WO2022149341A1 - 位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体 - Google Patents

位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体 Download PDF

Info

Publication number
WO2022149341A1
WO2022149341A1 PCT/JP2021/040758 JP2021040758W WO2022149341A1 WO 2022149341 A1 WO2022149341 A1 WO 2022149341A1 JP 2021040758 W JP2021040758 W JP 2021040758W WO 2022149341 A1 WO2022149341 A1 WO 2022149341A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
signal
detected
period
mold
Prior art date
Application number
PCT/JP2021/040758
Other languages
English (en)
French (fr)
Inventor
勝 中川
スバル 原田
俊昭 早川
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to US18/265,711 priority Critical patent/US20240042674A1/en
Priority to JP2022573929A priority patent/JPWO2022149341A1/ja
Priority to EP21917566.8A priority patent/EP4276406A1/en
Publication of WO2022149341A1 publication Critical patent/WO2022149341A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces

Definitions

  • the present invention relates to an alignment method, a method for manufacturing a laminate, an alignment device, a laminate manufacturing apparatus, and a laminate.
  • NIL NanoImplint Photolithography
  • resin fluidity ultraviolet curable resin
  • fine pattern transfer may be performed a plurality of times (for example, 20 times or more). In this case, it is necessary to align the alignment mark formed on the substrate such as the wafer manufactured in the previous step with the alignment mark on the mold, which is a mold for transfer, with high accuracy.
  • Patent Document 1 a mold containing a mold-side alignment mark and a mold-side moire mark, a resin composition layer containing a fluorescent dye, and a patterned substrate including a substrate-side alignment mark and a substrate-side moire mark are laminated. , Detects the misalignment of the mold side alignment mark and the substrate side alignment mark, detects the misalignment of the mold side moire mark and the substrate side moire mark based on the fluorescent moire fringes, and molds based on the two detected misalignments. A technique for aligning by moving a patterned substrate has been proposed.
  • the present invention has been made in view of the above problems, and is an alignment method capable of aligning an upper object and a lower object with an accuracy of an atomic scale error, a method for manufacturing a laminate, and a position. It is an object of the present invention to provide a mating device, a laminated body manufacturing device, and a laminated body.
  • the alignment method includes a laminating step of laminating a first object and a second object, and a first laminating step provided on the first object after the laminating step.
  • the first light obtained from the array is detected as the first signal
  • the second light obtained from the second array provided on the first object is detected as the second signal
  • the second object is detected.
  • the third light obtained from the second array provided is used as a third signal
  • the fourth light obtained from the first array provided on the second object is used as a fourth signal.
  • the first array includes a first periodic structure having a period p1 and the second array includes a period p2.
  • the first array and the second array provided on the first object, and the second array and the second array provided on the second object, which have a second periodic structure composed of the above.
  • the array of 1 is arranged so that none of them overlap each other when they are laminated.
  • the first signal, the second signal, the third signal, and the fourth signal obtained from the first array and the second array are used. May be the luminescence from the layer located between the first object and the second object.
  • the first signal, the second signal, the third signal, and the fourth signal obtained from the first array and the second array May be the scattered light of the first array and the second array.
  • the first object and the second object may be laminated so that the gap between the first object and the second object is 3 ⁇ m or less in the laminating step.
  • the first array has a period of 20 or more
  • the second array has a period of 20 or more. It may consist of the second periodic structure.
  • the method for manufacturing a laminated body includes a first object and a second object, and the laminated body is provided with a period p1 provided to the first object.
  • a first array having a first periodic structure a second array having a second periodic structure consisting of period p2, the second array provided on the second object, and the second array.
  • the first object provided on the first object after the laminating step of laminating the first object and the second object so that one of them does not overlap when the array of 1 is laminated, and the laminating step.
  • the first light obtained from the first array was detected as the first signal
  • the second light obtained from the second array was detected as the second signal
  • the second object was provided with the second object.
  • a detection step of detecting a third light obtained from the second array as a third signal and detecting a fourth light obtained from the first array as a fourth signal was detected.
  • the calculation step of obtaining the positional deviation between the first object and the second object, and the positional deviation can be obtained. Includes an adjustment step to adjust.
  • the alignment device stacks the first object and the second object, and aligns the positional deviation between the first object and the second object.
  • a positioning device a first array having a first periodic structure having a period p1 and a second array having a second periodic structure having a period p2 provided on the first object.
  • the first object and the second object are laminated so that when the second array and the first array provided on the second object do not overlap each other.
  • the first light obtained from the first array provided on the first object is detected as the first signal with respect to the stacking means and the laminated body in which the first object and the second object are laminated.
  • the second light obtained from the second array is detected as the second signal
  • the third light obtained from the second array provided on the second object is detected as the third signal
  • the detection means for detecting the fourth light obtained from the first array as the fourth signal, the detected first signal, the second signal, the third signal, and the fourth signal.
  • the laminate manufacturing apparatus is a laminate manufacturing apparatus for manufacturing a laminate by laminating a first object and a second object, and the first object is used.
  • the first light obtained from the first array provided on the first object is detected as the first signal with respect to the laminate in which and is laminated, and the second array obtained from the second array is detected.
  • the second light is detected as a second signal
  • the third light obtained from the second array provided on the second object is detected as the third signal
  • the third light is detected from the first array.
  • the laminated body includes a first array having a first periodic structure having a period p1 and a second periodic structure having a period p2.
  • the first object provided with the first object including the second array, the second object, and the second object including the second array and the first array.
  • the first object and the second object so that any one of the second array and the first array provided on the second object does not overlap with the array and the second array.
  • the object is laminated.
  • the alignment method, the method for manufacturing the laminate, the alignment device, the laminate manufacturing device, and the laminate according to the above aspect can perform the alignment between the upper object and the lower object with the accuracy of the error of the atomic scale.
  • FIG. 22 is a graph showing the relationship between the ratio of the thickness of the residual film to the pattern depth of the bar array and the standard error of the detected value.
  • FIG. 1 is a block diagram showing an example of the configuration of the alignment device according to the present embodiment.
  • the alignment device 1 is both a laminate manufacturing device 1 and an imprint device 1.
  • the alignment device 1 includes a control device 11, a microscope device 12, an ultraviolet irradiation device 13, a fixed stage 14, a coating device 15, an XYZ ⁇ -axis movable stage 16, and a lighting device 17.
  • the alignment device 1 is based on the light from the array formed on the mold 21 and the array formed on the substrate 22 by laminating the mold (first object) 21 and the substrate (second object) 22.
  • the mold 21 and the substrate 22 are aligned with each other.
  • the light from the array is luminescence from the layer located between the mold 21 and the substrate 22, or scattered light from the mold 21 and the substrate 22.
  • the layer 23 between the mold 21 and the substrate 22 is a liquid such as an ultraviolet curable visible fluorescent liquid or a gas such as air.
  • the luminescence is, for example, fluorescence or phosphorescence from a layer located between the first object and the second object.
  • the control device 11 controls the microscope device 12, the ultraviolet irradiation device 13, the fixed stage 14, the coating device 15, the XYZ ⁇ -axis movable stage 16, and the lighting device 17, and performs stacking and alignment.
  • the control device 11 uses the illumination light from the illumination device 17 to fit the signal obtained by the microscope device 12 to detect the light from the array using a predetermined mathematical formula, and the amount of misalignment between the mold 21 and the substrate 22. Is calculated.
  • the control device 11 aligns the mold 21 and the substrate 22 with the XYZ ⁇ -axis movable stage 16 based on the calculated displacement amount.
  • the microscope device 12 includes a plurality of detection pixels and detects light from an array.
  • the observation magnification of the microscope device 12 is, for example, 7 times, and the NA (numerical aperture) is, for example, 0.08.
  • the pixel length used for detection is, for example, 0.837 ( ⁇ m).
  • the ultraviolet irradiation device 13 manufactures a laminate by, for example, curing an ultraviolet curable resin (ultraviolet curable visible fluorescent liquid) containing a fluorescent dye by ultraviolet irradiation according to the control of the control device 11.
  • an ultraviolet curable resin ultraviolet curable visible fluorescent liquid
  • the fixed stage 14 holds, for example, the mold 21 according to the control of the control device 11.
  • the coating device 15 coats the substrate 22 with, for example, an ultraviolet curable visible fluorescent liquid, which is a layer located between the mold 21 and the substrate 22, according to the control of the control device 11.
  • the XYZ ⁇ -axis movable stage 16 moves, for example, the substrate 22 according to the control of the control device 11.
  • FIG. 2 is a diagram showing a configuration example of the laminated body according to the present embodiment. As shown in FIG. 2, as shown in the configuration diagram g1 in the yz plane, the laminated body 2 includes a mold 21, a layer 23, and a substrate 22.
  • the first array 311 (21) and the second array 312 (21) are formed at both ends in the y-axis direction, and the first array 311 (21) at one end is formed. ) And the first array 311 (21) at the other end, for example, a circuit pattern is formed.
  • a second array 312 (22) and a first array 311 (22) are formed at both ends in the y-axis direction, and a second array 312 (22) at one end is formed.
  • the second array 312 (22) at the other end for example, a circuit pattern is formed.
  • the body 311 (22) is formed so as not to overlap each other in the y-axis direction when laminated.
  • the mold 21 is formed with a first array composed of a plurality of bars 300 having a period p1 in the x-axis direction. Further, a second array composed of a plurality of bars 300 having a period p2 in the x-axis direction is formed on the substrate 22.
  • the microscope device 12 when detecting luminescence such as fluorescence as a signal, visible light is irradiated from the lighting device 17 to emit luminescence such as fluorescence from the ultraviolet curable visible fluorescent liquid of the layer 23, and the microscope device 12 emits each of them. Detects the optical signal from the array of. By fitting the detected first signal, second signal, third signal, and fourth signal, respectively, the positional deviation between the first object and the second object is obtained by a calculation means, and after the positional deviation is adjusted, the positional deviation is adjusted. It is possible to produce a laminate composed of a mold 21, a layer 23, and a substrate 22 in which an ultraviolet curable visible fluorescent liquid of a layer 23 is solidified by irradiating ultraviolet rays from an ultraviolet irradiation device 13.
  • a light source such as an LED (light emitting diode), a white lamp equipped with a bandpass filter or a cutoff filter for dimming the irradiation wavelength, an Xe (xenon) lamp, or a halogen lamp is used.
  • a light source such as an LED (light emitting diode), a white lamp equipped with a bandpass filter or a cutoff filter for dimming the irradiation wavelength, an Xe (xenon) lamp, or a halogen lamp is used.
  • the layer 23 is an ultraviolet curable visible fluorescent liquid
  • any light source may be used as long as the light source can be aligned while maintaining the fluidity of the layer 23 while detecting the optical signal from each array.
  • the ultraviolet irradiation device 13 for example, a light source such as a UV-LED (ultraviolet light emitting diode), an Hg-Xe (mercury-xenon) lamp, or a high-pressure mercury lamp can be used. Any light source that can solidify the ultraviolet curable visible fluorescent liquid of layer 23 may be used.
  • the microscope device 12 is equipped with an image pickup element that removes light having a wavelength of the irradiation light from the ultraviolet irradiation device 13 and the illumination light from the lighting device 17 and detects luminescence such as fluorescence having a longer wavelength.
  • the scattered light is detected as a signal, visible light or the like from the lighting device 17 is irradiated to generate scattered light from the mold 21 and the substrate 22, and the microscope device 12 arranges each of the same wavelengths as the illumination light. Detects optical signals from the body. By fitting the detected first signal, second signal, third signal, and fourth signal, respectively, the positional deviation between the first object and the second object is obtained by a calculation means, and after the positional deviation is adjusted, the positional deviation is adjusted.
  • the ultraviolet rays from the ultraviolet irradiation device 13 are drawn at predetermined positions of the mold 21 and the substrate 22 to be fused.
  • a laminated body in which the mold 21 and the substrate 22 pass through a gas layer such as air in the layer 23 can be manufactured.
  • a high-power short pulse laser such as a UV laser can be preferably used.
  • a high-power ultrashort pulse laser or the like that generates visible light or infrared rays can also be used.
  • the microscope device 12 is equipped with an image pickup element that detects scattered light having the same wavelength as the wavelength of the illumination light from the lighting device 17.
  • FIG. 3 is a diagram showing an arrangement example of an array formed on the mold according to the present embodiment and an array formed on the substrate.
  • FIG. 3 there is a concave structure of the array formed on the mold 21 on the back side of the paper surface, and there is a concave structure of the array formed on the substrate 22 on the front side of the paper surface.
  • the lateral direction of the bar 300 constituting the array formed on the mold 21 and the substrate 22 is the x-axis direction
  • the longitudinal direction of the bar 300 is the y-axis direction.
  • the aggregate of the array of (22) may be located at four corners of the mold 21 and the substrate 22 or at two diagonal corners, for example. Further, it is preferable that the aggregate of the array is located at both ends of the mold 21 and the substrate 22.
  • a first array 311 (21) and a second array 312 (21) are formed on the mold 21. Further, a second array body 312 (22) and a first array body 311 (22) are formed on the substrate 22.
  • the bars 300 are arranged at a period of p1 in the x-axis direction.
  • the width (width of the bar) of the bar 300 of the first array 311 in the lateral direction is L 1
  • the space width (space width) between the bars is S 1 .
  • the bars 300 are arranged in the x-axis direction at a period of p2.
  • the width of the bar 300 of the second array 312 in the lateral direction is L 2
  • the space width between the bars is S 2 .
  • the width L1 of the bar 300 of the first array 311 in the lateral direction and the width L2 of the bar 300 of the second array 312 in the lateral direction are not distinguished, " It is referred to as "the width L of the bar 300 in the lateral direction” or "the width L of the bar 300".
  • the space width S1 of the first array 311 and the space width S2 of the second array 312 are not distinguished, it is referred to as "space width S”.
  • each bar 300 constituting the array in FIG. 3 has a longer length in the y-axis direction than a width in the x-axis direction.
  • the shape of each bar 300 is not limited to the rectangle as shown in FIG. 3, and may be, for example, a square or an ellipse.
  • the size of the bar 300 constituting the first array 311 and the size of the bar 300 constituting the second array 312 may be the same or different.
  • FIG. 4 is a diagram showing an example of the positional relationship between the mold and the array of substrates in the laminated body according to the present embodiment.
  • the plan view g11 is a view of the laminated body 2 as viewed from the mold 21 side, for example.
  • the cross-sectional view g12 is a cross-sectional view taken along the line AA'in the plan view g11.
  • the cross-sectional view g13 is a cross-sectional view taken along the line BB'in the plan view g11.
  • the first array 311 (21) and the second array 312 (21) of the mold 21, the second array 312 (22) and the first array 311 of the substrate 22 ( 22) is arranged so that one of them does not overlap when laminated. Further, when each array is laminated, the first array 311 (21) of the mold 21, the second array 312 (22) of the substrate 22, and the second array of the mold 21 are arranged in the y-axis direction. The order is the body 312 (21) and the first array 311 (22) of the substrate 22. Further, as shown in the cross-sectional view g12, a layer 23 coated with, for example, an ultraviolet curable visible fluorescent liquid exists between the mold 21 and the substrate 22. Further, between the mold 21 and the substrate 22, a medium having a refractive index different from that of the mold 21 and the substrate 22, for example, a layer 23 of a gas such as air exists.
  • FIG. 5 is a diagram for explaining the shape, number, and the like of the bars according to the present embodiment.
  • the plan view g21 is a view of the laminated body 2 as viewed from the mold 21 side, for example.
  • the cross-sectional view g22 is a cross-sectional view of the BB'line in the plan view g21.
  • the length of the bar 300 in the y-axis direction is, for example, 30 ( ⁇ m). Further, it is desirable that the length of the bar 300 in the x-axis direction is half the length of the period p1 or half the length of the period p2.
  • the length of the bar 300 of the second array 312 (21,22) in the x-axis direction may be different from the length of the bar 300 of the first array 311 (21,22) in the x-axis direction. However, it may be the same as the length of the bar 300 of the first array 311 (21, 22) in the x-axis direction.
  • the first signal, the second signal, the third signal, and the fourth signal obtained from the first array and the second array are layers located between the first object and the second object.
  • the bar 300 is in a state where the voids provided in the mold 21 and the substrate 22 are filled with the ultraviolet curable visible fluorescent liquid. It suffices if the luminescence from each of the arrays of the mold 21 and the substrate 22 having high light intensity can be detected from the layer 23 via the microscope device 12.
  • the first signal, the second signal, the third signal, and the fourth signal obtained from the first array and the second array are the first array and the second array.
  • the bar 300 is in a state where a fine concave structure is formed.
  • holes having a diameter of 0.2 ( ⁇ m) and a depth of 0.1 ( ⁇ m) are in a state in which fine concave structures in a hexagonal finely packed state are formed at intervals of a period of 0.4 ( ⁇ m).
  • the hole may be circular or square. It is desirable that the diameter of the hole is smaller than the detected pixel length. It suffices if scattered light having the same wavelength as the illumination light from the illumination device 17 can be detected via the microscope device 12.
  • the shape and number of bars 300 shown in FIG. 5 are examples, and are not limited to these.
  • FIG. 6 is a diagram showing an example of the relationship between the light emitter and the pixel length of the detected pixel in the comparative example.
  • the light from the light emitter 400 is obtained from one of the bars 300 having a length Lx in the x-axis direction of 4.0 ( ⁇ m) and a length Ly in the y-axis direction of 6.0 ( ⁇ m).
  • the image pickup device 450 has a plurality of detection pixels 451 having a CCD-specific pixel pitch of 7 ( ⁇ m).
  • the image pickup magnification is 7 times, and the pixel pitch (period of the vertical and horizontal size Ld of each detection pixel 451) detected at the time of image pickup is 1 ( ⁇ m).
  • the size of the light emitter 400 detected by the image pickup device 450 is larger than that of the bar 300 due to the spread of light.
  • the illuminant 400 is one example.
  • the position of the center of gravity of the bar 300 serving as a light source in the lateral direction is estimated by analyzing the light intensity in the lateral direction of the light emitter 400.
  • the imaging magnification is as low as 7 times, even if the light intensity is fitted in the x-axis direction, the position can be estimated only with an accuracy of, for example, about ⁇ 0.1 ( ⁇ m).
  • FIG. 7 is a diagram showing an arrangement example of 14 light emitting bodies and a fitting example of light intensity according to the present embodiment.
  • the size of one bar 300 serving as a light source in FIG. 7 is the same as that of FIG.
  • the pitch of the bars 300 in the lateral direction is 8.0 ( ⁇ m), and 14 bars 300 are arranged.
  • the CCD specific pixel pitch is also 7 ( ⁇ m), which is the same as the comparative example of FIG.
  • the imaging magnification is also 7 times, and the pixel pitch detected at the time of imaging is 1 ( ⁇ m), which is the same as the comparative example of FIG.
  • the illuminants 400 are arranged at a predetermined pitch (predetermined period) of 8.0 ( ⁇ m). Then, in the present embodiment, the light intensity of the optical signal of such a light emitter 400 is fitted as shown in the graph g111.
  • the horizontal axis is the pixel position and the vertical axis is the light intensity.
  • the point g113 indicates the detected light intensity
  • the line g115 indicates a fitted theoretical curve (for example, a cos waveform).
  • the light intensity is detected with a resolution of 12-bit accuracy (gradation number 4096).
  • the illuminants 400 are arranged at a predetermined cycle, the resolution is 12 bits, the light intensity is fitted in the x-axis direction, and the center position of each illuminant 400 is estimated to have a low magnification. Even if it is 7 times as high as, the position can be estimated with an accuracy of, for example, about ⁇ 0.3 (nm).
  • the size and pitch of the light emitter, the pixel size of the image sensor, the image pickup magnification, the pixel size at the time of image pickup, the resolution of the light intensity, and the like shown in FIG. 7 are examples and are not limited thereto.
  • the present embodiment it is possible to accurately detect the amount of misalignment with a low-magnification optical system without using moire as in the conventional case. Further, according to the present embodiment, the dependence of the detected pixel length can be reduced as compared with the conventional case.
  • FIG. 8 is a diagram showing position examples of the array before and after the adjustment of the positional deviation according to the present embodiment.
  • an optical signal due to light from the array is fitted to detect the amount of misalignment, and the mold 21 and the substrate 22 are aligned based on the detected amount of misalignment.
  • the positions of the first array 311 (21) of the mold 21 and the first array 311 (22) of the substrate 22 are displaced, and the second array 312 (21) of the mold 21 is displaced. ) And the second array 312 (22) of the substrate 22 are out of alignment.
  • the positions of the first array 311 (21) of the mold 21 and the first array 311 (22) of the substrate 22 match, and the second array 312 of the mold 21 ( The positions of the second array 312 (22) of the substrate 22 coincide with those of 21).
  • the length of the bar 300 in the lateral direction is 4 ( ⁇ m)
  • the length of the bar 300 in the longitudinal direction is 30 ( ⁇ m).
  • the depth (D) of the bar 300 is 0.1 ( ⁇ m).
  • the period p 1 of the first array 311 is 8.0 ( ⁇ m)
  • the period p 2 of the second array is 8.1 ( ⁇ m).
  • FIG. 8 is a flowchart of an example of a procedure for detecting and adjusting a misalignment amount according to the present embodiment.
  • the alignment device 1 forms the first array 311 (21) and the second array 312 (21) on the first object (mold 21).
  • Step S2 The alignment device 1 forms the second array body 312 (22) and the first array body 311 (22) on the second object (board 22).
  • the processing of steps S1 and S2 may be performed by another device such as a photolithography device or an electron beam lithography device.
  • Step S3 The alignment device 1 stacks the first object and the second object.
  • Step S4 The alignment device 1 detects an optical signal from the array.
  • Step S5 The alignment device 1 fits the light intensity of the detected optical signal to calculate the amount of misalignment between the first object and the second object.
  • Step S6 The alignment device 1 adjusts the positions of the first object and the second object based on the calculated displacement amount.
  • x is the position of the x-axis of the detected pixel
  • dx is the amount of misalignment from the origin
  • a is the amplitude
  • b is the background light intensity
  • p is the period (interval) of the bars constituting the array.
  • i each array
  • q is a correction multiple depending on the imaging system.
  • the origin position is set in advance, and a i , bi, q, and dx i are obtained by fitting.
  • the misalignment amount dx i the ideal misalignment value d real + the error ⁇ d
  • the standard error the standard deviation ⁇ of the fitting residual
  • the fitting residual is the fitting equation and the observation data. It's a difference.
  • the period p 1 of the first array of the first object and the period p 4 of the first array of the second object are equal, and the period p 2 of the second array of the first object and the second object. Is equal to the period p3 of the second array of.
  • the misalignment amount dx 1 of the first array in the first object and the misalignment dx 3 of the second array in the first object are equal, and the second array in the second object is the same.
  • the misalignment amount dx 2 of the array and the misalignment dx 4 of the first array are equal.
  • the amount of misalignment (detection value) d between the mold 21 and the substrate 22 can be derived by the following equation (3).
  • FIG. 10 is a diagram showing detection values and standard errors of light intensity resolution of 8 bits and 256 gradations and analysis cycles of 5, 10, 20, 50, 100 and 120 cycles.
  • the verification conditions in FIG. 10 are 4 of the first array 311 (21), the second array 312 (22), the second array 312 (21), and the first array 311 (22). It is a row, the period p 1 of the first array 311 is 8.0 ( ⁇ m), the width L 1 in the lateral direction of the bar 300 is 4.0 ( ⁇ m), and the space width S 1 is 4.
  • the analysis cycle is 5 cycles, it means the result of analyzing the length 40 ( ⁇ m) corresponding to the cycle p 1 for 5 cycles.
  • light having a length corresponding to 5 cycles, 10 cycles, 20 cycles, 50 cycles, 100 cycles, and 120 cycles is detected from the array of 4 rows, and the signal is fitted by the equation (2) to shift the position.
  • the quantity (detection value) and standard error were analyzed.
  • the magnification of the optical system is 7 times.
  • the values in the table are the detected value (nm) on the left and the standard error (nm) on the right.
  • the “set displacement” is an amount of displacement in which the mold 21 and the substrate 22 are intentionally displaced for verification.
  • the resolution of the light intensity is 8 bits
  • the length 400 ( ⁇ m) corresponding to 50 cycles is analyzed, and the scale is 1 (nm) regardless of whether it is 0 to 100 (nm).
  • the amount of misalignment between the mold 21 and the substrate 22 can be detected with the standard error of.
  • FIGS. 11 and 12 are diagrams showing the detection values and standard errors of the case where the resolution of the light intensity is 12 bits and the analysis cycle is 5, 10, 20, 30, 40, 50, 100 and 120 cycles. ..
  • the verification conditions of FIGS. 11 and 12 are the same as those of FIG. 10 except that the resolution of the light intensity is 12 bits.
  • the resolution of the light intensity is set to 12 bits as shown in FIGS. 11 and 12, the accuracy can be significantly improved as compared with the resolution of 8 bits.
  • the amount of misalignment between the mold 21 and the substrate 22 is detected with a standard error of 0.26 (nm) scale regardless of whether it is 0 to 100 (nm). can.
  • the amount of misalignment between the mold 21 and the substrate 22 can be detected with a standard error of 0.76 (nm) scale regardless of whether it is 0 to 100 (nm). .. With 20 cycles (length 160 ( ⁇ m)), the amount of misalignment between the mold 21 and the substrate 22 can be detected with a standard error of the atomic scale detection value 0.5 (nm) scale.
  • the size of the image sensor itself can be reduced, so that the cost of detecting the amount of misalignment can be reduced.
  • the resolution of the light intensity at 16384 gradations of, for example, 14 bits, which is larger than 12 bits the amount of misalignment on the atomic scale can be detected even if the analysis cycle is reduced.
  • FIG. 13 is a diagram showing the relationship between the resolution of the light intensity, the analysis cycle, and the detected value.
  • the horizontal axis is the period ( number of periods p1), and the vertical axis is the standard error (nm).
  • the period p 1 is 8.0 ( ⁇ m).
  • the graph g301 is a graph showing the relationship between the analysis cycle and the standard error of the light intensity resolution of 8 bits and the light intensity resolution of 12 bits.
  • the chain line g302 is the standard error for the analysis cycle of the light intensity resolution of 8 bits
  • the chain line g303 is the standard error for the analysis cycle of the light intensity resolution of 12 bits
  • the graph g311 is a graph in which the scale of the vertical axis of the standard error with respect to the analysis cycle of the light intensity resolution of 12 bits is changed.
  • the analysis cycle required to obtain a standard error of 1 (nm) is about 50 cycles (length of about 400 ( ⁇ m)) when the resolution of the light intensity is 8 bits, and the light intensity is high.
  • a resolution of 12 bits it is about 10 cycles (about 80 ( ⁇ m) in length).
  • an accuracy of 1.4 (nm) or less can be obtained even in 5 cycles (length 40 ( ⁇ m)).
  • the standard error of the light intensity resolution of 8 bits is about 1 (nm), but the standard error of the light intensity resolution of 12 bits is improved to about 0.25 (nm).
  • the standard error needs to be about 0.3 (nm).
  • the amount of misalignment of about 1 (nm) can be aligned with high accuracy even with a smaller analysis cycle.
  • the length (analysis cycle) of the array formed on the mold 21 and the substrate 22 can be reduced, that is, the alignment mark for alignment arranged on the mold 21 and the substrate 22 can be reduced. Can be obtained.
  • FIG. 14 is a diagram showing the results of verifying the dependence of the resolution on the detected value of the misalignment amount and the standard error.
  • the verification conditions are four columns of the first array 311 (21), the second array 312 (22), the second array 312 (21), and the first array 311 (22).
  • the period p 1 of the first array 311 is 8.0 ( ⁇ m)
  • the width L 1 in the lateral direction of the bar 300 is 4.0 ( ⁇ m)
  • the space width S 1 is 4.0 (.
  • the period p 2 of the second array 312 is 8.1 ( ⁇ m)
  • the width L 2 in the lateral direction of the bar 300 is 4.0 ( ⁇ m)
  • the space width S 2 is. It is 4.1 ( ⁇ m)
  • the pixel length detected at the time of imaging is 1 ( ⁇ m) / pixel (px).
  • the set displacement is 1 (nm), 2 (nm), and 5 (nm) from the top.
  • the left is the detected value (nm) and the right is the standard error (nm).
  • the analysis cycle is 5 cycles, it means the result of analyzing the length 40 ( ⁇ m) corresponding to the cycle p 1 for 5 cycles.
  • the verified resolutions (pixels (px) / ⁇ m) are 0.5, 0.75, 1, 1.25.
  • the resolution of the light intensity is 12 bits, 4096 gradations.
  • the larger the resolution that is, the larger the number of pixels (px) per 1 ( ⁇ m), the smaller the standard error of the detected value and the better the alignment accuracy, regardless of the period. ..
  • the L: S width ratios of 1: 7 (g401), 2: 6 (g402), 3: 5 (g403), and the like were used for the verification. That is, in 1: 7 (g401), L is 1 ( ⁇ m) and S is 7 ( ⁇ m). At 2: 6 (g402), L is 2 ( ⁇ m) and S is 6 ( ⁇ m). At 3: 5 (g403), L is 3 ( ⁇ m) and S is 5 ( ⁇ m).
  • FIG. 16 is a diagram showing an example of a ratio between a bar width L of an array and a space width S, a detected value (nm), and a standard error (nm).
  • the width ratio of L: S is 3: 5
  • the set displacement 5 (nm) is the detected value 4.947 (nm)
  • the standard error is 0.620 (nm).
  • the set displacement 5 (nm) can be detected with a detection value of 5.049 (nm) and a standard error of 0.254 (nm) when the L: S width ratio is 4: 4.
  • the width ratio of L: S is 5: 3
  • the set displacement 5 (nm) can be detected with a detection value of 5.087 (nm) and a standard error of 0.614 (nm). Therefore, it is desirable that the lengths of the bar width L and the space width S of the array are substantially equal to each other because the standard error is small.
  • FIG. 17 is a diagram showing the relationship between the width L (Line Width) / period p (period) of the bars of the array and the standard error.
  • the chain line g411 has a bar width / period of 0 to 0.5
  • the chain line g412 has a bar width / period of 0.5 to 1.0.
  • L: S is 1: 1
  • the bar width / period is 0.5
  • the standard error is small and the detection accuracy is high.
  • the ratio of the widths of L: S is 4.025: 3.975 and the width L / period p of the bars of the array is 0.50313
  • the standard error is 0.22543 (nm), which is the highest. The detection accuracy was high.
  • the array on the mold 21 side and the array on the substrate 22 side are arranged so as not to overlap when laminated. Further, in the present embodiment, the first array and the second array are arranged so as not to overlap each other. Further, in the present embodiment, the first array and the second array are arranged on the mold 21 side, and the second array and the first array are arranged on the substrate 22 side. Further, in the present embodiment, the resolution of the light intensity is set to 4096 gradations of, for example, 12 bits.
  • an alignment method capable of aligning an upper object and a lower object with an accuracy of an atomic scale error, a laminate manufacturing method, an alignment device, and a laminate manufacturing apparatus. And a laminate can be provided. Further, according to the present embodiment, since the optical system can be realized at a lower magnification than the conventional one, the cost of the apparatus can be reduced. Further, according to the present embodiment, the array formed on the stacked objects can be made smaller than before.
  • FIG. 18 is a diagram showing an example in which the array for adjusting the x-axis direction and the array for adjusting the y-axis direction are independent. It should be noted that 8 independent array arrangement examples obtained when an image is taken from the mold 21 side are shown.
  • the array arrangement example 500 is an arrangement example of four arrays for adjusting in the x-axis direction.
  • the array arrangement example 500 for example, the first array 501 and the second array 503 are formed on the mold 21, and the second array 502 and the first array 504 are formed on the substrate 22.
  • the array body arrangement example 500 is arranged so as not to overlap in the order of the array bodies 501 to 504 in the y-axis direction when stacked.
  • Arrangement arrangement example 510 is an arrangement example of four arrangements for adjusting the y-axis direction.
  • the first array 511 and the second array 513 are formed on the mold 21, and the second array 512 and the first array 514 are formed on the substrate 22.
  • the array body arrangement example 500 is arranged so as not to overlap in the order of the array bodies 511 to 514 in the x-axis direction when stacked.
  • FIG. 19 is a diagram showing an example in which the array is divided vertically and horizontally in each direction.
  • the array for adjusting the x-axis direction has the first array 551 formed on the upper side of the mold 21 and the second array 553 formed on the lower side of the mold 21.
  • the second array 552 is formed on the upper side of the 22, and the first array 554 is formed on the lower side of the substrate 22.
  • the array body arrangement example 550 is arranged so as not to overlap in the order of the array bodies 551 to 554 in the y-axis direction when stacked.
  • the array for adjusting the y-axis direction is formed, for example, the first array 561 is formed on the left side of the mold 21, and the second array 563 is formed on the right side of the mold 21.
  • the second array 562 is formed on the left side of the substrate 22, and the first array 564 is formed on the right side of the substrate 22.
  • the array body arrangement example 550 is arranged so as not to overlap in the order of the array bodies 561 to 564 in the x-axis direction when stacked.
  • the x-axis may be about 500 ( ⁇ m) and the y-axis may be about 500 ( ⁇ m).
  • the size of the mold is 10 (mm) on the x-axis and 10 (mm) on the y-axis
  • it may be arranged on the upper side and the lower side of the entire mold.
  • FIG. 20 is a diagram showing an example in which an array is arranged in an L shape.
  • an array for adjusting the x-axis direction is formed, for example, the first array 601 and the second array 603 are formed on the upper side of the mold 21, and the second array is formed on the upper side of the substrate 22. 602 and the first array 604 are formed.
  • the array body arrangement example 600 is arranged so as not to overlap in the order of the array bodies 601 to 604 in the y-axis direction when stacked.
  • the array for adjusting the y-axis direction is formed, for example, the first array 611 and the second array 613 on the left side of the mold 21, and the second array is formed on the upper side of the substrate 22. 612 and the first array 614 are formed.
  • the array body arrangement example 600 is arranged so as not to overlap in the order of the array bodies 611 to 614 in the x-axis direction when stacked. In the case of FIG. 20, eight arrays for the x-axis and eight arrays for the y-axis may be arranged at positions corresponding to the two facing corners of the mold 21 to detect optical signals from the arrays. can.
  • FIG. 21 is a diagram showing an example in which an array is arranged in a cross shape.
  • an array for adjusting the x-axis direction is formed, for example, the first array 651 and the second array 653 are formed on the left side of the mold 21, and the first array is formed on the right side of the mold 21.
  • 655 and the second array 657 are formed, the second array 652 and the first array 654 are formed on the left side of the substrate 22, and the second array 656 and the first array are formed on the right side of the substrate 22.
  • Body 658 is formed.
  • the array body arrangement example 650 is arranged so as not to overlap in the order of the array bodies 651 to 654 and the array bodies 655 to 658 in the y-axis direction when stacked.
  • the array for adjusting the y-axis direction is formed, for example, the first array 661 and the second array 663 are formed on the upper side of the mold 21, and the first array is formed on the lower side of the mold 21.
  • the body 665 and the second array 667 are formed, the second array 662 and the first array 664 are formed on the upper side of the substrate 22, and the second array 666 and the first array 666 are formed on the lower side of the substrate 22.
  • Array 668 is formed.
  • the array body arrangement example 650 is arranged so as not to overlap in the order of the array bodies 661 to 664 and the array bodies 665 to 668 in the x-axis direction when stacked.
  • the central portion or the like may be hollow.
  • the arrangement is made according to the circuit pattern for the device, such as the four corners of the mold 21 and the substrate 22, the vicinity of the four sides of the mold 21 and the substrate 22, or the center of the mold 21 and the substrate 22. You can also do it.
  • 22 and 23 are diagrams showing an example of the result of verifying the period of the array.
  • the column is the mean of the amount of intentional shift and the standard error
  • the row is the detected value (nm) and the standard error (nm) for each combination of periods.
  • the period p 1 of the first array described so far is 8.0 ( ⁇ m)
  • the period p 2 of the second array is 8.1 (. ⁇ m)
  • 30 cycles (4 columns) and 100 cycles (4 columns) were verified. Note that the four rows are a state in which four rows of arrays are arranged in the axial direction, for example, as shown in FIG.
  • the period p 1 of the first array is 8.00 ( ⁇ m)
  • the period p 2 of the second array is 8.01 ( ⁇ m)
  • the period p2 is 8.01 ( ⁇ m)
  • the bar width L2 is 4.00 ( ⁇ m)
  • the space width S2 is 4.01 ( ⁇ m). It is the same.
  • 30 cycles (4 columns) and 100 cycles (4 columns) were verified.
  • the period p 1 of the first array is 8.0 ( ⁇ m)
  • the period p 2 of the second array is 8.8 ( ⁇ m)
  • the period p 2 is 8.8 ( ⁇ m)
  • the bar width L 2 is 4.0 ( ⁇ m)
  • the space width S 2 is 4.8 ( ⁇ m). Same as the example.
  • 30 cycles (4 columns) and 100 cycles (4 columns) were verified.
  • the period p 1 of the first array is 80 ( ⁇ m)
  • the period p 2 of the second array is 81 ( ⁇ m)
  • the optical system is 1 pixel (1 pixel).
  • px 10 ( ⁇ m).
  • the period p 1 is 80 ( ⁇ m)
  • the bar width L 1 is 40 ( ⁇ m)
  • the space width S 1 is 40 ( ⁇ m)
  • the period p 2 is 88 ( ⁇ m).
  • the width L 2 of the bar is 40 ( ⁇ m)
  • the space width S 2 is 48 ( ⁇ m).
  • 30 cycles and 100 cycles were verified.
  • the detection accuracy of the misalignment amount is 3.3 (nm) with a standard error in 30 cycles. Even with a reduced optical system with an observation magnification of 0.7 times, if the CCD specific pixel pitch is 7 ( ⁇ m), the average standard error is 3.26 (nm) in 30 cycles and the average standard error is 1 in 100 cycles. It can be seen that the amount of misalignment can be detected at .81 (nm).
  • the period p 1 of the first array is 8.00 ( ⁇ m), and the period p 2 of the second array is the same 8.00 ( ⁇ m).
  • 60 cycles (2 columns) were verified.
  • the number of arrays is one on the mold 21 side as in the fifth example.
  • the accuracy can be guaranteed even by one on the substrate 22 side. Therefore, even when two arrays are provided on the mold 21 side and two arrays are provided on the substrate 22 side, the first array and the second array provided on the mold 21 and the second array provided on the substrate 22 are provided. It suffices that the array body and the first array body are arranged so that they do not overlap each other when they are laminated.
  • alignment can be performed with a standard error of about 3 (nm). That is, according to the present embodiment, not only the low-magnification optical system of the microscope that magnifies the image, but also the optical system that reduces the image and even the optical system of the same magnification can be detected more accurately than before. Can be aligned.
  • the residual film is a layer 23 coated with an ultraviolet curable visible fluorescent liquid, and the thickness of the residual film (RLT: Resinal Layer Stickness) is the thickness of the layer 23.
  • RLT Resinal Layer Stickness
  • a UV-curable visible fluorescent liquid is cured by UV irradiation and used as a resist mask in optical nanoimprint lithography, it is desirable that the thickness of the residual film is small in order to make the mask shape and the shape of the transferred product close to each other.
  • the fluorescence detected from the layer 23 is the mold 21 and the substrate 22.
  • a signal of higher light intensity is detected from the array of bars 300 of. That is, if the thickness of the layer 23 corresponding to the thickness of the residual film is large, the signal intensity from the alignment mark becomes small, and it becomes difficult to detect the fluorescence that contributes to the alignment.
  • space width S 1 is 4.0 ( ⁇ m)
  • period p 2 is 8.1 ( ⁇ m) (bar width L 2 ).
  • space width S 2 is 4.1 ( ⁇ m)
  • the analysis cycle is 30 cycles (4 columns).
  • the depth (pattern depth) of the concave structure of the bar array arranged on the mold 21 and the substrate 22 was set to 0.1 ( ⁇ m).
  • FIG. 24 shows a detection value (nm), a standard error (nm), and a light intensity for each ratio (RLT / D) of the thickness of the residual film (RLT) to the pattern depth (D) of the bar array. It is a figure which shows the verification result of the effective gradation number which can be used for detecting the misalignment amount among 4096 gradations with a resolution of 12 bits.
  • FIG. 25 is a graph showing the relationship between the ratio of the residual film thickness (RLT) to the pattern depth (D) of the bar array and the standard error of the detected value.
  • the horizontal axis is the ratio of the thickness of the residual film to the pattern depth of the bar array (RLT / D), that is, the thickness of the residual film (RLT) / the depth of the bar 300 (D), and is vertical.
  • the axis is standard error (nm). Since the pattern depth of the bar array is 0.1 ( ⁇ m), the thicknesses of the residual film of 1, 2, 3, 4, and 5 on the horizontal axis are 0.1 ( ⁇ m) and 0.2 ( ⁇ m). , 0.3 ( ⁇ m), 0.4 ( ⁇ m), 0.5 ( ⁇ m), respectively.
  • the standard error increases as the thickness of the residual film of the layer 23 increases.
  • the ratio of the thickness of the residual film to the pattern depth of the bar array (RLT / D) is 0 or 1
  • the standard error is about 0.3 (nm), and when the thickness of the residual film is 2.
  • the standard error is about 0.4 (nm), and the standard error when the residual film thickness RLT is 3 is about 0.6 (nm).
  • luminescence such as fluorescence is detected as an optical signal for alignment
  • the smaller the thickness of the residual film the more accurate the detection value and standard error of the amount of misalignment between the mold 21 and the substrate 22. can.
  • the thickness of the residual film that can be aligned can be increased. If the pattern depth is 1 ( ⁇ m), accurate alignment can be performed even when the thickness of the layer 23 corresponding to the thickness of the residual film, that is, the distance between the mold 21 and the substrate 22 is 3 ( ⁇ m). can.
  • the layer 23 is a gas such as air. Therefore, the dependence of the layer 23 on the distance between the mold 21 and the substrate 22 is reduced.
  • an optical system for increasing the depth of focus of the light to be detected is required.
  • FIG. 26 can be used to detect the amount of misalignment among the ratio (RLT / D) of the thickness of the residual film (RLT) to the pattern depth (D) of the bar array and the 4096 gradation of the light intensity resolution of 12 bits.
  • FIG. 22 is a graph showing the relationship with the number of effective gradations.
  • the horizontal axis is the ratio of the thickness of the residual film (RLT / D) to the pattern depth of the bar array
  • the vertical axis is for detecting the amount of misalignment among the 4096 gradations having a resolution of 12 bits of light intensity. The number of effective gradations that can be used. As shown in FIG.
  • the number of effective gradations decreases as the ratio of the thickness of the residual film to the pattern depth (RLT / D) increases.
  • the ratio of the thickness of the residual film to the pattern depth is 0, the number of effective gradations is about 2600, and when the ratio of the thickness of the residual film to the pattern depth is 1, the number of effective gradations is about 700.
  • the ratio of the thickness of the residual film to the pattern depth is 2, the number of effective gradations is about 250.
  • the standard error of the detected value of the amount of misalignment increases as the ratio of the thickness of the residual film to the pattern depth increases. In such a case, accurate detection can be performed by using an image sensor having a light intensity resolution of 14 bits.
  • the number of arrays may be six or more.
  • the alignment marks are arranged so as not to overlap when laminated, the low-period noise due to the non-uniformity of the thickness of the residual film due to the inclination of the residual film is removed by the Fourier transform.
  • the period p 1 of the first array and the period p 2 of the second array can be analyzed, and the influence of the non-uniformity of the thickness of the residual film and the fluctuation of the thickness of the residual film due to the inclination of the residual film can be analyzed.
  • the edge of each bar of the bar array constituting the alignment mark is used.
  • the diffracted light Fresnel diffraction or the like occurs at the edge of each bar, so that the light intensity at the edge of each bar increases.
  • the luminescence such as fluorescence and light scattering of the present embodiment, since the light intensity is maximized at the center of each bar, it is not easily affected by the shape of the edge of each bar of the bar array constituting the alignment mark, and the bar is not affected.
  • an optical functional film such as a metal light-shielding film or a high-refractive index film is required for the mold.
  • the mold does not require an optical functional film, so that there is an effect that the manufacturing cost of the mold can be reduced.
  • the first alignment mark is formed on the first object
  • the second alignment mark is formed on the second object
  • the two objects face each other.
  • an image is taken by an image sensor, and the deviation between the predetermined position in the first region and the first alignment mark, and the predetermined position in the second region and the second alignment mark are used.
  • the alignment was performed using the deviation of. That is, in such a conventional technique, alignment is performed by adjusting an alignment mark formed on an object to a predetermined position.
  • the amount of misalignment between the array formed on the first object and the array formed on the second object is detected, and based on the detected amount of misalignment, By aligning the array formed on the first object with the array formed on the second object, the alignment between the first object and the second object is performed. As a result, the above-mentioned effects could be obtained.
  • a program for realizing all or part of the functions of the control device 11 in the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read and executed by the computer system. Thereby, all or part of the processing performed by the control device 11 may be performed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices. Further, the “computer system” shall also include a WWW system provided with a homepage providing environment (or display environment). Further, the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Also includes those that hold the program for a certain period of time.
  • RAM volatile memory
  • the above program may be transmitted from a computer system in which this program is stored in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above program may be for realizing a part of the above-mentioned functions.
  • a so-called difference file (difference program) may be used, which can realize the above-mentioned function in combination with a program already recorded in the computer system.
  • the alignment device (laminate manufacturing device) has been described using an imprint device in which the first object is the mold 21 and the second object is the substrate 22, but the present embodiment and the present embodiment.
  • the alignment method and alignment device (laminate manufacturing device) of each modification can be applied to alignment for various purposes, and the laminate manufacturing method and alignment device (laminate manufacturing device) of this embodiment and each modification can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

第1物体と第2物体を積層する積層工程と、積層工程後に第1物体の第1の配列体から得られる第1信号と第1物体の第2の配列体から得られる第2信号を検出し第2物体の第2の配列体から得られる第3信号と第2物体の第1の配列体から得られる第4信号を検出する検出工程と、第1信号~第4信号それぞれフィッティングすることで第1物体と第2物体との位置ずれを求める計算工程と、位置ずれを調整する調整工程とを含み、第1の配列体は周期p1の第1の周期構造を備え、第2の配列体は周期p2の第2の周期構造を備え、第1物体の第1の配列体及び第2の配列体と第2物体の第2の配列体及び第1の配列体は積層した際いずれかが重ならないように配置されている。

Description

位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体
 本発明は、位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体に関する。
 本願は、2021年 1月 7日に、日本に出願された特願2021-001685号に基づき優先権を主張し、その内容をここに援用する。
 近年、NIL(Nano Imprint Lithography;ナノインプリント・リソグラフィ)は半導体等の電子デバイスの微細パターン転写技術として、現在研究開発が進められている。そして、流動性を有する紫外線硬化性樹脂(以下、樹脂と略して呼ぶ)を用いる光照射方式の光NILが、量産に有利な安価なパターン転写技術として注目されている。光NILを用いて電子デバイスを作製する場合、複数回(例えば20回以上)の微細パターン転写(リソグラフィ)を実施する場合がある。この場合、前の工程で作製したウエハ等の基板の上に形成されたアライメントマークと、転写するための型であるモールド上のアライメントマークとを、高精度に合わせる必要がある。
 このような位置合わせを行う手法としては、例えば「モアレの現象」を適用することが提案されている(例えば非特許文献1参照)。例えば、特許文献1には、モールド側アライメントマークおよびモールド側モアレマークを含むモールドと、蛍光色素を含む樹脂組成物層と、基板側アライメントマークおよび基板側モアレマークを含むパターン付基板とを積層し、モールド側アライメントマークと基板側アライメントマークのミスアライメントを検出し、蛍光モアレ縞に基づいてモールド側モアレマークと基板側モアレマークのミスアライメントを検出し、検出された2つのミスアライメントに基づいてモールドに対してパターン付基板を移動させることで位置合わせを行う技術が提案されている。
日本国特開2018-22807号公報
E.Kikuchi, Y.Ishito, S.Matsubara, T.Nakamura, M.Abe, and M.Nakagawa, "Principle and observation of fluorescence moire fringes for alignment in print and imprint methods", Journal of Vacuum Science & Technology B, 35 (2017) 06G303; doi: 10.1116/1.4990844
 しかしながら、従来技術による蛍光インプリントによるアライメントでは、検出に用いられる画素長(=素子画素ピッチ(CCD固有画素ピッチ)/観察倍率)の依存性が大きく、高倍率の観察倍率(例えば50倍)が必要であり、装置の大型化とコストが高くなる。さらに、従来技術では、上部物体と下部物体との位置合わせを原子スケールの誤差の精度で行うことが困難であった。
 本発明は、上記の問題点に鑑みてなされたものであって、上部物体と下部物体との位置合わせを原子スケールの誤差の精度で行うことができる位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る位置合わせ方法は、第1物体と第2物体とを積層する積層工程と、前記積層工程後に、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として、かつ、前記第1物体に設けられた第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた前記第2の配列体から得られる第3の光を第3信号として、かつ、前記第2物体に設けられた前記第1の配列体から得られる第4の光を第4信号として検出する検出工程と、検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算工程と、前記位置ずれを調整する調整工程と、を含み、前記第1の配列体は、周期pからなる第1の周期構造を備え、前記第2の配列体は、周期pからなる第2の周期構造を備え、前記第1物体に設けられた前記第1の配列体及び前記第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とは、前記積層した際にいずれかが重ならないように配置されている。
 また、本発明の一態様に係る位置合わせ方法において、前記第1の配列体と前記第2の配列体から得られる前記第1信号と前記第2信号と前記第3信号と前記第4信号とは、前記第1物体と前記第2物体との間に位置する層からのルミネッセンスであるようにしてもよい。
 また、本発明の一態様に係る位置合わせ方法において、前記第1の配列体と前記第2の配列体から得られる前記第1信号と前記第2信号と前記第3信号と前記第4信号とは、前記第1の配列体と前記第2の配列体の散乱光であるようにしてもよい。
 また、本発明の一態様に係る位置合わせ方法において、前記積層工程において、前記第1物体と前記第2物体とのギャップが3μm以下であるように積層するようにしてもよい。
 また、本発明の一態様に係る位置合わせ方法において、前記第1の配列体は、周期が20以上である前記第1の周期構造からなり、前記第2の配列体は、周期が20以上である前記第2の周期構造からなるようにしてもよい。
 上記目的を達成するため、本発明の一態様に係る積層体の製造方法は、積層体は、第1物体と、第2物体と、を備え、前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層工程と、前記積層工程後に、前記第1物体に設けられた前記第1の配列体から得られる第1の光を第1信号として検出し、かつ、前記第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた前記第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出工程と、検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算工程と、前記位置ずれを調整する調整工程と、を含む。
 上記目的を達成するため、本発明の一態様に係る位置合わせ装置は、第1物体と第2物体とを積層して、前記第1物体と前記第2物体との位置ずれの位置合わせを行う位置合わせ装置であって、前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層手段と、前記第1物体と第2物体とが積層された積層体に対して、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として検出し、かつ、第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出手段と、検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算手段と、前記位置ずれを調整する調整手段と、を備える。
 上記目的を達成するため、本発明の一態様に係る積層体製造装置は、第1物体と第2物体とを積層して積層体を製造する積層体製造装置であって、前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層手段と、前記第1物体と第2物体とが積層された積層体に対して、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として検出し、かつ、第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出手段と、検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算手段と、前記位置ずれを調整して積層位置を決定する調整手段と、を備える。
 上記目的を達成するため、本発明の一態様に係る積層体は、周期pからなる第1の周期構造を備える第1の配列体、及び周期pからなる第2の周期構造を備える第2の配列体と、を備える第1物体と、前記第2の配列体、及び前記第1の配列体と、を備える第2物体と、を備え、前記第1物体に設けられた前記第1の配列体及び前記第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とのいずれかが重ならないように前記第1物体と前記第2物体とが積層されている。
 上記態様に係る位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体は、上部物体と下部物体との位置合わせを原子スケールの誤差の精度で行うことができる。
実施形態に係る位置合わせ装置の構成の一例を示す図である。 実施形態に係る積層体の構成例を示す図である。 実施形態に係るモールドに形成される配列体と、基板に形成される配列体の配置例を示す図である。 実施形態に係る積層体におけるモールドと基板の配列体の位置関係の一例を示す図である。 実施形態に係るバーの形状、本数等を説明するための図である。 比較例における発光体と撮像素子の画素サイズの関係例を示す図である。 実施形態に係る発光体の配列例と光強度のフィッティング例を示す図である。 実施形態に係る位置ずれの調整前と調整後の配列体の位置例を示す図である。 実施形態に係る位置ずれ量の検出と調整手順例のフローチャートである。 光強度の分解能が8bitの256階調の場合かつ解析周期が5、10、20、50、100および120周期の検出値と標準誤差を示す図である。 光強度の分解能が12bitの4096階調の場合かつ解析周期が5、10、20、30、40、50、100および120周期の検出値と標準誤差を示す図である。 光強度の分解能が12bitの4096階調の場合かつ解析周期が5、10、20、30、40、50、100および120周期の検出値と標準誤差を示す図である。 光強度の分解能と解析周期と検出値の関係を示す図である。 位置ずれ量の検出精度(検出値と標準誤差)に対する解像度(1(μm)あたりのピクセル数)の依存性について検証した結果を示す図である。 検証に用いた配列体のバーの短手方向の幅Lと、バーとバーとの間の空間幅Sの例を示す図である。 配列体のバーの幅Lと、バーとバーとの間の空間幅Sとの比と検出値と標準誤差の例を示す図である。 バーの幅/周期と標準誤差との関係を示す図である。 x軸方向調整用とy軸方向調整用の配列体が独立している例を示す図である。 配列体を各方向に上下、左右に分割した例を示す図である。 配列体をL型に配置した例を示す図である。 配列体をクロス型に配置した例を示す図である。 配列体の周期を検証した結果例を示す図である。 配列体の周期を検証した結果例を示す図である。 バー配列体のパターン深さに対する残膜の厚さの割合毎の検出値、標準誤差、光強度の分解能12bitの4096階調のうち位置ずれ量の検出に使用できる有効階調数の検証結果を示す図である。 バー配列体のパターン深さに対する残膜の厚さの割合と検出値の標準誤差との関係を示す図22をグラフ化した図である。 バー配列体のパターン深さに対する残膜の厚さの割合と光強度の分解能12bitの4096階調のうち位置ずれ量の検出に使用できる有効階調数との関係を示す図22をグラフ化した図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、以下の説明に用いる図面では、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
<位置合わせ装置(積層体製造装置)の構成例>
 図1は、本実施形態に係る位置合わせ装置の構成の一例を示すブロック図である。なお、位置合わせ装置1は、積層体製造装置1でもあり、インプリント装置1でもある。図1のように、位置合わせ装置1は、制御装置11、顕微鏡装置12、紫外線照射装置13、固定ステージ14、塗布装置15、およびXYZθ軸可動ステージ16、照明装置17を備える。
 位置合わせ装置1は、モールド(第1物体)21と基板(第2物体)22とを積層し、モールド21に形成されている配列体と基板22に形成されている配列体からの光に基づいてモールド21と基板22との位置合わせを行う。なお、配列体からの光は、モールド21と基板22との間に位置する層からのルミネッセンス、またはモールド21と基板22からの散乱光である。また、モールド21と基板22との間の層23とは、例えば紫外線硬化性可視蛍光液体などの液体または空気などの気体である。なお、本実施形態において、ルミネッセンスは、第1物体と第2物体との間に位置する層からの、例えば蛍光または燐光である。
 制御装置11は、顕微鏡装置12、紫外線照射装置13、固定ステージ14、塗布装置15、およびXYZθ軸可動ステージ16、照明装置17を制御して、積層と位置合わせとを行う。制御装置11は、照明装置17からの照明光を用いて、顕微鏡装置12が配列体からの光を検出した信号を、所定の数式を用いてフィッティングしてモールド21と基板22との位置ずれ量を算出する。制御装置11は、算出した位置ずれ量に基づいて、モールド21と基板22との位置合わせをXYZθ軸可動ステージ16により行う。
 顕微鏡装置12は、複数の検出画素を備え、配列体からの光を検出する。なお、顕微鏡装置12の観察倍率は、例えば7倍であり、NA(開口数)は例えば0.08である。また、検出に用いられる画素長(検出画素の画素長)は、例えば0.837(μm)である。
 紫外線照射装置13は、制御装置11の制御に応じて、例えば蛍光色素を含む紫外線硬化性樹脂(紫外線硬化性可視蛍光液体)を紫外線照射により硬化させて積層体を製造する。
 固定ステージ14は、制御装置11の制御に応じて、例えばモールド21を保持する。
 塗布装置15は、制御装置11の制御に応じて、モールド21と基板22との間に位置する層となる例えば紫外線硬化性可視蛍光液体を、基板22に塗布する。
 XYZθ軸可動ステージ16は、制御装置11の制御に応じて、例えば基板22を移動させる。
<積層体の構成例>
 次に、積層体の構成例を説明する。図2は、本実施形態に係る積層体の構成例を示す図である。図2のように、yz平面における構成図g1のように、積層体2は、モールド21、層23、および基板22を備える。
 モールド21には、y軸方向において、y軸方向の両端に第1の配列体311(21)と第2の配列体312(21)とが形成され、一端の第1の配列体311(21)と他端の第1の配列体311(21)との間に例えば回路パターンが形成されている。
 基板22には、y軸方向において、y軸方向の両端に第2の配列体312(22)と第1の配列体311(22)とが形成され、一端の第2の配列体312(22)と他端の第2の配列体312(22)との間に例えば回路パターンが形成されている。
 なお、構成図g1のように、モールド21の第1の配列体311(21)と第2の配列体312(21)と、基板22の第2の配列体312(22)と第1の配列体311(22)とが、積層した際にy軸方向において互いに重ならないように形成されている。
 また、xz平面における構成図g2のように、モールド21には、x軸方向に周期p1の複数のバー300で構成される第1の配列体が形成されている。また、基板22には、x軸方向に周期pの複数のバー300で構成される第2の配列体が形成されている。
 なお、例えば蛍光等のルミネッセンスを信号として検出する場合には、照明装置17から可視光線を照射して、層23の紫外線硬化性可視蛍光液体から蛍光等のルミネッセンスを発光させ、顕微鏡装置12で各々の配列体からの光信号を検出する。検出された第1信号と第2信号と第3信号と第4信号とをそれぞれフィッティングすることで、第1物体と第2物体との位置ずれを計算手段により求め、位置ずれを調整した後に、紫外線照射装置13から紫外線を照射して、層23の紫外線硬化性可視蛍光液体を固化させた、モールド21,層23,基板22からなる積層体を製造できる。また、照明装置17には、例えばLED(発光ダイオード)、照射波長を調光するためのバンドパスフィルターまたはカットオフフィルターを搭載した白色灯やXe(キセノン)灯やハロゲンランプなどの光源を用いることができる。層23が紫外線硬化性可視蛍光液体の場合には、各々の配列体からの光信号を検出する間に、層23の流動性が保たれて位置合わせが行える光源であればよい。紫外線照射装置13には、例えばUV-LED(紫外線発光ダイオード),Hg-Xe(水銀-キセノン)灯、高圧水銀灯などの光源を用いることができる。層23の紫外線硬化性可視蛍光液体を固化させることができる光源であればよい。顕微鏡装置12には、紫外線照射装置13からの照射光および照明装置17からの照明光の波長の光を除去し、より長波長の蛍光などのルミネッセンスを検出する撮像素子が配備されている。
 また、散乱光を信号として検出するときは、照明装置17からの可視光線などを照射して、モールド21と基板22から散乱光を生じさせ、顕微鏡装置12で照明光と同じ波長の各々の配列体からの光信号を検出する。検出された第1信号と第2信号と第3信号と第4信号とをそれぞれフィッティングすることで、第1物体と第2物体との位置ずれを計算手段により求め、位置ずれを調整した後に、モールド21と基板22の所定位置に、紫外線照射装置13からの紫外線を描画することで融着させる。これにより、モールド21と基板22が層23の空気などの気体層を介した積層体を製造できる。なお、紫外線照射装置13には、例えばUVレーザーなどの高出力短パルスレーザーなどを好適に用いることができる。モールド21と基板22の材質に応じて、可視光や赤外線を発生する高出力超短パルスレーザーなどを用いることもできる。顕微鏡装置12には、照明装置17からの照明光の波長と同じ波長の散乱光を検出する撮像素子が配備されている。
<配列体の配置例>
 次に、モールド21に形成される配列体と、基板22に形成される配列体の配置例を更に説明する。図3は、本実施形態に係るモールドに形成される配列体と、基板に形成される配列体の配置例を示す図である。図3では、紙面の裏側にモールド21に形成されている配列体の凹構造があり、紙面の表側に基板22に形成されている配列体の凹構造がある。図3において、モールド21と基板22に形成された配列体を構成するバー300の短手方向をx軸方向とし、バー300の長手方向をy軸方向とする。モールド21に配備された第1の配列体311(21)と第2の配列体312(21)、および、基板22に配備された第2の配列体312(22)と第1の配列体311(22)の配列体の集合体は、例えばモールド21および基板22の4隅にあってもよいし、対角する2隅にあってもよい。また、配列体の集合体は、モールド21と基板22の両端にあることが好ましい。
 図3のように、モールド21には、第1の配列体311(21)と、第2の配列体312(21)とが形成されている。また、基板22には、第2の配列体312(22)と、第1の配列体311(22)とが形成されている。第1の配列体311は、x軸方向にpの周期でバー300が配置されている。第1の配列体311のバー300の短手方向の幅(バーの幅)はLであり、バーとバーとの間の空間幅(空間幅)はSである。第2の配列体312は、x軸方向にpの周期でバー300が配置されている。第2の配列体312のバー300の短手方向の幅はLであり、バーとバーとの間の空間幅はSである。なお、以下の説明で、第1の配列体311のバー300の短手方向の幅Lと第2の配列体312のバー300の短手方向の幅Lとを区別しない場合は、「バー300の短手方向の幅L」または「バー300の幅L」という。また、第1の配列体311の空間幅Sと第2の配列体312の空間幅Sとを区別しない場合は、「空間幅S」という。
 また、図3における配列体を構成する各バー300は、x軸方向の幅より、y軸方向の長さの方が長い。なお、各バー300の形状は、図3の様な長方形に限らず、例えば、正方形、楕円形等であってもよい。また、第1の配列体311を構成するバー300の大きさと、第2の配列体312を構成するバー300の大きさとは、同じであっても、異なっていてもよい。
 図4は、本実施形態に係る積層体におけるモールドと基板の配列体の位置関係の一例を示す図である。平面図g11は、積層体2を例えばモールド21側から見た図である。断面図g12は、平面図g11におけるA-A’線の断面図である。断面図g13は、平面図g11におけるB-B’線の断面図である。
 図4のように、モールド21の第1の配列体311(21)と第2の配列体312(21)と、基板22の第2の配列体312(22)と第1の配列体311(22)とは、積層した際にいずれかが重ならないように配置されている。また、各配列体は、積層した際に、y軸方向に、モールド21の第1の配列体311(21)、基板22の第2の配列体312(22)、モールド21の第2の配列体312(21)、基板22の第1の配列体311(22)の順である。
 また、断面図g12のように、モールド21と基板22との間には、例えば紫外線硬化性可視蛍光液体が塗布された層23が存在している。また、モールド21と基板22との間には、モールド21と基板22と異なる屈折率の媒体、例えば、空気などの気体の層23が存在している。
 次に、バーの形状、本数等を説明する。図5は、本実施形態に係るバーの形状、本数等を説明するための図である。平面図g21は、積層体2を例えばモールド21側から見た図である。断面図g22は、平面図g21におけるB-B’線の断面図である。
 第1の配列体311(21、22)は、例えば1000(μm)の間にバー300が125本、周期p=8.0(μm)からなる周期構造を備えている。第2の配列体312(21、22)は、例えば1000(μm)の間にバー300が123本、周期p=8.1(μm)からなる周期構造を備えている。また、バー300のy軸方向の長さは、例えば30(μm)である。また、バー300のx軸方向の長さは、周期pの半分の長さ、または周期pの半分の長さであることが望ましい。第2の配列体312(21,22)のバー300のx軸方向の長さは、第1の配列体311(21,22)のバー300のx軸方向の長さが異なっていてもよいし、第1の配列体311(21,22)のバー300のx軸方向の長さと同じにしてもよい。図5において、第1の配列体と第2の配列体から得られる第1信号と第2信号と第3信号と第4信号とは、第1物体と第2物体との間に位置する層からのルミネッセンスである場合には、バー300はモールド21と基板22に備えられた空隙が紫外線硬化性可視蛍光液体で充填された状態にある。顕微鏡装置12を介して層23から光強度の大きなモールド21と基板22の各々の配列体からのルミネッセンスが検出できればよい。
 また、図5において、第1の配列体と第2の配列体から得られる第1信号と第2信号と第3信号と第4信号とは、第1の配列体と第2の配列体の散乱光である場合には、バー300は微細な凹構造が形成された状態にある。例えば直径0.2(μm)で深さ0.1(μm)のホールが周期0.4(μm)の間隔で六方細密充填の状態の微細な凹構造が形成された状態にある。ホールは円形でもよいし、四角形状でもよい。ホールの直径は検出画素長より小さいことが望ましい。顕微鏡装置12を介して照明装置17からの照明光と同じ波長の散乱光が検出できればよい。
 なお、図5に示したバー300の形状と本数は一例であり、これに限らない。
<発光体と検出される画素長(サイズ)の関係>
 次に、発光体400と、顕微鏡装置12の撮像素子450で撮像される検出画素451の画素長Ldの関係について説明する。図6は、比較例における発光体と検出画素の画素長の関係例を示す図である。なお、発光体400からの光は、x軸方向の長さLxが4.0(μm)でy軸方向の長さLyが6.0(μm)からなるバー300の一つから得られる光である。
 図6において、撮像素子450は、CCD固有画素ピッチ7(μm)の複数の検出画素451を有する。撮像倍率が7倍であり、撮像時に検出される画素ピッチ(各検出画素451の縦と横の大きさLdの周期)は1(μm)である。
 なお、撮像素子450で検出される発光体400の大きさは、光の広がりによりバー300より大きく検出される。
 図6の比較例は、発光体400が1つの例である。このような場合は、例えば発光体400の短手方向に光強度の解析を行うことで、光源となるバー300の短手方向の重心位置を推定する。しかしながら、撮像倍率が7倍の低倍率の場合は、光強度をx軸方向にフィッティングしても、例えば±0.1(μm)程度の精度でしか位置を推定することができなかった。
 図7は、本実施形態に係る14個の発光体の配列例と光強度のフィッティング例を示す図である。図7における光源となる1つのバー300の大きさは、図6と同じである。バー300の短手方向のピッチは8.0(μm)で14個のバー300が配列されている。また、CCD固有画素ピッチも7(μm)で図6の比較例と同じである。さらに、撮像倍率も7倍、撮像時に検出される画素ピッチが1(μm)であり、図6の比較例と同じである。
 配列図g101のように、発光体400が所定のピッチ(所定の周期)8.0(μm)で配列されている。
 そして、本実施形態では、このような発光体400の光信号の光強度を、グラフg111のようにフィッティングする。グラフg111において、横軸はピクセル位置であり、縦軸は光強度である。また、グラフg111において、点g113は、検出された光強度を示し、線g115はフィッティングした理論曲線(例えばcos波形)を示す。なお、本実施形態では、光強度を12bit精度の分解能(階調数4096)で検出した。
 このように、本実施形態では、発光体400を所定の周期で配置し、分解能を12bitで光強度をx軸方向にフィッティングして各々の発光体400の中心位置を推定することで、低倍率の7倍であっても、例えば±0.3(nm)程度の精度で位置を推定することができる。
 なお、図7に示した発光体の大きさやピッチ、撮像素子の画素サイズ、撮像倍率、撮像時の画素サイズ、光強度の分解能等は一例であり、これに限らない。
 このように、本実施形態によれば、従来のようにモアレを用いずに、低倍率の光学系で精度良く位置ずれ量を検出することができる。また、本実施形態によれば、従来より、検出画素長の依存性を低くすることができる。
<位置合わせ>
 次に、モールド21と基板22との位置合わせ方法を説明する。
 図8は、本実施形態に係る位置ずれの調整前と調整後の配列体の位置例を示す図である。
 本実施形態では、配列体からの光による光信号をフィッティングして位置ずれ量を検出し、検出した位置ずれ量に基づいて、モールド21と基板22との位置合わせを行う。
 位置合わせ前の積層状態g201では、モールド21の第1の配列体311(21)と基板22の第1の配列体311(22)の位置がずれ、モールド21の第2の配列体312(21)と基板22の第2の配列体312(22)の位置がずれている。
 位置合わせ後の積層状態g202では、モールド21の第1の配列体311(21)と基板22の第1の配列体311(22)の位置が一致し、モールド21の第2の配列体312(21)と基板22の第2の配列体312(22)の位置が一致している。
 ここでは、バー300の短手方向の長さが4(μm)であり、バー300の長手方向の長さが30(μm)である。バー300の深さ(D)は0.1(μm)である。第1の配列体311の周期pは8.0(μm)であり、第2の配列体の周期pは8.1(μm)である。
 なお、図8に示した例では、x軸方向の位置合わせの例を説明したが、後述するような配列体の配置によって、y軸方向の位置ずれ量の検出と位置合わせも可能である。
 図8は、本実施形態に係る位置ずれ量の検出と調整手順例のフローチャートである。
 (ステップS1)位置合わせ装置1は、第1物体(モールド21)に第1の配列体311(21)と第2の配列体312(21)を形成する。
 (ステップS2)位置合わせ装置1は、第2物体(基板22)に第2の配列体312(22)と第1の配列体311(22)を形成する。
 なお、ステップS1とS2の処理は、例えば、フォトリソグラフィ装置や電子線リソグラフィ装置などの他の装置で行ってもよい。
 (ステップS3)位置合わせ装置1は、第1物体と第2物体とを積層する。
 (ステップS4)位置合わせ装置1は、配列体からの光信号を検出する。
 (ステップS5)位置合わせ装置1は、検出した光信号の光強度をフィッティングして、第1物体と第2物体との位置ずれ量を算出する。
 (ステップS6)位置合わせ装置1は、算出した位置ずれ量に基づいて、第1物体と第2物体との位置を調整する。
 ここで、フィッティングに用いる式の一例を説明する。
 まず、配列体が1つの場合の光強度Iの一般式は、次式(1)のように表すことができる。
Figure JPOXMLDOC01-appb-M000001
 式(1)において、xは検出画素のx軸の位置であり、x=0が原点であり、dxは原点からの位置ずれ量であり、aは振幅であり、bはバックグランドの光強度であり、pは配列体を構成するバーの周期(間隔)である。なお、dx=0のとき、位置ずれがないことを表している。
 次に、図4、図5等のように4つの独立した配列体の場合にフィッティングに用いる式は、次式(2)のように表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)において、iは各配列体を示し、qは撮像系に依存する補正倍数である。なお、原点位置は予め設定しておき、a、b、q、dxは、フィッティングによって求める。
 なお、4つの独立した配列体iが1から4から生じる光強度の式における条件は、以下である。
(条件1)配列体(i=1,3)が上部のモールド21に形成されていて、配列体(i=2,4)が下部の基板22に形成されている。
(条件2)モールド21側から撮像したとき、配列体i=1,2とi=3,4が隣接する。
(条件3)モールド21に対する基板22の重ね合わせにおける位置ずれ量dは、d=dx―dx=dx-dx(ただしd>0(基板が左側にずれている場合)、d<0(基板が右側にずれている場合)、|d|<p/2,p=p,p=p)。
 また、式(2)において、位置ずれ量dx=位置ずれ理想値dreal+誤差Δdであり、標準誤差=フィッティング残差の標準偏差σであり、フィッティング残差はフィッティング式と観測データとの差である。
 図4、図5の例では、i=1が第1物体(モールド21)の第1の配列体311(21)であり、i=3が第1物体の第2の配列体312(21)であり、i=2が第2物体(基板22)の第2の配列体312(22)であり、i=4が第2物体の第1の配列体311(22)である。また、第1物体の第1の配列体の周期pと第2物体の第1の配列体の周期pとが等しく、第1物体の第2の配列体の周期pと第2物体の第2の配列体の周期pとが等しい。さらに、同じ物体上に形成されているため、第1物体における第1の配列体の位置ずれ量dxと第2の配列体の位置ずれ量dxとが等しく、第2物体における第2の配列体の位置ずれ量dxと第1の配列体の位置ずれ量dxとが等しい。
 モールド21と基板22との位置ずれ量(検出値)dは、次式(3)で導出することができる。
Figure JPOXMLDOC01-appb-M000003
 …(3)
<検証結果>
 次に、本実施形態の手法について検証した結果例を説明する。
 まず、光強度の分解能について検証した結果を説明する。図10は、光強度の分解能が8bitの256階調の場合かつ解析周期が5、10、20、50、100および120周期の検出値と標準誤差を示す図である。なお、図10の検証条件は、第1の配列体311(21)、第2の配列体312(22)、第2の配列体312(21)、第1の配列体311(22)の4列であり、第1の配列体311の周期pが8.0(μm)であり、バー300の短手方向の幅Lが4.0(μm)であり、空間幅Sが4.0(μm)であり、第2の配列体312の周期pが8.1(μm)であり、バー300の短手方向の幅Lが4.0(μm)であり、空間幅Sが4.1(μm)であり、撮像時に検出される画素長が1(μm)/ピクセル(px)である。解析周期が5周期であるときは、周期pが5周期分に相当する長さ40(μm)を解析した結果を意味する。ここでは、5周期、10周期、20周期、50周期、100周期、120周期に相当する長さの光を4列の配列体から検出して、信号を式(2)によりフィッティングして位置ずれ量(検出値)と標準誤差を解析した。なお、光学系の倍率は7倍である。また、表の各値は、左が検出値(nm)であり、右が標準誤差(nm)である。
 また、図10において、「設定変位」とは、検証のために意図的にモールド21と基板22とをずらしたずれ量である。
 図10のように、光強度の分解能が8bitの場合は、50周期に相当する長さ400(μm)を解析することで、0~100(nm)のいずれであっても1(nm)スケールの標準誤差でモールド21と基板22との位置ずれ量を検出できる。
 図11と図12は、光強度の分解能が12bitの4096階調の場合かつ解析周期が5、10、20、30、40、50、100および120周期の検出値と標準誤差を示す図である。図11と図12の検証条件は、光強度の分解能が12bitである以外、図10と同じである。
 図11と図12のように、光強度の分解能を12bitにした場合は、分解能8bitと比較して、精度を大幅に向上させることができる。例えば50周期(長さ400(μm))であれば、0~100(nm)のいずれであっても0.26(nm)スケールの標準誤差でモールド21と基板22との位置ずれ量を検出できる。10周期(長さ80(μm))であれば、0~100(nm)のいずれであっても0.76(nm)スケールの標準誤差でモールド21と基板22との位置ずれ量を検出できる。20周期(長さ160(μm))であれば、原子スケールの検出値0.5(nm)スケールの標準誤差でモールド21と基板22の位置ずれ量を検出することができる。
 本実施形態によれば、解析に必要な周期が少なくなると撮像素子のサイズ自体を小さくできるため、位置ずれ量検出のコストを下げることができる。
 なお、光強度の分解能を12bitよりも大きな、例えば14bitの16384階調で検出することで、解析周期を小さくしても、原子スケールの位置ずれ量を検出できることは言うまでもない。
 光強度の分解能と解析周期と検出値の関係を図10~図13を用いて、さらに説明する。
 図13は、光強度の分解能と解析周期と検出値の関係を示す図である。図13において、横軸は周期(周期pの数)であり、縦軸は標準誤差(nm)である。なお、周期pは8.0(μm)である。グラフg301は、光強度の分解能8bitと光強度の分解能12bitの解析周期と標準誤差の関係を示すグラフである。また、グラフg301において、鎖線g302が光強度の分解能8bitの解析周期に対する標準誤差であり、鎖線g303が光強度の分解能12bitの解析周期に対する標準誤差である。また、グラフg311は、光強度の分解能12bitの解析周期に対する標準誤差の縦軸のスケールを変えたグラフである。
 図10~図13のように、標準誤差1(nm)を得るに必要な解析周期は、光強度の分解能8bitの場合に50周期程度(長さ400(μm)程度)であり、光強度の分解能12bitの場合に10周期程度(長さ80(μm)程度)である。なお、光強度の分解能12bitでは、5周期(長さ40(μm))でも1.4(nm)以下の精度を得ることができる。また、例えば50周期の場合、光強度の分解能8bitの標準誤差は1(nm)程度であるが、光強度の分解能12bitの標準誤差は0.25(nm)程度に向上する。
 さらに、1(nm)程度の精度で位置合わせを行うためには、標準誤差が0.3(nm)程度である必要がある。本実施形態においては、光強度の分解能を大きくするにつれて、より小さな解析周期でも1(nm)程度の位置ずれ量を高い精度で位置合わせを行うことができる。
 また、本実施形態によれば、モールド21と基板22に形成する配列体の長さ(解析周期)を小さくできる、すなわち、モールド21と基板22に配置する位置合わせ用のアライメントマークを小さくできる効果を得ることがきる。
 次に、モールド21と基板22との位置ずれ量の検出値に対する撮像時に検出される画素長(解像度)の依存性について検証した結果を説明する。
 図14は、位置ずれ量の検出値と標準誤差に対する解像度の依存性について検証した結果を示す図である。なお、検証条件は、第1の配列体311(21)、第2の配列体312(22)、第2の配列体312(21)、第1の配列体311(22)の4列であり、第1の配列体311の周期pが8.0(μm)であり、バー300の短手方向の幅Lが4.0(μm)であり、空間幅Sが4.0(μm)であり、第2の配列体312の周期pが8.1(μm)であり、バー300の短手方向の幅Lが4.0(μm)であり、空間幅Sが4.1(μm)であり、撮像時に検出される画素長が1(μm)/ピクセル(px)である。また、設定変位は、上から1(nm)、2(nm)、5(nm)である。表の各値は、左が検出値(nm)であり、右が標準誤差(nm)である。解析周期が5周期であるときは、周期pが5周期分に相当する長さ40(μm)を解析した結果を意味する。また、検証した解像度(ピクセル(px)/μm)は、0.5、0.75、1、1.25である。なお、光強度の分解能は12bitの4096階調である。
 図14のように、いずれの周期であっても、解像度が大きい、すなわち1(μm)あたりのピクセル(px)の数が大きなほど、検出値の標準誤差が小さくなり、位置合わせ精度が向上する。
 所望の位置合わせ精度を得るには、例えば周期pが8.0(μm)の検出において、1.25ピクセル/μmの解像度で5周期(50ピクセル)以上が望ましく、1ピクセル/μmの解像度で10周期(80ピクセル)以上が望ましく、0.75ピクセル/μmの解像度で20周期(120ピクセル)以上が望ましく、0.5ピクセル/μmの解像度で20周期(320ピクセル)以上が望ましい。
 次に、配列体のバー300の短手方向の幅(バーの幅)L(Line)と、バーとバーとの間の空間幅S(Space)と、設定変位5(nm)において検出値と標準誤差の検出精度について検証した結果を、図15~図17を参照して説明する。
 図15は、検証に用いた周期p=8.0(μm)の配列体のバーの幅Lと、空間幅Sの例を示す図である。図15のように、検証には、L:Sの幅の比が、1:7(g401)と、2:6(g402)と、3:5(g403)等を用いた。すなわち、1:7(g401)においては、Lが1(μm)であり、Sが7(μm)である。2:6(g402)においては、Lが2(μm)であり、Sが6(μm)である。3:5(g403)においては、Lが3(μm)であり、Sが5(μm)である。
 図16は、配列体のバーの幅Lと、空間幅Sとの比と検出値(nm)と標準誤差(nm)の例を示す図である。周期pが8.0(μm)の場合では、L:Sの幅の比が3:5において、設定変位5(nm)を検出値4.947(nm)、標準誤差0.620(nm)で検出できることがわかり、L:Sの幅の比が4:4において、設定変位5(nm)を検出値5.049(nm)、標準誤差0.254(nm)で検出できることがわかり、L:Sの幅の比が5:3において、設定変位5(nm)を検出値5.087(nm)、標準誤差0.614(nm)で検出できることがわかる。よって、配列体のバーの幅Lと空間幅Sの長さがほぼ等しいことが、標準誤差が小さくなるため望ましい。
 図17は、配列体のバーの幅L(Line Width)/周期p(period)と標準誤差との関係を示す図である。鎖線g411はバーの幅/周期が0~0.5であり、鎖線g412はバーの幅/周期が0.5~1.0である。
 図16と図17のように、L:Sが1:1、バーの幅/周期が0.5の場合が、標準誤差が小さく、検出精度が高いことがわかる。また、L:Sの幅の比が4.025:3.975であり、配列体のバーの幅L/周期pが0.50313の場合、標準誤差が0.25243(nm)であり、最も検出精度が高かった。
 以上のように、本実施形態では、モールド21側の配列体と、基板22側の配列体とを、積層した際に重ならないように配置した。さらに、本実施形態では、第1の配列体と第2の配列体とを重ね合わせないように配置した。また、本実施形態では、モールド21側に第1の配列体と第2の配列体とを配置し、基板22側に第2の配列体と第1の配列体とを配置した。また、本実施形態では、光強度の分解能を例えば12bitの4096階調とした。
 これにより、本実施形態によれば、上部物体と下部物体との位置合わせを原子スケールの誤差の精度で行うことができる位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体を提供することができる。
 また、本実施形態によれば、光学系が従来より低倍率で実現できるので、装置のコストを低減することができる。また、本実施形態によれば、積層される物体に形成する配列体を従来より小さくできる。
<変形例>
 上述した実施形態では、x軸方向にバーが周期的に配置されている配列体の例を説明したが、これに限らない。
(第1の変形例)
 図18は、x軸方向調整用とy軸方向調整用の配列体が独立している例を示す図である。なお、モールド21側から撮像したときに得られる8つの独立した配列体配置例を示している。
 配列体配置例500は、x軸方向調整用の4つの配列体の配置例である。配列体配置例500では、例えばモールド21に第1の配列体501と第2の配列体503が形成され、基板22に第2の配列体502と第1の配列体504が形成されている。かつ、配列体配置例500は、積層した際にy軸方向に配列体501~504の順に重ならないように配置されている。
 配列体配置例510は、y軸方向調整用の4つの配列体の配置例である。配列体配置例510では、例えばモールド21に第1の配列体511と第2の配列体513が形成され、基板22に第2の配列体512と第1の配列体514が形成されている。かつ、配列体配置例500は、積層した際にx軸方向に配列体511~514の順に重ならないように配置されている。
(第2の変形例)
 図19は、配列体を各方向に上下、左右に分割した例を示す図である。
 配列体配置例550では、x軸方向調整用の配列体が、例えばモールド21の上側に第1の配列体551が形成され、モールド21の下側に第2の配列体553が形成され、基板22の上側に第2の配列体552が形成され、基板22の下側に第1の配列体554が形成されている。かつ、配列体配置例550は、積層した際にy軸方向に配列体551~554の順に重ならないように配置されている。
 また、配列体配置例550では、y軸方向調整用の配列体が、例えばモールド21の左側に第1の配列体561が形成され、モールド21の右側に第2の配列体563が形成され、基板22の左側に第2の配列体562が形成され、基板22の右側に第1の配列体564が形成されている。かつ、配列体配置例550は、積層した際にx軸方向に配列体561~564の順に重ならないように配置されている。
 図19に示すように、例えば、x軸が500(μm)程度であり、y軸が500(μm)程度に配置してもよい。また、例えば、モールドの大きさが、x軸が10(mm)であり、y軸が10(mm)である場合には、モールド全体の上側と下側に配置してもよい。この場合、配列体551と552、配列体553と554、配列体561と562、配列体563と564が、対となっていることが望ましい。
(第3の変形例)
 図20は、配列体をL型に配置した例を示す図である。
 配列体配置例600では、x軸方向調整用の配列体が、例えばモールド21の上側に第1の配列体601と第2の配列体603が形成され、基板22の上側に第2の配列体602と第1の配列体604が形成されている。かつ、配列体配置例600は、積層した際にy軸方向に配列体601~604の順に重ならないように配置されている。
 配列体配置例600では、y軸方向調整用の配列体が、例えばモールド21の左側に第1の配列体611と第2の配列体613が形成され、基板22の上側に第2の配列体612と第1の配列体614が形成されている。かつ、配列体配置例600は、積層した際にx軸方向に配列体611~614の順に重ならないように配置されている。
 図20の場合には、モールド21において対向する2つの隅に相当する位置に、x軸用とy軸用の配列体8つをそれぞれ配置して、配列体からの光信号を検出することもできる。
(第4の変形例)
 図21は、配列体をクロス型に配置した例を示す図である。
 配列体配置例650では、x軸方向調整用の配列体が、例えばモールド21の左側に第1の配列体651と第2の配列体653が形成され、モールド21の右側に第1の配列体655と第2の配列体657が形成され、基板22の左側に第2の配列体652と第1の配列体654が形成され、基板22の右側に第2の配列体656と第1の配列体658が形成されている。かつ、配列体配置例650は、積層した際にy軸方向に配列体651~654の順、配列体655~658の順に重ならないように配置されている。
 配列体配置例650では、y軸方向調整用の配列体が、例えばモールド21の上側に第1の配列体661と第2の配列体663が形成され、モールド21の下側に第1の配列体665と第2の配列体667が形成され、基板22の上側に第2の配列体662と第1の配列体664が形成され、基板22の下側に第2の配列体666と第1の配列体668が形成されている。かつ、配列体配置例650は、積層した際にx軸方向に配列体661~664の順、配列体665~668の順に重ならないように配置されている。
 このように、配列体の配置は、中心部等が中抜けしていてもよい。
 図21の場合には、モールド21と基板22の4つの隅、または、モールド21と基板22の4辺近傍、または、モールド21と基板22の中央等、デバイス用の回路パターンに応じて、配置することなどもできる。
 なお、図18~図21に示した配列体の配置例は一例であり、これに限らない。
(第5の変形例)
 上述した実施例、変形例では、第2の配列体の周期pが第1の配列体の周期pより大きい例を説明したが、これに限らない。
 図22と図23は、配列体の周期を検証した結果例を示す図である。列は意図的にずらした量と標準誤差の平均値であり、行は周期の組み合わせ毎の検出値(nm)と標準誤差(nm)である。
 図22の表g501に示した第1の例は、これまでに説明した第1の配列体の周期pが8.0(μm)、第2の配列体の周期pが8.1(μm)、光学系が1ピクセル(px)=1(μm)、の例である。第1の例では、30周期(4列)と100周期(4列)を検証した。なお、4列とは、例えば図18のように、軸方向に配列体が4列配置されている状態である。
 図22の表g502に示した第2の例は、第1の配列体の周期pが8.00(μm)、第2の配列体の周期pが8.01(μm)、光学系が1ピクセル(px)=1(μm)、の例である。第2の例では、周期pが8.01(μm)であり、バーの幅L2が4.00(μm)、空間幅S2が4.01(μm)である以外、第1の例と同じである。第2の例では、30周期(4列)と100周期(4列)を検証した。
 図22の表g503に示した第3の例は、第1の配列体の周期pが8.0(μm)、第2の配列体の周期pが8.8(μm)、光学系が1ピクセル(px)=1(μm)、の例である。第3の例では、周期pが8.8(μm)であり、バーの幅Lが4.0(μm)、空間幅Sが4.8(μm)である以外、第1の例と同じである。第3の例では、30周期(4列)と100周期(4列)を検証した。
 図23の表g504に示した第4の例は、第1の配列体の周期pが80(μm)、第2の配列体の周期pが81(μm)、光学系が1ピクセル(px)=10(μm)の例である。第4の例では、周期pが80(μm)であり、バーの幅Lが40(μm)、空間幅Sが40(μm)である、周期pが88(μm)であり、バーの幅Lが40(μm)、空間幅Sが48(μm)である。第4の例では、30周期と100周期を検証した。観察倍率7倍において、CCD固有画素ピッチが70(μm)であっても、30周期において標準誤差3.3(nm)で位置ずれ量の検出精度であることがわかる。また、観察倍率0.7倍の縮小光学系であっても、CCD固有画素ピッチが7(μm)であれば、30周期において平均標準誤差3.26(nm)、100周期において平均標準誤差1.81(nm)で位置ずれ量の検出が行えることがわかる。
 図23の表g505に示した第5の例は、第1の配列体の周期pが8.00(μm)であり、第2の配列体の周期pが同じ8.00(μm)であり、光学系が1ピクセル(px)=1(μm)、の例である。第5の例では、60周期(2列)を検証した。第5の例では、例えば図19の上側のように、配列体が2列のみである。
 図22と図23の検証結果のように、周期は、p<pに限らず、p=pでも所望の精度で検出することができる。
 また、図22と図23のように、パターン数が多(=周期数が多)ければ(例えば100周期)、第5の例のように、配列体の個数は、モールド21側に1つ、基板22側に1つでも精度を担保することができる。ゆえに、モールド21側に2つ、基板22側に2つの配列体を設ける場合でも、モールド21に設けられた第1の配列体及び第2の配列体と、基板22に設けられた第2の配列体及び第1の配列体とは、積層した際にいずれかが重ならないように配置されていればよい。
 さらに、第4の例のように、0.7倍の光学系(1ピクセル≒10μm)であっても、3(nm)程度の標準誤差で位置合わせを行うことができる。
 すなわち、本実施形態によれば、像を拡大する顕微鏡の低倍率の光学系だけでなく、像を縮小する光学系、さらには、等倍率の光学系であっても、従来より精度良く検出して位置合わせを行うことができる。
<残膜の存在の影響>
 次に、ルミネッセンスの一例である蛍光をモールド21と基板22から検出する場合において、層23の残膜の存在の影響について検証した結果を説明する。なお、残膜とは、紫外線硬化性可視蛍光液体が塗布されている層23であり、残膜の厚さ(RLT:Residual Layer Thickness)とは、層23の厚さである。紫外線硬化性可視蛍光液体を紫外線照射により硬化させて、光ナノインプリントリソグラフィにおけるレジストマスクとして用いる場合には、マスク形状と転写物の形状を近づけるために、残膜の厚さは小さいことが望ましい。なお、モールド21と基板22に配備されたバー300の配列体が凹構造であり、凹構造に紫外線硬化性蛍光液体が充填されるため、層23から検出される蛍光は、モールド21と基板22のバー300の配列体からより大きな光強度の信号が検出される。すなわち、残膜の厚さに相当する層23の厚さが大きいとアライメントマークからの信号強度が小さくなり、位置合わせに資する蛍光の検出が困難になる。
 検証条件は、光強度の分解能が12bitの4096階調であり、解像度が1ピクセル(px)=1(μm)であり、モールド21からの基板22の設定変位が5(nm)、周期pが8.0(μm)(バーの幅Lが4.0(μm)、空間幅Sが4.0(μm))、周期pが8.1(μm)(バーの幅Lが4.0(μm)、空間幅Sが4.1(μm))、解析周期が30周期(4列)である。なお、モールド21と基板22に配置したバー配列体の凹構造の深さ(パターン深さ)は0.1(μm)とした。
 図24は、バー配列体のパターン深さ(D)に対する残膜の厚さ(RLT;Residual Layer Thickness)の割合(RLT/D)毎の検出値(nm)、標準誤差(nm)、光強度の分解能12bitの4096階調のうち位置ずれ量の検出に使用できる有効階調数の検証結果を示す図である。図25は、バー配列体のパターン深さ(D)に対する残膜の厚さ(RLT)の割合と検出値の標準誤差との関係を示す図24をグラフ化した図である。図25において、横軸はバー配列体のパターン深さに対する残膜の厚さの割合(RLT/D)、すなわち残膜の厚さ(RLT)/バー300の深さ(D)であり、縦軸は標準誤差(nm)である。バー配列体のパターン深さが0.1(μm)であるため、横軸の1、2,3,4,5は、残膜の厚さ0.1(μm)、0.2(μm)、0.3(μm)、0.4(μm)、0.5(μm)にそれぞれ対応する。
 図25のように、層23の残膜の厚さが大きくなるほど標準誤差が増える。バー配列体のパターン深さに対する残膜の厚さの割合(RLT/D)が0または1の場合の標準誤差は0.3(nm)程度であり、残膜の厚さが2の場合の標準誤差は0.4(nm)程度であり、残膜の厚さRLTが3の場合の標準誤差は0.6(nm)程度である。蛍光等のルミネッセンスを光の信号として検出して位置合わせを行う場合は、残膜の厚さが小さい程、モールド21と基板22の位置ずれ量の検出値と標準誤差をより精度よくすることができる。モールド21と基板22に配置するバー配列体のパターン深さを大きくすることで、位置合わせが可能な残膜の厚さを大きくすることができる。パターン深さ1(μm)であれば、残膜の厚さに相当する層23の厚さ、すなわち、モールド21と基板22の距離が3(μm)においても、精度よく位置合わせを行うことができる。
 上記は、ルミネッセンスを光の信号として検出する場合を説明したが、モールド21と基板22に配置されたアライメントマークからの散乱光を光信号として検出する場合は、層23が空気などの気体であるので、モールド21と基板22の距離に対する層23の依存性が少なくなる。モールド21と基板22の距離が大きくなると検出する光の焦点深度を大きくするための光学系が必要となる。
 図26は、バー配列体のパターン深さ(D)に対する残膜の厚さ(RLT)の割合(RLT/D)と光強度の分解能12bitの4096階調のうち位置ずれ量の検出に使用できる有効階調数との関係を示す図22をグラフ化した図である。図26において、横軸はバー配列体のパターン深さに対する残膜の厚さの割合(RLT/D)であり、縦軸は光強度の分解能12bitの4096階調のうち位置ずれ量の検出に使用できる有効階調数である。
 図26のように、パターン深さに対する残膜の厚さの割合(RLT/D)が大きくなるほど有効階調数が減る。パターン深さに対する残膜の厚さの割合が0の場合の有効階調数は2600程度であり、パターン深さに対する残膜の厚さの割合が1の場合の有効階調数は700程度であり、パターン深さに対する残膜の厚さの割合が2の場合の有効階調数は250程度である。光強度の分解能12bitの場合では、パターン深さに対する残膜の厚さの割合が大きくなるにつれ、位置ずれ量の検出値の標準誤差が大きくなる。このような場合には、光強度の分解能14bitの撮像素子を用いることによって精度よく検出できる。
 なお、上述した実施例、変形例において、配列体が2つまたは4つの例を説明したが、配列体は6つ以上であってもよい。
 上述したような本実施形態に対して、従来の位置合わせでは、例えばモールド側と基板側とに異なる周期のアライメントマークを形成し、積層した際にアライメントマークが対向して重なることでモアレ縞を発生させ、モアレ縞に基づいて位置合わせを行っていた。このような従来の手法では、発生するモアレ縞の周期がアライメントマークの配列体の周期より大きくなり、その結果、位置ずれを検出するための観察視野が大きくなる問題があった。撮像視野が小さく、モアレの解析周期が少なくなるため誤差が大きくなる問題があった。さらに、蛍光等のルミネッセンスを光信号として検出する場合において、残膜の傾斜は、モアレの信号強度に影響を与えやすいという問題点があった。本実施形態では、積層した際にアライメントマークが重ならないように配置されているため、フーリエ変換で、残膜の傾斜による残膜の厚さの不均一さに基づく、低周期のノイズを除くことができ、第1の配列体の周期pと第2の配列体の周期pを解析でき、残膜の傾斜による残膜の厚さの不均一さや残膜の厚さの揺らぎの影響を受けにくい。
 また、本実施形態でのルミネッセンスや散乱光を光信号として検出する場合と異なる、回折光を光信号として検出する従来の位置合わせ法では、アライメントマークを構成するバー配列体の各バーのエッジの形状の影響を受けやすい問題があった。回折光では、各バーのエッジでフレネル回折等が起こるため、各バーのエッジの光強度が大きくなる。本実施形態の蛍光等のルミネッセンスや光散乱では、各バーの中央部で光強度の最大となるため、アライメントマークを構成するバー配列体の各バーのエッジの形状の影響を受けにくく、バーの幅の中心位置を計測しやすくなる効果を得ることができる。また、回折光を光信号として検出する従来の位置合わせ法では、金属遮光膜や高屈折率膜などの光学機能膜がモールドに必要となる。本実施形態でのルミネッセンスや散乱光を光信号として検出する場合では、モールドには光学機能膜が不要である特徴があるため、モールドの製造コストを低減できる効果がある。
 また、従来技術では、第1物体に第1のアライメントマークを形成し、第2物体に第2のアライメントマークを形成して、2つの物体を対向させる。そして、従来技術では、撮像素子で撮像し、第1の領域の予め定められた位置と第1のアライメントマークとのズレと、第2の領域の予め定められた位置と第2のアライメントマークとのズレと、を用いて位置合わせを行っていた。すなわち、このような従来技術では、物体に形成されたアライメントマークを予め定められた位置に調整することで位置合わせを行っていた。
 これに対して、本実施形態では、第1物体に形成されている配列体と、第2物体に形成されている配列体との位置ずれ量を検出し、検出した位置ずれ量に基づいて、第1物体に形成されている配列体と、第2物体に形成されている配列体との位置合わせることで、第1の物体と第2物体との位置合わせを行うようにした。この結果、上述したような効果を得ることができた。
 なお、本発明における制御装置11の機能の全てまたは一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより制御装置11が行う処理の全てまたは一部を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形および置換を加えることができる。例えば、実施形態や各変形例では、位置合わせ装置(積層体製造装置)を、第1物体をモールド21、第2物体を基板22とするインプリント装置を用いて説明したが、本実施形態や各変形例の位置合わせ方法や位置合わせ装置(積層体製造装置)は種々の用途の位置合わせに適用でき、本実施形態や各変形例の積層体製造方法や位置合わせ装置(積層体製造装置)は位置合わせが重要となる種々の用途の位置合わせや積層体製造等に適用できる。
1…位置合わせ装置、11…制御装置、12…顕微鏡装置、13…紫外線照射装置、14…固定ステージ、15…塗布装置、16…XYZθ軸可動ステージ、17…照明装置、21…モールド、22…基板、23…層、311…第1の配列体、312…第2の配列体、400…発光体、450…撮像素子、451…検出画素

Claims (9)

  1.  第1物体と第2物体とを積層する積層工程と、
     前記積層工程後に、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として、かつ、前記第1物体に設けられた第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた前記第2の配列体から得られる第3の光を第3信号として、かつ、前記第2物体に設けられた前記第1の配列体から得られる第4の光を第4信号として検出する検出工程と、
     検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算工程と、
     前記位置ずれを調整する調整工程と、
     を含み、
     前記第1の配列体は、周期pからなる第1の周期構造を備え、
     前記第2の配列体は、周期pからなる第2の周期構造を備え、
     前記第1物体に設けられた前記第1の配列体及び前記第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とは、前記積層した際にいずれかが重ならないように配置されている、
     位置合わせ方法。
  2.  前記第1の配列体と前記第2の配列体から得られる前記第1信号と前記第2信号と前記第3信号と前記第4信号とは、前記第1物体と前記第2物体との間に位置する層からのルミネッセンスである、
     請求項1に記載の位置合わせ方法。
  3.  前記第1の配列体と前記第2の配列体から得られる前記第1信号と前記第2信号と前記第3信号と前記第4信号とは、前記第1の配列体と前記第2の配列体の散乱光である、
     請求項1に記載の位置合わせ方法。
  4.  前記積層工程において、前記第1物体と前記第2物体とのギャップが3μm以下であるように積層する、
     請求項1から請求項3のうちのいずれか1項に記載の位置合わせ方法。
  5.  前記第1の配列体は、周期が20以上である前記第1の周期構造からなり、
     前記第2の配列体は、周期が20以上である前記第2の周期構造からなる、
     請求項1から請求項4のうちのいずれか1項に記載の位置合わせ方法。
  6.  積層体は、第1物体と、第2物体と、を備え、
     前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層工程と、
     前記積層工程後に、前記第1物体に設けられた前記第1の配列体から得られる第1の光を第1信号として検出し、かつ、前記第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた前記第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出工程と、
     検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算工程と、
     前記位置ずれを調整する調整工程と、
     を含む積層体の製造方法。
  7.  第1物体と第2物体とを積層して、前記第1物体と前記第2物体との位置ずれの位置合わせを行う位置合わせ装置であって、
     前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層手段と、
     前記第1物体と第2物体とが積層された積層体に対して、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として検出し、かつ、第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出手段と、
     検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算手段と、
     前記位置ずれを調整する調整手段と、
     を備える位置合わせ装置。
  8.  第1物体と第2物体とを積層して積層体を製造する積層体製造装置であって、
     前記第1物体に設けられた周期pからなる第1の周期構造を備える第1の配列体及び周期pからなる第2の周期構造を備える第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とを、積層した際にいずれかが重ならないように前記第1物体と第2物体とを、積層する積層手段と、
     前記第1物体と第2物体とが積層された積層体に対して、前記第1物体に設けられた第1の配列体から得られる第1の光を第1信号として検出し、かつ、第2の配列体から得られる第2の光を第2信号として検出し、前記第2物体に設けられた第2の配列体から得られる第3の光を第3信号として検出し、かつ、前記第1の配列体から得られる第4の光を第4信号として検出する検出手段と、
     検出された前記第1信号と前記第2信号と前記第3信号と前記第4信号とをそれぞれフィッティングすることで、前記第1物体と前記第2物体との位置ずれを求める計算手段と、
     前記位置ずれを調整して積層位置を決定する調整手段と、
     を備える積層体製造装置。
  9.  周期pからなる第1の周期構造を備える第1の配列体、及び周期pからなる第2の周期構造を備える第2の配列体と、を備える第1物体と、
     前記第2の配列体、及び前記第1の配列体と、を備える第2物体と、
     を備え、
     前記第1物体に設けられた前記第1の配列体及び前記第2の配列体と、前記第2物体に設けられた前記第2の配列体及び前記第1の配列体とのいずれかが重ならないように前記第1物体と前記第2物体とが積層されている積層体。
PCT/JP2021/040758 2021-01-07 2021-11-05 位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体 WO2022149341A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/265,711 US20240042674A1 (en) 2021-01-07 2021-11-05 Positioning method, method for manufacturing layered body, positioning device, layered body manufacturing device, and layered body
JP2022573929A JPWO2022149341A1 (ja) 2021-01-07 2021-11-05
EP21917566.8A EP4276406A1 (en) 2021-01-07 2021-11-05 Positioning method, method for manufacturing layered body, positioning device, layered body manufacturing device, and layered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-001685 2021-01-07
JP2021001685 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022149341A1 true WO2022149341A1 (ja) 2022-07-14

Family

ID=82357410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040758 WO2022149341A1 (ja) 2021-01-07 2021-11-05 位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体

Country Status (4)

Country Link
US (1) US20240042674A1 (ja)
EP (1) EP4276406A1 (ja)
JP (1) JPWO2022149341A1 (ja)
WO (1) WO2022149341A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518107A (ja) * 2002-02-15 2005-06-16 ケーエルエー−テンカー テクノロジィース コーポレイション オーバレイ計測および制御方法
JP2009177159A (ja) * 2007-12-31 2009-08-06 Asml Netherlands Bv アラインメントシステムおよびアラインメントシステムと共に使用するためのアラインメントマーク
JP2011070602A (ja) * 2009-09-28 2011-04-07 Canon Inc パターン検出装置、その処理方法及びプログラム
JP2018022807A (ja) * 2016-08-04 2018-02-08 旭化成株式会社 位置合わせ方法、インプリント方法およびインプリント装置
JP2021001685A (ja) 2018-12-11 2021-01-07 株式会社オンダ製作所 管体接続装置及び座部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005518107A (ja) * 2002-02-15 2005-06-16 ケーエルエー−テンカー テクノロジィース コーポレイション オーバレイ計測および制御方法
JP2009177159A (ja) * 2007-12-31 2009-08-06 Asml Netherlands Bv アラインメントシステムおよびアラインメントシステムと共に使用するためのアラインメントマーク
JP2011070602A (ja) * 2009-09-28 2011-04-07 Canon Inc パターン検出装置、その処理方法及びプログラム
JP2018022807A (ja) * 2016-08-04 2018-02-08 旭化成株式会社 位置合わせ方法、インプリント方法およびインプリント装置
JP2021001685A (ja) 2018-12-11 2021-01-07 株式会社オンダ製作所 管体接続装置及び座部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E.KIKUCHIY.ISHITOS.MATSUBARAT.NAKAMURAM.ABEM.NAKAGAWA: "Principle and observation of fluorescence moire fringes for alignment in print and imprint methods", JOURNAL OF VACUUM SCIENCE TECHNOLOGY B, vol. 35, 2017, pages 06G303, XP012222286, DOI: 10.1116/1.4990844

Also Published As

Publication number Publication date
US20240042674A1 (en) 2024-02-08
JPWO2022149341A1 (ja) 2022-07-14
EP4276406A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
US11181363B2 (en) Measurement device, imprint apparatus, method for manufacturing product, light amount determination method, and light amount adjustment method
KR101299473B1 (ko) 나노 스케일 장치를 제조하기 위한 간섭 분석
US10634995B2 (en) Position detector, position detection method, imprint apparatus, and product manufacturing method
CN104170055B (zh) 压印装置、模具、压印方法以及制造物品的方法
CN107924817A (zh) 检测设备、压印装置、制造物品的方法、照明光学系统以及检测方法
JP5539998B2 (ja) 光指向性センサ
TW201732456A (zh) 基板處理裝置、處理裝置及元件製造方法
TWI426353B (zh) 壓印微影系統及壓印方法
US8743361B2 (en) Imprint lithography method and apparatus
CN110088878A (zh) 对准装置、对准方法、光刻装置和制造物品的方法
CN103403621A (zh) 用于在大面积上产生纳米结构的系统和方法
CN104849956A (zh) 检测装置、压印装置及物品的制造方法
JP2011175213A (ja) レーザ照射装置
CN1479073A (zh) 失真测量方法和曝光设备
WO2022149341A1 (ja) 位置合わせ方法、積層体の製造方法、位置合わせ装置、積層体製造装置、及び積層体
KR20140062600A (ko) 마스크리스 노광장비 및 이의 왜곡차 측정 및 매칭방법
TWI552383B (zh) 用於在發光半導體組件中形成結構的光微影方法
JP2011061165A (ja) インプリント装置及び物品の製造方法
US20080079921A1 (en) Substrate Exposure Apparatus and Illumination Apparatus
JP2019140288A (ja) 検出装置、リソグラフィ装置、および物品の製造方法
JP5241343B2 (ja) 微細構造転写装置
JP2013161866A (ja) インプリント方法およびテンプレート
Holland et al. An enhanced flexible color filter via imprint lithography and inkjet deposition methods
CN114326340B (zh) 纳米压印对准方法及系统
JP2014066870A (ja) パターン形成方法及び装置、露光装置並びに表示用パネル製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917566

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573929

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18265711

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917566

Country of ref document: EP

Effective date: 20230807