率。并且,该粘稠状的炉灰粘在炉箅子上,堵塞了炉箅上的进风通道,一段时间后会将炉箅糊死,使得燃烧炉无法继续工作。
反式燃烧炉的特点是,出火口低于炉箅,进入炉膛的风产生的气流由上而下穿过炉箅后经连通于出火口的尾气出口排出,从而使燃烧产生的火焰反向通过炉箅后再到达出火口。
反式燃烧方式与正向燃烧相比,析出的挥发份可以在通过炉箅时被火焰点燃,燃烧效率得到了提高。然而由于高温火焰位于炉箅位置,这也使得炉箅位置的温度非常高,在高温环境下,燃烧后的炉灰处于呈粘稠状的熔融状态,会糊在炉箅上,堵塞了炉箅的气流通道,很快就会将炉箅糊死,使得燃烧炉无法继续工作。
另外,由于燃料的挥发份析出温度低于燃料的燃点,现有的正向燃烧和反式燃烧装置在点火时,燃料首先达到挥发份析出温度然后才进入燃烧状态,先析出的挥发份以黑烟的形式排放的空气中,形成点火时冒黑烟现象,不但造成严重的环境污染,而且由于仅通过固定碳燃料逐渐燃烧来引燃,不但不易点燃,而且温度升高慢,点火时间长。
因此,有必要提供一种适合挥发份含量高的固体燃料(例如生物质燃料)燃烧的固体燃料燃烧方法和装置,来克服现有燃烧炉存在的上述缺陷,实现固体燃料的有序可控燃烧。
发明内容
本发明的目的在于,提供一种固体燃料的燃烧方法及燃烧装置,不但能够使固体燃料中的挥发份充分燃烧,而且解决了熔灰问题,保证了燃料的持续燃烧。
为实现上述发明目的,本发明提供了一种固体燃料的燃烧方法,在炉膛顶部设有进料口,在炉膛内对应进料口设有承接从进料口进入的燃料的炉箅,从进料口进入的固体燃料在炉箅上形成由进料口延伸到炉箅的堆料层;在该堆料层其中一侧的炉膛设有连通于尾气出口的燃烧腔,堆料层邻近燃烧腔的侧面形成为燃烧侧,其中,仅从与燃烧侧相对的堆料层另一侧上部向堆料层供风,点燃堆料层,风穿过堆料层,从堆料层的燃烧侧穿出,在堆料层的燃烧侧形成朝向燃烧腔的燃烧火焰,燃料随着体积变小而逐渐下移,新燃料在重力作用下自动补充到堆料层上,该新燃料被加热后析出挥发份;风带着析出的挥发份从堆料层的燃烧侧穿出并朝向燃烧腔流动,挥发份被燃烧火焰产生的热点燃,进入燃烧腔燃烧,燃烧尾气从尾气出口排出;同时,析出挥发份后的固定碳燃料被点燃,进行碳燃烧,产生新的燃烧火焰,燃尽后产生的灰烬通过堆料层底部的炉箅排出,随着燃烧的进行,新燃料不断补充至堆料层上,形成燃烧循环。
本发明还提供了一种固体燃料的燃烧装置,包括炉膛,在炉膛上设有进风口和固体燃料进料口,其中,所述进料口设在炉膛顶部,在炉膛内对应所述进料口设置有承接从进料口进入的固体燃料的炉箅,固体燃料形成从进料口延伸到炉箅上的堆料层,在该堆料层其中一侧的炉膛设有连通于尾气出口的燃烧腔,堆料层邻近燃烧腔的一侧形成为燃烧侧,与该燃烧侧相对的堆料层另一侧形成为进风侧,在进风侧具有仅允许向堆料层上部供风的侧壁,从而进入炉膛的风所产生的主气流由堆料层进风侧上部进入堆料层,穿过堆料层后从燃烧侧进入燃烧腔,最后从尾气出口排出。
采用本发明的上述燃烧方法和燃烧装置,由于在进风侧设置了仅允许向堆料层上部供风的侧壁,这样,进入炉膛的风所产生的气流主要由堆料层进风侧的上部进入堆料层,并且, 随着高度的降低进入炉膛的风所产生的气流会慢慢减弱,在堆料层底部炉箅位置几乎没有气流通过。燃烧时,主气流穿过堆料层上部并与挥发份混合,混合后的气体从燃烧侧进入燃烧腔并在燃烧侧的上部和燃烧腔内形成高温火焰区,而析出挥发份的固定碳与少量气流在堆料层的下部缓慢燃烧,堆料层下部的固定碳燃烧仅起到加热堆料层以加速挥发份的析出以及为挥发份燃烧提供所需高温环境的作用,因而在堆料层底部炉箅位置不存在高温火床。随着燃烧的进行,体积变小的固定碳燃料逐步下移,燃烧时间越长的固定碳燃料位于越向下的位置,使得下部的固定碳燃烧层越向下温度越低,燃烧所产生的炉灰也在固定碳燃料向下移动过程中,在重力作用下通过底部炉箅被排入到下部的灰室中,有效解决了现有燃烧炉存在的熔灰问题,保证了燃烧炉的持续稳定燃烧。
同时,在燃烧过程中,新补充到堆料层的燃料被下层固定碳燃料加热析出的挥发份随着气流朝向燃烧腔流动,而下层固定碳燃料燃烧产生火焰也在气流带动下朝向燃烧腔燃烧,在挥发份经过燃烧火焰时,被燃烧火焰产生的高温点燃,从而实现了挥发份的充分燃烧。并且,由于本发明的燃烧装置可以随着燃烧的进行利用重力自动有序进料,可以使燃烧炉处于无人值守的运行状态,不但节省了人力,而且由于堆料层处于动态平衡状态,使得固定碳燃烧和挥发份析出一直处于连续稳定的燃烧状态下,有效保证了挥发份的充分燃烧,提高了燃烧效率,实现了燃烧炉的有序可控燃烧。
在本发明一个可选的例子中,堆料层在进风侧和燃烧侧之间的两相对侧面与炉膛内壁相接,从而将进风侧与燃烧侧隔离。由于本发明的堆料层构成进风侧与燃烧侧的隔离体,使得进风侧的风只能穿过堆料层才能进入燃烧侧,从而实现了进风侧的风对燃料燃烧和挥发份燃烧的有效供给。
在一个可选的例子中,炉膛的进料口与炉箅之间的位于进风侧与燃烧侧之间的该两相对侧内壁的侧壁面,与堆料层在进风侧与燃烧侧之间的两侧面可形成的自然堆放坡度一致或位于该自然堆放坡度内侧,从而使得堆料层在进风侧与燃烧侧之间的两侧面与炉膛内壁相接。
在本发明一个可选的例子中,所述进风侧的侧壁设置成,在进风侧上部形成有允许气流通过的允流结构,在进风侧下部形成有阻挡气流通过的阻流结构。
在一个可选的例子中,所述进风侧侧壁整体为阻流结构,该侧壁的顶部与炉膛顶壁之间具有间隔,由该间隔形成为所述的允流结构。
在一个可选的例子中,所述进风侧侧壁顶部与炉膛顶壁相接,其中上部为允流结构,下部为阻流结构。
在一个可选的例子中,所述允流结构为设置在进风侧侧壁上部的开口或者允许气流通过的空隙结构。
在一个可选的例子中,所述空隙结构为栅栏结构、栅格结构或网格结构。
在一个可选的例子中,所述侧壁为竖直侧壁、倾斜侧壁或弧形侧壁。
在一个可选的例子中,所述侧壁由所述炉膛的一部分侧壁构成。
在本发明另一个可选的例子中,所述侧壁由设置于进风侧的侧壁部件构成。
在一个可选的例子中,在炉箅上方承接固体燃料的堆料区域内设有拨料机构,控制拨料机构运动将呈燃烧状态的燃料拨松动。
在一个可选的例子中,所述拨料机构由转动式拨料器构成或由移动式拨料器构成。
在一个可选的例子中,所述拨料器包括有拨料辊,所述拨料辊上排列有拨料翅。
在一个可选的例子中,所述拨料翅由拨料棒或拨料环构成。
在一个可选的例子中,所述拨料翅沿拨料辊轴向对称排列、或非对称排列、或螺旋排列。
在一个可选的例子中,所述的拨料辊由转动轴带动其转动,构成转动式拨料器;或者所述的拨料辊由移动杆带动其移动,构成移动式拨料器。
在一个可选的例子中,所述转动式拨料器的转动轴线与主气流的流动方向大致垂直设置,控制拨料器转动将燃料向燃烧侧拨动。
在本发明一个可选的例子中,所述炉箅在燃烧腔的一侧边缘与炉膛内壁具有间隔,所述转动式拨料器的转动轴线大致平行于该与炉膛内壁具有间隔的炉箅边缘。
在一个可选的例子中,所述炉箅上方设置有两个或两个以上的拨料机构。
在一个可选的例子中,在燃烧侧的炉膛上设有点火口。
在一个可选的例子中,所述点火口设置在燃烧侧的炉膛顶部;或者所述点火口设置在燃烧侧的炉膛侧壁上。
在一个可选的例子中,所述点火口邻近于燃烧侧的堆料层侧面设置。
在一个可选的例子中,所述进风口设置在进风侧的炉膛顶部。
在一个可选的例子中,所述进风口设置在进风侧的炉膛侧壁。
在一个可选的例子中,所述炉膛上的进风口与炉膛进风侧之间形成有进风通道,从而通过进风通道将风提供给进风侧。
实验证明,采用本发明的上述燃烧炉,挥发份几乎可以被完全燃烧,燃烧炉的燃烧效率达到95%以上,并且没有黑烟排放,实现了挥发份含量高的固体燃料燃烧的洁净排放。本发明的燃烧炉充分利用了重力和热量传递的特性,不但能够符合燃料原理的要求,实现了燃料的自动有序燃烧,而且结构简单,制造成本低,使用方便,从而为挥发份高的固体燃料的推广应用提供了有利条件。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明燃烧装置的侧壁顶端与炉膛顶壁具有间隔的结构示意图;
图2为本发明燃烧装置的点火口设置于炉膛侧壁的结构示意图;
图3为图1的A-A的剖视结构示意图;
图4为本发明燃烧装置的侧壁具有开口的结构示意图;
图5为本发明燃烧装置的侧壁具有空隙结构的结构示意图;
图6为本发明燃烧装置的侧壁为倾斜侧壁的结构示意图;
图7为本发明燃烧装置的侧壁为侧壁部件的结构示意图;
图8为本发明燃烧装置的侧壁为炉膛侧壁的一部分的结构示意图;
图9为本发明燃烧装置进风口设置于炉膛顶壁上的结构示意图;
图10为本发明燃烧装置进风口设置于炉膛侧壁上的结构示意图;
图11为本发明燃烧装置具有进风通道的一种结构示意图;
图12为本发明燃烧装置具有拨料机构的结构示意图;
图13为图12的B-B的剖视结构示意图;
图14为本发明燃烧装置具有两个拨料结构的结构示意图;
图15为本发明的拨料器的一种实施方式的结构示意图;
图16为图15所示拨料器的另一种实施例的结构示意图;
图17为图15所示拨料器的再一种实施例的结构示意图;
图18为图15所示拨料器的第三种实施例的结构示意图;
图19为本发明的拨料器的另一种实施方式的结构示意图;
图20为图19所示拨料器的另一种实施例的结构示意图;
图21为图19所示拨料器的再一种实施例的结构示意图;
图22为本发明的拨料器的第三种实施方式的结构示意图;
图23为本发明的拨料器的第四种实施方式的结构示意图。
附图标记说明:
燃烧装置100;换热装置200;尾气排出口201;
炉膛10;进风侧101;燃烧侧102;两相对侧内壁面103、104;
堆料层1;两相对侧面161、162;自然堆放坡度16;进料口11;进风口12;进风通道121;阻流壁122;炉箅14;
燃烧腔3;
灰室4;
固体燃料5;挥发份51;析出挥发份后的固定碳燃料52;炉灰53;
侧壁6;允流结构61;阻流结构62;间隔63;开口64;空隙结构65;侧壁部件66;
拨料机构7;转动式拨料机构7’;移动式拨料机构7”,拨料辊71;拨料翅72;拨料棒721;拨料环722;转动轴73;移动轴74;
点火口8。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描 述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种固体燃料的燃烧方法,如图1、图2所示,在炉膛10顶部设有进料口11,在炉膛10内对应进料口11设有承接从进料口11进入的燃料的炉箅14,从进料口11进入的固体燃料5在炉箅14上形成由进料口11延伸到炉箅14的堆料层1;在堆料层1其中一侧的炉膛10设有连通于尾气出口的燃烧腔3,堆料层1邻近燃烧腔3的侧面形成为燃烧侧102,并且,仅从与燃烧侧102相对的堆料层1另一侧上部向堆料层1供风,点燃堆料层1,风穿过堆料层1,从堆料层1的燃烧侧102穿出,在堆料层1的燃烧侧102形成朝向燃烧腔3的燃烧火焰,燃料随着体积变小而逐渐下移,新燃料在重力作用下自动补充到堆料层1上,该新燃料被加热后析出挥发份51;风带着析出的挥发份51从堆料层1的燃烧侧102穿出并朝向燃烧腔3流动,挥发份51被燃烧火焰产生的热点燃,进入燃烧腔3燃烧,燃烧尾气从尾气出口201排出;同时,析出挥发份后的固定碳燃料52被点燃,进行碳燃烧,产生新的燃烧火焰,燃尽后产生的灰烬53通过堆料层1底部的炉箅14排出,随着燃烧的进行,新燃料不断补充的堆料层1上,形成燃烧循环。
本发明还提供了一种采用上述燃烧方法的固体燃料的燃烧装置100,如图1、图2所示该燃烧装置100包括炉膛10,在炉膛10上设有进风口12和固体燃料进料口11,进料口11设在炉膛10的顶部,在炉膛10内对应进料口11设置有承接从进料口11进入的固体燃料5的炉箅14,固体燃料5形成从进料口11延伸到炉箅14上的堆料层1,在堆料层1其中一侧的炉膛设有连通于尾气出口201的燃烧腔3,堆料层1邻近燃烧腔3的一侧形成为燃烧侧102,与燃烧侧102相对的堆料层1另一侧形成为进风侧101,在进风侧101具有仅允许向堆料层1上部供风的侧壁6,从而进入炉膛10的风所产生的主气流由堆料层进风侧101上部进入堆料层1,穿过堆料层1后从燃烧侧进入燃烧腔3,最后从尾气出口201排出。
本发明进入炉膛10的风产生的主气流是指风产生的主要的气流,该气流从堆料区1的进风侧101大致横向穿过堆料区1从燃烧侧102穿出;在燃烧过程中进入炉膛10的风主要产生横向穿过堆料区1的气流,堆料区1底部炉箅14位置几乎没有气流穿过或者会有微弱的气流从底部炉箅14穿过,只要该微弱的气流不影响主要气流方向,就不会对本发明燃烧装置的效果产生影响,即本发明燃烧装置只要能够保证燃烧过程中主要气流方向是从堆料层1进风侧101进入并从燃烧侧102穿出大致横向穿过堆料层1形成侧向燃烧方式即属于本发明的范围。
本发明中的堆料层1是指固体燃料在进料口11与炉箅14之间形成的料堆。该堆料层1在燃烧过程中,上层新进入的燃料先被加热到挥发份析出温度而析出挥发份,随后被点燃进行固定碳燃烧,随着燃烧的进行燃料体积变小而逐渐下移,燃尽后产生的灰烬53通过炉箅14排出;同时,新燃料在重力作用下自动补充到堆料层1上,如此循环,进料口11与炉箅14之间的堆料层1在燃烧过程中处于动态平衡状态,保持稳定的堆料形状。
采用本发明的上述燃烧方法和燃烧装置100,由于在进风侧101设置有仅允许向堆料层 1上部供风的侧壁6,这样,进入炉膛10的风所产生的主气流由堆料层进风侧101的上部进入堆料层1,并且,随着高度的降低进入炉膛10的风所产生的气流会慢慢减弱,在堆料层1底部炉箅14位置几乎没有气流通过。燃烧时,主气流穿过堆料层1上部并与挥发份51混合,混合后的气体从燃烧侧102进入燃烧腔3并在燃烧侧102的上部和燃烧腔3内形成高温火焰区,而析出挥发份后的固定碳燃料52与少量气流在堆料层1的下部缓慢燃烧,堆料层1下部的析出挥发份后的固定碳燃料52的燃烧仅起到加热堆料层1以加速挥发份51的析出以及为挥发份51燃烧提供火种的作用,因而在堆料层1的下部位置以及堆料层1底部炉箅14位置不存在高温火床。并且,随着燃烧的进行,体积变小的固定碳燃料52逐步下移,燃烧时间越长的固定碳燃料52位于越向下的位置,使得下部的固定碳燃烧层越向下温度越低,燃烧所产生的炉灰53也在固定碳燃料向下移动过程中,在重力作用下通过底部炉箅14被排入到下部的灰室4中,有效解决了现有燃烧炉存在的熔灰问题,保证了燃烧炉的持续稳定燃烧。
同时,如图1、图2所示,在燃烧过程中,燃料被下层固定碳燃料52加热析出的挥发份51随着气流朝向燃烧腔3流动,而下层固定碳燃料52燃烧产生火焰也在气流带动下朝向燃烧腔3燃烧,在挥发份51经过燃烧火焰时,被燃烧火焰产生的高温点燃,从而实现了挥发份的充分燃烧。并且,由于本发明可以随着燃烧的进行利用重力自动有序进料,可以使燃烧装置处于无人值守的运行状态,不但节省了人力,而且由于堆料层1处于动态平衡状态,堆料层1在燃烧过程中保持稳定的堆料形状,使得炉膛1内的固定碳燃烧和挥发份析出一直处于连续稳定的燃烧状态下,有效保证了挥发份的充分燃烧,提高了燃烧效率,实现了燃烧装置的有序可控燃烧。
在本发明中,如图3所示,堆料层1在进风侧101和燃烧侧102之间的两相对侧面161、162与炉膛内壁相接,以将炉箅14上方的炉膛在进风侧101的空间与燃烧侧102由堆料层1隔离开。这样,进入进风侧101的风产生的气流只能穿过堆料层1才能到达燃烧侧102,避免了风从堆料层1外面通过而做无用功,保证了穿过堆料层1的风的有效供给。
在一个可选的例子中,炉箅14上方的炉膛10在进风侧101与燃烧侧102之间的该两相对侧内壁面103、104,与堆料层1在进风侧101与燃烧侧102之间的两侧面161、162可形成的自然堆放坡度16一致或位于该自然堆放坡度16内侧,从而使得堆料层1在进风侧101与燃烧侧102之间的两侧壁面103、104与炉膛内壁相接。
该炉箅14上方的炉膛10在进风侧101与燃烧侧102之间的两相对侧内壁的侧壁面103、104的形状可根据需要设置,只要不超出自然堆放坡度16外侧,能够使得堆料层1的两相对侧面161、162与炉膛侧壁面103、104相接即可,其具体形状可不做限制。当然,本领域技术人员可以理解,炉箅14上方的炉膛在进风侧101与燃烧侧102之间的两相对侧内壁面103、104的形状并不限于图中示出的形状,还可以设置成其它多种形状,在此不再一一列举。
在本发明中,侧壁6的只要设置成能够实现仅允许向堆料层1上部供风即可,其具体的形状和位置可以不做限制。
如图1至10所示,燃烧装置100的进风侧101的侧壁6设置成,在进风侧101上部形成有允许气流通过的允流结构61,在进风侧下部形成有阻挡气流通过的阻流结构62。当 气流进入炉膛10后,位于进风侧101下部的阻流结构62阻挡气流继续前进,气流只能经过位于进风侧101上部的允流结构61进入堆料层1,从而实现了仅向堆料层1的上部供风。
在一个可选的例子中,如图1、图2所示,进风侧101侧壁6整体为阻流结构62,侧壁6的顶部与炉膛顶壁之间具有间隔63,由该间隔63形成为允流结构61。气流进入炉膛10后,只能通过位于进风侧101上部的间隔63进入堆料层1的上部。如图2所示,侧壁6的顶部可以设置成与炉膛10没有接触;或者,如图1所示,在侧壁6的顶部也可以设置成具有与炉膛10的侧壁相接的导流壁,该导流壁与炉膛的顶壁以及侧壁围合成以便于气流通过的导流通道。
在另一个可选的例子中,如图4、图5所示,进风侧101侧壁6顶部与炉膛10顶壁相接,侧壁6的中上部为允流结构61,侧壁6的下部为阻流结构62。
具体的,如图4所示,允流结构61可以为设置在进风侧101侧壁6上部的开口64,气流进入炉膛10后经由开口64进入堆料层1的上部。当然,允流结构61也并不限于图中所示的方式,只要设置成能允许气流通过即可,其具体形状可以不做限制。
在另一个可选例子中,如图5所示,允流结构61设置为在进风侧101侧壁6上部的允许气流通过的空隙结构65,气流进入炉膛10后经由空隙结构65进入堆料层1的上部。空隙结构65可以设置成栅栏结构、栅格结构或网格结构,只要能够允许气流通过即可,其具体结构可以不做限制。
在本发明中,进风侧侧壁6的形状可以根据需要设置。如图7所示,侧壁6可以为竖直侧壁,或者,侧壁6也可以设置成如图6所示的倾斜侧壁或者如图1、图2所示的弧形侧壁。当然,侧壁6也可以设置成本领域技术人员熟悉的其他形式。
在侧壁6的一个可选的例子中,如图8至图10所示,侧壁6可以由炉膛10的一部分侧壁构成。
在侧壁6的另一个可选的例子中,如图6、图7所示,侧壁6由设置于进风侧101的侧壁部件66构成。
在本发明中,在炉箅14上方承接固体燃料的堆料区域内可设有拨料机构7,通过控制拨料机构7的运动将呈燃烧状态的燃料拨松动,以保证燃料能够更充分的燃烧。其中,如图12、图13所示,拨料机构7可以由转动式拨料器7’构成,或者拨料机构7也可以由移动式拨料器7”构成。
拨料机构7大致处于固定碳的燃烧层的位置,并受控实现拨料的运动。能够将固定碳的燃烧层的燃料拨松动以增大呈燃烧状态的燃料的间隙,有利于改善固定碳的燃烧层的燃烧,同时还能有利于将燃烧层内的燃料燃尽后产生的燃灰从松动后的间隙排出。
在一个可选的例子中,如图15至23所示,拨料器7包括有拨料辊71,拨料辊71上排列有拨料翅72。
拨料翅72只要设置成能够拨松燃料即可,其具体形式可以不做限制。具体的,如图13至图16所示,拨料翅72可以由拨料棒721构成,或者,如图17至图21所示,拨料翅也可以设置成由拨料环722构成。具体在本实施例中,环状拨料翅722为U形环或半圆环,或者 相同原理及作用的其它形状拨料翅722。本发明的拨料翅72是在运动时对燃烧状态下的燃料产生扰动作用,将其拨松以增大燃料间的间隙即可,例如拨料翅还可以设置为如图22所示的拨料圈,或者设置为如图23所示的螺旋拨料条,因此拨料翅72可为实现上述功能的任何形状,不限于本发明图中所示出的具体形状。
在一个可选的例子中,如图16所示,拨料翅72沿拨料辊71轴向对称排列,如图15、图17或图18所示,当然拨料翅72也可以采用非对称排列、螺旋排列或本领域技术人员熟悉的其他排列方式。
在本发明中,如图15至23所示,拨料辊71可以由转动轴73带动其转动,构成转动式拨料器7’;或者拨料辊71也可以由移动杆74带动其移动,构成移动式拨料器7”。
在一个可选的例子中,如图13所示,转动式拨料器7’的转动轴线与主气流的流动方向大致垂直设置,通过控制拨料器7转动将燃料向燃烧侧102拨动,以保证燃料更充分的燃烧。
在一个可选的例子中,炉箅14在燃烧腔3的一侧边缘与炉膛10内壁具有间隔,转动式拨料器7’的转动轴线大致平行于该与炉膛10内壁具有间隔的炉箅14边缘。
在一个较佳的例子中,如图14所示,炉箅14上方设置有两个或两个以上的拨料机构7。
在本发明中,可在燃烧侧102的炉膛上设有点火口8。点火口8的位置设置为只要能够在堆料层1的燃烧侧102进行点火即可,其具体设置位置可不做限制。由于在堆料层的燃烧侧进行点火,点火火焰位于挥发份的流经路径上,因而堆料层在点火火焰的加热作用下首先析出的挥发份燃料析出的挥发份由主气流带着从堆料层的燃烧侧穿出,穿出后的挥发份极为容易被点火火焰点燃在经过点火火焰时被点燃;,并且由于挥发份燃烧产生了新的燃烧火焰,使得堆料层更多的燃料被加热析出挥发份,更多的挥发份参与燃烧邻近该燃烧火焰的析出挥发份后的固定碳燃料被引燃,而邻近该被引燃的固定碳燃料的固体燃料被加热析出挥发份,如此循环,堆料层可以很快被点燃,炉膛内温度被迅速升高,堆料层被快速点燃,大大的缩短了点火所需要的时间,有效克服或改善了现有燃烧炉具点火慢的问题。
在点火口8的一个可选例子中,如图1所示,点火口8设置在燃烧侧102的炉膛顶部。点火时,通过炉膛顶部的点火口8将火种送入炉膛10内,该火种从堆料层1的燃烧侧102引燃堆料层1。
在点火口8的另一个可选例子中,如图2所示,点火口8可设置在燃烧侧102的炉膛侧壁上。这样,点火时,可通过炉膛侧壁上的点火口8将火种伸入到或投到堆料层1的燃烧侧102,从而从燃烧侧点燃堆料层1。
在本发明的一个较佳例子中,如图1至图3所示,点火口8可邻近于燃烧侧102的堆料层1侧面设置。这样,投入到燃烧侧102的火种更容易接触到堆料层1的固体燃料,从而便于将堆料层1点燃。
在本发明中,进风口12可如图7、图10所示,设置于炉膛10的侧壁上,也可如图1至图6所示,设置于炉膛10的顶部。当然,并不限于图中所示的方式,只要能够从堆料层1 的进风侧101向堆料层1供风从而形成大致横向穿过堆料层的主气流即可,其具体设置位置可以不做限制。
该进风口12可以直接将风提供给堆料层1的进风侧101,从而向堆料层1的侧面向堆料层1供风。如图11所示,在一个可选的例子中,炉膛10上的进风口12与向堆料层1侧面供风的进风侧101之间可形成有进风通道121,从而通过进风通道121将风提供给进风侧101。对于这种通过进风通道送风的方式,该进料口12的设置不受限制。例如,在一个具体的例子中,图11所示,该进风口12甚至可以设置在进风侧101的炉箅下方的炉膛10的侧壁上,在进风侧101的炉箅14与炉膛10底部之间设置有阻止气流通过的阻流壁122,阻流壁122两侧与炉膛10的内壁相接,从而该阻流壁122与炉膛10内壁之间的空间形成为进风通道121。这样,从进风口12进入的风经由阻流壁122与炉膛内壁之间形成的进风通道121进入到堆料层1的一侧,从而从进风侧101向堆料层1的供风。
实验证明,采用本发明的上述侧向燃烧方式的燃烧方法和燃烧装置,挥发份几乎可以完全燃烧,燃烧效率高达到95%以上,并且没有黑烟排放,实现了挥发份含量高的固体燃料燃烧的洁净排放。本发明充分利用了重力和热量传递的特性,实现了燃料的自动有序燃烧,结构简单,制造成本低,使用方便,为挥发份高的固体燃料的推广应用提供了有利条件。
本发明的上述描述仅为示例性的属性,因此没有偏离本发明要旨的各种变形理应在本发明的范围之内。这些变形不应被视为偏离本发明的精神和范围。

Claims (29)

  1. 一种固体燃料的燃烧方法,其特征在于,在炉膛顶部设有进料口,在炉膛内对应进料口设有承接从进料口进入的燃料的炉箅,从进料口进入的固体燃料在炉箅上形成由进料口延伸到炉箅的堆料层;在该堆料层其中一侧的炉膛设有连通于尾气出口的燃烧腔,堆料层邻近燃烧腔的侧面形成为燃烧侧,其中,
    仅从与燃烧侧相对的堆料层另一侧上部向堆料层供风,点燃堆料层,风穿过堆料层,从堆料层的燃烧侧穿出,在堆料层的燃烧侧形成朝向燃烧腔的燃烧火焰,燃料随着体积变小而逐渐下移,新燃料在重力作用下自动补充到堆料层上,该新燃料被加热后析出挥发份;风带着析出的挥发份从堆料层的燃烧侧穿出并朝向燃烧腔流动,挥发份被燃烧火焰产生的热点燃,进入燃烧腔燃烧,燃烧尾气从尾气出口排出;同时,析出挥发份后的固定碳燃料被点燃,进行碳燃烧,产生新的燃烧火焰,燃尽后产生的灰烬通过堆料层底部的炉箅排出,随着燃烧的进行,新燃料不断补充至堆料层上,形成燃烧循环。
  2. 如权利要求1所述的固体燃料的燃烧方法,其特征在于,堆料层在进风侧和燃烧侧之间的两相对侧面与炉膛内壁相接,从而将进风侧与燃烧侧隔离。
  3. 如权利要求2所述的固体燃料的燃烧方法,其特征在于,炉膛的进料口与炉箅之间的位于进风侧与燃烧侧之间的该两相对侧内壁的侧壁面,与堆料层在进风侧与燃烧侧之间的两侧面可形成的自然堆放坡度一致或位于该自然堆放坡度内侧,从而使得堆料层在进风侧与燃烧侧之间的两侧面与炉膛内壁相接。
  4. 一种固体燃料的燃烧装置,包括炉膛,在炉膛上设有进风口和固体燃料进料口,其特征在于,所述进料口设在炉膛顶部,在炉膛内对应所述进料口设置有承接从进料口进入的固体燃料的炉箅,固体燃料形成从进料口延伸到炉箅上的堆料层,在该堆料层其中一侧的炉膛设有连通于尾气出口的燃烧腔,堆料层邻近燃烧腔的一侧形成为燃烧侧,与该燃烧侧相对的堆料层另一侧形成为进风侧,在进风侧具有仅允许向堆料层上部供风的侧壁,从而进入炉膛的风所产生的主气流由堆料层进风侧上部进入堆料层,穿过堆料层后从燃烧侧进入燃烧腔,最后从尾气出口排出。
  5. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述进风侧的侧壁设置成,在进风侧上部形成有允许气流通过的允流结构,在进风侧下部形成有阻挡气流通过的阻流结构。
  6. 如权利要求5所述的固体燃料的燃烧装置,其特征在于,所述进风侧侧壁整体为阻流结构,该侧壁的顶部与炉膛顶壁之间具有间隔,由该间隔形成为所述的允流结构。
  7. 如权利要求5所述的固体燃料的燃烧装置,其特征在于,所述进风侧侧壁顶部与炉膛顶壁相接,其中上部为允流结构,下部为阻流结构。
  8. 如权利要求5所述的固体燃料的燃烧装置,其特征在于,所述允流结构为设置在进风侧侧壁上部的开口或者允许气流通过的空隙结构。
  9. 如权利要求8所述的固体燃料的燃烧装置,其特征在于,所述空隙结构为栅栏结构、 栅格结构或网格结构。
  10. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述侧壁为竖直侧壁、倾斜侧壁或弧形侧壁。
  11. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述侧壁由所述炉膛的一部分侧壁构成。
  12. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述侧壁由设置于进风侧的侧壁部件构成。
  13. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,在炉箅上方承接固体燃料的堆料区域内设有拨料机构,控制拨料机构运动将呈燃烧状态的燃料拨松动。
  14. 如权利要求13所述的固体燃料的燃烧装置,其特征在于,所述拨料机构由转动式拨料器构成或由移动式拨料器构成。
  15. 如权利要求13所述的固体燃料的燃烧装置,其特征在于,所述拨料器包括有拨料辊,所述拨料辊上排列有拨料翅。
  16. 如权利要求15所述的固体燃料的燃烧装置,其特征在于,所述拨料翅由拨料棒或拨料环构成。
  17. 如权利要求16所述的固体燃料的燃烧装置,其特征在于,所述拨料翅沿拨料辊轴向对称排列、或非对称排列、或螺旋排列。
  18. 如权利要求15所述的固体燃料的燃烧装置,其特征在于,所述的拨料辊由转动轴带动其转动,构成转动式拨料器;或者所述的拨料辊由移动杆带动其移动,构成移动式拨料器。
  19. 如权利要求13所述的固体燃料的燃烧装置,其特征在于,所述转动式拨料器的转动轴线与主气流的流动方向大致垂直设置,控制拨料器转动将燃料向燃烧侧拨动。
  20. 如权利要求13所述的固体燃料的燃烧装置,其特征在于,所述炉箅在燃烧腔的一侧边缘与炉膛内壁具有间隔,所述转动式拨料器的转动轴线大致平行于该与炉膛内壁具有间隔的炉箅边缘。
  21. 如权利要求13所述的固体燃料的燃烧装置,其特征在于,所述炉箅上方设置有两个或两个以上的拨料机构。
  22. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,在燃烧侧的炉膛上设有点火口。
  23. 如权利要求22所述的固体燃料的燃烧装置,其特征在于,所述点火口设置在燃烧侧的炉膛顶部;或者所述点火口设置在燃烧侧的炉膛侧壁上。
  24. 如权利要求22所述的固体燃料的燃烧装置,其特征在于,所述点火口邻近于燃烧侧的堆料层侧面设置。
  25. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述进风口设置在进风侧的炉膛顶部。
  26. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述进风口设置在进风 侧的炉膛侧壁。
  27. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述炉膛上的进风口与炉膛进风侧之间形成有进风通道,从而通过进风通道将风提供给进风侧。
  28. 如权利要求4所述的固体燃料的燃烧装置,其特征在于,所述堆料层在进风侧和燃烧侧之间的两相对侧面与炉膛内壁相接,从而将进风侧与燃烧侧隔离。
  29. 如权利要求28所述的固体燃料的燃烧装置,其特征在于,所述炉箅上方的炉膛在进风侧与燃烧侧之间的两相对侧内壁面,与堆料层在进风侧与燃烧侧之间的两侧面可形成的自然堆放坡度一致或位于该自然堆放坡度内侧,从而使得堆料层在进风侧与燃烧侧之间的两侧壁面与炉膛内壁相接。
PCT/CN2015/078865 2014-05-23 2015-05-13 固体燃料的燃烧方法及燃烧装置 WO2015176620A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410220319.5 2014-05-23
CN201410220319.5A CN105090935A (zh) 2014-05-23 2014-05-23 固体燃料的燃烧方法及燃烧装置

Publications (1)

Publication Number Publication Date
WO2015176620A1 true WO2015176620A1 (zh) 2015-11-26

Family

ID=54553409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078865 WO2015176620A1 (zh) 2014-05-23 2015-05-13 固体燃料的燃烧方法及燃烧装置

Country Status (2)

Country Link
CN (1) CN105090935A (zh)
WO (1) WO2015176620A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315101A (zh) * 2021-12-31 2022-04-12 烟台新中萃玻璃包装有限公司 一种玻璃瓶制备设备及高强度玻璃瓶
CN115849365A (zh) * 2023-02-27 2023-03-28 沈阳铝镁设计研究院有限公司 一种具有自动点火装置的石墨化炉

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019148462A1 (zh) * 2018-02-02 2019-08-08 北京能祺热能技术有限公司 分风管架、分风管架系统及分段式燃烧炉
CN110486720A (zh) * 2019-09-18 2019-11-22 合肥工业大学 一种稻壳均匀拨料装置
CN115119517A (zh) * 2021-01-18 2022-09-27 方甡 用于固体燃料燃烧炉的分料结构及燃烧炉
CN115119516A (zh) * 2021-01-18 2022-09-27 方甡 固体燃料的燃烧组织方法及燃烧炉

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH201567A (de) * 1937-12-02 1938-12-15 Verwo Ag Feuerungsanlage zur Verbrennung von Holz, Kohle etc.
DE685682C (de) * 1937-07-29 1939-12-22 Leon Rainchon Fuellschachtfeuerung fuer kleinstueckige Brennstoffe mit rostloser Brennkammer
DE730811C (de) * 1938-07-12 1943-01-18 Buderus Eisenwerk Zentralheizungskessel fuer kleinkoernige gasreiche Brennstoffe mit aufrechtem Brennschacht von nach unten zunehmendem Querschnitt und mit einer seitlichen Zufuehrung von Verbrennungsluft
US2695010A (en) * 1950-02-02 1954-11-23 Directie Staatsmijnen Nl Furnace for burning solid fuels
CN203703948U (zh) * 2014-03-05 2014-07-09 车战斌 固体燃料的燃烧装置
CN203731383U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731385U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731384U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203744228U (zh) * 2014-03-25 2014-07-30 车战斌 固体燃料的燃烧装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201129721Y (zh) * 2007-11-23 2008-10-08 车战斌 固体燃料燃烧炉
CN202024316U (zh) * 2011-04-02 2011-11-02 朱军 一种燃料上储式气化燃烧锅炉装置
CN104976613A (zh) * 2014-04-04 2015-10-14 车战斌 固体燃料的燃烧装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE685682C (de) * 1937-07-29 1939-12-22 Leon Rainchon Fuellschachtfeuerung fuer kleinstueckige Brennstoffe mit rostloser Brennkammer
CH201567A (de) * 1937-12-02 1938-12-15 Verwo Ag Feuerungsanlage zur Verbrennung von Holz, Kohle etc.
DE730811C (de) * 1938-07-12 1943-01-18 Buderus Eisenwerk Zentralheizungskessel fuer kleinkoernige gasreiche Brennstoffe mit aufrechtem Brennschacht von nach unten zunehmendem Querschnitt und mit einer seitlichen Zufuehrung von Verbrennungsluft
US2695010A (en) * 1950-02-02 1954-11-23 Directie Staatsmijnen Nl Furnace for burning solid fuels
CN203703948U (zh) * 2014-03-05 2014-07-09 车战斌 固体燃料的燃烧装置
CN203731383U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731385U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731384U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203744228U (zh) * 2014-03-25 2014-07-30 车战斌 固体燃料的燃烧装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114315101A (zh) * 2021-12-31 2022-04-12 烟台新中萃玻璃包装有限公司 一种玻璃瓶制备设备及高强度玻璃瓶
CN114315101B (zh) * 2021-12-31 2023-09-26 烟台新中萃玻璃包装有限公司 一种玻璃瓶制备设备及高强度玻璃瓶
CN115849365A (zh) * 2023-02-27 2023-03-28 沈阳铝镁设计研究院有限公司 一种具有自动点火装置的石墨化炉
CN115849365B (zh) * 2023-02-27 2023-07-07 沈阳铝镁设计研究院有限公司 一种具有自动点火装置的石墨化炉

Also Published As

Publication number Publication date
CN105090935A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2015176620A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015149637A1 (zh) 固体燃料的燃烧装置
CN203731384U (zh) 固体燃料的燃烧装置
CN203731385U (zh) 固体燃料的燃烧装置
CN203731383U (zh) 固体燃料的燃烧装置
CN203703948U (zh) 固体燃料的燃烧装置
CN202303465U (zh) 一种高性能燃烧器
CN203744228U (zh) 固体燃料的燃烧装置
CN102628589A (zh) 一种煤粉高温低NOx的燃烧方法及装置
WO2015131786A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015113513A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015131825A1 (zh) 固体燃料的燃烧装置
WO2015144035A1 (zh) 固体燃料的燃烧装置及其进料口组件
CN202647841U (zh) 一种锅炉
WO2015176619A1 (zh) 固体燃料的燃烧方法、燃烧装置及其点火方法
CN111678126A (zh) 一种兰炭循环流化燃烧方法及系统
WO2011160299A1 (zh) 固体燃料燃烧方法、燃烧器及燃烧装置
WO2015113512A1 (zh) 固体燃料的燃烧方法及燃烧装置
CN215062010U (zh) 一种复合燃烧炉床及对应的锅炉
WO2015131820A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2016119197A1 (zh) 固体燃料的燃烧装置
WO2015131817A1 (zh) 固体燃料的燃烧方法及燃烧装置
CN102705813A (zh) 生物质燃料的锅炉燃烧方法及其锅炉
WO2016119214A1 (zh) 固体燃料的燃烧装置
WO2015144032A1 (zh) 固体燃料的燃烧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796792

Country of ref document: EP

Kind code of ref document: A1