WO2015113513A1 - 固体燃料的燃烧方法及燃烧装置 - Google Patents

固体燃料的燃烧方法及燃烧装置 Download PDF

Info

Publication number
WO2015113513A1
WO2015113513A1 PCT/CN2015/071905 CN2015071905W WO2015113513A1 WO 2015113513 A1 WO2015113513 A1 WO 2015113513A1 CN 2015071905 W CN2015071905 W CN 2015071905W WO 2015113513 A1 WO2015113513 A1 WO 2015113513A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
furnace
solid fuel
stacking
area
Prior art date
Application number
PCT/CN2015/071905
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
车战斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 车战斌 filed Critical 车战斌
Publication of WO2015113513A1 publication Critical patent/WO2015113513A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/04Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the movement of combustion air and flue gases being substantially transverse to the movement of the fuel

Definitions

  • the present invention relates to the field of solid fuel combustion, and in particular to a solid fuel combustion method and a combustion apparatus.
  • the inventors have found through careful study that the main difference between biomass burning materials and low-grade coal (such as lignite, peat, etc.) and high-grade coal is that high-grade coal has a high fixed carbon content (generally over 90%). Therefore, it is mainly fixed carbon combustion mode when burning; while biomass combustion materials and low-grade coal have relatively low fixed carbon content and relatively high volatile content (about 50%-70%).
  • the solid fuel with high volatile content mainly has two characteristics: 1) the volatile matter precipitation temperature is lower than the volatile ignition point; 2) the volatile matter has a higher ignition point than the ash melting point.
  • the current combustion furnaces are generally classified into two types: a forward combustion furnace and a reverse combustion furnace. Due to the above characteristics of biomass fuel and low-grade coal, continuous combustion can not be achieved by using these two combustion furnaces.
  • the existing combustion device generally enters the wind through the furnace, so that the solid fuel on the furnace is subjected to high-temperature combustion. Since the ash melting point is lower than the ignition point of the volatile matter and the fixed carbon, the combustion is performed in a high-temperature environment in which the carbon is burned on the furnace. After the ash is in a viscous molten state, it will paste on the furnace and cannot be normally discharged through the furnace or other ash-discharging mechanism (such as the ash stick), so that the viscous ash is mixed and burning. The fuel greatly affects the combustion efficiency of the fuel. Moreover, the viscous ash adheres to the furnace raft and blocks the air inlet passage on the furnace. After a period of time, the furnace is pasted, so that the furnace cannot continue to work.
  • the characteristic of the trans-burning furnace is that the fire outlet is lower than the furnace, so that the flame generated by the combustion passes through the furnace and then reaches the fire exit.
  • This combustion mode can be ignited by the flame when passing through the furnace as compared with the forward combustion, and the combustion efficiency is improved.
  • the high temperature flame is located in the furnace position, this also makes the temperature of the furnace position very high. In the high temperature environment, the burnt ash is in a viscous molten state, which will paste on the furnace and block the furnace. The air flow passage will soon ruin the furnace, making the furnace unable to continue working.
  • the Chinese utility model patent No. 01220213695.8 proposes a hot blast stove 900 which can be used for full combustion of various solid combustibles and multi-point air distribution.
  • the hot blast stove includes a furnace body, and an upper combustion chamber 92 and a lower combustion chamber 93 are respectively disposed in the furnace body, and an upper furnace 94 and a lower furnace are respectively disposed at the bottoms of the upper combustion chamber 92 and the lower combustion chamber 93, respectively.
  • 95 below the lower furnace 95 is a ash removal chamber 96, and a burner outlet 98 is provided on the furnace body of the lower combustion chamber 93.
  • the upper combustion chamber 92 is provided with a funnel-shaped combustion chamber 910 whose upper portion is integrated with the inner wall of the furnace, and whose lower portion is reduced in diameter.
  • the lower port of the funnel-shaped fuel tank 910 is located on the upper furnace 94, and the center of the funnel-shaped fuel tank 910
  • a cylindrical pyrotechnic passage 911 having a lower end opening is formed in the longitudinal direction, and an annular upper air passage 912 is formed between the outer wall of the lower portion of the funnel-shaped fuel storage tank 910 and the inner wall of the furnace body 91, and the outer wall of the lower cylinder of the funnel-shaped fuel storage tank 910 is evenly opened.
  • the outer wall of the furnace body 91 is provided with two air inlets 914 communicating with the annular air duct, and the air inlet 914 is connected with the air duct 915.
  • the hot blast stove trial solves the problems of forward combustion and trans combustion through the combination of positive and negative combustion.
  • the hot blast stove 900 when used, it has the following defects and cannot be continuously used:
  • the hot air furnace has a large amount of air from the lower furnace 95 at the bottom of the lower combustion chamber 93, causing the temperature of the lower furnace 95 to be too high, and some solid biomass fuels (
  • the ash melting point of the straw is relatively low, so that the hot blast stove generates a ashing phenomenon when burning the solid biomass fuel, so that the ash produced by the combustion is in a viscous molten state and is bonded to the furnace 95.
  • the gap of the lower furnace 95 is melted and the ash is not effectively discharged, thereby causing the hot blast stove to be unable to continue working.
  • the natural matching of the burning speed can be automatically and orderly fed with the combustion to ensure the continuous combustion of the fuel.
  • the present invention provides a solid fuel combustion method in which a solid fuel stacking zone is disposed in a furnace, and a combustion chamber communicating with the exhaust gas outlet is disposed outside a side wall of the stacking zone in the stacking area. a flow guiding wall is disposed on the flow path of the volatile matter between the combustion chamber, wherein
  • the solid fuel enters the stocking area from the top of the pile area, and a pile layer is formed in the pile area, and is ignited in the pile area, and air is introduced from the other side of the pile area opposite to the combustion chamber, and the wind crosses through
  • the combustion flame generated by the combustion of the lower layer of fuel is blown from the side wall adjacent to the combustion chamber toward the combustion chamber, and the upper layer of fuel is heated to precipitate volatiles, and the volatiles of the wind are taken out from the side wall adjacent to the combustion chamber.
  • the invention also provides a solid fuel combustion device, comprising a furnace, surrounded by a solid fuel storage area, the top of the solid fuel storage area has a feed inlet, and the bottom of the storage area is a furnace
  • the air inlet is provided on the furnace for supplying air to a side of the stacking area, and at least the stacking area and the side of the inlet side and the side wall of the other side have a pore structure through which the flame and the volatile matter pass, the pore structure
  • the outside of the side wall is provided with a combustion chamber which is connected to the outlet of the exhaust gas, and a volatile flow path between the stacking area and the combustion chamber is provided with a diversion wall for guiding the volatile gas flow to the lateral combustion flame, thereby
  • the main airflow generated by the wind entering the air inlet exits from the air inlet side of the stacking zone substantially transversely through the stacking zone from the side wall having the pore structure, then enters the combustion chamber through the deflector wall and is finally discharged from the exhaust gas
  • the volatile matter is precipitated in the fuel and the fixed carbon combustion is carried out in the stacking zone during the combustion process, the volume of the upper fuel is reduced after the combustion proceeds. Under the action of gravity, it automatically moves downwards and is gradually ignited by the lower combustion flame. The new fuel is automatically replenished from the feed port to the upper layer of the stacking area, and the fixed carbon combustion of the lower layer fuel provides the required heat for the evaporation of the upper fuel volatiles.
  • the replenishing speed of the new fuel depends on the burning speed of the lower layer fuel, thereby naturally achieving the matching of the upper layer volatiles precipitation and the fixed carbon fuel burning speed, and effectively solves the safety hazard problem existing in the existing hot blast stove due to the mismatch of the burning speed.
  • the volatiles of the upper fuel heated by the lower fixed carbon fuel are discharged from the side wall of the pile area 1 with the air flow, and the lateral direction generated by the combustion of the lower layer fixed carbon fuel under the guidance of the guide wall
  • the flame is burned, ignited by the burning flame, and burned into the combustion chamber, thereby achieving full combustion of the volatile matter.
  • the combustion apparatus of the present invention can automatically feed the material by gravity with the progress of combustion, the combustion furnace can be placed in an unattended operating state, which not only saves manpower, but also makes the pile layer in a dynamic stable state.
  • the fixed carbon combustion and volatile matter precipitation in the combustion chamber have been in a continuous and stable combustion state, which effectively ensures the full combustion of the volatiles, improves the combustion efficiency, and realizes the orderly controllable combustion of the combustion furnace.
  • the present invention introduces air from one side of the stacking area and a combustion chamber on the other side of the stacking area, the airflow passes through the stacking layer substantially laterally through the stacking layer, and the lower layer fixes the high temperature of carbon combustion.
  • the flame passes through the pore structure of the side wall of the stocking area, forming a high-temperature flame zone on one side of the stocking zone to provide the high-temperature environment required for ignition of the volatile matter, and the stacking zone has almost no airflow passing through the bottom furnace. There is no high temperature fire bed at the bottom furnace location.
  • the fixed carbon fuel whose volume becomes smaller gradually moves downward, and the longer the burning time, the lower the fixed carbon fuel is located, so that the lower the fixed carbon combustion layer in the lower part of the combustion chamber is, the lower the temperature is.
  • the ash produced by the combustion is also discharged into the lower ash chamber through the bottom furnace under the action of gravity under the action of the fixed carbon fuel moving downward, which effectively solves the problem of the ash existing in the existing combustion furnace and ensures the problem of the ash. Continuous combustion of the furnace.
  • the flow guiding wall is formed by a side wall of the deflector disposed in the furnace, and an air flow passage through which the airflow passes is formed at a lower end or a lower portion of the deflector.
  • the flow guiding wall may be formed by the inner wall of the furnace portion.
  • a heat exchange device may be disposed within the combustion chamber, the flow guiding wall being formed by a portion of the side walls of the heat exchange device.
  • the sidewalls having a pore structure may be integrally formed of a pore structure.
  • the sidewall having the pore structure is partially composed of a pore structure.
  • the pore structure may be a furnace structure, or a fence structure, or a grid structure, or an orifice structure or the like.
  • the bottom furnace of the stacking zone and the side having the pore structure may be formed by an L-shaped grate or a curved grate extending from the top of the grate from top to bottom and then extending laterally.
  • the bottom furnace of the stacking zone and the side wall having the aperture structure may be joined by a transverse furnace and a side furnace.
  • the projected area of the feed opening on a horizontal plane is smaller than the projected area of the bottom furnace stacking area on a horizontal plane, thereby forming a small solidity in the solid fuel in the stacking zone. Large stacking layer.
  • the feed port of the stock zone may be disposed adjacent to the side wall having the pore structure.
  • the stacking zone can be configured to be a small upper and lower shape.
  • the stacking zone may be shaped to form a natural stacking slope at least on the inlet side of the stacking zone after the solid fuel enters the stacking zone.
  • the air inlet may have a height that is higher than the upper surface of the natural stacking slope.
  • the side wall having the aperture structure may be disposed in a shape that is inclined from the top to the bottom toward the combustion chamber.
  • the side wall having the pore structure may be an inclined wall or a curved wall that is inclined from the top to the bottom toward the combustion chamber.
  • the bottom of the stacking zone and the edge of the side wall having the pore structure may be in contact with the inner wall of the furnace so as to be surrounded by the bottom furnace, the side wall having the pore structure and the inner wall of the furnace. Into the pile area described.
  • a magazine may be provided in the furnace, from which the stacking zone is formed.
  • the bin may be a squirrel cage.
  • the combustion chamber may have two or more.
  • combustion furnace of the present invention the volatile matter can be almost completely burned, the combustion efficiency of the combustion furnace is over 95%, and there is no black smoke emission, and the clean discharge of solid fuel combustion with high volatile content is realized.
  • the combustion furnace of the invention fully utilizes the characteristics of gravity and heat transfer, can not only meet the requirements of the fuel principle, realizes automatic and orderly combustion of fuel, has simple structure, low manufacturing cost, convenient use, and thus is a solid with high volatile matter.
  • the promotion and application of fuel provides favorable conditions.
  • FIG. 1 is a schematic structural view of a conventional positive and negative hot air furnace
  • Figure 2 is a schematic view showing the combustion state of the combustion apparatus of the present invention.
  • Figure 3 is a schematic view showing the structure of the stacking zone of the combustion apparatus of the present invention, which is a side wall, a bottom furnace and an inner wall of the furnace;
  • 3A is a schematic cross-sectional view of the A-A of FIG. 3;
  • 3B is a schematic view showing a c-direction structure of the deflector 2;
  • 3C is another schematic structural view of the deflector 2
  • Figure 4 is a schematic view showing the structure of the side wall B having the pore structure of Figure 3;
  • 4A is another schematic structural view of a sidewall having a pore structure
  • 4B is a schematic view showing still another structure of a side wall having a pore structure
  • Figure 5 is a schematic view showing the structure of the flow guiding wall formed by the inner wall of the furnace portion
  • Figure 6 is a schematic view showing a structure of a guide wall formed by a part of the side wall of the heat exchange device
  • Figure 7 is a schematic view showing another structure of the guide wall formed by a part of the side wall of the heat exchange device
  • Figure 8 is a schematic view showing the structure of the side wall and the bottom of the stacking area of the present invention, which is composed of an L-shaped furnace;
  • Figure 9 is a schematic view showing the structure of a combustion device having a side wall having a pore structure inclined from the top to the bottom toward the combustion chamber;
  • Figure 10 is a schematic view showing the structure of the stacking area of the present invention.
  • Figure 11 is a schematic plan view showing the structure of the stacking area of the present invention.
  • Figure 12 is a top plan view showing a combustion apparatus in which the stacking area is cylindrical;
  • Figure 13 is a schematic view showing the structure of a combustion apparatus of the present invention having two combustion chambers;
  • Figure 14 is a schematic view showing the structure of the combustion chamber of the combustion apparatus of the present invention having two fire outlets;
  • Combustion device 100 heat exchange device 200; exhaust gas discharge port 201;
  • Solid fuel 5 volatile matter 51; fixed carbon fuel 52 after volatilization; furnace ash 53.
  • the present invention provides a method for burning a solid fuel.
  • a solid fuel stacking zone 1 is disposed in the furnace 10, and a side wall 13 of the stacking zone 1 is provided outside the side wall 13 of the stacking zone 1 to be connected to the exhaust gas outlet 201.
  • the combustion chamber 3 is provided with a flow guiding wall 2 on a volatile flow path between the stocking area 1 and the combustion chamber 3.
  • the solid fuel 5 enters the stocking zone 1 from the feed port 11 at the top of the stockpile zone 1, forming a stacking layer in the stacking zone 1, and igniting in the stacking zone 1 from the combustion chamber 3
  • the other side of the stacking area 1 enters the wind, the wind mainly passes through the stacking layer, and the combustion flame generated by the combustion of the lower layer is burned from the side wall 13 adjacent to the combustion chamber 3 toward the combustion chamber 3, and the upper layer of fuel is heated and precipitated.
  • Volatile portion 51, the wind with the precipitated volatile matter 51 from the side wall 13 adjacent to the combustion chamber 3 is guided by the flow guiding wall 2 and is ignited by the combustion flame into the combustion chamber 3 through the combustion flame, and the combustion exhaust gas is exhausted from the exhaust gas.
  • the outlet 201 is discharged; at the same time, the combustion flame of the lower layer of fuel ignites the adjacent fixed carbon fuel 52 after the upper part of the volatiles, carbon combustion, and the fuel gradually moves down as the volume becomes smaller, and the ash generated after the burnout is generated. 53 is discharged through the furnace 14 at the bottom of the pile area 1, and the new fuel is automatically replenished to the upper layer of the pile area 1 by gravity to form a combustion cycle.
  • the present invention also provides a solid fuel combustion apparatus 100 using the above combustion method, the combustion apparatus 100 comprising a furnace 10 in which a solid fuel storage area 1 is enclosed.
  • the top of the solid fuel storage zone 1 has a feed port 11 and the bottom of the stack zone 1 is provided by a furnace 14
  • the air inlet 12 is provided on the furnace 10 for supplying air to a side of the stacking area 1.
  • At least the stacking area 1 and the inlet side and the other side wall 13 have a pore structure through which the flame and the volatiles pass.
  • the outer side wall 13 of the aperture structure 131 is provided with a combustion chamber 3 which is connected to the exhaust gas outlet 201, and the volatile matter 51 flowing between the stacking area 1 and the combustion chamber 3 is provided with a volatile gas flow path.
  • the flow guiding wall 2 of the flame is burned laterally. As shown by the arrow in Fig. 2, the main airflow generated by the wind entering from the air inlet 12 passes through the diversion flow from the air inlet side of the stacking zone 1 substantially transversely through the stacking zone 1 from the side wall 13 having the pore structure 131. The lower or lower portion of the wall 2 enters the combustion chamber 2 and is finally discharged from the exhaust gas outlet 201.
  • the main airflow generated by the wind entering from the air inlet 12 of the present invention refers to the main airflow generated by the wind, which passes through the pore structure of the side wall 13 substantially transversely from the air inlet side of the stacking zone 1 through the stacking zone 1
  • the wind entering from the air inlet 12 during combustion mainly produces airflow transversely through the stacking zone 1, and there is almost no airflow through the bottom of the stacking furnace 14 at the bottom of the stacking zone 1 or for some alternative examples (eg, as shown in Figure 10)
  • there may be a weak air flow passing through the bottom furnace as long as the weak air flow does not affect the main air flow direction, and the effect of the combustion apparatus of the present invention is not affected. That is, the combustion apparatus of the present invention is in the range of the present invention as long as the main airflow direction is entered from the air inlet side of the stacking zone 1 and the lateral direction is substantially transversely formed through the stack layer 1 during the combustion process. .
  • the volume of the upper layer fuel is released after the volatile matter 51 is precipitated as the combustion proceeds.
  • the new fuel is automatically replenished from the feed port 11 to the upper layer of the stacking area 1, and the fixed carbon combustion of the lower layer fuel provides for the precipitation of the upper fuel volatiles.
  • the required heat, the replenishing speed of the new fuel depends on the burning speed of the lower layer fuel, thereby naturally achieving the matching of the upper layer volatiles precipitation and the burning speed of the fixed carbon fuel 52, effectively solving the existing hot blast stove due to the mismatch of the burning speed.
  • the volatile matter 51 heated and precipitated by the lower layer fixed carbon fuel 52 flows along the gas flow toward the combustion chamber 3, and the lower fixed carbon fuel 52 is burned to generate a flame which is also driven by the air flow.
  • the combustion is performed toward the combustion chamber 3, and when the volatile matter 51 passes through the combustion flame under the guidance of the flow guiding wall 2, it is ignited by the high temperature generated by the combustion flame, thereby achieving sufficient combustion of the volatile matter.
  • the combustion device of the present invention can automatically feed the gas by gravity with the progress of combustion, the combustion device can be placed in an unattended operation state, which not only saves labor, but also because the pile layer is dynamic.
  • the steady state makes the fixed carbon combustion and volatile matter precipitation in the combustion chamber always in a continuous and stable combustion state, which effectively ensures the full combustion of the volatiles, improves the combustion efficiency, and realizes the orderly controllable combustion of the combustion device.
  • the present invention introduces air from one side of the stacking area 1 and provides a combustion chamber 3 on the other side of the stockpile area 1, the main air flow passes through the stacking layer substantially laterally through the stacking layer, and the lower layer is fixed.
  • the high-temperature flame of carbon combustion passes through the pore structure 131 of the side wall 13 of the pile material zone 1, and a high-temperature flame zone is formed on one side of the pile material zone 1 to provide a high-temperature environment required for ignition of the volatile matter, thereby forming lateral combustion. the way.
  • the flow guiding wall 2 may be provided in various forms as long as the airflow with the volatile matter 51 can be guided to the position of the lateral combustion flame generated by the combustion of the lower layer fuel.
  • the flow guiding wall 2 may be formed by a side wall of the deflector 22 disposed in the furnace 10.
  • the baffle 22 can be integrally formed by a structure that blocks airflow.
  • an airflow passage 23 is formed at a lower end of the deflector 2, and a volatile gas flow passes through the airflow passage 2 to pass through the combustion.
  • the flame enters the combustion chamber 3 for combustion.
  • the baffle 22 can also be constructed with a structure for blocking airflow, and a lower portion is formed with a pore structure, and the airflow enters the combustion chamber 3 through the airflow passage 23 at the lower portion of the deflector 22.
  • the flow guiding wall 2 may be formed by a portion of the inner wall of the furnace.
  • a heat exchange device 200 may be disposed in the combustion chamber 3, and the flow guide wall 2 may be formed by a portion of the side wall of the heat exchange device 200.
  • a feed hopper 15 may be disposed on the feed port 11 to facilitate feeding to the stacking zone 1.
  • the pore structure 131 of the side wall 13 may be a furnace structure, or a fence structure, or a grid structure, or an orifice structure, etc., as long as the pores can pass the flame and the volatile matter.
  • the specific structure can be made without limitation.
  • the sidewall 13 having the pore structure 131 may be integrally formed of a pore structure.
  • the side wall 13 having the aperture structure 131 may also be partially constructed of a void structure.
  • the bottom furnace 14 of the stacking zone 1 and the side wall 13 having the aperture structure 131 may extend from the top of the furnace 10 from top to bottom and then laterally. It is composed of an extended curved furnace or an L-shaped furnace. As shown in Fig. 9, in an alternative example, the bottom furnace 14 of the stacking zone 1 and the side wall 13 having the aperture structure 131 may also be joined by a transverse furnace and a side furnace.
  • the stacking zone 1 can be enclosed in a plurality of ways, as long as a pile layer can be formed in the furnace 10, and the fuel entering from the top feed port 11 during the combustion can be automatically passed by gravity as the combustion proceeds. It can be added to the stacking area, and the specific enclosing manner and structure of the stacking area can be omitted.
  • the bottom furnace 14 of the stacking zone 1 and the edge of the side wall 13 having the pore structure can be combined with The inner walls of the furnace 10 are joined, as shown in Fig. 4, in this example, the stacking area 1 is located on one side of the furnace 10. Thereby, the stacking zone 1 is enclosed by the bottom furnace 14, the side wall 13 of the pore structure and the inner wall of the furnace 10.
  • the stacking zone 1 is surrounded by the upper side wall of the furnace 10, the inner wall of the top of the furnace, the side wall 13 having the pore structure, and the bottom furnace 14.
  • the stacking zone 1 may also be located at a corner of the furnace 10, and is surrounded by a side wall 13 having a pore structure, a bottom furnace 14 and a corner portion of the furnace 10 to form a stacking zone 1.
  • a magazine can be provided in the furnace 10 from which the stacking zone 1 is constructed.
  • the bin-type stacking zone 1 has a pore structure at least on the inlet side and a side adjacent to the combustion chamber 3 to form a lateral combustion mode by the flow of air transversely through the stack.
  • the bin may be a squirrel-cage bin, the entire side wall of the bin being constituted by a pore structure, so that the wind entering from the air inlet 12 can be formed substantially transversely through the stack.
  • Zone 1 exits from the side adjacent to the combustion chamber 3 and forms a lateral combustion mode during combustion.
  • the cross-sectional shape of the grate 10 can be set to various desired shapes as needed, such as a square as shown in FIG. 3A, an elliptical shape as shown in FIG. 12, and a circular shape as shown in FIG. Triangles, etc.
  • the shape of the furnace 10 is not limited to the shape shown in the drawings, as long as it can be formed
  • the required stacking area 1 can be used, and its specific shape is not limited.
  • the projected area of the feed opening 11 in the horizontal plane may be less than the projected area of the bottom stack 14 in the horizontal plane.
  • a stack of upper and lower bulk layers can be formed in the stacking zone.
  • the stacking method can make the airflow of the upper fuel layer through the thickness smaller than the thickness of the lower layer of the stacking layer.
  • the lower layer of the fixed carbon fuel has a larger area, which is favorable for the full combustion of the fixed carbon fuel, and the upper layer The thickness of the fuel layer is small, facilitating the rapid passage of the gas stream to bring the volatiles 51 to the combustion chamber on the side of the stacking area for combustion.
  • the feed port 12 at the top of the stacking zone 1 can be set as needed, as long as it can be fed to the stacking zone 1 through the feed port 12 during the combustion process, and its specific shape can be constructed without limit.
  • the feed port 12 of the stacking zone 1 may be disposed adjacent to the side wall 13 having a pore structure such that solid fuel After entering the stocking area 1, as shown in Fig. 2, a stacking slope can be formed on the air inlet side, thereby entering the air in the cold material area, which is favorable for the full combustion of the fuel.
  • the pile material area 1 can be arranged in a shape that is large and small, so that after the solid fuel enters the pile material area 1, a pile layer of a small upper and a large size can be formed, which is advantageous for fixing the carbon fuel. And the full combustion of the volatiles.
  • the stacking zone 1 may be shaped such that, after the solid fuel enters the stacking zone 1, at least on the inlet side of the stacking zone 1 is formed with a natural stacking The slope is 16 to facilitate full combustion of the fuel.
  • the height of the air inlet 12 may be higher than the upper surface of the natural stacking slope 16 so that wind entering the air inlet 12 may pass through the natural stacking slope 16 laterally through the stack layer, facilitating the replenishment of the stack.
  • the volatiles produced by the heating of the new fuel in the feed zone are brought to the combustion chamber 3 on the other side and ignited and burned under the action of a fixed carbon combustion flame.
  • the air inlet 12 may be provided on the side wall of the furnace 10 as shown in FIG. 2, or may be provided on the top of the furnace 10 as shown in FIG. 14, as long as it can supply air to one side of the stacking area 1.
  • the main airflow is formed substantially transversely through the stack layer, and the specific setting position thereof may be not limited.
  • the side wall 13 having the pore structure may be provided in various shapes as needed, for example, as shown in Fig. 8, and as shown in Fig. 3 and Fig. 6 and Fig. 9. As shown in FIG. 6 and FIG. 9, in the present invention, in an alternative example, the sidewall 13 having a pore structure may be disposed in a shape inclined from the top to the bottom toward the combustion chamber 3, and the structure may make the laterally venting volatile gas flow closer to the combustion flame, which is advantageous for Full combustion of volatiles.
  • the side wall 13 having the aperture structure may be an inclined wall (as shown in Figure 9) or a curved wall (shown in Figure 6) that is inclined upwardly and downwardly toward the combustion chamber 3.
  • the combustion chamber 3 or the combustion chamber 3 may be provided with a heat exchange device 200 to utilize the heat generated by the combustion chamber 3.
  • the heat exchange device 200 may be a heat exchanger for heating, a crucible, a cooker, a water jacket, or the like.
  • FIG. 14 shows an example in which the combustion chamber 3 has a plurality of firing ports 31.
  • the plurality of fire outlets 31 can be used for anecdote, or partially for heating, and partly for anecdotes.
  • the combustion chamber 3 may be provided with two or more as needed to suit various actual heat exchange requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

一种固体燃料的燃烧方法及燃烧装置(100)。该燃烧方法是在炉膛(10)内围成有堆料区(1),从与燃烧腔(3)相对的堆料区(1)另一侧进风,下层燃料燃烧产生燃烧火焰,上层燃料被加热析出挥发份,风带着析出的挥发份(51)被导流壁导(2)引而经由燃烧火焰进入燃烧腔(3)燃烧。

Description

固体燃料的燃烧方法及燃烧装置 技术领域
本发明涉及固体燃料燃烧领域,具体地讲,有关于一种固体燃料燃烧方法及燃烧装置。
背景技术
从燃料分类角度来看,固体燃料因资源丰富、使用安全,是现代人类使用最为广泛的一种燃烧材料,特别是煤。另外,随着以煤为代表的矿物质固体燃料的需求量的增大、资源的减少,以及全球新能源运动的展开,可再生的生物质燃烧材料,如秸杆、稻草、木材、木屑、枯枝等得到人们的高度重视。
目前使用生物质燃烧材料的主要方式直接点燃燃烧,这种方式燃烧效率非常低,并产生大量的黑烟,造成环境污染。
一直以来,很多人都试图采用现有的燃煤炉具来燃烧生物质燃料。由于生物质燃烧材料与固定碳含量较高的矿物质燃烧材料的燃烧特性具有比较大的区别,现有的燃烧炉具并不能适应由可再生的生物质材料构成的固体燃料的燃烧,造成燃烧效率低,存在排放污染等问题,从而制约了生物质燃烧材料的应用。另外,现在大量使用的煤都是固定碳含量比较高的高级煤,例如无烟煤、烟煤等,一些低级煤,例如褐煤、泥煤等,利用现有的燃烧装置,也同样存在燃烧效率低,冒黑烟等问题,因此目前还没有得到广泛应用。
本发明人在仔细研究后发现,生物质燃烧材料和低级煤(例如褐煤、泥煤等)与高级煤的相比,主要的区别是,高级煤的固定碳含量很高(一般在90%以上),因此在燃烧时主要是固定碳燃烧方式;而生物质燃烧材料和低级煤的固定碳含量比较低,而挥发份含量比较高(大概在50%-70%)。这种挥发份含量高的固体燃料,主要存在两个特点:1)挥发份析出温度低于挥发份燃点;2)挥发份的燃点高于灰熔点。
目前的燃烧炉一般分为正向燃烧炉和反式燃烧炉两种,由于生物质燃料和低级煤存在上述特点,采用这两种燃烧炉都无法实现持续高效燃烧。
在采用现有的正向燃烧炉燃烧时,存在如下问题:
1)燃烧效率低。在燃烧时,由于挥发份的析出温度低于挥发份的燃点,挥发份首先析出并以黑烟的方式排放到空气中,剩余的固定碳部分再进行燃烧,这样只利用了其中的固定碳燃烧产生的热量,不但燃烧效率比较低,而且存在排放污染。
2)不能持续燃烧。现有的燃烧装置一般是通过炉篦进风,使得炉篦上的固体燃料进行高温燃烧,由于灰熔点低于挥发份和固定碳的燃点,在炉箅上固定碳燃烧的高温环境下,燃烧后的炉灰处于呈粘稠状的熔融状态,会糊在炉箅上,无法通过炉箅或者其它排灰机构(例如拨灰棒)正常排出,使得该粘稠状的炉灰混合在正在燃烧的燃料中,极大地影响了燃料的燃烧效率。并且,该粘稠状的炉灰粘在炉箅子上,堵塞了炉箅上的进风通道,一段时间后会将炉箅糊死,使得燃烧炉无法继续工作。
反式燃烧炉的特点是,出火口低于炉箅,使燃烧产生的火焰反向通过炉箅后再到达出火口。这种燃烧方式与正向燃烧相比,析出的挥发份可以在通过炉箅时被火焰点燃,燃烧效率得到了提高。然而由于高温火焰位于炉箅位置,这也使得炉箅位置的温度非常高,在高温环境下,燃烧后的炉灰处于呈粘稠状的熔融状态,会糊在炉箅上,堵塞了炉箅的气流通道,很快就会将炉箅糊死,使得燃烧炉无法继续工作。
专利号为01220213695.8的中国实用新型专利提出了一种可用于各种固体可燃物充分燃烧的多点配风正反烧充分燃烧的热风炉900。如图2所示,该热风炉包括炉体,炉体内分别设有上燃烧室92和下燃烧室93,上燃烧室92和下燃烧室93的底部分别设有上炉箅94和下炉箅95,下炉箅95的下方为除灰室96,下燃烧室93的炉体上设有出烟口98。上燃烧室92内设有上部与炉体内壁为一体,下部缩径为圆筒的漏斗状燃烧仓910,漏斗状燃料仓910的下端口位于上炉箅94上,漏斗状燃料仓910的中心处纵向设有下端开口的圆筒状烟火通道911,漏斗状燃料仓910下部的外壁与炉体91的内壁之间形成有环形上风道912,漏斗状燃料仓910下部圆筒的外壁上均匀开设有多个进风孔913,炉体91的外壁上开设有两个与环形风道相连通的进风口914,进风口914处连接有风筒915。
该热风炉试途通过正反烧结合来解决正向燃烧和反式燃烧存在的问题,然而该热风炉900在使用时,存在有如下缺陷而无法持续使用:
1)由于上燃烧室92与下燃烧室93之间通过上炉箅94分隔,在燃烧过程中,上燃烧室92内不完全燃烧的燃料需要落入到下燃烧室93继续燃烧,如果落入下燃烧室93内不完全燃烧的燃料的燃烧速度不能匹配上通过上炉箅94向下燃烧室93落料的速度,下燃烧室93内堆的不完全燃烧的燃料越来越多,一段时间后,会将下燃烧室93内的出烟口98堵上,不但无法继续燃烧,而且燃烧室内的燃气会从进风口冒出,可能会造成安全事故。然而由于不同燃料的燃烧速度存在差别,在实际使用过程中,很难保证上下燃烧室的燃烧速度完全匹配,使该热风炉使用时存在不安全隐患。
2)燃料在上燃烧室92中进行燃烧,火焰需要穿过上炉箅进入到下燃烧室,从而使得上炉箅位置的温度仍然很高,上炉箅上仍然存在熔灰问题,燃烧一段时间后,上炉箅熔融的炉灰将上炉箅上的燃料粘结在一起,无法通过上炉箅向下燃烧室落料,燃料只能在上燃烧室燃烧,上炉箅上灰烬最终完全将上炉箅糊住,从而造成热风炉无法持续工作。
3)如图2所示,该热风炉为提高燃烧效率,从下燃烧室93底部的下炉箅95下风大量配风,造成下炉箅95位置的温度过高,而一些固体生物质燃料(如秸秆)的灰熔点比较低,从而使得该热风炉在燃烧固体生物质燃料时产生融灰现象,使得燃烧产生的灰份处于粘稠的熔融状态,而粘结下炉箅95上。这样在该热风炉工作一段时间后,下炉箅95的缝隙被融灰糊上,无法有效排灰,从而造成该热风炉无法持续工作。
因此,有必要提供一种适合挥发份含量高的固体燃料(例如生物质燃料)燃烧的固体燃料燃烧炉,来克服现有燃烧炉存在的上述缺陷,实现固体燃料的有序可控燃烧。
发明内容
本发明的目的在于,提供一种固体燃料燃烧方法及燃烧装置,不但能够使固体燃料中的挥发份充分燃烧,而且解决了熔灰问题,并在燃烧过程中,实现 燃烧速度的自然匹配,可随着燃烧的进行自动有序进料,保证了燃料的持续燃烧。
为实现上述发明目的本发明提供了一种固体燃料燃烧方法,在炉膛内设有固体燃料堆料区,在堆料区的一侧壁外设有连通于尾气出口的燃烧腔,在堆料区与燃烧室之间的挥发份流经路径上设有导流壁,其中,
使固体燃料从堆料区顶部进入堆料区内,在堆料区内形成堆料层,在该堆料区点火,从与燃烧腔相对的堆料区另一侧进风,风横向穿过堆料层,下层燃料燃烧产生的燃烧火焰从邻近燃烧腔的侧壁穿出朝向燃烧腔燃烧,上层燃料被加热析出挥发份,风带着析出的挥发份从邻近燃烧腔的侧壁穿出后被导流壁导引而经由燃烧火焰,被燃烧火焰点燃进入燃烧腔燃烧,燃烧尾气从尾气出口排出;同时下层燃料的燃烧火焰将相邻的上层析出挥发份后的固定碳燃料点燃,进行碳燃烧,燃料随着体积变小而逐渐下移,燃尽后产生的灰烬通过堆料区底部炉箅排出,新燃料在重力作用下自动补充到堆料区上层,形成燃烧循环。
本发明还提供了一种固体燃料的燃烧装置,包括炉膛,在炉膛内围成有固体燃料堆料区,该固体燃料堆料区的顶部具有进料口,该堆料区的底部由炉箅构成,在炉膛上设有向堆料区一侧面供风的进风口,至少该堆料区与进风侧相对另一侧侧壁具有供火焰和挥发份穿过的孔隙结构,该具有孔隙结构的侧壁外侧设有导通于尾气出口的燃烧腔,在堆料区与燃烧室之间的挥发份流经路径上设有将挥发份气流引向侧向燃烧火焰的导流壁,从而从进风口进入的风产生的主气流从堆料区的进风侧大致横向穿过堆料区从具有孔隙结构的侧壁穿出后经由导流壁进入燃烧腔最后从尾气出口排出。
采用本发明的上述燃烧方法和燃烧装置,由于在燃烧过程中,在燃料析出挥发份和进行固定碳燃烧都在堆料区,随着燃烧的进行,上层燃料析出挥发份后体积变小,在重力作用下自动向下移动,并逐渐被下层燃烧火焰点燃,新燃料自动从进料口补入到堆料区上层,下层燃料的固定碳燃烧又为上层燃料挥发份析出提供所需的热量,新燃料的补充速度取决于下层燃料的燃烧速度,从而自然实现了上层挥发份析出与固定碳燃料燃烧速度的匹配,有效解决了现有热风炉因燃烧速度不匹配而存在的安全隐患问题。
同时,在燃烧过程中,上层燃料被下层固定碳燃料加热析出的挥发份随着气流从堆料区1的侧壁穿出,在导流壁的引导下经由下层固定碳燃料燃烧产生的侧向燃烧火焰,被燃烧火焰点燃,进入燃烧腔燃烧,从而实现了挥发份的充分燃烧。
并且,由于本发明的燃烧装置可以随着燃烧的进行利用重力自动有序进料,可以使燃烧炉处于无人值守的运行状态,不但节省了人力,而且由于堆料层处于动态稳定状态,使得燃烧室内的固定碳燃烧和挥发份析出一直处于连续稳定的燃烧状态下,有效保证了挥发份的充分燃烧,提高了燃烧效率,实现了燃烧炉的有序可控燃烧。
另外,由于本发明从堆料区的一侧进风并在堆料区的另一侧设置燃烧腔,从而使得气流大致横向穿过堆料层从另一侧穿出,下层固定碳燃烧的高温火焰从堆料区侧壁的孔隙结构中穿出,在堆料区的一侧形成高温火焰区,为挥发份提供点燃所需的高温环境,而堆料区在底部炉箅位置几乎没有气流通过,在底部炉箅位置不存在高温火床。并且,随着燃烧的进行,体积变小的固定碳燃料逐步下移,燃烧时间越长的固定碳燃料位于越向下的位置,使得燃烧室下部的固定碳燃烧层越向下温度越低,燃烧所产生的炉灰也在固定碳燃料向下移动过程中,在重力作用下通过底部炉箅被排入到下部的灰室中,有效解决了现有燃烧炉存在的熔灰问题,保证了燃烧炉的持续稳定燃烧。
在本发明的一个可选例子中,所述导流壁由设置于炉膛内的导流板侧壁构成,在该导流板的下端或下部形成有供气流通过的气流通道。
在本发明的另一个可选例子中,所述导流壁可由炉膛部分内壁构成。
在本发明的另一个可选例子中,在燃烧腔内可设置有换热装置,导流壁由换热装置的部分侧壁构成。
在本发明的一个可选例子中,所述具有孔隙结构的侧壁可整体由孔隙结构构成。在另一个可选的例子中,具有孔隙结构的侧壁局部由孔隙结构构成。
在本发明的一个可选例子中,所述的孔隙结构可为炉箅结构,或栅栏结构,或栅格结构,或孔板结构等。
在本发明的一个可选例子中,所述堆料区的底部炉箅和具有孔隙结构的侧 壁可由从炉膛顶部由上向下延伸一段后再横向延伸的L形炉箅或弧形炉箅构成。
在本发明的另一个可选例子中,所述堆料区的底部炉箅和具有孔隙结构的侧壁可由一横向炉箅和一侧向炉箅连接而成。
在本发明堆料区的一个可选例子中,所述进料口在水平面上的投影面积小于底部炉箅堆料区域在水平面上的投影面积,从而在固体燃料在堆料区形成上小下大的堆料层。
在本发明的一个可选例子中,堆料区的进料口可邻近于具有孔隙结构的侧壁设置。
在本发明的一个可选例子中,堆料区可设置成上小下大的形状。
在本发明的一个可选例子中,所述堆料区的形状可设置成,在固体燃料进入堆料区后,至少在堆料区的进风侧形成有自然堆放坡度。
在本发明的一个可选例子中,所述进风口的高度可高于自然堆放坡度的上表面。
在本发明的一个可选例子中,所述具有孔隙结构的侧壁可设置成由上向下朝向燃烧腔方向倾斜的形状。在该可选例子中,具有孔隙结构的侧壁可为由上向下朝向燃烧腔方向倾斜的倾斜壁或弧形壁。
在本发明的一个可选例子中,所述堆料区底部炉箅和具有孔隙结构的侧壁边缘可与炉膛内壁相接,从而由底部炉箅、具有孔隙结构的侧壁和炉膛内壁共同围成所述的堆料区。
在本发明的一个可选例子中,可在炉膛内设置料箱,由该料箱构成所述的堆料区。所述的料箱可为鼠笼式料箱。
在一个可选的例子中,所述的燃烧室可具有两个或两个以上。
实验证明,采用本发明的上述燃烧炉,挥发份几乎可以被完全燃烧,燃烧炉的燃烧效率达到95%以上,并且没有黑烟排放,实现了挥发份含量高的固体燃料燃烧的洁净排放。本发明的燃烧炉充分利用了重力和热量传递的特性,不但能够符合燃料原理的要求,实现了燃料的自动有序燃烧,而且结构简单,制造成本低,使用方便,从而为挥发份高的固体燃料的推广应用提供了有利条件。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有的正反烧热风炉的结构示意图;
图2为本发明燃烧装置的燃烧状态示意图;
图3为本发明的燃烧装置的堆料区为侧壁、底部炉箅和炉膛内壁共同围成的结构示意图;
图3A为图3的A-A剖视结构示意图;
图3B为导流板2的c向结构示意图;
图3C为导流板2的另一种结构示意图;
图4为图3的具有孔隙结构的侧壁B向结构示意图;
图4A为具有孔隙结构的侧壁另一种结构示意图;
图4B为具有孔隙结构的侧壁的再一种结构示意图;
图5为导流壁由炉膛部分内壁构成的结构示意图;
图6为导流壁由换热装置的部分侧壁构成的一种结构示意图;
图7为导流壁由换热装置的部分侧壁构成的另一种结构示意图;
图8为本发明的堆料区侧壁与底部由L形炉箅构成的结构示意图;
图9为具有孔隙结构的侧壁由上向下朝向燃烧腔方向倾斜的燃烧装置结构示意图;
图10为本发明的堆料区由料箱构成的结构示意图;
图11为本发明的堆料区由料箱构成俯视结构示意图;
图12为本发明的堆料区为圆筒状的燃烧装置俯视结构示意图;
图13为本发明的燃烧装置具有两个燃烧腔的结构示意图;
图14为本发明的燃烧装置的燃烧腔具有两个出火口的结构示意图;
图号说明:
燃烧装置100;换热装置200;尾气排出口201;
炉膛10;
堆料区1;进料口11;进风口12;孔隙结构的侧壁13;孔隙结构131;底部炉箅14;进料斗15;自然堆放坡度16;
导流壁2;导流板22;气流通道23;
燃烧腔3;出火口31;
灰室4;
固体燃料5;挥发份51;析出挥发份后的固定碳燃料52;炉灰53。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种固体燃料的燃烧方法,如图2所示,在炉膛10内设有固体燃料堆料区1,在堆料区1的一侧壁13外设有连通于尾气出口201的燃烧腔3,在堆料区1与燃烧室3之间的挥发份流经路径上设有导流壁2。在燃烧时,固体燃料5从堆料区1顶部的进料口11进入堆料区1内,在堆料区1内形成堆料层,在该堆料区1内点火,从与燃烧腔3相对的堆料区1另一侧进风,风主要横向穿过堆料层,下层燃料燃烧产生的燃烧火焰从邻近燃烧腔3的侧壁13穿出朝向燃烧腔3燃烧,上层燃料被加热析出挥发份51,风带着析出的挥发份51从邻近燃烧腔3的侧壁13穿出后被导流壁2导引而经由燃烧火焰,被燃烧火焰点燃进入燃烧腔3燃烧,燃烧尾气从尾气出口201排出;同时下层燃料的燃烧火焰将相邻的上层析出挥发份后的固定碳燃料52点燃,进行碳燃烧,燃料随着体积变小而逐渐下移,燃尽后产生的炉灰53通过堆料区1底部炉箅14排出,新燃料在重力作用下自动补充到堆料区1上层,形成燃烧循环。
如图2至图14所示,本发明还提供了一种采用上述燃烧方法的固体燃料的燃烧装置100,该燃烧装置100包括炉膛10,在炉膛10内围成有固体燃料堆料区1,该固体燃料堆料区1的顶部具有进料口11,该堆料区1的底部由炉箅14 构成,在炉膛10上设有向堆料区1一侧面供风的进风口12,至少该堆料区1与进风侧相对另一侧侧壁13具有供火焰和挥发份穿过的孔隙结构131,该具有孔隙结构131侧壁13外侧设有导通于尾气出口201的燃烧腔3,在堆料区1与燃烧室3之间的挥发份51流经路径上设有将挥发份气流引向侧向燃烧火焰的导流壁2。如图2箭头所示,从进风口12进入的风产生的主气流从堆料区1的进风侧大致横向穿过堆料区1从具有孔隙结构131的侧壁13穿出后经由导流壁2的下端或下部进入燃烧腔2最后从尾气出口201排出。
本发明从进风口12进入的风产生的主气流是指风产生的主要的气流,从堆料区1的进风侧大致横向穿过堆料区1从侧壁13的孔隙结构穿出,在燃烧过程中从进风口12中进入的风主要产生横向穿过堆料区1的气流,堆料区1底部炉箅14位置几乎没有气流穿过或者对于一些可选的例子(例如图10所示的例子)可能会有微弱的气流从底部炉箅穿过,只要该微弱的气流不影响主要气流方向,就不会对本发明燃烧装置的效果产生影响。即本发明燃烧装置只要能够在燃烧过程中主要气流方向是从堆料区1进风侧进入并从另一侧穿出大致横向穿过堆料层1形成侧向燃烧方式即属于本发明的范围。
采用本发明的上述燃烧方法和燃烧装置100,由于在燃烧过程中,燃料析出挥发份51和进行固定碳燃烧都在堆料区1,随着燃烧的进行,上层燃料析出挥发份51后体积变小,在重力作用下自动向下移动,并逐渐被下层燃烧火焰点燃,新燃料自动从进料口11补入到堆料区1上层,下层燃料的固定碳燃烧又为上层燃料挥发份析出提供所需的热量,新燃料的补充速度取决于下层燃料的燃烧速度,从而自然实现了上层挥发份析出与固定碳燃料52燃烧速度的匹配,有效解决了现有热风炉因燃烧速度不匹配而存在的安全隐患问题。
同时,如图2所示,在燃烧过程中,上层燃料被下层固定碳燃料52加热析出的挥发份51随着气流朝向燃烧腔3流动,而下层固定碳燃料52燃烧产生火焰也在气流带动下朝向燃烧腔3燃烧,在挥发份51在导流壁2的引导下经过燃烧火焰时,被燃烧火焰产生的高温点燃,从而实现了挥发份的充分燃烧。并且,由于本发明的燃烧装置可以随着燃烧的进行利用重力自动有序进料,可以使燃烧装置处于无人值守的运行状态,不但节省了人力,而且由于堆料层处于动态 稳定状态,使得燃烧室内的固定碳燃烧和挥发份析出一直处于连续稳定的燃烧状态下,有效保证了挥发份的充分燃烧,提高了燃烧效率,实现了燃烧装置的有序可控燃烧。
另外,由于本发明从堆料区1的一侧进风并在堆料区1的另一侧设置燃烧腔3,从而使得主气流大致横向穿过堆料层从另一侧穿出,下层固定碳燃烧的高温火焰从堆料区1侧壁13的孔隙结构131中穿出,在堆料区1的一侧形成高温火焰区,为挥发份提供点燃所需的高温环境,从而形成侧向燃烧方式。这种燃烧方式,由于燃烧火焰主要集中在堆料区1的侧面,在底部炉箅14位置不存在高温火床;并且随着燃烧的进行,体积变小的固定碳燃料逐步下移,燃烧时间越长的固定碳燃料位于越向下的位置,使得堆料区1下部的固定碳燃烧层越向下温度越低,燃烧所产生的炉灰53也在固定碳燃料52向下移动过程中,在重力作用下通过底部炉箅14被排入到下部的灰室4中,从而有效避免了在炉箅位置熔灰而造成的糊炉箅等问题,保证了燃烧装置的持续稳定燃烧。
在本发明中,导流壁2可设置成各种形式,只要能够将带有挥发份51的气流导引到下层燃料燃烧产生的侧向燃烧火焰位置即可。
如图2、图3、图3B、图3A所示,在本发明的一个可选例子中,该导流壁2可由设置于炉膛10内的导流板22的侧壁构成。如图3B所示,在该导流板22可整体由阻挡气流的结构构成,如图2所示,在该导流板2的下端形成气流通道23,挥发份气流经由气流通道2穿过燃烧火焰进入燃烧腔3燃烧。如图3C所示,该导流板22也可上部为阻挡气流的结构构成,下部形成有孔隙结构,气流在导流板22下部穿过气流通道23进入燃烧腔3。
如图5所示,在本发明的另一个可选例子中,该导流壁2可由炉膛的部分内壁构成。
如图6、图7所示,在本发明的另一个可选例子中,在燃烧腔3内可设置有换热装置200,导流壁2由换热装置200的部分侧壁构成。
如图2所示,在进料口11上可设置有进料斗15,以利于向堆料区1进料。
在本发明的可选例子中,侧壁13的孔隙结构131可为炉箅结构,或栅栏结构,或栅格结构,或孔板结构等,只要具有孔隙能够使火焰和挥发份通过即可, 其具体结构可不做限制。
如图4A所示,在一个可选的例子中,具有孔隙结构131的侧壁13可整体由孔隙结构构成。在另一个可选的例子中,如图4、图B所示,具有孔隙结构131的侧壁13也可局部由孔隙结构构成。
如图3、图8所示,在一个可选例子中,所述堆料区1的底部炉箅14和具有孔隙结构131的侧壁13可由从炉膛10顶部由上向下延伸一段后再横向延伸弧形炉箅或L形炉箅构成。如图9所示,在一个可选的例子中,堆料区1的底部炉箅14和具有孔隙结构131的侧壁13也可由一横向炉箅和一侧向炉箅连接而成。
在本发明中,堆料区1可以采用多种方式围成,只要能够在炉膛10内形成堆料层,在燃烧过程中从顶部进料口11进入的燃料能够随着燃烧的进行通过重力自动补入到该堆料区中即可,该堆料区的具体围成方式和结构可不做限制。
如图3、图3A、图13、图14所示,在本发明的堆料区1的一个可选例子中,堆料区1的底部炉箅14和具有孔隙结构的侧壁13边缘可与炉膛10内壁相接,如图4所示,在该例子中,堆料区1位于炉膛10的一侧。从而由底部炉箅14、孔隙结构的侧壁13和炉膛10内壁共同围成所述的堆料区1。也可如图13所示,由炉膛10的上部侧壁、炉膛顶部内壁和具有孔隙结构的侧壁13、底部炉箅14一起围成堆料区1。如图14所示,该堆料区1也可位于炉膛10的一角,由具有孔隙结构的侧壁13、底部炉箅14和炉膛10的角部内部一起围成堆料区1。
如图10、图11所示,在本发明的堆料区1的一个可选例子中,可在炉膛10内设置料箱,由该料箱构成所述的堆料区1。该该料箱式堆料区1至少在进风侧和邻近于燃烧腔3的一侧具有孔隙结构,以形成横向穿过堆料层的气流形成侧向燃烧方式。在一个可选的具体例子中,所述的料箱可为鼠笼式料箱,该料箱全部侧壁都由孔隙结构构成,从而从进风口12进入的风能够形成大致横向穿过堆料区1从邻近燃烧腔3的一侧穿出,在燃烧过程中形成侧向燃烧方式。
在本发明中,炉膛10的截面形状可以根据需要设置成各种所需的形状,例如图3A所示的方形,图12所示的椭圆形,图13所示的圆形,图14所示的三角形等。当然,炉膛10的形状,并不局限于图中所示的形状,只要能够形成所 需的堆料区1即可,其具体形状也不做限制。
在本发明堆料区1的一个可选例子中,进料口11在水平面上的投影面积可小于底部炉箅14堆料区域在水平面上的投影面积。在固体燃料进入到堆料区1后,如图2所示,可以在堆料区内形成上小下大的堆料层。这种堆料方式,可以使得上部燃料层的气流穿过厚度小于下层堆料层的厚度,在燃烧过程中,下层固定碳燃料有较大的面积,有利于固定碳燃料的充分燃烧,而上层燃料层的厚度较小,有利于气流的快速穿过将挥发份51带到堆料区侧面的燃烧腔进行燃烧。
在本发明中,堆料区1顶部的进料口12可根据需要设置,只要能够在燃烧过程中能够通过该进料口12向堆料区1补料即可,其具体形状可结构可不做限制。在本发明的一个可选具体例子中,如图2、图3、图8、图9所示,堆料区1的进料口12可邻近于具有孔隙结构的侧壁13设置,这样固体燃料在进入到堆料区1后,如图2所示,可以在进风侧形成堆放坡度,从而在冷料区进风,有利于燃料的充分燃烧。
如图9、图10所示,堆料区1可设置成上小下大的形状,从而在固体燃料进入到堆料区1后可以形成上小下大的堆料层,有利于固定碳燃料和挥发份的充分燃烧。
在本发明的一个可选例子中,如图2所示,堆料区1的形状可设置成,在固体燃料进入堆料区1后,至少在堆料区1的进风侧形成有自然堆放坡度16,以有利于燃料的充分燃烧。在一个可选例子中,进风口12的高度可高于自然堆放坡度16的上表面,从而对进风口12进入的风可以经过自然堆放坡度16横向穿过堆料层,有利于将补入堆料区的新燃料被加热后产生的挥发份带到另一侧的燃烧腔3在固定碳燃烧火焰的作用下被点燃燃烧。
在本发明中,进风口12可如图2所示设置于炉膛10的侧壁上,也可如图14所示,设置于炉膛10的顶部,只要能够向堆料区1的一侧供风并形成大致横向穿过堆料层的主气流即可,其具体设置位置可以不做限制。
在本发明中,具有孔隙结构的侧壁13可以根据需要设置成各种形状,例如图8所示、图3所示、图6、图9所示的形状。如图6、图9所示,在本发明的 一个可选例子中,该具有孔隙结构的侧壁13可设置成由上向下朝向燃烧腔3方向倾斜的形状,该种结构可以使得侧向穿出的挥发份气流比较接近燃烧火焰,有利于挥发份的充分燃烧。在该可选例子中,具有孔隙结构的侧壁13可为由上向下朝向燃烧腔3方向倾斜的倾斜壁(如图9所示)或弧形壁(如图6所示)。
在本发明中,燃烧腔3上或燃烧腔3可设置有换热装置200,以利用燃烧腔3燃烧产生的热。该换热装置200可以是供暖的换热器、炕、炊具、水套等。图14示出了燃烧腔3具有多个出火口31的例子。该多个出火口31可都用于炊事,也可以部分用于供暖,部分用于炊事。
在本发明中,如图13所示,根据需要,燃烧腔3可以设置有2个或两个以上,以适用于各种实际换热需求。
实验证明,采用本发明的上述侧向燃烧方式的燃烧方法和燃烧装置,挥发份几乎可以完全燃烧,燃烧效率高达到95%以上,并且没有黑烟排放,实现了挥发份含量高的固体燃料燃烧的洁净排放。本发明充分利用了重力和热量传递的特性,实现了燃料的自动有序燃烧,结构简单,制造成本低,使用方便,为挥发份高的固体燃料的推广应用提供了有利条件。
本发明的上述描述仅为示例性的属性,因此没有偏离本发明要旨的各种变形理应在本发明的范围之内。这些变形不应被视为偏离本发明的精神和范围。

Claims (21)

  1. 一种固体燃料的燃烧方法,其特征在于,在炉膛内设有固体燃料堆料区,在堆料区的一侧壁外设有连通于尾气出口的燃烧腔,在堆料区与燃烧室之间的挥发份流经路径上设有导流壁,其中,
    使固体燃料从堆料区顶部进入堆料区内,在堆料区内形成堆料层,在该堆料区点火,从与燃烧腔相对的堆料区另一侧进风,风横向穿过堆料层,下层燃料燃烧产生的燃烧火焰从邻近燃烧腔的侧壁穿出朝向燃烧腔燃烧,上层燃料被加热析出挥发份,风带着析出的挥发份从邻近燃烧腔的侧壁穿出后被导流壁导引而经由燃烧火焰,进入燃烧腔燃烧,燃烧尾气从尾气出口排出;同时下层燃料的燃烧火焰将相邻的上层析出挥发份后的固定碳燃料点燃,进行碳燃烧,燃料随着体积变小而逐渐下移,燃尽后产生的灰烬通过堆料区底部炉箅排出,新燃料在重力作用下自动补充到堆料区上层,形成燃烧循环。
  2. 一种固体燃料的燃烧装置,其特征在于,包括炉膛,在炉膛内围成有固体燃料堆料区,该固体燃料堆料区的顶部具有进料口,该堆料区的底部由炉箅构成,在炉膛上设有向堆料区一侧面供风的进风口,至少该堆料区的与进风侧相对另一侧侧壁具有供火焰和挥发份穿过的孔隙结构,该具有孔隙结构的侧壁外侧设有导通于尾气出口的燃烧腔,在堆料区与燃烧室之间的挥发份流经路径上设有将挥发份气流引向侧向燃烧火焰的导流壁,从而从进风口进入的风所产生的主气流从堆料区的进风侧大致横向穿过堆料区从具有孔隙结构的侧壁穿出后经由导流壁下端或下部进入燃烧腔,最后从尾气出口排出。
  3. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述导流壁由设置于炉膛内的导流板侧壁构成,在该导流板的下端或下部形成有供气流通过的气流通道。
  4. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述导流壁由炉膛部分内壁构成。
  5. 如权利要求2所述的固体燃料燃烧装置,其特征在于,在燃烧腔内设置有换热装置,导流壁由换热装置的部分侧壁构成。
  6. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述对应燃烧腔 的堆料区侧壁整体由孔隙结构构成。
  7. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述对应燃烧腔的堆料区侧壁局部由孔隙结构构成。
  8. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述孔隙结构为炉箅结构,或栅栏结构,或栅格结构,或孔板结构。
  9. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述堆料区的底部炉箅和具有孔隙结构的侧壁由从炉膛顶部由上向下延伸一段后再横向延伸的L形炉箅或弧形炉箅构成。
  10. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述堆料区的底部炉箅和具有孔隙结构的侧壁由一横向炉箅和一侧向炉箅连接而成。
  11. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述进料口在水平面上的投影面积小于底部炉箅堆料区域在水平面上的投影面积,从而在固体燃料在堆料区形成上小下大的堆料层。
  12. 如权利要求11所述的固体燃料燃烧装置,其特征在于,所述堆料区的进料口邻近于具有孔隙结构的侧壁设置。
  13. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述堆料区设置成上小下大的形状。
  14. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述堆料区的形状设置成,在固体燃料进入堆料区后,至少在堆料区的进风侧形成有自然堆放坡度。
  15. 如权利要求14所述的固体燃料燃烧装置,其特征在于,所述进风口的高度高于自然堆放坡度的上表面。
  16. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述具有孔隙结构的侧壁设置成由上向下朝向燃烧腔方向倾斜的形状。
  17. 如权利要求16所述的固体燃料燃烧装置,其特征在于,所述具有孔隙结构的侧壁为由上向下朝向燃烧腔方向倾斜的倾斜壁或弧形壁。
  18. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述堆料区底部炉箅和具有孔隙结构的侧壁边缘与炉膛内壁相接,从而由底部炉箅、具有孔 隙结构的侧壁和炉膛内壁共同围成所述的堆料区。
  19. 如权利要求2所述的固体燃料燃烧装置,其特征在于,在炉膛内设置料箱,由该料箱构成所述的堆料区。
  20. 如权利要求19所述的固体燃料燃烧装置,其特征在于,所述的料箱为鼠笼式料箱。
  21. 如权利要求2所述的固体燃料燃烧装置,其特征在于,所述的燃烧室具有两个或两个以上。
PCT/CN2015/071905 2014-01-30 2015-01-30 固体燃料的燃烧方法及燃烧装置 WO2015113513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410049649 2014-01-30
CN201410049649.2 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015113513A1 true WO2015113513A1 (zh) 2015-08-06

Family

ID=53756240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071905 WO2015113513A1 (zh) 2014-01-30 2015-01-30 固体燃料的燃烧方法及燃烧装置

Country Status (1)

Country Link
WO (1) WO2015113513A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640975C1 (ru) * 2016-09-06 2018-01-12 Александр Борисович Липилин Способ сжигания твёрдого биотоплива и устройство для его осуществления
CN111650244A (zh) * 2020-06-15 2020-09-11 中国石油大学(华东) 一种优化甲烷水合物燃烧效率的实验测试系统及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1643026A (en) * 1921-05-09 1927-09-20 Iron Products Corp Heater
US2695010A (en) * 1950-02-02 1954-11-23 Directie Staatsmijnen Nl Furnace for burning solid fuels
JPS5833004A (ja) * 1981-08-21 1983-02-26 Kobe Steel Ltd 固形燃料用燃焼装置
CN203731384U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731383U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1643026A (en) * 1921-05-09 1927-09-20 Iron Products Corp Heater
US2695010A (en) * 1950-02-02 1954-11-23 Directie Staatsmijnen Nl Furnace for burning solid fuels
JPS5833004A (ja) * 1981-08-21 1983-02-26 Kobe Steel Ltd 固形燃料用燃焼装置
CN203731384U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置
CN203731383U (zh) * 2014-03-05 2014-07-23 车战斌 固体燃料的燃烧装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2640975C1 (ru) * 2016-09-06 2018-01-12 Александр Борисович Липилин Способ сжигания твёрдого биотоплива и устройство для его осуществления
CN111650244A (zh) * 2020-06-15 2020-09-11 中国石油大学(华东) 一种优化甲烷水合物燃烧效率的实验测试系统及测试方法
CN111650244B (zh) * 2020-06-15 2023-03-10 中国石油大学(华东) 一种优化甲烷水合物燃烧效率的实验测试系统及测试方法

Similar Documents

Publication Publication Date Title
WO2015149637A1 (zh) 固体燃料的燃烧装置
CN203731384U (zh) 固体燃料的燃烧装置
WO2015176620A1 (zh) 固体燃料的燃烧方法及燃烧装置
CN203731385U (zh) 固体燃料的燃烧装置
CN104791775A (zh) 燃烧器底置的立式煤粉锅炉
CN203731383U (zh) 固体燃料的燃烧装置
CN203703948U (zh) 固体燃料的燃烧装置
CN202303465U (zh) 一种高性能燃烧器
CN203744228U (zh) 固体燃料的燃烧装置
JP2017015268A (ja) バーナ
WO2015131786A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015113513A1 (zh) 固体燃料的燃烧方法及燃烧装置
RU2348861C1 (ru) Вихревая топка для сжигания твердого топлива
WO2015131825A1 (zh) 固体燃料的燃烧装置
WO2015113512A1 (zh) 固体燃料的燃烧方法及燃烧装置
EP2906873B1 (en) Method and device for intensifying the burning of solid fuels in a fireplace
WO2015144035A1 (zh) 固体燃料的燃烧装置及其进料口组件
WO2015131817A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015131820A1 (zh) 固体燃料的燃烧方法及燃烧装置
WO2015144032A1 (zh) 固体燃料的燃烧装置
WO2016119214A1 (zh) 固体燃料的燃烧装置
WO2015176619A1 (zh) 固体燃料的燃烧方法、燃烧装置及其点火方法
KR101738592B1 (ko) 펠릿 난로
RU2253799C1 (ru) Вихревая топка
WO2016183847A1 (zh) 固体燃料的燃烧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15742664

Country of ref document: EP

Kind code of ref document: A1