WO2022188178A1 - 筛选装置及固体燃料的燃烧炉 - Google Patents

筛选装置及固体燃料的燃烧炉 Download PDF

Info

Publication number
WO2022188178A1
WO2022188178A1 PCT/CN2021/080594 CN2021080594W WO2022188178A1 WO 2022188178 A1 WO2022188178 A1 WO 2022188178A1 CN 2021080594 W CN2021080594 W CN 2021080594W WO 2022188178 A1 WO2022188178 A1 WO 2022188178A1
Authority
WO
WIPO (PCT)
Prior art keywords
screening
outlet
box
main
side wall
Prior art date
Application number
PCT/CN2021/080594
Other languages
English (en)
French (fr)
Inventor
车战斌
Original Assignee
方甡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 方甡 filed Critical 方甡
Priority to PCT/CN2021/080594 priority Critical patent/WO2022188178A1/zh
Publication of WO2022188178A1 publication Critical patent/WO2022188178A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/10Screens in the form of endless moving bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers

Definitions

  • the embodiments of the present application relate to the field of screening equipment, and in particular, to a screening device and a solid fuel combustion furnace.
  • Material sorting process is required in the industrial production process to obtain different screening objects.
  • material sorting processes are required in various fields such as biomass, waste, sludge and other solid waste treatment fields, power generation fields, and coal mining and processing fields.
  • vibrating screens are usually used for material sorting and screening.
  • the existing vibrating screen needs to be equipped with an external vibration source to apply vibration force to the material to make the material move, and then cooperate with screens with different apertures to screen the material.
  • This kind of vibrating screen needs to consume a lot of energy due to the external vibration source, which leads to high screening cost, and is prone to failure or damage because the device is in a vibrating state for a long time, resulting in insufficient reliability.
  • the embodiments of the present application provide a screening device and a solid fuel combustion furnace to at least partially solve the above problems.
  • a screening device which includes a screening box, a main screening structure and a scraper mechanism, the screening box has a material inlet for entering materials, and at least two screens are provided on the side wall of the screening box.
  • the main screening structure is set in the screening box to accept the materials entering from the material inlet, and the main screening structure is provided with a first material passing gap for screening materials according to particle size , in order to divide the material into at least two layers of screening objects located above and below the main screening structure;
  • the scraper mechanism is arranged in the screening box, and the scraper mechanism includes a scraper drive assembly and a plurality of scrapers, and the plurality of scrapers are connected to the scraper
  • the plate drive assembly is moved under the drive of the scraper drive assembly, so as to convey the screened objects located above and/or below the main screening structure to the corresponding material outlet.
  • the at least two material outlets include a first outlet and a second outlet, the first outlet corresponds to the screening object located above the main screening structure, and the second outlet corresponds to the screening object positioned below the main screening structure.
  • the first outlet and the second outlet are located on different side walls of the screening box
  • the at least two material outlets further include a third outlet
  • the third outlet and the second outlet are located on the same side wall of the screening box
  • the third outlet is located at the same side wall of the screening box.
  • the third outlet is provided with a second material-passing gap for screening the lower screening material according to the particle size, and the scraper mechanism drives the screening material under the main screening structure to pass through the third outlet and the second outlet in turn .
  • the screening device further includes a discharging pusher, which is arranged outside the screening box and corresponds to the second outlet to receive the screening material discharged from the second outlet.
  • a discharging pusher which is arranged outside the screening box and corresponds to the second outlet to receive the screening material discharged from the second outlet.
  • the first material passing gap of the main screening structure is a sieve hole that applies a shearing force opposite to the moving direction of the screening object, or the first material passing gap of the main screening structure is along the moving direction of the screening object. Through the extended sieve channel.
  • the screening box includes a box main body, a first inclined section and a second inclined section, the lower end of the first inclined section is connected to the first end of the box main body, and the lower end of the second inclined section is connected to the second end of the box main body, Among the at least two material outlets, the first outlet corresponding to the screening object located above the main screening structure is arranged in the first inclined section, and the second outlet of the at least two material outlets corresponding to the screening object positioned below the main screening structure is arranged in the first inclined section.
  • Two inclined sections are provided.
  • the main screening structure includes a horizontal screen section and an inclined screen section connected to the horizontal screen section, the horizontal screen section is located in the box body, the inclined screen section is located in the first inclined section, and the inclined screen section is located in the first inclined section.
  • the height of the upper end of the segment is lower than the height of the upper end of the first outlet.
  • the screening device further includes a material isolator, the material isolator is arranged above the main screening structure to receive the material and control whether the material falls on the main screening structure, and the material isolator is used to form a set above the material isolator.
  • the thick material layer acts as a sealing layer.
  • the material isolator includes a connecting box body and a batching device, the connecting box body is connected to the screening box, the connecting box body has a material channel connected with the material inlet of the screening box, the batching device is rotatably arranged in the connecting box body, and uses It is used to control the opening or closing of the material channel.
  • connection box includes a first material side wall and a second material side wall
  • first included angle between the first material side wall and the horizontal plane is greater than or equal to the stacking slope of the material, or the first included angle is greater than or equal to 35°
  • the value of the second angle between the side wall of the second material and the horizontal plane is 90° minus the self-locking angle of the material relative to the second side wall
  • the dispenser is arranged on the side wall of the first material and the side wall of the second material
  • the batching device includes a rotating shaft and at least two spiral batching structures, and at least two spiral batching structures are arranged on the rotating shaft and rotate. to the opposite.
  • a solid fuel combustion furnace includes a furnace body and the above-mentioned screening device, the furnace body includes a discharge port for discharging combustion residues generated by the combustion of the solid fuel, and the screening device The device is connected with the discharge port, and undertakes the combustion residue discharged from the discharge port to screen the combustion residue.
  • the screening device forms a stop for the materials in the falling process by setting the main screening structure in the screening box, so that the materials with different particle sizes stay at different heights in the screening box, such as making a part of the materials pass through the first screen.
  • the material passing gap falls below the main screening structure, another part of the material is blocked by the main screening structure and stays above the main screening structure, thereby forming at least two layers of screening objects. Since the scraper drive component of the scraper mechanism drives the scraper to move continuously, the screened objects are pushed by the scraper and gradually move to the material outlet for discharge, thereby realizing the screening and sorting of different screened objects in the material. In this process, the material continuously falls under the action of gravity and is screened by the main screening structure.
  • the scraper mechanism only needs to move under the drive of a small power to drive the screening material to move and leak out of the first material passing gap. In this way, screening is realized in the material flow process (the process of material falling can be understood as forming a material flow), and the screening and sorting of materials can be realized without additional vibration sources, which reduces operating costs and saves energy.
  • FIG. 1 shows a schematic cross-sectional structure diagram of a screening device according to an embodiment of the present application
  • FIG. 2 shows a schematic cross-sectional structure diagram of another screening device according to an embodiment of the present application
  • FIG. 3 shows a schematic top view of the structure of the scraper mechanism of the screening device according to the embodiment of the present application
  • FIG. 4 shows a schematic diagram of the cooperation between the screening device and the material separator according to the embodiment of the present application
  • FIG. 5 shows a schematic three-dimensional structure diagram of the batching device of the material isolator according to the embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of the cooperation between the combustion furnace and the screening device according to the embodiment of the present application.
  • a screening device which includes a screening box 91 , a main screening structure 93 and a scraper mechanism 92 .
  • the screening box 91 has a material inlet for materials to enter, and screens The side wall of the box 91 is provided with at least two material outlets for the screened materials to be discharged; the main screening structure 93 is arranged in the screening box 91 to receive the materials entering from the material inlet, and the main screening structure 93 is provided with The first material passing gap is used to screen the materials according to the particle size, so as to divide the materials into at least two layers of screening objects located above and below the main screening structure 93; the scraper mechanism 92 is arranged in the screening box 91, and the scraper mechanism 92 includes The scraper driving assembly 921 and the plurality of scrapers 922, the plurality of scrapers 922 are connected to the scraper driving assembly 921 and move under the driving of the scraper driving assembly 921, so as to displace the
  • the screening device forms a stop for the materials in the falling process by setting the main screening structure 93 in the screening box 91, so that the materials of different particle sizes stay at different heights in the screening box 91, such as making a part of the materials pass through the first pass through the material.
  • the gap falls below the main screening structure 93, and another part of the material is blocked by the main screening structure 93 and stays above the main screening structure 93, thereby forming at least two layers of screening objects. Since the scraper drive assembly 921 of the scraper mechanism 92 drives the scraper 922 to move continuously, the screened objects are pushed by the scraper 922 and gradually move to the material outlet for discharge, thereby realizing the screening and sorting of different screened objects in the material. pick.
  • the material continuously falls under the action of gravity and is screened by the main screening structure 93.
  • the scraper mechanism 92 only needs to move under the drive of a small power to drive the screening material to move and leak the first passing material.
  • the material can be screened in the process of material flow (the process of material falling can be understood as the formation of material flow), and the screening and sorting of materials can be achieved without additional vibration sources, reducing operating costs and saving energy. .
  • the vibrating source needs to drive a large amount of materials accumulated in the vibrating screen to vibrate, so that the relative motion between the materials can realize the screening of the materials.
  • the screening device in this embodiment does not need to vibrate the materials. Therefore, power and operating costs can be saved, and a screening effect can be achieved.
  • the screening device has a simple structure, so the manufacturing cost is lower, and it is not easily damaged during use.
  • the scraper drive assembly 921 of the scraper mechanism 92 includes a belt, a drive motor, a pulley, and the like.
  • a scraper drive assembly 921 may include at least two belts, the two belts are arranged on both sides of the main screening structure 93 at intervals, and are sleeved on the pulley, and the drive motor is connected with the at least one pulley to drive the pulley to rotate, and the pulley passes through the pulley.
  • Rotating to drive the belt to move the scraper 922 is connected between two adjacent belts and is driven to move by the belt.
  • the scraper 922 is reciprocated by the rotation of the belt, thereby pushing the screened objects to move to the corresponding outlet.
  • the scraper drive assembly 921 may include a chain, sprockets, and drive motor.
  • the chain is wound on the sprocket, and the drive motor cooperates with at least one sprocket to drive the sprocket to rotate, thereby making the chain move.
  • the scraper 922 is attached to the chain.
  • the screening device can be applied to any appropriate scenario that requires sorting and screening of materials, which is not limited in this embodiment.
  • at least two layers of screening objects are formed above and below the main screening structure 93
  • at least two material outlets are provided for discharging screening objects of different layers.
  • the at least two material outlets include a first outlet 914 corresponding to the screening object located above the main screening structure 93 and a second outlet 915 corresponding to the screening object positioned below the main screening structure 93 . In this way, the sieves in different layers can be pushed to different outlets for discharge conveniently.
  • the first outlet 914 and the second outlet 915 may be located on different side walls of the screening box 91, or may be located on the same side wall.
  • the first outlet 914 and the second outlet 915 are located on different side walls, so that one rotation of the scraper mechanism 92 can transport the two layers of screening objects to the corresponding outlets respectively, which improves the transport efficiency and reduces the operating cost.
  • the at least two material outlets further include a third outlet 916 , and the third outlet 916 and the second outlet 915 are located at the same side of the screening box 91 .
  • the side wall, and the third outlet 916 is located below the second outlet 915, the third outlet 916 is provided with a second material passing gap for screening the lower screening material according to the particle size, and the scraper mechanism 92 is driven to be located in the main screening structure.
  • the screened material below 93 passes through the third outlet 916 and the second outlet 915 in sequence.
  • a screen is provided on the third outlet 916, and a second feeding gap is provided on the screen.
  • the second feeding gap can be a screen hole, so that the screen below When the screened material passes through, the screened material that can leak from the second material passing gap falls from the third outlet 916, and the screened material that cannot fall from the third outlet 916 falls from the second outlet 915, thereby realizing the three screening methods. items are sorted.
  • the screening device further includes a discharge pusher row 46, and a material discharge pusher row 46. It is arranged outside the screening box 91 and corresponds to the second outlet 915 to receive the screening material discharged from the second outlet 915 .
  • the discharge pusher 46 can be a conveyor belt, a conveying roller, etc.
  • the discharge pusher 46 is located below the second outlet 915, so as to receive the screening objects dropped from the second outlet 915, and transport the screening objects to the required position.
  • first outlet 914 and the second outlet 915 may be provided with screens with appropriate sized meshes, or may not be provided with screens.
  • the third outlet 916 is used for secondary sorting of the screened objects in the third
  • the outlet 916 is provided with a screen with appropriately sized screen openings.
  • the structure, material, and volume of the screening box 91 may be different according to different requirements of the usage scenarios.
  • the screening box 91 includes a box body, a first inclined section 912 and a second inclined section 913, the lower end of the first inclined section 912 is connected to the first end of the box main body, and the lower end of the second inclined section 913 is connected to the box.
  • the first outlet 914 corresponding to the screening object located above the main screening structure 93 is provided in the first inclined section 912 , and the at least two material outlets are positioned below the main screening structure 93 .
  • the second outlet 915 corresponding to the screened object is disposed in the second inclined section 913 .
  • the arrangement of the first outlet 914 and the second outlet 915 can be facilitated by arranging two inclined sections, so that different sieves are discharged from the outlets on different sides, so as to avoid remixing after the sieves are discharged.
  • the ball milling effect can be achieved by mutual friction between the screening objects and the friction between the screening objects and the screening device during the process of the screening objects gradually moving upward to the first outlet 914 or the second outlet 915, so that the particle size of the screening objects tends to be Consistent.
  • the finely ground powder is gradually separated from the screening objects in the process of moving the screening objects inclining upward, so that the inclined section also realizes the removal of the screening objects located above the main screening structure 93. The effect of fine particles.
  • the shape of the first material passing gap of the main screening structure 93 can be different according to different materials to be screened.
  • the first material passing gap of the main screening structure 93 is a screen hole that applies a shearing force opposite to the moving direction of the screened object, so that the scraper mechanism 92 pushes the During the horizontal movement of the screened material, the screened material will pass through the edge of the screen hole, and thus be broken by the shear force opposite to the moving direction, and the broken residue can fall through the screen hole.
  • This method can realize the crushing treatment of the screening material during the conveying process, and make full use of the power of conveying, without the need for additional crushing structure, more energy saving and better economy.
  • Materials that need to be crushed such as the combustion residue discharged from the combustion of the combustion furnace, usually contain high-quality carbon with more voids and larger volume, and median carbon with smaller voids and smaller volume (the calorific value is between 4,000 kcal and 7,000 kcal.
  • the attached ash and slag are separated from the high-quality carbon due to the collision and the shear force exerted by the main screening structure 93, which can effectively reduce the impurities attached to the discharged high-quality carbon.
  • the first material passing gap of the main screening structure 93 is a screen channel extending through the moving direction of the screened objects (for example, the scraper 922 of the scraper mechanism 92 is in the direction shown in FIG. 2 ). If it moves in the left and right directions as shown, the screen channel is a slit that runs through the left and right directions). In this way, the screening objects located above the main screening structure 93 will not be subjected to large shearing force when being pushed, so that damage to the screening objects can be avoided.
  • the main screening structure 93 includes a horizontal screen section 931, and a horizontal screen section 931.
  • the inclined screen section 932, the horizontal screen section 931 are located in the box body, the inclined screen section 932 is located in the first inclined section 912, and the height of the upper end of the inclined screen section 932 is lower than the height of the upper end of the first outlet 914.
  • the horizontal screen section 931 By arranging the horizontal screen section 931, the materials falling on it can be screened and sorted, thereby forming at least two layers of screening objects.
  • the inclined screen section 932 is arranged in parallel with the scraper to ensure that the scraper is in contact with the screened object, so that the screened object can be pushed by the scraper.
  • the screened object above the main screening structure 93 is pushed by the scraper mechanism 92, it can be pushed by the inclined screen
  • the mesh segment 932 is supported to move upwards obliquely until it falls from the upper end of the inclined screen mesh segment 932 to the first outlet 914 for discharge.
  • the screening device further includes a material isolator, which is arranged above the main screening structure 93 to receive the material and control whether the material falls on the main screening structure 93.
  • the material layer of the set thickness is used as the sealing layer.
  • the material isolator is used to isolate the material, so that the material is accumulated on the material isolator to form a material layer of sufficient thickness, so as to isolate the gas through the material layer to achieve sealing, so as to meet the sorting requirements of some usage scenarios that require sealing.
  • the combustion furnace discharges the combustion residue through the discharge port, and the screening device is connected to the discharge port, and the combustion residue is screened.
  • the combustion furnace needs to maintain the negative pressure in the furnace body during operation, so it is necessary to ensure that the screening device has a sealing function.
  • the material isolator can prevent the material from falling and accumulate on the material isolator to form a sealing layer of sufficient thickness.
  • the aforementioned set thickness can be determined as required, which is not limited in this embodiment. For example, if the particle size of the material is small and the gap between the materials is small, the set thickness can be reduced accordingly, such as 1 meter, 2 meters, 5 meters, etc.; if the particle size of the material is large, the thickness of the material can be reduced accordingly. If the gap between them is large, the set thickness can be increased accordingly, as long as the sealing requirements can be met, so that the negative pressure in the combustion furnace can be maintained, and the gas will not enter the combustion furnace through the first outlet 914 and the second outlet 915, etc., The sealing performance is ensured.
  • the material separator in order to ensure the reliability of sealing, includes a connection box and a batcher 813, the connection box is connected to the screening box 91, the connection box has a material channel connected with the material inlet of the screening box 91, and the batcher 813 is rotatably arranged in the connecting box and used to control the on-off of the material channel.
  • the connecting box includes a first material side wall 814 and a second material side wall, and the first angle ⁇ between the first material side wall 814 and the horizontal plane is greater than or equal to the stacking slope or the first material side wall.
  • An included angle ⁇ is greater than or equal to 35°, and the value of the second included angle ⁇ between the second material side wall 815 and the horizontal plane is 90° minus the self-locking angle of the material relative to the second side wall.
  • the stacking slope is the slope formed by the natural stacking of materials
  • the materials will flow naturally. Since the surface smoothness of the first material side wall 814 is smaller than the surface friction force of the material, as long as the first included angle ⁇ is greater than or equal to 35°, when the material accumulates on the first side wall, the force on the material will be reduced. The gravity of the material will dissolve the friction, so that the material can flow naturally, and the materials will not be cross-stacked to form a stable state and form an arch.
  • the lateral abutting force on the material can be decomposed into a downward force perpendicular to the surface of the second side wall And the force perpendicular to the surface of the second side wall, so that the contact force is eliminated, so as to ensure the smooth sliding of the material without arching.
  • the batcher 813 is arranged between the first material side wall 814 and the second material side wall 815, and there is a blanking gap between the batcher 813 and the first material side wall 814 and the second material side wall 815.
  • the batcher 813 includes The rotating shaft and at least two sections of the spiral batching structure are arranged on the rotating shaft and have opposite directions of rotation.
  • Any two sections of the helical batching structure with different directions of rotation can be connected together, that is, have a common end point, or can also be separated by a certain distance.
  • each section of the spiral batching structure may be a single-threaded structure, so as to realize the axial batching.
  • two sets of helical batching structures may be provided on the rotating shaft, and the two sets of helical batching structures may include 3 sections, 4 sections or more, as long as the rotation directions of at least two sections of the helical batching structures are different, it can be achieved Axial distribution can be done.
  • a solid fuel combustion furnace includes a furnace body and the above-mentioned screening device, and the furnace body includes a discharge material for discharging combustion residues generated by combustion of the solid fuel
  • the screening device is connected with the discharge port, and undertakes the combustion residue discharged from the discharge port to screen the combustion residue.
  • the screening device is applied to the combustion furnace for sorting the combustion residues of the combustion furnace.
  • the screening device is especially suitable for the combustion furnace that can satisfy the temperature field flow, because the combustion residue quality of the combustion furnace meeting the temperature field flow is controllable.
  • the burning residue can be screened by the screening device, so as to obtain the burning residual charcoal, charcoal-based fertilizer and the like.
  • the combustion furnace that satisfies the temperature field process refers to: the spatial distribution of the different temperature regions in the furnace chamber of the combustion furnace meets the temperature conditions required by the different combustion stages of the solid fuel, and the different temperature regions are generated by the solid fuel in the furnace chamber during the combustion process. formed in.
  • Such burners are capable of burning solid fuels in them without coking.
  • the quality of carbon in the combustion residue can be controlled by controlling how long the solid fuel stays in the furnace.
  • the combustion furnace can directly sort combustion residues through a screening device, thereby obtaining different screening substances, which has good economic benefits, and can fully avoid energy waste and reduce the processing cost of combustion residues.
  • the combustion furnace includes a furnace body, the top wall of the furnace body is provided with a feeding port, the upper part of the air inlet side wall of the furnace body is provided with an air inlet 41, and the air outlet side wall corresponding to the air inlet side wall is provided There is an air outlet and a material outlet on it.
  • a material distribution structure is arranged in the furnace body, and a discharge pusher 46 is arranged below the material distribution structure. The combustion residue can be discharged from the discharge port through the discharge pusher 46, so that it enters the screening device for sorting.
  • a heat storage device is also arranged in the furnace body for processing the gas generated by the solid fuel, thereby reducing the processing cost of the gas.
  • the space in the furnace body for the combustion of solid fuel can be called the furnace chamber.
  • the combustion furnace can satisfy the full combustion of the solid fuel (it should be noted that the full combustion mentioned in this embodiment does not refer to the solid fuel.
  • the carbon in the combustion furnace is all burned, but it refers to the temperature field process that enables the fixed carbon in the solid fuel to burn without causing the solid fuel to coke due to overburning).
  • the spatial distribution of different temperature regions in the furnace satisfies the temperature conditions required for different combustion stages of the solid fuel, and the different temperature regions are formed by the solid fuel in the furnace during the combustion process.
  • the material distribution structure includes at least a first arm group 10 , and the included angle between the first arm group 10 and the horizontal plane is smaller than the stacking slope formed by the solid fuel stacked on the first arm group 10 .
  • the first arm set 10 is used to form the first inclined plane, and a third material passing gap is arranged on the first arm set 10, so that the solid fuel whose maximum particle size is smaller than the third feeding gap can pass through the first arm set 10 and dropped.
  • the material distribution structure may further include a second arm group, a third arm group, etc.
  • the second arm group and the third arm group may be selectively set or not set according to the volume of the furnace, and the comparison is not limited.
  • the furnace body is divided into multiple areas by the material distribution structure.
  • the solid fuel above 10 in the first arm group mainly absorbs heat, evaporates water, and cracks volatile matter, which may be accompanied by a small amount of combustion.
  • the area above the arm group 10 can be called the cracking area;
  • the solid fuel between the first arm group 10 and the second arm group mainly burns fixed carbon and releases heat (the released heat can be supplied to the solid fuel in the cracking area Absorption, the excess heat can be used to drive boilers or steam turbines, etc.), may be accompanied by a small amount of volatile pyrolysis, so this area can be called a fixed carbon combustion area;
  • the area between the second arm group and the discharge pusher 46 Medium solid fuel is mainly used for anoxic combustion, so this area can be called anoxic combustion area.
  • the third arm group can divide the anoxic combustion area into two parts. one or more sub-regions.
  • the operation process of the combustion furnace can be divided into several stages of filling, ignition and operation.
  • the solid fuel enters from the feeding port, and gradually falls and accumulates to form a fuel pile.
  • the fuel pile naturally forms a stacking slope ⁇ .
  • the solid fuel since the solid fuel has not yet been burned, the solid fuel piled up everywhere in the furnace body is piled up.
  • the slope ⁇ is similar.
  • the ignition stage close the air inlet 41, open the induced draft fan connected to the air outlet (the induced draft fan is connected to the air outlet through the channel), and put the ignition material at the feed inlet.
  • the furnace body is negative under the action of the induced draft fan.
  • the air flow enters from the feed port, so that the solid fuel is ignited by the pilot, and the solid fuel is ignited for a period of time (the time can be determined in an appropriate manner according to needs) and then enters the operation stage.
  • the discharge pusher 46 is used to push the solid fuel to move toward the discharge port, wherein the movement direction of the discharge pusher 46 is the direction away from the air inlet 41 .
  • the fuel stack in the furnace body is continuously collapsed, and the discharge pusher 46 continuously drives the combustion residue to move toward the furnace body.
  • the solid fuel of the furnace can be continuously dropped downwards to realize the replenishment of new solid fuel into the furnace body.
  • the amount of solid fuel in the furnace is sufficient and the solid fuel in the burning state is sufficient, it can provide enough heat to dry the newly entered solid fuel and meet the heat absorption required for the combustion of the newly entered solid fuel, thus ensuring the The adaptability to solid fuels of different humidity ensures that the burner can burn smoothly and stably without the need for complex sensors to check and control.
  • the solid fuel entering the feed port first absorbs heat in the cracking area and releases some gases, including but not limited to VOC (volatile organic compounds, English full name is volatile organic compounds) and water vapor.
  • the volume of the solid fuel also decreases during the process of heat absorption by the solid fuel in the cracking zone.
  • These released gases are carried by the gas flow into the thermal storage chamber formed by the thermal storage device, where they are processed. Since the heat storage device has sufficient heat storage capacity, it is guaranteed to be able to adapt to gases of different temperatures, and to ensure adequate treatment of VOCs (volatiles, especially dioxins, etc.) in the gas.
  • the solid fuel with the maximum particle size smaller than the third material passing gap can pass through the first support arm Group 10 enters the fixed carbon combustion zone.
  • the solid fuel whose maximum particle size is larger than the third material passing gap it will move downward along the first slope and gradually move to the first end of the first arm group 10 (that is, the one shown in the figure that is far from the air inlet side wall) In this process, the solid fuel can still absorb heat for cracking and water evaporation. If the solid fuel moves to a region where the temperature is higher than the ignition point of the fuel, the solid fuel will be ignited and start to burn.
  • the moisture With the cracking of the solid fuel, the moisture is evaporated and burned, and its volume is also continuously reduced until it is burned to the point where it can fall through the third passing material gap and enter the fixed carbon combustion zone, or, along the first slope. It moves down and falls into the oxygen-deficient combustion zone, and is finally discharged into the screening device from the discharge port.
  • the solid fuel is doped with incombustible and relatively large substances, since its volume will not decrease, it will move along the first inclined plane to the first end of the first arm group 10, and then fall to the oxygen-deficient combustion. zone, and with the collapse of the solid fuel in the oxygen-deficient combustion zone and the push of the discharge pusher 46, it is pushed to the discharge port and discharged from the furnace body.
  • the airflow entering from the air inlet 41 can quickly move from the gap to the first end of the first arm group 10, and then Due to the stacking gradient ⁇ naturally formed by the solid fuel piled on the fuel stack of the first arm group 10 and the existence of the included angle between the first arm group 10 and the horizontal plane, the first end of the first arm group 10 is The thickness of the solid fuel is the smallest, and the gap between the solid fuels is large, which makes the wind resistance there smaller, which in turn makes the airflow velocity larger, and the airflow velocity is positively correlated with the temperature.
  • the first arm group The temperature at the first end of 10 is relatively high, and this area is also the area where the carbon flame generated by the combustion of solid fuel is located, which can sufficiently provide heat for the ignition body 611 in the heat storage device, so that the temperature of the ignition body 611 can be ignited.
  • the gas in the heat storage cavity makes the volatile matter burn, and the heat generated by the combustion of the volatile matter can be absorbed by the heat storage body 612 of the heat storage device to maintain the temperature field in the heat storage cavity stable at 800°C to 1150°C.
  • this part of the solid fuel can obtain sufficient oxygen supply to burn , as the volume of the burning solid fuel decreases, the gap between the solid fuel going down is smaller, the wind resistance is larger, the wind speed is smaller and the temperature is lowered, so the solid fuel will not appear coking phenomenon, thus effectively It solves the problem that the solid fuel is easy to coke and cause blockage when the grate furnace in the prior art is burned when the coking temperature is below the ignition point.
  • the solid fuel Due to the volume reduction of the solid fuel caused by the combustion, combined with the pushing action of the discharge pusher 46, the solid fuel continuously moves downward.
  • the solid fuel moves to the second slope of the second arm group, if it can pass through the fourth feed gap of the second arm group, it will enter the oxygen-deficient combustion area from the fixed carbon combustion area; if the volume is insufficient After passing through the fourth feeding gap, it will move down along the second slope until it can pass through the fourth feeding gap, or move to the second end of the second arm group and fall, and will be pushed out by the discharging material 46 Push to anoxic combustion zone.
  • the air supply in the furnace belongs to the surface air supply, and the airflow speed is controlled by the gap between the solid fuels, so that the combustion volume of the solid fuel is reduced, while the The characteristics of reducing the gap and reducing the wind speed naturally control the combustion of the solid fuel, preventing the phenomenon of insufficient combustion in some parts and over-combustion in the other part.
  • the time that the solid fuel stays in the fixed carbon combustion zone can be controlled, thereby controlling the amount of solid fuel in the combustion residue.
  • the carbon content is fixed to achieve the purpose of obtaining carbon of the required quality.
  • biomass fuel can be processed into carbon through the stack furnace, and the heat generated during the combustion process can also be used to generate electricity.
  • the oxygen-deficient combustion zone is far away from the air inlet 41 and the gap between the solid fuels is also small, the wind resistance here is high and the airflow velocity is low, so coking will not occur, and the oxygen supply is also small. , which can avoid over-burning, thereby preventing excessive nitrogen oxide emissions due to oxidizing nitrogen in the air.
  • a gap is also formed below the second arm set, and the gap enables the burning carbon flame to collect to the first arm set 10 . at the first end.
  • the process of the solid fuel passing through the third arm group in the oxygen-deficient combustion zone is similar to the process of passing through the first arm group 10 and the second arm group, so it is not repeated here.
  • the number of the third arm group can be set as required, or it can also not be set.
  • the combustion residue discharged from the discharge port falls into the screening box 91, is screened by the screening device, and is discharged from different outlets.
  • the first outlet 914 can output high-quality carbon
  • the second outlet 915 discharges median carbon
  • the third outlet 916 discharges charcoal-based fertilizer and the like.
  • the moving direction of the scraper mechanism 92 of the screening device in the horizontal plane is parallel to the length direction of the discharge port (the direction perpendicular to the paper plane in FIG. 6 ), which facilitates the uniform dispersion of the combustion residues into the screening device. Improve screening efficiency.
  • the above-mentioned combustion furnace can meet the above-mentioned temperature field process in the furnace, that is, the spatial distribution of different temperature regions in the furnace can meet the temperature conditions required by different combustion stages of solid fuel, and in the furnace, it can meet multiple inherent combustion properties of solid fuel, and make these Combustion in which inherent combustion properties cooperate with each other, that is, multi-coupling combustion of multiple combustion properties.
  • inherent combustion properties of the solid fuels described above include:
  • the combustion process of solid fuel is a process of first absorbing heat and then releasing heat.
  • the heat capacity that is, the fuel enthalpy value
  • the embodiments of the present invention can ensure that the heat absorption required before the solid fuel is burned, thus ensuring that the combustion furnace can be stably and continuously The ground burns without breaking the fire.
  • the volume of solid fuel changes from large to small during the combustion process, which makes the stacking slope of the solid fuel gradually decrease and the fluidity increases.
  • the temperature environment of 800-1150 °C formed by the heat storage device enables the volatile matter (including dioxin) to be fully cracked to achieve environmentally friendly emissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

一种筛选装置及固体燃料的燃烧炉。该筛选装置包括筛选箱(91)、主筛选结构(93)和刮板机构(92),筛选箱(91)具有供物料进入的物料入口,且筛选箱(91)的侧壁上设置有至少两个供筛选出的筛选物排出的物料出口;主筛选结构(93)设置在筛选箱(91)内,用于承接从物料入口进入的物料,主筛选结构(93)上设置有按照粒径对物料进行筛选的第一过料间隙,以将物料分为位于主筛选结构(93)上方和下方的至少两层筛选物;刮板机构(92)设置在筛选箱(91)内,刮板机构(92)包括刮板驱动组件(921)和多个刮板(922),多个刮板(922)连接于刮板驱动组件(921),并在刮板驱动组件(921)的驱动下移动,以将位于主筛选结构(93)上方和/或下方的筛选物输送到对应的物料出口。

Description

筛选装置及固体燃料的燃烧炉 技术领域
本申请实施例涉及筛选设备领域,尤其涉及一种筛选装置及固体燃料的燃烧炉。
背景技术
在工业生产过程中需要物料分拣工艺,以获得不同的筛选物。例如,在生物质和垃圾、污泥等固废处理领域、发电领域、以及煤炭开采、加工领域等多个领域中均需要物料分拣工艺。
现有技术中通常使用振动筛进行物料分拣和筛选。但现有的振动筛需要配置外部振动源对物料施加振动力,使物料运动,再配合不同孔径的筛网实现对物料的筛选。这种振动筛由于外部振动源需要消耗大量的能源,导致筛选成本高、且由于装置长时间处于振动状态而容易出现故障或损坏,导致可靠性不足。
发明内容
为了解决上述问题,本申请实施例提供了一种筛选装置及固体燃料的燃烧炉,以至少部分地解决上述问题。
根据本申请实施例的第一方面,提供一种筛选装置,其包括筛选箱、主筛选结构和刮板机构,筛选箱具有供物料进入的物料入口,且筛选箱的侧壁上设置有至少两个供筛选出的筛选物排出的物料出口;主筛选结构设置在筛选箱内,用于承接从物料入口进入的物料,主筛选结构上设置有按照粒径对物料进行筛选的第一过料间隙,以将物料分为位于主筛选结构上方和下方的 至少两层筛选物;刮板机构设置在筛选箱内,刮板机构包括刮板驱动组件和多个刮板,多个刮板连接于刮板驱动组件,并在刮板驱动组件的驱动下移动,以将位于主筛选结构上方和/或下方的筛选物输送到对应的物料出口。
可选地,至少两个物料出口包括第一出口和第二出口,第一出口与位于主筛选结构上方的筛选物对应,第二出口与位于主筛选结构下方的筛选物对应。
可选地,第一出口和第二出口位于筛选箱的不同侧壁,至少两个物料出口还包括第三出口,第三出口与第二出口位于筛选箱的同一侧壁,且第三出口位于第二出口的下方,第三出口上设置有按照粒径对下方的筛选物进行筛选的第二过料间隙,刮板机构驱动位于主筛选结构下方的筛选物依次经过第三出口和第二出口。
可选地,筛选装置还包括出料推排,出料推排设置在筛选箱外,且与第二出口对应,以承接从第二出口排出的筛选物。
可选地,主筛选结构的第一过料间隙为向筛选物施加与筛选物移动方向相反的剪切力的筛孔,或者,主筛选结构的第一过料间隙为沿筛选物的移动方向贯通延伸的筛道。
可选地,筛选箱包括箱主体、第一倾斜段和第二倾斜段,第一倾斜段的下端连接在箱主体的第一端,第二倾斜段的下端连接在箱主体的第二端,至少两个物料出口中与位于主筛选结构上方的筛选物对应的第一出口设置在第一倾斜段,至少两个物料出口中与位于主筛选结构下方的筛选物对应的第二出口设置在第二倾斜段。
可选地,主筛选结构包括水平筛网段、以及与水平筛网段连接的倾斜筛网段,水平筛网段位于箱主体内,倾斜筛网段位于第一倾斜段内,且倾斜筛网段上端的高度低于第一出口上端的高度。
可选地,筛选装置还包括物料隔离器,物料隔离器设置在主筛选结构上方,以承接物料,并控制物料是否下落到主筛选结构上,物料隔离器用于在物料隔离器上方形成满足设定厚度的物料层作为密封层。
可选地,物料隔离器包括连接箱体和配料器,连接箱体连接于筛选箱,连接箱体具有与筛选箱的物料入口连接的物料通道,配料器可转动地设置在连接箱体内,并用于控制物料通道的打开或封闭。
可选地,连接箱体包括第一物料侧壁和第二物料侧壁,第一物料侧壁与水平面的第一夹角大于或等于物料的堆放坡度,或者第一夹角大于或等于35°,第二物料侧壁与水平面之间的第二夹角的取值为90°减去物料相对于第二侧壁的自锁角,配料器设置在第一物料侧壁和第二物料侧壁之间,且配料器与第一物料侧壁和第二物料侧壁之间具有下料间隙,配料器包括转轴和至少两段螺旋配料结构,至少两段螺旋配料结构设置在转轴上,且旋向相反。
根据本申请的另一方面,提供一种固体燃料的燃烧炉,固体燃料的燃烧炉包括炉体和上述的筛选装置,炉体包括供固体燃料燃烧产生的燃烧剩余物排出的出料口,筛选装置与出料口连接,并承接从出料口排出的燃烧剩余物,以对燃烧剩余物进行筛选。
在本申请实施例中该筛选装置通过在筛选箱内设置主筛选结构对掉落过程中的物料形成止挡,使得不同粒径的物料停留在筛选箱内不同高度上,如使得一部分物料通过第一过料间隙掉落到主筛选结构下方,另一部分物料被主筛选结构阻挡而停留在主筛选结构的上方,从而形成至少两层筛选物。由于刮板机构的刮板驱动组件带动刮板连续地运动,因此使得筛选物被刮板推动而逐渐运动到物料出口排出,由此实现了对物料中不同筛选物的筛选和分拣。在此过程中,物料在重力作用下不断地掉落并经过主筛选结构的筛选,刮板机构只需要在较小的动力的驱动下运动就可以带动筛选物移动并漏出第一过料间隙,这样实现在物料流动过程(物料掉落的过程可以理解为形成了料流)中进行筛选,不需要额外附加振动源就可以实现物料的筛选和分拣,降低了运行成本,节省了能源。
附图说明
为以下附图仅旨在于对本申请做示意性说明和解释,并不限定本申请的 范围。
图1示出了本申请实施例的一种筛选装置的剖视结构示意图;
图2示出了本申请实施例的另一种筛选装置的剖视结构示意图;
图3示出了本申请实施例的筛选装置的刮板机构的俯视结构示意图;
图4示出了本申请实施例的筛选装置与物料隔离器配合的示意图;
图5示出了本申请实施例物料隔离器的配料器的立体结构示意图;和
图6示出了本申请实施例的燃烧炉与筛选装置配合的结构示意图。
10、第一支臂组;41、进风口;46、推排;611、点火体;612、蓄热体;813、配料器;814、第一物料侧壁;815、第二物料侧壁;91、筛选箱;912、第一倾斜段;913、第二倾斜段;914、第一出口;915、第二出口;916、第三出口;92、刮板机构;921、刮板驱动组件;922、刮板;93、主筛选结构;931、水平筛网段;932、倾斜筛网段。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
如图1~图6所示,根据本申请的实施例提供一种筛选装置,其包括筛选箱91、主筛选结构93和刮板机构92,筛选箱91具有供物料进入的物料入口,且筛选箱91的侧壁上设置有至少两个供筛选出的筛选物排出的物料出口;主筛选结构93设置在筛选箱91内,用于承接从物料入口进入的物料,主筛选结构93上设置有按照粒径对物料进行筛选的第一过料间隙,以将物料分为位于主筛选结构93上方和下方的至少两层筛选物;刮板机构92设置在筛选箱 91内,刮板机构92包括刮板驱动组件921和多个刮板922,多个刮板922连接于刮板驱动组件921,并在刮板驱动组件921的驱动下移动,以将位于主筛选结构93上方和/或下方的筛选物输送到对应的物料出口。
该筛选装置通过在筛选箱91内设置主筛选结构93对掉落过程中的物料形成止挡,使得不同粒径的物料停留在筛选箱91内不同高度上,如使得一部分物料通过第一过料间隙掉落到主筛选结构93下方,另一部分物料被主筛选结构93阻挡而停留在主筛选结构93的上方,从而形成至少两层筛选物。由于刮板机构92的刮板驱动组件921带动刮板922连续地运动,因此使得筛选物被刮板922推动而逐渐运动到物料出口排出,由此实现了对物料中不同筛选物的筛选和分拣。在此过程中,物料在重力作用下不断地掉落并经过主筛选结构93的筛选,刮板机构92只需要在较小的动力的驱动下运动就可以带动筛选物移动并漏出第一过料间隙,这样实现在物料流动过程(物料掉落的过程可以理解为形成了料流)中进行筛选,不需要额外附加振动源就可以实现物料的筛选和分拣,降低了运行成本,节省了能源。
相较于现有的振动筛需要振动源驱动堆积在振动筛中的大量物料振动,使物料之间进行相对运动才能实现对物料的筛选,本实施例中的筛选装置不需要对物料进行振动,因此可以节省动力和运行成本,而且能够实现筛选效果。此外,相较于现有的振动筛,该筛选装置的结构简单,因此使得制造成本更低,且在使用过程中不易损坏。
在本实施例中,刮板机构92的刮板驱动组件921包括皮带、驱动电机和皮带轮等。一个刮板驱动组件921中可以包括至少两个皮带,两个皮带间隔设置在主筛选结构93的两侧,并套设在皮带轮上,驱动电机与至少一个皮带轮连接,以驱动皮带轮转动,通过皮带轮转动以带动皮带运动,刮板922连接在相邻两个皮带之间,并被皮带驱动而运动。通过皮带转动使得刮板922往复运动,从而推动筛选物移动到相应的出口。
或者,在其他实施例中,刮板驱动组件921可以包括链条、链轮和驱动 电机。链条绕设在链轮上,驱动电机与至少一个链轮配合,以驱动链轮转动,从而使链条运动。刮板922连接在链条上。
该筛选装置可以应用到任何适当的、需要对物料进行分拣和筛选的场景中,本实施例对此不作限制。在本实施例中,由于在主筛选结构93的上方和下方至少形成两层筛选物,因此设置至少两个物料出口供不同层的筛选物排出。例如,至少两个物料出口包括第一出口914和第二出口915,第一出口914与位于主筛选结构93上方的筛选物对应,第二出口915与位于主筛选结构93下方的筛选物对应。这样就可以方便地将位于不同层的筛选物推动到不同的出口排出。
第一出口914和第二出口915可以位于筛选箱91的不同侧壁,也可以位于相同侧壁。优选地,第一出口914和第二出口915位于不同侧壁上,这样刮板机构92转动一周就可以将两层筛选物分别输送到对应的出口,提升了输送效率,从而减少了运行成本。
优选地,在第一出口914和第二出口915位于筛选箱91的不同侧壁时,至少两个物料出口还包括第三出口916,第三出口916与第二出口915位于筛选箱91的同一侧壁,且第三出口916位于第二出口915的下方,第三出口916上设置有供按照粒径对下方的筛选物进行筛选的第二过料间隙,刮板机构92驱动位于主筛选结构93下方的筛选物依次经过第三出口916和第二出口915。通过设置三个出口,且第三出口916上设置筛网,使得可以同时对三种不同的筛选物进行分拣,使得经济性更好。
为了对位于主筛选结构93下方的筛选物进行二次筛选,第三出口916上设置有筛网,筛网上设置有第二过料间隙,第二过料间隙可以是筛孔,这样位于下方的筛选物经过时能够从第二过料间隙漏下的筛选物从第三出口916掉落,不能从第三出口916掉落的筛选物从第二出口915掉落,由此实现对三种筛选物进行分拣。
可选地,为了使从第二出口915排出的筛选物能够快速排出,且不会与 从第三出口916排出的筛选物再次混淆,筛选装置还包括出料推排46,出料推排46设置在筛选箱91外,且与第二出口915对应,以承接从第二出口915排出的筛选物。
出料推排46可以是输送带、输送辊等,出料推排46位于第二出口915的下方,从而承接自第二出口915掉落的筛选物,并将筛选物输送到需要的位置。
需要说明的是,第一出口914和第二出口915可以设置具有合适大小的筛孔的筛网,也可以不设置筛网,第三出口916为了实现筛选物的二次分拣,在第三出口916上设置具有适当大小的筛孔的筛网。
在本实施例中,根据使用场景的需求不同,筛选箱91的结构、材质、和体积等可以不同。在一示例中,筛选箱91包括箱主体、第一倾斜段912和第二倾斜段913,第一倾斜段912的下端连接在箱主体的第一端,第二倾斜段913的下端连接在箱主体的第二端,至少两个物料出口中与位于主筛选结构93上方的筛选物对应的第一出口914设置在第一倾斜段912,至少两个物料出口中与位于主筛选结构93下方的筛选物对应的第二出口915设置在第二倾斜段913。
通过设置两个倾斜段可以方便第一出口914和第二出口915的设置,以使得不同的筛选物从不同侧的出口排出,避免筛选物排出后再次混合。此外,在筛选物逐渐向上运动到第一出口914或第二出口915的过程中通过筛选物之间的相互摩擦以及筛选物与筛选装置的摩擦可以实现球磨效果,使得筛选物的粒径趋于一致。对于主筛选结构93上方的筛选物而言,磨下的细碎粉末在筛选物倾斜向上移动的过程中逐渐与筛选物分离,这样倾斜段还实现了去除位于主筛选结构93上方的筛选物中的细小颗粒的效果。
根据需要筛选的物料不同主筛选结构93的第一过料间隙的形状可以不同。例如,若需要筛选的物料是需要破碎的物料,则主筛选结构93的第一过料间隙为向筛选物施加与筛选物移动方向相反的剪切力的筛孔,这样在刮板 机构92推动筛选物水平移动的过程中筛选物会经过筛孔的边缘,从而受到与移动方向相反的剪切力作用而被破碎,破碎的残渣可以通过筛孔下落。这种方式可以实现在筛选物的输送过程中对其进行破碎处理,且充分利用了输送的动力,不需要额外设置破碎结构,更加节省能源、经济性更好。
需要破碎的物料例如燃烧炉燃烧排出的燃烧剩余物,通常燃烧剩余物中包含空洞较多体积较大的优质碳、空洞较小体积较小的中值碳(热值在4000千卡到7000千卡之间的碳)和碳已经完全燃烧的灰烬,对于优质碳而言,由于其体积较大因此会停留在主筛选结构93的上方,这些优质碳上可能附着灰烬和一些熔渣等,在优质碳被推动的过程中由于碰撞和主筛选结构93施加的剪切力使得附着的灰烬和熔渣被从优质碳上分离,这样可以有效减少排出的优质碳上附着的杂质。
或者,对于不需要破碎的物料(如粮食等),主筛选结构93的第一过料间隙为沿筛选物的移动方向贯通延伸的筛道(如刮板机构92的刮板922沿图2中所示左右方向移动,则筛道为沿左右方向贯通的缝隙)。这样位于主筛选结构93上方的筛选物在被推动时不会受到较大的剪切力,从而可以避免损坏筛选物。
本实施例中,对于位于主筛选结构93上方的筛选物,为了保证其能够顺利地向上运动到第一出口914,主筛选结构93包括水平筛网段931、以及与水平筛网段931连接的倾斜筛网段932,水平筛网段931位于箱主体内,倾斜筛网段932位于第一倾斜段912内,且倾斜筛网段932上端的高度低于第一出口914上端的高度。
通过设置水平筛网段931可以对掉落到其上的物料进行筛选和分拣,从而形成至少两层筛选物。倾斜筛网段932与刮板平行设置,以保证刮板与筛选物接触,使筛选物能够被刮板推动,当位于主筛选结构93上方的筛选物被刮板机构92推动时可以被倾斜筛网段932支撑而倾斜向上移动,直至从倾斜筛网段932的上端掉落到第一出口914排出。
可选地,筛选装置还包括物料隔离器,物料隔离器设置在主筛选结构93上方,以承接物料,并控制物料是否下落到主筛选结构93上,物料隔离器用于在物料隔离器上方形成满足设定厚度的物料层作为密封层。
物料隔离器用于隔离物料,使物料在物料隔离器上堆积形成足够的厚度的物料层,以通过物料层对气体进行隔离实现密封,从而满足一些需要密封的使用场景的分拣需求。
例如,在燃烧炉中,燃烧炉通过出料口排出燃烧剩余物,筛选装置与出料口连接,并对燃烧剩余物进行筛选。燃烧炉在运行过程中需要保持炉体内的负压,因此需要保证筛选装置具有密封功能,此种情况下物料隔离器可以阻止物料下落使其在物料隔离器上堆积形成足够厚度的密封层。
前述的设定厚度可以根据需要确定,本实施例对此不作限制。例如,若物料的粒径较小,物料之间的缝隙较小,则设定厚度可以相应地减少,如设置为1米、2米、5米等;若物料的粒径较大,物料之间的缝隙较大,则设定厚度可以相应地增加,只要能够满足密封需求,使燃烧炉内可以维持负压,气体不会通过第一出口914和第二出口915等进入到燃烧炉内,确保了密封性能。
在一示例中,为了确保密封可靠性,物料隔离器包括连接箱体和配料器813,连接箱体连接于筛选箱91,连接箱体具有与筛选箱91的物料入口连接的物料通道,配料器813可转动地设置在连接箱体内,并用于控制物料通道的通断。
为了避免物料在连接箱体内结拱,连接箱体包括第一物料侧壁814和第二物料侧壁,第一物料侧壁814与水平面的第一夹角α大于或等于物料的堆放坡度或者第一夹角α大于或等于35°,第二物料侧壁815与水平面之间的第二夹角β的取值为90°减去物料相对于第二侧壁的自锁角。
由于堆放坡度是物料自然堆放形成的坡度,如果第一夹角α大于或等于堆放坡度,则物料会自然流动。由于第一物料侧壁814的表面光滑度相对于 物料的表面摩擦力更小,因此只要第一夹角α大于或等于35°,当物料堆积在第一侧壁上时,物料的受力就会使得物料的重力消解掉摩擦力,从而使物料能够自然流动,物料之间不会交叉堆叠形成稳定状态而形成结拱。
类似地,当第二物料侧壁815与水平面的第二夹角β为90°减去自锁角,就使得物料受到的横向抵接力能够分解为垂直于第二侧壁表面向下的作用力和垂直于第二侧壁表面的作用力,使得抵接力被消解掉,从而保证物料的顺畅下滑,不会结拱。
配料器813设置在第一物料侧壁814和第二物料侧壁815之间,且配料器813与第一物料侧壁814和第二物料侧壁815之间具有下料间隙,配料器813包括转轴和至少两段螺旋配料结构,至少两段螺旋配料结构设置在转轴上,且旋向相反。
旋向不同的任意两段螺旋配料结构可以连接在一起,也即具有共同的端点,或者也可以分开一定距离。
在一示例中,可以在转轴上设置旋向不同的两段螺旋配料结构,每段螺旋配料结构可以是单螺纹结构,以此实现轴向分料。或者,在另一示例中,可以在转轴上设置两组螺旋配料结构,两组螺旋配料结构可以包括3段、4段或者更多,只要保证至少两段螺旋配料结构的旋向不同,能够实现轴向分料即可。
根据本申请的实施例的另一方面,提供一种固体燃料的燃烧炉,固体燃料的燃烧炉包括炉体和上述的筛选装置,炉体包括供固体燃料燃烧产生的燃烧剩余物排出的出料口,筛选装置与出料口连接,并承接从出料口排出的燃烧剩余物,以对燃烧剩余物进行筛选。
本实施例中,筛选装置应用于燃烧炉中,用于对燃烧炉的燃烧剩余物进行分选。筛选装置尤其适用于能够满足温度场流程的燃烧炉,因为满足温度场流程的燃烧炉的燃烧剩余物质量可控。通过筛选装置可以对燃烧剩余物进行筛选,从而获得燃烧剩余的木炭、炭基肥等。
其中,满足温度场流程的燃烧炉是指:燃烧炉的炉膛内的不同温度区域的空间分布满足固体燃料不同燃烧阶段所需的温度条件,该不同温度区域是通过炉膛内的固体燃料在燃烧过程中形成的。这种燃烧炉能够使固体燃料在其中燃烧而不会结焦。通过控制固体燃料在燃烧炉内停留的时间就可以控制燃烧剩余物中碳的质量。
该燃烧炉可以直接通过筛选装置对燃烧剩余物进行分选,从而获得不同的筛选物,具有良好的经济效益,且可以充分避免能源浪费,减少燃烧剩余物的处理成本。
下面结合图6,对燃烧炉的结构和使用过程进行说明如下:
如图6所示,燃烧炉包括炉体,炉体的顶壁上设置有进料口,炉体的进风侧壁的上部设置有进风口41,与进风侧壁对应的出风侧壁上设置有出风口和出料口。炉体内设置有分料结构,分料结构的下方设置有出料推排46。通过出料推排46可以将燃烧剩余物从出料口排出,使其进入筛选装置中进行分选。炉体内还设置有蓄热装置用于对固体燃料产生的气体进行处理,从而减少对气体的处理成本。
炉体内供固体燃料燃烧的空间可以称为炉膛,通过在炉体内设置分料结构,可以使燃烧炉满足固体燃料充分燃烧(需要说明的是本实施例中所说的充分燃烧并非是指固体燃料中的碳全部燃烧,而是指在使固体燃料中的固定碳能够燃烧且不会由于过燃而使固体燃料结焦)的温度场流程,固体燃料在燃烧炉的炉膛内满足温度场流程为:炉膛内的不同温度区域的空间分布满足固体燃料不同燃烧阶段所需的温度条件,该不同温度区域是通过炉膛内的固体燃料在燃烧过程中形成的。
如图6所示,分料结构至少包括第一支臂组10,且第一支臂组10与水平面的夹角小于堆积在第一支臂组10上的固体燃料形成的堆放坡度。第一支臂组10用于形成第一斜面,且第一支臂组10上置有第三过料间隙,以使最大粒径小于第三过料间隙的固体燃料能够通过第一支臂组10而掉落。
可选地,分料结构还可以包括第二支臂组、第三支臂组等,第二支臂组和第三支臂组可以根据炉膛的体积选择性设置或不设置,对比不作限制。
以分料结构包括第一支臂组10、第二支臂组和第三支臂组为例,对通过分料结构使固体燃料进行有组织的、多耦合燃烧进行说明:
通过分料结构将炉体内划分为多个区域,第一支臂组10以上固体燃料主要是吸收热量并进行水分的蒸发、以及挥发分的裂解,可能伴有少量的燃烧,因此在第一支臂组10以上的区域可以称作裂解区域;第一支臂组10和第二支臂组之间固体燃料主要进行固定碳的燃烧,并释放热量(释放的热量可以供给裂解区域中的固体燃料吸收,多余的热量可以用于驱动锅炉或汽轮机等),可能伴有少量的挥发分裂解,因此该区域可以称作固定碳燃烧区;第二支臂组与出料推排46之间的区域中固体燃料主要是进行缺氧燃烧,因此可以将该区域称为缺氧燃烧区,若分料结构内设置有第三支臂组,则第三支臂组可以将缺氧燃烧区域分为两个或两个以上的子区域。
下面结合对燃烧炉的工作过程进行说明如下:
燃烧炉的运行过程可以分为填料、点火和运行几个阶段。
在填料阶段,固体燃料从进料口进入,并逐渐下落和堆积形成燃料堆,燃料堆自然形成堆放坡度γ,在此阶段由于固体燃料还未燃烧,因此炉体内各处堆积的固体燃料的堆放坡度γ相近。当固体燃料堆积到进料口的第一料位P时,停止进料,准备点燃。
在点燃阶段,关闭进风口41、打开与出风口连接的引风机(引风机通过通道与出风口连通),在进料口处放入引燃物,此时在引风机作用下炉体内为负压状态,气流从进料口进入,使得引燃物将固体燃料点燃,在点燃一段时间(该时间可以根据需要采用适当的方式确定)后进入运行阶段。
在运行阶段,将进料口的料位保持在第二料位,第二料位高于第一料位,并打开进风口41,使气流从进风口41进入,且在运行一段时间时启动出料推排46,使出料推排46推动固体燃料向出料口运动,其中出料推排46的运 动方向为远离进风口41的方向。
此阶段中,由于固体燃料的不断燃烧而使得炉体内的燃料堆不断塌缩、以及出料推排46不断驱动燃烧剩余物向炉体外运动,在这双重动力作用下,使得上方进料口处的固体燃料能够不断向下掉落,实现向炉体内补充新的固体燃料。
由于炉体内的固体燃料量足够多,处于在燃状态的固体燃料充足,能够提供足够的热量对新进入的固体燃料进行干燥且满足新进入的固体燃料燃烧所需吸收的热量,由此保证了对不同湿度的固体燃料的适应性,确保燃烧炉能够在不需要复杂的传感器进行检查和控制的情况下,使燃烧炉能够顺利、稳定地燃烧。
进料口进入的固体燃料首先在裂解区域内吸热而释出一些气体,这些气体包括但不限于VOC(挥发性有机化合物,英文全称为volatile organic compounds)和水蒸气等。在固体燃料在裂解区域内吸热的过程中固体燃料的体积也会减小。这些释出的气体被气流携带而进入蓄热装置形成的蓄热腔内,其在蓄热腔内被处理。由于蓄热装置具有足够的蓄热能力,因此保证了能够适应不同温度的气体,且保证能够对气体中的VOC(挥发分尤其是二噁英等)进行充分处理。
当固体燃料自进料口到达第一支臂组10的第一斜面时,由于第一支臂组10的阻挡作用,使得最大粒径小于第三过料间隙的固体燃料能够通过第一支臂组10而进入到固定碳燃烧区。对于最大粒径大于第三过料间隙的固体燃料,其会沿着第一斜面向下运动,逐渐运动到第一支臂组10的第一端(即图中显示的远离进风侧壁的一端),在此过程中,固体燃料仍可以吸热进行裂解以及水分蒸发,若固体燃料运动到温度高于燃料燃点的区域内,则固体燃料将会被点燃而开始燃烧。
伴随着固体燃料的裂解、水分被蒸发和燃烧,其体积也在不断地缩小,直到燃烧到能够通过第三过料间隙而掉落,进入到固定碳燃烧区,或者,沿 着第一斜面向下运动并掉落到缺氧燃烧区,最终从出料口排出到筛选装置内。
若固体燃料中掺杂了不可燃且体积较大的物质,由于其体积不会减小因此会沿着第一斜面运动到第一支臂组10的第一端,然后掉落到缺氧燃烧区,并随着缺氧燃烧区的固体燃料的塌缩、出料推排46的推动被推动到出料口而排出炉体。这使得对燃烧炉对固体燃料的适应性极强,对于掺杂了不可燃物的固体燃料也能够兼容,且保证不会由于不可燃物的存在而造成卡死。
由于第一支臂组10的阻挡作用,使得第一支臂组10下方的固体燃料体积塌缩的速度和第一支臂组10上方固体燃料的掉落速度之间存在了速度差,进而在第一支臂组10的下方形成了供气流通过的空隙,由于该空隙的存在,使得从进风口41进入的气流能够从空隙快速地运动到第一支臂组10的第一端处,又由于固体燃料堆积在第一支臂组10的燃料堆上自然形成的堆放坡度γ以及第一支臂组10和水平面之间的夹角的存在,导致第一支臂组10的第一端处的固体燃料的厚度最小、且固体燃料之间的间隙较大,综合使得该处的风阻较小,进而使得气流流速较大,而气流流速与温度之间正相关,因此使得第一支臂组10的第一端处的温度较高,而且该区域也正是固体燃料燃烧产生的碳焰所在区域,可以充分地为蓄热装置中的点火体611提供热量,使得点火体611的温度能够点燃蓄热腔内的气体,使得挥发分燃烧,挥发分燃烧产生的热量可以被蓄热装置的蓄热体612吸收从而维持蓄热腔内的温度场稳定在800℃~1150℃。
对于掉落到固定碳燃烧区的固体燃料,由于该区域与进风口41较近,且从进风口41进入的冷气流会先下沉,因此这部分固体燃料能够获得充足的供氧,从而燃烧,随着燃烧固体燃料的体积减小,越向下的固体燃料之间的缝隙越小,风阻就越大,风速就越小因而使得温度下降,因此固体燃料不会出现结焦的现象,从而有效解决了结焦温度在燃点以下导致现有技术中的炉排炉燃烧时固体燃料容易结焦导致堵塞的问题。
由于燃烧导致的固体燃料的体积减小、结合出料推排46的推动作用,使 得固体燃料不断向下运动。一部分固体燃料运动到第二支臂组的第二斜面上时,若能够通过第二支臂组的第四过料间隙,则会从固定碳燃烧区域进入到缺氧燃烧区;若体积不足以通过第四过料间隙,则会沿着第二斜面向下运动,直至能够通过第四过料间隙,或者运动到第二支臂组的第二端而掉落,会被出料推排46推动到缺氧燃烧区。
在此过程中,由于固体燃料的燃料堆本身的阻挡作用,使得炉体内的供风属于面给风,且气流速度受到固体燃料之间的间隙控制,实现了利用固体燃料燃烧体积减小,而使得缝隙减小、风速减小的特点对固体燃料的燃烧进行自然控制,防止了局部燃烧不充分,另一部分过燃的现象。
通过调整第二支臂组的长度、以及第二支臂组的第二端与进风侧壁之间的距离就可以控制固体燃料在固定碳燃烧区停留的时间,进而控制燃烧剩余物中的固定碳含量,从而实现获得需要品质的碳的目的。例如,通过该堆烧炉可以将生物质燃料加工成碳,同时还可以利用燃烧过程中产生的热量进行发电。
由于缺氧燃烧区距离进风口41较远,且固体燃料之间的间隙也较小,此处的风阻较高,气流流速较低,因此不会出现结焦的现象,而且供氧量也较少,可以避免过燃,从而防止由于氧化空气中的氮气而造成氮氧化物排放超标。
与第一支臂组10类似地,由于第二支臂组的阻挡作用,使得第二支臂组的下方也会形成空隙,该空隙使得燃烧的碳焰能够汇集到第一支臂组10的第一端处。
在缺氧燃烧区固体燃料经过第三支臂组的过程与经过第一支臂组10和第二支臂组类似,故不再赘述。第三支臂组的数量可以根据需要设置,或者也可以不设置。
从出料口排出的燃烧剩余物落到筛选箱91内,通过筛选装置的筛选并从不同的出口排出。其中第一出口914可以输出高品质的碳,第二出口915排 出中值碳,第三出口916排出炭基肥等。
在本实施例中,筛选装置的刮板机构92在水平面的移动方向与出料口的长度方向(图6中垂直纸面的方向)平行,这样方便燃烧剩余物均匀地分散到筛选装置内,提升筛选效率。
上述燃烧炉在炉膛内能够满足上述温度场流程,即炉膛内不同温度区域的空间分布满足固体燃料不同燃烧阶段所需的温度条件,在炉膛内实现符合固体燃料多个固有燃烧属性、并且使这些固有燃烧属性相互配合的燃烧,即多个燃烧属性的多耦合燃烧。上述固体燃料的多个固有燃烧属性包括:
1、固体燃料的燃烧过程是先吸热后放热的过程。通过使炉膛内燃料的热容量(即燃料焓值)大于燃烧所需的吸热量,本发明的实施例能够确保提供固体燃料燃烧之前所需的吸热量,从而保证了燃烧炉可以稳定、连续地燃烧,不会断火。
2、固体燃料在燃烧过程中体积由大变小,使得固体燃料的堆放坡度逐渐变小,流动性增大。
3、针对固体燃料燃烧产生的烟气,经过蓄热装置形成的800~1150℃的温度环境,使得挥发分(包括二噁英)可以充分裂解,实现环保排放。
需要说明的是,上述筛选装置除了能应用于燃烧炉中对燃烧剩余物进行筛选外,还可以应用到其他场景中。
应当理解,虽然本说明书是按照各个实施例描述的,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上所述仅为本申请实施例示意性的具体实施方式,并非用以限定本申请实施例的范围。任何本领域的技术人员,在不脱离本申请实施例的构思和原则的前提下所作的等同变化、修改与结合,均应属于本申请实施例保护的 范围。

Claims (11)

  1. 一种筛选装置,其特征在于,包括筛选箱(91)、主筛选结构(93)和刮板机构(92),所述筛选箱(91)具有供物料进入的物料入口,且所述筛选箱(91)的侧壁上设置有至少两个供筛选出的筛选物排出的物料出口;
    所述主筛选结构(93)设置在所述筛选箱(91)内,用于承接从所述物料入口进入的物料,所述主筛选结构(93)上设置有按照粒径对物料进行筛选的第一过料间隙,以将所述物料分为位于所述主筛选结构(93)上方和下方的至少两层筛选物;
    所述刮板机构(92)设置在所述筛选箱(91)内,所述刮板机构(92)包括刮板驱动组件(921)和多个刮板(922),多个所述刮板(922)连接于所述刮板驱动组件(921),并在所述刮板驱动组件(921)的驱动下移动,以将位于所述主筛选结构(93)上方和/或下方的筛选物输送到对应的物料出口。
  2. 根据权利要求1所述的筛选装置,其特征在于,至少两个所述物料出口包括第一出口(914)和第二出口(915),所述第一出口(914)与位于所述主筛选结构(93)上方的筛选物对应,所述第二出口(915)与位于所述主筛选结构(93)下方的筛选物对应。
  3. 根据权利要求2所述的筛选装置,其特征在于,所述第一出口(914)和所述第二出口(915)位于所述筛选箱(91)的不同侧壁,所述至少两个所述物料出口还包括第三出口(916),所述第三出口(916)与所述第二出口(915)位于所述筛选箱(91)的同一侧壁,且所述第三出口(916)位于所述第二出口(915)的下方,所述第三出口(916)上设置有按照粒径对下方的筛选物进行筛选的第二过料间隙,所述刮板机构(92)驱动位于所述主筛选结构(93)下方的筛选物依次经过所述第三出口(916)和所述第二出口(915)。
  4. 根据权利要求3所述的筛选装置,其特征在于,所述筛选装置还包括出料推排(46),所述出料推排(46)设置在所述筛选箱(91)外,且与所 述第二出口(915)对应,以承接从所述第二出口(915)排出的筛选物。
  5. 根据权利要求1-4中任一项所述的筛选装置,其特征在于,所述主筛选结构(93)的第一过料间隙为向所述筛选物施加与所述筛选物移动方向相反的剪切力的筛孔,或者,所述主筛选结构(93)的第一过料间隙为沿所述筛选物的移动方向贯通延伸的筛道。
  6. 根据权利要求1-4中任一项所述的筛选装置,其特征在于,所述筛选箱(91)包括箱主体、第一倾斜段(912)和第二倾斜段(913),所述第一倾斜段(912)的下端连接在所述箱主体的第一端,所述第二倾斜段(913)的下端连接在所述箱主体的第二端,至少两个所述物料出口中与位于所述主筛选结构(93)上方的筛选物对应的第一出口(914)设置在所述第一倾斜段(912),至少两个所述物料出口中与位于所述主筛选结构(93)下方的筛选物对应的第二出口(915)设置在所述第二倾斜段(913)。
  7. 根据权利要求6所述的筛选装置,其特征在于,所述主筛选结构(93)包括水平筛网段(931)、以及与所述水平筛网段(931)连接的倾斜筛网段(932),所述水平筛网段(931)位于所述箱主体内,所述倾斜筛网段(932)位于所述第一倾斜段(912)内,且所述倾斜筛网段(932)上端的高度低于所述第一出口(914)上端的高度。
  8. 根据权利要求1-4中任一项所述的筛选装置,其特征在于,所述筛选装置还包括物料隔离器,所述物料隔离器设置在所述主筛选结构(93)上方,以承接物料,并控制所述物料是否下落到所述主筛选结构(93)上,所述物料隔离器用于在所述物料隔离器上方形成满足设定厚度的物料层作为密封层。
  9. 根据权利要求8所述的筛选装置,其特征在于,所述物料隔离器包括连接箱体和配料器(813),所述连接箱体连接于所述筛选箱(91),所述连接箱体具有与所述筛选箱(91)的物料入口连接的物料通道,所述配料器(813)可转动地设置在所述连接箱体内,并用于控制所述物料通道的打开或封闭。
  10. 根据权利要求9所述的筛选装置,其特征在于,所述连接箱体包括第一物料侧壁(814)和第二物料侧壁,所述第一物料侧壁(814)与水平面 的第一夹角大于或等于所述物料的堆放坡度,或者第一夹角大于或等于35°,所述第二物料侧壁与水平面之间的第二夹角(β)的取值为90°减去所述物料相对于第二侧壁的自锁角,所述配料器(813)设置在所述第一物料侧壁(814)和所述第二物料侧壁之间,且所述配料器(813)与所述第一物料侧壁(814)和所述第二物料侧壁之间具有下料间隙,所述配料器(813)包括转轴和至少两段螺旋配料结构,所述至少两段螺旋配料结构设置在所述转轴上,且旋向相反。
  11. 一种固体燃料的燃烧炉,其特征在于,所述固体燃料的燃烧炉包括炉体和权利要求1-10中任一项所述的筛选装置,所述炉体包括供固体燃料燃烧产生的燃烧剩余物排出的出料口,所述筛选装置与所述出料口连接,并承接从所述出料口排出的燃烧剩余物,以对所述燃烧剩余物进行筛选。
PCT/CN2021/080594 2021-03-12 2021-03-12 筛选装置及固体燃料的燃烧炉 WO2022188178A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080594 WO2022188178A1 (zh) 2021-03-12 2021-03-12 筛选装置及固体燃料的燃烧炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080594 WO2022188178A1 (zh) 2021-03-12 2021-03-12 筛选装置及固体燃料的燃烧炉

Publications (1)

Publication Number Publication Date
WO2022188178A1 true WO2022188178A1 (zh) 2022-09-15

Family

ID=83226270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080594 WO2022188178A1 (zh) 2021-03-12 2021-03-12 筛选装置及固体燃料的燃烧炉

Country Status (1)

Country Link
WO (1) WO2022188178A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136594A (ja) * 1993-11-18 1995-05-30 Sanko Giken Kk 廃棄物分別装置
CN101191150A (zh) * 2007-05-29 2008-06-04 六盘水四维三友工贸有限公司 高炉瓦斯泥的综合利用方法及加工用的燃烧炉
RU2363552C2 (ru) * 2006-09-04 2009-08-10 Аркадий Анисимович Атрушкевич Дробильно-сортировочный комплекс дска-4м
CN201825508U (zh) * 2010-09-30 2011-05-11 唐山旗骏机械设备有限公司 刮板输送机
CN104014475A (zh) * 2014-05-08 2014-09-03 江苏韦欧机械有限公司 一种分级联合设备
CN106241206A (zh) * 2016-08-31 2016-12-21 内蒙古兰太实业股份有限公司 分流刮板机和带有分流刮板机的采盐船筛分输送系统
CN108342226A (zh) * 2018-03-30 2018-07-31 吴宽永 一种利用废弃物热解气化碳化生产再生油的装置
CN208790469U (zh) * 2018-05-09 2019-04-26 中国神华能源股份有限公司 一种刮板运输机和系统
CN110201777A (zh) * 2019-06-10 2019-09-06 山东清洁环保重工科技有限公司 土壤改良设备
CN211392704U (zh) * 2019-12-04 2020-09-01 大同市同华矿机制造有限责任公司 一种矿石刮板机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136594A (ja) * 1993-11-18 1995-05-30 Sanko Giken Kk 廃棄物分別装置
RU2363552C2 (ru) * 2006-09-04 2009-08-10 Аркадий Анисимович Атрушкевич Дробильно-сортировочный комплекс дска-4м
CN101191150A (zh) * 2007-05-29 2008-06-04 六盘水四维三友工贸有限公司 高炉瓦斯泥的综合利用方法及加工用的燃烧炉
CN201825508U (zh) * 2010-09-30 2011-05-11 唐山旗骏机械设备有限公司 刮板输送机
CN104014475A (zh) * 2014-05-08 2014-09-03 江苏韦欧机械有限公司 一种分级联合设备
CN106241206A (zh) * 2016-08-31 2016-12-21 内蒙古兰太实业股份有限公司 分流刮板机和带有分流刮板机的采盐船筛分输送系统
CN108342226A (zh) * 2018-03-30 2018-07-31 吴宽永 一种利用废弃物热解气化碳化生产再生油的装置
CN208790469U (zh) * 2018-05-09 2019-04-26 中国神华能源股份有限公司 一种刮板运输机和系统
CN110201777A (zh) * 2019-06-10 2019-09-06 山东清洁环保重工科技有限公司 土壤改良设备
CN211392704U (zh) * 2019-12-04 2020-09-01 大同市同华矿机制造有限责任公司 一种矿石刮板机

Similar Documents

Publication Publication Date Title
US4452155A (en) Method for incinerating material
CN2521499Y (zh) 垃圾焚烧炉
JPS62169906A (ja) 燃焼装置と燃焼方法
CN101038077A (zh) 可燃物处理装置
CN214147893U (zh) 一种垃圾热解除焦油设备
CN207514894U (zh) 复杂混合燃料的气化燃烧系统
US2592491A (en) Garbage incinerating unit
KR20130011049A (ko) 비산재 분리 및 2차 연소기능을 갖는 연속 연소장치
WO2022188178A1 (zh) 筛选装置及固体燃料的燃烧炉
JP2013108699A (ja) 流動層乾燥装置
WO2022151498A1 (zh) 固体燃料的燃烧组织方法及燃烧炉
KR100917928B1 (ko) 쌍방향 투입 연소 복합형 소각로
CN212299032U (zh) 一种分区燃烧的生物质燃烧机
CN215354493U (zh) 物料拣选装置及固体燃料的燃烧炉
JP2021504136A (ja) 環状噴流流動層を備えた装置およびその操作方法
JP4972944B2 (ja) 可燃性廃棄物の燃焼処理方法とその装置
TW200413672A (en) Fluidized-bed gasification furnace
WO2022188177A1 (zh) 分选装置及具有其的燃烧炉
US20130291771A1 (en) Method and system for delivering heat through gasification of biomass
KR102169127B1 (ko) 바이콘형 폐기물 압축 및 분쇄 장치 및 폐기물 예비 건조장치가 구비된 스토커식 소각로
KR100696315B1 (ko) Rdf 제조장치
JP2014211255A (ja) 固体燃料の燃焼装置及びボイラー装置
JP5693494B2 (ja) 流動層乾燥装置
KR20120084856A (ko) 펠릿 연소 보일러
WO2022151499A1 (zh) 用于固体燃料燃烧炉的分料结构及燃烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929651

Country of ref document: EP

Kind code of ref document: A1