WO2022145380A1 - 炭酸カルシウムの製造方法、および炭酸カルシウム - Google Patents

炭酸カルシウムの製造方法、および炭酸カルシウム Download PDF

Info

Publication number
WO2022145380A1
WO2022145380A1 PCT/JP2021/048281 JP2021048281W WO2022145380A1 WO 2022145380 A1 WO2022145380 A1 WO 2022145380A1 JP 2021048281 W JP2021048281 W JP 2021048281W WO 2022145380 A1 WO2022145380 A1 WO 2022145380A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
carbon dioxide
aqueous solution
calcium carbonate
sodium hydroxide
Prior art date
Application number
PCT/JP2021/048281
Other languages
English (en)
French (fr)
Inventor
裕允 阪口
咲也夏 大國
健一郎 江口
徹 織田
泰徳 南里
Original Assignee
白石工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020218308A external-priority patent/JP6970469B1/ja
Priority claimed from JP2021180957A external-priority patent/JP7089311B1/ja
Priority claimed from JP2021180950A external-priority patent/JP7089310B1/ja
Application filed by 白石工業株式会社 filed Critical 白石工業株式会社
Priority to US18/014,356 priority Critical patent/US20230271845A1/en
Priority to CN202180078622.4A priority patent/CN116528963A/zh
Priority to EP21915240.2A priority patent/EP4269347A1/en
Publication of WO2022145380A1 publication Critical patent/WO2022145380A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • C01F11/183Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates

Definitions

  • the present invention relates to a method for synthesizing calcium carbonate using flue exhaust gas from a combustion furnace or the like.
  • the present invention relates to a method for producing calcite crystalline calcium carbonate having a fine particle shape.
  • the present invention relates to a method for producing a spindle-shaped calcite crystal type or a needle-shaped aragonite crystal type calcium carbonate. That is, the present invention relates to a method for producing calcium carbonate having various shapes by changing the production conditions.
  • the present invention relates to calcium carbonate produced by these production methods.
  • a carbon dioxide gasification method in which carbon dioxide gas is blown into lime milk to carbonate it.
  • the carbon dioxide gas used in the carbon dioxide gasification method the flue exhaust gas of the lime firing furnace installed in the vicinity of the calcium carbonate production plant is often used.
  • exhaust gas from boilers, waste incinerators, etc. can also be used as a source of carbon dioxide gas.
  • Patent Document 1 a sodium hydroxide (sodium hydroxide) aqueous solution absorbs carbon dioxide gas to form sodium carbonate (sodium carbonate), and the sodium carbonate and lime milk (calcium hydroxide aqueous suspension) are reacted to produce calcium carbonate.
  • the method of manufacture is disclosed.
  • the carbon dioxide gas concentration is non-uniform, it can be absorbed into the caustic soda aqueous solution, and the carbon dioxide gas can be stored. Therefore, it is possible to install a calcium carbonate production plant in a place away from the place where carbon dioxide gas is generated.
  • the solubility of sodium carbonate in water is much higher than that of carbon dioxide gas, and its solubility does not decrease even at high temperatures, so that calcium carbonate can be produced under high temperature and high concentration conditions. If the carbon dioxide gas that was not used in the reaction by the carbon dioxide gasification method described above can be recovered with the caustic soda aqueous solution, the amount of carbon dioxide gas released to the atmosphere can be expected to be reduced.
  • an object of the present invention is to produce calcium carbonate having a controlled form while efficiently utilizing carbon dioxide gas. Specifically, an object of the present invention is to efficiently produce calcite crystalline calcium carbonate having a fine particle shape by using exhaust gas or the like in some cases.
  • carbon dioxide gas that was not used in the carbon dioxide gas absorption step is reused in the carbon dioxide gas absorption step, and hydroxylation contained in the filtrate and used cleaning liquid obtained in the calcium carbonate production step.
  • the second purpose is to recirculate sodium in the carbon dioxide absorption process and the liquefaction process and reuse it.
  • the present invention makes it possible to absorb carbon dioxide gas in exhaust gas from a combustion furnace or the like installed in a place other than the place where calcium carbonate is manufactured into an aqueous solution of sodium hydroxide and transport it as sodium carbonate to the place where it is manufactured for use.
  • the third purpose is to contribute to the improvement of global warming by suppressing the amount of carbon dioxide released into the environment as a whole by implementing the invention.
  • One aspect of the present invention is the following step: a carbon dioxide gas absorption step in which a sodium hydroxide aqueous solution having a concentration of 5-21% absorbs carbon dioxide gas to obtain a sodium carbonate aqueous solution having a concentration of 4-24%; A hydration step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • the present invention relates to a method for producing calcium carbonate, which comprises a carbonization step of adding and reacting the sodium carbonate aqueous solution with the lime milk.
  • the solid content concentration of the lime milk is adjusted to 1-24%, and the sodium carbonate aqueous solution is added to the lime milk whose solid content concentration is adjusted and reacted at a temperature of 9-80 ° C. Can be done.
  • a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate may be further included.
  • the concentration of sodium hydroxide in the filtrate containing sodium hydroxide may be adjusted to 5-21% and reused in the carbon dioxide gas absorption step.
  • the second aspect of the present invention is calcium carbonate produced by the method for producing calcium carbonate according to the above one aspect.
  • three aspects of the present invention include the following steps: a carbon dioxide absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 5-21% to obtain a sodium carbonate aqueous solution having a concentration of 4-24% or less.
  • the present invention relates to a method for producing calcium carbonate, including.
  • the initial concentration of the lime milk was set to 1-6%
  • the concentration of the sodium carbonate aqueous solution was set to 4-22%
  • the reaction was carried out in the range of 9-25 ° C. It is characterized by obtaining calcium carbonate crystalline calcium carbonate having a fine particle shape with a BET specific surface area of 30-90 m 2 / g.
  • the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
  • a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
  • a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. This can be concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 5-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
  • An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
  • the fourth aspect of the present invention is calcium carbonate produced by the method for producing calcium carbonate according to the above three aspects.
  • the present invention relates to a method for producing calcium carbonate, including.
  • the initial concentration of the lime milk is 11-19%
  • the concentration of the sodium carbonate aqueous solution is 15-24%
  • the reaction is carried out in the range of 20-40 ° C. It is characterized by obtaining spindle-shaped calcium carbonate crystalline calcium carbonate having a BET specific surface area of 4-20 m 2 / g.
  • the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
  • a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
  • a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. Thereby, it is concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 13-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
  • An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
  • Six aspects of the present invention are calcium carbonate produced by the production method according to the above five aspects of calcium carbonate.
  • the present invention relates to a method for producing calcium carbonate, including.
  • the initial concentration of the lime milk is 11-24%
  • the concentration of the sodium carbonate aqueous solution is 15-24%
  • the reaction is carried out in the range of 40-80 ° C. It is characterized by obtaining acicular aragonite crystalline calcium carbonate having a BET specific surface area of 3-10 m 2 / g.
  • the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
  • a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
  • a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. Thereby, it is concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 13-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
  • An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
  • Eight aspects of the present invention are calcium carbonate produced by the method for producing calcium carbonate according to the above seven aspects.
  • the present invention by preparing a sodium carbonate aqueous solution and sodium hydroxide in a high concentration in the process as compared with the conventional method, and by using a calcium hydroxide slurry having a higher concentration as compared with the conventional method, it is efficient. Calcium carbonate having a desired particle shape can be continuously obtained.
  • the amount of carbon dioxide gas generated during manufacturing and the amount of alkaline waste liquid containing sodium hydroxide released during the process can be reduced. It can be suppressed and the burden on the environment can be reduced.
  • FIG. 1 is a flow chart illustrating the manufacturing method of the present invention.
  • FIG. 2 is an electron micrograph (magnification: 30,000 times) of calcium carbonate obtained in Example 1 in which fine particle-shaped particles are connected in a chain.
  • FIG. 3 is an electron micrograph (magnification: 20000 times) of spindle-shaped calcium carbonate obtained in Example 2.
  • FIG. 4 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 3.
  • FIG. 5 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 4.
  • FIG. 6 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 5.
  • One embodiment of the present invention comprises the following step: a carbon dioxide gas absorption step of absorbing carbon dioxide gas into a 5-21% concentration sodium hydroxide aqueous solution to obtain a 6-24% sodium carbonate aqueous solution.
  • a method for producing calcium carbonate which comprises a step; a carbonization step of adding the sodium carbonate aqueous solution to the lime milk and reacting with the lime milk.
  • the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
  • the carbon dioxide absorption step is a step of absorbing carbon dioxide gas with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
  • Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
  • the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid”) obtained in the papermaking process.
  • the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 5-21%, preferably 8-19%, more preferably 13-18%.
  • concentration of the sodium hydroxide aqueous solution By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
  • the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
  • exhaust gas containing carbon dioxide gas can be used as the carbon dioxide gas used in this embodiment.
  • Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
  • Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
  • Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate is 4-24%, preferably 10.2-22.8%, more preferably 16.1-21.6%. In the present specification,% means% by weight unless otherwise specified.
  • the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
  • Lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
  • Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
  • the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
  • the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
  • the liquefaction step it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
  • ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
  • the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue. Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
  • the carbonization step is a step of reacting the lime milk obtained in the hydration step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
  • This process is also commonly referred to as the caustic process.
  • it is very preferable to adjust the solid content concentration of lime milk to 1-24% before use.
  • the sodium carbonate aqueous solution is added to the lime milk having a solid content concentration adjusted in the above range, the amount of sodium carbonate present in the sodium carbonate aqueous solution is relative to the amount of calcium hydroxide present in the lime milk. It is preferable to add an aqueous sodium carbonate solution so that the molar ratio is 0.9-1.5.
  • an aqueous sodium carbonate solution having a concentration of 4-24% is added.
  • Sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step and adjusted in concentration as needed can be added to lime milk having a solid content concentration and reacted at a temperature of 9-80 ° C or 10-55 ° C. preferable. If the reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases.
  • the shape of the aragonite crystals becomes thicker when the reaction temperature of the carbonation step is increased. Tend to be.
  • the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
  • the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
  • a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
  • the reaction solution (filament) remaining after separating the solid calcium carbonate is an aqueous solution of sodium hydroxide, which can be reused in the above-mentioned carbon dioxide gas absorption step.
  • the concentration of sodium hydroxide it is preferable to adjust the concentration of sodium hydroxide to 5-21%, preferably 8-19%, more preferably 13-18%.
  • the calcium carbonate according to the second embodiment of the present invention obtained by the production method according to the first embodiment may have a crystal form such as a calcite crystal, an aragonite crystal, or a vaterite crystal.
  • various crystalline forms of calcium carbonate can be produced by changing the concentration, temperature, and the like.
  • the obtained calcium carbonate particles may have various shapes such as a substantially cubic shape, a spindle shape, a needle shape, a shape in which microspherical crystals are connected, and the like, in addition to the spherical shape.
  • FIG. 1 shows a flow in which a method for producing calcium carbonate according to an embodiment of the present invention is carried out using carbon dioxide gas in an exhaust gas discharged from a combustion furnace or the like.
  • 1 carbon dioxide gas absorption step
  • 2 hydration step
  • 3 carbonation step
  • 4 solid-liquid separation step
  • 5 cleaning step.
  • Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
  • a sodium hydroxide aqueous solution adjusted to a concentration of 5-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
  • carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 4-24% is obtained.
  • the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
  • calcium oxide and water for hydration (referring to an aqueous solution of sodium hydroxide having a concentration of less than 0-6%) are prepared and reacted with each other (hydration step 2), and if necessary, a classification operation is performed.
  • a classification operation is performed.
  • purified lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • carbonation step 3 calcium carbonate is produced.
  • the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
  • the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
  • the initial concentration of lime milk is 1-24%
  • the concentration of the aqueous sodium carbonate solution is preferably 4-24%
  • the reaction is carried out in the range of 9-80 ° C. ..
  • carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
  • a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
  • a sodium carbonate aqueous solution having a predetermined concentration and lime milk having a solid content concentration are reacted at a predetermined temperature for a predetermined time to form a desired shape. It becomes possible to produce calcium carbonate.
  • the sodium hydroxide aqueous solution which is an absorbent of carbon dioxide gas can be repeatedly reused, the amount of waste liquid is small and the burden on the environment can be reduced.
  • the three embodiments of the present invention include the following steps: a carbon dioxide gas absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 5-21% to obtain a sodium carbonate aqueous solution having a concentration of 4-24%; oxidation.
  • the sodium carbonate aqueous solution obtained in the carbon dioxide absorption step is added to the lime milk and reacted.
  • the production method is characterized by obtaining calcite crystalline calcium carbonate having a fine particle shape of / g.
  • the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
  • the carbon dioxide absorption step is a step of absorbing carbon dioxide (carbon dioxide) with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
  • Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
  • the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid") obtained in the papermaking process.
  • the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 5-21%, preferably 8-15%. By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
  • the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
  • exhaust gas containing carbon dioxide gas can be used.
  • Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
  • Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
  • Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate reaches 4-24%. In the present specification,% means% by weight unless otherwise specified. From the viewpoint of environmental conservation, carbon dioxide gas that was not used in the carbon dioxide gas absorption step is not released into the atmosphere as it is, but is reused so that it can be absorbed by the sodium hydroxide aqueous solution in this carbon dioxide gas absorption step. Very preferable.
  • the liquefaction step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
  • lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
  • Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
  • the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
  • the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
  • a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
  • ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
  • the amount of the sodium hydroxide aqueous solution is smaller than the amount of calcium oxide, calcium hydroxide having a small BET specific surface area can be obtained. Further, if an aqueous sodium hydroxide solution having an excessively high concentration is used in the hydration step, the BET specific surface area of the obtained calcium hydroxide tends to be high, and calcium hydroxide having a desired BET specific surface area cannot be obtained. In addition, the viscosity of lime milk becomes high and it becomes difficult to handle. In particular, setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 5-40 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below.
  • the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step, or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue.
  • Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
  • the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
  • This process is also commonly referred to as the caustic process.
  • it is very preferable to adjust the solid content concentration of lime milk to 1-6% before use.
  • it is preferable to react with the initial concentration of lime milk set to 1-6% and the concentration of the aqueous sodium carbonate solution set to 4-22%.
  • the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 4-24% obtained in the carbon dioxide gas absorption step.
  • the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
  • the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
  • the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
  • the reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears.
  • calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
  • the “crystal in the shape of fine particles” refers to a crystal having, for example, fine primary particles having a BET specific surface area of 30 m 2 / g or more as a component.
  • Structural polymorphs such as calcite crystals, aragonite crystals, and batelite crystals are known as calcium carbonate crystals, but the calcium carbonate produced by the production method of the present embodiment is calcite crystals.
  • the crystal having a fine particle shape may include, for example, a crystal having a single crystal shape of a hexahedron and at least a pair of opposite faces of the hexahedron having a rhombohedron (hexagonal rhombohedral lattice).
  • a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
  • a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
  • the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
  • the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
  • the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 5-21%.
  • the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 5% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%.
  • the concentration of sodium hydroxide is adjusted, for example, by diluting with water.
  • FIG. 1 shows a flow in which a method for producing calcium carbonate according to an embodiment of the present invention is carried out using carbon dioxide gas in an exhaust gas discharged from a combustion furnace or the like.
  • 1 carbon dioxide gas absorption step
  • 2 hydration step
  • 3 carbonation step
  • 4 solid-liquid separation step
  • 5 cleaning step.
  • Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
  • a sodium hydroxide aqueous solution adjusted to a concentration of 5-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
  • carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 4-24% is obtained.
  • the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
  • calcium oxide and water for hydration sodium hydroxide aqueous solution having a concentration of less than 0-6%
  • hydroxide aqueous solution having a concentration of less than 0-6% are prepared and reacted (hydration step 2), and if necessary, a classification operation is performed to BET.
  • Purified lime milk which is a suspension of calcium hydroxide having a specific surface area of 5-40 m 2 / g, is obtained.
  • carbonation step 3 calcium carbonate is produced.
  • the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
  • the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
  • the initial concentration of lime milk is 1-6%
  • the concentration of the aqueous sodium carbonate solution is 4-22%
  • the reaction is carried out in the range of 9-25 ° C.
  • Calcium carbonate according to the fourth embodiment of the present invention can be obtained by the production method according to the third embodiment.
  • the calcium carbonate according to the fourth embodiment is preferably calcite crystalline calcium carbonate having a fine particle shape having a BET specific surface area of 30-90 m 2 / g.
  • carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
  • a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
  • calcium having a desired fine particle shape is obtained by reacting a sodium carbonate aqueous solution having a predetermined initial concentration and lime milk having a predetermined initial solid content concentration in a predetermined temperature range for a predetermined time. It becomes possible to produce calcium carbonate in the form of cytocrystals.
  • carbon dioxide gas and an aqueous solution of sodium hydroxide can be repeatedly reused, so that carbon dioxide and waste liquid discharged to the environment are small, and the burden on the environment is reduced. be able to.
  • Five embodiments of the present invention include the following steps: a carbon dioxide gas absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 13-21% to obtain a sodium carbonate aqueous solution having a concentration of 15-24% or less; A hydration step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step is added to the lime milk and reacted.
  • the production method is characterized by obtaining / g of spindle-shaped calcite crystalline calcium carbonate.
  • the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
  • the carbon dioxide absorption step is a step of absorbing carbon dioxide (carbon dioxide) with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
  • Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
  • the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid") obtained in the papermaking process.
  • the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 13-21%, preferably 15-20%.
  • the concentration of the sodium hydroxide aqueous solution By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
  • the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
  • exhaust gas containing carbon dioxide gas can be used.
  • Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
  • Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
  • Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate reaches 15-24%.
  • % means% by weight unless otherwise specified. From the viewpoint of environmental conservation, it is very important to reuse the carbon dioxide gas that was not used in the carbon dioxide gas absorption process so that it can be absorbed by the sodium hydroxide aqueous solution in the carbonation process, instead of releasing it into the atmosphere as it is. preferable.
  • the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
  • lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
  • Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
  • the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
  • the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
  • a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
  • the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
  • ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
  • the amount of the sodium hydroxide aqueous solution is smaller than the amount of calcium oxide, calcium hydroxide having a small BET specific surface area can be obtained. Further, if an aqueous sodium hydroxide solution having an excessively high concentration is used in the hydration step, the BET specific surface area of the obtained calcium hydroxide tends to be high, and calcium hydroxide having a desired BET specific surface area cannot be obtained. In addition, the viscosity of lime milk becomes high and it becomes difficult to handle. In particular, setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 15-40 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below.
  • the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue.
  • Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
  • the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
  • This process is also commonly referred to as the caustic process.
  • it is very preferable to adjust the solid content concentration of lime milk to 11-24% before use.
  • it is preferable to set the initial concentration of lime milk to 11-19% and the concentration of the aqueous sodium carbonate solution to 15-24% for the reaction.
  • the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 15-24% or less obtained in the carbon dioxide gas absorption step.
  • the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
  • the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
  • the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
  • the calcium carbonate according to the sixth embodiment of the present invention can be obtained by the production method according to the fifth embodiment.
  • the calcium carbonate according to the sixth embodiment is preferably a spindle-shaped calcite crystalline calcium carbonate having a BET specific surface area of 4-20 m 2 / g.
  • reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears.
  • calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
  • a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
  • a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
  • the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
  • the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
  • the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 13-21%.
  • the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 13% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%. The concentration of sodium hydroxide is adjusted, for example, by diluting with water.
  • carbon dioxide gas (carbon dioxide) is absorbed by a sodium hydroxide aqueous solution having a concentration of 13-21% in the following step, and a sodium carbonate aqueous solution having a concentration of 15-24% or less is applied.
  • the carbon dioxide absorption step obtained; lime which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g by reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6%.
  • a method for producing calcium carbonate comprising a slaked step of obtaining milk; a carbon dioxide step of adding and reacting the aqueous sodium carbonate obtained in the carbon dioxide absorption step with the lime milk;
  • the initial concentration of the lime milk was 11-24%
  • the concentration of the aqueous sodium carbonate solution was 15-24%
  • the reaction was carried out in the range of 40-80 ° C.
  • the BET specific surface area was 3-10 m 2 .
  • the production method is characterized by obtaining / g needle-shaped aragonite crystalline calcium carbonate.
  • This embodiment is also a method for producing calcium carbonate, which includes at least a carbon dioxide gas absorption step, a hydration step, and a carbonation step, as in the fifth embodiment.
  • the carbon dioxide gas absorption step of the seventh embodiment is a step of absorbing the carbon dioxide gas with the sodium hydroxide aqueous solution to obtain the sodium carbonate aqueous solution, and can be performed in exactly the same manner as the carbon dioxide gas absorption step of the above-mentioned five embodiments. .. It is very preferable from the viewpoint of environmental conservation to reuse the carbon dioxide gas that was not used in the carbon dioxide gas absorption step so that it can be absorbed by the sodium hydroxide aqueous solution in the carbonation step, instead of releasing it into the atmosphere as it is. Is the same as the above-mentioned five embodiments.
  • the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
  • the liquefaction step of the seventh embodiment can be performed in exactly the same manner as the carbon dioxide gas absorption step of the fifth embodiment. Also in the seventh embodiment, the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed at the same time in parallel, and the carbon dioxide gas absorption step is followed by the liquefaction step or the liquefaction step is followed by carbon dioxide. It is also possible to carry out the process continuously, such as the gas absorption step.
  • setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 5-20 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below. Is preferable for forming needle-shaped aragonite. Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
  • the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
  • This process is also commonly referred to as the caustic process.
  • it is very preferable to adjust the solid content concentration of lime milk to 11-24% before use.
  • it is preferable to set the initial concentration of lime milk to 11-24% and the concentration of the aqueous sodium carbonate solution to 15-24% for the reaction.
  • the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 15-24% or less obtained in the carbon dioxide gas absorption step.
  • the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
  • the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
  • the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
  • reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears. Further, when the BET specific surface area of calcium hydroxide is adjusted as described above in order to produce calcium carbonate containing a large amount of needle-shaped aragonite crystals, when the reaction temperature of the carbonation step is raised, the shape of the aragonite crystals (needle-shaped) is increased. Tends to get thicker. In the reaction of this step, calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
  • a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
  • a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
  • the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
  • the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
  • the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 13-21%.
  • the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 13% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%. The concentration of sodium hydroxide is adjusted, for example, by diluting with water.
  • FIG. 1 shows a flow in which the method for producing calcium carbonate according to the first and second embodiments of the present invention is carried out using carbon dioxide gas in the exhaust gas discharged from a combustion furnace or the like.
  • 1 carbon dioxide gas absorption step
  • 2 hydration step
  • 3 carbonation step
  • 4 solid-liquid separation step
  • 5 cleaning step.
  • Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
  • a sodium hydroxide aqueous solution adjusted to a concentration of 13-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
  • carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 15-24% or less is obtained.
  • the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
  • calcium oxide and water for hydration sodium hydroxide aqueous solution having a concentration of less than 0-6%
  • hydroxide aqueous solution having a concentration of less than 0-6% are prepared and reacted (hydration step 2), and if necessary, a classification operation is performed to BET.
  • Purified lime milk which is a suspension of calcium hydroxide having a specific surface area of 5-40 m 2 / g, is obtained.
  • carbonation step 3 calcium carbonate is produced.
  • the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
  • the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
  • the initial concentration of lime milk is 11-19%, the concentration of the aqueous sodium carbonate solution is 15-24%, and the reaction is carried out in the range of 20-40 ° C.
  • the initial concentration of lime milk is 11-24%, the concentration of the aqueous sodium carbonate solution is 15-24%, and the reaction is carried out in the range of 40-80 ° C. ..
  • carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
  • a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
  • calcium carbonate having a desired shape can be produced by reacting a sodium carbonate aqueous solution having a predetermined initial concentration and lime milk having a predetermined initial solid content concentration in a predetermined temperature range for a predetermined time. It will be possible.
  • carbon dioxide gas and an aqueous solution of sodium hydroxide can be repeatedly reused, so that carbon dioxide and waste liquid discharged to the environment are small, and the burden on the environment can be reduced. can.
  • Example 1 Synthesis of fine particle-shaped calcite crystalline calcium carbonate
  • the concentration of lime milk was adjusted to obtain 553 kg of lime milk having a solid content concentration of 5.0%.
  • Carbonation step 553 kg obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. To this, 423 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 20 seconds, and the temperature in the reaction tank was adjusted to 15 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 49 kg of calcium carbonate powder was obtained.
  • FIG. 2 is an electron micrograph (magnification: 30,000 times) of calcium carbonate obtained in Example 1.
  • the BET specific surface area (measured according to JIS Z 8830) of calcium carbonate having this fine particle shape was 60.0 m 2 / g (Table 1, carbonation step reaction temperature 15 ° C. row, sodium carbonate aqueous solution concentration). 15% column).
  • Example 1 [Other synthetic examples of fine particle-shaped calcite crystalline calcium carbonate]
  • various aqueous sodium carbonate solutions having different concentrations were prepared.
  • sodium carbonate aqueous solutions having different concentrations were gradually added and stirred using a propeller stirrer, and the temperature in the reaction tank was increased.
  • the results of each synthesis example are shown in Table 1 below.
  • Table 1 shows the crystal shape and BET specific surface area of calcium carbonate produced in each synthetic example.
  • Example 1 is described in "Fine 60" in the row of Table 1, where the reaction temperature of the carbonation step is 15 ° C., and the column of sodium carbonate aqueous solution concentration of 15%. It is said that the method of Example 1 obtained calcite crystalline calcium carbonate having a fine particle shape with a BET specific surface area of 60 m 2 / g (the value of the BET specific surface area in the table is a value rounded off from the measured value). Meaning. Further, in Table 1, "-" means that the reaction under the specified conditions was difficult because sodium carbonate was precipitated from the aqueous sodium carbonate solution under the relevant conditions.
  • the desired crystal shape and BET specific surface area can be obtained by adjusting the solid content concentration, sodium carbonate aqueous solution concentration, and reaction temperature of the initial lime milk in the carbonization step by the method of the present invention.
  • Example 2 Synthesis of spindle-shaped calcite crystalline calcium carbonate (1)
  • the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
  • Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 25 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
  • FIG. 3 is an electron micrograph (magnification of 20000 times) of calcium carbonate obtained in Example 2.
  • the BET specific surface area (measured according to JIS Z 8830) of this spindle-shaped calcite crystalline calcium carbonate was 5.9 m 2 / g. (Table 2, row of carbonation step reaction temperature 25 ° C, column of sodium carbonate aqueous solution concentration 16%)
  • Example 3 Synthesis of acicular aragonite crystalline calcium carbonate (1)
  • the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
  • Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 50 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
  • FIG. 4 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 3.
  • the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 6.3 m 2 / g. (Table 2, row of carbonation step reaction temperature 50 ° C, column of sodium carbonate aqueous solution concentration 16%)
  • Example 4 Synthesis of acicular aragonite crystalline calcium carbonate (2)
  • the concentration of lime milk was adjusted to obtain 366 kg of lime milk having a solid content concentration of 20.0%.
  • Carbonation Step 366 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 666 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 50 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 99 kg of calcium carbonate powder was obtained.
  • FIG. 5 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 4.
  • the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 8.5 m 2 / g. (Table 3, row of carbonation step reaction temperature 50 ° C, column of sodium carbonate aqueous solution concentration 19%)
  • Example 5 Synthesis of acicular aragonite crystalline calcium carbonate (3)
  • the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
  • Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 80 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
  • FIG. 6 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 5.
  • the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 3.4 m 2 / g. (Table 2, row of carbonation step reaction temperature 80 ° C, column of sodium carbonate aqueous solution concentration 16%)
  • Example 2 [Other synthetic examples of spindle-shaped calcite crystalline calcium carbonate]
  • various aqueous sodium carbonate solutions having different concentrations were prepared.
  • sodium carbonate aqueous solutions having different concentrations are gradually added and stirred using a propeller stirrer, and the temperature in the reaction tank is increased.
  • the temperature in the reaction tank is increased.
  • the results of each synthesis example are shown in Table 2 below.
  • Example 2 [Other synthetic examples of acicular aragonite crystalline calcium carbonate]
  • various aqueous sodium carbonate solutions having different concentrations were prepared.
  • the results of each synthesis example are shown in Table 2 below.
  • Example 4 various aqueous sodium carbonate solutions having different concentrations were prepared.
  • Tables 2 and 3 show the crystal shape and BET specific surface area of calcium carbonate produced in each synthetic example.
  • Example 2 is described in "Spindle 6" in the row of Table 2, where the reaction temperature of the carbonation step is 25 ° C., and the column of sodium carbonate aqueous solution concentration of 19%. It means that a spindle-shaped calcite crystalline calcium carbonate having a BET specific surface area of 6 m 2 / g (the value of the BET specific surface area in the table is a value rounded off from the measured value) was obtained by the method of Example 2. Further, in Tables 2 and 3, "-" means that the reaction under the specified conditions was difficult because sodium carbonate was precipitated from the aqueous sodium carbonate solution under the relevant conditions.
  • the desired crystal shape and BET were obtained by adjusting the solid content concentration, sodium carbonate aqueous solution concentration, and reaction temperature of the initial lime milk in the carbonation step by the method of the present invention.
  • Calcium carbonate having a specific surface area can be produced separately.
  • carbon dioxide gas is absorbed by a relatively high-concentration sodium hydroxide aqueous solution, so that carbon dioxide gas can be used efficiently.
  • acicular crystals and spindle-shaped crystals of calcium carbonate could be produced.
  • concentration, reaction temperature, reaction time, mixing time, etc. of lime milk and sodium carbonate aqueous solution in the carbonation step calcium carbonate having a desired crystal form can be produced separately. Since the method of the present invention reuses carbon dioxide gas, a filtrate and the like, the load on the environment can be reduced as a whole.
  • the calcium carbonate produced by the method of the present invention is particularly used as a filler for sealing materials, adhesives, rubber compositions, plastic compositions and papers, as well as pigments for paper coating and pigments for paints and inks. Can be widely used as.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

【課題】 炭酸ガスを効率的に利用しつつ、形態の制御された炭酸カルシウムを製造すること。 【解決手段】 以下の工程: 5-21%の濃度の水酸化ナトリウム水溶液に、炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る、炭酸ガス吸収工程と; 酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る、水化工程と; 該石灰乳に、該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と; を含む、炭酸カルシウムの製造方法。

Description

炭酸カルシウムの製造方法、および炭酸カルシウム
 本発明は、燃焼炉等の煙道排ガス等を利用して炭酸カルシウムを合成する方法に関する。特に、本発明は、微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを製造する方法に関する。さらに本発明は、紡錘状カルサイト結晶型または針状アラゴナイト結晶型の炭酸カルシウムを製造する方法に関する。すなわち本発明は、製造条件を変更して種々の形状を有する炭酸カルシウムを作り分ける方法に関する。さらに本発明は、これらの製造方法により製造された炭酸カルシウムに関する。
 工業的な炭酸カルシウムの合成方法として、石灰乳中に炭酸ガスを吹き込み炭酸化させる炭酸ガス化合法が知られている。炭酸ガス化合法にて使用する炭酸ガスとしては、炭酸カルシウム製造プラントに近接して設置されている石灰焼成炉の煙道排ガスが利用されることが多い。このほか、炭酸ガスの供給源として、ボイラーやごみ焼却炉等の排ガスも利用することもできる。しかしながら、この場合、炭酸カルシウム製造プラントを焼成炉の近くに設置することができないことがあり、炭酸ガスの供給源となる施設から炭酸カルシウム製造プラントまで通じる煙道排ガス配管を敷設する必要が生じる。煙道排ガスを利用する場合も、炭酸ガスの供給量が一定ではない煙道排ガスの炭酸ガス濃度は通常均一ではなく、炭酸化を効率よく行うことができないという問題があった。さらに煙道排ガスの温度制御ができないため、生成する炭酸カルシウムの性状が煙道排ガス温度の影響を受けやすく、所望の形状の炭酸カルシウムを製造することができない、という問題もあった。一方、炭酸ガス化合法による炭酸カルシウムの合成反応では、炭酸ガスが一旦水に溶解する必要があるため、反応時間が長く、反応効率も高くない。炭酸ガスの吸収効率を高めるために低温で反応させることが多く、高温での反応には適していない。炭酸ガスのすべてが反応に使用されることはなく、使われなかった炭酸ガスは大気中に放出されるという問題もあった。
 特許文献1には、苛性ソーダ(水酸化ナトリウム)水溶液に炭酸ガスを吸収させて炭酸ソーダ(炭酸ナトリウム)とし、炭酸ソーダと石灰乳(水酸化カルシウム水懸濁液)とを反応させて炭酸カルシウムを製造する方法が開示されている。特許文献1の方法では、炭酸ガス濃度が不均一であっても苛性ソーダ水溶液への吸収が可能であり、炭酸ガスを貯蔵しておくことができる。そのため、炭酸ガス発生場所から離れた場所に炭酸カルシウム製造プラントを設置することが可能となる。炭酸ソーダの水への溶解度は炭酸ガスのそれよりも遥かに高く、またその溶解度は高温下でも低下しないため、高温かつ高濃度の条件下での炭酸カルシウムの製造が可能になる。先に説明した炭酸ガス化合法で反応に使われなかった炭酸ガスを苛性ソーダ水溶液にて回収できれば、大気に放出される炭酸ガスの量の削減も期待できる。
特開2002-293537号公報
 特許文献1の製造方法では、低濃度の苛性ソーダに炭酸ガスを吸収させると炭酸ガスの吸収効率が低下するため、炭酸ガスを最大限に利用することができない。この場合、得られる炭酸ソーダの濃度も低くなるため、炭酸カルシウムの製造効率も低下する。また特許文献1の製造方法で得られる炭酸カルシウムの粒子の大きさや結晶形、形状は明確ではない。そこで本発明は、炭酸ガスを効率的に利用しつつ、形態の制御された炭酸カルシウムを製造することを目的とする。具体的には、本発明は、場合によっては排ガス等を利用し、微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを効率的に製造することを目的とする。さらに本発明は、場合によっては排ガス等を利用し、カルサイト結晶型、アラゴナイト結晶型炭酸カルシウムを効率的に製造することを目的とする。
 本発明は、炭酸ガス吸収工程時に利用されなかった炭酸ガスを再度炭酸ガス吸収工程に再使用すること、ならびに、炭酸カルシウムの製造工程で得られた濾液や使用済み洗浄液に含まれている水酸化ナトリウムを、炭酸ガス吸収工程や水化工程に再循環してこれを再使用することを第二の目的とする。
 本発明は、炭酸カルシウムの製造場所以外に設置された燃焼炉等の排ガス中の炭酸ガスを水酸化ナトリウム水溶液に吸収させ、炭酸ナトリウムとして製造場所へ運搬して利用することを可能とし、さらに本発明を実施することで、総体的に環境中への炭酸ガス放出量を抑制し、地球温暖化の改善に寄与することを第三の目的とする。
 本発明の一の態様は、以下の工程:5-21%の濃度の水酸化ナトリウム水溶液に、炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る、炭酸ガス吸収工程と;酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る、水化工程と;該石灰乳に、該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;を含む、炭酸カルシウムの製造方法に係る。
 ここで、炭酸化工程において、石灰乳の固形分濃度を1-24%に調整し、固形分濃度を調整した石灰乳に、炭酸ナトリウム水溶液を添加して、温度9-80℃で反応させることができる。
 さらに炭酸化工程の後に、水酸化ナトリウムを含む濾液と、炭酸カルシウムとに分離する、固液分離工程をさらに含んでいてもよい。
 また、上記の製造方法において、水酸化ナトリウムを含む濾液の水酸化ナトリウムの濃度を5-21%に調整し、炭酸ガス吸収工程に再利用してもよい。
 本発明の二の態様は、上記の一の態様に係る炭酸カルシウムの製造方法により製造された、炭酸カルシウムである。
 さらに本発明の三の態様は、以下の工程:5-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、4-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
 酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
 該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
 炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-22%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする。
 ここで、該炭酸ガス吸収工程において利用されなかった炭酸ガスを再度該炭酸ガス吸収工程に使用することができる。
 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
 該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
 また、該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを5-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用することができる。
 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用することも好ましい。
 本発明の四の態様は、上記の三の態様に係る炭酸カルシウムの製造方法により製造された、炭酸カルシウムである。
 本発明の五の態様は、以下の工程:13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
 酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
 該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
 炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする。
 ここで、該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用することができる。
 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
 該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
 また、該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用することができる。
 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用することも好ましい。
 本発明の六の態様は、上記の五の態様の炭酸カルシウムに係る製造方法により製造された、炭酸カルシウムである。
 さらに本発明の七の態様は、以下の工程:
 13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
 酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
 該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
 炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする。
 ここで、該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用することができる。
 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
 該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
 また、該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用することができる。
 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用することも好ましい。
 本発明の八の態様は、上記の七の態様に係る炭酸カルシウムの製造方法により製造された、炭酸カルシウムである。
 本発明によれば、従来の方法に比べて工程中の炭酸ナトリウム水溶液および水酸化ナトリウムを高濃度に調製すること、従来法に比べて高濃度の水酸化カルシウムスラリーを使用することにより、効率よく所望の粒子形状の炭酸カルシウムを連続して得ることができる。また煙道排ガスおよび工程中の未反応の炭酸ガスを工程に戻して利用すること、および上記の反応液の高濃度化により、製造時に発生する炭酸ガスおよび水酸化ナトリウムを含むアルカリ性廃液放出量を抑制でき、環境への負荷を少なくすることができる。加えて、製造場所以外に設置された燃焼炉等の排ガス中の炭酸ガスを利用することも可能となるため、従来は環境中に放出されていた炭酸ガスの固定法としても有用である。
 本発明の製造方法では、所望の形状と粒子径とを有する炭酸カルシウムを得ることができる。抄紙、塗工顔料、プラスチック、シーラント、ゴム、食品等の各用途に適した炭酸カルシウムを、連続的に、制御して製造することが可能となる。
図1は、本発明の製造方法を説明するフロー図である。 図2は、実施例1で得られた、微細な粒子形状の粒子が連鎖状に連なる炭酸カルシウムの電子顕微鏡写真(倍率:30000倍)である。 図3は、実施例2で得られた、紡錘状の炭酸カルシウムの電子顕微鏡写真(倍率:20000倍)である。 図4は、実施例3で得られた、針状形状の炭酸カルシウムの電子顕微鏡写真(倍率:10000倍)である。 図5は、実施例4で得られた、針状形状の炭酸カルシウムの電子顕微鏡写真(倍率:10000倍)である。 図6は、実施例5で得られた、針状形状の炭酸カルシウムの電子顕微鏡写真(倍率:10000倍)である。
 本発明の実施形態について、さらに詳細に説明するが、本発明は、以下の実施形態にのみ限定されるものではない。
 本発明の一の実施形態は、以下の工程:5-21%の濃度の水酸化ナトリウム水溶液に、炭酸ガスを吸収させ、6-24%の濃度の炭酸ナトリウム水溶液を得る、炭酸ガス吸収工程と;酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る、水化工程と;該石灰乳に、該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;を含む、炭酸カルシウムの製造方法である。本実施形態は、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガスを吸収させ、炭酸ナトリウム水溶液を得る工程である。水酸化ナトリウムは一般に苛性ソーダとも呼ばれ、市販品を適宜利用することができる。水酸化ナトリウム水溶液は、水酸化ナトリウムを水に溶解して得られるほか、製紙工程で得られる水酸化ナトリウムを含む液体(いわゆる「白液」)を用いることもできる。本工程で用いられる水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、5-21%、好ましくは8-19%、さらに好ましくは13-18%とすることができる。本工程で水酸化ナトリウム水溶液の濃度を最大で21%とすることにより、炭酸ガスの吸収効率を向上させることができる。本実施形態において、水酸化ナトリウム水溶液に吸収させる炭酸ガスは、二酸化炭素単独の気体のほか、炭酸ガスと他の気体とを含む混合気体であっても良いものとする。本実施形態で使用する炭酸ガスとして、炭酸ガスを含む排ガスを利用することができる。このような排ガスとして、たとえば、石灰焼成炉、ボイラー、ごみ焼却炉、セメント焼成炉、耐火物加熱炉、製鋼用転炉、製鋼用溶鉱炉、キュポラ、コークスガス発生炉、石炭ガス発生炉、石油分解用炉、ガラス製造反射炉、オイルガス発生炉およびアセチレン発生炉からの排ガスを挙げることができる。水酸化ナトリウム水溶液に炭酸ガスを吸収させると、炭酸ナトリウムが生成する。炭酸ナトリウムの濃度が4-24%、好ましくは10.2-22.8%、さらに好ましくは16.1-21.6%になるまで、炭酸ガスを吸収させることができる。なお、本明細書においては特に断らない限り、%は重量%のことである。
 一の実施形態において、水化工程は、酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて石灰乳を得る工程である。石灰乳とは水酸化カルシウムの水懸濁液(水酸化カルシウム水スラリー)のことである。水化工程に用いる酸化カルシウムは、一般に生石灰とも呼ばれる、カルシウムの酸化体である。酸化カルシウムは市販のものを適宜利用することができる。本工程で酸化カルシウムと反応させる水酸化ナトリウム水溶液の濃度は、0-6%未満である。本工程で得られる水酸化カルシウムは、一般に消石灰とも呼ばれるカルシウムの水酸化物である。水化工程においては、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液を得ることが好ましい。BET比表面積は、日本工業規格JIS Z 8830「ガス吸着による粉体(固体)の比表面積測定方法」(ISO 9277:2010)にしたがい測定することができる。反応させる酸化カルシウムと水の量を調整することにより、BET比表面積が5-40m/gの水酸化カルシウムを得ることができる。酸化カルシウムの量に対して水の量を多くすると、BET比表面積の大きい水酸化カルシウムを得ることができる。反対に酸化カルシウムの量に対して水の量を少なくすると、BET比表面積の小さい水酸化カルシウムを得ることができる。なお、水化工程と、上記の炭酸ガス吸収工程とは、並行して同時に行うことができ、炭酸ガス吸収工程に次いで水化工程、あるいは、水化工程に次いで炭酸ガス吸収工程、のように、続けて行うことも可能である。水化工程で適切な範囲のBET比表面積を有する水酸化カルシウムを得ることは、本実施形態にて最終的に所望の形態の炭酸カルシウムを得るために重要である。
 一の実施形態において、炭酸化工程は、水化工程で得られた石灰乳と、炭酸ガス吸収工程で得られた炭酸ナトリウム水溶液とを反応させて、炭酸カルシウムを得る工程である。この工程は、一般に苛性化工程とも呼ばれる。この工程で、石灰乳の固形分濃度は1-24%に調整して用いることが非常に好ましい。好ましくは上記の範囲に固形分濃度を調製した石灰乳に炭酸ナトリウム水溶液を添加する際には、石灰乳に存在する水酸化カルシウムの量に対して、炭酸ナトリウム水溶液中に存在する炭酸ナトリウムの量がモル比で0.9-1.5となるように、炭酸ナトリウム水溶液を添加するのが好ましい。特に好ましくは、濃度を4-24%とした炭酸ナトリウム水溶液を添加する。またこの際、石灰乳に炭酸ナトリウム水溶液を60-180分間、あるいは100-150分間かけて添加することが非常に好ましい。固形分濃度を調製した石灰乳に、炭酸ガス吸収工程で得られ、必要に応じて濃度を調整した炭酸ナトリウム水溶液を添加して、温度9-80℃、あるいは10-55℃で反応させることが好ましい。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大する。なお、アラゴナイト結晶を多く含む炭酸カルシウムを製造すべく、水酸化カルシウムのBET比表面積を上記のように調整した場合、炭酸化工程の反応温度を高くすると、アラゴナイト結晶(針状)の形状が太くなる傾向がある。炭酸化工程の反応は、反応液を撹拌して行うのが好ましい。好ましくは、石灰乳に炭酸ナトリウム水溶液を徐々に添加してこれらが完全に混合するまでの時間(完全混合時間)が3-25秒間、あるいは5-22秒間となるように撹拌機を調整することができる。反応容器を撹拌する手段として、従来から用いられているプロペラ撹拌機、パドル翼撹拌機、リボン撹拌機、タービン翼撹拌機、馬蹄翼撹拌機、糸巻翼撹拌機、ミキサー撹拌機、磁気撹拌機等を使用することができる。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じる。水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。
 一の実施形態において、炭酸化工程の反応により生じた炭酸カルシウムを、反応液から分離して、固体の状態で取り出す固液分離工程をさらに含んでいて良い。固体の炭酸カルシウムを分離した後に残った反応液(濾液)は水酸化ナトリウム水溶液であり、これを上記の炭酸ガス吸収工程に再利用することができる。濾液を炭酸ガス吸収工程に再利用する場合は、水酸化ナトリウムの濃度を5-21%、好ましくは8-19%、さらに好ましくは13-18%に調整することが好適である。
 一の実施形態に係る製造方法により得られた、本発明の二の実施形態に係る炭酸カルシウムは、カルサイト結晶、アラゴナイト結晶、バテライト結晶等の結晶形を有していて良い。上記の各工程において、濃度や温度等を変えることにより、種々の結晶形の炭酸カルシウムを製造することができる。得られる炭酸カルシウムの粒子は、球状のほか、略立方体、紡錘状、針状、微小球形の結晶が連なった形状等のような、種々の形状を有していて良い。
 続いて図1を用いて、本発明の一の実施形態のフローを説明する。図1は、燃焼炉等から排出された排ガス中の炭酸ガスを利用して本発明の実施形態の炭酸カルシウムの製造方法を行うフローを示すものである。図中、1:炭酸ガス吸収工程、2:水化工程、3:炭酸化工程、4:固液分離工程、5:洗浄工程である。燃焼炉等から排出された排ガスは、適宜除塵処理を行い、炭酸ガスを含む精製ガスを得る。一方、製造用水と高濃度の水酸化ナトリウム水溶液とを適宜混合する等の方法により濃度5-21%に調整した水酸化ナトリウム水溶液を用意し、ここに精製ガスを吸収させる(炭酸ガス吸収工程1)。こうして、4-24%の濃度の炭酸ナトリウム水溶液を得る。炭酸ガス吸収工程1では吸収しきれなかった未反応ガスは、矢印10のように戻されて、再度炭酸ガス吸収工程1に使用される。
 一方、酸化カルシウムと水化用水(濃度が0-6%未満の濃度の水酸化ナトリウム水溶液を指す。)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
 こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
 一の実施形態では、図1の炭酸化工程3にて、石灰乳の初期濃度を1-24%、炭酸ナトリウム水溶液の濃度を好ましくは4-24%とし、9-80℃の範囲で反応させる。
 一の実施形態の炭酸カルシウムの製造方法によれば、比較的高い濃度の水酸化ナトリウム水溶液に炭酸ガスを効率よく吸収させることができる。この際、炭酸ガスの濃度に関わらず、所望の濃度の炭酸ナトリウム水溶液を得ることができる。また、以下の実施形態で説明するように、炭酸化工程において所定の濃度の炭酸ナトリウム水溶液と、所定の固形分濃度の石灰乳とを所定の温度で所定の時間反応させることにより、所望の形状の炭酸カルシウムを製造することが可能となる。
 一の実施形態の炭酸カルシウムの製造方法は、炭酸ガスの吸収剤である水酸化ナトリウム水溶液を繰り返し再利用することができるので、廃液が少なく、環境への負荷を低減することができる。
 本発明の三の実施形態は、以下の工程:5-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と;酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と;該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;
を含む、炭酸カルシウムの製造方法であって、
 該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-22%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態は、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガス(二酸化炭素)を吸収させ、炭酸ナトリウム水溶液を得る工程である。水酸化ナトリウムは一般に苛性ソーダとも呼ばれ、市販品を適宜利用することができる。水酸化ナトリウム水溶液は、水酸化ナトリウムを水に溶解して得られるほか、製紙工程で得られる水酸化ナトリウムを含む液体(いわゆる「白液」)を用いることもできる。本工程で用いられる水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、5-21%、好ましくは8-15%とすることができる。本工程で水酸化ナトリウム水溶液の濃度を最大で21%とすることにより、炭酸ガスの吸収効率を向上させることができる。本実施形態において、水酸化ナトリウム水溶液に吸収させる炭酸ガスは、二酸化炭素単独の気体のほか、炭酸ガスと他の気体とを含む混合気体であっても良いものとする。本実施形態で使用する炭酸ガスとして、炭酸ガスを含む排ガスを利用することができる。このような排ガスとして、たとえば、石灰焼成炉、ボイラー、ごみ焼却炉、セメント焼成炉、耐火物加熱炉、製鋼用転炉、製鋼用溶鉱炉、キュポラ、コークスガス発生炉、石炭ガス発生炉、石油分解用炉、ガラス製造反射炉、オイルガス発生炉およびアセチレン発生炉からの排ガスを挙げることができる。水酸化ナトリウム水溶液に炭酸ガスを吸収させると、炭酸ナトリウムが生成する。炭酸ナトリウムの濃度が4-24%になるまで、炭酸ガスを吸収させることができる。なお、本明細書においては特に断らない限り、%は重量%のことである。
 なお、炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、本炭酸ガス吸収工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましい。
 三の実施形態において、水化工程は、酸化カルシウムと濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて石灰乳を得る工程である。ここで石灰乳とは、水酸化カルシウムの水懸濁液(水酸化カルシウム水スラリー)のことである。水化工程に用いる酸化カルシウムは、一般に生石灰とも呼ばれる、カルシウムの酸化体である。酸化カルシウムは市販のものを適宜利用することができる。本工程で酸化カルシウムと反応させる水酸化ナトリウム水溶液の濃度は、0-6%未満である。本工程で得られる水酸化カルシウムは、一般に消石灰とも呼ばれるカルシウムの水酸化物である。水化工程においては、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液を得ることが好ましい。BET比表面積は、日本工業規格JIS Z 8830「ガス吸着による粉体(固体)の比表面積測定方法」(ISO 9277:2010)にしたがい測定することができる。反応させる酸化カルシウムと水酸化ナトリウム水溶液の量や濃度を調整することにより、BET比表面積が5-40m/gの水酸化カルシウムを得ることができる。酸化カルシウムの量に対して水酸化ナトリウム水溶液の量を多くすると、BET比表面積の大きい水酸化カルシウムを得ることができる。反対に酸化カルシウムの量に対して水酸化ナトリウム水溶液の量を少なくすると、BET比表面積の小さい水酸化カルシウムを得ることができる。また、水化工程において、濃度の高すぎる水酸化ナトリウム水溶液を使用すると、得られる水酸化カルシウムのBET比表面積が高くなる傾向があり、所望のBET比表面積を有する水酸化カルシウムが得られない上に、石灰乳の粘度が高くなり取り扱いが困難になる。特に本工程で得られる石灰乳に含まれている水酸化カルシウムのBET比表面積を5-40m/gとすることが、以下に説明する炭酸化工程で得られる炭酸カルシウムの大部分の結晶形を微細な粒子形状とする上で好ましい。なお、水化工程と、上記の炭酸ガス吸収工程とは、並行して同時に行うことができ、炭酸ガス吸収工程に次いで水化工程、あるいは、水化工程に次いで炭酸ガス吸収工程、のように、続けて行うことも可能である。水化工程で適切な範囲のBET比表面積を有する水酸化カルシウムを得ることは、本実施形態にて最終的に所望の形態の炭酸カルシウムを得るために重要である。
 三の実施形態において、炭酸化工程は、水化工程で得られた石灰乳と、炭酸ガス吸収工程で得られた炭酸ナトリウム水溶液とを反応させて、炭酸カルシウムを得る工程である。この工程は、一般に苛性化工程とも呼ばれる。この工程で、石灰乳の固形分濃度は1-6%に調整して用いることが非常に好ましい。特に石灰乳の初期濃度を1-6%、炭酸ナトリウム水溶液の濃度を4-22%として反応させることが好ましい。炭酸ナトリウム水溶液は、前記の炭酸ガス吸収工程で得られた4-24%の濃度の炭酸ナトリウム水溶液の濃度を適宜調整して用いる。この際、炭酸化工程をおこなう反応スケールにもよるが、石灰乳に炭酸ナトリウム水溶液を徐々に添加すること、たとえば、60-180分間、100-150分間等、ある程度の時間をかけて添加することが非常に好ましい。また、炭酸化工程の反応は、反応液を撹拌して行うのが好ましい。好ましくは、石灰乳に炭酸ナトリウム水溶液を徐々に添加してこれらが完全に混合するまでの時間(完全混合時間)が3-25秒間、あるいは5-22秒間となるように撹拌機を調整することができる。反応容器を撹拌する手段として、従来から用いられているプロペラ撹拌機、パドル翼撹拌機、リボン撹拌機、タービン翼撹拌機、馬蹄翼撹拌機、糸巻翼撹拌機、ミキサー撹拌機、磁気撹拌機等を使用することができる。
 初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度9-25℃の範囲で反応させることで、BET比表面積が30-90m/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることができる。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。なお、本明細書で「微細な粒子形状の結晶」とは、たとえばBET比表面積が30m/g以上の微細な一次粒子を構成要素とする結晶を云うものとする。炭酸カルシウムの結晶として、カルサイト結晶、アラゴナイト結晶、バテライト結晶等の構造多形体が知られているが、本実施形態の製造方法で製造される炭酸カルシウムはカルサイト結晶である。微細な粒子形状の結晶は、たとえば単結晶の形状が六面体であり、六面体の対向する少なくとも一対の面が菱形である(六方晶系菱面体格子)結晶構造のものを含んでいる場合がある。
 三の実施形態において、炭酸化工程の反応により生じた炭酸カルシウムを、反応液から分離して、固体の状態で取り出す固液分離工程をさらに含んでいて良い。また固液分離工程で得られた固体の炭酸カルシウムを洗浄液で洗浄する、洗浄工程をさらに含んでいて良い。固液分離工程で得られた炭酸カルシウムは、水で洗浄することが好ましい。固液分離工程において固体の炭酸カルシウムを分離した後に残った液(濾液)と、洗浄工程で得られた使用済み洗浄液は、水酸化ナトリウム水溶液である。この水酸化ナトリウム水溶液を、上記の炭酸ガス吸収工程に再利用することができる。濾液および使用済み洗浄液を炭酸ガス吸収工程に再利用する場合は、水酸化ナトリウムの濃度が5-21%となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、高濃度の水酸化ナトリウム水溶液(5%以上の濃度を有する水酸化ナトリウム水溶液)を添加するか、固体の水酸化ナトリウムを添加するか、もしくは該濾液および使用済み洗浄液を加熱することにより濃縮することにより行う。
 また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
 続いて図1を用いて、本発明の三の実施形態のフローを説明する。図1は、燃焼炉等から排出された排ガス中の炭酸ガスを利用して本発明の実施形態の炭酸カルシウムの製造方法を行うフローを示すものである。図中、1:炭酸ガス吸収工程、2:水化工程、3:炭酸化工程、4:固液分離工程、5:洗浄工程である。燃焼炉等から排出された排ガスは、適宜除塵処理を行い、炭酸ガスを含む精製ガスを得る。一方、製造用水と高濃度の水酸化ナトリウム水溶液とを適宜混合する等の方法により濃度5-21%に調整した水酸化ナトリウム水溶液を用意し、ここに精製ガスを吸収させる(炭酸ガス吸収工程1)。こうして、4-24%の濃度の炭酸ナトリウム水溶液を得る。炭酸ガス吸収工程1では吸収しきれなかった未反応ガスは、矢印10のように戻されて、再度炭酸ガス吸収工程1に使用される。
 一方、酸化カルシウムと水化用水(0-6%未満の濃度の水酸化ナトリウム水溶液)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
 こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
 三の実施形態では、図1の炭酸化工程3にて、石灰乳の初期濃度を1-6%、炭酸ナトリウム水溶液の濃度を4-22%とし、9-25℃の範囲で反応させる。三の実施形態に係る製造方法により、本発明の四の実施形態に係る炭酸カルシウムを得ることができる。四の実施形態に係る炭酸カルシウムは、好ましくは、BET比表面積が30-90m/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムである。
 本発明の三の実施形態の炭酸カルシウムの製造方法によれば、比較的高い濃度の水酸化ナトリウム水溶液に炭酸ガスを効率よく吸収させることができる。この際、炭酸ガスの濃度に関わらず、所望の濃度の炭酸ナトリウム水溶液を得ることができる。また炭酸化工程には所定の初期濃度の炭酸ナトリウム水溶液と、所定の初期固形分濃度の石灰乳とを所定の温度範囲で所定の時間反応させることにより、所望の、微細な粒子形状を有するカルサイト結晶形の炭酸カルシウムを製造することが可能となる。
 本発明の三の実施形態の炭酸カルシウムの製造方法は、炭酸ガスおよび水酸化ナトリウム水溶液を繰り返し再利用することができるので、環境に排出する二酸化炭素ならびに廃液が少なく、環境への負荷を低減することができる。
 本発明の五の実施形態は、以下の工程:13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と;酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と;該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;
を含む、炭酸カルシウムの製造方法であって、
 該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態は、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガス(二酸化炭素)を吸収させ、炭酸ナトリウム水溶液を得る工程である。水酸化ナトリウムは一般に苛性ソーダとも呼ばれ、市販品を適宜利用することができる。水酸化ナトリウム水溶液は、水酸化ナトリウムを水に溶解して得られるほか、製紙工程で得られる水酸化ナトリウムを含む液体(いわゆる「白液」)を用いることもできる。本工程で用いられる水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、13-21%、好ましくは15-20%とすることができる。本工程で水酸化ナトリウム水溶液の濃度を最大で21%とすることにより、炭酸ガスの吸収効率を向上させることができる。本実施形態において、水酸化ナトリウム水溶液に吸収させる炭酸ガスは、二酸化炭素単独の気体のほか、炭酸ガスと他の気体とを含む混合気体であっても良いものとする。本実施形態で使用する炭酸ガスとして、炭酸ガスを含む排ガスを利用することができる。このような排ガスとして、たとえば、石灰焼成炉、ボイラー、ごみ焼却炉、セメント焼成炉、耐火物加熱炉、製鋼用転炉、製鋼用溶鉱炉、キュポラ、コークスガス発生炉、石炭ガス発生炉、石油分解用炉、ガラス製造反射炉、オイルガス発生炉およびアセチレン発生炉からの排ガスを挙げることができる。水酸化ナトリウム水溶液に炭酸ガスを吸収させると、炭酸ナトリウムが生成する。炭酸ナトリウムの濃度が15-24%になるまで、炭酸ガスを吸収させることができる。なお、本明細書においては特に断らない限り、%は重量%のことである。
 なお、炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、炭酸化工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましい。
 五の実施形態において、水化工程は、酸化カルシウムと濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて石灰乳を得る工程である。ここで石灰乳とは、水酸化カルシウムの水懸濁液(水酸化カルシウム水スラリー)のことである。水化工程に用いる酸化カルシウムは、一般に生石灰とも呼ばれる、カルシウムの酸化体である。酸化カルシウムは市販のものを適宜利用することができる。本工程で酸化カルシウムと反応させる水酸化ナトリウム水溶液の濃度は、0-6%未満である。本工程で得られる水酸化カルシウムは、一般に消石灰とも呼ばれるカルシウムの水酸化物である。水化工程においては、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液を得ることが好ましい。BET比表面積は、日本工業規格JIS Z 8830「ガス吸着による粉体(固体)の比表面積測定方法」(ISO 9277:2010)にしたがい測定することができる。反応させる酸化カルシウムと水酸化ナトリウム水溶液の量や濃度を調整することにより、BET比表面積が5-40m/gの水酸化カルシウムを得ることができる。酸化カルシウムの量に対して水酸化ナトリウム水溶液の量を多くすると、BET比表面積の大きい水酸化カルシウムを得ることができる。反対に酸化カルシウムの量に対して水酸化ナトリウム水溶液の量を少なくすると、BET比表面積の小さい水酸化カルシウムを得ることができる。また、水化工程において、濃度の高すぎる水酸化ナトリウム水溶液を使用すると、得られる水酸化カルシウムのBET比表面積が高くなる傾向があり、所望のBET比表面積を有する水酸化カルシウムが得られない上に、石灰乳の粘度が高くなり取り扱いが困難になる。特に本工程で得られる石灰乳に含まれている水酸化カルシウムのBET比表面積を15-40m/gとすることが、以下に説明する炭酸化工程で得られる炭酸カルシウムの大部分の結晶形を紡錘状とする上で好ましい。なお、水化工程と、上記の炭酸ガス吸収工程とは、並行して同時に行うことができ、炭酸ガス吸収工程に次いで水化工程、あるいは、水化工程に次いで炭酸ガス吸収工程、のように、続けて行うことも可能である。水化工程で適切な範囲のBET比表面積を有する水酸化カルシウムを得ることは、本実施形態にて最終的に所望の形態の炭酸カルシウムを得るために重要である。
 五の実施形態において、炭酸化工程は、水化工程で得られた石灰乳と、炭酸ガス吸収工程で得られた炭酸ナトリウム水溶液とを反応させて、炭酸カルシウムを得る工程である。この工程は、一般に苛性化工程とも呼ばれる。この工程で、石灰乳の固形分濃度は11-24%に調整して用いることが非常に好ましい。特に石灰乳の初期濃度を11-19%、炭酸ナトリウム水溶液の濃度を15-24%として反応させることが好ましい。炭酸ナトリウム水溶液は、前記の炭酸ガス吸収工程で得られた15-24%以下の濃度の炭酸ナトリウム水溶液の濃度を適宜調整して用いる。この際、炭酸化工程をおこなう反応スケールにもよるが、石灰乳に炭酸ナトリウム水溶液を徐々に添加すること、たとえば、60-180分間、100-150分間等、ある程度の時間をかけて添加することが非常に好ましい。また、炭酸化工程の反応は、反応液を撹拌して行うのが好ましい。好ましくは、石灰乳に炭酸ナトリウム水溶液を徐々に添加してこれらが完全に混合するまでの時間(完全混合時間)が3-25秒間、あるいは5-22秒間となるように撹拌機を調整することができる。反応容器を撹拌する手段として、従来から用いられているプロペラ撹拌機、パドル翼撹拌機、リボン撹拌機、タービン翼撹拌機、馬蹄翼撹拌機、糸巻翼撹拌機、ミキサー撹拌機、磁気撹拌機等を使用することができる。
 初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度20-40℃の範囲で反応させる。五の実施形態に係る製造方法により、本発明の六の実施形態に係る炭酸カルシウムを得ることができる。六の実施形態に係る炭酸カルシウムは、好ましくはBET比表面積が4-20m/gの紡錘状カルサイト結晶形炭酸カルシウムである。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。
 五の実施形態において、炭酸化工程の反応により生じた炭酸カルシウムを、反応液から分離して、固体の状態で取り出す固液分離工程をさらに含んでいて良い。また固液分離工程で得られた固体の炭酸カルシウムを洗浄液で洗浄する、洗浄工程をさらに含んでいて良い。固液分離工程で得られた炭酸カルシウムは、水で洗浄することが好ましい。固液分離工程において固体の炭酸カルシウムを分離した後に残った液(濾液)と、洗浄工程で得られた使用済み洗浄液は、水酸化ナトリウム水溶液である。この水酸化ナトリウム水溶液を、上記の炭酸ガス吸収工程に再利用することができる。濾液および使用済み洗浄液を炭酸ガス吸収工程に再利用する場合は、水酸化ナトリウムの濃度が13-21%となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、高濃度の水酸化ナトリウム水溶液(13%以上の濃度を有する水酸化ナトリウム水溶液)を添加するか、固体の水酸化ナトリウムを添加するか、もしくは該濾液および使用済み洗浄液を加熱することにより濃縮することにより行う。
 また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
 続いて、本発明の七の実施形態は、以下の工程:13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガス(二酸化炭素)を吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と;酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と;該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;を含む、炭酸カルシウムの製造方法であって、
 該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態も、五の実施形態と同様、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。七の実施形態の炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガスを吸収させ、炭酸ナトリウム水溶液を得る工程であり、上記の五の実施形態の炭酸ガス吸収工程と全く同様に行うことができる。
 炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、炭酸化工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましいことも、上記の五の実施形態と同様である。
 七の実施工程において、水化工程は、酸化カルシウムと濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて石灰乳を得る工程である。七の実施形態の水化工程は、上記の五の実施形態の炭酸ガス吸収工程と全く同様に行うことができる。なお、七の実施形態においても、水化工程と、上記の炭酸ガス吸収工程とは、並行して同時に行うことができ、炭酸ガス吸収工程に次いで水化工程、あるいは、水化工程に次いで炭酸ガス吸収工程、のように、続けて行うことも可能である。特に本工程で得られる石灰乳に含まれている水酸化カルシウムのBET比表面積を5-20m/gとすることが、以下に説明する炭酸化工程で得られる炭酸カルシウムの大部分の結晶形を針状アラゴナイトとする上で好ましい。水化工程で適切な範囲のBET比表面積を有する水酸化カルシウムを得ることは、本実施形態にて最終的に所望の形態の炭酸カルシウムを得るために重要である。
 七の実施形態において、炭酸化工程は、水化工程で得られた石灰乳と、炭酸ガス吸収工程で得られた炭酸ナトリウム水溶液とを反応させて、炭酸カルシウムを得る工程である。この工程は、一般に苛性化工程とも呼ばれる。この工程で、石灰乳の固形分濃度は11-24%に調整して用いることが非常に好ましい。特に石灰乳の初期濃度を11-24%、炭酸ナトリウム水溶液の濃度を15-24%として反応させることが好ましい。炭酸ナトリウム水溶液は、前記の炭酸ガス吸収工程で得られた15-24%以下の濃度の炭酸ナトリウム水溶液の濃度を適宜調整して用いる。この際、炭酸化工程をおこなう反応スケールにもよるが、石灰乳に炭酸ナトリウム水溶液を徐々に添加すること、たとえば、60-180分間、100-150分間等、ある程度の時間をかけて添加することが非常に好ましい。また、炭酸化工程の反応は、反応液を撹拌して行うのが好ましい。好ましくは、石灰乳に炭酸ナトリウム水溶液を徐々に添加してこれらが完全に混合するまでの時間(完全混合時間)が3-25秒間、あるいは5-22秒間となるように撹拌機を調整することができる。反応容器を撹拌する手段として、従来から用いられているプロペラ撹拌機、パドル翼撹拌機、リボン撹拌機、タービン翼撹拌機、馬蹄翼撹拌機、糸巻翼撹拌機、ミキサー撹拌機、磁気撹拌機等を使用することができる。
 初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度40-80℃の範囲で反応させる。七の実施形態に係る製造方法により、本発明の八の実施形態に係る炭酸カルシウムを得ることができる。八の実施形態に係る炭酸カルシウムは、好ましくはBET比表面積が3-10m/gの針状アラゴナイト結晶形炭酸カルシウムである。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。また、針状アラゴナイト結晶を多く含む炭酸カルシウムを製造すべく、水酸化カルシウムのBET比表面積を上記のように調整した場合、炭酸化工程の反応温度を高くすると、アラゴナイト結晶(針状)の形状が太くなる傾向がある。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。
 七の実施形態において、炭酸化工程の反応により生じた炭酸カルシウムを、反応液から分離して、固体の状態で取り出す固液分離工程をさらに含んでいて良い。また固液分離工程で得られた固体の炭酸カルシウムを洗浄液で洗浄する、洗浄工程をさらに含んでいて良い。固液分離工程で得られた炭酸カルシウムは、水で洗浄することが好ましい。固液分離工程において固体の炭酸カルシウムを分離した後に残った液(濾液)と、洗浄工程で得られた使用済み洗浄液は、水酸化ナトリウム水溶液である。この水酸化ナトリウム水溶液を、上記の炭酸ガス吸収工程に再利用することができる。濾液および使用済み洗浄液を炭酸ガス吸収工程に再利用する場合は、水酸化ナトリウムの濃度が13-21%となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、高濃度の水酸化ナトリウム水溶液(13%以上の濃度を有する水酸化ナトリウム水溶液)を添加するか、固体の水酸化ナトリウムを添加するか、もしくは該濾液および使用済み洗浄液を加熱することにより濃縮することにより行う。
 また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
 続いて図1を用いて、本発明の五および七の実施形態のフローを説明する。図1は、燃焼炉等から排出された排ガス中の炭酸ガスを利用して本発明の一および二の実施形態の炭酸カルシウムの製造方法を行うフローを示すものである。図中、1:炭酸ガス吸収工程、2:水化工程、3:炭酸化工程、4:固液分離工程、5:洗浄工程である。燃焼炉等から排出された排ガスは、適宜除塵処理を行い、炭酸ガスを含む精製ガスを得る。一方、製造用水と高濃度の水酸化ナトリウム水溶液とを適宜混合する等の方法により濃度13-21%に調整した水酸化ナトリウム水溶液を用意し、ここに精製ガスを吸収させる(炭酸ガス吸収工程1)。こうして、15-24%以下の濃度の炭酸ナトリウム水溶液を得る。炭酸ガス吸収工程1では吸収しきれなかった未反応ガスは、矢印10のように戻されて、再度炭酸ガス吸収工程1に使用される。
 一方、酸化カルシウムと水化用水(0-6%未満の濃度の水酸化ナトリウム水溶液)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
 こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
 五の実施形態は、図1の炭酸化工程3にて、石灰乳の初期濃度を11-19%、炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させる。これにより、BET比表面積が4-20m/gの紡錘状カルサイト結晶形炭酸カルシウム(六の実施形態)を得ることができる。一方、七の実施形態は、図1の炭酸化工程3にて、石灰乳の初期濃度を11-24%、炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させる。これにより、BET比表面積が3-10m/gの針状アラゴナイト結晶形炭酸カルシウム(八の実施形態)を得ることができる。
 本発明の実施形態の炭酸カルシウムの製造方法によれば、比較的高い濃度の水酸化ナトリウム水溶液に炭酸ガスを効率よく吸収させることができる。この際、炭酸ガスの濃度に関わらず、所望の濃度の炭酸ナトリウム水溶液を得ることができる。また炭酸化工程では所定の初期濃度の炭酸ナトリウム水溶液と、所定の初期固形分濃度の石灰乳とを所定の温度範囲で所定の時間反応させることにより、所望の形状の炭酸カルシウムを製造することが可能となる。
 本発明の実施形態の炭酸カルシウムの製造方法は、炭酸ガスおよび水酸化ナトリウム水溶液を繰り返し再利用することができるので、環境に排出する二酸化炭素ならびに廃液が少なく、環境への負荷を低減することができる。
以下、本発明の実施例を説明する。
[実施例1:微細な粒子形状カルサイト結晶形炭酸カルシウムの合成]
 (1)炭酸ガス吸収工程
 濃度11.8%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度14.8%の炭酸ナトリウム水溶液423kgを得た。
 (2)水化工程
 水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m/gであった。石灰乳の濃度を調整して、固形分濃度5.0%の石灰乳を553kg得た。
 (3)炭酸化工程
 水化工程で得られた553kgをプロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液423kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が20秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は15℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を49kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ、20nm程度の微細な粒子形状の粒子が連鎖状に連なる形状をしていた。図2は、この実施例1で得られた炭酸カルシウムの電子顕微鏡写真(倍率:30000倍)である。この微細な粒子形状を有する炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、60.0m/gであった(表1、炭酸化工程反応温度15℃の行、炭酸ナトリウム水溶液濃度15%の列)。
 [微細な粒子形状カルサイト結晶形炭酸カルシウムのその他の合成例]
 実施例1において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例1の水化工程で得られた固形分濃度5.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を10℃/15℃/20℃として、炭酸化工程を行った。各合成例の結果を以下の表1に記載する。
Figure JPOXMLDOC01-appb-T000001
 
 表1は、各合成例にて生成した炭酸カルシウムの結晶形状とBET比表面積とを記載したものである。たとえば、実施例1は、表1の炭酸化工程反応温度15℃の行、炭酸ナトリウム水溶液濃度15%の列の「微細 60」に記載されている。実施例1の方法でBET比表面積60m/g(表中のBET比表面積の値は、実測値を四捨五入した値)の微細な粒子形状を有するカルサイト結晶形の炭酸カルシウムが得られたという意味である。また表1中、「-」は、当該条件では炭酸ナトリウム水溶液から炭酸ナトリウムが析出するため、規定の条件での反応が難しかったことを意味する。
 表1に示されている通り、本発明の方法で、炭酸化工程の初期石灰乳の固形分濃度、炭酸ナトリウム水溶液濃度、および反応温度を調整することにより、所望の結晶形状とBET比表面積とを有する炭酸カルシウムを作ることができる。
 [実施例2:紡錘状カルサイト結晶形炭酸カルシウムの合成(1)]
 (1)炭酸ガス吸収工程
 濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
 (2)水化工程
 水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
 (3)炭酸化工程
 水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は25℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ紡錘状形状をしていた。図3は、実施例2で得られた炭酸カルシウムの電子顕微鏡写真(倍率20000倍)である。この紡錘状カルサイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、5.9m/gであった。(表2、炭酸化工程反応温度25℃の行、炭酸ナトリウム水溶液濃度16%の列)
 [実施例3:針状アラゴナイト結晶形炭酸カルシウムの合成(1)]
 (1)炭酸ガス吸収工程
 濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
 (2)水化工程
 水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
 (3)炭酸化工程
 水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は50℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図4は、実施例3で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、6.3m/gであった。(表2、炭酸化工程反応温度50℃の行、炭酸ナトリウム水溶液濃度16%の列)
 [実施例4:針状アラゴナイト結晶形炭酸カルシウムの合成(2)]
 (1)炭酸ガス吸収工程
 濃度15.6%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度19.0%の炭酸ナトリウム水溶液666kgを得た。
 (2)水化工程
 水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m/gであった。石灰乳の濃度を調整して、固形分濃度20.0%の石灰乳を366kg得た。
 (3)炭酸化工程
 水化工程で得られた366kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液666kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は50℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を99kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図5は、実施例4で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、8.5m/gであった。(表3、炭酸化工程反応温度50℃の行、炭酸ナトリウム水溶液濃度19%の列)
 [実施例5:針状アラゴナイト結晶形炭酸カルシウムの合成(3)]
 (1)炭酸ガス吸収工程
 濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
 (2)水化工程
 水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
 (3)炭酸化工程
 水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は80℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図6は、実施例5で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、3.4m/gであった。(表2、炭酸化工程反応温度80℃の行、炭酸ナトリウム水溶液濃度16%の列)
 [紡錘状カルサイト結晶形炭酸カルシウムのその他の合成例]
 実施例1において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例1の水化工程で得られた固形分濃度15.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を20℃/25℃/40℃として、炭酸化工程を行った。各合成例の結果を以下の表2に記載する。
 [針状アラゴナイト結晶形炭酸カルシウムのその他の合成例]
 実施例2において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例2の水化工程で得られた固形分濃度15.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を50℃/65℃/70℃/80℃として、炭酸化工程を行った。各合成例の結果を以下の表2に記載する。
 また、実施例4において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例3の水化工程で得られた固形分濃度20.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を40℃/50℃/60℃/70℃/80℃として、炭酸化工程を行った。各合成例の結果を以下の表3に記載する。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表2、表3は、各合成例にて生成した炭酸カルシウムの結晶形状とBET比表面積とを記載したものである。たとえば、実施例2は、表2の炭酸化工程反応温度25℃の行、炭酸ナトリウム水溶液濃度19%の列の「紡錘状 6」に記載されている。実施例2の方法でBET比表面積6m/g(表中のBET比表面積の値は、実測値を四捨五入した値)の紡錘状カルサイト結晶形の炭酸カルシウムが得られたという意味である。また表2、表3中、「-」は、当該条件では炭酸ナトリウム水溶液から炭酸ナトリウムが析出するため、規定の条件での反応が難しかったことを意味する。
 表2、表3に示されている通り、本発明の方法で、炭酸化工程の初期石灰乳の固形分濃度、炭酸ナトリウム水溶液濃度、および反応温度を調整することにより、所望の結晶形状とBET比表面積とを有する炭酸カルシウムを作り分けることができる。
 本発明の方法は、比較的高濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させるので、炭酸ガスを効率よく用いることができる。本発明の方法により、針状結晶、および紡錘状結晶の炭酸カルシウムを製造することができた。炭酸化工程における石灰乳と炭酸ナトリウム水溶液の濃度、反応温度ならびに反応時間、混合時間等を変えることにより、所望の結晶形を有する炭酸カルシウムを作り分けることができる。本発明の方法は、炭酸ガスや、濾液等を再利用するので、環境に与える負荷を総体的に低減することができる。
 本発明の方法により製造した炭酸カルシウムは、特に、シーリング材、接着剤、ゴム組成物、プラスチック組成物および紙等の充填剤として利用されるほか、紙塗工用顔料ならびに塗料やインキ用の顔料として広く用いることができる。

Claims (23)

  1.  以下の工程:
     5-21%の濃度の水酸化ナトリウム水溶液に、炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る、炭酸ガス吸収工程と;
     酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る、水化工程と;
     該石灰乳に、該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;
    を含む、炭酸カルシウムの製造方法。
  2.  該炭酸化工程において、該石灰乳の固形分濃度を1-24%に調整し、該固形分濃度を調整した石灰乳に、該炭酸ナトリウム水溶液を添加して、温度9-80℃で反応させる、請求項1に記載の製造方法。
  3.  該炭酸化工程の後に、水酸化ナトリウムを含む濾液と、炭酸カルシウムとに分離する、固液分離工程をさらに含む、請求項1または2に記載の製造方法。
  4.  該水酸化ナトリウムを含む濾液の水酸化ナトリウムの濃度を5-21%に調整し、該炭酸ガス吸収工程に再利用する、請求項3に記載の製造方法。
  5.  請求項1~4のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
  6.  以下の工程:
     5-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
     酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
     該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
    を含む、炭酸カルシウムの製造方法であって、
     該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-24%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。
  7.  該炭酸ガス吸収工程において利用されなかった炭酸ガスを再度該炭酸ガス吸収工程に使用する、請求項6に記載の製造方法。
  8.  該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
     該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
    をさらに含む、請求項6または7のいずれかに記載の製造方法。
  9.  該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを5-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項8に記載の製造方法。
  10.  該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項8または9に記載の製造方法。
  11.  請求項6~10のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
  12.  以下の工程:
     13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
     酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
     該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
    を含む、炭酸カルシウムの製造方法であって、
     該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。
  13.  該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用する、請求項12に記載の製造方法。
  14.  該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
     該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
    をさらに含む、請求項12または13のいずれかに記載の製造方法。
  15.  該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項14に記載の製造方法。
  16.  該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項14または15に記載の製造方法。
  17.  請求項12~16のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
  18.  以下の工程:
     13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
     酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
     該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
    を含む、炭酸カルシウムの製造方法であって、
     該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。
  19.  該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用する、請求項18に記載の製造方法。
  20.  該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
     該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
    をさらに含む、請求項18または19に記載の製造方法。
  21.  該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項20に記載の製造方法。
  22.  該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項20または21に記載の製造方法。
  23.  請求項18~22のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
PCT/JP2021/048281 2020-12-28 2021-12-24 炭酸カルシウムの製造方法、および炭酸カルシウム WO2022145380A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/014,356 US20230271845A1 (en) 2020-12-28 2021-12-24 Method for producing calcium carbonate and calcium carbonate
CN202180078622.4A CN116528963A (zh) 2020-12-28 2021-12-24 碳酸钙的制造方法及碳酸钙
EP21915240.2A EP4269347A1 (en) 2020-12-28 2021-12-24 Method for producing calcium carbonate, and calcium carbonate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-218308 2020-12-28
JP2020218308A JP6970469B1 (ja) 2020-12-28 2020-12-28 炭酸カルシウムの製造方法
JP2021-180957 2021-11-05
JP2021180957A JP7089311B1 (ja) 2021-11-05 2021-11-05 炭酸カルシウムの製造方法
JP2021-180950 2021-11-05
JP2021180950A JP7089310B1 (ja) 2021-11-05 2021-11-05 炭酸カルシウムの製造方法

Publications (1)

Publication Number Publication Date
WO2022145380A1 true WO2022145380A1 (ja) 2022-07-07

Family

ID=82259433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048281 WO2022145380A1 (ja) 2020-12-28 2021-12-24 炭酸カルシウムの製造方法、および炭酸カルシウム

Country Status (3)

Country Link
US (1) US20230271845A1 (ja)
EP (1) EP4269347A1 (ja)
WO (1) WO2022145380A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651423A (zh) * 2022-08-25 2023-01-31 江西华明纳米碳酸钙有限公司 一种表面改性纳米碳酸钙及其制备方法
CN116253350A (zh) * 2023-03-24 2023-06-13 中国科学院兰州化学物理研究所 一种二氧化碳捕集原位循环利用制备纳米碳酸钙的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219541A (en) * 1991-07-23 1993-06-15 Tenneco Minerals Company Sodium hydroxide production with a calcium carbonate seed crystal
JP2001199720A (ja) * 2000-01-18 2001-07-24 Nippon Paper Industries Co Ltd 炭酸カルシウムの製造方法
JP2002293537A (ja) 2001-04-02 2002-10-09 Okutama Kogyo Co Ltd 炭酸カルシウムの製造方法
JP2007070164A (ja) * 2005-09-07 2007-03-22 Nittetsu Mining Co Ltd シリカ−炭酸カルシウム複合粒子の製造方法、該複合粒子又はそれを含有する顔料、填料もしくは紙
JP2019048270A (ja) * 2017-09-11 2019-03-28 住友大阪セメント株式会社 排水の処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5219541A (en) * 1991-07-23 1993-06-15 Tenneco Minerals Company Sodium hydroxide production with a calcium carbonate seed crystal
JP2001199720A (ja) * 2000-01-18 2001-07-24 Nippon Paper Industries Co Ltd 炭酸カルシウムの製造方法
JP2002293537A (ja) 2001-04-02 2002-10-09 Okutama Kogyo Co Ltd 炭酸カルシウムの製造方法
JP2007070164A (ja) * 2005-09-07 2007-03-22 Nittetsu Mining Co Ltd シリカ−炭酸カルシウム複合粒子の製造方法、該複合粒子又はそれを含有する顔料、填料もしくは紙
JP2019048270A (ja) * 2017-09-11 2019-03-28 住友大阪セメント株式会社 排水の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115651423A (zh) * 2022-08-25 2023-01-31 江西华明纳米碳酸钙有限公司 一种表面改性纳米碳酸钙及其制备方法
CN115651423B (zh) * 2022-08-25 2023-10-13 江西华明纳米碳酸钙有限公司 一种表面改性纳米碳酸钙及其制备方法
CN116253350A (zh) * 2023-03-24 2023-06-13 中国科学院兰州化学物理研究所 一种二氧化碳捕集原位循环利用制备纳米碳酸钙的方法

Also Published As

Publication number Publication date
EP4269347A1 (en) 2023-11-01
US20230271845A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2022145380A1 (ja) 炭酸カルシウムの製造方法、および炭酸カルシウム
KR101759765B1 (ko) 고순도 침전형 탄산칼슘의 제조
MX2012011318A (es) Proceso para obtener carbonato de calcio precipitado.
US8658119B2 (en) Production and/or recovery of products from waste sludge
JP6970469B1 (ja) 炭酸カルシウムの製造方法
WO2008066065A1 (fr) Carbonate de calcium léger, son procédé de fabrication et papier d'impression le contenant
JP7089311B1 (ja) 炭酸カルシウムの製造方法
KR20210141141A (ko) 굴 패각을 이용한 바테라이트형 탄산칼슘 제조 방법
JP2010077009A (ja) 炭酸カルシウムの製造方法
JP2011225390A (ja) 紡錘状軽質炭酸カルシウムの製造方法
JP7089310B1 (ja) 炭酸カルシウムの製造方法
CN1053642C (zh) 一种碳酸钙的制备方法
JP5320242B2 (ja) 炭酸カルシウムの製造方法
JP2005139012A (ja) 針状炭酸カルシウムの製造方法
CN110963520A (zh) 一种石灰沫生产立方形碳酸钙的方法
JP2001270713A (ja) アラゴナイト結晶系炭酸カルシウムの製造方法
WO2024075541A1 (ja) 炭酸カルシウムの製造方法、炭酸カルシウムおよび抄紙用填料
CN108793193A (zh) 一种硫脲生产废渣制备石灰氮的方法
JP2011046554A (ja) 針状軽質炭酸カルシウムの製造方法
JP4813075B2 (ja) アラゴナイト系針状炭酸カルシウムの製造方法
JP2024031279A (ja) 高い隠ぺい性を有する炭酸カルシウムの製造方法及び製造システム
CN117003274A (zh) 一种利用高炉煤气制纳米碳酸钙的方法
JP2024031278A (ja) 高い隠ぺい性を有する塗料用炭酸カルシウム及び当該炭酸カルシウムを配合した高い隠ぺい性を有する塗料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078622.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021915240

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021915240

Country of ref document: EP

Effective date: 20230728