WO2011160299A1 - 固体燃料燃烧方法、燃烧器及燃烧装置 - Google Patents

固体燃料燃烧方法、燃烧器及燃烧装置 Download PDF

Info

Publication number
WO2011160299A1
WO2011160299A1 PCT/CN2010/074341 CN2010074341W WO2011160299A1 WO 2011160299 A1 WO2011160299 A1 WO 2011160299A1 CN 2010074341 W CN2010074341 W CN 2010074341W WO 2011160299 A1 WO2011160299 A1 WO 2011160299A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
solid fuel
burner
combustion chamber
ash
Prior art date
Application number
PCT/CN2010/074341
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
Che Zhanbin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Che Zhanbin filed Critical Che Zhanbin
Priority to PCT/CN2010/074341 priority Critical patent/WO2011160299A1/zh
Priority to CN201080067607.1A priority patent/CN102985755B/zh
Publication of WO2011160299A1 publication Critical patent/WO2011160299A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B40/00Combustion apparatus with driven means for feeding fuel into the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/442Waste feed arrangements
    • F23G5/444Waste feed arrangements for solid waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/10Under-feed arrangements
    • F23K3/14Under-feed arrangements feeding by screw
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2205/00Waste feed arrangements
    • F23G2205/12Waste feed arrangements using conveyors
    • F23G2205/121Screw conveyor

Definitions

  • This invention relates to the field of solid fuel combustion, and more particularly to a solid fuel combustion process, a combustor and a combustion apparatus. Background technique
  • solid fuels are the most widely used combustion materials, especially coal, because of their abundant resources and safe use.
  • renewable biomass burning materials such as straw, straw, wood, wood chips, The dead branches and the like are once again highly valued by people.
  • the problems of transportation and storage of biomass burning materials have been solved, and the use of biomass burning materials has been widely promoted in a short period of time.
  • biomass combustion materials have a large difference in combustion characteristics from mineral combustion materials with a high fixed carbon content
  • existing burners and stoves cannot be adapted to solid fuels composed of renewable biomass materials. Combustion, which limits the application of biomass burning materials.
  • the coals currently used in large quantities are high-grade coals with relatively high fixed carbon content, such as anthracite, bituminous coal, etc.
  • Some low-grade coals, such as lignite, peat, etc. have high fixed carbon content and high volatile content.
  • the combustion device has a relatively low combustion efficiency and has not yet been widely used.
  • the inventors have found through careful study that the main problem in the combustion of biomass burning materials and low-grade coal (such as lignite, peat, etc.) in existing combustion devices is that the ash melting point of these fuels is relatively low, due to the fixed carbon The ignition point is relatively high, and it can be fully burned at high temperature. Therefore, when the fuel is ignited for high-temperature combustion, the combustion temperature is higher than the ash melting point, so that the burned ash is in a viscous molten state, and cannot pass the furnace of the existing combustion device.
  • the sputum or other ash discharge mechanism (such as the ash stick) is normally discharged, so that the viscous ash is mixed in the burning fuel, which greatly affects the fuel combustion efficiency.
  • the ash is not discharged for a long time, new fuels are added less and less, and even The situation of fire extinguishing.
  • the viscous ash adheres to the furnace raft, blocking the air inlet passage on the furnace, and greatly affects the combustion of the fuel.
  • the object of the present invention is to provide a solid fuel combustion method, a burner and a combustion device, which can be applied to conventional solid fuel combustion, and can be applied to fuel combustion with low ash melting point, effective ash discharge, and improved fuel. Combustion efficiency.
  • the burner is arranged such that: the combustion chamber of the burner is inclined toward one side with respect to the vertical direction, so that the outer interface of the combustion chamber of the combustion combustion chamber forms a volatile deposition zone, a fixed carbon combustion zone, and an ash from top to bottom. The area, thereby burning the solid fuel.
  • a solid fuel burner comprising:
  • combustion chamber formed into a tapered shape and having a large end opening and a small end opening, wherein the small end opening is formed as a feed port, and the large end opening is formed as a combustion port; wherein the combustion chamber is inclined toward a side with respect to a vertical direction , the outer surface of the stack of the burner inlet region is formed from the top to the bottom to form a volatile deposition zone, a fixed carbon combustion zone, and an ash zone;
  • a feeding mechanism connected to the inlet of the combustion chamber for actively delivering fuel into the combustion chamber; and an air inlet formed on a side wall of the combustion chamber for blowing air into the combustion chamber.
  • the present invention also provides a combustion apparatus using the above burner, comprising a furnace and the burner, the large end opening of the combustion chamber of the burner extending into the furnace.
  • the material since the combustion chamber of the burner is inclined toward one side with respect to the vertical direction, during the combustion process, the material will form a natural pile slope in the combustion port area, and the slope of the natural pile slope is called It is the external interface of the pile according to the invention.
  • the solid fuel entering the combustion chamber is formed from the top to the bottom in the combustion port region as a volatile deposition zone, a fixed carbon combustion zone and an ash zone.
  • a volatile deposition zone After depositing volatiles in the volatile portion of the combustion port area, Under the action of gravity, it enters the fixed carbon combustion area to continue combustion. After burning, it becomes ash and falls into the lower ash area.
  • the ash of the ash area is pushed out of the combustion chamber from the front end of the combustion chamber.
  • the new fuel is continuously delivered to the rear end of the combustion chamber, and the ash of the combustion chamber is discharged at the front end of the combustion chamber, so that the ash is naturally realized during the combustion process, effectively avoiding the mixing of the ash and the fuel to affect the fuel.
  • the situation of burning is continuously delivered to the rear end of the combustion chamber, and the ash of the combustion chamber is discharged at the front end of the combustion chamber, so that the ash is naturally realized during the combustion process, effectively avoiding the mixing of the ash and the fuel to affect the fuel.
  • the situation of burning is
  • the fixed carbon combustion zone provides sufficient heat for the upper volatile matter precipitation zone, so that the evolved volatiles can be ignited and burned at high temperatures, effectively improving the combustion efficiency;
  • the temperature of the lower ash area is relatively low, so that the temperature at the bottom of the combustion chamber is lower than the ash melting point, and there is no problem of melting at the bottom of the combustion chamber, so that no viscous ash adheres to the bottom of the combustion chamber, which not only greatly improves The smoothness of the ash discharge and the longevity of the combustion chamber.
  • the solid fuel combustion method, the burner and the combustion device of the invention not only do not require a furnace and an ashing device, but also have a simpler structure and smooth ash discharge, thereby effectively solving the existing combustion device row.
  • the problems caused by poor ash increase the combustion efficiency; thus, the solid fuel combustion method, burner and combustion apparatus of the present invention are applicable not only to existing conventional solid fuels but also to fuels having low ash melting point (for example, biomass) Fuel, low-grade coal, etc.) provide favorable conditions for the promotion and application of fuels with low ash melting point.
  • Figure 1 is a schematic view showing the structure of a burner of the present invention
  • FIG. 1A is a schematic view showing the structure of another burner of the present invention.
  • FIG. 2 is a schematic structural view of still another burner of the present invention.
  • Figure 3 is a schematic view showing the structure of the combustion chamber of the present invention.
  • Figure 4 is a schematic cross-sectional view of the A-A of Figure 3;
  • Figure 5 is a schematic cross-sectional view of the B-B of Figure 3;
  • Figure 6 is a schematic view showing another structure of a combustion chamber of the present invention
  • Figure 7 is a schematic view showing the structure of a combustion chamber with a fire collecting cylinder according to the present invention
  • Figure 8 is a schematic structural view of a combustion apparatus of the present invention.
  • FIG. 9 is a schematic structural view of another combustion apparatus of the present invention.
  • Figure 10 is a schematic view showing the structure of a burner having a combustion head of the present invention.
  • Figure 11 is a schematic view showing another structure of a combustion chamber having a combustion head according to the present invention.
  • Figure 12 is a schematic view showing the structure of a burner having a movable plate of the present invention. detailed description
  • the invention provides a solid fuel combustion method, the method comprising:
  • the burner is arranged such that: the combustion chamber of the burner is inclined toward one side with respect to the vertical direction, so that the outer interface of the combustion chamber of the combustion combustion chamber forms a volatile deposition zone, a fixed carbon combustion zone, and an ash from top to bottom. The area, thereby burning the solid fuel.
  • the solid fuel entering the burner forms a natural peak slope under the action of gravity after reaching the combustion port region, during the combustion process.
  • the fuel will flow from top to bottom along the slope of the pile.
  • a volatile deposition zone will be formed from the top to the bottom on the slope of the pile slope. Fix the char combustion zone and the ash zone.
  • the solid fuel in the volatile portion of the upper portion of the outer interface of the stack flows to the fixed carbon combustion region and continues to burn under the action of gravity, and after burning out The flow to the lower ash area, followed by the subsequent advancement of the solid fuel, the ash of the ash area is discharged from the burner front end, the bottom of the burner.
  • the fixed carbon combustion region provides sufficient heat for the upper volatile portion to be ignited at a high temperature due to the characteristic of the upward combustion of the flame. Combustion, effectively improving the combustion efficiency; while the temperature of the ash area in the lower part of the fixed carbon combustion area is relatively low, so that the temperature at the bottom of the combustion chamber is relatively low, It can be lower than the ash melting point, and there is no problem of melting at the bottom of the combustion chamber. Therefore, there is no viscous ash adhering to the bottom of the combustion chamber for the fuel with low ash melting point, which greatly improves the smoothness of ash discharge, and the ash melting point.
  • solid fuels such as biomass fuels, low-grade media, etc.
  • the blowing position to the burner, the amount of blown air, and the feed rate of the solid fuel are controlled so that the ash of the ash region can be discharged as the solid fuel is fed.
  • the solid fuel can be supplied into the burner by means of active feeding.
  • the present invention provides a solid fuel burner 10 employing the above combustion method, the burner comprising a combustion chamber 1 and a feed mechanism 2 for delivering fuel into the combustion chamber 1.
  • the combustion chamber 1 is formed into a tapered shape having a small end and a small end, and has a large end opening and a small end opening.
  • the small end opening is formed as a feed port 12, the large end opening is formed as a combustion port 11, and the feeding mechanism 2 is connected.
  • an air inlet 13 is provided in the side wall of the combustion chamber 1, so that air is blown into the combustion chamber 1 through the air inlet 13.
  • the burner 10 is disposed such that the combustion chamber 1 is inclined toward one side with respect to the vertical direction, so that the stacking outer interface 110 of the burner port 11 region of the burner 10 forms a volatile portion 1111 and a fixed carbon from the top to the bottom.
  • the fuel port region of the combustion chamber 1 forms a natural peak slope under the action of gravity, and when the combustion is performed,
  • the characteristic of the combustion of the fire upward is that the temperature of the upper portion of the solid combustion in the combustion port region is relatively high, and is formed into the volatile portion deposition region 1101, and the volatile matter is precipitated, and the volatile portion is mixed with the air and then carried out at a high temperature above the volatile matter precipitation region 1101.
  • the fuel in the zone 1101 enters the fixed char combustion zone 1102 and continues to burn, after the fixed char combustion zone 1102 is burned.
  • the resulting ash is gradually flowed to the lower ash area, and finally pushed out of the combustion chamber 1 from the front end of the combustion port 11 of the combustion chamber 1, so that the new fuel is continuously delivered to the rear end of the combustion chamber 1, the combustion chamber 1
  • the ash that has been burned at the front end is continuously discharged, thereby burning
  • the ash discharge is also automatically realized.
  • the solid fuel burner of the present invention since the burned soot is pushed out of the combustion chamber 1 from the front end of the combustion chamber 1 as the new fuel is propelled, during the feeding and burning process Naturally, the ash discharge is realized. Compared with the existing combustion device, the furnace and the ash-discharging device are not required, the structure is simpler, and the ash discharge is smooth, which effectively solves many problems caused by poor ash discharge of the existing combustion device. , improving the combustion efficiency; and for the solid fuel of ash melting point (for example, biomass fuel, low-grade coal, etc.), since the problem of ash discharge is solved, the burner 1 of the present invention can be used for full combustion, thereby forming the ash melting point.
  • the solid fuel of ash melting point for example, biomass fuel, low-grade coal, etc.
  • the large-scale deployment of low solid fuels provides favorable conditions.
  • the temperature at the bottom of the combustion chamber 1 is lowered, so that the temperature at the bottom of the combustion chamber 1 is lower than the ash melting point, and there is no problem of melting at the bottom of the combustion chamber 1, so that there is no viscous furnace.
  • the ash adheres to the bottom of the combustion chamber 1, which not only greatly improves the smoothness of the ash discharge, but also prolongs the service life of the combustion chamber 1.
  • the combustion chamber 1 in order to enable the outer surface of the stack of the combustion chamber region of the combustion chamber 1 to form the volatile portion deposition portion 1101, the fixed carbon combustion region 1102, and the ash region 1103 from the top to the bottom during the combustion process, it is necessary to appropriately set the combustion.
  • the combustion chamber 1 can be placed in a suitable position by setting the angular extent of the bottom edge of the combustion chamber 1 relative to the horizontal.
  • the angle a of the bottom edge of the combustion chamber 1 inclined up and down with respect to the horizontal direction can be set according to different solid fuel types, particle diameters, feed speeds, and the like.
  • the angle a can be set to a negative value, that is, the bottom edge is formed in a downwardly inclined state, so that the ash which can be agglomerated can be pushed. It is smoothly discharged from the combustion chamber 1 by gravity.
  • the absolute value of the angle of the negative value cannot be set too large, so that the fuel is not completely burned and is discharged with the ash under the action of gravity.
  • the angle is positive, that is, when the bottom edge of the combustion chamber 1 is inclined upward, the value thereof is not too large.
  • the gradient of the pile peak is relatively slow, and it is difficult for the fuel to form a flow along the outer interface 110 of the pile during the combustion process.
  • a volatile matter precipitation zone, a fixed carbon combustion zone and an ash zone are formed on the external interface 110 of the pile, and the ash is also flowed back into the combustion chamber 1 by gravity, which not only fails to achieve smooth ash discharge, but also shadows solid
  • the designer of the present invention has found through long-term studies that the angle a of the bottom edge of the combustion chamber 1 with respect to the horizontal direction is in the range of 15 to 15 degrees, which is suitable.
  • the angle range can be selected from 15 degrees to 15 degrees. Any suitable value within the degree, such as 15 degrees, 12 degrees, 10 degrees, 7 degrees, 5 degrees, 0 degrees, one 2 degrees, one 5 degrees, one 8 degrees, one 10 degrees, one 15 degrees, and the like.
  • the angle range is preferably between 10 and 5 degrees, and may be, for example, 5 degrees, 3.5 degrees, 2 degrees, 1.5 degrees, 0 degrees, -2 degrees, -5 degrees, -10 or the like.
  • FIG. 1 shows a specific example in which the angle a of the bottom side of the combustion chamber 1 with respect to the horizontal direction is a positive value, that is, the bottom edge of the combustion chamber 1 is inclined upward;
  • FIG. 1A shows that the bottom edge of the combustion chamber 1 is opposite.
  • FIG. 2 shows that the angle a of the bottom edge of the combustion chamber 1 with respect to the horizontal direction is a negative value, that is, the bottom edge of the combustion chamber 1 is inclined downward with respect to the horizontal direction.
  • a specific example Those skilled in the art will appreciate that the above list of angles and the accompanying drawings are merely exemplary in nature, and the angle a is not limited to the above examples.
  • the angle of the top side of the combustion chamber 1 of the combustor 10 with respect to the horizontal direction is & ⁇ ⁇ 90 °.
  • a movable plate 18 which is reciprocally slidable along the bottom of the combustion chamber 1 may be provided at the bottom of the combustion chamber 1 of the burner 10.
  • the movable panel 18 can be reciprocally slid at a timing as required, so that the ash at the front end of the combustion chamber 1 can be discharged more smoothly.
  • the arrangement of the movable panel 18 improves the smoothness of the ash discharge, and also the fixed installation position, for example, the angle a of the bottom edge of the combustion chamber 1 with respect to the horizontal direction is fixed, even if there are some types, sizes, and the like of the solid fuel. The change does not have too much effect on the ash discharge, so that the burner 10 can be used in a wider range when the setting position of the burner 10 is constant.
  • the combustion ports 11 may be disposed to be vertically arranged with respect to the horizontal direction, or may be disposed to be inclined with respect to the horizontal direction.
  • the burner port 11 can preferably be arranged such that its inclination is adapted to the peak slope of the solid fuel.
  • the movable plate 18 may be provided with a plurality of one-way ejector protrusions 181 for pushing the ash toward the outside of the combustion port 11 of the combustion chamber 1, so that the movable plate 18 is moved outward.
  • the ash can be effectively pushed up, so that the ash can be discharged more smoothly, and when the movable plate 18 moves backwards or moves inward, no ash or other combustibles are brought into the combustion chamber 1.
  • the one-way ejector protrusion 181 may be specifically configured such that the one-way ejector protrusion 181 has an ejector surface 1811 on the side toward the combustion port 11 to push the ash when moving outward.
  • the top is for the discharge of the ash; on the side facing the feed port 12, it slides over the slope 1812 so that the ash or other burning material can slide over the slope when the movable plate 18 moves inward without being carried To the inside of the combustion chamber 1.
  • the movable panel 18 can be driven to reciprocate by a drive unit 19.
  • the driving device may be any device that can reciprocate the movable plate 18, and may be a piston cylinder driving device, such as a cylinder driving, a hydraulic cylinder driving, or the like, or a four-bar linkage mechanism, a rack and pinion mechanism, or the like, as long as The movable plate 18 can be reciprocated, and the specific structure thereof is not limited herein.
  • Fig. 12 shows an example in which a four-bar linkage mechanism is employed as the drive mechanism.
  • the air inlet 13 may be only the upper half of the side wall of the combustion chamber 1. However, it is not limited to being disposed in the upper half, and the air inlet may be disposed in the lower half of the side wall of the combustion chamber 1 after the movable panel 18 is provided.
  • An air guiding groove 14 is opened from the air inlet 13 along the inner side of the side wall of the combustion chamber 1 to effectively guide the air entering from the air inlet 13 to a proper position of the combustion chamber 1, thereby improving combustion efficiency.
  • the air guiding groove 13 can communicate with the combustion port 11 along the side wall of the combustion chamber 1.
  • the air guiding groove 13 can also face the combustion port 11 along the side wall of the combustion chamber 1. Extend a distance from below.
  • the specific manner of the air guiding groove 14 can be set according to the peak slope of the solid fuel stack, as long as the wind entering from the air inlet 13 can be guided to a suitable position of the combustion chamber 1, the specific manner is not limited herein. .
  • a cylindrical fire collecting cylinder 15 is connected to the combustion port 11 of the combustion chamber 1, and a lower end portion of the collecting cylinder 15 is connected to an upper portion of the combustion port 11. Together, another portion forms a ash discharge port 16 with the lower portion of the combustion port 11, so that during the combustion process, the flame above the volatile matter precipitation region 1 is ejected through the concentrating cylinder 15, and the burned ash is discharged through the ash discharge port 16 discharge.
  • a hollow combustion head 5 may be connected to the combustion port 11, and a lower end portion of the combustion head 5 is connected to the upper portion of the combustion port 11, and the other portion is connected to the combustion port.
  • a ash discharge port 16 is formed between the lower portions of the portions 11, so that during the combustion process, the flame is ejected through the combustion head 5, and the burned ash is discharged through the ash discharge port 16.
  • a hollow combustion head 5 is connected to the upper port of the collecting cylinder 15 of the solid fuel burner 10, and the flame is ejected from the combustion head 5 through the collecting cylinder 15.
  • the upper port 51 of the combustion head 5 is provided with a sparking device 52 and a temperature measuring element 53 .
  • the sparking device 52 and the temperature measuring component 53 are connected to a controller 54 .
  • the controller 54 controls the ignition device 52 to ignite, thereby igniting the volatilization of the position of the port 51 on the combustion head 5.
  • the volatiles are fully burned, which not only further improves the combustion efficiency, but also effectively reduces the emission pollution.
  • the combustion head 5 can be formed with a plurality of downwardly inclined through holes 55 formed in the side wall, and the light high-quality volatiles having a low ignition point precipitated during the combustion of the solid fuel can pass through the through holes 55. Out, and fully burned, other volatiles that have not escaped can rise to the position of the upper port 51 of the combustion head 5 and are ignited by the ignition device 52, and then fully burned. Further, the burner head 5 can be formed into a taper having a small upper end and a large lower end to facilitate the full combustion of the volatile matter and further improve the combustion efficiency.
  • the sparking device 52 may be, for example, a sparking device used in a gas cooker. Of course, other sparking devices may be used as long as the ignition can be controlled by the control 54. The specific structure is not the invention of the present invention. The main points are not detailed here.
  • the feeding mechanism 2 of the burner 10 of the present invention may be a screw conveying mechanism including a feeding cylinder 21 and a hopper provided on the feeding port of the feeding cylinder 21. 22.
  • the conveying screw 24 and the like driven by the motor 23, the solid fuel is fed from the hopper 22, and then enters into the feeding cylinder 21 through the feeding port, and is conveyed by the conveying screw 24 to the feeding port 12 of the combustion chamber 1, thereby continuously
  • the combustion chamber 1 supplies fuel.
  • the feeding mechanism 2 is a screw conveying mechanism
  • the feeding mechanism 2 is not limited to a screw conveying mechanism, and may be another feeding mechanism such as a piston.
  • the feeding mechanism and the like can be transported to the combustion chamber as long as they can be transported, and will not be described in detail herein.
  • the inner side of the bottom side of the feed cylinder 21 of the feeding mechanism 2 and the inner bottom side of the combustion chamber 1 can be disposed on the same extended straight line, thereby feeding
  • the mechanism 2 pushes the material
  • the solid fuel can enter the combustion chamber 1 more smoothly, and the pushing force of the feeding mechanism 2 to the fuel can be smoothly transmitted along the combustion chamber 1, so that after the combustion proceeds, the combustion will be performed.
  • the ash is ejected from the front end of the large end opening 11 of the combustion chamber 1 out of the combustion chamber 1.
  • a fan 4 may be provided at a position corresponding to the air inlet 13 of the combustion chamber 1 of the burner 10 to force the air inlet 13 as needed. Air supply, improve combustion efficiency.
  • the above-described solid fuel burner 10 of the present invention can be applied to various heat exchange apparatuses such as fire hydrants, fireplaces, boilers, industrial kiln, cooking furnaces, etc., to provide heat sources for these heat exchange apparatuses.
  • the solid fuel The burner 10 can form a heating module.
  • the heat source can be provided separately for the heat exchange device, or can be used in combination of two or more to provide a heat source for the heat exchange device.
  • a combustion apparatus 100 for heating the solid fuel burner 10 of the present invention includes a furnace 3 and at least one burner 10, and a combustion chamber of the burner 10.
  • a large end opening 11 of 1 projects into the furnace 3 to inject a flame into the furnace 3 to provide a heat source for the combustion apparatus 100.
  • the feeding mechanism 2 of the burner 10 is located outside the furnace 3.
  • the air inlet 13 on the combustion chamber 1 should be located outside the furnace 3 during natural air intake, but the air inlet 13 can also be correspondingly forced by the fan.
  • the wind is delivered to the air inlet 13 through an air duct.
  • the combustion apparatus 100 may also include more than two burners 10 as needed, and will not be shown here. Out.
  • a ash chamber 31 is provided below the furnace 3 to receive the ash continuously discharged from the large end opening 11 of the combustion chamber 1, and the residual heat of the ash can also be
  • the upper combustion chamber 1 plays a certain role in preheating and heat preservation.
  • an air inlet hole 32 may be further provided to supply air into the furnace chamber 3, so that the unburned ash in the ash chamber 31 continues to burn, and partially rises to the large end opening 11 of the combustion chamber 1.
  • the air can also contribute to the flame ejected from the combustion chamber 1 to improve combustion efficiency.
  • one side of the furnace 3 of the combustion apparatus 100 may be provided with a heat exchanger 36, so that the furnace 3 is burned by the heat exchange of the heat exchanger 36. The heat output produced.
  • an inclined ash 33 is provided between the side wall of the furnace adjacent to the front end of the large end opening 11 of the combustion chamber 1 and the ash chamber 31, The ash is discharged from the ash discharged from the front end of the large end opening 11 so that the ash smoothly enters the ash chamber 31 through the ash ash 33 and continues to burn until it is burned out.
  • a dust collecting tray 34 may be disposed in the ash chamber 31 of the combustion apparatus 100 to stir the ash falling into the ash chamber 31 to break the large ash, which is convenient for The burnt ash continues to burn and also allows the ash height to be more evenly distributed within the ash chamber 31 to accommodate more ash.
  • the ash tray 34 can have a gray ash rod driven by a motor to facilitate breaking the large ash.
  • the furnace 3 of the combustion apparatus 100 of the present invention corresponds to the combustion chamber.
  • the position of the large end opening 11 of 1 may be provided with a transparent observation window 35 to facilitate observation of the combustion condition of the combustion chamber 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Fuel Combustion (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

固体燃料燃烧方法、 燃烧器及燃烧装置
技术领域
本发明涉及固体燃料燃烧领域, 具体地讲, 有关于一种固体燃料燃烧方 法、 燃烧器及燃烧装置。 背景技术
从燃料分类角度来看, 固体燃料因资源丰富、 使用安全, 是现代人类使 用最为广泛的一种燃烧材料, 特别是煤。 另外, 随着以煤为代表的矿物质固 体燃料的需求量的增大、 资源的减少, 以及全球新能源运动的展开, 可再生 的生物质燃烧材料, 如秸杆、 稻草、 木材、 木屑、 枯枝等再次得到人们的高 度重视。 并且随着可再生的生物质材料的成型技术的成熟, 解决了生物质燃 烧材料的运输、 储存等问题, 生物质燃烧材料的使用在短时间内得到了大范 围的推广。
然而, 目前推广使用生物质燃烧材料的主要方式是直接使用现有的燃煤 燃烧器以及燃烧炉具。 由于生物质燃烧材料与固定碳含量较高的矿物质燃烧 材料的燃烧特性具有比较大的区别, 因此, 现有的燃烧器以及炉具并不能适 应由可再生的生物质材料构成的固体燃料的燃烧, 从而制约了生物质燃烧材 料的应用。 并且, 现在大量使用的煤都是固定碳含量比较高的高级煤, 例如 无烟煤、 烟煤等, 一些低级煤, 例如褐煤、 泥煤等, 由于固定碳含量低, 挥 发份含量较高, 利用现有的燃烧装置, 燃烧效率比较低, 因此目前还没有得 到广泛应用。
本发明人在仔细研究后发现, 生物质燃烧材料和低级煤 (例如褐煤、 泥 煤等) 在现有燃烧装置中燃烧时存在的主要问题是, 这些燃料的灰熔点比较 低, 而由于固定碳燃点比较高, 在高温下才能充分燃烧, 因此在该些燃料点 燃进行高温燃烧时, 燃烧温度高于灰熔点, 使得燃烧后的灰呈粘稠状的熔融 状态, 无法通过现有燃烧装置的炉箅或者其它排灰机构 (例如拨灰棒) 正常 排出, 使得该粘稠状的灰烬混合在正在燃烧的燃料中, 极大地影响了燃料的 燃烧效率。 并且, 灰烬长时间不排出, 新的燃料加入的越来越少, 甚至会产 生灭火的情况。 另外, 该粘稠状的灰烬粘在炉箅子上, 堵塞了炉箅上的进风 通道, 也极大地影响了燃料的燃烧。
因此, 有必要提供一种在可以燃烧常规燃料的同时, 也适应于生物质燃 料和低级煤的燃烧装置, 来克服现有燃烧装置存在的上述缺陷。 发明内容
本发明的目的在于, 提供一种固体燃料燃烧方法、 燃烧器及燃烧装置, 在能够适用于常规固体燃料燃烧的同时, 还能够适用于灰熔点低的燃料燃烧, 并有效排灰, 提高燃料的燃烧效率。
本发明的上述目的可采用如下技术方案来解决, 一种固体燃料燃烧方法, 其特征在于, 该方法包括:
将燃烧器设置成: 燃烧器的燃烧室相对于垂直方向朝向一侧倾斜, 使得 燃烧燃烧室的燃烧口区域的堆料外界面由上向下形成挥发份析出区域、 固定 碳燃烧区域、 和灰烬区域, 从而进行固体燃料的燃烧。
一种固体燃料燃烧器, 该燃烧器包括:
燃烧室, 其形成为锥形, 并具有大端开口和小端开口, 其中小端开口形 成为进料口, 大端开口形成为燃烧口; 其中该燃烧室相对于垂直方向朝向一 侧倾斜设置, 使得燃烧器的燃烧口区域的堆料外界面由上向下形成挥发份析 出区域、 固定碳燃烧区域、 和灰烬区域;
送料机构, 其连接在该燃烧室的进料口, 用于主动向燃烧室内输送燃料; 进风口, 其形成在燃烧室的侧壁上, 用于向燃烧室内送风。
本发明还提供了一种采用上述燃烧器的燃烧装置, 其包括有炉膛和上述 燃烧器, 该燃烧器的燃烧室的大端开口伸入到炉膛内。
在本发明中, 由于燃烧器的燃烧室相对于垂直方向朝向一侧倾斜设置, 在燃烧过程中, 物料会在燃烧口区域会形成一个自然堆料坡度, 该自然堆料 坡度的坡面被称为本发明所述的堆料外界面。
采用本发明的固体燃料燃烧方法、 燃烧器和燃烧装置, 由于在燃烧口区 域堆料外界面由上而下形成为挥发份析出区域、 固定炭燃烧区域和灰烬区域, 进入到燃烧室内的固体燃料在燃烧口区域的挥发份析出区域析出挥发份后, 在重力作用下进入到固定炭燃烧区域继续燃烧, 在燃尽后成为灰烬落入下部 的灰烬区域, 随着新燃料的推进, 该灰烬区域的炉灰被从燃烧室的前端推顶 出燃烧室, 如此周而复始, 新燃料不断被输送到燃烧室的后端, 燃烧室前端 被燃烧后的炉灰被排出, 从而在燃烧过程中自然实现了排灰, 有效避免了炉 灰与燃料混合而影响燃料燃烧的情况。 同时, 由于火焰向上燃烧的特性, 固 定炭燃烧区域为上部的挥发份析出区域提供了足够的热量, 使得析出的挥发 份能够在高温下被点燃燃烧, 有效提高了燃烧效率; 而固定炭燃烧区域下部 的灰烬区域的温度比较低, 从而使得燃烧室底部的温度低于灰熔点, 燃烧室 底部不存在熔灰问题, 因而不会有粘稠状的炉灰粘着在燃烧室底部, 不但大 大提高了排灰的顺畅度, 并且延长了燃烧室的使用寿命。
本发明的固体燃料燃烧方法、燃烧器及燃烧装置与现有的燃烧装置相比, 不但不需要炉箅和拨灰装置, 结构更为简单, 而且排灰通畅, 有效解决了现 有燃烧装置排灰不畅造成的诸多问题, 提高了燃烧效率; 从而本发明的固体 燃料燃烧方法、 燃烧器和燃烧装置不但适用于现有的常规固体燃料, 而且也 适用于灰熔点低的燃料 (例如生物质燃料、 低级煤等), 为灰熔点低的燃料的 推广应用提供了有利条件。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明的一种燃烧器结构示意图;
图 1A为本发明的另一种燃烧器结构示意图;
图 2为本发明的再一种燃烧器结构示意图;
图 3为本发明的燃烧室结构示意图;
图 4为图 3的 A-A剖视结构示意图;
图 5为图 3的 B-B剖视结构示意图;
图 6为本发明的另一种燃烧室结构示意图; 图 7为本发明的带有集火筒的燃烧室结构示意图;
图 8为本发明的一种燃烧装置结构示意图;
图 9为本发明的另一种燃烧装置结构示意图;
图 10为本发明的具有燃烧头的燃烧器结构示意图;
图 11为本发明的另一种具有燃烧头的燃烧室结构示意图;
图 12为本发明的具有活动板的燃烧器结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明提供了一种固体燃料燃烧方法, 该方法包括:
将燃烧器设置成: 燃烧器的燃烧室相对于垂直方向朝向一侧倾斜, 使得 燃烧燃烧室的燃烧口区域的堆料外界面由上向下形成挥发份析出区域、 固定 碳燃烧区域、 和灰烬区域, 从而进行固体燃料的燃烧。
根据该方法, 由于燃烧器的燃烧室相对于垂直方向朝向一侧倾斜, 使得 进入到燃烧器中的固体燃料在到达燃烧口区域后会在重力的作用下形成自然 堆峰坡度, 在燃烧过程中, 燃料会沿该堆峰坡度自上向下流动, 当该燃烧器 倾斜到合适的角度后, 在该堆峰坡度的坡面即堆料外界面上会由上向下形成 挥发份析出区域、 固定炭燃烧区域和灰烬区域。 这样随着后续固体燃料不断 进入到燃烧器中, 堆料外界面上部的挥发份析出区域的固体燃料在析出挥发 份后, 在重力作用下流动到固定炭燃烧区域继续燃烧, 并在燃尽后流动到下 部灰烬区域, 随后在后续固体燃料的推进下, 灰烬区域的灰烬被从燃烧器的 燃烧室前端即燃烧口底部排出。
在上述采用本发明的固体燃料燃烧方法的燃烧过程中, 由于火焰向上燃 烧的特性, 固定炭燃烧区域为上部的挥发份析出区域提供了足够的热量, 使 得析出的挥发份能够在高温下被点燃燃烧, 有效提高了燃烧效率; 而固定炭 燃烧区域下部的灰烬区域的温度比较低, 从而使得燃烧室底部的温度比较低, 可以低于灰熔点, 燃烧室底部不存在熔灰问题, 因而对于灰熔点低的燃料也 不会有粘稠状的炉灰粘着在燃烧室底部, 大大提高了排灰的顺畅度, 灰熔点 的固体燃料 (例如生物质燃料、 低级媒等) 的推广应用提供了有利条件。
控制向燃烧器内的送风位置、 送风量和固体燃料的送料速度, 使得灰烬 区域的灰烬能够随着固体燃料的送入而被排出。
在本发明的上述方法中, 可以通过主动送料的方式向燃烧器内供给固体 燃料。
如图 1一图 7所示,本发明提供了一种采用上述燃烧方法的固体燃料燃烧 器 10, 该燃烧器包括有燃烧室 1和向该燃烧室 1内输送燃料的送料机构 2。 其中, 该燃烧室 1形成为一端大一端小的锥形, 并具有大端开口和小端开口, 该小端开口形成为进料口 12, 大端开口形成为燃烧口 11, 送料机构 2连接在 该燃烧室 1的进料口 12上,用于主动向该燃烧室 1内输送燃料。如图 1所示, 在该燃烧室 1的侧壁上设有进风口 13,从而通过该进风口 13向燃烧室 1内送 风。 并且, 该燃烧器 10设置成, 该燃烧室 1相对于垂直方向朝向一侧倾斜, 使得燃烧器 10的燃烧口 11区域的堆料外界面 110由上向下形成挥发份析出 区域 1101、 固定碳燃烧区域 1102和灰烬区域 1103。
采用该燃烧器 10, 固体燃料被送料机构 2从进料口 12送入到燃烧室 1 内后, 在重力作用下, 燃烧室 1 的燃料口区域形成自然堆峰坡度, 在进行燃 烧时, 由于火向上燃烧的特性, 该燃烧口区域的固体燃烧上部的温度比较高, 形成为挥发份析出区域 1101, 析出挥发份, 该挥发份与空气混合后在高温下 在挥发份析出区域 1101的上方进行燃烧, 在重力作用下析出挥发份后的燃料 自然流动向下流动, 形成固定炭燃烧区域 1102, 继续进行燃烧并同时为上部 的挥发份析出区域 1101的挥发份析出和随后的挥发份燃烧提供足够的热量, 而在固定炭燃烧区域 1102燃尽的灰烬在重力作用下流动到下部形成灰烬区域 1103, 随着送料机构 2将新的固体燃料从进料口 12被输送燃烧室 1, 挥发份 析出区域 1101的燃料逐歩进入到固定炭燃烧区域 1102继续进行燃烧, 固定 炭燃烧区域 1102燃烧后形成的炉灰被逐歩流动到下部的灰烬区域, 并最终从 燃烧室 1燃烧口 11的前端被推出燃烧室 1, 如此周而复始, 新燃料不断被输 送到燃烧室 1的后端, 燃烧室 1前端被燃烧后的炉灰不断被排出, 从而在燃 烧过程中输送新燃料的同时也自动实现了排灰。
在本发明的固体燃料燃烧器的上述工作过程中, 由于燃烧后的炉灰是随 着新燃料的推进, 被从燃烧室 1的前端推顶出燃烧室 1, 从而在进料和燃烧过 程中自然实现了排灰, 与现有的燃烧装置相比, 不但不需要炉箅和拨灰装置, 结构更为简单, 而且排灰通畅, 有效解决了现有燃烧装置排灰不畅造成的诸 多问题, 提高了燃烧效率; 并且对于灰熔点的固体燃料 (例如生物质燃料、 低级煤等), 由于解决了排灰的问题, 可以利用本发明的燃烧器 1进行充分燃 烧, 从而为该些灰熔点低的固体燃料的大规模推广应用提供了有利条件。 另 外, 由于火焰向上燃烧的特性, 降低了燃烧室 1 底部的温度, 从而使得燃烧 室 1底部的温度低于灰熔点, 燃烧室 1底部不存在熔灰问题, 因而不会有粘 稠状的炉灰粘着在燃烧室 1 底部, 不但大大提高了排灰的顺畅度, 并且延长 了燃烧室 1的使用寿命。
在本发明中, 为了在燃烧过程中使得燃烧室 1 的燃烧口区域的堆料外界 面能够由上向下形成挥发份析出区域 1101、固定炭燃烧区域 1102和灰烬区域 1103, 需要合适地设置燃烧室 1 的位置。 在一个可选的例子中, 可以通过设 置该燃烧室 1的底边相对于水平方向的角度范围, 来使得燃烧室 1处于合适 的位置。 燃烧室 1的底边相对于水平方向上下倾斜的夹角 a可以根据不同的 固体燃料种类、 粒径、 送料速度等情况进行设置。 例如对于灰熔点比较低, 炉灰胶结程度比较高的燃料, 该角度 a可以设置成负值, 即该底边形成为向 下倾斜的状态, 以便于胶结成团的炉灰能在推顶和重力作用下顺利地从燃烧 室 1 中排出。 但是该负值的角度的绝对值也不能设置的过大, 太大会使得燃 料还没有完全燃烧就在重力作用下随炉灰排出。 该角度为正值, 即燃烧室 1 的底边向上倾斜时, 其数值也不能太大, 如果太大, 堆峰坡度比较缓, 在燃 烧过程中, 燃料很难沿堆料外界面 110形成流动, 从而在堆料外界面 110上 形成挥发份析出区域、 固定炭燃烧区域和灰烬区域, 并且灰烬还会在重力作 用下倒流到燃烧室 1 内, 不但不能实现顺畅排灰, 而且还会影固体燃料在燃 烧室 1 内的燃烧。 本发明的设计人在通过长期研究发现, 该燃烧室 1的底边 相对于水平方向的角度 a的范围在一 15度至 15度, 是比较合适的。根据固体 燃料种类、 粒径、 送料速度等情况的不同, 可以选取该角度范围一 15度至 15 度内任一合适的数值, 例如 15度、 12度、 10度、 7度、 5度、 0度、 一 2度、 一 5度、 一 8度、 一 10度、 一 15度等。 该角度范围优选在一 10度至 5度之间, 例如可以是 5度、 3. 5度、 2度、 1. 5度、 0度、 -2度、 -5度、 -10等。
如图 1示出了燃烧室 1的底边相对于水平方向的角度 a为正值, 即该燃 烧室 1的底边向上倾斜的一个具体例子; 图 1A示出了燃烧室 1的底边相对于 水平方向的角度 a为 0的一个具体例子; 图 2示出了燃烧室 1的底边相对于 水平方向的角度 a为负值, 即燃烧室 1的底边相对于水平方向向下倾斜的一 个具体例子。 本领域技术人员可以理解上述角度的列举和附图所示, 仅是示 例性质的, 该角度 a并不限于上述示例。
另外, 如图 1所示, 燃烧器 10的燃烧室 1的顶边相对于水平方向的角度 的范围为 &〈β 90 ° 。
如图 12所示, 在本发明的一个可选例子中, 在燃烧器 10的燃烧室 1的 底部可设有能沿燃烧室 1底部往复滑动的活动板 18。该活动板 18可以根据需 要, 定时进行往复滑动, 使得燃烧室 1 前端的灰烬能够更为顺畅地排出。 同 时, 由于该活动板 18的设置提高了排灰的顺畅度, 也使得固定设置位置例如 燃烧室 1的底边相对于水平方向的角度 a固定时, 固体燃料的种类、 粒径等 即使有一些变化, 也不会对排灰产生太多的影响, 从而使得在燃烧器 10的设 置位置不变时, 燃烧器 10的使用范围更为广泛。
在本发明的燃烧方法和燃烧器中, 可以将燃烧口 11设置成相对于水平方 向垂直布置, 也可以设置成相对于水平方向倾斜布置。 该燃烧口 11可以优选 设置成其倾斜程度与固体燃料的堆峰坡度相适应。
在该例子中, 活动板 18上可进一歩设置有将灰烬朝向燃烧室 1的燃烧口 11外侧方向推顶的多个单向推顶突起部 181, 从而使得该活动板 18在向外侧 移动时, 可以有效地推顶灰烬, 使得灰烬能够更为顺畅地排出, 而在该活动 板 18在向回移动即向内侧移动时, 也不会灰烬或者其他燃烧物带到燃烧室 1 内。 如图 12所示, 该单向推顶突起部 181可以具体设置成, 单向推顶突起部 181在朝向燃烧口 11一侧具有推顶面 1811, 以在向外移动时能够对灰烬进行 推顶, 利于灰烬的排出; 在朝向进料口 12的一侧为滑过斜面 1812, 从而在该 活动板 18向内侧移动时灰烬或其他燃烧物能够滑过该滑过斜面, 而不会被带 到燃烧室 1内侧。
该活动板 18可由一驱动装置 19驱动其往复运动。 该驱动装置可以是任 意一种可以使得活动板 18进行往复运动的装置, 可以是活塞缸驱动装置, 例 如气缸驱动、 液压缸驱动等, 也可以是四连杆机构、 齿轮齿条机构等, 只要 能够使得活动板 18进行往复运动即可, 其具体结构在此不作限制。 图 12示 出了采用四连杆机构作为驱动机构的一个例子。
在本发明的一个可选例子中, 如图 1所示, 进风口 13可仅燃烧室 1的侧 壁的上半部分。 但是也不限于设置在上半部分, 在设置有活动板 18后, 该进 风口也可设置在燃烧室 1的侧壁的下半部分。
从进风口 13沿燃烧室 1侧壁内侧可开设有导风槽 14, 以将从进风口 13 进入的空气有效引导到燃烧室 1的合适位置, 提高燃烧效率。 如图 3所示, 该导风槽 13可沿燃烧室 1的侧壁连通到燃烧口 11; 如图 6所示, 该导风槽 13也可以沿燃烧室 1的侧壁向燃烧口 11方向和下方延伸一段距离。该导风槽 14的具体开设方式, 可以根据固体燃料堆叠堆峰坡度而设置, 只要能够将从 进风口 13进入的风引导到燃烧室 1的合适位置即可, 其具体方式在此不做限 制。
如图 7所示, 在本发明的一个可选例子中, 所述的燃烧室 1燃烧口 11上 可连接有筒状的集火筒 15, 该集火筒 15的下端一部分与燃烧口 11的上部连 接在一起, 另一部分与燃烧口 11的下部之间形成排灰口 16, 从而在燃烧过程 中, 挥发份析出区域 1上方的火焰通过集火筒 15喷出, 燃烧后的炉灰经排灰 口 16排出。
如图 10所示, 在本发明的一个可选例子中, 燃烧口 11上可连接有一中 空燃烧头 5, 该燃烧头 5的下端一部分与燃烧口 11的上部连接在一起, 另一 部分与燃烧口 11的下部之间形成排灰口 16, 从而在燃烧过程中, 火焰通过燃 烧头 5喷出, 燃烧后的炉灰经排灰口 16排出。 如图 11所示, 在本发明另一 个可选例子中, 固体燃料燃烧器 10的集火筒 15的上端口上连接有一中空燃 烧头 5, 火焰经集火筒 15由燃烧头 5喷出。
在上述图 10、 图 11所示的例子中, 燃烧头 5的上端口 51位置设有打火 装置 52和测温元件 53, 该打火装置 52和测温元件 53连接于一控制器 54, 当测温元件 53测得的燃烧头 5的上端口 51处的温度低于挥发份的燃点温度 时, 该控制器 54控制打火装置 52打火, 从而点燃燃烧头 5上端口 51位置的 挥发份, 使得挥发份充分燃烧, 不但进一歩提高了燃烧效率, 而且有效降低 了排放污染。 在该例子中, 该燃烧头 5 可进一歩在侧壁上形成有多个向下倾 斜的通孔 55, 固体燃料燃烧时析出的燃点低的轻的优质挥发份可通过该些通 孔 55逸出, 并充分燃烧, 另一些没有逸出的挥发份可上升到燃烧头 5的上端 口 51的位置被打火装置 52点燃后, 进行充分燃烧。 进一歩, 该燃烧头 5可 形成为上端小、 下端大的锥形, 以利于挥发份充分燃烧, 进一歩提高燃烧效 率。 在该例子中, 打火装置 52可以是例如燃气灶中使用的打火装置, 当然也 可以是其它的打火装置, 只要能够由控制 54控制打火即可, 其具体结构不是 本发明的发明要点, 在此不在详述。
如图 1、 图 2、 图 8、 图 9所示, 本发明燃烧器 10的送料机构 2可为螺旋 输送机构, 该螺旋输送机构包括有送料筒 21、设置在送料筒 21进料口上的料 斗 22、 由电机 23驱动的输送螺杆 24等, 固体燃料从料斗 22加入, 然后经进 料口进入到送料筒 21内, 并由输送螺杆 24输送到燃烧室 1的进料口 12, 从 而不断为燃烧室 1提供燃料。 虽然在图中仅示出了该送料机构 2为螺旋输送 机构的具体例子, 但是本领域技术人员可以理解, 该送料机构 2 并不限于是 螺旋输送机构, 也可以是其它的送料机构, 例如活塞式送料机构等, 只要能 够将固体燃料输送到燃烧室即可, 在此不再一一详细描述。
如图 1、 图 2、 图 8、 图 9所示, 该送料机构 2的送料筒 21的底边内侧与 所述燃烧室 1 的内侧底边可设置成在同一个延长直线上, 从而在送料机构 2 推料时, 固体燃料能够更为顺畅地进入到燃烧室 1中, 并且送料机构 2对燃 料的推顶力可以顺畅地沿着燃烧室 1 传递, 从而随着燃烧的进行, 将燃烧后 的灰烬从燃烧室 1的大端开口 11前端顶出燃烧室 1。
如图 8、 图 9所示, 在本发明的一个可选例子中, 在对应于燃烧器 10的 燃烧室 1的进风口 13的位置可设置有风机 4,以根据需要向进风口 13进行强 制送风, 提高燃烧效率。
本发明的上述固体燃料燃烧器 10可应用于各种换热设备中, 例如火炕、 壁炉、 锅炉、 工业窑炉、 炊事炉等, 为这些换热设备提供热源。 该固体燃料 燃烧器 10可以形成供热模块, 根据换热设备的需要, 可以是一个而单独为换 热设备提供热源, 也可以两个或者多个组合使用, 共同为换热设备提供热源。
如图 8、 图 9所示, 给出了本发明采用固体燃料燃烧器 10供热的燃烧装 置 100, 该燃烧装置 100包括有炉膛 3和上述至少一个燃烧器 10, 该燃烧器 10的燃烧室 1的大端开口 11伸入到该炉膛 3内, 从而将火焰喷入炉膛 3内, 为燃烧装置 100提供热源。 该燃烧器 10的送料机构 2位于该炉膛 3外, 燃烧 室 1上的进风口 13在自然进风时, 应位于炉膛 3外, 但是对应通过风机强制 送风的情况, 该进风口 13也可以位于在炉膛 3内, 通过导风管道将风输送到 该进风口 13。 为便于表示, 在图中仅给出了使用一个燃烧器 1的例子, 本领 域技术人员可以理解, 该燃烧装置 100 也可以根据需要包括两个以上的燃烧 器 10, 在此不再一一示出。
如图 8所示, 在本发明的燃烧装置 100中, 炉膛 3下方设有接灰室 31, 以承接从燃烧室 1大端开口 11不断排出的炉灰, 并且该炉灰的余热还可以对 上方的燃烧室 1起到一定的预热保温作用。 在该炉膛 3的下部还可设置有进 风孔 32, 以便于向炉膛 3内提供空气, 使得接灰室 31内未燃尽的炉灰继续燃 烧, 并且部分上升到燃烧室 1大端开口 11的空气还可以对燃烧室 1喷出的火 焰起到助燃作用, 提高燃烧效率。
如图 8、 图 9所示, 在一个具体的例子中, 该燃烧装置 100的炉膛 3的一 侧可设置有换热器 36, 从而通过该换热器 36的换热, 将炉膛 3内燃烧产生的 热量输出。
如图 8、 图 9所示, 在本发明的燃烧装置 100中, 在临近于燃烧室 1的大 端开口 11前端的炉膛侧壁与接灰室 31之间设置有倾斜的托灰箅 33, 以对从 大端开口 11 前端排出的炉灰起到引导承接作用, 使得该炉灰经该托灰箅 33 顺利进入到接灰室 31中继续燃烧, 直至燃尽。
如图 9所示,在该燃烧装置 100的接灰室 31内可设置有拨灰盘 34, 以对 落入接灰室 31中的炉灰进行搅拌, 将大块炉灰打碎, 便于未燃尽的炉灰继续 燃烧, 并且也使得炉灰高度比较均匀地分布在接灰室 31内, 以承接更多的炉 灰。 该拨灰盘 34可具由有电机带动的拨灰棒, 以便于将大块炉灰打碎。
如图 8、 图 9所示, 本发明的燃烧装置 100的炉膛 3上, 在对应于燃烧室 1的大端开口 11的位置可设置有透明的观察窗 35, 以便于对燃烧室 1的燃烧 状况进行观察。
本发明的上述描述仅为示例性的属性, 因此没有偏离本发明要旨的各种 变形理应在本发明的范围之内。 这些变形不应被视为偏离本发明的精神和范 围。

Claims

权 利 要 求 书
1、 一种固体燃料燃烧方法, 其特征在于, 该方法包括:
将燃烧器设置成: 燃烧器的燃烧室相对于垂直方向朝向一侧倾斜, 使得 燃烧燃烧室的燃烧口区域的堆料外界面由上向下形成挥发份析出区域、 固定 碳燃烧区域、 和灰烬区域, 从而进行固体燃料的燃烧。
2、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 燃烧器的燃烧 口相对于水平方向垂直地布置。
3、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 燃烧器的燃烧 口相对于水平方向倾斜地布置。
4、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 将燃烧器设置 成,燃烧器的燃烧室的底边相对于水平方向的角度 a的范围为一 15度至 15度。
5、 如权利要求 4所述的固体燃料燃烧方法, 其特征在于, 将燃烧器设置 成, 燃烧器的燃烧室的顶边相对于水平方向的角度 β 的范围为 &〈β 90 ° 。
6、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 控制向燃烧器 内的送风位置、 送风量和固体燃料的送料速度, 使得灰烬区域的灰烬能够随 着固体燃料的送入而被排出。
7、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 在燃烧器底部 布置能沿燃烧器底部往复移动的活动板, 以便于灰烬的顺利排出。
8、 如权利要求 1所述的固体燃料燃烧方法, 其特征在于, 通过主动送料 的方式向燃烧器内供给固体燃料。
9、 如权利要求 8所述的固体燃料燃烧方法, 其特征在于, 通过送料机构 向燃烧器的燃烧室内主动送料。
10、 一种固体燃料燃烧器, 该燃烧器包括:
燃烧室, 其形成为锥形, 并具有大端开口和小端开口, 其中小端开口形 成为进料口, 大端开口形成为燃烧口; 其中该燃烧室相对于垂直方向朝向一 侧倾斜设置, 使得燃烧器的燃烧口区域的堆料外界面由上向下形成挥发份析 出区域、 固定碳燃烧区域、 和灰烬区域;
送料机构, 其连接在该燃烧室的进料口, 用于主动向燃烧室内输送燃料; 进风口, 其形成在燃烧室的侧壁上, 用于向燃烧室内送风。
11、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述燃烧室的 底边相对于水平方向的角度 a的范围为一 15度至 + 15度。
12、 如权利要求 11所述的固体燃料燃烧器, 其特征在于, 所述燃烧器的 燃烧室的顶边相对于水平方向的角度 β 的范围为 &〈β 90° 。
13、 如权利要求 11所述的固体燃料燃烧器, 其特征在于, 所述燃烧室的 底边相对于水平方向的角度范围为一 10度至 5度。
14、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 在所述燃烧室 的底部设有能沿燃烧室底部往复滑动的活动板。
15、 如权利要求 14所述的固体燃料燃烧器, 奇特正在于, 所述的活动板 上设置有将灰烬朝向燃烧室的燃烧口外侧方向推顶的多个单向推顶突起部。
16、 如权利要求 15所述的固体燃料燃烧器, 奇特正在于, 所述的单向推 顶突起部在朝向燃烧口一侧具有推顶面, 在朝向进料口的一侧为滑过斜面。
17、 如权利要求 14所述的固体燃料燃烧器, 其特征在于, 所述的活动板 由一驱动装置驱动其往复运动。
18、 如权利要求 17所述的固体燃料燃烧器, 其特征在于, 所述的驱动装 置为活塞缸驱动装置或四连杆机构或齿轮齿条机构。
19、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述的进风口 仅设置在燃烧室侧壁的上半部分。
20、 如权利要求 19所述的固体燃料燃烧器, 其特征在于, 从进风口沿所 述的燃烧室侧壁内侧开设有导风槽。
21、 如权利要求 20所述的固体燃料燃烧器, 其特征在于, 该导风槽沿燃 烧室的侧壁连通到燃烧口, 或者该导风槽沿燃烧室的侧壁朝向燃烧口方向和 下方延伸一段距离。
22、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述的进风口 设置在燃烧室侧壁的下半部分。
23、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 在对应于进风 口的位置设置有风机。
24、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述的送料机 构为螺旋输送机构或者为活塞式送料机构。
25、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述送料机构 包括有送料筒, 该送料筒的底边与所述燃烧室的底边在同一个延长直线上。
26、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述的燃烧室 的燃烧口上连接有筒状的集火筒, 该集火筒的下端一部分与燃烧口的上部连 接在一起, 另一部分与燃烧口的下部之间形成排灰口。
27、 如权利要求 10所述的固体燃料燃烧器, 其特征在于, 所述的燃烧室 的燃烧口上连接有一中空燃烧头, 该燃烧头的下端一部分与燃烧口上部连接 在一起, 另一部分与燃烧口之间形成为排灰口。
28、 如权利要求 26所述的固体燃料燃烧器, 其特征在于, 在该集火筒上 端口上连接有一中空燃烧头。
29、 如权利要求 27或 28所述的固体燃料燃烧器, 其特征在于, 所述的 燃烧头的上端口位置设有打火装置和测温元件, 该打火装置和测温元件连接 于一控制器, 当测温元件测得的燃烧头的上端口处的温度低于挥发份的燃点 温度时, 该控制器控制打火装置打火。
30、 如权利要求 27或 28所述的固体燃料燃烧器, 其特征在于, 该燃烧 头在侧壁上形成有多个向下倾斜的通孔。
31、 如权利要求 30所述的固体燃料燃烧器, 其特征在于, 所述燃烧头形 成为上端小、 下端大的锥形。
32、 一种固体燃料燃烧装置, 其特征在于, 该燃烧装置包括: 炉膛和至 少一个如权利要求 10— 31任一权利要求所述的燃烧器, 其中, 该燃烧器的燃 烧室的燃烧口伸入到炉膛内。
33、 如权利要求 32所述的固体燃料燃烧装置, 其特征在于, 所述的炉膛 下方设有接灰室。
34、 如权利要求 32所述的固体燃料燃烧装置, 其特征在于, 在该炉膛的 下部设置有进风孔。
35、 如权利要求 33所述的固体燃料燃烧装置, 其特征在于, 在临近于所 述燃烧室的燃烧口前端的炉膛侧壁与接灰室之间设置有倾斜的托灰箅。
36、 如权利要求 33所述的固体燃料燃烧装置, 其特征在于, 在该燃烧装 置的接灰室内设置有拨灰盘。
PCT/CN2010/074341 2010-06-23 2010-06-23 固体燃料燃烧方法、燃烧器及燃烧装置 WO2011160299A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/074341 WO2011160299A1 (zh) 2010-06-23 2010-06-23 固体燃料燃烧方法、燃烧器及燃烧装置
CN201080067607.1A CN102985755B (zh) 2010-06-23 2010-06-23 固体燃料燃烧器及燃烧装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/074341 WO2011160299A1 (zh) 2010-06-23 2010-06-23 固体燃料燃烧方法、燃烧器及燃烧装置

Publications (1)

Publication Number Publication Date
WO2011160299A1 true WO2011160299A1 (zh) 2011-12-29

Family

ID=45370840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074341 WO2011160299A1 (zh) 2010-06-23 2010-06-23 固体燃料燃烧方法、燃烧器及燃烧装置

Country Status (2)

Country Link
CN (1) CN102985755B (zh)
WO (1) WO2011160299A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058409A1 (zh) * 2013-10-25 2015-04-30 车战斌 固体燃料的燃烧方法和燃烧炉
CN105121051A (zh) * 2013-02-06 2015-12-02 麦格纳国际公司 热模成型组件以及制造热处理部件的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656956A (en) * 1984-09-21 1987-04-14 Flickinger Dale M Furnace with oscillating grate
DE3717579A1 (de) * 1987-05-25 1988-12-08 Gregor Pollmeier Kessel
EP0675324A1 (fr) * 1994-03-28 1995-10-04 Babcock Entreprise Système d'injection d'air dans un foyer ou une chambre de combustion et installation d'incinération de biomasse ou de déchets industriels équipée de ce système
JP2000161635A (ja) * 1998-11-24 2000-06-16 Nkk Corp 廃棄物の焼却方法
CN101294707A (zh) * 2007-04-27 2008-10-29 韩枫 生物质燃料热解汽化燃烧方法和装置
CN101495808A (zh) * 2006-05-05 2009-07-29 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 带有横向传送系统的水平取向气化器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656956A (en) * 1984-09-21 1987-04-14 Flickinger Dale M Furnace with oscillating grate
DE3717579A1 (de) * 1987-05-25 1988-12-08 Gregor Pollmeier Kessel
EP0675324A1 (fr) * 1994-03-28 1995-10-04 Babcock Entreprise Système d'injection d'air dans un foyer ou une chambre de combustion et installation d'incinération de biomasse ou de déchets industriels équipée de ce système
JP2000161635A (ja) * 1998-11-24 2000-06-16 Nkk Corp 廃棄物の焼却方法
CN101495808A (zh) * 2006-05-05 2009-07-29 普拉斯科能源Ip控股公司毕尔巴鄂-沙夫豪森分公司 带有横向传送系统的水平取向气化器
CN101294707A (zh) * 2007-04-27 2008-10-29 韩枫 生物质燃料热解汽化燃烧方法和装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121051A (zh) * 2013-02-06 2015-12-02 麦格纳国际公司 热模成型组件以及制造热处理部件的方法
CN105121051B (zh) * 2013-02-06 2017-05-03 麦格纳国际公司 热模成型组件以及制造热处理部件的方法
WO2015058409A1 (zh) * 2013-10-25 2015-04-30 车战斌 固体燃料的燃烧方法和燃烧炉

Also Published As

Publication number Publication date
CN102985755A (zh) 2013-03-20
CN102985755B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
CN203731384U (zh) 固体燃料的燃烧装置
CN203731385U (zh) 固体燃料的燃烧装置
CN202303465U (zh) 一种高性能燃烧器
CN203703948U (zh) 固体燃料的燃烧装置
WO2015176620A1 (zh) 固体燃料的燃烧方法及燃烧装置
CN203744228U (zh) 固体燃料的燃烧装置
CN104976613A (zh) 固体燃料的燃烧装置
CN204829880U (zh) 一种带点火装置的生物质颗粒燃烧器
CN201339949Y (zh) 生物质锅炉
CN201724255U (zh) 一种以生物质能颗粒为燃料的燃烧炉
CN101216170B (zh) 一种颗粒燃料燃烧方法及燃烧装置
WO2011160299A1 (zh) 固体燃料燃烧方法、燃烧器及燃烧装置
CN107702087A (zh) 一种燃烧生物质颗粒燃料的燃烧器
CN201724256U (zh) 一种燃料灰垢易排出的环保型生物质能颗粒燃烧炉
WO2015131786A1 (zh) 固体燃料的燃烧方法及燃烧装置
CN201047666Y (zh) 燃煤热风炉
CN201748481U (zh) 一种生物质能颗粒燃料燃烧炉用的燃烧器
CN201652323U (zh) 全煤层着火同步燃烧链条炉
CN111720815A (zh) 一体式生物质气化低氮贫氧燃烧锅炉
CN202303436U (zh) 生物质燃料链条锅炉中的组合炉拱结构
CN215675157U (zh) 一种桥式防回火推焦装置
WO2015144035A1 (zh) 固体燃料的燃烧装置及其进料口组件
CN108443864B (zh) 一种三旋流生物质气化燃烧机用双夹层环形炉膛
CN205561240U (zh) 能多次点燃的汽化炉
WO2016119214A1 (zh) 固体燃料的燃烧装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067607.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853442

Country of ref document: EP

Kind code of ref document: A1