WO2022151497A1 - 带蓄热装置的燃烧炉 - Google Patents

带蓄热装置的燃烧炉 Download PDF

Info

Publication number
WO2022151497A1
WO2022151497A1 PCT/CN2021/072562 CN2021072562W WO2022151497A1 WO 2022151497 A1 WO2022151497 A1 WO 2022151497A1 CN 2021072562 W CN2021072562 W CN 2021072562W WO 2022151497 A1 WO2022151497 A1 WO 2022151497A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
combustion
solid fuel
furnace
storage device
Prior art date
Application number
PCT/CN2021/072562
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
车战斌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 车战斌 filed Critical 车战斌
Priority to PCT/CN2021/072562 priority Critical patent/WO2022151497A1/zh
Priority to CN202180000343.6A priority patent/CN115119518A/zh
Publication of WO2022151497A1 publication Critical patent/WO2022151497A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B50/00Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone
    • F23B50/02Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom
    • F23B50/04Combustion apparatus in which the fuel is fed into or through the combustion zone by gravity, e.g. from a fuel storage situated above the combustion zone the fuel forming a column, stack or thick layer with the combustion zone at its bottom the movement of combustion air and flue gases being substantially transverse to the movement of the fuel

Definitions

  • the embodiments of the present application relate to the field of combustion equipment, and in particular, to a combustion furnace with a heat storage device.
  • combustion equipment such as boilers
  • the existing combustion equipment such as the combustion furnace using the grate (hereinafter referred to as the spread-fired combustion furnace)
  • has disadvantages such as complex structure, high processing and production cost, poor use stability, and insufficient fuel combustion.
  • the fuel In order to achieve sufficient oxygen supply for the fuel, the fuel is piled up on the grate for combustion in the spread-fired combustion furnace, and the thickness of the fuel should not be too thick, otherwise it is easy to cause insufficient combustion of partial fuel, while another part is easy to overburn, resulting in waste of resources and Pollution.
  • the gas produced by combustion carries many polluting gases, such as dioxins, combustible gases, etc., which requires extremely high cost to purify the gas, resulting in high operation and maintenance costs.
  • the embodiments of the present application provide a combustion furnace with a heat storage device, so as to at least partially solve the above problems.
  • a combustion furnace with a heat storage device which comprises: a furnace body, the furnace body is used for accommodating a fuel pile formed by accumulation of solid fuels entering the furnace body, and the furnace body has an air outlet; the heat storage device, The heat storage device is arranged in the furnace body, and a heat storage cavity connected with the air outlet is formed in the furnace body. A part of the heat storage device is located in the outer flame area of the carbon flame formed by the combustion of the solid fuel, so as to form a temperature in the heat storage cavity.
  • the field is maintained in a region in the range of 800°C to 1150°C, and the region is used for the combustion of gases formed by the combustion of solid fuels.
  • the heat storage device includes: an ignition body, located in the outer flame area of the carbon flame generated by the combustion of the solid fuel, so as to absorb heat from the carbon flame, and the volatile matter in the gas flows over the ignition body;
  • the heat body is located above the ignition body, and cooperates with the ignition body to form the heat storage cavity.
  • the end of the heat storage body cooperates with the ignition body to form an exhaust inlet of the heat storage cavity, and the area of the exhaust inlet is smaller than the area of the exhaust outlet of the exhaust passage.
  • the height of the exhaust outlet is lower than the height of the exhaust inlet.
  • the combustion furnace further includes a support structure, the support structure is arranged in the furnace body, and the ignition body is fixedly arranged at the upper end of the support structure.
  • the support structure includes a stop section and an inclined section, the inclined section is arranged between the ignition body and the stop section, the stop section is used to stop the solid fuel, and the distance between the stop section and the air outlet is smaller than the distance between the ignition body and the outlet.
  • the distance of the tuyere, the inclined section is used to fix the ignition body.
  • the material of the ignition body is the same as that of the inclined section; or, the material of the ignition body is different from that of the inclined section, and the heat storage amount of the ignition body per unit volume is greater than that of the inclined section per unit volume.
  • the furnace body also includes an air inlet side wall, the air inlet side wall and the air outlet side wall where the air outlet is located are arranged opposite, and the upper part of the air inlet side wall is provided with an air inlet, and the height of the air inlet is higher than that of the outlet.
  • the height of the tuyere is arranged opposite, and the upper part of the air inlet side wall is provided with an air inlet, and the height of the air inlet is higher than that of the outlet. The height of the tuyere.
  • a feeding port is provided on the top wall of the furnace body, and the feeding port is located between the air inlet and the heat storage device.
  • the combustion furnace further includes a material distribution structure, the material distribution structure is arranged below the feeding port for receiving the solid fuel entering the furnace body from the feeding port, and the material distribution structure has a first inclined surface and a first material passing through. Gap, the material distribution structure is used to provide a downward guiding force for the solid fuel, so that the solid fuel moves along the first inclined plane, and the solid fuel entering the furnace body is adjusted according to the solid fuel flow rate through the first material passing gap of the material distribution structure.
  • the volume is screened, so that the solid fuel whose volume is larger than the first feeding gap moves along the first inclined plane, and the solid fuel whose volume is smaller than the first feeding gap falls through the first feeding gap, so that the solid fuel is divided according to the material distribution.
  • the distance between at least part of the heat storage device and the material distribution structure is less than or equal to the set distance threshold, so that a part of the heat storage device is located in the material distribution structure.
  • the outer flame zone of the carbon flame is less than or equal to the set distance threshold, so that a part of the heat storage device is located in the material distribution structure.
  • the combustion furnace further includes a material distribution structure
  • the material distribution structure includes a first support arm group, the first support arm group includes a plurality of first support arms, and the plurality of first support arms form a first inclined plane, And a first feeding gap is set between the two adjacent first arms, the first arm group is arranged below the feed port, and the first end of the first arm group is The height is lower than the height of the second end of the first arm group, and the distance between the second end of the first arm group and the inlet side wall of the furnace body is less than or equal to the feed port The distance from the air inlet side wall
  • the material distribution structure also includes a second arm group, the second arm group is located below the first arm group, and the first end of the second arm group is The height is higher than the height of the second end of the second support arm group, the second support arm group includes a plurality of second support arms, the plurality of second support arms form a second slope, and two adjacent A second feeding gap is arranged between the first arms, and the width of the second feeding
  • the furnace body of the combustion furnace is used to accommodate the fuel pile formed by the solid fuel accumulation, providing a combustion space for the fuel pile, and the air outlet of the furnace body is used for the gas generated by the combustion of the solid fuel to be discharged from the combustion furnace.
  • the gas contains volatiles produced by the cracking of solid fuels, and may also include carbon monoxide produced during the combustion of solid fuels.
  • the heat storage device is used to enclose a heat storage cavity in the furnace body, and a part of the heat storage device is located in the outer flame area of the carbon flame, so the heat storage device can absorb the heat of the carbon flame to increase the temperature in the heat storage cavity to make the heat storage device.
  • the temperature field of at least a part of the thermal cavity is maintained between 800°C and 1150°C, so that the volatile matter can be ignited and burned in the thermal storage cavity.
  • the heat generated by the combustion of the volatile components can also be absorbed by the heat storage device, so that the temperature field in the region can be stably maintained in the range of 800°C to 1150°C.
  • the temperature field in this area is stable, and the space in this area allows the gas to stay in it for a long enough time, the volatiles can be fully burned and decomposed in this area, so as to realize the treatment of volatiles and avoid dioxins Escape, improve the cleanliness of the combustion furnace, and can realize the treatment of volatile matter in the furnace body, reduce or omit the installation of additional pollutant treatment equipment (such as the installation of special desulfurization and denitrification devices), so that the cost of clean emissions is lower.
  • the temperature field in the range of 800°C to 1150°C can reduce the oxidation of nitrogen in the air, thereby reducing the generation of pollutants such as nitric oxide and sulfur dioxide.
  • FIG. 1 shows a schematic structural diagram of a stacking furnace with a heat storage device in an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a stacking furnace with a heat storage device in another embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a stacking furnace with a heat storage device in another embodiment of the present application.
  • FIG. 4 shows a schematic three-dimensional structure diagram of a material distribution structure of a stack sintering furnace with a heat storage device in another embodiment of the present application.
  • an embodiment of the present application provides a combustion furnace with a heat storage device
  • the combustion furnace includes a furnace body and a heat storage device, the furnace body is used for accommodating a fuel pile formed by the accumulation of solid fuel entering it, and the furnace body has an outlet The tuyere 47; the heat storage device is arranged in the furnace body, and a heat storage 48 connected with the air outlet 47 is enclosed in the furnace body.
  • a region where the temperature field is maintained within the range of 800°C to 1150°C is formed in the body 48 , and this region is used for the combustion of the gas formed by the combustion of the solid fuel.
  • the furnace body of the combustion furnace is used for accommodating a fuel pile formed by solid fuels, providing a combustion space for the fuel pile, and the air outlet 47 of the furnace body is used for discharging the gas generated by the combustion of the solid fuel out of the combustion furnace.
  • the gas contains volatile components (VOC, volatile organic compounds) produced by the cracking of solid fuels and combustible gases (such as carbon monoxide, etc.) produced during the combustion of solid fuels.
  • VOC volatile organic compounds
  • the heat storage device is used to enclose a heat storage cavity 48 in the furnace body, and a part of the heat storage device is located in the outer flame area of the carbon flame, so the heat storage device can be used to absorb the heat of the carbon flame to improve the heat storage cavity 48.
  • the temperature of at least a part of the heat storage cavity 48 is maintained between 800°C and 1150°C, so that the volatile matter is fully burned in the heat storage cavity 48 .
  • the heat generated by the combustion of volatile matter and the like can also be absorbed by the heat storage device, so as to maintain the temperature field in this area (the temperature field is constituted by the area where the temperature in the heat storage cavity 48 is between 800°C and 1150°C).
  • the temperature field in this area is stable, and the space in the area allows volatiles to stay in it for a long enough time, the volatiles can be fully burned, and the heat released by the combustion can be used to maintain the temperature of the temperature field stable, and the temperature
  • the temperature is lower than 1200°C, so it can avoid a large amount of oxidation of nitrogen in the air to reduce the emission of nitrogen oxides, thereby making it possible to treat volatiles, etc., to reduce or avoid setting up additional gas treatment equipment, so that the clean emission lower cost.
  • the structure, size, shape, etc. of the heat storage device are not limited in this embodiment, as long as the heat storage cavity can be realized and the heat storage is sufficient to maintain the temperature field of at least part of the heat storage cavity at 800°C ⁇ 1150°C.
  • the thermal storage device includes an ignition body 611 and a thermal storage body 612 .
  • the ignition body 611 is located in the outer flame area of the carbon flame generated by the combustion of the solid fuel, so as to absorb heat from the carbon flame, and the volatile matter in the gas flows over the ignition body 611; the heat accumulator 612 is located above the ignition body 611, and is connected with The ignition body 611 cooperates to maintain the temperature field of the area at 800°C to 1150°C.
  • the heat storage device can be composed of a heat storage body 612 and an ignition body 611, and then a heat storage cavity is formed.
  • the ignition point of the volatile matter can be reached, so that the volatile matter can be ignited when it passes over the ignition body 611, so as to burn in the heat storage chamber to realize the treatment of the volatile matter, and the heat generated by the combustion of the volatile matter can be used by the heat storage body. 612, etc., to maintain a stable temperature field in the thermal storage cavity 48. Due to the existence of a stable temperature field, the VOC can be fully decomposed, thereby ensuring the reduction or avoidance of VOC escape and emission.
  • the material of the heat storage device can be determined as required, as long as the heat storage capacity of the heat storage device can meet the total heat storage required for processing the gas generated by the furnace body for 1.5 seconds, so as to ensure that the VOC deal with it adequately.
  • the stored heat of the heat storage device may be the power of the furnace body for more than 4 seconds.
  • the heat storage body 612 is used to cooperate with the ignition body 611. On the one hand, it encloses the heat storage cavity 48 for gas flow, and on the other hand, it can absorb the heat generated by the combustion of volatile components to maintain the stability of the temperature field and ensure the stability of the volatile components. full combustion and full decomposition.
  • the regenerator 612 can be provided with an air supply port 49.
  • the air supply port 49 can be closed, and when it is necessary to supply air to the heat storage cavity 48, the air supply port 49 can be opened.
  • the gas port 49 can supply oxygen in the heat storage cavity 48, so that the volatile matter can be fully burned.
  • the ignition body 611 and the heat storage body 612 can also adjust the temperature peak in the heat storage cavity 48 to adapt to changes in the moisture content of the solid fuel entering the furnace body.
  • the gas temperature can be raised through the heat release of the ignition body 611 and the heat storage body 612, and the heat storage cavity The temperature of at least part of the body is maintained between 800°C and 1150°C.
  • the moisture content of the solid fuel entering the furnace body is low, and the temperature of the gas entering the heat storage cavity 48 is increased, heat can be absorbed by the ignition body 611 and the heat storage body 612 to prevent the temperature from being too high and causing a large amount of heat to be absorbed.
  • Nitrogen in the air is oxidized.
  • the temperature field of at least a part of the heat storage cavity 48 can be maintained at 800° C. ⁇ 1150° C.
  • the ignition body 611 and the heat storage body 612 can be made of materials with a certain heat storage capacity, such as refractory cement.
  • the materials and structures of the ignition body 611 and the heat accumulator 612 can be determined according to the output power of the fuel furnace. For example, it is made of materials whose heat storage can meet or exceed the total heat demand of the gas produced by the furnace body in 4 seconds.
  • a temperature sensor can also be set in the thermal storage cavity 48, and the temperature in the thermal storage cavity 48 can be detected by using the temperature sensor, and then according to the detected real-time temperature, the The induced draft fan connected to the furnace body is controlled, and the stability of the temperature field in the thermal storage cavity 48 is ensured by controlling the wind speed of the induced draft fan. For example, when the temperature is lower than the first set value, the induced draft fan is controlled to increase the wind speed, and for example, when the temperature is higher than the second set value, the induced draft fan is controlled to reduce the wind speed.
  • the first set value is lower than the second set value.
  • the combustion furnace may further include a support structure, the support structure is arranged in the furnace body, and the ignition body 611 is fixed. Set on the upper end of the support structure.
  • the support structure can support the ignition body 611 on the one hand, and can stop the solid fuel on the other hand.
  • the support structure includes a stopper section 81 and an inclined section 82, the inclined section 82 is disposed between the ignition body 611 and the stopper section 81, the stopper section 81 is used to stop the solid fuel, and the stopper section 81 is connected to the air outlet 47 The distance is smaller than the distance between the ignition body 611 and the air outlet 47 , and the inclined section 82 is used to fix the ignition body 611 .
  • the setting of the inclined section 82 makes it possible to meet the requirements for the location of the ignition body 611 while meeting the volume requirements of the fuel stack, ensuring that the ignition body 611 can be located in the outer flame area of the carbon flame, and will not interfere with the natural formation of the stacking slope of the fuel stack. .
  • the material of the ignition body 611 is the same as the material of the inclined section 82 .
  • the ignition body 611 and the inclined section 811 are both refractory cement or refractory bricks with the same specific heat capacity, which makes the processing of the ignition body 611 and the inclined section 82 more convenient.
  • the heat storage capacity of the ignition body 611 should meet the requirements of maintaining the temperature field. Heat can maintain the temperature field in the range of 800°C to 1150°C.
  • the material of the ignition body 611 is different from the material of the inclined section 82, such as refractory cement or refractory bricks with different specific heat capacities, and the heat storage of the ignition body 611 per unit volume is greater than that of the inclined section 82 per unit volume. heat storage.
  • the ignition body 611 is made of refractory cement, and the material of the inclined section 82 and the stop section 81 can be made of refractory bricks, etc., which is less expensive.
  • the material of the heat storage body 612 may be the same as or different from that of the ignition body 611 , which is not limited.
  • the end of the heat storage body 612 cooperates with the ignition body 611 to form the exhaust inlet of the heat storage cavity 48, and the area of the exhaust inlet is smaller than the exhaust gas of the exhaust passage. area of exit.
  • This can ensure that the gas flows in the heat storage cavity 48 relatively stably, and will not affect the overall negative pressure environment in the furnace body, so that the volatile matter is in the area where the temperature field is 800°C to 1150°C (for the convenience of description, this area is The residence time in the gas combustion zone) is more controllable to ensure that the residence time in this zone meets the requirements, so as to ensure full combustion, prevent volatile matter from escaping, and avoid gas pollution.
  • the residence time of the gas in the gas combustion zone is positively related to the volume of the gas combustion zone.
  • the residence time can be increased by increasing the volume.
  • the height of the exhaust outlet of the exhaust passage is lower than the height of the exhaust inlet. This makes the volatiles must pass through the gas combustion zone, where they can be exhausted after being fully burned.
  • the furnace body further includes an air inlet side wall 44, the air inlet side wall 44 is arranged opposite to the air outlet side wall, and the upper part of the air inlet side wall 44 is provided with an air inlet 41, and the height of the air inlet 41 is higher than that of the air outlet.
  • the height of the tuyere 47 The advantage of this arrangement is that the airflow must pass through the gas combustion zone to be discharged. On the one hand, it ensures sufficient oxygen supply to the solid fuel, and on the other hand, it also effectively prevents the volatile matter from escaping without burning.
  • a temperature field flow matching the solid fuel combustion process needs to be satisfied in the furnace, so as to achieve full combustion of the solid fuel.
  • the temperature field flow is as follows: the spatial distribution of the temperature area in the furnace satisfies the temperature conditions required for each combustion stage of the solid fuel, and the temperature field flow is formed by the solid fuel in the furnace during the combustion process.
  • the combustion that conforms to the combination of multiple inherent combustion properties of solid fuel can be realized in the furnace, that is, multi-factor coupled combustion can be realized.
  • a material distribution structure arranged in the furnace body of the combustion furnace is provided to establish the above-mentioned temperature field process in the furnace (the furnace chamber may be a combustion space of solid fuel, which may be at least part of the inner cavity of the furnace body).
  • a feeding port 42 is provided on the top wall of the furnace body, and the feeding port 42 is located between the air inlet 41 and the heat storage device.
  • the fuel stack formed by the solid fuel can be located between the air inlet 41 and the heat storage cavity 48.
  • the fuel stack forms a blocking and dispersing effect on the air flow, so that the surface air intake of the fuel stack can be realized (the surface air intake refers to the airflow.
  • the volatiles released by the solid fuel can enter the thermal storage together with the airflow
  • the cavity 48 is fully burned in the heat storage cavity 48, which effectively ensures the sufficient treatment of volatile matter, thereby realizing clean emission.
  • a material distribution structure can also be set in the combustion furnace, and the solid fuel in the combustion furnace can be burned in an organized and orderly manner by using the material distribution structure.
  • the combustion furnace of this embodiment can be used for stacking combustion of solid fuel in the furnace body.
  • grate furnaces operate with fuel spread on the grate.
  • the thickness of the fuel laid on the grate should not be too high, usually only a few tens of centimeters in thickness.
  • the fuel is laid flat on the grate, and the height is low, resulting in less calorific value that the fuel can provide, insufficient adaptability to changes in moisture in the new fuel, and new fuel is prone to appear when the humidity of the newly added fuel increases. It is difficult to ignite and the grate furnace is out of fire, and when the humidity of the newly added fuel decreases, the air volume and speed of the air supply cannot be adjusted in time, resulting in excessive local wind speed of the fuel, which causes the fuel to overburn and coke, causing the furnace to burn. The exhaust is blocked, and the nitrogen in the air is oxidized, producing a large amount of polluting gases (such as nitrogen oxides).
  • polluting gases such as nitrogen oxides
  • the fuel of the grate furnace needs to be laid on the grate, and the output power of the grate furnace is positively related to the area of the grate. Therefore, if a higher output power is required, a larger area of the grate is required, which further increases the production cost.
  • the combustion furnace in the embodiment of the present application is a stack combustion furnace, that is, the solid fuel can be piled into a fuel stack in most of the space of the furnace body and burned.
  • the space in the furnace body can be fully utilized, so that the space in the height direction of the furnace body can be fully utilized, thereby saving costs, and the output power of the combustion furnace is related to the volume of the furnace body.
  • the furnace body includes a top wall, an air inlet side wall 44 and an air outlet side wall, and the like.
  • the top wall is provided with a feed port 42
  • the upper part of the air inlet side wall 44 is provided with an air inlet 41
  • the feed port 42 is located between the air inlet 41 and the heat storage device, so that the gas generated by the combustion of the solid fuel flows with the airflow. into the heat storage cavity 48 formed by the heat storage device.
  • the air outlet side wall is arranged relative to the air inlet side wall 44 to form the air outlet 47 .
  • the height of the air outlet 47 is lower than the height of the air inlet 41 in order to ensure that the volatiles will not escape without burning.
  • the lower part of the furnace body is provided with a discharge conveying mechanism 46, which is used for conveying combustion residues (such as carbon and/or ash remaining from combustion) out of the furnace body.
  • the discharge port of the combustion furnace is located at the end of the grate away from the air inlet side wall 44 .
  • the material distribution structure can automatically screen or sort the solid fuel entering the furnace body, and is also used to adjust the burning time of different volumes of solid fuel in the furnace body.
  • the material distribution structure is arranged below the feeding port 42 , and the material distribution structure has a first inclined plane and a first material passing gap 31 .
  • the first end of the first inclined surface is an end close to the ignition body 611
  • the second end of the first inclined surface is an end away from the ignition body 611 .
  • the distance between the second end of the first inclined surface and the air inlet side wall 44 is less than or equal to the distance between the feed opening 42 and the air inlet side wall 44 .
  • the distance between the feed port 42 and the air inlet side wall 44 refers to the shortest distance between the two.
  • the material distribution structure is used to provide a guiding force for the solid fuel to move downward, so that the solid fuel moves along the first inclined plane.
  • the solid fuel entering the combustion furnace is screened according to the volume through the material distribution structure, so that the solid fuel whose volume is larger than the first material passing gap 31 moves along the first inclined plane, and the solid fuel whose volume is smaller than the first material passing gap 31 is made to move along the first inclined plane. It falls through the first material passing gap 31 .
  • the solid fuel is screened by volume through the material distribution structure.
  • the solid fuel with large volume stays above the material distribution structure.
  • the fluidity is poor), which is positively related to the gap between the solid fuels (that is, the larger the volume, the larger the gap between the solid fuels), so the gap between the solid fuels staying above the distribution structure is larger, thereby making the wind resistance It is smaller, and the way of air intake on the furnace body enables the solid fuel above the distribution structure to obtain sufficient oxygen supply.
  • the solid fuel with a small volume has good fluidity, and can fall down quickly and move toward the discharge port, so that the time spent in the furnace body is shorter than that of the solid fuel with a large volume, and over-burning can be avoided. .
  • the distribution structure In addition to screening (or sorting) and guiding the solid fuel through the first gap, the distribution structure also makes the solid fuel organized in a way that the solid fuel is endothermically cracked above the distribution structure, and burned and released below the distribution structure. Combustion while at least a portion of the heat storage device is at a distance less than or equal to the set distance threshold from the distribution structure, so that a portion of the heat storage device is located in the outer flame region of the carbon flame.
  • the material distribution structure includes at least a first support arm group 10 , and may also include at least one second support arm group 20 as required.
  • the number of the second arm groups 20 may be determined according to the combustion space of the combustion furnace. The larger the output power of the combustion furnace, the larger the required combustion space, and the larger the number of the second arm groups 20 provided.
  • the material distribution structure includes a first arm set 10 and a second arm set 20 .
  • the material distribution structure may be set to include more than two second arm groups 20, for example, three arm groups, which is not limited.
  • FIG. 4 shows a three-dimensional schematic diagram of the material distribution structure of the stack sintering furnace with a heat storage device in an embodiment of the present application.
  • the first support arm group 10 may have a plurality of parallel first support arms, these first support arms form a first inclined plane, and a first cross-section is disposed between two adjacent first support arms Material gap 31.
  • the first arm group 10 of the material distribution structure is arranged below the feed port 42 , and the first end of the first arm group 10 (in FIG.
  • the height of one end of the wall 44) is lower than the height of the second end of the first arm group 10 (the end close to the air inlet side wall 44 in FIG. 2).
  • the distance between the end and the air inlet side wall of the furnace body is less than or equal to the distance between the feed port 42 and the air inlet side wall 44 .
  • the second arm set 20 is located below the first arm set 10 , and the first end of the second arm set 20 (the end away from the air inlet side wall 44 ) is higher than the second end of the second arm set 20 (closer to the air inlet side wall 44 ) one end of the air inlet side wall 44).
  • the second arm group 20 may have a plurality of parallel second arms, and the second arms form a second inclined plane.
  • a second material passing gap is set between two adjacent second arms, and the width of the second material passing gap is smaller than the width of the first material passing gap 31 .
  • the top of the first arm group 10 is a cracking area, and the solid fuel absorbs heat in this area, and the volatile matter therein is released due to cracking, and the moisture therein is also evaporated.
  • a fixed carbon combustion zone may be formed between the first arm set 10 and the second arm set 20, and the fixed carbon in the solid fuel burns and releases heat when the solid fuel is in the zone. Since there are more solid fuels in the fixed carbon combustion zone in the burner, enough heat can be provided to the solid fuels in the pyrolysis zone to ensure that even if the solid fuel entering the furnace has high humidity (for example, garbage with more moisture)
  • the heat storage device in the combustion furnace also stores sufficient heat to dry the solid fuel, so that the combustion furnace can adapt to the solid fuel of different humidity.
  • the combustion furnace does not require complex sensors for detection, nor does it require complex control, which greatly improves reliability and reduces failure rates.
  • An oxygen-deficient combustion zone is formed between the second arm set 20 and the discharge conveying mechanism 46.
  • the gap between the solid fuels is relatively small because the solid fuel is far away from the air inlet 41 and the volume is relatively small.
  • the oxygen supply is less and the airflow velocity is lower, and the reduced airflow velocity will make the temperature of the oxygen-deficient combustion zone lower, thus solving the problem of easy overburning and coking in the existing spread-burning furnace.
  • the combustion furnace of the present application utilizes the inherent characteristics that the solid fuel gradually decreases in volume and the fuel gap gradually increases during the combustion process, and realizes automatic adjustment of wind resistance at different positions in the furnace body, thereby automatically preventing the solid fuel from overburning.
  • the operation process of the combustion furnace can be divided into several stages of filling, ignition and operation.
  • the solid fuel enters from the feeding port 42, and gradually falls and accumulates to form a fuel pile.
  • the fuel pile naturally forms a stacking slope.
  • the fuel pile is schematically shown in FIG.
  • the stacking slope of solid fuel at different positions in the furnace body is similar.
  • the air inlet 41 is closed, the induced draft fan connected to the air outlet 47 is turned on, and the ignition material is put in the feed inlet 42.
  • the furnace body is in a negative pressure state, and the air flow from the feed inlet 42 enters, so that the pilot ignites the solid fuel, and after a period of ignition (the time can be determined in an appropriate manner as required), the operation phase is entered.
  • the material level of the feed port 42 is kept at the second material level, and the second material level is higher than the first material level, and the air inlet 41 is opened to allow the airflow to enter from the air inlet 41, and when running for a period of time
  • the discharging conveying mechanism 46 is activated, so that the discharging conveying mechanism 46 pushes the solid fuel to move toward the discharging port, wherein the moving direction of the discharging conveying mechanism 46 is the direction away from the air inlet 41 .
  • the fuel stack in the furnace body is continuously collapsed, and the discharge conveying mechanism 46 is constantly driving the combustion residue to move out of the furnace body.
  • the solid fuel of the furnace can be continuously dropped downwards to realize the replenishment of new solid fuel into the furnace body.
  • the solid fuel entering from the feed port 42 first absorbs heat in the cracking area, so that volatile matter and the like are precipitated, and at the same time, the water contained therein is also evaporated, and the volume of the solid fuel is also reduced during this process.
  • the water vapor and volatile matter are carried by the air flow into the thermal storage cavity 48 formed by the thermal storage device, and are processed in the thermal storage cavity 48 .
  • the cracking area in this embodiment means that the cracking of solid fuel in this area accounts for the highest proportion, which may be accompanied by the combustion of solid fuel, so this area is mainly solid fuel cracking, not limited to solid fuel.
  • the fuel is only cracked in the cracking zone.
  • the following fixed carbon combustion zone and anoxic combustion zone are also similar. In the fixed carbon combustion zone, the proportion of fixed carbon combustion in solid fuel is the largest, not only fixed carbon combustion, but solid fuel in the anoxic combustion zone. The proportion of anoxic combustion is the highest, not just anoxic combustion.
  • the solid fuel When the solid fuel reaches the first slope of the first arm group 10 of the material distribution structure from the feed port 42, the solid fuel with a volume smaller than the first material passing gap 31 can pass through due to the blocking effect of the first arm group 10. into the fixed carbon combustion zone. For the solid fuel whose volume is larger than the first material passing gap 31, it will move downward along the first slope and gradually move to the first end of the first arm group 10 (that is, the one shown in the figure that is far from the air inlet side wall 44). one end), during this process, the solid fuel can still absorb heat for cracking and evaporation of water.
  • the solid fuel moves to a range where the temperature field is higher than the ignition point, the solid fuel will be ignited and start to burn, with the Pyrolysis, water is evaporated and burned, and its volume is also continuously reduced until the combustion can pass through the first material passing gap 31, and then it will enter the fixed carbon burning zone. If the solid fuel is doped with incombustible and relatively large substances, since its volume will not decrease, it will move along the first inclined plane to the first end of the first arm group 10, and then fall to the oxygen-deficient combustion. zone, and with the collapse of the solid fuel in the oxygen-deficient combustion zone and the push of the discharge conveying mechanism 46, it is pushed to the discharge port and discharged from the furnace body. This makes the combustor extremely adaptable to solid fuels, and is also compatible with solid fuels doped with incombustibles, and it is guaranteed not to be stuck due to the presence of incombustibles.
  • the wind resistance at this place is generally smaller, which in turn makes the airflow velocity larger, and the airflow velocity is positively correlated with the temperature, so the temperature at the first end of the first arm group 10 is higher, and this area is also positive It is the area where the carbon flame generated by the combustion of solid fuel is located, which can fully provide heat for the heat storage device and help it maintain a stable temperature field.
  • this part of the solid fuel can obtain sufficient oxygen supply to burn , as the volume of the burning solid fuel decreases, the gap between the solid fuel going down is smaller, the wind resistance is larger, the wind speed is smaller and the temperature is lowered, so the solid fuel will not appear coking phenomenon, thus effectively Solve the problem that the solid fuel is easy to coke and cause blockage caused by the coking temperature below the ignition point.
  • the solid fuel Due to the volume reduction of the solid fuel caused by the combustion, combined with the pushing action of the discharge conveying mechanism 46, the solid fuel continuously moves downward.
  • the solid fuel moves to the second slope of the second arm set 20, if it can fall through the second material passing gap of the second arm set 20, it will enter the oxygen-deficient combustion zone from the fixed carbon combustion area; If the volume is too large to fall through the second feeding gap, it will move down the second slope until it can fall through the second feeding gap, or move to the second end of the second arm group 20 While falling, it is pushed to the oxygen-deficient combustion zone by the discharge conveying mechanism 46 .
  • the air supply in the furnace belongs to the surface air supply, and the airflow speed is controlled by the gap between the solid fuels, so that the combustion volume of the solid fuel is reduced, while the The characteristics of reducing the gap and reducing the wind speed naturally control the combustion of the solid fuel, preventing the phenomenon of insufficient combustion in some parts and over-combustion in the other part.
  • the time that the solid fuel stays in the fixed carbon combustion zone can be controlled, thereby controlling the residual combustion
  • products of required quality for example, biomass granular carbon with a carbon content of more than 90%.
  • biomass fuel can be processed into carbon through the stack furnace, and the heat generated during the combustion process can also be used to generate electricity.
  • the oxygen-deficient combustion zone is far away from the air inlet 41 and the gap between the solid fuels is also small, the wind resistance here is high and the airflow velocity is low, so coking will not occur, and the oxygen supply is also small. , which can avoid over-burning, thereby preventing excessive nitrogen oxide emissions due to oxidizing nitrogen in the air.
  • a gap 90 is also formed below the second arm set 20, and the gap 90 enables the burning carbon flame to be collected to the first arm. at the first end of the arm set 10 .
  • the furnace body is also provided with a first inlet 71 and a second inlet 72.
  • the first inlet 71 allows materials with lighter bulk density (such as garbage, dust, etc.) to enter the furnace body and burn together with solid fuel.
  • the second inlet 72 is used for materials with larger bulk density (such as sludge, etc.) to enter the furnace body to be burned together with the solid fuel.
  • the above-mentioned combustion furnace can meet the above-mentioned temperature field process in the furnace, that is, the spatial distribution of different temperature regions in the furnace can meet the temperature conditions required by different combustion stages of solid fuel, and in the furnace, it can meet multiple inherent combustion properties of solid fuel, and make these Combustion in which inherent combustion properties cooperate with each other, that is, multi-factor coupled combustion of multiple combustion properties.
  • inherent combustion properties of the solid fuels described above include:
  • the combustion process of solid fuel is a process of first absorbing heat and then releasing heat.
  • the heat capacity that is, the fuel enthalpy value
  • the embodiments of the present invention can ensure that the heat absorption required before the solid fuel is burned, thus ensuring that the combustion furnace can be stably and continuously The ground burns without breaking the fire.
  • the volume of solid fuel changes from large to small during the combustion process, so that the stacking slope of the solid fuel gradually decreases, the fluidity increases, the gap between the solid fuel gradually decreases, and the ventilation rate gradually decreases.
  • the temperature environment of 800-1150°C formed by the heat storage device enables the volatile matter (including dioxin) to be fully cracked and/or burned to achieve environmentally friendly emissions.
  • the embodiment of the present application realizes the organized combustion of the solid fuel by setting the material distribution structure and the heat storage device, and fully cracks and burns the volatile matter released during the combustion of the solid fuel.
  • the gas generated by the combustion passes through the solid fuel before entering the heat storage cavity, so that the solid fuel is formed between the solid fuels.
  • the gaps in the air filter play the role of filtering the gas, thereby reducing the particulate matter contained in the gas entering the thermal storage cavity and reducing the operating cost of clean emissions.

Abstract

本技术方案提供一种带蓄热装置的燃烧炉。该带蓄热装置的燃烧炉包括:炉体,炉体用于容纳进入其中的固体燃料堆积形成的燃料堆,炉体具有出风口;蓄热装置,蓄热装置设置在炉体内,并在炉体内围成与出风口连通的蓄热腔体,蓄热装置的一部分位于固体燃料燃烧形成的碳焰的外焰区,以在蓄热腔体内形成温度场维持在800℃~1150℃范围内的区域,所述区域用于供固体燃料燃烧形成的气体燃烧。该燃烧炉能够对挥发分进行可靠处理。

Description

带蓄热装置的燃烧炉 技术领域
本申请实施例涉及燃烧设备领域,尤其涉及一种带蓄热装置的燃烧炉。
背景技术
随着近年来生物质和垃圾、污泥等固废的处理和发电技术,以及褐煤等低品质固体燃料发电技术等的快速发展,燃烧设备,例如锅炉,作为热能发电系统中的重要组成,其应用越来越广泛。现有的燃烧设备,如利用炉排的燃烧炉(下文称作摊烧式燃烧炉),存在着结构复杂、加工生产成本高、使用稳定性差、燃料燃烧不充分等缺点。为了实现燃料的充分供氧,在摊烧式燃烧炉中燃料堆积在炉排上进行燃烧,燃料厚度不能过厚,不然容易造成局部燃料燃烧不充分,而另一部分容易过燃,导致资源浪费和污染。而且燃烧产生的气体中携带有许多污染气体,如二噁英、可燃气体等,需要花费极高成本对气体进行净化处理,导致运行、维护成本高。
发明内容
为了解决上述问题,本申请实施例提供了一种带蓄热装置的燃烧炉,以至少部分地解决上述问题。
根据本申请的一方面,提供一种带蓄热装置的燃烧炉,其包括:炉体,炉体用于容纳进入其中的固体燃料堆积形成的燃料堆,炉体具有出风口;蓄热装置,蓄热装置设置在炉体内,并在炉体内围成与出风口连通的蓄热腔体,蓄热装置的一部分位于固体燃料燃烧形成的碳焰的外焰区,以在蓄热腔体内形成温度场维持在800℃~1150℃范围内区域,区域用于供固体燃料燃烧形成的气体燃烧。
可选地,蓄热装置包括:引火体,位于固体燃料燃烧产生的碳焰的外焰区,以从碳焰吸收热量,气体中的挥发分从引火体的上方流过;蓄热体,蓄热体位于引火体的上方,且与引火体配合形成上述蓄热腔体。
可选地,蓄热体的端部与引火体配合形成蓄热腔体的排气入口,排 气入口的面积小于排气通道的排气出口的面积。
可选地,排气出口的高度低于排气入口的高度。
可选地,燃烧炉还包括支撑结构,支撑结构设置在炉体内,且引火体固定设置在支撑结构的上端。
可选地,支撑结构包括止挡段和倾斜段,倾斜段设置在引火体和止挡段之间,止挡段用于止挡固体燃料,止挡段与出风口的距离小于引火体与出风口的距离,倾斜段用于固定引火体。
可选地,引火体的材质与倾斜段的材质相同;或者,引火体的材质与倾斜段的材质不同,且单位体积的引火体的蓄热量大于单位体积的倾斜段的蓄热量。
可选地,炉体还包括进风侧壁,进风侧壁与出风口所在的出风侧壁是相对设置的,且进风侧壁的上部设置有进风口,进风口的高度高于出风口的高度。
可选地,炉体的顶壁上设置有进料口,进料口位于进风口和蓄热装置之间。
可选地,燃烧炉还包括分料结构,分料结构设置在进料口的下方,用于承接自进料口进入炉体的固体燃料,且分料结构具有第一斜面和第一过料间隙,分料结构用于为固体燃料提供向下移动的导向作用力,使固体燃料沿第一斜面运动,且通过分料结构的第一过料间隙对进入炉体的固体燃料按照固体燃料的体积进行筛选,使体积大于第一过料间隙的固体燃料沿着第一斜面运动,并使体积小于第一过料间隙的固体燃料通过第一过料间隙掉落,使固体燃料按照在分料结构上方吸热裂解,在分料结构下方燃烧并放热的方式有组织地燃烧,蓄热装置的至少部分与分料结构的距离小于或等于设定距离阈值,以使蓄热装置的一部分位于碳焰的外焰区。
可选地,燃烧炉还包括分料结构,分料结构包括第一支臂组,所述第一支臂组包括多个第一支臂,所述多个第一支臂形成第一斜面,并且相邻的两个所述第一支臂之间设有第一过料间隙,所述第一支臂组设置在所述进料口下方,且所述第一支臂组的第一端的高度低于所述第一支臂组的第二端的高度,所述第一支臂组的第二端与所述炉体的进风侧壁之间的距离小于或等于所述进料口与所述进风侧壁之间的距离可选地,分料结构还包括第二支臂组,第二支臂组位于第一支臂组下方,且第二支臂组的第一端的高度高于第二支臂组的第二端的高度,所述第二支臂组包括多个第二支臂,所述多个第二支臂形成第二斜面,并且相邻的两个所述第一支臂之间设有第二过料间隙,第二过料间隙的宽度小于第一过料间隙的宽度。
通过本申请的上述实施例,该燃烧炉的炉体用于容纳固体燃料堆积 成的燃料堆,为燃料堆提供燃烧空间,炉体的出风口用于供固体燃料燃烧产生的气体排出燃烧炉。其中,气体中包含固体燃料裂解产生的挥发分,还可以包括固体燃料燃烧过程中产生的一氧化碳等。蓄热装置用于在炉体内围成蓄热腔体,且蓄热装置的一部分位于碳焰的外焰区,因此蓄热装置可以吸收碳焰的热量,以提升蓄热腔体内的温度使蓄热腔体内的至少部分区域的温度场维持在800℃~1150℃之间,从而可以点燃挥发分,使其在蓄热腔体内燃烧。挥发分燃烧产生的热量也可以被蓄热装置吸收,从而可以将该区域的温度场稳定地维持在800℃~1150℃的范围。由于该区域的温度场稳定,且该区域的空间使气体在其中能够停留足够长的时间,因此使得挥发分能够在该区域充分地燃烧和分解,从而实现对挥发分的处理,避免二噁英等逃逸,提升了燃烧炉的清洁性,且在炉体内可以实现对挥发分的处理,减少或省略设置额外的污染物处理设备(例如设置专门的脱硫脱硝装置),使得清洁排放的成本更低。并且,该800℃~1150℃范围的温度场可以使空气中的氮气被氧化减少,故而减少产生诸如一氧化氮、二氧化硫等这样的污染物。
附图说明
为以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的范围。
图1示出了本申请一个实施例中的带蓄热装置的堆烧炉的结构示意图;
图2示出了本申请另一个实施例中的带蓄热装置的堆烧炉的结构示意图;
图3示出了本申请另一实施例中的带蓄热装置的堆烧炉的结构示意图;和
图4示出了本申请另一个实施例中的带蓄热装置的堆烧炉的分料结构的立体结构示意图。
附图中示出的部件的列表如下:
10、第一支臂组;20、第二支臂组;31、第一过料间隙;41、进风口;42、进料口;44、进风侧壁;46、出料输送机构;47、出风口;48、蓄热腔体;611、引火体;612、蓄热体;81、止挡段;82、倾斜段;90、空隙。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面 将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
实施例一
参照图1,本申请实施例提供一种带蓄热装置的燃烧炉,该燃烧炉包括炉体和蓄热装置,炉体用于容纳进入其中的固体燃料堆积形成的燃料堆,炉体具有出风口47;蓄热装置设置在炉体内,并在炉体内围成与出风口47连通的蓄热48,蓄热装置的一部分位于固体燃料燃烧形成的碳焰的外焰区,以在蓄热腔体48内形成温度场维持在800℃~1150℃范围内的区域,该区域用于供固体燃料燃烧形成的气体燃烧。
该燃烧炉的炉体用于容纳固体燃料堆积成的燃料堆,为燃料堆提供燃烧空间,炉体的出风口47用于供固体燃料燃烧产生的气体排出燃烧炉。其中,气体中包含固体燃料裂解产生的挥发分(VOC,volatileorganic compounds)以及在固体燃料燃烧过程中产生的可燃气体(如一氧化碳等)。蓄热装置用于在炉体内围成蓄热腔体48,且蓄热装置的一部分位于碳焰的外焰区,因此可以利用蓄热装置吸收碳焰的热量,以提升蓄热腔体48内的温度,使蓄热腔体48内的至少部分区域的温度场维持在800℃~1150℃之间,从而使挥发分在蓄热腔体48内充分燃烧。挥发分等燃烧产生的热量也可以被蓄热装置吸收,从而用于维持该区域的温度场(温度场由蓄热腔体48内温度在800℃~1150℃的区域构成)。
由于该区域的温度场稳定,且区域的空间使挥发分在其中能够停留足够长的时间,因此使得挥发分能够充分地燃烧,燃烧释放的热量可以用于维持温度场的温度稳定,而且该温度场低于1200℃,因此可以避免大量氧化空气中的氮,以减少氮氧化物的排放,由此使得可以对挥发分等进行处理,以减少或避免设置额外的气体处理设备,使得清洁排放的成本更低。
需要说明的是,本实施例中不对蓄热装置的结构、尺寸、形状等进行限定,只要能够实现蓄热腔体,并且蓄热量足以使得蓄热腔体的至少部分区域的温度场能够维持在800℃~1150℃即可。
例如,在一优选示例中,蓄热装置包括引火体611和蓄热体612。引火体611位于固体燃料燃烧产生的碳焰的外焰区,以从碳焰吸收热量,气体中的挥发分从引火体611的上方流过;蓄热体612位于引火体611的上方,且与引火体611配合使所述区域的温度场维持在800℃~1150℃。
蓄热装置可以由蓄热体612和引火体611构成,进而构成蓄热腔体,通过在碳焰的外焰区设置引火体611,利用其吸收碳焰的热量升温,使 得引火体611的温度可以达到挥发分的燃点,从而在挥发分在引火体611的上方经过时能够被点燃,从而在蓄热腔体内燃烧,实现对挥发分的处理,而挥发分燃烧产生的热量可以被蓄热体612等吸收,以维持蓄热腔体48内稳定的温度场,由于有稳定温度场的存在,使得VOC能进行充分分解,以此保证减少或避免VOC逃逸和排放。
在本实施例中,蓄热装置的材料能够根据需要确定,只要保证蓄热装置的蓄热能力能够满足对炉体1.5秒产生的气体进行处理需要的总蓄热量即可,以保证能够对VOC进行充分处理。
优选地,蓄热装置的蓄热量可以是炉体4秒以上的功率。以功率是10蒸吨(即t/h,1t/h=0.7MW=2.5GJ/h=60万Kcal/h)的燃烧炉为例,蓄热装置的蓄热量可以为燃烧炉产生的10秒的热量,即6*10 6/3600*10=16660Kcal。
其中,蓄热体612用以与引火体611配合,一方面围成蓄热腔体48以供气体流动,另一方面可以吸收挥发分燃烧产生的热量用于维持温度场的稳定,确保挥发分的充分燃烧和充分分解。
可选地,为了保证挥发分的燃烧效果,在蓄热体612上可以设置补气口49,常规状态下,补气口49可以封闭,在需要对蓄热腔体48内补气时,可以打开补气口49,从而为蓄热腔体48内供氧,使挥发分能够充分燃烧。
除此之外,引火体611和蓄热体612还可以实现对蓄热腔体48内温度调峰的作用,以适应进入炉体的固体燃料的水分变化。
例如,当进入炉体的固体燃料的水分较多,导致进入蓄热腔体48内的气体温度有所降低时,可以通过引火体611和蓄热体612放热提升气体温度,将蓄热腔体中至少部分区域的温度维持在800℃~1150℃。当进入炉体的固体燃料的水分较少,导致进入蓄热腔体48内的气体温度有所升高时,可以通过引火体611和蓄热体612吸热,以防止温度过高而使大量空气中的氮被氧化。通过引火体611和蓄热体612的调峰作用,能够使蓄热腔体48内的至少部分区域的温度场维持在800℃~1150℃。
引火体611和蓄热体612可以采用耐火水泥等具有一定蓄热能力的材料。引火体611和蓄热体612的材料和结构可以根据燃料炉输出的功率确定。如选用蓄热量能够满足或者大于炉体4秒产出的气体的总需热量的材料制作。
为了进一步保证蓄热腔体48内的温度场的温度稳定,还可以在蓄热腔体48内设置温度传感器,利用温度传感器检测蓄热腔体48内的温度,进而根据检测的实时温度可以对炉体连接的引风机进行控制,通过 控制引风机的风速的方式保证蓄热腔体48内温度场的稳定。如温度低于第一设定值时,控制引风机增加风速,又例如当温度高于第二设定值时,控制引风机降低风速。第一设定值低于第二设定值。
可选地,为了能够对引火体611进行支撑和定位,且保证不会干扰到固体燃料在炉体内的自然堆积,燃烧炉还可以包括支撑结构,支撑结构设置在炉体内,且引火体611固定设置在支撑结构的上端。支撑结构一方面可以对引火体611进行支撑,另一方面可以对固体燃料进行止挡。
优选地,支撑结构包括止挡段81和倾斜段82,倾斜段82设置在引火体611和止挡段81之间,止挡段81用于止挡固体燃料,止挡段81与出风口47的距离小于引火体611与出风口47的距离,倾斜段82用于固定引火体611。
倾斜段82的设置使得在满足燃料堆的体积需要的同时,满足引火体611的设置位置的需求,确保引火体611能够位于碳焰的外焰区,且不会干扰到燃料堆自然形成堆放坡度。
一种方式中,引火体611的材质与倾斜段82的材质相同。例如,引火体611和倾斜段811均为比热容相同的耐火水泥或耐火砖,这是的引火体611和倾斜段82的加工更加方便。但是,需要说明的是,引火体611的蓄热能力应当满足维持温度场的需求,换而言之,单位体积的引火体611的蓄热量应大于单位体积的炉体的蓄热量,且该蓄热量能够将温度场维持在800℃~1150℃的范围。
或者,另一种方式中,引火体611的材质与倾斜段82的材质不同,如为比热容不同的耐火水泥或耐火砖,且单位体积的引火体611的蓄热量大于单位体积的倾斜段82的蓄热量。例如,引火体611为耐火水泥,而倾斜段82和止挡段81的材质可以是耐火砖等,这种方式成本较低。
蓄热体612的材质可以与引火体611的材质相同,也可以不同,对此不作限制。
可选地,由于气体在燃烧过程中会产生膨胀,因此蓄热体612的端部与引火体611配合形成蓄热腔体48的排气入口,排气入口的面积小于排气通道的排气出口的面积。这样可以保证气体较为稳定地在蓄热腔体48内流动,且不会影响到炉体内整体的负压环境,使得挥发分在温度场为800℃~1150℃的区域(为便于描述,该区域记作气体燃烧区)内的停留时间更加可控,保证其在该区域内的停留时间满足需求,以此保证充分燃烧,防止挥发分逃逸,避免气体污染。
气体在气体燃烧区内的停留时间与气体燃烧区的容积正相关,在流速波动较小的情况下,通过增大容积可以提升停留时间。
优选地,为了进一步防止挥发分的逃逸,排气通道的排气出口的高度低于排气入口的高度。这样使得挥发分必须经过气体燃烧区,在其中充分燃烧后才能够排出。
优选地,炉体还包括进风侧壁44,进风侧壁44是与出风侧壁相对设置的,且进风侧壁44的上部设置有进风口41,进风口41的高度高于出风口47的高度。这样设置的好处在于气流必须经过气体燃烧区才能排出,一方面保证了对固体燃料充分供氧,另一方面也有效避免了挥发分未经燃烧而逃逸。
在本实施例中,需要在炉膛内能够满足与固体燃料燃烧过程匹配的温度场流程,从而实现固体燃料的充分燃烧。该温度场流程为:炉膛内温度区域的空间分布满足固体燃料各燃烧阶段所需的温度条件,温度场流程是炉膛内的固体燃料在燃烧过程中形成的。
为使燃烧炉满足上述的温度场流程,可以在炉膛内实现符合固体燃料多个固有燃烧属性配合的燃烧,即实现多因素耦合燃烧。为此设置了一种设置在燃烧炉炉体内的分料结构,以在炉膛(炉膛可以为固体燃料的燃烧空间,其可以是炉体的至少部分内腔)内建立上述的温度场流程。
在本实施例中,炉体的顶壁上设置有进料口42,进料口42位于进风口41和蓄热装置之间。使得固体燃料形成的燃料堆能够位于进风口41和蓄热腔体48之间,一方面燃料堆对气流形成阻挡和分散效果,使得能够实现对燃料堆进行面进风(面进风是指气流能够在燃料堆中进行自然流动和充分扩散,而不是受一个或多个风机的驱动而形成点进风或者线进风),另一方面固体燃料释出的挥发分能够和气流一起进入蓄热腔体48,并在蓄热腔体48内充分燃烧,这有效保证了挥发分的充分处理,从而实现了清洁排放。
此外,为了保证燃烧炉的可靠运行,燃烧炉中还可以设置分料结构,利用分料结构使燃烧炉内的固体燃料进行有组织、有序的燃烧。为了便于理解,在对分料结构的结构和工作过程进行说明之前,对本实施例中堆烧式燃烧炉和现有的摊烧式的炉排炉进行简要说明如下:
本实施例的燃烧炉可以供固体燃料在炉体内进行堆烧,所谓堆烧是相对于现有的炉排炉的摊烧而言。
现有的炉排炉在运行时燃料是平铺在炉排上的。在炉排炉中为了保证燃料能够充分燃烧,防止局部供氧量不足导致的燃烧不充分,炉排上平铺的燃料的厚度不能过高,通常燃料的厚度只能为几十厘米。
这种炉排炉存在的问题主要在于:
其一,燃料在炉排上平铺,且高度较低,导致燃料能够提供的热值 较少,对新燃料中水分变化的适应性不足,在新加入的燃料的湿度增加时容易出现新燃料难以点燃而使炉排炉断火的情况,而新加入的燃料的湿度减少时不能及时调整给风的风量和风速等,导致燃料局部风速过高,而使燃料出现过燃而结焦,使炉排堵塞,并对空气中的氮气进行氧化,产生大量的污染气体(如氮氧化物)。
其二,为了提升炉排炉运行的可靠性,需要在炉排周围设置大量传感器检测炉排处的温度,进而控制对燃料的给风量,这一方面导致生产成本升高,且控制逻辑复杂、可靠性降低;另一方面,由于炉排是点给风(由一个风机向外吹出的风)或线给风(由一排风机向外吹出的风),使得燃料很容易出现局部燃烧不充分,同时另一局部过燃的现象。
其三,炉排炉的燃料需要铺设在铺排上,炉排炉的输出功率与炉排面积正相关。因此,若需要较高的输出功率,就需要较大面积的炉排,进一步提升了生产成本。
不同于现有的炉排炉,本申请实施例中的燃烧炉是堆烧炉,即固体燃料可以在炉体的大部分空间内堆积成燃料堆,并进行燃烧。这样使得可以充分利用炉体内的空间,使得炉体在高度方向上的空间可以被充分利用,从而节省成本,且使得燃烧炉输出功率与炉体的体积相关。
在一示例中,炉体包括顶壁、进风侧壁44和出风侧壁等。其中,顶壁上设置有进料口42,进风侧壁44的上部设置有进风口41,进料口42位于进风口41和蓄热装置之间,使固体燃料燃烧产生的气体随着气流进入到蓄热装置形成的蓄热腔体48内。
出风侧壁相对于进风侧壁44设置,用于形成出风口47,如前所述,为了保证挥发分不会未经燃烧而逃逸,出风口47的高度低于进风口41的高度。
炉体的下部设置有出料输送机构46,用于将燃烧剩余物(如燃烧剩余的碳和/或灰等)输送出炉体。燃烧炉的出料口位于炉排远离进风侧壁44的一端。
为了进一步解决燃料堆高度较高、固体燃料堆积厚度大、风阻大的问题,实现既保证固体燃料的燃烧程度满足需求,又不会过燃的效果,在本实施例中,在炉体内设置分料结构,分料结构可以对进入炉体的固体燃料进行自动筛选或分拣,而且还用于调整不同体积的固体燃料在炉体内的燃烧时长。
其中,分料结构设置在进料口42的下方,且分料结构具有第一斜面和第一过料间隙31。且第一斜面的第一端为靠近引火体611的一端,第一斜面的第二端为远离引火体611的一端。
在一示例中,第一斜面的第二端与进风侧壁44的距离小于或等于进料口42与进风侧壁44的距离。进料口42与进风侧壁44的距离指两者之间的最短距离。
分料结构用于为固体燃料提供向下移动的导向作用力,使固体燃料沿第一斜面运动。
此外,通过分料结构对进入燃烧炉的固体燃料依据体积进行筛选,使体积大于第一过料间隙31的固体燃料沿着第一斜面运动,并使体积小于第一过料间隙31的固体燃料通过第一过料间隙31掉落。
通过分料结构对固体燃料按照体积进行筛选,一方面使得在燃烧炉工作过程中,体积大的固体燃料停留在分料结构的上方,由于固体燃料的体积和流动性负相关(即体积大,则流动性差),而与固体燃料之间的缝隙正相关(即体积大,则固体燃料之间的缝隙大),因此使得分料结构上方停留的固体燃料之间的缝隙较大,从而使得风阻较小,配合炉体上进风的方式使得分料结构上方的固体燃料能够获得充分的氧气供给。另一方面使得体积小的固体燃料流动性好,可以较快地向下掉落,并向出料口运动,因此使得在炉体内停留的时间相对体积大的固体燃料更短,可以避免过燃。
除了通过第一间隙对固体燃料进行筛选(或者叫分拣)和导向外,分料结构还使固体燃料依照在分料结构上方吸热裂解,在分料结构下方燃烧并放热的方式有组织燃烧,而蓄热装置的至少部分与分料结构的距离小于或等于设定距离阈值,以使蓄热装置的一部分位于碳焰的外焰区。
可选地,分料结构至少包括第一支臂组10,根据需要还可以包括至少一个第二支臂组20。第二支臂组20的数量可以根据燃烧炉的燃烧空间确定。燃烧炉的输出功率越大、则需要的燃烧空间越大,设置的第二支臂组20的数量也可以越多。
在一示例中,分料结构包括一个第一支臂组10和一个第二支臂组20。当然,在其他示例中,根据燃烧炉的功率大小,可以将分料结构设置成包括两个以上的第二支臂组20,例如三个支臂组,对此不作限制。
图4示出了本申请一个实施例中的带蓄热装置的堆烧炉的分料结构的立体结构示意图。如图4所示,第一支臂组10可以具有多个平行的第一支臂,这些第一支臂形成第一斜面,并且相邻的两个第一支臂之间设置有第一过料间隙31。回到图2,在堆烧炉中,分料结构的第一支臂组10设置在进料口42下方,且第一支臂组10的第一端(在图2中为远离进风侧壁44的一端)的高度低于所述第一支臂组10的第二端(在图2中为靠近进风侧壁44的一端)的高度,所述第一支臂组10的第二端与所述炉体的进风侧壁之间的距离小于或等于所述进料口42与进风 侧壁44之间的距离。
第二支臂组20位于第一支臂组10下方,且第二支臂组20的第一端(远离进风侧壁44的一端)高于第二支臂组20的第二端(靠近进风侧壁44的一端)。第二支臂组20可以具有多个平行的第二支臂,这些第二支臂形成第二斜面。相邻的两个第二支臂之间设有第二过料间隙,第二过料间隙的宽度小于所述第一过料间隙31的宽度。
在本示例中,第一支臂组10的上方为裂解区域,固体燃料在该区域内时吸收热量并且其中的挥发分因裂解而释出,同时其中的水分也会被蒸发掉。
第一支臂组10和第二支臂组20之间可以形成固定碳燃烧区,固体燃料在该区域内时其中的固定碳进行燃烧并放热。由于该燃烧炉中固定碳燃烧区内的固体燃料较多,因此能够提供足够的热量给裂解区域中的固体燃料,保证即使进入炉体的固体燃料的湿度较大(例如水分较多的垃圾),燃烧炉内的蓄热装置内也存蓄有充分的热量将固体燃料干燥,从而使得燃烧炉能够适应不同湿度的固体燃料,在提升适应性的同时不需要对固体燃料进行预处理,大大节省了成本,而且该燃烧炉不需要复杂的传感器进行检测,也不需要进行复杂的控制,大大提升了可靠性,降低了故障率。
第二支臂组20和出料输送机构46之间形成缺氧燃烧区,固体燃料在该区域中时由于离进风口41较远、且体积较小导致固体燃料之间的缝隙较小,因此使得供氧量较少、且气流速度较低,而气流速度降低就会使得缺氧燃烧区的温度较低,这样就解决了现有摊烧炉容易过燃和结焦的问题。本申请的燃烧炉利用了固体燃料在燃烧过程中体积逐渐减小、燃料缝隙逐渐增大的固有特性,实现了对炉体内不同位置的风阻的自动调节,从而能够自动防止固体燃料过燃。
为了便于理解,下面对燃烧炉的运行过程和原理进行说明。
燃烧炉的运行过程可以分为填料、点火和运行几个阶段。
在填料阶段,固体燃料从进料口42进入,并逐渐下落和堆积形成燃料堆,燃料堆自然形成堆放坡度,燃料堆如图1所示的示意,在此阶段由于固体燃料还未燃烧,因此炉体内不同位置的固体燃料的堆放坡度类似。当固体燃料堆积到进料口42的第一料位时,停止进料,准备点燃。
在点燃阶段,关闭进风口41、打开与出风口47连接的引风机,在进料口42处放入引燃物,此时在引风机作用下炉体内为负压状态,气流从进料口42进入,使得引燃物将固体燃料点燃,在点燃一段时间(该 时间可以根据需要采用适当的方式确定)后进入运行阶段。
在运行阶段,将进料口42的料位保持在第二料位,第二料位高于第一料位,并打开进风口41,使气流从进风口41进入,且在运行一段时间时启动出料输送机构46,使出料输送机构46推动固体燃料向出料口运动,其中出料输送机构46的运动方向为远离进风口41的方向。
此阶段中,由于在固体燃料的不断燃烧而使得炉体内的燃料堆不断塌缩、以及出料输送机构46不断驱动燃烧剩余物向炉体外运动的双重动力作用下,使得上方进料口42处的固体燃料能够不断向下掉落,实现向炉体内补充新的固体燃料。
进料口42进入的固体燃料首先在裂解区域内吸热而使得挥发分等析出,同时含有的水分也被蒸发,在此过程中固体燃料的体积也会减小。这些水气和挥发分被气流携带而进入蓄热装置形成的蓄热腔体48内,其在蓄热腔体48内被处理。需要说明的是,本实施例中的裂解区域是指固体燃料在该区域内进行的裂解的占比最高,其中可能伴随有固体燃料的燃烧,因此该区域主要是固体燃料裂解,而非限定固体燃料在裂解区域中仅进行裂解。下述的固定碳燃烧区和缺氧燃烧区也是类似的,在固定碳燃烧区内固体燃料中的固定碳燃烧的占比最大,并非仅是进行固定碳燃烧,在缺氧燃烧区内固体燃料的缺氧燃烧占比最高,并非仅是进行缺氧燃烧。
当固体燃料自进料口42到达分料结构第一支臂组10的第一斜面时,由于第一支臂组10的阻挡作用,使得体积小于第一过料间隙31的固体燃料能够通过而进入到固定碳燃烧区。对于体积大于第一过料间隙31的固体燃料,其会沿着第一斜面向下运动,逐渐运动到第一支臂组10的第一端(即图中显示的远离进风侧壁44的一端),在此过程中,固体燃料仍可以吸热进行裂解以及水分的蒸发,若固体燃料运动到温度场高于燃点的范围内,则固体燃料将会被点燃开始燃烧,伴随着固体燃料的裂解、水分被蒸发和燃烧,其体积也在不断地缩小,直到燃烧到能够通过第一过料间隙31,则会进入到固定碳燃烧区。若固体燃料中掺杂了不可燃且体积较大的物质,由于其体积不会减小因此会沿着第一斜面运动到第一支臂组10的第一端,然后掉落到缺氧燃烧区,并随着缺氧燃烧区的固体燃料的塌缩、出料输送机构46的推动被推动到出料口而排出炉体。这使得燃烧炉对固体燃料的适应性极强,对于掺杂了不可燃物的固体燃料也能够兼容,且保证不会由于不可燃物的存在而造成卡死。
由于第一支臂组10的阻挡作用,使得第一支臂组10下方的固体燃料体积塌缩的速度和第一支臂组10上方固体燃料的掉落速度之间存在了速度差,进而在第一支臂组10的下方形成了供气流通过的空隙90, 由于该空隙90的存在,使得从进风口41进入的气流能够从空隙90快速地运动到第一支臂组10的第一端处,又由于固体燃料堆积在第一支臂组10上形成的堆放坡度的存在,导致第一支臂组10的第一端处的固体燃料的厚度最小、且固体燃料之间的间隙较大,综合使得该处的风阻较小,进而使得气流流速较大,而气流流速与温度之间正相关,因此使得第一支臂组10的第一端处的温度较高,而且该区域也正是固体燃料燃烧产生的碳焰所在区域,可以充分地为蓄热装置提供热量,帮助其维持一个稳定的温度场。
对于掉落到固定碳燃烧区的固体燃料,由于该区域与进风口41较近,且从进风口41进入的冷气流会先下沉,因此这部分固体燃料能够获得充足的供氧,从而燃烧,随着燃烧固体燃料的体积减小,越向下的固体燃料之间的缝隙越小,风阻就越大,风速就越小因而使得温度下降,因此固体燃料不会出现结焦的现象,从而有效解决了结焦温度在燃点以下造成的固体燃料容易结焦导致堵塞的问题。
由于燃烧导致的固体燃料的体积减小、结合出料输送机构46的推动作用,使得固体燃料不断向下运动。一部分固体燃料运动到第二支臂组20的第二斜面上时,若能够通过第二支臂组20的第二过料间隙掉落,则会从固定碳燃烧区域进入到缺氧燃烧区;若体积过大,无法通过第二过料间隙掉落,则会沿着第二斜面向下运动,直至能够通过第二过料间隙掉落,或者运动到第二支臂组20的第二端而掉落,被出料输送机构46推动到缺氧燃烧区。
在此过程中,由于固体燃料的燃料堆本身的阻挡作用,使得炉体内的供风属于面给风,且气流速度受到固体燃料之间的间隙控制,实现了利用固体燃料燃烧体积减小,而使得缝隙减小、风速减小的特点对固体燃料的燃烧进行自然控制,防止了局部燃烧不充分,另一部分过燃的现象。
通过调整第二支臂组20的长度、以及第二支臂组20的第二端与进风侧壁44之间的距离就可以控制固体燃料在固定碳燃烧区停留的时间,进而控制燃烧剩余物中的固定碳含量,从而实现获得需要品质的生成物(例如碳含量在90%以上的生物质颗粒碳)的目的。例如,通过该堆烧炉可以将生物质燃料加工成碳,同时还可以利用燃烧过程中产生的热量进行发电。
由于缺氧燃烧区距离进风口41较远,且固体燃料之间的间隙也较小,此处的风阻较高,气流流速较低,因此不会出现结焦的现象,而且供氧量也较少,可以避免过燃,从而防止由于氧化空气中的氮气而造成氮氧化物排放超标。
与第一支臂组10类似地,由于第二支臂组20的阻挡作用,使得第二支臂组20的下方也会形成空隙90,该空隙90使得燃烧的碳焰能够汇集到第一支臂组10的第一端处。
在第二支臂组20的数量多于一个时,剩余的第二支臂组20的工作过程类似,故不再赘述。
除此之外,在炉体上还设置有第一入口71和第二入口72,第一入口71供容重较轻的物料(如垃圾、粉尘等)进入炉体内与固体燃料一起燃烧。第二入口72用于供容重较大的物料(如污泥等)进入炉体内与固体燃料一起燃烧。
上述燃烧炉在炉膛内能够满足上述温度场流程,即炉膛内不同温度区域的空间分布满足固体燃料不同燃烧阶段所需的温度条件,在炉膛内实现符合固体燃料多个固有燃烧属性、并且使这些固有燃烧属性相互配合的燃烧,即多个燃烧属性的多因素耦合燃烧。上述固体燃料的多个固有燃烧属性包括:
1、固体燃料的燃烧过程是先吸热后放热的过程。通过使炉膛内燃料的热容量(即燃料焓值)大于燃烧所需的吸热量,本发明的实施例能够确保提供固体燃料燃烧之前所需的吸热量,从而保证了燃烧炉可以稳定、连续地燃烧,不会断火。
2、固体燃料在燃烧过程中体积由大变小,使得固体燃料的堆放坡度逐渐变小,流动性增大,固体燃料之间的缝隙逐渐减小,通风率逐渐减小。
3、针对固体燃料燃烧产生的烟气,经过蓄热装置形成的800~1150℃的温度环境,使得挥发分(包括二噁英)可以充分裂解和/或燃烧,实现环保排放。
本申请的实施例考虑到上述多个耦合因素,通过设置分料结构和蓄热装置,实现固体燃料的有组织燃烧,且使固体燃料燃烧过程中释放的挥发分等充分裂解、燃烧。
此外,由于固体燃料在炉膛内堆积,而蓄热装置形成的蓄热腔体位于炉膛烟气出口的侧上方,因此在燃烧产生的气体进入蓄热腔体之前经过固体燃料,使得固体燃料之间的缝隙起到对气体进行过滤的作用,从而减少了进入蓄热腔体的气体中包含的颗粒物,降低了清洁排放的运行成本。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本申请实施例示意性的具体实施方式,并非用以限定 本申请实施例的范围。任何本领域的技术人员,在不脱离本申请实施例的构思和原则的前提下所作的等同变化、修改与结合,均应属于本申请实施例保护的范围。

Claims (12)

  1. 一种带蓄热装置的燃烧炉,其特征在于,包括:
    炉体,所述炉体用于容纳进入其中的固体燃料堆积形成的燃料堆,所述炉体具有出风口;
    蓄热装置,所述蓄热装置设置在所述炉体内,并在所述炉体内围成与所述出风口连通的蓄热腔体,所述蓄热装置的一部分位于所述固体燃料燃烧形成的碳焰的外焰区,以在所述蓄热腔体内形成温度场维持在800℃~1150℃范围内的区域,所述区域用于供所述固体燃料燃烧形成的气体燃烧。
  2. 根据权利要求1所述的燃烧炉,其特征在于,所述蓄热装置包括:
    引火体,位于所述固体燃料燃烧产生的碳焰的外焰区,以从所述碳焰吸收热量,所述气体中的挥发分从所述引火体的上方流过;
    蓄热体,所述蓄热体位于所述引火体的上方,且与所述引火体配合形成所述蓄热腔体。
  3. 根据权利要求2所述的燃烧炉,其特征在于,所述蓄热体的端部与所述引火体配合形成所述蓄热腔体的排气入口,所述排气入口的面积小于所述排气通道的排气出口的面积。
  4. 根据权利要求3所述的燃烧炉,其特征在于,所述排气出口的高度低于所述排气入口的高度。
  5. 根据权利要求2所述的燃烧炉,其特征在于,所述燃烧炉还包括支撑结构,所述支撑结构设置在所述炉体内,且所述引火体固定设置在所述支撑结构上。
  6. 根据权利要求5所述的燃烧炉,其特征在于,所述支撑结构包括止挡段和倾斜段,所述倾斜段设置在所述引火体和所述止挡段之间,所述止挡段用于止挡所述固体燃料,所述止挡段与所述出风口的距离小于 所述引火体与所述出风口的距离,所述倾斜段用于固定所述引火体。
  7. 根据权利要求6所述的燃烧炉,其特征在于,所述引火体的材质与所述倾斜段的材质相同;或者,
    所述引火体的材质与所述倾斜段的材质不同,且单位体积的所述引火体的蓄热量大于单位体积的所述倾斜段的蓄热量。
  8. 根据权利要求1所述的燃烧炉,其特征在于,所述炉体还包括进风侧壁,所述进风侧壁与所述出风口所在的出风侧壁是相对设置的,且所述进风侧壁的上部设置有进风口,所述进风口的高度高于所述出风口的高度。
  9. 根据权利要求8所述的燃烧炉,其特征在于,所述炉体的顶壁上设置有进料口,所述进料口位于所述进风口和所述蓄热装置之间。
  10. 根据权利要求9所述的燃烧炉,其特征在于,所述燃烧炉还包括分料结构,所述分料结构设置在所述进料口的下方,用于承接自进料口进入炉体的固体燃料,且所述分料结构具有第一斜面和第一过料间隙,
    所述分料结构用于为所述固体燃料提供向下移动的导向作用力,使所述固体燃料沿所述第一斜面运动,且通过所述分料结构的第一过料间隙对进入所述炉体的固体燃料按照固体燃料的体积进行筛选,使体积大于所述第一过料间隙的固体燃料沿着所述第一斜面运动,并使体积小于所述第一过料间隙的固体燃料通过所述第一过料间隙掉落,使固体燃料按照在分料结构上方吸热裂解,在分料结构下方燃烧并放热的方式有组织地燃烧,所述蓄热装置的至少部分与所述分料结构的距离小于或等于设定距离阈值,以使所述蓄热装置的一部分位于所述碳焰的外焰区。
  11. 根据权利要求9所述的燃烧炉,其特征在于,所述燃烧炉还包括分料结构,所述分料结构包括第一支臂组,所述第一支臂组包括多个第一支臂,所述多个第一支臂形成第一斜面,并且相邻的两个所述第一 支臂之间设有第一过料间隙,所述第一支臂组设置在所述进料口下方,且所述第一支臂组的第一端的高度低于所述第一支臂组的第二端的高度,所述第一支臂组的第二端与所述炉体的进风侧壁之间的距离小于或等于所述进料口与所述进风侧壁之间的距离。
  12. 根据权利要求11所述的燃烧炉,其特征在于,所述分料结构还包括第二支臂组,所述第二支臂组位于所述第一支臂组下方,且所述第二支臂组的第一端的高度高于所述第二支臂组的第二端的高度,所述第二支臂组包括多个第二支臂,所述多个第二支臂形成第二斜面,并且相邻的两个所述第一支臂之间设有第二过料间隙,其中所述第二过料间隙的宽度小于所述第一过料间隙的宽度。
PCT/CN2021/072562 2021-01-18 2021-01-18 带蓄热装置的燃烧炉 WO2022151497A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/072562 WO2022151497A1 (zh) 2021-01-18 2021-01-18 带蓄热装置的燃烧炉
CN202180000343.6A CN115119518A (zh) 2021-01-18 2021-01-18 带蓄热装置的燃烧炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/072562 WO2022151497A1 (zh) 2021-01-18 2021-01-18 带蓄热装置的燃烧炉

Publications (1)

Publication Number Publication Date
WO2022151497A1 true WO2022151497A1 (zh) 2022-07-21

Family

ID=82446790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072562 WO2022151497A1 (zh) 2021-01-18 2021-01-18 带蓄热装置的燃烧炉

Country Status (2)

Country Link
CN (1) CN115119518A (zh)
WO (1) WO2022151497A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2276110Y (zh) * 1996-07-11 1998-03-11 阚春三 立体分层燃烧装置
JP2014142178A (ja) * 2014-04-02 2014-08-07 Toshio Yoshida 燃焼装置及び燃焼方法
CN104896467A (zh) * 2014-03-05 2015-09-09 车战斌 固体燃料的燃烧装置
CN104896466A (zh) * 2014-03-05 2015-09-09 车战斌 固体燃料的燃烧方法及燃烧装置
CN104949109A (zh) * 2014-03-25 2015-09-30 车战斌 固体燃料的燃烧装置及其进料口组件
WO2016183847A1 (zh) * 2015-05-21 2016-11-24 车战斌 固体燃料的燃烧装置
WO2016183850A1 (zh) * 2015-05-21 2016-11-24 车战斌 固体燃料的燃烧装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2276110Y (zh) * 1996-07-11 1998-03-11 阚春三 立体分层燃烧装置
CN104896467A (zh) * 2014-03-05 2015-09-09 车战斌 固体燃料的燃烧装置
CN104896466A (zh) * 2014-03-05 2015-09-09 车战斌 固体燃料的燃烧方法及燃烧装置
CN104949109A (zh) * 2014-03-25 2015-09-30 车战斌 固体燃料的燃烧装置及其进料口组件
JP2014142178A (ja) * 2014-04-02 2014-08-07 Toshio Yoshida 燃焼装置及び燃焼方法
WO2016183847A1 (zh) * 2015-05-21 2016-11-24 车战斌 固体燃料的燃烧装置
WO2016183850A1 (zh) * 2015-05-21 2016-11-24 车战斌 固体燃料的燃烧装置

Also Published As

Publication number Publication date
CN115119518A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
JP4950554B2 (ja) ガス化燃焼装置
CN103542415B (zh) 烟热解窑、炉组合式污泥焚烧装置
CN103912866B (zh) 一种生物质颗粒燃料稳定高效燃烧装置及方法
CN102537975A (zh) 循环流化床垃圾焚烧锅炉及其污染控制系统
CN111853810A (zh) 一种热控型生活垃圾热解气化焚烧炉
CN106352343A (zh) 适用于高热值生活垃圾的气化焚烧炉
WO2017161633A1 (zh) 旋风燃烧装置、燃烧设备和燃烧方法
CN101881433A (zh) 燃生物质蒸汽锅炉
JP6526499B2 (ja) バーナ
CN107314374A (zh) 一种垃圾焚烧炉一次风进风管
WO2022151497A1 (zh) 带蓄热装置的燃烧炉
WO2022151499A1 (zh) 用于固体燃料燃烧炉的分料结构及燃烧炉
KR102169127B1 (ko) 바이콘형 폐기물 압축 및 분쇄 장치 및 폐기물 예비 건조장치가 구비된 스토커식 소각로
CN204141568U (zh) 一种生物质颗粒燃料稳定高效燃烧装置
WO2022151498A1 (zh) 固体燃料的燃烧组织方法及燃烧炉
CN206803124U (zh) 一种气化燃烧系统
WO2022188177A1 (zh) 分选装置及具有其的燃烧炉
KR101209191B1 (ko) 수분이 함량된 고체연료의 건류 연소장치
WO2022188178A1 (zh) 筛选装置及固体燃料的燃烧炉
CN212618246U (zh) 一种自控气化燃烧热水锅炉
CN1438448A (zh) 垃圾煤粉复合燃烧焚烧炉
KR100686441B1 (ko) 연소로 출구 온도제어장치가 구비된 순환유동층 연소장치및 연소로 출구 온도제어방법
CN220061735U (zh) 一种包含一个以上烟气涡流燃烧室的烟气后燃烧装置
JP7199235B2 (ja) 燃焼炉及びその起動方法
CN220417368U (zh) 一种燃煤锅炉低氮清洁燃烧和防熄的结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21918697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21918697

Country of ref document: EP

Kind code of ref document: A1