WO2022149767A1 - 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2022149767A1
WO2022149767A1 PCT/KR2021/019664 KR2021019664W WO2022149767A1 WO 2022149767 A1 WO2022149767 A1 WO 2022149767A1 KR 2021019664 W KR2021019664 W KR 2021019664W WO 2022149767 A1 WO2022149767 A1 WO 2022149767A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
active material
secondary battery
lithium secondary
crumple
Prior art date
Application number
PCT/KR2021/019664
Other languages
English (en)
French (fr)
Inventor
김태곤
김정길
김명수
곽민
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/269,480 priority Critical patent/US20240120468A1/en
Priority to CN202180081291.XA priority patent/CN116547839A/zh
Priority to JP2023541348A priority patent/JP2024502362A/ja
Priority to EP21917929.8A priority patent/EP4261939A1/en
Publication of WO2022149767A1 publication Critical patent/WO2022149767A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a manufacturing method thereof, and a lithium secondary battery comprising the same. Specifically, the present invention relates to a cathode active material for a lithium secondary battery comprising a lithium transition metal oxide having a crumble graphene-derived coating layer formed thereon, a manufacturing method thereof, and a lithium secondary battery including the same.
  • a lithium transition metal oxide is used as a cathode active material for a lithium secondary battery, and among them, lithium cobalt oxide of LiCoO 2 having a high operating voltage and excellent capacity characteristics is mainly used.
  • LiCoO 2 has very poor thermal properties due to destabilization of the crystal structure due to lithium removal and is expensive, so there is a limit to its mass use as a power source in fields such as electric vehicles.
  • As a material for replacing LiCoO 2 lithium manganese oxide (LiMnO 2 or LiMn 2 O 4 , etc.), lithium iron phosphate compound (LiFePO 4 etc.), or lithium nickel oxide (LiNiO 2 etc.), etc. have been developed.
  • LiNiO 2 has poor thermal stability compared to LiCoO 2 , and when an internal short circuit occurs in a charged state due to external pressure, etc., the positive active material itself is decomposed to cause rupture and ignition of the battery.
  • LiNiO 2 has lower electrical conductivity than LiCoO 2 and is vulnerable to moisture.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2017-0119973
  • the present invention provides a cathode active material for a lithium secondary battery capable of improving the functionality of a cathode active material and improving battery performance when applied to a lithium secondary battery by thinly and uniformly coating crumble graphene on a lithium transition metal oxide, and a method for manufacturing the same And to provide a lithium secondary battery including the same.
  • the present invention provides a cathode active material for a lithium secondary battery comprising a lithium transition metal oxide having a crumble graphene-derived coating layer formed thereon.
  • the crumble graphene has a thickness of 0.1 to 10 nm.
  • the crumble graphene has a BET specific surface area of greater than 400 m 2 /g.
  • the crumble graphene contains 0.1 to 3% by weight of oxygen based on the total weight of the crumble graphene.
  • the crumble graphene has a size of 50 to 500 nm.
  • the crumble graphene-derived coating layer has an I D /I G value of 0.1 to 0.2.
  • the crumble graphene-derived coating layer has a thickness of 1 to 500 nm.
  • the lithium transition metal oxide on which the crumble graphene-derived coating layer is formed has an electrical conductivity of 1.0 ⁇ 10 ⁇ 2 to 1.0 ⁇ 10 S/cm.
  • the lithium transition metal oxide on which the crumble graphene-derived coating layer is formed has a BET specific surface area of 2 to 10 m 2 /g.
  • the present invention provides a method for producing the above-described positive active material for a lithium secondary battery, comprising the step of coating the crumple graphene on a lithium transition metal oxide to form a crumble graphene-derived coating layer on the lithium transition metal oxide.
  • the I D /I G value of the crumble graphene-derived coating layer is 30 to 70% of the I D /I G value of the crumble graphene.
  • the crumble graphene is coated on lithium transition metal oxide by mechanofusion method.
  • the cathode active material for a lithium secondary battery according to the present invention has a structure in which a thin and uniform crumble graphene-derived coating layer is formed on a lithium transition metal oxide by coating a thin-walled crumple graphene on a lithium transition metal oxide.
  • the thin and uniform crumble graphene-derived coating layer effectively imparts electrical conductivity to the lithium transition metal oxide.
  • the performance of the lithium secondary battery is improved.
  • FIG. 1 is an SEM image of exemplary crumple graphene
  • FIG. 1A is an image observed at a magnification ( ⁇ 100,000)
  • FIG. 1B is an image observed at a magnification ( ⁇ 10,000).
  • Example 3 is a SEM image of the positive active material according to Example 1.
  • the present invention provides a cathode active material for a lithium secondary battery comprising a lithium transition metal oxide having a crumble graphene-derived coating layer formed thereon.
  • the “crumple graphene” is a raw material used before coating on lithium transition metal oxide, and has a structure in which thin plate-shaped graphene is crumpled in a zigzag manner. Since the crumble graphene may exist in the coating layer in a collapsed state according to the coating method, in the present specification, the coating layer formed using crumble graphene as a raw material is expressed as a “crumple graphene-derived coating layer”. .
  • graphene is prepared in a top-down method, specifically, low-cost graphite is chemically exfoliated in a strong acid solvent by an intercalation mechanism, and shear force ( A graphene sheet is prepared by mechanically exfoliating it using shear force).
  • a graphene sheet is prepared by mechanically exfoliating it using shear force.
  • Crumple graphene according to the present invention is manufactured by a bottom-up method rather than a top-down method, and specifically, other substrates or catalysts using methane gas as a raw material as shown in the following Chemical Formula 1 Without the use of a single-step thermal plasma process, self-standing growth, and finally, crumple graphene having a crumpled structure in a zigzag form of a small growth unit is produced .
  • Crumple graphene prepared in this way has no mutual aggregation phenomenon in the powder phase, not the solution phase, so its dispersibility is greatly improved even when used as a powder itself, and the sp2 structure unique to high-quality graphene is well developed without surface defects. Therefore, the electrical conductivity is also excellent.
  • the crumble graphene has a thickness of 0.1 to 10 nm, preferably 0.5 to 5 nm, more preferably 1 to 3 nm.
  • the crumple graphene can easily maintain a zigzag crumpled structure as the thickness is thin as in the above-described range.
  • the crumble graphene has a BET specific surface area of more than 400 m 2 /g, preferably 400 to 2,000 m 2 /g, more preferably 400 to 1,600 m 2 /g.
  • the crumple graphene has a relatively large BET specific surface area because it has a zigzag crumpled structure with a thin thickness.
  • the crumble graphene is 0.1 to 3% by weight, preferably 0.1 to 1.5% by weight, more preferably 0.1 to 1% by weight of oxygen based on the total weight of the crumble graphene contains
  • crumple graphene is manufactured by a single-stage thermal plasma process without the use of other substrates or catalysts using methane gas as a raw material, compared to plate-shaped graphene produced in a general oxidation process, low oxygen content.
  • the crumble graphene has a size of 50 to 500 nm, preferably 100 to 300 nm, more preferably 100 to 200 nm.
  • the size means the length of the major axis of which the straight-line distance from any one point of the crumple graphene to another point is the longest based on one piece of the crumple graphene.
  • the crumble graphene uses methane gas as a raw material and is instantaneously prepared by a single-step thermal plasma process without the use of other substrates or catalysts, so it has a short growth unit and has a relatively small size. Thin flaky graphene is observed as a zigzag crumpled structure. The structure is confirmed through the SEM image of the exemplary crumble graphene of FIGS. 1A and 1B.
  • the crumble graphene has an I D /I G value of 0.3 to 0.5, preferably 0.3 to 0.4.
  • the I D /I G value represents the relative intensity ratio of the D-band and G-band peaks in the Raman spectrum, and each band is due to the sp3 and sp2 bond structures of carbon atoms. It indicates that the fin layered structure has excellent crystallinity without defects.
  • the crumple graphene has an I D /I G value that is somewhat larger than that of plate-shaped graphene and much smaller than that of carbon black.
  • the crumble graphene is 1.0 ⁇ 10 2 to 1.0 ⁇ 10 3 S/cm, preferably 1.0 ⁇ 10 2 to 5.0 ⁇ 10 2 S/cm, more preferably 1.0 ⁇ It has an electrical conductivity of 10 2 to 3.0 ⁇ 10 2 S/cm.
  • Carbon-based materials such as graphene and carbon black basically have high electrical conductivity and contribute to the improvement of the electrical conductivity of lithium transition metal oxide with low electrical conductivity, but the electrical conductivity of carbon-based materials is reflected in lithium transition metal oxide as it is. Therefore, it is important that the carbon-based material be uniformly coated on the lithium transition metal oxide in order to effectively improve electrical conductivity.
  • the lithium transition metal oxide functions as a substantial positive active material for exchanging electrons in the positive electrode of a lithium secondary battery
  • the transition metal in the lithium transition metal oxide is Li 1+x M y O 2 +Z (0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2), where M is Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, It is selected from the group consisting of Ti, Ru, Nb, W, B, Si, Na, K, Mo, V, and combinations thereof, and is not particularly limited within the above range.
  • the crumble graphene is coated on a lithium transition metal oxide.
  • a coating method capable of forming mechanochemical bonding in order to increase the bonding strength between the lithium transition metal oxide and the coating layer may be used.
  • the mixture is coated on a lithium transition metal oxide by a mechanofusion method capable of applying a high shear force.
  • the crumple graphene When the crumple graphene is coated on the lithium transition metal oxide by the mechanofusion method, the crumple graphene has a zigzag crumpled structure partially or entirely collapsed, so that it can be coated thinly and uniformly on the surface of the lithium transition metal oxide.
  • Crumple graphene is coated on lithium transition metal oxide to form a crumble graphene-derived coating layer on lithium transition metal oxide.
  • the crumble graphene-derived coating layer has a thickness of 1 to 500 nm, preferably 1 to 300 nm, more preferably 1 to 100 nm.
  • the structure of crumple graphene may be collapsed by a coating method such as mechanofusion method, so that the crumble graphene may be coated thinly and uniformly on the surface of the lithium transition metal oxide.
  • the crumble graphene-derived coating layer has an I D /I G value of 0.1 to 0.2, preferably 0.15 to 0.2. As described above, considering that the crumpled graphene before coating has an I D /I G value of 0.3 to 0.5, the I D /I G value is reduced by a significant proportion by the coating. According to one embodiment of the present invention, the I D /I G value of the crumble graphene-derived coating layer is 30 to 70%, preferably 35 to 65%, of the I D /I G value of the crumble graphene. Preferably it is 40 to 60%.
  • the decrease in the I D /I G value means that the zigzag crumple graphene coating goes beyond the simple physical adhesion level to the active material surface.
  • the sp2 structure on the plane is developed as the structural stress of the zigzag form is resolved.
  • the structural defects of carbon atoms inside the crumple graphene may mean that a mechanically and chemically stronger and stronger carbon coating layer is formed.
  • the lithium transition metal oxide with the crumble graphene-derived coating layer formed thereon is 1.0 ⁇ 10 -2 to 1.0 ⁇ 10 S/cm, preferably 1.0 ⁇ 10 -2 to 1.0 ⁇ 10 -1 It has an electrical conductivity of S/cm, more preferably 5.0 ⁇ 10 -2 to 1.0 ⁇ 10 -1 S/cm. Since the thin and uniform crumble graphene-derived coating layer effectively imparts electrical conductivity to the lithium transition metal oxide, it has higher electrical conductivity compared to the case of coating other carbon-based materials.
  • the lithium transition metal oxide on which the crumble graphene-derived coating layer is formed is 2 to 10 m 2 /g, preferably 2 to 7.5 m 2 /g, more preferably 2 to 5 m 2 /g has a BET specific surface area of .
  • the crumple graphene material itself has a high BET specific surface area of more than 400 m 2 /g, but during the coating process, the crumpled zigzag structure of the crumple graphene collapses partially or entirely, , the specific surface area after coating decreases relatively significantly compared to before coating.
  • the positive active material for a lithium secondary battery according to the present invention effectively imparts electrical conductivity to the lithium transition metal oxide by forming a thin and uniform graphene coating layer using crumple graphene as a raw material on the lithium transition metal oxide.
  • the performance of the lithium secondary battery, particularly, the discharge capacity at a high C-rate may be improved.
  • the present invention provides a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and an electrolyte.
  • the positive electrode and the negative electrode are positioned to face each other, and the separator is interposed between the positive electrode and the negative electrode.
  • the electrode assembly of the positive electrode, the negative electrode, and the separator is accommodated in a battery container, and the battery container is filled with an electrolyte.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector and including the above-described positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , nickel, titanium, silver or the like surface-treated may be used.
  • the positive electrode current collector may typically have a thickness of 3 to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the positive electrode current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive active material layer may include a conductive material and a binder together with the above-described positive active material.
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it has electronic conductivity without causing chemical change.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, summer black, single-walled or multi-walled carbon nanotubes, carbon fibers, graphene, activated carbon, and activated carbon fibers; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or a conductive polymer such as a polyphenylene derivative, and the like, and any one of them or a mixture of two or more thereof may be used.
  • the conductive material may be included in an amount of 1 to 30 wt% based on the total weight of the positive active material layer.
  • the binder serves to improve adhesion between the positive active material particles and adhesion between the positive active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • the binder may be included in an amount of 1 to 30% by weight based on the total weight of the positive active material layer.
  • the positive electrode may be manufactured according to a conventional positive electrode manufacturing method except for using the above-described positive electrode active material. Specifically, it may be prepared by applying the above-described positive active material and, optionally, a composition for forming a positive electrode active material layer including a binder and a conductive material on a positive electrode current collector, followed by drying and rolling. In this case, the types and contents of the positive electrode active material, the binder, and the conductive material are as described above.
  • the solvent may be a solvent generally used in the art, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), acetone (acetone) or water and the like, and any one of them or a mixture of two or more thereof may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, the conductive material and the binder in consideration of the application thickness of the slurry and the production yield, and to have a viscosity capable of exhibiting excellent thickness uniformity during application for the production of the positive electrode thereafter. do.
  • the positive electrode may be prepared by casting the composition for forming the positive electrode active material layer on a separate support, and then laminating a film obtained by peeling it from the support on the positive electrode current collector.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the above-mentioned metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, flaky, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the binder, the conductive material, and the negative electrode current collector may be selected with reference to the above-described configuration of the positive electrode, but is not limited thereto.
  • the method of forming the negative electrode active material layer on the negative electrode current collector is similar to the positive electrode by a known coating method and is not particularly limited.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without particular limitation, and in particular, it is low in ion movement of the electrolyte. It is preferable that it is excellent in the electrolytic solution moisture content while being resistance.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene/butene copolymer, an ethylene/hexene copolymer, and an ethylene/methacrylate copolymer, or these
  • a laminated structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator containing a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • Examples of the electrolyte used in the present invention include organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, molten inorganic electrolytes, and the like, which can be used in the manufacture of lithium secondary batteries. not.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether-based solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a C2 to C20 linear, branched or cyclic hydro
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethylmethyl carbonate, dimethyl carbonate or diethyl carbonate, etc.) is more preferable.
  • the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the electrolyte may exhibit excellent performance.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode active material according to the present invention stably exhibits excellent discharge capacity, output characteristics and capacity retention rate, so portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles ( It is useful in the field of electric vehicles such as hybrid electric vehicle, HEV).
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium and large-sized devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • Crumple graphene (manufacturer: Nanointegris Technologies, product: PureWave Graphene, average thickness: 2.4 nm, BET specific surface area: more than 400 m/g, size: 150-200 nm, oxygen content: 1%) was mixed with LiNi 0.6 Co 0.2 Mn After mixing with 0.2 O 2 (NCM 622) and a weight ratio of 1:99, it was put into a mechanofusion device (manufacturer: Hosokawa Micron, product: Nobilta NOB-130), and then driven at 3,000 rpm, 10 minutes. , A cathode active material coated with crumple graphene was prepared.
  • a cathode active material coated with carbon black was prepared in the same manner as in Example 1, except that carbon black (manufacturer: Imerys, product: Super C65) was used instead of crumple graphene.
  • SEM Scanning electron microscopy
  • the I D /I G value was measured by analyzing a Raman spectrum with an Ar-ion laser having a wavelength of 514.5 nm through a Raman spectrometer (manufacturer: Jasco, product: NRS-2000B).
  • I D /I G value change rate (%) I D /I G value after coating / I D /I G value before coating ⁇ 100
  • each of the positive electrode active materials were mixed with a carbon black conductive material and a PVDF binder in an N-methylpyrrolidone solvent in a weight ratio of 97.5:1:1.5 (positive electrode active material:conductive material:binder) to produce a positive electrode.
  • a positive electrode was prepared by preparing a slurry of an active material, applying it on one surface of an aluminum current collector (loading amount: 10 to 12 mg/cm 2 ), drying at 130° C., and rolling.
  • Lithium metal was used for the negative electrode, and a separator of porous polyethylene was interposed between the positive electrode and the negative electrode to prepare an electrode assembly.
  • an electrolyte was injected into the case to prepare a lithium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물을 포함하는 리튬 이차전지용 양극 활물질 및 이의 제조방법이 제공된다. 상기 크럼플 그래핀은 0.1 내지 10nm의 두께를 가진다. 상기 양극 활물질에서 얇고 균일한 크럼플 그래핀 유래 코팅층은 리튬 전이금속 산화물에 효과적으로 전기 전도성을 부여한다. 상기 양극 활물질을 리튬 이차전지에 적용하면, 리튬 이차전지의 성능, 특히 높은 C-rate에서의 방전 용량이 개선된다.

Description

리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
본 발명은 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다. 구체적으로, 본 발명은 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물을 포함하는 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.
본 출원은 2021년 1월 7일자 한국 특허 출원 제10-2021-0001809호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
리튬 이차전지의 양극 활물질로는 리튬 전이금속 산화물이 이용되고 있으며, 이중에서도 작용전압이 높고 용량 특성이 우수한 LiCoO2의 리튬 코발트 산화물이 주로 사용되고 있다. 그러나, LiCoO2는 탈 리튬에 따른 결정 구조의 불안정화로 열적 특성이 매우 열악하고, 또 고가이기 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에는 한계가 있다. LiCoO2를 대체하기 위한 재료로서, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4등) 또는 리튬 니켈 산화물(LiNiO2 등) 등이 개발되었다. 이 중에서도 약 200mAh/g의 높은 가역 용량을 가져 대용량의 전지 구현이 용이한 리튬 니켈 산화물에 대한 연구 및 개발이 활발히 이루어졌다. 그러나, LiNiO2는 LiCoO2와 비교하여 열안정성이 나쁘고, 충전 상태에서 외부로부터의 압력 등에 의해 내부 단락이 생기면 양극 활물질 그 자체가 분해되어 전지의 파열 및 발화를 초래하는 문제가 있다. 또한, LiNiO2는 LiCoO2와 비교하여 전기 전도도가 낮고, 수분에 취약한 특성을 가진다.
이러한 문제를 해결하기 위해, 리튬 전이금속 산화물을 피치를 이용한 탄소 코팅 등이 검토되고 있으나, 탄화를 위한 고온 열처리 공정이 반드시 필요하다. 이 때, 표면의 탄소 원소가 리튬 전이금속 산화물 표면의 산소와 반응하여, 환원 처리되고, 리튬 전이금속 산화물의 산화수가 크게 변경되면서, 오히려 양극 활물질의 성능을 저하시키게 된다.
이에, 해당 기술 분야에서는 리튬 전이금속 산화물을 포함하는 양극 활물질의 성분 또는 구조를 개선하여 리튬 이차전지의 성능을 개선하기 위한 연구가 계속되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2017-0119973호
본 발명은 크럼플 그래핀을 리튬 전이금속 산화물에 얇고 균일하게 코팅함으로써, 양극 활물질의 기능성을 향상시키고, 리튬 이차전지에 적용 시 전지의 성능을 개선할 수 있는 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.
본 발명의 제1 측면에 따르면,
본 발명은 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물을 포함하는 리튬 이차전지용 양극 활물질을 제공한다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀은 0.1 내지 10nm의 두께를 가진다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀은 400㎡/g 초과의 BET 비표면적을 가진다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀은 크럼플 그래핀 총 중량을 기준으로 하여 0.1 내지 3 중량%의 산소를 함유한다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀은 50 내지 500nm의 크기를 가진다.
본 발명의 일 구체예에 있어서, 상기 리튬 전이금속 산화물은 LiCoO2, LiNiO2, LiMnO2, Li2MnO3, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O<y<1), LiCo1-yMnyO2, LiNi1-yMnyO2(O<y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2), LiMn2-zCozO4(0<z<2) 및 이의 조합으로부터 선택된다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀 유래 코팅층은 0.1 내지 0.2의 ID/IG 값을 가진다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀 유래 코팅층은 1 내지 500nm의 두께를 가진다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 1.0×10-2 내지 1.0×10 S/cm의 전기 전도도를 가진다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 2 내지 10㎡/g의 BET 비표면적을 가진다.
본 발명의 제2 측면에 따르면,
본 발명은 크럼플 그래핀을 리튬 전이금속 산화물에 코팅하여 리튬 전이금속 산화물 상에 크럼플 그래핀 유래 코팅층을 형성하는 단계를 포함하는 상술한 리튬 이차전지용 양극 활물질의 제조방법을 제공한다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀 유래 코팅층의 ID/IG 값은 크럼플 그래핀의 ID/IG 값의 30 내지 70 %이다.
본 발명의 일 구체예에 있어서, 상기 크럼플 그래핀은 리튬 전이금속 산화물에 메카노퓨전법에 의해 코팅된다.
본 발명에 따른 리튬 이차전지용 양극 활물질은 얇은 두께의 크럼플 그래핀을 리튬 전이금속 산화물에 코팅하여 리튬 전이금속 산화물 상에 얇고 균일한 크럼플 그래핀 유래 코팅층이 형성된 구조를 가진다.
상기 양극 활물질에서 얇고 균일한 크럼플 그래핀 유래 코팅층은 리튬 전이금속 산화물에 효과적으로 전기 전도성을 부여한다.
상기 양극 활물질을 리튬 이차전지에 적용하면, 리튬 이차전지의 성능, 특히 높은 C-rate에서의 방전 용량이 개선된다.
도 1은 예시적인 크럼플 그래핀의 SEM 이미지이고, 도 1a는 배율(×100,000)으로 관측한 이미지이고, 도 1b는 배율(×10,000)으로 관측한 이미지이다.
도 2는 탄소계 물질이 코팅되지 않은 NCM 622의 SEM 이미지이다.
도 3은 실시예 1에 따른 양극 활물질의 SEM 이미지이다.
도 4는 비교예 1에 따른 양극 활물질의 SEM 이미지이다.
도 5는 비교예 2에 따른 양극 활물질의 SEM 이미지이다.
도 6은 비교예 3에 따른 양극 활물질의 SEM 이미지이다.
도 7은 비교예 4에 따른 양극 활물질의 SEM 이미지이다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 명세서에 기재된 물성에 대하여, 측정 조건 및 방법이 구체적으로 기재되어 있지 않은 경우, 상기 물성은 해당 기술 분야에서 통상의 기술자에 의해 일반적으로 사용되는 측정 조건 및 방법에 따라 측정된다.
양극 활물질 및 이의 제조방법
본 발명은 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물을 포함하는 리튬 이차전지용 양극 활물질을 제공한다.
상기 “크럼플(Crumple) 그래핀”은 리튬 전이금속 산화물에 코팅 전에 사용되는 원료 물질이며, 얇은 판상형 그래핀이 지그재그로 구겨진 구조를 가진다. 상기 크럼플 그래핀은 코팅 방법에 따라 상술한 구조가 붕괴된 상태로 코팅층에 존재할 수 있기 때문에, 본 명세서에서는 크럼플 그래핀을 원료로 하여 형성된 코팅층을 “크럼플 그래핀 유래 코팅층”으로 표현한다.
일반적으로 그래핀은 탑-다운(Top-Down) 방식으로 제조되며, 구체적으로 저가의 그래파이트를 강산 용매 내에서 인터칼레이션 메커니즘(Intercalation Mechanism)으로 화학적으로 박리시키고, 분산제가 투입된 용매 내에서 전단력(Shear Force)을 이용하여 기계적으로 박리시켜 그래핀 시트를 제조한다. 그러나, 이러한 방식으로 제조된 그래핀을 파우더 상태로 만들면, 다시 포개져 뭉쳐지는 리-스태킹(Re-stacking) 문제가 발생하기 때문에 분산 용액 상태로만 제조된 그래핀 본연의 상태를 유지하며, 상호 분리되어 존재할 수 있다. 또한, 이러한 방식으로 제조된 그래핀 산화물을 열적 또는 화학적으로 환원해도 표면의 손상이 여전히 존재하기 때문에 품질 저하의 문제가 발생한다.
본 발명에 따른 크럼플 그래핀은 탑-다운(Top-Down) 방식이 아닌 바텀-업(Bottom-Up) 방식으로 제조되며, 구체적으로 하기 화학식 1과 같이 메탄 가스를 원료로 하여 다른 기재나 촉매의 사용 없이, 단일 단계(Single-Step)의 열 플라즈마(Thermal Plasma) 공정으로 자립(Self-Standing) 성장하며, 최종적으로는 작은 성장 단위의 지그재그 형태로 구겨진 구조를 가지는 크럼플 그래핀을 제조한다.
Figure PCTKR2021019664-appb-C000001
이러한 방식으로 제조된 크럼플 그래핀은 용액 상이 아닌, 파우더 상에서도 상호 응집 현상이 없기 때문에 분말 자체로 사용하여도 분산성이 크게 개선되며, 표면 결함 없이 고품질 그래핀 특유의 sp2 구조가 잘 발달해 있기 때문에 전기 전도도 또한 우수하다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 0.1 내지 10nm, 바람직하게는 0.5 내지 5nm, 보다 바람직하게는 1 내지 3nm의 두께를 가진다. 상기 크럼플 그래핀은 상술한 범위와 같이 두께가 얇아 지그재그로 구겨진 구조를 쉽게 유지할 수 있다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 400㎡/g 초과, 바람직하게는 400 내지 2,000㎡/g, 보다 바람직하게는 400 내지 1,600㎡/g의 BET 비표면적을 가진다. 상기 크럼플 그래핀은 두께가 얇으면서 지그재그로 구겨진 구조를 갖기 때문에, 상대적으로 큰 BET 비표면적을 가진다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 크럼플 그래핀 총 중량을 기준으로 0.1 내지 3 중량%, 바람직하게는 0.1 내지 1.5 중량%, 보다 바람직하게는 0.1 내지 1 중량%의 산소를 함유한다. 상술한 것과 같이, 크럼플 그래핀은 메탄 가스를 원료로 하여 다른 기재나 촉매의 사용 없이, 단일 단계의 열 플라즈마(Thermal Plasma) 공정으로 제조되기 때문에, 일반적인 산화 공정에서 제조되는 판상형 그래핀에 비해 산소의 함량이 적다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 50 내지 500nm, 바람직하게는 100 내지 300nm, 보다 바람직하게는 100 내지 200nm의 크기를 가진다. 여기서, 크기는 크럼플 그래핀의 하나의 조각을 기준으로 크럼플 그래핀의 임의의 한 지점으로부터 다른 지점까지의 직선 거리가 가장 긴 장축의 길이를 의미한다. 상술한 것과 같이, 상기 크럼플 그래핀은 메탄 가스를 원료로 하여 다른 기재나 촉매의 사용 없이, 단일 단계의 열 플라즈마 공정에 의해 순간적으로 제조되기 때문에, 짧은 성장 단위를 가지며, 상대적으로 작은 크기의 얇은 박편상 그래핀이 지그재그로 구겨진 구조로 관찰된다. 상기 구조는 도 1a 및 1b의 예시적인 크럼플 그래핀의 SEM 이미지를 통해 확인된다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 0.3 내지 0.5, 바람직하게는 0.3 내지 0.4의 ID/IG 값을 가진다. 상기 ID/IG 값은 라만 스펙트럼에서 D-밴드와 G-밴드 피크의 상대적인 강도 비율을 나타내며, 각각의 밴드는 탄소 원자의 sp3, sp2 결합 구조에 기인하며, 값이 작을수록 sp2 결합의 그래핀 층상 구조가 결함 없이 우수한 결정성을 가짐을 나타낸다. 상기 크럼플 그래핀은 판상형 그래핀 보다는 다소 크고, 카본 블랙 보다는 훨씬 작은 ID/IG 값을 가진다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀은 1.0×102 내지 1.0×103 S/cm, 바람직하게는 1.0×102 내지 5.0×102 S/cm, 보다 바람직하게는 1.0×102 내지 3.0×102 S/cm의 전기 전도도를 가진다. 그래핀 및 카본 블랙과 같은 탄소계 물질은 기본적으로 높은 전기 전도도를 가져, 전기 전도도가 낮은 리튬 전이금속 산화물의 전기 전도도 향상에 기여하지만, 탄소계 물질의 전기 전도도가 리튬 전이금속 산화물에 그대로 반영되는 것은 아니기 때문에, 효과적인 전기 전도도 개선을 위해서는 탄소계 물질이 리튬 전이금속 산화물에 균일하게 코팅되는 것이 중요하다.
상기 리튬 전이금속 산화물은 리튬 이차전지의 양극에서 전자를 주고 받는 실질적인 양극 활물질로서의 기능을 하며, 본 발명의 일 구체예에 따르면, 상기 리튬 전이금속 산화물에서 전이금속은 Li1+xMyO2+Z(0≤x≤5, 0<y≤2, 0≤z≤2)의 형태를 가지며, 여기서, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, V 및 이의 조합으로 이루어진 군으로부터 선택되며, 상기 범위 내에서 특별히 제한되지 않는다. 보다 구체적으로 리튬 전이금속 산화물은 LiCoO2, LiNiO2, LiMnO2, Li2MnO3, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O<y<1), LiCo1-yMnyO2, LiNi1-yMnyO2(O<y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2), LiMn2-zCozO4(0<z<2) 및 이의 조합으로부터 선택된다.
상기 크럼플 그래핀은 리튬 전이금속 산화물에 코팅된다. 코팅 방법은 해당 기술 분야에서 일반적으로 사용되는 방법이 사용될 수 있으나, 리튬 전이금속 산화물과 코팅 층의 결합력을 증가시키기 위해 기계화학적 결합(mechanochemical bonding) 형성할 수 있는 코팅 방법이 사용될 수 있다. 본 발명의 일 구체예에 따르면, 상기 혼합물은 높은 전단력을 인가할 수 있는 메카노퓨전법(mechanofusion method)에 의해 리튬 전이금속 산화물에 코팅된다. 상기 메카노퓨전법으로 크럼플 그래핀을 리튬 전이금속 산화물에 코팅하는 경우, 크럼플 그래핀은 지그재그로 구겨진 구조가 부분 또는 전체적으로 붕괴되어, 리튬 전이금속 산화물 표면에 얇고 균일하게 코팅될 수 있다.
크럼플 그래핀을 리튬 전이금속 산화물에 코팅하여 리튬 전이금속 산화물 상에 크럼플 그래핀 유래 코팅층이 형성된다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀 유래 코팅층은 1 내지 500nm, 바람직하게는 1 내지 300nm, 보다 바람직하게는 1 내지 100nm의 두께를 가진다. 특히, 메카노퓨전법 등의 코팅 방법에 의해서, 크럼플 그래핀의 구조가 붕괴될 수 있어, 크럼플 그래핀은 리튬 전이금속 산화물 표면에 얇고 균일하게 코팅될 수 있다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀 유래 코팅층은 0.1 내지 0.2, 바람직하게는 0.15 내지 0.2의 ID/IG 값을 가진다. 상술한 바와 같이, 코팅 전의 크럼플 그래핀이 0.3 내지 0.5의 ID/IG 값을 가지는 것을 고려하면, 코팅에 의해 ID/IG 값은 상당한 비율로 감소한다. 본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀 유래 코팅층의 ID/IG 값은 크럼플 그래핀의 ID/IG 값의 30 내지 70 %, 바람직하게는 35 내지 65%, 보다 바람직하게는 40 내지 60%이다. ID/IG 값은 탄소 원자의 sp2, sp3 결합 구조에 기인하기 때문에, ID/IG 값이 감소했다는 것은 지그재그 형태의 크럼플 그래핀 코팅이 단순한 물리적 접착 수준을 넘어 활물질 표면에 평면적으로 밀착하고, 이 때, 지그재그 형태의 구조적 스트레스가 해소되면서 평면 상의 sp2 구조가 발달하게 된다. 이 때, 크럼플 그래핀 내부의 탄소 원자의 구조적 결함이 해소되면서, 기계화학적으로 보다 강하고 견고한 탄소 코팅층이 형성된 것을 의미할 수 있다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 1.0×10-2 내지 1.0×10 S/cm, 바람직하게는 1.0×10-2 내지 1.0×10-1 S/cm, 보다 바람직하게는 5.0×10-2 내지 1.0×10-1 S/cm의 전기 전도도를 가진다. 얇고 균일한 크럼플 그래핀 유래 코팅층은 리튬 전이금속 산화물에 효과적으로 전기 전도성을 부여하기 때문에, 다른 탄소계 물질을 코팅하는 경우이 비해 높은 전기 전도도를 가진다.
본 발명의 일 구체예에 따르면, 상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 2 내지 10㎡/g, 바람직하게는 2 내지 7.5㎡/g, 보다 바람직하게는 2 내지 5㎡/g의 BET 비표면적을 가진다. 상술한 바와 같이, 크럼플 그래핀 소재 자체는 BET 비표면적이 400㎡/g 초과로 높지만, 코팅 과정에서 크럼플 그래핀의 지그재그로 구겨진 구조가 부분 또는 전체적으로 붕괴되어 활물질 표면에 평면 상으로 밀착되면서, 코팅 이후의 비표면적은 코팅 전에 비해 상대적으로 크게 감소한다.
본 발명에 따른 리튬 이차전지용 양극 활물질은 리튬 전이금속 산화물에 크럼플 그래핀을 원료로 하여 얇고 균일한 그래핀 코팅층을 형성함으로써, 리튬 전이금속 산화물에 효과적으로 전기 전도성을 부여한다. 상기 양극 활물질을 리튬 이차전지에 적용하면, 리튬 이차전지의 성능, 특히 높은 C-rate에서의 방전 용량이 개선될 수 있다.
리튬 이차전지
본 발명은 양극, 음극, 분리막 및 전해질을 포함하는 리튬 이차전지를 제공한다. 상기 리튬 이차전지에서 양극과 음극은 서로 대향하여 위치하며, 분리막은 양극과 음극 사이에 개재된다. 양극, 음극 및 분리막의 전극 조립체는 전지용기에 수납되고, 전지용기는 전해질로 채워진다.
상기 양극은 양극 집전체 및 상기 양극 집전체 위에 형성되며, 상술한 양극 활물질을 포함하는 양극 활물질 층을 포함한다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질 층은 상술한 양극 활물질과 함께, 도전재 및 바인더를 포함할 수 있다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한 없이 사용 가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 단일벽 또는 다중벽 탄소나노튜브, 탄소섬유, 그래핀, 활성탄, 활성탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 양극 활물질 층의 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 바인더는 양극 활물질 층의 총 중량에 대하여 1 내지 30 중량%로 포함될 수 있다.
상기 양극은 상술한 양극 활물질을 이용하는 것을 제외하고는 통상의 양극 제조방법에 따라 제조될 수 있다. 구체적으로, 상술한 양극 활물질 및 선택적으로, 바인더 및 도전재를 포함하는 양극 활물질 층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조될 수 있다. 이때 상기 양극 활물질, 바인더, 도전재의 종류 및 함량은 앞서 설명한 바와 같다.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
다른 방법으로, 상기 양극은 상기 양극 활물질 층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질 층을 포함한다.
상기 음극 활물질 층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질 탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si 합금, Sn 합금 또는 Al 합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β<2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체와 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
상기 바인더, 도전재 및 음극 집전체는 상술한 양극에서의 구성을 참조하여 선택될 수 있으나, 반드시 이에 한정되는 것은 아니다. 또한, 상기 음극 집전체 상에 음극 활물질 층을 형성하는 방법은 양극에서와 마찬가지로 공지된 도포 방법에 의하며 특별히 한정되는 것은 아니다.
상기 리튬 이차전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
본 발명에서 사용되는 전해질로는 리튬 이차전지 제조 시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸 알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌 카보네이트 또는 프로필렌 카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸 카보네이트, 디메틸 카보네이트 또는 디에틸 카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌 카보네이트 등과 같은 할로알킬렌 카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 양극 활물질을 포함하는 리튬 이차전지는 우수한 방전 용량, 출력 특성 및 용량 유지율을 안정적으로 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
실시예 1
크럼플 그래핀(제조사: Nanointegris Technologies 사, 제품: PureWave Graphene, 평균 두께: 2.4nm, BET 비표면적: 400 ㎡/g 초과, 크기: 150~200nm, 산소 함량: 1%)을 LiNi0.6Co0.2Mn0.2O2(NCM 622)과 1:99의 중량비로 혼합한 뒤, 메카노퓨전 장치(제조사: Hosokawa Micron 사, 제품: Nobilta NOB-130)에 투입한 후, 3,000rpm, 10분 조건으로 구동하여, 크럼플 그래핀이 코팅된 양극 활물질을 제조하였다.
비교예 1
크럼플 그래핀을 코팅 시, 메카노퓨전 장치 대신 단순 메커니컬믹싱 장치(제조사: Red Devil 사, 제품: Classic Shaker 1400, 조건: 60Hz, 60분)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 크럼플 그래핀이 코팅된 양극 활물질을 제조하였다.
비교예 2
크럼플 그래핀 대신 판상형 그래핀(제조사: KNANO 사, 제품: Graphene Powder, 평균 두께: 100nm, BET 비표면적: 51 ㎡/g, 크기: 7㎛, 산소 함량: 2% 미만)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 판상형 그래핀이 코팅된 양극 활물질을 제조하였다.
비교예 3
판상형 그래핀을 코팅 시, 메카노퓨전 장치 대신 단순 메커니컬믹싱 장치(제조사: Red Devil 사, 제품: Classic Shaker 1400, 조건: 60Hz, 60분)을 사용한 것을 제외하고는 비교예 2와 동일한 방법으로 판상형 그래핀이 코팅된 양극 활물질을 제조하였다.
비교예 4
크럼플 그래핀 대신 카본 블랙(제조사: Imerys 사, 제품: Super C65)을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 카본 블랙이 코팅된 양극 활물질을 제조하였다.
비교예 5
카본 블랙을 코팅 시, 메카노퓨전 장치 대신 단순 메커니컬믹싱 장치(제조사: Red Devil 사, 제품: Classic Shaker 1400, 조건: 60Hz, 60분)을 사용한 것을 제외하고는 비교예 4와 동일한 방법으로 그래핀이 코팅된 양극 활물질을 제조하였다.
실험예
실험예 1: 제조된 양극 활물질의 SEM 이미지 비교
Scanning electron microscopy(SEM)(배율: ×50,000)를 이용하여 탄소계 물질(그래핀 또는 카본 블랙)이 코팅되지 않은 NCM 622와 실시예 1 및 비교예 1 내지 4에 따른 양극 활물질을 촬영하였다. 촬영된 SEM 이미지를 도 2(NCM 622), 도 3(실시예 1), 도 4(비교예 1), 도 5(비교예 2), 도 6(비교예 3) 및 도 7(비교예 4)에 나타내었다.
탄소계 물질이 코팅되지 않은 NCM 622의 SEM 이미지(도 2)를 기초로 코팅된 탄소계 물질을 평가해 보면, 먼저 크럼플 그래핀의 경우, 메커니컬믹싱 장치를 이용하여 코팅 시, 크럼플 그래핀의 구조가 그대로 유지되어 균일한 코팅층이 형성되지 않았지만(도 4), 메카노퓨전 장치를 이용하여 코팅 시, 크럼플 그래핀의 구조가 붕괴되면서 얇고 균일한 코팅층이 형성되는 것(도 3)을 확인할 수 있었다.
이와 달리, 판상형 그래핀의 경우, 메커니컬믹싱 장치를 이용하여 코팅 시, 판상형 그래핀이 상호 응집되어 뭉침 현상이 발생하여 균일한 코팅층이 형성되지 않았고(도 6), 메카노퓨전 장치를 이용하더라도 판상형 그래핀이 그대로 NCM 622의 표면에 덮여 균일한 코팅층이 형성되지 않는 것(도 5)을 확인할 수 있었다. 또한, 카본 블랙의 경우에도, 메카노퓨전 장치를 이용하더라도 카본 블랙이 뭉쳐진 그대로 NCM 622의 표면에 덮여 균일한 코팅층이 형성되지 않는 것(도 7)을 확인할 수 있었다.
실험예 2: 탄소계 물질의 전기 전도도, BET 비표면적 및 ID/IG 값 비교
실시예 1 및 비교예 1에서 사용된 크럼플 그래핀, 비교예 2 및 3에서 사용된 판상형 그래핀, 및 비교예 4 및 5에서 사용된 카본 블랙에 대하여, 코팅 전과 코팅 후의 전기 전도도, BET 비표면적 및 ID/IG 값을 측정하여 하기 표 1에 나타내었다. 전기 전도도와 BET 비표면적은 소재 전체에 대한 측정값이고, ID/IG 값은 탄소계 물질에 대한 측정값이다. 상기 전기 전도도는 샘플 5g을 홀더에 넣은 후, 30kN의 힘을 가하여 압연하고, 4-Pin Probe를 이용하는 전기 전도도 측정 장치(제조사: Mitsubishi Chemical 사, 제품: MCP-PD51)을 사용하여 측정되었다. 상기 BET 비표면적은 BET 비표면적 측정 장치(제조사: Nippon Bell, 제품: BEL_SORP_MAX)을 사용하여 200℃에서 8시간 동안 가스를 제거하고(degassing), 77K에서 N2 흡착/탈착(absorption/desorption)을 진행하여 측정되었다. 상기 ID/IG 값은 라만 분광 분석 장치(제조사: Jasco, 제품: NRS-2000B)를 통해, 514.5nm 파장의 Ar-ion laser로 라만 스펙트럼을 분석하여 측정되었다.
탄소계 물질 코팅 조건 전기 전도도
(S/cm)
BET 비표면적
(㎡/g)
ID/IG ID/IG 값 변화율
(%)
크럼플 그래핀 코팅 전 2.22×102 402 0.37 -
실시예 1의 코팅 후 5.61×10-2 3.83 0.18 48.6
비교예 1의 코팅 후 8.38×10-3 5.08 0.34 91.9
판상형 그래핀 코팅 전 1.84×103 51 0.22 -
비교예 2의 코팅 후 4.62×10-3 0.63 0.17 77.3
비교예 3의 코팅 후 2.32×10-3 0.78 0.21 95.5
카본 블랙 코팅 전 1.76×10 115 1.09 -
비교예 4의 코팅 후 3.58×10-3 1.59 1.05 96.3
비교예 5의 코팅 후 2.49×10-3 1.84 1.08 99.1
* ID/IG 값 변화율(%) = 코팅 후 ID/IG 값 / 코팅 전 ID/IG 값 × 100
상기 표 1에 따르면, 판상형 그래핀 및 카본 블랙과 달리 크럼플 그래핀을 사용하는 경우, 전기 전도도 및 비표면적이 높게 유지되는 것을 확인할 수 있다. 또한, 크럼플 그래핀을 사용하는 경우, 메커니컬믹싱 장치가 아닌 메카노퓨전 장치로 코팅 시, 원소재 대비 BET 비표면적은 크게 감소시킬 정도로 표면이 매끄럽게 코팅되고, 전기 전도도는 약 7배 향상시킬 수 있었다. 이는 ID/IG 값을 통해 확인할 수 있듯이, 크럼플 그래핀을 메카노퓨전 장치로 코팅 시, 크럼플 그래핀의 지그재그 구조가 붕괴하여 표면 밀착하고, 구조적 스트레스가 해소되면서, 평면 상의 sp2 결합에 대한 구조적 결함이 완화되어, ID/IG 값이 현저하게 감소하고, 이에 따라 얇고 균일한 코팅층을 형성하면서 전기 전도도가 현저하게 향상된 것으로 판단된다.
실험예 3: 실시예 1과 비교예 1 내지 5의 양극 활물질을 사용한 리튬 이차전지의 C-rate 특성 평가
실시예 1과 비교예 1 내지 5 각각의 양극 활물질을 N-메틸피롤리돈 용매 중에서 카본 블랙 도전재 및 PVDF 바인더와 97.5:1:1.5(양극 활물질:도전재:바인더)의 중량비로 혼합하여 양극 활물질 슬러리를 제조하고, 이를 알루미늄 집전체의 일면에 도포한 후(로딩량: 10~12 mg/㎠), 130℃에서 건조 후, 압연하여 양극을 제조하였다.
음극은 리튬 금속을 사용하였고, 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하여 전극 조립체를 제조하였다. 상기 전극 조립체를 전지 케이스 내부에 위치시킨 후, 케이스 내부로 전해질을 주입하여 리튬 이차전지를 제조하였다. 이 때, 전해액은 에틸렌카보네이트 / 디메틸카보네이트 / 에틸메틸카보네이트(EC/DMC/EMC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
상술한 방법으로 코인 하프 셀 전지를 제조한 뒤, 25℃에서 0.1C로 4.3V까지 CC/CV 충전하고, 0.005C로 컷-오프(Cut-off) 시까지 충전하였으며, 0.1C로 3.0V까지 CC 방전하여, 초회 충방전 용량 측정 및 셀 검증을 실시하였다. 이 후, 제조된 전지에 대하여 25℃에서 0.2C 정전류로 4.25V까지 0.05C로 컷-오프 시까지 충전하였다. 이어서, 0.2C 정전류로 2.5V가 될 때까지 방전을 실시하여 초기 충전 및 방전 용량을 측정하였다.
이 후, 0.2C 정전류로 4.25V까지 0.05C로 컷-오프 시까지 충전하였고, 2.0C 정전류로 2.5V가 될 때까지 방전하였다. 상기 충전 및 방전을 1 사이클로 하여, 두 번의 사이클을 실시하였다. 그 후, 상기 전지에 대하여 0.2C 방전 용량 대비 2.0C에서의 방전 용량을 측정하였고, 이를 하기 표 2에 나타내었다. 0.2 C 방전 용량 대비 2.0 C 방전 용량비(%)는 '2.0 C 방전 용량 / 0.2 C 방전 용량 × 100'로 계산된다.
리튬 이차전지의 양극 활물질 2.0 C 방전 용량비
(%)
실시예 1 94.8
비교예 1 89.6
비교예 2 91.5
비교예 3 78.4
비교예 4 74.9
비교예 5 75.3
상기 표 2에 따르면, 크럼플 그래핀과 판상형 그래핀을 사용한 경우, 메카노퓨전 장치로 코팅 시, 메커니컬믹싱 장치로 코팅 시와 비교하여 2.0C의 높은 C-rate에서 방전 용량이 개선되는 것을 확인할 수 있었다. 또한, 크럼플 그래핀을 사용한 경우, 대체적으로 2.0C의 높은 C-rate에서 우수한 방전 용량을 나타내었으며, 특히 메카노퓨전 장치로 코팅 시, 0.2C의 낮은 C-rate와 비교해서도 2.0C의 높은 C-rate에서 방전 용량이 거의 저하되지 않았다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (15)

  1. 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물을 포함하고,
    상기 크럼플 그래핀은 0.1 내지 10nm의 두께를 가지는 리튬 이차전지용 양극 활물질.
  2. 청구항 1에 있어서,
    상기 크럼플 그래핀은 400㎡/g 초과의 BET 비표면적을 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  3. 청구항 1에 있어서,
    상기 크럼플 그래핀은 크럼플 그래핀 총 중량을 기준으로 하여 0.1 내지 3 중량%의 산소를 함유하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  4. 청구항 1에 있어서,
    상기 크럼플 그래핀은 50 내지 500nm의 크기를 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  5. 청구항 1에 있어서,
    상기 리튬 전이금속 산화물은 LiCoO2, LiNiO2, LiMnO2, Li2MnO3, LiMn2O4, Li(NiaCobMnc)O2(0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2(O<y<1), LiCo1-yMnyO2, LiNi1-yMnyO2(O<y<1), Li(NiaCobMnc)O4(0<a<2, 0<b<2, 0<c<2, a+b+c=2), LiMn2-zNizO4(0<z<2), LiMn2-zCozO4(0<z<2) 및 이의 조합으로부터 선택되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  6. 청구항 1에 있어서,
    상기 크럼플 그래핀 유래 코팅층은 0.1 내지 0.2의 ID/IG 값을 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  7. 청구항 1에 있어서,
    상기 크럼플 그래핀 유래 코팅층은 1 내지 500nm의 두께를 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  8. 청구항 1에 있어서,
    상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 1.0×10-2 내지 1.0×10 S/cm의 전기 전도도를 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  9. 청구항 1에 있어서,
    상기 크럼플 그래핀 유래 코팅층이 형성된 리튬 전이금속 산화물은 2 내지 10㎡/g의 BET 비표면적을 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질.
  10. 크럼플 그래핀을 리튬 전이금속 산화물에 코팅하여 리튬 전이금속 산화물 상에 크럼플 그래핀 유래 코팅층을 형성하는 단계를 포함하고,
    상기 크럼플 그래핀은 0.1 내지 10nm의 두께를 가지는 청구항 1에 따른 리튬 이차전지용 양극 활물질의 제조방법.
  11. 청구항 10에 있어서,
    상기 크럼플 그래핀은 400㎡/g 초과의 BET 비표면적을 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  12. 청구항 10에 있어서,
    상기 크럼플 그래핀은 크럼플 그래핀 총 중량을 기준으로 하여 0.1 내지 3 중량%의 산소를 함유하는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  13. 청구항 10에 있어서,
    상기 크럼플 그래핀은 50 내지 500nm의 크기를 가지는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  14. 청구항 10에 있어서,
    상기 크럼플 그래핀 유래 코팅층의 ID/IG 값은 크럼플 그래핀의 ID/IG 값의 30 내지 70 %인 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
  15. 청구항 10에 있어서,
    상기 크럼플 그래핀은 리튬 전이금속 산화물에 메카노퓨전법에 의해 코팅되는 것을 특징으로 하는 리튬 이차전지용 양극 활물질의 제조방법.
PCT/KR2021/019664 2021-01-07 2021-12-22 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 WO2022149767A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/269,480 US20240120468A1 (en) 2021-01-07 2021-12-22 Positive Electrode Active Material For Lithium Secondary Battery, Method Of Preparing The Same, And Lithium Secondary Battery Comprising The Same
CN202180081291.XA CN116547839A (zh) 2021-01-07 2021-12-22 锂二次电池用正极活性材料、其制备方法和包含其的锂二次电池
JP2023541348A JP2024502362A (ja) 2021-01-07 2021-12-22 リチウム二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
EP21917929.8A EP4261939A1 (en) 2021-01-07 2021-12-22 Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210001809A KR20220099651A (ko) 2021-01-07 2021-01-07 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR10-2021-0001809 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022149767A1 true WO2022149767A1 (ko) 2022-07-14

Family

ID=82357187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019664 WO2022149767A1 (ko) 2021-01-07 2021-12-22 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Country Status (6)

Country Link
US (1) US20240120468A1 (ko)
EP (1) EP4261939A1 (ko)
JP (1) JP2024502362A (ko)
KR (1) KR20220099651A (ko)
CN (1) CN116547839A (ko)
WO (1) WO2022149767A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150060467A (ko) * 2013-11-26 2015-06-03 지에스에너지 주식회사 금속산화물/그래핀 복합 마이크로입자 및 이를 포함하는 리튬 이차전지용 양극
JP2017103207A (ja) * 2015-11-19 2017-06-08 Tdk株式会社 正極活物質、正極、及びリチウムイオン二次電池
KR20170119973A (ko) 2016-04-20 2017-10-30 울산과학기술원 표면개질된 양극 활물질, 양극 활물질의 표면개질 방법, 및 상기 표면개질된 양극 활물질을 포함하는 전기화학소자
KR101977675B1 (ko) * 2016-11-22 2019-05-13 기초과학연구원 환원된 그래핀 옥사이드 필름의 제조 방법
KR20200056308A (ko) * 2018-11-14 2020-05-22 주식회사 엘지화학 열팽창된 환원 그래핀 옥사이드, 이의 제조방법, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
KR20210001809A (ko) 2019-06-28 2021-01-06 에스케이씨 주식회사 폴리이미드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150060467A (ko) * 2013-11-26 2015-06-03 지에스에너지 주식회사 금속산화물/그래핀 복합 마이크로입자 및 이를 포함하는 리튬 이차전지용 양극
JP2017103207A (ja) * 2015-11-19 2017-06-08 Tdk株式会社 正極活物質、正極、及びリチウムイオン二次電池
KR20170119973A (ko) 2016-04-20 2017-10-30 울산과학기술원 표면개질된 양극 활물질, 양극 활물질의 표면개질 방법, 및 상기 표면개질된 양극 활물질을 포함하는 전기화학소자
KR101977675B1 (ko) * 2016-11-22 2019-05-13 기초과학연구원 환원된 그래핀 옥사이드 필름의 제조 방법
KR20200056308A (ko) * 2018-11-14 2020-05-22 주식회사 엘지화학 열팽창된 환원 그래핀 옥사이드, 이의 제조방법, 이를 포함하는 황-탄소 복합체 및 리튬 이차전지
KR20210001809A (ko) 2019-06-28 2021-01-06 에스케이씨 주식회사 폴리이미드계 필름, 이의 제조방법, 및 이를 포함하는 커버 윈도우 및 디스플레이 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MA YANFENG, CHANG HUICONG, ZHANG MIAO, CHEN YONGSHENG: "Graphene-Based Materials for Lithium-Ion Hybrid Supercapacitors", ADVANCED MATERIALS, vol. 27, no. 36, 1 September 2015 (2015-09-01), pages 5296 - 5308, XP055949605, ISSN: 0935-9648, DOI: 10.1002/adma.201501622 *
YI SHI, SHU-LEI CHOU, JIA-ZHAO WANG, DAVID WEXLER, HUI-JUN LI, HUA-KUN LIU, YUPING WU: "Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, no. 32, 1 January 2012 (2012-01-01), pages 16465 - 16470, XP055127363, ISSN: 09599428, DOI: 10.1039/c2jm32649c *

Also Published As

Publication number Publication date
US20240120468A1 (en) 2024-04-11
KR20220099651A (ko) 2022-07-14
CN116547839A (zh) 2023-08-04
EP4261939A1 (en) 2023-10-18
JP2024502362A (ja) 2024-01-18

Similar Documents

Publication Publication Date Title
KR102459883B1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR102213174B1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2019151834A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20180090211A (ko) 이차전지용 양극활물질 및 이의 제조방법
WO2021187961A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2021107586A1 (ko) 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
WO2018217071A1 (ko) 이차전지용 양극의 제조방법, 이와 같이 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2017095081A1 (ko) 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지
WO2019098541A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020162708A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2019013511A2 (ko) 리튬 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2020036392A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2016053051A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022164281A1 (ko) 양극 및 이를 포함하는 리튬 이차전지
WO2021153936A1 (ko) 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016053054A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2021112607A1 (ko) 이차전지용 양극재의 제조방법
WO2018174619A1 (ko) 이차전지 양극용 슬러리 조성물의 제조방법, 이를 이용하여 제조된 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2018174616A1 (ko) 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2021225396A1 (ko) 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2019078506A2 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2022139563A1 (ko) 이차전지용 음극, 음극용 슬러리 및 음극의 제조 방법
WO2019066585A1 (ko) 이차전지용 양극 활물질의 제조방법, 이와 같이 제조된 양극 활물질 및 이를 포함하는 리튬 이차전지
KR102459882B1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917929

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180081291.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269480

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023541348

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021917929

Country of ref document: EP

Effective date: 20230714

NENP Non-entry into the national phase

Ref country code: DE