WO2022148466A1 - 一种稠环化合物及其在有机电子器件的应用 - Google Patents

一种稠环化合物及其在有机电子器件的应用 Download PDF

Info

Publication number
WO2022148466A1
WO2022148466A1 PCT/CN2022/071137 CN2022071137W WO2022148466A1 WO 2022148466 A1 WO2022148466 A1 WO 2022148466A1 CN 2022071137 W CN2022071137 W CN 2022071137W WO 2022148466 A1 WO2022148466 A1 WO 2022148466A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
ring
compound
atoms
groups
Prior art date
Application number
PCT/CN2022/071137
Other languages
English (en)
French (fr)
Inventor
潘君友
陈怀俊
梁茶财
潘才法
Original Assignee
浙江光昊光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江光昊光电科技有限公司 filed Critical 浙江光昊光电科技有限公司
Priority to CN202280009731.5A priority Critical patent/CN116724031A/zh
Publication of WO2022148466A1 publication Critical patent/WO2022148466A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/92Naphthofurans; Hydrogenated naphthofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/74Naphthothiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the technical field of organic electronic materials and devices, in particular to a fused ring compound, a mixture and a composition containing the same, and its application in organic electronic devices.
  • OLEDs Organic light-emitting diodes
  • the purpose of the present invention is to provide a fused ring compound and its application in electronic devices.
  • the present invention provides a condensed ring compound as shown in general formula (I):
  • Q is selected from O or S
  • Ar is a fused ring having 8-24 ring atoms
  • Ar 1 when present in multiples, may be the same or different selected from substituted or unsubstituted aromatic or heteroaromatic having 5 to 50 ring atoms, or aryloxy or heteroaromatic having 5 to 50 ring atoms Aryloxy groups, or a combination of these groups, wherein one or more of the Ar 1 groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring to which they are bonded; at least One Ar 1 is selected from a substituted or unsubstituted aromatic or heteroaromatic having 6 or more ring atoms, or an aryloxy or heteroaryloxy group having 5 or more ring atoms;
  • n is any integer selected from 0, 1, 2, 3, 4;
  • H in Ar, Ar 1 , R 1 and R 2 may be further substituted with D.
  • the present invention also provides a high polymer comprising at least one repeating unit, wherein the repeating unit comprises the structure represented by the general formula (I).
  • the present invention also provides a mixture comprising at least one condensed ring compound or high polymer as described above, and at least one other organic functional material
  • the at least one other organic functional material can be selected from cavities (also called hole) injection material (HIM), hole transport material (HTM), hole blocking material (HBM), electron injection material (EIM), electron transport material (ETM), electron blocking material (EBM), organic matrix material ( Host), singlet emitters (fluorescent emitters), triplet emitters (phosphorescent emitters), thermally excited delayed fluorescent materials (TADF materials) or organic dyes.
  • the present invention also provides a composition comprising at least one fused ring compound or high polymer as described above, and at least one organic solvent.
  • the present invention also provides an organic electronic device, comprising a condensed ring compound or high polymer as described above.
  • the organic electronic devices can be selected from organic light emitting diodes, organic photovoltaic cells, organic light emitting cells, organic field effect transistors, organic light emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes.
  • the T1 energy level is very low, and the organic electroluminescence element prepared by this type of fused ring compound has high fluorescence luminous efficiency and long device life.
  • host material In the present invention, host material, matrix material, Host material and Matrix material have the same meaning and can be interchanged.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and can be interchanged.
  • composition printing ink, ink, and ink have the same meaning and are interchangeable.
  • the present invention provides a condensed ring compound, having the structure shown in general formula (I):
  • Q is selected from O or S.
  • Ar is a fused ring having 8-24 ring atoms. In some preferred embodiments, Ar is a fused ring having 8-22 ring atoms. In other preferred embodiments, Ar is a fused ring having 10-22 ring atoms. In other preferred embodiments, Ar is a fused ring having 14-22 ring atoms. In other preferred embodiments, Ar is a fused ring having 14-20 ring atoms.
  • Ar 1 when present in multiples, may be the same or different selected from substituted or unsubstituted aromatic or heteroaromatic having 5 to 50 ring atoms, or aryloxy or heteroaromatic having 5 to 50 ring atoms Aryloxy groups, or a combination of these groups, wherein one or more of the Ar 1 groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring to which they are bonded; at least One Ar 1 is selected from a substituted or unsubstituted aromatic or heteroaromatic having 6 or more ring atoms, or an aryloxy or heteroaryloxy group having 5 or more ring atoms.
  • Ar 1 is the same or different is a substituted or unsubstituted aromatic or heteroaromatic having 8 to 40 ring atoms, or an aryloxy group having 5 to 40 ring atoms or Heteroaryloxy groups, or a combination of these systems, wherein one or more Ar1 groups may form monocyclic or polycyclic aliphatic or aromatic ring systems with each other and/or the ring to which they are bonded.
  • Ar 1 is the same or different is a substituted or unsubstituted aromatic or heteroaromatic having 8 to 30 ring atoms, or an aryloxy group having 5 to 30 ring atoms Or a heteroaryloxy group, or a combination of these systems, wherein one or more of the Ar 1 groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring to which they are bonded.
  • Ar 1 is the same or different is a substituted or unsubstituted aromatic or heteroaromatic having 8 to 20 ring atoms, or an aryloxy group having 5 to 20 ring atoms Or a heteroaryloxy group, or a combination of these systems, wherein one or more of the Ar 1 groups may form a monocyclic or polycyclic aliphatic or aromatic ring system with each other and/or the ring to which they are bonded.
  • n is any integer selected from 0, 1, 2, 3, 4; preferably 1 or 2.
  • One or more of the Hs in the various Ar, Ar1, R1 and R2 groups described above may be further substituted with D.
  • the aromatic contains carbon atoms, preferably carbon atoms
  • heteroaromatic contains carbon atoms, preferably carbon atoms, and at least one heteroatom, provided that the total number of carbon atoms and heteroatoms is at least 4.
  • the heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S, more particularly preferably from N, O or S.
  • the aromatic groups mentioned above refer to hydrocarbon groups containing at least one aromatic ring, including monocyclic groups and polycyclic ring systems.
  • the heteroaromatic ring system or heteroaromatic group mentioned above refers to a hydrocarbon group (containing a heteroatom) containing at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, ie, fused rings. Of these ring species that are polycyclic, at least one is aromatic or heteroaromatic.
  • aromatic or heteroaromatic includes not only systems of aryl or heteroaryl groups, but also systems in which multiple aryl or heteroaryl groups can also be interrupted by short non-aromatic units ( ⁇ 10% of non-aromatic groups) H atoms, preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • non-aromatic units ⁇ 10% of non-aromatic groups
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamines, diarylethers, etc., are likewise considered aromatic or heteroaromatic for the purposes of this invention.
  • aromatic groups are: benzene, biphenyl, naphthalene, anthracene, phenanthrene, perylene, tetracene, pyrene, benzopyrene, triphenylene, acenaphthene, fluorene, spirofluorene and derivatives thereof , and their combinations.
  • heteroaromatic groups are: furan, benzofuran, dibenzofuran, thiophene, benzothiophene, dibenzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole , thiazole, tetrazole, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furanopyrrole, furanofuran, thienofuran, benzisoxazole, benzisothiazole , benzimidazole, pyridine, pyrazine, pyridazine, pyrimidine, triazine, quinoline, isoquinoline, naphthalene, quinoxaline, phenanthridine, primary pyridine, quinazoline, quinazolinone, and its derivative
  • the above-mentioned Ar 1 may also be a mutual combination of the above-mentioned aromatic groups and heteroaromatic groups.
  • the triplet energy level T 1 of the fused ring compound is less than or equal to 0.8 eV.
  • the triplet energy level T 1 of the fused ring compound is ⁇ 0.6 eV.
  • the triplet energy level T 1 of the fused ring compound is less than or equal to 0.4 eV.
  • the triplet energy level T 1 of the fused ring compound is less than or equal to 0.3 eV.
  • the triplet energy level T 1 of the fused ring compound is ⁇ 0.2 eV.
  • the fused ring compound which removes the core structure of all substituent groups (such as chemical formula (Ia), has a triplet energy level T 1 ⁇ 1.0 eV, preferably ⁇ 0.8 eV, More preferably ⁇ 0.6 eV, particularly preferably ⁇ 0.4 eV, most preferably ⁇ 0.3 eV.
  • At least one of the resonance factors f(S1), f(S2) and f(S3) of the fused ring compound is ⁇ 0.1, preferably ⁇ 0.15, more preferably ⁇ 0.20 , preferably ⁇ 0.25; wherein the resonance factors f(S1), f(S2) and f(S3) can be obtained by quantum computation as described below.
  • the resonance factor f(S1) of the fused ring compound is ⁇ 0.1, preferably ⁇ 0.15, more preferably ⁇ 0.20, most preferably ⁇ 0.25.
  • X is CR 301 or N; A is selected from O, S, CR 302 R 303 , NR 304 ; R 301 -R 304 are defined as R 1 above.
  • X is all CR 301 . In other preferred embodiments, at least one X in each structure is N. In other more preferred embodiments, at least two X's are N in each structure. In other more preferred embodiments, at least three X's are N in each structure.
  • the fused ring compound is selected from one of the following general formulas:
  • the fused ring compound is selected from one of the following general formulas:
  • Ar 4 and Ar 5 are as described above for Ar 1 .
  • the R 1 , R 2 and Ar 1 are identically or differently selected from one or a combination of the structures shown below:
  • Y is CR 501 or N; B is selected from O, S, CR 502 R 503 , NR 504 , preferably O or S; R 501 to R 504 are defined as above R 1 .
  • the R 1 , R 2 and Ar 1 are the same or different and are selected from one or a combination of the structures shown below:
  • the fused ring compound according to the present invention has a glass transition temperature T g ⁇ 100°C. In a preferred embodiment, its T g ⁇ 120°C. In a more preferred embodiment, its T g ⁇ 140°C. In a more preferred embodiment, its T g ⁇ 160°C. In a most preferred embodiment, its T g ⁇ 180°C.
  • the compound is at least partially deuterated; preferably 10% of the H is deuterated, more preferably 20% of the H is deuterated, most preferably 30% of the H is deuterated Deuterated, preferably 40% of the H is deuterated.
  • the present invention also relates to a process for the synthesis of compounds according to the general formula (I), wherein the reaction is carried out using starting materials containing reactive groups. These reactive materials contain at least one leaving group, for example, bromine, iodine, boronic acid or boronic acid ester. Suitable reactions to form C-C linkages are well known to those skilled in the art and are described in the literature, a particularly suitable and preferred coupling reaction is the SUZUKI, D-A coupling reaction.
  • the present invention still further relates to a high polymer, wherein at least one repeating unit comprises the structure represented by the general formula (I).
  • the polymer is a non-conjugated polymer, wherein the structural unit represented by general formula (I) is on the side chain.
  • the polymer is a conjugated polymer.
  • the present invention also provides a mixture comprising at least one condensed ring compound or polymer as described above and at least one other organic functional material, wherein the at least one other organic functional material can be selected from cavities (also called hole) injection material (HIM), hole transport material (HTM), hole blocking material (HBM), electron injection material (EIM), electron transport material (ETM), electron blocking material (EBM), organic matrix material ( Host), singlet emitters (fluorescence emitters), triplet emitters (phosphorescence emitters), thermally excited delayed fluorescent materials (TADF materials) and organic dyes.
  • cavities also called hole injection material (HIM), hole transport material (HTM), hole blocking material (HBM), electron injection material (EIM), electron transport material (ETM), electron blocking material (EBM), organic matrix material ( Host), singlet emitters (fluorescence emitters), triplet emitters (phosphorescence emitters), thermally excited delayed fluorescent materials (TADF materials) and organic dyes.
  • cavities also called hole injection material (HIM), hole transport material (HTM), hole
  • the mixture comprises a fused ring compound or polymer according to the present invention, and a fluorescent host material.
  • the fused ring compound according to the present invention can be used as a fluorescent guest, and the weight percentage of the guest is ⁇ 15wt%, preferably ⁇ 12wt%, more preferably ⁇ 9wt%, more preferably ⁇ 8wt%, most preferably ⁇ 7wt%.
  • the mixture comprises a fused ring compound or polymer according to the present invention, and a TADF material.
  • the mixture comprises a fused ring compound or polymer according to the present invention, and a singlet emitter.
  • the singlet host material (fluorescent host material) and the singlet emitter material (fluorescent guest material) are described in more detail below (but not limited thereto).
  • Examples of the singlet host material are not particularly limited, and any organic compound may be used as the host as long as its singlet energy is higher than that of an emitter, particularly a singlet emitter or a fluorescent emitter.
  • organic compound used as the singlet host material can be selected from the group consisting of ring-containing aromatic hydrocarbon compounds such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenanthrene, phenanthrene, fluorene, pyrene, chrysene, perylene, Azulene; aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolecarbazole, pyridine Indole, pyrrole dipyridine, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxtriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine,
  • the singlet host material can be selected from compounds comprising at least one of the following groups:
  • R 1 can be independently selected from the following groups: hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl; Ar 1 is aryl or heteroaryl, n is an integer from 0 to 20; X 1 -X 8 are selected from CH or N; X 9 and X 10 are selected from CR 1 R 2 or NR 1 .
  • anthracene-based singlet host materials are listed below:
  • the singlet emitter may be selected from the group consisting of monostyrylamines, di-styrylamines, tristyrylamines, tetrastyrylamines, styryl phosphines, styryl ethers and aromatic amines.
  • a monostyrylamine means a compound containing an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound containing two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a tristyrylamine refers to a compound containing three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound containing four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • Arylamine or aromatic amine refers to a compound containing three unsubstituted or substituted aromatic or heterocyclic ring systems directly attached to nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably a fused ring system and preferably has at least 14 aromatic ring atoms. Preferred examples of these are aromatic anthraceneamines, aromatic anthracene diamines, aromatic pyrene amines, aromatic pyrene diamines, aromatic drolidines and aromatic dridodiamines.
  • aromatic anthraceneamine refers to a compound in which a diarylamine group is attached directly to the anthracene, preferably in the 9 position.
  • aromatic anthracene diamine refers to a compound in which two diarylamine groups are attached directly to the anthracene, preferably in the 9,10 positions.
  • Aromatic pyreneamines, aromatic pyrene diamines, aryl pyrene amines, and aryl pyrene diamines are similarly defined, with the divalent arylamine group preferably attached to the 1 or 1,6 position of the pyrene.
  • Further preferred singlet emitters can be selected from indenofluorene-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindenofluorene-amines and benzoindenofluorene-diamines , as disclosed in WO 2008/006449, dibenzoindenofluorene-amines and dibenzoindenofluorene-diamines, as disclosed in WO 2007/140847.
  • polycyclic aromatic hydrocarbon compounds especially derivatives of the following compounds: anthracene such as 9,10-bis(2-naphthanthracene), naphthalene, tetraphenyl, xanthene, phenanthrene , Pyrene (such as 2,5,8,11-tetra-t-butylperylene), indenopyrene, phenylene such as (4,4'-bis(9-ethyl-3-carbazole vinyl)-1 ,1'-biphenyl), bisindenopyrene, decacycloene, hexabenzone, fluorene, spirobifluorene, arylpyrene (such as US20060222886), arylene vinylene (such as US5121029, US5130603), cyclopentadiene Alkenes such as tetraphenylcyclopentadiene, rubrene, coumarin,
  • anthracene such as 9,10
  • the fused ring compounds according to the invention are used in vapor-depositable OLED devices.
  • the fused ring compounds according to the invention have a molecular weight of ⁇ 1000 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 850 g/mol, more preferably ⁇ 800 g/mol, most preferably ⁇ 700 g/mol.
  • Another object of the present invention is to provide a material solution for printing OLEDs.
  • the fused ring compounds according to the invention have a molecular weight of ⁇ 700 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 900 g/mol, more preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol.
  • the fused-ring compound according to the present invention has a solubility in toluene of ⁇ 10 mg/ml, preferably ⁇ 15 mg/ml, most preferably ⁇ 20 mg/ml at 25°C.
  • the present invention also provides a composition comprising at least one condensed ring compound or high polymer according to the present invention, and at least one organic solvent.
  • the composition, wherein the fused ring compound acts as a singlet emitter material.
  • the composition according to the present invention comprises a guest material and a fused ring compound according to the present invention.
  • a composition according to the present invention comprises at least two host materials and one guest material, the fused ring compound of the present invention as the guest material.
  • a composition according to the present invention comprises a guest material, a thermally activated delayed fluorescence emitting material and a fused ring compound according to the present invention.
  • a composition according to the present invention comprises a hole transport material (HTM) and a fused ring compound according to the present invention, more preferably, the HTM comprises a crossable Linked group.
  • HTM hole transport material
  • a fused ring compound according to the present invention more preferably, the HTM comprises a crossable Linked group.
  • the composition according to the present invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the embodiments of the present invention may include 0.01 to 20 wt % of organic compounds, preferably 0.1 to 15 wt %, more preferably 0.2 to 10 wt %, and most preferably 0.25 to 5 wt % of organic compounds.
  • a composition according to the present invention wherein said solvent is selected from aromatic or heteroaromatic, ester, aromatic ketone or aromatic ether, aliphatic ketone or aliphatic ether, aliphatic Cyclic or olefin compounds, or inorganic ester compounds such as boronic esters or phosphoric acid esters, or a mixture of two or more solvents.
  • composition according to the invention comprising at least 50 wt% aromatic or heteroaromatic solvent; preferably at least 80 wt% aromatic or heteroaromatic solvent; particularly preferably at least 90 wt% of aromatic or heteroaromatic solvents.
  • aromatic or heteroaromatic based solvents are, but are not limited to: 1-tetralone, 3-phenoxytoluene, acetophenone, 1-methoxynaphthalene, p-diisopropyl Benzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-cymene, dipentylbenzene, o-diethylbenzene, m- Diethylbenzene, p-diethylbenzene, 1,2,3,4-tetratoluene, 1,2,3,5-tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene , 1-methylnaphthalene, 1,2,4-trichloro
  • suitable and preferred solvents are aliphatic, cycloaliphatic or aromatic hydrocarbons, amines, thiols, amides, nitriles, esters, ethers, polyethers, alcohols, glycols or polyols.
  • alcohols represent the appropriate class of solvents.
  • Preferred alcohols include alkylcyclohexanols, especially methylated aliphatic alcohols, naphthols, and the like.
  • the solvent may be a naphthenic hydrocarbon such as decalin.
  • Said solvent can be used alone or as a mixture of two or more organic solvents.
  • the composition according to the present invention comprises one organic functional compound as described above and at least one organic solvent, and may further comprise another organic solvent.
  • the other organic solvent include (but not limited to): methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-dichlorobenzene Toluene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane, 1,1,2,2-Tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydronaphthalene, de
  • solvents particularly suitable for the present invention are those having a Hansen solubility parameter in the following range:
  • ⁇ d (dispersion force) is in the range of 17.0 ⁇ 23.2MPa 1/2 , especially in the range of 18.5 ⁇ 21.0MPa 1/2 ;
  • ⁇ p (polar force) is in the range of 0.2 to 12.5MPa 1/2 , especially in the range of 2.0 to 6.0MPa 1/2 ;
  • ⁇ h (hydrogen bonding force) is in the range of 0.9 to 14.2 MPa 1/2 , especially in the range of 2.0 to 6.0 MPa 1/2 .
  • the boiling point parameter of the organic solvent should be taken into consideration when selecting the organic solvent.
  • the boiling point of the organic solvent is ⁇ 150°C; preferably ⁇ 180°C; more preferably ⁇ 200°C; more preferably ⁇ 250°C; most preferably ⁇ 275°C or ⁇ 300°C. Boiling points within these ranges are beneficial for preventing nozzle clogging of ink jet print heads.
  • the organic solvent can be evaporated from the solvent system to form a thin film containing functional materials.
  • composition of the present invention according to a composition of the present invention,
  • the organic solvent is selected taking into account its surface tension parameter.
  • Appropriate ink surface tension parameters are suitable for specific substrates and specific printing methods.
  • the surface tension of the organic solvent at 25°C is in the range of about 19 dyne/cm to 50 dyne/cm; more preferably in the range of 22 dyne/cm to 35 dyne/cm; The optimum is in the range of 25 dyne/cm to 33 dyne/cm.
  • the surface tension of the ink according to the present invention at 25°C is about 19 dyne/cm to 50 dyne/cm; more preferably 22 dyne/cm to 35 dyne/cm; most preferably 25 dyne/cm cm to 33dyne/cm range.
  • the organic solvent is selected in consideration of the viscosity parameter of its ink.
  • the viscosity can be adjusted by different methods, such as through the selection of suitable organic solvents and the concentration of functional materials in the ink.
  • the viscosity of the organic solvent is less than 100 cps; more preferably, less than 50 cps; and most preferably, 1.5 to 20 cps.
  • the viscosity here refers to the viscosity at the ambient temperature during printing, which is generally 15-30°C, preferably 18-28°C, more preferably 20-25°C, and most preferably 23-25°C. Compositions so formulated would be particularly suitable for ink jet printing.
  • the composition according to the present invention has a viscosity at 25°C in the range of about 1 cps to 100 cps; more preferably in the range of 1 cps to 50 cps; most preferably in the range of 1.5 cps to 20 cps.
  • the ink obtained from the organic solvent satisfying the above-mentioned boiling point and surface tension parameters and viscosity parameters can form a functional material film with uniform thickness and composition properties.
  • Another object of the present invention is to provide the application of the above-mentioned fused ring compounds, polymers and compositions thereof in organic electronic devices.
  • the organic electronic device can be selected from organic light emitting diodes (OLED), organic photovoltaic cells (OPV), organic light emitting cells (OLEEC), organic field effect transistors (OFET), organic light emitting field effect transistors, organic lasers, organic spintronics Devices, organic sensors, photodiodes and organic plasmon emission diodes (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diodes
  • OCV organic photovoltaic cells
  • OEEC organic light emitting cells
  • OFET organic field effect transistors
  • organic lasers organic spintronics Devices
  • organic sensors organic sensors
  • photodiodes and organic plasmon emission diodes Organic Plasmon Emitting Diode
  • Another object of the present invention is to provide a method for preparing the above electronic device.
  • the specific technical solutions are as follows:
  • a preparation method the above-mentioned fused ring compound or mixture is evaporated to form a functional layer on a substrate, or a functional layer is formed on a substrate together with at least one other organic functional material by co-evaporation method.
  • layer, or the above-mentioned composition is coated on a substrate with a method of printing or coating to form a functional layer, wherein the method of printing or coating can be selected from (but not limited to) inkjet printing, jet printing (Nozzle Printing) ), letterpress printing, screen printing, dip coating, spin coating, blade coating, roll printing, twist roll printing, offset printing, flexographic printing, rotary printing, spray coating, brush coating or pad printing, slot extrusion Pressure coating, etc.
  • the present invention also relates to the use of the composition as a printing ink in the preparation of organic electronic devices, particularly preferred is a preparation method by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, ink jet printing, typography, screen printing, dip coating, spin coating, knife coating, roll printing, twist roll printing, lithography, flexo printing Printing, rotary printing, spraying, brushing or pad printing, slit extrusion coating, etc.
  • Preferred are gravure printing, screen printing and inkjet printing.
  • Gravure printing, ink jet printing will be applied in embodiments of the present invention.
  • the solution or suspension may additionally include one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders, etc., to adjust viscosity, film-forming properties, improve adhesion, and the like.
  • the formed functional layer has a thickness of 5nm-1000nm.
  • the present invention further relates to an organic electronic device comprising at least one fused ring compound or polymer according to the present invention; or at least one functional layer prepared from a composition as described above.
  • an organic electronic device comprises at least an electrode 1, an electrode 2 and a functional layer between the electrode 1 and the electrode 2, wherein the functional layer contains at least one of the above-mentioned fused ring compounds or high polymer.
  • the organic electronic device is selected from the group consisting of organic light emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic light emitting cells (OLEECs), organic field effect transistors (OFETs), organic light emitting field effect transistors, organic Lasers, organic spintronic devices, organic sensors, photodiodes and organic plasmon emission diodes (Organic Plasmon Emitting Diode).
  • the above-mentioned organic electronic device is an electroluminescent device, especially an OLED, which includes a substrate, an anode, at least a light-emitting layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to fabricate a transparent light-emitting device. See, eg, Bulovic et al. Nature 1996, 380, p29, and Gu et al., Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • Preferably the substrate has a smooth surface. Substrates free of surface defects are particularly desirable.
  • the substrate is flexible, optionally a polymer film or plastic, with a glass transition temperature Tg above 150°C, preferably above 200°C, more preferably above 250°C, most preferably over 300°C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or hole transport layer (HTL) or light emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or valence band level of the luminophore in the light-emitting layer or the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) It is less than 0.5eV, preferably less than 0.3eV, most preferably less than 0.2eV.
  • anode materials include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by those of ordinary skill in the art.
  • the anode material may be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is pattern-structured. Patterned ITO conductive substrates are commercially available and can be used to fabricate devices according to the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the emissive layer.
  • the work function of the cathode and the LUMO level of the emitter in the emissive layer or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, more preferably less than 0.2 eV.
  • all materials that can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode materials include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloys, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • OLEDs can also contain other functional layers such as hole injection layer (HIL) or hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL) or electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer is deposited by vacuum evaporation, and the evaporation source contains a condensed ring compound according to the present invention.
  • the light-emitting layer thereof is prepared by printing the composition according to the present invention.
  • the electroluminescent device according to the present invention has an emission wavelength between 300 and 1500 nm, preferably between 400 and 1200 nm, more preferably between 450 and 1000 nm.
  • the above-mentioned organic electronic device is a photodiode or an organic sensor, the corresponding wavelength of which is between 300 and 1500 nm, preferably between 400 and 1200 nm, more preferably between 450 nm to 1000nm.
  • the present invention also relates to the use of organic electronic devices according to the present invention in various electronic devices, including, but not limited to, display devices, lighting devices, light sources, sensors, and the like.
  • the present invention also relates to electronic devices incorporating organic electronic devices according to the present invention, including, but not limited to, display devices, lighting devices, light sources, sensors, and the like.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • intermediate 5-2 and intermediate 5-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthesis example 3, and the difference is that one of the heteroatoms on the two skeletons is O and one are S, the two belong to the same main group element, and the synthetic route is similar to that in Synthesis Example 3, using NBS double bromination.
  • the synthetic route is as follows:
  • intermediate 6-2 and intermediate 6-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthesis example 3, and the difference is that one of the heteroatoms on the two skeletons is O One is S, both belong to the same main group element, and its synthetic route is similar to that in Synthesis Example 3, using NBS double bromination.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • intermediate 8-2 and intermediate 8-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthetic example 3, and their synthetic route is similar to the synthetic route in synthetic example 3 , using NBS double bromination.
  • the synthetic route is as follows:
  • the synthetic route is as follows:
  • intermediate 10-2 and intermediate 10-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthetic example 3, and their synthetic route is similar to that in synthetic example 3 , using NBS double bromination. Then a two-step SUZUKI reaction is used to form compound 10.
  • the synthetic route is as follows:
  • intermediate 11-2 and intermediate 11-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthetic example 3, and their synthetic route is similar to the synthetic route in synthetic example 3 , using NBS double bromination.
  • compound 11 is formed by a two-step SUZUKI reaction.
  • the synthetic route is as follows:
  • intermediate 12-2 and intermediate 12-4 are similar in structure to intermediate 3-2 and intermediate 3-4 in synthetic example 3, and their synthetic route is similar to the synthetic route in synthetic example 3 , using NBS double bromination.
  • compound 12 is formed by a two-step SUZUKI reaction.
  • the energy level of the organic material can be obtained by quantum calculation, for example, using TD-DFT (time-dependent density functional theory) by Gaussian03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian03W Gaussian Inc.
  • the density functional theory method "Ground State/DFT/Default Spin/B3LYP” and the basis set "6-31G(d)" (Charge 0/Spin Singlet) were used to optimize the molecular geometry, and then the energy structure of organic molecules was determined by TD -DFT (time-dependent density functional theory) method to calculate "TD-SCF/DFT/Default Spin/B3PW91" and basis set "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the calibration formula below, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are the direct calculation results of Gaussian 09W, and the unit is Hartree.
  • the results are shown in Table 1:
  • the structure of the OLED device is: ITO/HI/HT/EML/ET:Liq/Liq/Al, and the preparation steps are as follows:
  • ITO treatment ultrasonically treated with an aqueous solution of 5% Decon90 cleaning solution for 30 minutes, then ultrasonically cleaned with deionized water for several times, then ultrasonically cleaned with isopropanol, and dried with nitrogen; treated with oxygen plasma for 5 minutes to clean the ITO surface And improve the work function of the ITO electrode;
  • HIL/HTL/EML/ A HI layer with a thickness of 30 nm was formed on an oxygen plasma-treated ITO glass substrate under high vacuum (1 ⁇ 10-6 mbar) using a resistive heating evaporation source , on the HI layer, successively heated to form 60nm HT, and 80nm EML (see Table 2); then ET and LiQ were placed in different evaporation units to be co-deposited at a ratio of 50% by weight, respectively.
  • a 30nm electron transport layer is formed on the electron transport layer, then 1nm LiQ is deposited on the electron transport layer as an electron injection layer, and finally an Al cathode with a thickness of 100nm is deposited on the electron injection layer;
  • the current-voltage (J-V) characteristics of each OLED device were characterized by characterizing the device while recording important parameters such as efficiency (see Table 2), driving voltage, etc., and calculating the external quantum efficiency (EQE).
  • the red emission spectrum of OLED1-OLED4 is in the near infrared range.
  • OLED5-OLED8 emit red light, and the EQE is greater than the highest value (about 5%) of conventional fluorescent OLED devices.
  • the viscosity of the composition was measured by a DV-I Prime Brookfield rheometer; the surface tension of the organic printing ink was measured by a SITA bubble pressure tensiometer.
  • the viscosity of the obtained six organic printing inks is in the range of 3.1 ⁇ 0.5cPs-6.0 ⁇ 0.5cPs, and the surface tension is in the range of 31.1 ⁇ 0.5dyne/cm-35.1 ⁇ 0.5dyne/cm.
  • ITO treatment ultrasonically treated with an aqueous solution of 5% Decon90 cleaning solution for 30 minutes, then ultrasonically cleaned with deionized water for several times, then ultrasonically cleaned with isopropanol, and dried with nitrogen; treated with oxygen plasma for 5 minutes to clean the ITO surface And improve the work function of the ITO electrode;
  • PEDOT:PSS (Clevios TM PEDOT:PSS Al4083) was spin-coated on an oxygen plasma-treated ITO glass substrate to obtain a thin film of 80 nm, and annealed at 150 °C in air after spin-coating 20 min, and then spin-coated on the PEDOT:PSS layer to obtain a 20 nm Poly-TFB film (CAS: 223569-31-1, purchased from Lumtec. Corp; 5 mg/mL solution in toluene), followed by treatment on a hot plate at 180 °C 60 minutes;
  • J-V current-voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种稠环化合物及其在有机电子器件的应用,特别是在有机发光二极管中的应用。还记载了一种含有稠环化合物的有机电子器件,特别是有机发光二极管,传感器,显示,传感及其他技术中的应用。

Description

一种稠环化合物及其在有机电子器件的应用 技术领域
本发明涉及有机电子材料和器件技术领域,特别是涉及一种稠环化合物,包含其的混合物及组合物,及其在有机电子器件的应用。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
提高有机发光二极管的发光效率一直是OLED材料和器件开发最重要的方向。至今,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电气激发下其内部电致发光量子效率被限制为25%,这是因为激子的单重激发态和三重激发态的分支比为1:3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部电致发光量子效率。但磷光OLED有一显著的问题,就是Roll-off效应,即发光效率随电流或亮度的增加而迅速降低,这对高亮度的应用尤为不利。
迄今为止,真正进入实际使用的磷光材料只有铱和铂配合物,这些原材料稀有而昂贵,配合物的合成很复杂,因此成本也相当高。为了克服铱和铂配合物的原材料稀有和昂贵,及其合成复杂的问题,Adachi提出反向内部转换的概念,这样可以利用有机化合物,即不利用金属配合物,实现了可与磷光OLED相比的高效率。此概念已经通过各种材料组合得以实现,如:1)利用复合受激态,参见Adachi等,Nature Photonics,Vol 6,p253(2012);2)利用热激发延迟荧光(TADF)材料,参见Adachi et al.,Nature,Vol 492,234,(2012)。但现有具有TADF的有机化合物大多采用供电子与缺电子或吸电子基团相连的方式,从而引起最高占有轨道(HOMO)与最低未占有轨道(LUMO)电子云分布完全分离,缩小有机化合物单重态(S 1)与三重态(T 1)的差别(△E ST),现有红光与绿光TADF材料经过一段时间的开发,在许多性能方面均有取得了一定的成果,但与磷光发光材料相比,无论从效率还是寿命上相比,其性能仍有一定的差距。另外,除了可见光的OLED,红外OLED也具有巨大的潜在市场,但红外OLED材料,特别高性能的荧光红外材料非常缺乏。
因此,高效率长寿命的OLED材料的技术方案仍需开发。
发明内容
基于此,本发明的目的是提供一种稠环化合物及其在电子器件中的应用。
具体技术方案如下:
本发明提供一种如通式(I)所示的稠环化合物:
Figure PCTCN2022071137-appb-000001
其中,
Q选自O或S;
Ar是有具有8-24个环原子的稠环;
Ar 1在多个出现时,可相同或不同的选自具有5至50个环原子的取代或未取代的芳族或杂芳族,或是具有5至50个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或 多个Ar 1基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;其中至少有一个Ar 1选自具有6个以上环原子的取代或未取代的芳族或杂芳族,或具有5个以上环原子的芳氧基或杂芳氧基基团;
n是选自0,1,2,3,4的任一整数;
R 1和R 2相同或不同的选自H,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或者是取代或无取代的甲硅烷基,或具有1至20个C原子的取代的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基(-CN),氨基甲酰基(-C(=O)NH 2),卤甲酰基(-C(=O)-X其中X代表卤素原子),甲酰基(-C(=O)-H),异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个R 1、R 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;
Ar、Ar 1、R 1和R 2中的一个或多个H还可进一步被D所取代。
在上述的稠环化合物中,其三线态能级T 1≤1.0eV。
本发明还提供一种高聚物,包含至少一个重复单元,所述重复单元包含通式(I)所示的结构。
本发明还提供一种混合物,包含至少一种如上所述的稠环化合物或高聚物,及至少另一种有机功能材料,所述至少另一种有机功能材料可选于空穴(也称电洞)注入材料(HIM),空穴传输材料(HTM),空穴阻挡材料(HBM),电子注入材料(EIM),电子传输材料(ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体),热激发延迟荧光材料(TADF材料)或有机染料。
本发明还提供一种组合物,包含至少一种如上所述的稠环化合物或高聚物,及至少一种有机溶剂。
本发明还提供一种有机电子器件,包含一种如上所述的稠环化合物或高聚物。
在上述的有机电子器件中,所述有机电子器件可选于有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管。
有益效果:按照本发明的一种稠环化合物具有很低的T 1能级,以此类稠环化合物制备得到的有机电致发光元件具有较高的荧光发光效率及长的器件寿命。
具体实施方式
本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本发明中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
在本发明中,组合物、印刷油墨、油墨、和墨水具有相同的含义,可以互换。
本发明提供一种稠环化合物,具有如通式(I)所示的结构:
Figure PCTCN2022071137-appb-000002
其中,Q选自O或S。
Ar是有具有8-24个环原子的稠环。在一些优先的实施例中,Ar是具有8-22个环原子的稠环。在另一些优先的实施例中,Ar是具有10-22个环原子的稠环。在另一些优先的实施例中,Ar是具有14-22个环原子的稠环。在另一些优先的实施例中,Ar是具有14-20个环原子的稠环。
R 1,R 2相同或不同的选自H、具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或者是取代或无取代的甲硅烷基,或具有1至20个C原子的取代的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基(-CN),氨基甲酰基(-C(=O)NH 2),卤甲酰基(-C(=O)-X其中X代表卤素原子),甲酰基(-C(=O)-H),异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,可交联的基团,或者具有5至40个环原子的取代或未取代的芳族或杂芳族,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个R 1、R 2基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;
Ar 1在多个出现时,可相同或不同的选自具有5至50个环原子的取代或未取代的芳族或杂芳族,或是具有5至50个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个Ar 1基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;其中至少有一个Ar 1选自具有6个以上环原子的取代或未取代的芳族或杂芳族,或具有5个以上环原子的芳氧基或杂芳氧基基团。
在一些较为优先的实施例中,Ar 1相同或不同的是具有8至40个环原子的取代或未取代的芳族或杂芳族,或是具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。在一些更为优先的实施例中,Ar 1相同或不同的是具有8至30个环原子的取代或未取代的芳族或杂芳族,或是具有5至30个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。在一些更为优先的实施例中,Ar 1相同或不同的是具有8至20个环原子的取代或未取代的芳族或杂芳族,或是具有5至20个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个Ar 1基团可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系。
n是选自0,1,2,3,4的任一整数;优选是1或2。
以上所述的各种Ar、Ar 1、R 1和R 2基团中的一个或多个H还可进一步被D所取代。
在一个较为优先的实施例中,芳族包含
Figure PCTCN2022071137-appb-000003
个碳原子,更优是
Figure PCTCN2022071137-appb-000004
个碳原子,杂芳族包含
Figure PCTCN2022071137-appb-000005
个碳原子,更优是
Figure PCTCN2022071137-appb-000006
个碳原子,和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S,更加特别优选选自N、O或S。
以上所述的芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。以上所述的杂芳香环系或杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单 元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳族或杂芳族。
具体地,芳族基团的例子有:苯、联苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、螺芴及其衍生物,及它们的组合。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、二苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物,及它们的组合。
上述的Ar 1也可以是上述芳族基团和杂芳族基团的相互组合。
按照本发明的稠环化合物,其三线态能级T 1≤1.0eV。
在一些优先的实施例中,所述的稠环化合物,其三线态能级T 1≤0.8eV。
在一些较为优先的实施例中,所述的稠环化合物,其三线态能级T 1≤0.6eV。
在一些更优先的实施例中,所述的稠环化合物,其三线态能级T 1≤0.4eV。
在一些特别优先的实施例中,所述的稠环化合物,其三线态能级T 1≤0.3eV。
在一些最优的实施例中,所述的稠环化合物,其三线态能级T 1≤0.2eV。
在另一些优先的实施例中,所述的稠环化合物,其去掉所有取代基团的核心结构(如化学式(Ia),其三线态能级T 1≤1.0eV,较好是≤0.8eV,更好是≤0.6eV,特别好是≤0.4eV,最好是≤0.3eV。
Figure PCTCN2022071137-appb-000007
在一些优先的实施例中,所述的稠环化合物,其谐振因子f(S1),f(S2)和f(S3)中至少有一个≥0.1,较好是≥0.15,更好是≥0.20,最好是≥0.25;其中谐振因子f(S1),f(S2)和f(S3)可由如下所述的量子计算得到。
在另一个优先的实施例中,所述的稠环化合物,其谐振因子f(S1)≥0.1,较好是≥0.15,更好是≥0.20,最好是≥0.25。
在某些优先的实施例中,所述的稠环化合物,其ΔHOMO或ΔLUMO中至少有一个≥0.5eV,较好是≥0.6eV,更好是≥0.7eV,最好是≥0.8eV;其中ΔHOMO=HOMO-(HOMO-1),ΔLUMO=(LUMO+1)-LUMO,可由如下所述的量子计算得到。
优先地,如通式(I)所述的稠环化合物,其中Ar选自以下结构中的一个:
Figure PCTCN2022071137-appb-000008
其中,X是CR 301或N;A选自O、S、CR 302R 303、NR 304;R 301-R 304的定义同如前述的R 1
在一些优先的实施例中,X全是CR 301。在另一些优先的实施例中,每个结构中至少有一个X是N。在另一些更优先的实施例中,每个结构中至少有两个X是N。在另一些更优先的实施例中,每个结构中至少有三个X是N。
在某些优先的实施例中,所述的稠环化合物选自如下通式中的一个:
Figure PCTCN2022071137-appb-000009
在另一些更为优先的实施例中,所述的稠环化合物选自如下通式中的一个:
Figure PCTCN2022071137-appb-000010
其中Ar 4和Ar 5的定义如前述的Ar 1
在一些优先的实施例中,所述的R 1,R 2和Ar 1相同或不同地选自以下所示的结构中的一个或其组合:
Figure PCTCN2022071137-appb-000011
其中,Y是CR 501或N;B选自O、S、CR 502R 503、NR 504,优选为O或S;R 501-R 504的定义如上述的R 1
在一些更为优先的实施例中,所述的R 1,R 2和Ar 1相同或不同的选自以下所示的结构中的一个或其组合:
Figure PCTCN2022071137-appb-000012
Figure PCTCN2022071137-appb-000013
在一个优选的实施例中,按照本发明的稠环化合物,其玻璃化温度T g≥100℃。在一个优选的实施例中,其T g≥120℃。在一个较为优选的实施例中,其T g≥140℃。在一个更为优选的实施例中,其T g≥160℃。在一个最为优选的实施例中,其T g≥180℃。
在一个比较优先的实施例中,所述的化合物是至少部分被氘代;较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
按照本发明的稠环化合物,其具体的例子如下,但不仅限于此:
Figure PCTCN2022071137-appb-000014
Figure PCTCN2022071137-appb-000015
本发明还涉及一种按照通式(I)的化合物的合成方法,其中使用含有活性基团的原料进行反应。这些活性原料包含至少一种离去基团,例如,溴,碘,硼酸或硼酸酯。形成C-C连接的 适当的反应是本领域技术人员熟知的并描述于文献中,特别适当和优选的偶联反应是SUZUKI,D-A偶联反应。
本发明还进一步涉及一种高聚物,其中至少有一个重复单元包含有如通式(I)所示的结构。在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(I)所示的结构单元在侧链上。在另一个优选的实施例中,所述的高聚物是共轭高聚物。
本发明还提供一种混合物,包含有至少一种如上所述的稠环化合物或高聚物和至少另一种有机功能材料,所述至少另一种有机功能材料可选于空穴(也称电洞)注入材料(HIM),空穴传输材料(HTM),空穴阻挡材料(HBM),电子注入材料(EIM),电子传输材料(ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)、热激发延迟荧光材料(TADF材料)及有机染料。例如在WO2010135519A1,US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,所述的混合物包含一种按照本发明的稠环化合物或高聚物,和一种荧光主体材料。这里按照本发明的稠环化合物可以作为荧光客体,客体的重量百分比≤15wt%,较好是≤12wt%,更好是≤9wt%,更更好是≤8wt%,最好是≤7wt%。
某些实施例中,所述的混合物包含一种按照本发明的稠环化合物或高聚物,和一种TADF材料。
在另一些优选的实施例中,所述的混合物包含一种按照本发明的稠环化合物或高聚物,和单重态发光体。
下面对单重态基质材料(荧光主体材料)和单重态发光体材料(荧光客体材料)作一些较详细的描述(但不限于此)。
1.单重态基质材料(Singlet Host):
单重态主体材料的例子并不受特别的限制,任何有机化合物都可能被用作为主体,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高。
作为单重态主体材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、萉、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、噌啉、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩二吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个优先的实施方案中,单重态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2022071137-appb-000016
其中,R 1可相互独立地选于如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基;Ar 1是芳基或杂芳基,n是一个从0到20的整数;X 1-X 8选于CH或N;X 9和X 10选于CR 1R 2或NR 1
在下面列出一些蒽基单重态主体材料的例子:
Figure PCTCN2022071137-appb-000017
2.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对 二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面列出一些合适的单重态发光体的例子:
Figure PCTCN2022071137-appb-000018
以上出现的有机功能材料出版物为公开的目的以参考方式并入本申请。
在一个优选的实施方案中,按照本发明的稠环化合物用于蒸镀性OLED器件。用于这个目的,按照本发明的稠环化合物,其分子量≤1000g/mol,优选≤900g/mol,很优选≤850g/mol,更优选≤800g/mol,最优选≤700g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
用于这个目的,按照本发明的稠环化合物,其分子量≥700g/mol,优选≥900g/mol,很优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
在另一些优选的实施例中,按照本发明的稠环化合物,在25℃时,在甲苯中的溶解度≥10mg/ml,优选≥15mg/ml,最优选≥20mg/ml。
本发明还提供一种组合物,包含有至少一种本发明所述的稠环化合物或高聚物,及至少一种有机溶剂。
在一些实施方案中,所述的组合物,其中所述的稠环化合物作为单重态发光体材料。
在一个优先的实施例中,按照本发明的组合物包含有一种客体材料和一种按照本发明的稠环化合物。
在另一个优先的实施例中,按照本发明的一种组合物包含有至少两种主体材料和一种客体材料,本发明的稠环化合物作为客体材料。
在另一个优先的实施例中,按照本发明的一种组合物包含有一种客体材料,一种热激活延迟荧光发光材料和一种按照本发明的稠环化合物。
在另一些优先的实施方案中,按照本发明的一种组合物包含有一种空穴传输材料(HTM)和一种按照本发明的稠环化合物,更加优先的,所述的HTM包含有一可交联基团。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的有机化合物,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%的有机化合物。
在一些优先的实施方案中,按照本发明的一种组合物,其中所述的溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯等无机酯类化合物,或两种及两种以上溶剂的混合物。
在另一些优先的实施方案中,按照本发明的一种组合物,其中包含至少50wt%的芳族或杂芳族溶剂;优选至少80wt%的芳族或杂芳族溶剂;特别优选至少90wt%的的芳族或杂芳族溶剂。
按照本发明的基于芳族或杂芳族溶剂的例子有,但不限于:1-四氢萘酮、3-苯氧基甲苯、苯乙酮、1-甲氧基萘、对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、二苯醚、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等。
在另一些实施例中,适当的和优选的溶剂是脂肪族、脂环族或芳烃族,胺,硫醇,酰胺,腈,酯,醚,聚醚,醇,二醇或多元醇。
在另一些实施例中,醇代表适当类别的溶剂。优选的醇包括烷基环己醇,特别是甲基化的脂肪族醇,萘酚等。
所述的溶剂可以是环烷烃,例如十氢化萘。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些实施例中,按照本发明的组合物,包含有一种如上所述的有机功能化合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂,另一种有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一些优先的实施方案中,按照本发明的一种组合物,
1)其粘度@25℃,在1cPs到100cPs范围,和/或
2)其表面张力@25℃,在19dyne/cm到50dyne/cm范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其表面张力参数。合适的油墨表面张力参数适合于特定的基板和特定的印刷方法。例如对喷墨印刷,在一个优选的实施例中,所述的有机溶剂在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更优为在22dyne/cm到35dyne/cm范围;最优为在25dyne/cm到33dyne/cm范围。
在一个优选的实施例中,按照本发明的油墨在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其油墨的粘度参数。粘度可以通过不同的方法调节,如通过合适的有机溶剂的选取和油墨中功能材料的浓度。在一个优选的实施例中,所述的有机溶剂的粘度低于100cps;更优为低于50cps;最优为为1.5到20cps。这里的粘度是指在印刷时的环境温度下的粘度,一般在15-30℃,较好的是18-28℃,更好是20-25℃,最好是23-25℃。如此配制的组合物将特别适合于喷墨印刷。
在一个优选的实施例中,按照本发明的组合物,在25℃下的粘度约在1cps到100cps范围;更好是在1cps到50cps范围;最好是在1.5cps到20cps范围。
满足上述沸点及表面张力参数及粘度参数的有机溶剂获得的油墨能够形成具有均匀厚度及组成性质的功能材料薄膜。
本发明的另一目的是提供上述稠环化合物,高聚物及其组合物在有机电子器件中的应用。
所述有机电子器件可选于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器、光电二极管及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
本发明的另一目的是提供上述电子器件的制备方法。具体技术方案如下:
一种制备方法,将上述稠环化合物或混合物以蒸镀的方法于一基板上形成一功能层,或以共蒸镀的方法与至少一种另一有机功能材料一起于一基板上形成一功能层,或将上述的组合物用印刷或涂布的方法涂布于一基板上形成一功能层,其中印刷或涂布的方法可选于(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。
本发明还涉及所述组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。凹版印刷,喷墨印刷将在本发明的实施例中应用。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
如上所述的制备方法,所述的形成的一功能层,其厚度在5nm-1000nm。
本发明进一步涉及一种有机电子器件,至少包含一种按照本发明的稠环化合物或高聚物;或至少包含一功能层,其中由一种如上所述的组合物制备而成。一般的,此种有机电子器件至少包含一个电极1,一个电极2及位于电极1和电极2之间的一个功能层,其中所述的功能层中包含至少一种如上所述的稠环化合物或高聚物。
在某些实施例中,所述有机电子器件选自有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器、光电二极管(Photodiode)及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个更为优选的实施例中,以上所述的有机电子器件是电致发光器件,特别是OLED,其中包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个 平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个优选的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)或空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)或电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的发光器件中,其发光层是通过真空蒸镀,其蒸镀源包含有一按照本发明的稠环化合物。
在另一个优选的实施例中,按照本发明的发光器件中,其发光层是通过打印按照本发明的组合物制备而成。
按照本发明的电致发光器件,其发光波长在300到1500nm之间,较好的是在400到1200nm之间,更好的是在450到1000nm之间。
在另一个优选的实施例中,以上所述的有机电子器件是光电二极管或有机传感器,其相应波长在300到1500nm之间,较好的是在400到1200nm之间,更好的是在450到1000nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机电子器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
1.化合物的合成
合成例1:化合物1e的合成
Figure PCTCN2022071137-appb-000019
合成路线如下:
Figure PCTCN2022071137-appb-000020
具体合成步骤如下:
中间体1a的合成:在1000mL的三口烧瓶中依次加入化合物1-1(31.6g,200mmol)、化合物1-2(21.4g,260mmol),抽真空氮气置换三次后加入400mL乙醇,加热到75℃反应,TLC跟踪反应。待反应完全,冷却至室温,加入氢氧化钾(56.1g,1mol),然后使空气通过溶液鼓泡,过滤收集沉淀,固体水洗后得到产品1a,干燥后约30.6g,产率为65%。MS(ASAP)=237.3。
中间体1b的合成:在1000mL的三口烧瓶中依次加入中间体1a(30.0g,127.0mmol)、化合物氯化铟(3.9g,25.4mmol)、铝粉(5.1g,190.5mmol),室温下加入130mL冰乙酸、300mL乙醇和300mL水,TLC跟踪反应。待反应完全,旋蒸除去反应体系中的有机溶剂,用二氯甲烷和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品1b,干燥后约22.3g,产率为85%。MS(ASAP)=207.3。
中间体1c的合成:在1000mL的三口烧瓶中依次加入中间体1b(21.0g,101.8mmol)、化合物N-羟基邻苯二甲酰亚胺(3.3g,20.4mmol)、醋酸钯(2.3g,10.2mmol),抽真空氮气置换三次后加入亚硝酸叔丁酯(31.5g,305.4mmol)、500mL乙腈,加热到70℃反应,TLC跟踪反应。待反应完全,冷却至室温,旋蒸除去反应体系中的有机溶剂,用乙酸乙酯和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品1c,干燥后约19.3g,产率为83%。MS(ASAP)=229.3。
中间体1d的合成:在1000mL的三口烧瓶中依次加入中间体1c(18.0g,78.9mmol)、化合物1-3(33.9g,19.7mmol)、醋酸钯(0.4g,1.6mmol)和2,2'-联喹啉(0.6g,2.4mmol),抽真空氮气置换三次后加入450mL二甲基亚砜和水(2.8mL,157.8mmol),加热到80℃反应,TLC跟踪反应。待反应完全,冷却至室温,旋蒸除去反应体系中的有机溶剂,用乙酸乙酯和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品1d,干燥后约19.8g,产率为65%。MS(ASAP)=387.4。
化合物1e的合成:在500mL的三口烧瓶中依次加入中间体1d(18.0g,46.6mmol)、化合物三氟甲烷磺酸钪(11.5g,23.3mmol),抽真空氮气置换三次后加入化合物三乙基硅烷(6.5g,55.9mmol)和300mL氯仿,加热到100℃回流反应,TLC跟踪反应。待反应完全,冷却至室温,旋蒸除去反应体系中的有机溶剂,用二氯甲烷和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品1e,干燥后约5.2g,产率为30%。MS(ASAP)=371.4。
合成例2:化合物2d的合成
Figure PCTCN2022071137-appb-000021
合成路线如下:
Figure PCTCN2022071137-appb-000022
具体合成步骤如下:
中间体2a的合成:在1000mL的三口烧瓶中依次加入化合物三氯化铁(0.4g,2.5mmol)和600mL乙腈,待体系变为黄色时,再依次加入中间体1d(19.3g,50.0mmol)、化合物甲基二氯硅烷(14.4g,125.0mmol)、三溴化磷(33.9g,125.0mmol),加热到85℃回流反应,TLC跟踪反应。待反应完全,冷却至室温,用稀盐酸淬灭后,用二氯甲烷和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品2a,干燥后约14.2g,产率为55%。MS(ASAP)=517.3。
中间体2b的合成:避光,在500mL的三口烧瓶中依次加入中间体2a(13.0g,25.2mmol)、化合物二硫化钠(5.4g,69.0mmol)、苄基三乙基氯化铵(79.6mg,0.3mmol),加入100mL二氯甲烷和100mL水,室温反应,TLC跟踪反应。待反应完全,用二氯甲烷和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品2b,干燥后约5.1g,产率为52%。MS(ASAP)=389.5。
中间体2c的合成:在100mL的三口烧瓶中加入化合物高碘酸钠(5.0g,11.6mmol)和50mL甲醇,然后将含中间体2b(4.5g,11.6mmol)的甲醇溶液滴加到反应瓶中,室温反应,TLC跟踪反应。待反应完全,过滤无机盐,再用二氯甲烷和饱和氯化钠溶液萃取,合并有机相干燥、过滤浓缩后通过硅胶层析柱分离得到产品2c,干燥后约4.5g,产率为95%。MS(ASAP)=405.5。
化合物2d的合成:在升华器中加入中间体2c(1.0g,2.5mmol)和一级氧化铝(1.0g,10.0mmol),混合均匀,在25torr压力下升到130℃加热2h,在升华器内得到产品2d,约0.6g,产率为60%。MS(ASAP)=387.5。
合成例3:化合物3的合成
Figure PCTCN2022071137-appb-000023
合成路线如下:
Figure PCTCN2022071137-appb-000024
具体合成步骤如下:
中间体3-2的合成:在干燥烧瓶中,加入1mmol的中间体3-1,用二氯甲烷溶解,室温下将2.0mmol NBS的二氯甲烷溶液滴入,滴加完毕后,继续搅拌4小时,加水淬灭反应,用二氯甲烷萃取三次,合并有机相,旋干溶剂得到中间体3-2,0.955mmol,MS(ASAP)=389.9。
中间体3-4的合成:采用经典的SUZUKI反应,具体的合成步骤为:在干净的烧瓶中,依次加入1mmol的中间体3-2、1mmol中间体3-3、3mmol的K 2CO 3水溶液,加入150mmol甲苯 溶解,再加入75ml的乙醇,25ml的水,最后加催化剂Pd(PPh 3) 40.05mmol,升温至100℃下回流过夜,TLC跟踪反应,待反应完全后,冷却至室温,用二氯甲烷萃取三次,合并有机相,用无水硫酸钠干燥,过滤,旋干溶剂得粗品,用快速色谱柱纯化得中间体3-4,0.674mmol,产率:67.4%,MS(ASAP)=438.0。
化合物3的合成:采用经典的SUZUKI反应,具体合成步骤与中间体3-4的合成步骤相似,其中中间体为3-4与中间体3-5按1:1的比例加入,得到最终产物3,0.825mmol,产率为:82.5%,MS(ASAP)=562.2。
合成例4:化合物4的合成
Figure PCTCN2022071137-appb-000025
合成路线如下:
Figure PCTCN2022071137-appb-000026
具体合成步骤如下:其中中间体4-2、中间体4-4对应与合成例3中的中间体3-2、中间体3-4结构相同,其合成路线对应与合成例3中的合成路线相同。然后采用经典的SUZUKI反应合成化合物4,合成步骤与化合物3的合成路线相似,其中中间体4-5替代合成例3中的中间体3-5。产率为:84.4%,MS(ASAP)=486.2。
合成例5:化合物5的合成
Figure PCTCN2022071137-appb-000027
合成路线如下:
Figure PCTCN2022071137-appb-000028
具体合成步骤如下:其中中间体5-2、中间体5-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其中差异为两个骨架上的杂原子一个为O一个为S,两者属于同一主族元素, 其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用经典的SUZUKI反应合成化合物5,合成步骤与化合物3的合成路线相似,其中中间体5-5替代合成例3中的中间体3-5。产率为:86.3%,MS(ASAP)=470.2。
合成例6:化合物6的合成
Figure PCTCN2022071137-appb-000029
合成路线如下:
Figure PCTCN2022071137-appb-000030
具体合成步骤如下:其中中间体6-2、中间体6-4与合成例3中的中间体3-2、中间体3-4结构相似,其中差异为两个骨架上的杂原子一个为O一个为S,两者属于同一主族元素,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步SUZUKI反应形成化合物6,合成步骤与化合物3的合成路线相似,其中中间体6-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:84.9%,MS(ASAP)=546.2。
合成例7:化合物7的合成
Figure PCTCN2022071137-appb-000031
合成路线如下:
Figure PCTCN2022071137-appb-000032
具体合成步骤如下:其中中间体7-2、中间体7-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步 SUZUKI反应形成化合物7,合成步骤与化合物3的合成路线相似,其中中间体7-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:82.7%,MS(ASAP)=714.1。
合成例8:化合物8的合成
Figure PCTCN2022071137-appb-000033
合成路线如下:
Figure PCTCN2022071137-appb-000034
具体合成步骤如下:其中中间体8-2、中间体8-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步SUZUKI反应形成化合物8,合成步骤与化合物3的合成路线相似,其中中间体8-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:83.3%,MS(ASAP)=638.2。
合成例9:化合物9的合成
Figure PCTCN2022071137-appb-000035
合成路线如下:
Figure PCTCN2022071137-appb-000036
具体合成步骤如下:其中中间体9-2、中间体9-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步 SUZUKI反应形成化合物9,合成步骤与化合物3的合成路线相似,其中中间体9-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:81.4%,MS(ASAP)=622.2。
合成例10:化合物10的合成
Figure PCTCN2022071137-appb-000037
合成路线如下:
Figure PCTCN2022071137-appb-000038
具体合成步骤如下:其中中间体10-2、中间体10-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步SUZUKI反应形成化合物10,合成步骤与化合物3的合成路线相似,其中中间体10-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:84.8%,MS(ASAP)=698.3。
合成例11:化合物11的合成
Figure PCTCN2022071137-appb-000039
合成路线如下:
Figure PCTCN2022071137-appb-000040
具体合成步骤如下:其中中间体11-2、中间体11-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步SUZUKI反应形成化合物11,合成步骤与化合物3的合成路线相似,其中中间体11-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:82.4%,MS(ASAP)=648.3。
合成例12:化合物12的合成
Figure PCTCN2022071137-appb-000041
合成路线如下:
Figure PCTCN2022071137-appb-000042
具体合成步骤如下:其中中间体12-2、中间体12-4对应与合成例3中的中间体3-2、中间体3-4结构相似,其合成路线与合成例3中的合成路线相似,采用NBS双溴化。然后采用两步SUZUKI反应形成化合物12,合成步骤与化合物3的合成路线相似,其中中间体12-5替代合成例3中的中间体3-5,两中间体的比例不变。产率为:79.4%,MS(ASAP)=572.7。
2.有机化合物的能量结构
有机材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用密度泛函理论方法“Ground State/DFT/Default Spin/B3LYP”与基组“6-31G(d)”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表1所示:
表1
化合物 Homo Corr.[eV] Lumo Corr.[eV] ΔHomo Corr.[eV] ΔLumo Corr.[eV] Singlet S1[eV] Triplet T1[eV] f(S1)
化合物1 -4.87 -3.29 1.32 1.34 1.70 -0.25 0.1172
化合物2 -4.92 -3.26 1.33 1.33 1.79 -0.07 0.1119
化合物3 -4.96 -3.18 1.26 1.08 1.92 0.04 0.1148
化合物4 -4.96 -3.18 1.29 1.24 1.93 0.07 0.102
化合物5 -4.91 -3.14 1.35 1.17 1.93 -0.27 0.1089
化合物6 -4.92 -3.14 1.32 1.03 1.93 -0.28 0.1183
化合物7 -4.86 -3.15 1.28 1.16 1.72 -0.18 0.1656
化合物8 -4.85 -3.16 1.26 1.24 1.71 -0.18 0.1516
化合物9 -4.81 -3.20 1.26 1.25 1.65 -0.26 0.1522
化合物10 -4.81 -3.21 1.26 1.19 1.65 -0.27 0.1606
化合物11 -4.97 -2.80 1.23 0.67 2.24 0.82 0.3181
化合物12 -4.97 -2.80 1.30 0.71 2.25 0.83 0.2876
3.蒸镀型OLED器件的制备和表征
Figure PCTCN2022071137-appb-000043
OLED器件的结构为:ITO/HI/HT/EML/ET:Liq/Liq/Al,制备步骤如下:
1)ITO处理:使用5%Decon90清洗液的水溶液超声处理30分钟,之后去离子水超声清洗数次,然后异丙醇超声清洗,氮气吹干;在氧气等离子下处理5分钟,以清洁ITO表面并提升ITO电极的功函数;
2)HIL/HTL/EML/的制备:在经过氧气等离子体处理过的ITO玻璃衬底上在高真空(1×10 -6毫巴)下,采用电阻加热蒸发源形成厚度为30nm的HI层,在HI层上依次加热形成60nm的HT,及80nm的EML(见表2);接着将ET和LiQ置于不同的蒸发单元,使其分别以50重量%的比例进行共沉积,在发光层上形成30nm的电子传输层,随后在电子传输层上沉积1nm的LiQ作为电子注入层,最后在所述电子注入层上沉积厚度为100nm的Al阴极;
3)封装:器件在氮气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率(见表2),驱动电压等,并计算外部量子效率(EQE)。OLED1-OLED4的发红谱在近红外范围。OLED5-OLED8发红光,而且EQE都大于传统荧光OLED器件的最高值(约5%)。
表2
Figure PCTCN2022071137-appb-000044
4.组合物1-组合物6的制备:
在小瓶内放入搅拌子,清洗干净后转移至手套箱中。在6个小瓶中分别配制9.8g3-苯氧基甲苯溶剂。在手套箱中称取0.20g实施例中的化合物7-化合物12,将这6种化合物分别加到6个小瓶中的溶剂体系中,搅拌混合。在60℃温度下搅拌直至有机混合物完全溶解后,冷却至室温。将得到的有机混合物溶液经0.2um PTFE滤膜过滤,密封并保存。
组合物的粘度由DV-I Prime Brookfield流变仪测试;有机印刷油墨的表面张力由SITA气泡压力张力仪测试。
经上述测试,得到的6种有机印刷油墨的粘度均为3.1±0.5cPs-6.0±0.5cPs范围,表面张力为31.1±0.5dyne/cm-35.1±0.5dyne/cm范围。
在进一步的实验中,化合物在如下的溶剂中制备组合物:甲苯,1-四氢萘酮,1-甲氧基萘,四氢萘,环己基苯,氯萘,1,4-二甲基萘,3-异丙基联苯,对甲基异丙苯,二戊苯,邻二乙苯, 对二乙苯,1,2,3,4-四甲苯,1,2,3,5-四甲苯,1,2,4,5-四甲苯,十二烷基苯,1-甲基萘,4-异丙基联苯,苯甲酸苄酯,1,1-双(3,4-二甲基苯基)乙烷,2-异丙基萘,二苄醚,所得的印刷油墨其粘度均在2-20cPs的范围,经过组合溶剂及其他方法可对粘度做进一步的调节,可以适合喷墨打印等技术的需求。
5.溶液加工OLED器件的制备:
具有ITO/HIL/HTL/EML/Ba/Al的OLED器件的制备步骤如下:
1)ITO处理:使用5%Decon90清洗液的水溶液超声处理30分钟,之后去离子水超声清洗数次,然后异丙醇超声清洗,氮气吹干;在氧气等离子下处理5分钟,以清洁ITO表面并提升ITO电极的功函数;
2)HIL/HTL的制备:在经过氧气等离子体处理过的ITO玻璃衬底上旋涂PEDOT:PSS(Clevios TM PEDOT:PSS Al4083),得到80nm的薄膜,旋涂完成后在空气中150℃退火20分钟,然后在PEDOT:PSS层上旋涂得到20nm的Poly-TFB薄膜(CAS:223569-31-1,购自Lumtec.Corp;5mg/mL甲苯溶液),随后在180℃的热板上处理60分钟;
3)EML的制备:将溶液(即化合物11-12(5wt%):Host(95wt%)在甲苯2wt%)在氮气手套箱中旋涂得到80nm薄膜,然后在120℃退火10分钟。
4)阴极的制备:将旋涂完成的器件放入真空蒸镀腔体,依次蒸镀2nm钡和100nm铝,完成发光器件。
5)所有器件在氮气手套箱中采用紫外固化树脂加玻璃盖板封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,驱动电压等,并计算外部量子效率。所有溶液加工的OLED都发红光,其EQE都大于5%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (11)

  1. 一种稠环化合物,具有如通式(I)所示的结构:
    Figure PCTCN2022071137-appb-100001
    其中,
    Q选自O或S;
    Ar是有具有8至24个环原子的稠环;
    Ar 1在多个出现时,可相同或不同的选自具有5至50个环原子的取代或未取代的芳族或杂芳族,或具有5至50个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个Ar 1可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;其中至少有一个Ar 1选自具有6个以上环原子的取代或未取代的芳族或杂芳族,或具有5个以上环原子的芳氧基或杂芳氧基基团;
    n是选自0,1,2,3,4的任一整数;
    R 1和R 2相同或不同的选自H,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基,或取代或无取代的甲硅烷基,或具有1至20个C原子的取代的酮基,或具有2至20个C原子的烷氧基羰基,或具有7至20个C原子的芳氧基羰基,氰基,氨基甲酰基,卤甲酰基,甲酰基,异氰基,异氰酸酯,硫氰酸酯或异硫氰酸酯,羟基,硝基,CF 3,Cl,Br,F,可交联的基团,或具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些基团的组合,其中一个或多个R 1、R 2可以彼此和/或与其键合的环形成单环或多环的脂族或芳族环系;
    Ar、Ar 1、R 1和R 2中的一个或多个H还可进一步被D所取代。
  2. 根据权利要求1所述的稠环化合物,其特征在于,所述稠环化合物的三线态能级小于等于1.0eV。
  3. 根据权利要求1或2所述的稠环化合物,其特征在于,Ar选自以下结构式中的一个:
    Figure PCTCN2022071137-appb-100002
    其中,
    X是CR 301或N,
    A选自O、S、CR 302R 303、NR 304
    R 301-R 304的定义同权利要求1中的R 1
  4. 根据权利要求3所述的稠环化合物,其特征在于,所述稠环化合物选自如下通式中的一个:
    Figure PCTCN2022071137-appb-100003
    其中,各符号的含义同权利要求3。
  5. 根据权利要求1-4任一项所述的一种稠环化合物,其特征在于,Ar 1相同或不同选自以下结构式中的一个或其组合:
    Figure PCTCN2022071137-appb-100004
    Figure PCTCN2022071137-appb-100005
    其中,
    Y是CR 501或N;
    B选自O、S、CR 502R 503、NR 504
    R 501-R 504的定义同权利要求1中的R 1
  6. 一种高聚物,包含至少一个重复单元,其特征在于,所述重复单元包含通式(I)所示的结构。
  7. 一种混合物,包含至少一种如权利要求1-5任一项所述的稠环化合物或权利要求6所述的高聚物,及至少另一种有机功能材料,所述至少另一种有机功能材料可选于空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、有机基质材料、单重态发光体、三重态发光体、热激发延迟荧光材料或有机染料。
  8. 一种组合物,包含至少一种如权利要求1-5任一项所述的稠环化合物或权利要求6所述的高聚物,及至少一种有机溶剂。
  9. 一种有机电子器件,包含一个电极1,一个电极2及位于电极1和电极2之间的一个功能层,其中所述的功能层包含至少一种如权利要求1-5任一项所述的稠环化合物或权利要求6所述的高聚物。
  10. 根据权利要求9所述的有机电子器件,其特征在于,所述有机电子器件可选于有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器、光电二极管及有机等离激元发射二极管。
  11. 根据权利要求9-10所述的有机电子器件,其特征在于,所述有机电子器件是有机电致发光器件,且至少包含一发光层,所述发光层包含一种如权利要求1-5任一项所述的稠环化合物或权利要求6所述的高聚物。
PCT/CN2022/071137 2021-01-10 2022-01-10 一种稠环化合物及其在有机电子器件的应用 WO2022148466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280009731.5A CN116724031A (zh) 2021-01-10 2022-01-10 一种稠环化合物及其在有机电子器件的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110027644 2021-01-10
CN202110027644.X 2021-01-10

Publications (1)

Publication Number Publication Date
WO2022148466A1 true WO2022148466A1 (zh) 2022-07-14

Family

ID=82357972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071137 WO2022148466A1 (zh) 2021-01-10 2022-01-10 一种稠环化合物及其在有机电子器件的应用

Country Status (2)

Country Link
CN (1) CN116724031A (zh)
WO (1) WO2022148466A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354281A (ja) * 1998-04-10 1999-12-24 Toray Ind Inc 発光素子
JP2004018665A (ja) * 2002-06-17 2004-01-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料及びそれを使用した有機エレクトロルミネッセンス素子
JP2010280641A (ja) * 2009-06-08 2010-12-16 Hokkaido Univ 縮合チオフェン誘導体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11354281A (ja) * 1998-04-10 1999-12-24 Toray Ind Inc 発光素子
JP2004018665A (ja) * 2002-06-17 2004-01-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料及びそれを使用した有機エレクトロルミネッセンス素子
JP2010280641A (ja) * 2009-06-08 2010-12-16 Hokkaido Univ 縮合チオフェン誘導体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HSU DONG-TSOU, LIN CHIH-HSIU: "Synthesis of Benzo[ c ] and Naphtho[ c ]heterocycle Diesters and Dinitriles via Homoelongation", THE JOURNAL OF ORGANIC CHEMISTRY, vol. 74, no. 23, 4 December 2009 (2009-12-04), pages 9180 - 9187, XP055950000, ISSN: 0022-3263, DOI: 10.1021/jo901754w *
SHI XUELIANG, GOPALAKRISHNA TULLIMILLI Y., WANG QING, CHI CHUNYAN: "Non-classical S-Heteroacenes with o -Quinoidal Conjugation and Open-Shell Diradical Character", CHEMISTRY - A EUROPEAN JOURNAL, vol. 23, no. 35, 22 June 2017 (2017-06-22), DE, pages 8525 - 8531, XP055949999, ISSN: 0947-6539, DOI: 10.1002/chem.201701813 *

Also Published As

Publication number Publication date
CN116724031A (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
CN109803957B (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092508A1 (zh) D-a型化合物及其应用
CN110746409A (zh) 有机化合物、混合物、组合物及电子器件和应用
CN109608342B (zh) 芳香胺衍生物、聚合物、混合物、组合物和有机电子器件
CN108137604B (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2016086885A1 (zh) 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
WO2016086887A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018095382A1 (zh) 芳香胺衍生物及其制备方法和用途
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
WO2016091219A1 (zh) 有机化合物、包含其的混合物、组合物和有机电子器件
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
WO2019128875A1 (zh) 芳香胺衍生物及有机电子器件
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2018095385A1 (zh) 稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2018095386A1 (zh) 稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
CN109659448B (zh) 有机混合物、组合物及有机电子器件
WO2017118174A1 (zh) 用于制备有机电子器件的有机功能化合物及其应用
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
CN111279508A (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
CN111344289A (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN109790129B (zh) 芘三嗪类衍生物及其在有机电子器件中的应用
CN109790142B (zh) 氘代芳香胺衍生物及其制备方法和用途
WO2018099432A1 (zh) 稠环化合物及制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22736627

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280009731.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22736627

Country of ref document: EP

Kind code of ref document: A1