WO2022145380A1 - 炭酸カルシウムの製造方法、および炭酸カルシウム - Google Patents
炭酸カルシウムの製造方法、および炭酸カルシウム Download PDFInfo
- Publication number
- WO2022145380A1 WO2022145380A1 PCT/JP2021/048281 JP2021048281W WO2022145380A1 WO 2022145380 A1 WO2022145380 A1 WO 2022145380A1 JP 2021048281 W JP2021048281 W JP 2021048281W WO 2022145380 A1 WO2022145380 A1 WO 2022145380A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concentration
- carbon dioxide
- aqueous solution
- calcium carbonate
- sodium hydroxide
- Prior art date
Links
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 title claims abstract description 446
- 229910000019 calcium carbonate Inorganic materials 0.000 title claims abstract description 209
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 90
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 531
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 446
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims abstract description 264
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 223
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 223
- 229910000029 sodium carbonate Inorganic materials 0.000 claims abstract description 132
- 239000008267 milk Substances 0.000 claims abstract description 118
- 210000004080 milk Anatomy 0.000 claims abstract description 118
- 235000013336 milk Nutrition 0.000 claims abstract description 118
- 238000010521 absorption reaction Methods 0.000 claims abstract description 115
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 66
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 66
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 52
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 48
- 239000000292 calcium oxide Substances 0.000 claims abstract description 45
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims abstract description 42
- 230000036571 hydration Effects 0.000 claims abstract description 33
- 238000006703 hydration reaction Methods 0.000 claims abstract description 33
- 239000000725 suspension Substances 0.000 claims abstract description 29
- 239000007864 aqueous solution Substances 0.000 claims description 199
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 120
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 120
- 239000004571 lime Substances 0.000 claims description 120
- 238000006243 chemical reaction Methods 0.000 claims description 97
- 239000007788 liquid Substances 0.000 claims description 92
- 239000000243 solution Substances 0.000 claims description 92
- 238000005406 washing Methods 0.000 claims description 63
- 239000000706 filtrate Substances 0.000 claims description 52
- 238000000926 separation method Methods 0.000 claims description 51
- 239000007787 solid Substances 0.000 claims description 51
- 238000004140 cleaning Methods 0.000 claims description 31
- 229910021532 Calcite Inorganic materials 0.000 claims description 21
- 239000010419 fine particle Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 10
- 239000011575 calcium Substances 0.000 abstract description 10
- 229910052791 calcium Inorganic materials 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 208
- 235000011121 sodium hydroxide Nutrition 0.000 description 152
- 235000011116 calcium hydroxide Nutrition 0.000 description 61
- 235000012255 calcium oxide Nutrition 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 36
- 239000013078 crystal Substances 0.000 description 31
- 238000002156 mixing Methods 0.000 description 13
- 238000003763 carbonization Methods 0.000 description 11
- 238000000635 electron micrograph Methods 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000002485 combustion reaction Methods 0.000 description 9
- 238000010304 firing Methods 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 238000003756 stirring Methods 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- 238000009628 steelmaking Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000007900 aqueous suspension Substances 0.000 description 4
- 239000003518 caustics Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000002309 gasification Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000003034 coal gas Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000007865 diluting Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000011514 reflex Effects 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/181—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/72—Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/182—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F11/00—Compounds of calcium, strontium, or barium
- C01F11/18—Carbonates
- C01F11/182—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
- C01F11/183—Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds the additive being an organic compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F5/00—Compounds of magnesium
- C01F5/24—Magnesium carbonates
Definitions
- the present invention relates to a method for synthesizing calcium carbonate using flue exhaust gas from a combustion furnace or the like.
- the present invention relates to a method for producing calcite crystalline calcium carbonate having a fine particle shape.
- the present invention relates to a method for producing a spindle-shaped calcite crystal type or a needle-shaped aragonite crystal type calcium carbonate. That is, the present invention relates to a method for producing calcium carbonate having various shapes by changing the production conditions.
- the present invention relates to calcium carbonate produced by these production methods.
- a carbon dioxide gasification method in which carbon dioxide gas is blown into lime milk to carbonate it.
- the carbon dioxide gas used in the carbon dioxide gasification method the flue exhaust gas of the lime firing furnace installed in the vicinity of the calcium carbonate production plant is often used.
- exhaust gas from boilers, waste incinerators, etc. can also be used as a source of carbon dioxide gas.
- Patent Document 1 a sodium hydroxide (sodium hydroxide) aqueous solution absorbs carbon dioxide gas to form sodium carbonate (sodium carbonate), and the sodium carbonate and lime milk (calcium hydroxide aqueous suspension) are reacted to produce calcium carbonate.
- the method of manufacture is disclosed.
- the carbon dioxide gas concentration is non-uniform, it can be absorbed into the caustic soda aqueous solution, and the carbon dioxide gas can be stored. Therefore, it is possible to install a calcium carbonate production plant in a place away from the place where carbon dioxide gas is generated.
- the solubility of sodium carbonate in water is much higher than that of carbon dioxide gas, and its solubility does not decrease even at high temperatures, so that calcium carbonate can be produced under high temperature and high concentration conditions. If the carbon dioxide gas that was not used in the reaction by the carbon dioxide gasification method described above can be recovered with the caustic soda aqueous solution, the amount of carbon dioxide gas released to the atmosphere can be expected to be reduced.
- an object of the present invention is to produce calcium carbonate having a controlled form while efficiently utilizing carbon dioxide gas. Specifically, an object of the present invention is to efficiently produce calcite crystalline calcium carbonate having a fine particle shape by using exhaust gas or the like in some cases.
- carbon dioxide gas that was not used in the carbon dioxide gas absorption step is reused in the carbon dioxide gas absorption step, and hydroxylation contained in the filtrate and used cleaning liquid obtained in the calcium carbonate production step.
- the second purpose is to recirculate sodium in the carbon dioxide absorption process and the liquefaction process and reuse it.
- the present invention makes it possible to absorb carbon dioxide gas in exhaust gas from a combustion furnace or the like installed in a place other than the place where calcium carbonate is manufactured into an aqueous solution of sodium hydroxide and transport it as sodium carbonate to the place where it is manufactured for use.
- the third purpose is to contribute to the improvement of global warming by suppressing the amount of carbon dioxide released into the environment as a whole by implementing the invention.
- One aspect of the present invention is the following step: a carbon dioxide gas absorption step in which a sodium hydroxide aqueous solution having a concentration of 5-21% absorbs carbon dioxide gas to obtain a sodium carbonate aqueous solution having a concentration of 4-24%; A hydration step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- the present invention relates to a method for producing calcium carbonate, which comprises a carbonization step of adding and reacting the sodium carbonate aqueous solution with the lime milk.
- the solid content concentration of the lime milk is adjusted to 1-24%, and the sodium carbonate aqueous solution is added to the lime milk whose solid content concentration is adjusted and reacted at a temperature of 9-80 ° C. Can be done.
- a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate may be further included.
- the concentration of sodium hydroxide in the filtrate containing sodium hydroxide may be adjusted to 5-21% and reused in the carbon dioxide gas absorption step.
- the second aspect of the present invention is calcium carbonate produced by the method for producing calcium carbonate according to the above one aspect.
- three aspects of the present invention include the following steps: a carbon dioxide absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 5-21% to obtain a sodium carbonate aqueous solution having a concentration of 4-24% or less.
- the present invention relates to a method for producing calcium carbonate, including.
- the initial concentration of the lime milk was set to 1-6%
- the concentration of the sodium carbonate aqueous solution was set to 4-22%
- the reaction was carried out in the range of 9-25 ° C. It is characterized by obtaining calcium carbonate crystalline calcium carbonate having a fine particle shape with a BET specific surface area of 30-90 m 2 / g.
- the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
- a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
- a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. This can be concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 5-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
- An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
- the fourth aspect of the present invention is calcium carbonate produced by the method for producing calcium carbonate according to the above three aspects.
- the present invention relates to a method for producing calcium carbonate, including.
- the initial concentration of the lime milk is 11-19%
- the concentration of the sodium carbonate aqueous solution is 15-24%
- the reaction is carried out in the range of 20-40 ° C. It is characterized by obtaining spindle-shaped calcium carbonate crystalline calcium carbonate having a BET specific surface area of 4-20 m 2 / g.
- the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
- a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
- a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. Thereby, it is concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 13-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
- An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
- Six aspects of the present invention are calcium carbonate produced by the production method according to the above five aspects of calcium carbonate.
- the present invention relates to a method for producing calcium carbonate, including.
- the initial concentration of the lime milk is 11-24%
- the concentration of the sodium carbonate aqueous solution is 15-24%
- the reaction is carried out in the range of 40-80 ° C. It is characterized by obtaining acicular aragonite crystalline calcium carbonate having a BET specific surface area of 3-10 m 2 / g.
- the carbon dioxide gas that was not used in the carbon dioxide gas absorption step can be used again in the carbon dioxide gas absorption step.
- a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate After the carbonation step, a solid-liquid separation step of separating the filtrate containing sodium hydroxide and calcium carbonate, A washing step of washing the calcium carbonate obtained in the solid-liquid separation step with a washing liquid, and Can be further included.
- a high-concentration sodium hydroxide aqueous solution is added to the filtrate obtained in the solid-liquid separation step and the used cleaning solution obtained in the cleaning step, or the filtrate and the used cleaning solution are heated. Thereby, it is concentrated to obtain an aqueous solution containing sodium hydroxide at a concentration of 13-21%, and the aqueous solution can be used in the carbon dioxide gas absorption step.
- An aqueous solution obtained by adjusting the filtrate obtained in the solid-liquid separation step and the used washing solution obtained in the washing step so that the concentration of sodium hydroxide is less than 6% is obtained, and the aqueous solution is hydrated. It is also preferable to use it in the process.
- Eight aspects of the present invention are calcium carbonate produced by the method for producing calcium carbonate according to the above seven aspects.
- the present invention by preparing a sodium carbonate aqueous solution and sodium hydroxide in a high concentration in the process as compared with the conventional method, and by using a calcium hydroxide slurry having a higher concentration as compared with the conventional method, it is efficient. Calcium carbonate having a desired particle shape can be continuously obtained.
- the amount of carbon dioxide gas generated during manufacturing and the amount of alkaline waste liquid containing sodium hydroxide released during the process can be reduced. It can be suppressed and the burden on the environment can be reduced.
- FIG. 1 is a flow chart illustrating the manufacturing method of the present invention.
- FIG. 2 is an electron micrograph (magnification: 30,000 times) of calcium carbonate obtained in Example 1 in which fine particle-shaped particles are connected in a chain.
- FIG. 3 is an electron micrograph (magnification: 20000 times) of spindle-shaped calcium carbonate obtained in Example 2.
- FIG. 4 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 3.
- FIG. 5 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 4.
- FIG. 6 is an electron micrograph (magnification: 10000 times) of needle-shaped calcium carbonate obtained in Example 5.
- One embodiment of the present invention comprises the following step: a carbon dioxide gas absorption step of absorbing carbon dioxide gas into a 5-21% concentration sodium hydroxide aqueous solution to obtain a 6-24% sodium carbonate aqueous solution.
- a method for producing calcium carbonate which comprises a step; a carbonization step of adding the sodium carbonate aqueous solution to the lime milk and reacting with the lime milk.
- the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
- the carbon dioxide absorption step is a step of absorbing carbon dioxide gas with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
- Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
- the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid”) obtained in the papermaking process.
- the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 5-21%, preferably 8-19%, more preferably 13-18%.
- concentration of the sodium hydroxide aqueous solution By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
- the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
- exhaust gas containing carbon dioxide gas can be used as the carbon dioxide gas used in this embodiment.
- Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
- Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
- Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate is 4-24%, preferably 10.2-22.8%, more preferably 16.1-21.6%. In the present specification,% means% by weight unless otherwise specified.
- the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
- Lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
- Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
- the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
- the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
- the liquefaction step it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
- ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
- the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue. Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
- the carbonization step is a step of reacting the lime milk obtained in the hydration step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
- This process is also commonly referred to as the caustic process.
- it is very preferable to adjust the solid content concentration of lime milk to 1-24% before use.
- the sodium carbonate aqueous solution is added to the lime milk having a solid content concentration adjusted in the above range, the amount of sodium carbonate present in the sodium carbonate aqueous solution is relative to the amount of calcium hydroxide present in the lime milk. It is preferable to add an aqueous sodium carbonate solution so that the molar ratio is 0.9-1.5.
- an aqueous sodium carbonate solution having a concentration of 4-24% is added.
- Sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step and adjusted in concentration as needed can be added to lime milk having a solid content concentration and reacted at a temperature of 9-80 ° C or 10-55 ° C. preferable. If the reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases.
- the shape of the aragonite crystals becomes thicker when the reaction temperature of the carbonation step is increased. Tend to be.
- the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
- the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
- a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
- the reaction solution (filament) remaining after separating the solid calcium carbonate is an aqueous solution of sodium hydroxide, which can be reused in the above-mentioned carbon dioxide gas absorption step.
- the concentration of sodium hydroxide it is preferable to adjust the concentration of sodium hydroxide to 5-21%, preferably 8-19%, more preferably 13-18%.
- the calcium carbonate according to the second embodiment of the present invention obtained by the production method according to the first embodiment may have a crystal form such as a calcite crystal, an aragonite crystal, or a vaterite crystal.
- various crystalline forms of calcium carbonate can be produced by changing the concentration, temperature, and the like.
- the obtained calcium carbonate particles may have various shapes such as a substantially cubic shape, a spindle shape, a needle shape, a shape in which microspherical crystals are connected, and the like, in addition to the spherical shape.
- FIG. 1 shows a flow in which a method for producing calcium carbonate according to an embodiment of the present invention is carried out using carbon dioxide gas in an exhaust gas discharged from a combustion furnace or the like.
- 1 carbon dioxide gas absorption step
- 2 hydration step
- 3 carbonation step
- 4 solid-liquid separation step
- 5 cleaning step.
- Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
- a sodium hydroxide aqueous solution adjusted to a concentration of 5-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
- carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 4-24% is obtained.
- the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
- calcium oxide and water for hydration (referring to an aqueous solution of sodium hydroxide having a concentration of less than 0-6%) are prepared and reacted with each other (hydration step 2), and if necessary, a classification operation is performed.
- a classification operation is performed.
- purified lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- carbonation step 3 calcium carbonate is produced.
- the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
- the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
- the initial concentration of lime milk is 1-24%
- the concentration of the aqueous sodium carbonate solution is preferably 4-24%
- the reaction is carried out in the range of 9-80 ° C. ..
- carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
- a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
- a sodium carbonate aqueous solution having a predetermined concentration and lime milk having a solid content concentration are reacted at a predetermined temperature for a predetermined time to form a desired shape. It becomes possible to produce calcium carbonate.
- the sodium hydroxide aqueous solution which is an absorbent of carbon dioxide gas can be repeatedly reused, the amount of waste liquid is small and the burden on the environment can be reduced.
- the three embodiments of the present invention include the following steps: a carbon dioxide gas absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 5-21% to obtain a sodium carbonate aqueous solution having a concentration of 4-24%; oxidation.
- the sodium carbonate aqueous solution obtained in the carbon dioxide absorption step is added to the lime milk and reacted.
- the production method is characterized by obtaining calcite crystalline calcium carbonate having a fine particle shape of / g.
- the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
- the carbon dioxide absorption step is a step of absorbing carbon dioxide (carbon dioxide) with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
- Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
- the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid") obtained in the papermaking process.
- the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 5-21%, preferably 8-15%. By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
- the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
- exhaust gas containing carbon dioxide gas can be used.
- Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
- Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
- Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate reaches 4-24%. In the present specification,% means% by weight unless otherwise specified. From the viewpoint of environmental conservation, carbon dioxide gas that was not used in the carbon dioxide gas absorption step is not released into the atmosphere as it is, but is reused so that it can be absorbed by the sodium hydroxide aqueous solution in this carbon dioxide gas absorption step. Very preferable.
- the liquefaction step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
- lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
- Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
- the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
- the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
- a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
- ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
- the amount of the sodium hydroxide aqueous solution is smaller than the amount of calcium oxide, calcium hydroxide having a small BET specific surface area can be obtained. Further, if an aqueous sodium hydroxide solution having an excessively high concentration is used in the hydration step, the BET specific surface area of the obtained calcium hydroxide tends to be high, and calcium hydroxide having a desired BET specific surface area cannot be obtained. In addition, the viscosity of lime milk becomes high and it becomes difficult to handle. In particular, setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 5-40 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below.
- the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step, or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue.
- Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
- the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
- This process is also commonly referred to as the caustic process.
- it is very preferable to adjust the solid content concentration of lime milk to 1-6% before use.
- it is preferable to react with the initial concentration of lime milk set to 1-6% and the concentration of the aqueous sodium carbonate solution set to 4-22%.
- the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 4-24% obtained in the carbon dioxide gas absorption step.
- the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
- the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
- the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
- the reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears.
- calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
- the “crystal in the shape of fine particles” refers to a crystal having, for example, fine primary particles having a BET specific surface area of 30 m 2 / g or more as a component.
- Structural polymorphs such as calcite crystals, aragonite crystals, and batelite crystals are known as calcium carbonate crystals, but the calcium carbonate produced by the production method of the present embodiment is calcite crystals.
- the crystal having a fine particle shape may include, for example, a crystal having a single crystal shape of a hexahedron and at least a pair of opposite faces of the hexahedron having a rhombohedron (hexagonal rhombohedral lattice).
- a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
- a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
- the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
- the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
- the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 5-21%.
- the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 5% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%.
- the concentration of sodium hydroxide is adjusted, for example, by diluting with water.
- FIG. 1 shows a flow in which a method for producing calcium carbonate according to an embodiment of the present invention is carried out using carbon dioxide gas in an exhaust gas discharged from a combustion furnace or the like.
- 1 carbon dioxide gas absorption step
- 2 hydration step
- 3 carbonation step
- 4 solid-liquid separation step
- 5 cleaning step.
- Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
- a sodium hydroxide aqueous solution adjusted to a concentration of 5-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
- carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 4-24% is obtained.
- the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
- calcium oxide and water for hydration sodium hydroxide aqueous solution having a concentration of less than 0-6%
- hydroxide aqueous solution having a concentration of less than 0-6% are prepared and reacted (hydration step 2), and if necessary, a classification operation is performed to BET.
- Purified lime milk which is a suspension of calcium hydroxide having a specific surface area of 5-40 m 2 / g, is obtained.
- carbonation step 3 calcium carbonate is produced.
- the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
- the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
- the initial concentration of lime milk is 1-6%
- the concentration of the aqueous sodium carbonate solution is 4-22%
- the reaction is carried out in the range of 9-25 ° C.
- Calcium carbonate according to the fourth embodiment of the present invention can be obtained by the production method according to the third embodiment.
- the calcium carbonate according to the fourth embodiment is preferably calcite crystalline calcium carbonate having a fine particle shape having a BET specific surface area of 30-90 m 2 / g.
- carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
- a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
- calcium having a desired fine particle shape is obtained by reacting a sodium carbonate aqueous solution having a predetermined initial concentration and lime milk having a predetermined initial solid content concentration in a predetermined temperature range for a predetermined time. It becomes possible to produce calcium carbonate in the form of cytocrystals.
- carbon dioxide gas and an aqueous solution of sodium hydroxide can be repeatedly reused, so that carbon dioxide and waste liquid discharged to the environment are small, and the burden on the environment is reduced. be able to.
- Five embodiments of the present invention include the following steps: a carbon dioxide gas absorption step of absorbing carbon dioxide gas in a sodium hydroxide aqueous solution having a concentration of 13-21% to obtain a sodium carbonate aqueous solution having a concentration of 15-24% or less; A hydration step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step is added to the lime milk and reacted.
- the production method is characterized by obtaining / g of spindle-shaped calcite crystalline calcium carbonate.
- the present embodiment is a method for producing calcium carbonate, which comprises at least a carbon dioxide gas absorption step, a liquefaction step, and a carbonation step.
- the carbon dioxide absorption step is a step of absorbing carbon dioxide (carbon dioxide) with a sodium hydroxide aqueous solution to obtain a sodium carbonate aqueous solution.
- Sodium hydroxide is also generally called caustic soda, and commercially available products can be appropriately used.
- the sodium hydroxide aqueous solution can be obtained by dissolving sodium hydroxide in water, or can use a liquid containing sodium hydroxide (so-called "white liquid") obtained in the papermaking process.
- the concentration of sodium hydroxide in the aqueous sodium hydroxide solution used in this step can be 13-21%, preferably 15-20%.
- the concentration of the sodium hydroxide aqueous solution By setting the concentration of the sodium hydroxide aqueous solution to 21% at the maximum in this step, the absorption efficiency of carbon dioxide gas can be improved.
- the carbon dioxide gas absorbed in the sodium hydroxide aqueous solution may be a gas containing carbon dioxide alone or a mixed gas containing carbon dioxide gas and another gas.
- exhaust gas containing carbon dioxide gas can be used.
- Such exhaust gas includes, for example, a lime firing furnace, a boiler, a waste incinerator, a cement firing furnace, a refractory heating furnace, a steelmaking converter, a steelmaking smelting furnace, a cupola, a coke gas generator, a coal gas generator, and petroleum decomposition.
- Exhaust gas from a furnace, a glass manufacturing reflex furnace, an oil gas generating furnace and an acetylene generating furnace can be mentioned.
- Sodium carbonate is produced when carbon dioxide gas is absorbed by an aqueous solution of sodium hydroxide. Carbon dioxide can be absorbed until the concentration of sodium carbonate reaches 15-24%.
- % means% by weight unless otherwise specified. From the viewpoint of environmental conservation, it is very important to reuse the carbon dioxide gas that was not used in the carbon dioxide gas absorption process so that it can be absorbed by the sodium hydroxide aqueous solution in the carbonation process, instead of releasing it into the atmosphere as it is. preferable.
- the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
- lime milk is an aqueous suspension of calcium hydroxide (calcium hydroxide aqueous slurry).
- Calcium oxide used in the liquefaction process is an oxide of calcium, which is also generally called quicklime. Commercially available calcium oxide can be appropriately used.
- the concentration of the aqueous sodium hydroxide solution to react with calcium oxide in this step is less than 0-6%.
- the calcium hydroxide obtained in this step is a hydroxide of calcium, which is also generally called slaked lime.
- a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g it is preferable to obtain a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g.
- the BET specific surface area can be measured according to Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption" (ISO 9277: 2010).
- ISO 9277: 2010 Japanese Industrial Standards JIS Z 8830 "Method for measuring the specific surface area of powder (solid) by gas adsorption"
- the amount of the sodium hydroxide aqueous solution is smaller than the amount of calcium oxide, calcium hydroxide having a small BET specific surface area can be obtained. Further, if an aqueous sodium hydroxide solution having an excessively high concentration is used in the hydration step, the BET specific surface area of the obtained calcium hydroxide tends to be high, and calcium hydroxide having a desired BET specific surface area cannot be obtained. In addition, the viscosity of lime milk becomes high and it becomes difficult to handle. In particular, setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 15-40 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below.
- the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed simultaneously in parallel, such as a carbon dioxide gas absorption step followed by a liquefaction step or a liquefaction step followed by a carbon dioxide gas absorption step. , It is also possible to continue.
- Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
- the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
- This process is also commonly referred to as the caustic process.
- it is very preferable to adjust the solid content concentration of lime milk to 11-24% before use.
- it is preferable to set the initial concentration of lime milk to 11-19% and the concentration of the aqueous sodium carbonate solution to 15-24% for the reaction.
- the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 15-24% or less obtained in the carbon dioxide gas absorption step.
- the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
- the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
- the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
- the calcium carbonate according to the sixth embodiment of the present invention can be obtained by the production method according to the fifth embodiment.
- the calcium carbonate according to the sixth embodiment is preferably a spindle-shaped calcite crystalline calcium carbonate having a BET specific surface area of 4-20 m 2 / g.
- reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears.
- calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
- a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
- a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
- the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
- the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
- the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 13-21%.
- the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 13% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%. The concentration of sodium hydroxide is adjusted, for example, by diluting with water.
- carbon dioxide gas (carbon dioxide) is absorbed by a sodium hydroxide aqueous solution having a concentration of 13-21% in the following step, and a sodium carbonate aqueous solution having a concentration of 15-24% or less is applied.
- the carbon dioxide absorption step obtained; lime which is a suspension of calcium hydroxide having a BET specific surface area of 5-40 m 2 / g by reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6%.
- a method for producing calcium carbonate comprising a slaked step of obtaining milk; a carbon dioxide step of adding and reacting the aqueous sodium carbonate obtained in the carbon dioxide absorption step with the lime milk;
- the initial concentration of the lime milk was 11-24%
- the concentration of the aqueous sodium carbonate solution was 15-24%
- the reaction was carried out in the range of 40-80 ° C.
- the BET specific surface area was 3-10 m 2 .
- the production method is characterized by obtaining / g needle-shaped aragonite crystalline calcium carbonate.
- This embodiment is also a method for producing calcium carbonate, which includes at least a carbon dioxide gas absorption step, a hydration step, and a carbonation step, as in the fifth embodiment.
- the carbon dioxide gas absorption step of the seventh embodiment is a step of absorbing the carbon dioxide gas with the sodium hydroxide aqueous solution to obtain the sodium carbonate aqueous solution, and can be performed in exactly the same manner as the carbon dioxide gas absorption step of the above-mentioned five embodiments. .. It is very preferable from the viewpoint of environmental conservation to reuse the carbon dioxide gas that was not used in the carbon dioxide gas absorption step so that it can be absorbed by the sodium hydroxide aqueous solution in the carbonation step, instead of releasing it into the atmosphere as it is. Is the same as the above-mentioned five embodiments.
- the hydration step is a step of reacting calcium oxide with an aqueous solution of sodium hydroxide having a concentration of less than 0-6% to obtain lime milk.
- the liquefaction step of the seventh embodiment can be performed in exactly the same manner as the carbon dioxide gas absorption step of the fifth embodiment. Also in the seventh embodiment, the liquefaction step and the above-mentioned carbon dioxide gas absorption step can be performed at the same time in parallel, and the carbon dioxide gas absorption step is followed by the liquefaction step or the liquefaction step is followed by carbon dioxide. It is also possible to carry out the process continuously, such as the gas absorption step.
- setting the BET specific surface area of calcium hydroxide contained in the lime milk obtained in this step to 5-20 m 2 / g is the most crystalline form of calcium carbonate obtained in the carbonation step described below. Is preferable for forming needle-shaped aragonite. Obtaining calcium hydroxide having a BET specific surface area in an appropriate range in the liquefaction step is important for finally obtaining the desired form of calcium carbonate in the present embodiment.
- the carbonization step is a step of reacting the lime milk obtained in the liquefaction step with the sodium carbonate aqueous solution obtained in the carbon dioxide gas absorption step to obtain calcium carbonate.
- This process is also commonly referred to as the caustic process.
- it is very preferable to adjust the solid content concentration of lime milk to 11-24% before use.
- it is preferable to set the initial concentration of lime milk to 11-24% and the concentration of the aqueous sodium carbonate solution to 15-24% for the reaction.
- the sodium carbonate aqueous solution is used by appropriately adjusting the concentration of the sodium carbonate aqueous solution having a concentration of 15-24% or less obtained in the carbon dioxide gas absorption step.
- the sodium carbonate aqueous solution is gradually added to the lime milk, for example, it is added over a certain period of time such as 60-180 minutes or 100-150 minutes. Is very preferable.
- the reaction in the carbonation step is preferably carried out by stirring the reaction solution.
- the stirrer is adjusted so that the time until the sodium carbonate aqueous solution is gradually added to the lime milk and these are completely mixed (complete mixing time) is 3-25 seconds or 5-22 seconds. Can be done.
- reaction temperature of the carbonation step is too high or too low, the cost required for energy required for heating and cooling increases, and calcium carbonate having a desired BET specific surface area and shape can be obtained. It disappears. Further, when the BET specific surface area of calcium hydroxide is adjusted as described above in order to produce calcium carbonate containing a large amount of needle-shaped aragonite crystals, when the reaction temperature of the carbonation step is raised, the shape of the aragonite crystals (needle-shaped) is increased. Tends to get thicker. In the reaction of this step, calcium carbonate and sodium hydroxide are generated, water-soluble sodium hydroxide is dissolved in the reaction solution, and calcium carbonate having low water solubility is precipitated as a solid.
- a solid-liquid separation step of separating calcium carbonate generated by the reaction of the carbonation step from the reaction solution and taking it out in a solid state may be further included.
- a washing step of washing the solid calcium carbonate obtained in the solid-liquid separation step with a washing liquid may be further included.
- the calcium carbonate obtained in the solid-liquid separation step is preferably washed with water.
- the liquid (filtrate) remaining after separating solid calcium carbonate in the solid-liquid separation step and the used cleaning liquid obtained in the washing step are sodium hydroxide aqueous solutions. This sodium hydroxide aqueous solution can be reused in the carbon dioxide gas absorption step described above.
- the concentration of sodium hydroxide When the filtrate and used cleaning liquid are reused in the carbon dioxide gas absorption step, it is preferable to adjust the concentration of sodium hydroxide to 13-21%.
- the concentration of sodium hydroxide can be adjusted, for example, by adding a high-concentration sodium hydroxide aqueous solution (a sodium hydroxide aqueous solution having a concentration of 13% or more), adding solid sodium hydroxide, or the filtrate and the filtrate. This is done by concentrating the used cleaning solution by heating it. Further, the filtrate obtained in the solid-liquid separation step and the used washing liquid obtained in the washing step can be reused in the above-mentioned liquefaction step. When the filtrate and used washing liquid are reused in the hydration step, it is preferable to adjust the concentration of sodium hydroxide to less than 6%. The concentration of sodium hydroxide is adjusted, for example, by diluting with water.
- FIG. 1 shows a flow in which the method for producing calcium carbonate according to the first and second embodiments of the present invention is carried out using carbon dioxide gas in the exhaust gas discharged from a combustion furnace or the like.
- 1 carbon dioxide gas absorption step
- 2 hydration step
- 3 carbonation step
- 4 solid-liquid separation step
- 5 cleaning step.
- Exhaust gas discharged from a combustion furnace or the like is appropriately dust-removed to obtain a refined gas containing carbon dioxide gas.
- a sodium hydroxide aqueous solution adjusted to a concentration of 13-21% by a method such as appropriately mixing production water and a high-concentration sodium hydroxide aqueous solution is prepared, and purified gas is absorbed therein (carbon dioxide gas absorption step 1). ).
- carbon dioxide gas absorption step 1 an aqueous sodium carbonate solution having a concentration of 15-24% or less is obtained.
- the unreacted gas that could not be completely absorbed in the carbon dioxide gas absorption step 1 is returned as shown by the arrow 10 and used again in the carbon dioxide gas absorption step 1.
- calcium oxide and water for hydration sodium hydroxide aqueous solution having a concentration of less than 0-6%
- hydroxide aqueous solution having a concentration of less than 0-6% are prepared and reacted (hydration step 2), and if necessary, a classification operation is performed to BET.
- Purified lime milk which is a suspension of calcium hydroxide having a specific surface area of 5-40 m 2 / g, is obtained.
- carbonation step 3 calcium carbonate is produced.
- the generated calcium carbonate is filtered (solid-liquid separation step 4), and the obtained solid calcium carbonate is washed with a washing liquid (washing step 5).
- the filtrate obtained in the solid-liquid separation step 4 and the used washing liquid obtained in the washing step 5 are recovered and reused as the aqueous sodium hydroxide solution in the carbon dioxide gas absorption step 1 or the water for hydration in the liquefaction step 2. (Arrows 20 and 30).
- the initial concentration of lime milk is 11-19%, the concentration of the aqueous sodium carbonate solution is 15-24%, and the reaction is carried out in the range of 20-40 ° C.
- the initial concentration of lime milk is 11-24%, the concentration of the aqueous sodium carbonate solution is 15-24%, and the reaction is carried out in the range of 40-80 ° C. ..
- carbon dioxide gas can be efficiently absorbed by a relatively high concentration sodium hydroxide aqueous solution.
- a sodium carbonate aqueous solution having a desired concentration can be obtained regardless of the concentration of carbon dioxide gas.
- calcium carbonate having a desired shape can be produced by reacting a sodium carbonate aqueous solution having a predetermined initial concentration and lime milk having a predetermined initial solid content concentration in a predetermined temperature range for a predetermined time. It will be possible.
- carbon dioxide gas and an aqueous solution of sodium hydroxide can be repeatedly reused, so that carbon dioxide and waste liquid discharged to the environment are small, and the burden on the environment can be reduced. can.
- Example 1 Synthesis of fine particle-shaped calcite crystalline calcium carbonate
- the concentration of lime milk was adjusted to obtain 553 kg of lime milk having a solid content concentration of 5.0%.
- Carbonation step 553 kg obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. To this, 423 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 20 seconds, and the temperature in the reaction tank was adjusted to 15 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 49 kg of calcium carbonate powder was obtained.
- FIG. 2 is an electron micrograph (magnification: 30,000 times) of calcium carbonate obtained in Example 1.
- the BET specific surface area (measured according to JIS Z 8830) of calcium carbonate having this fine particle shape was 60.0 m 2 / g (Table 1, carbonation step reaction temperature 15 ° C. row, sodium carbonate aqueous solution concentration). 15% column).
- Example 1 [Other synthetic examples of fine particle-shaped calcite crystalline calcium carbonate]
- various aqueous sodium carbonate solutions having different concentrations were prepared.
- sodium carbonate aqueous solutions having different concentrations were gradually added and stirred using a propeller stirrer, and the temperature in the reaction tank was increased.
- the results of each synthesis example are shown in Table 1 below.
- Table 1 shows the crystal shape and BET specific surface area of calcium carbonate produced in each synthetic example.
- Example 1 is described in "Fine 60" in the row of Table 1, where the reaction temperature of the carbonation step is 15 ° C., and the column of sodium carbonate aqueous solution concentration of 15%. It is said that the method of Example 1 obtained calcite crystalline calcium carbonate having a fine particle shape with a BET specific surface area of 60 m 2 / g (the value of the BET specific surface area in the table is a value rounded off from the measured value). Meaning. Further, in Table 1, "-" means that the reaction under the specified conditions was difficult because sodium carbonate was precipitated from the aqueous sodium carbonate solution under the relevant conditions.
- the desired crystal shape and BET specific surface area can be obtained by adjusting the solid content concentration, sodium carbonate aqueous solution concentration, and reaction temperature of the initial lime milk in the carbonization step by the method of the present invention.
- Example 2 Synthesis of spindle-shaped calcite crystalline calcium carbonate (1)
- the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
- Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 25 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
- FIG. 3 is an electron micrograph (magnification of 20000 times) of calcium carbonate obtained in Example 2.
- the BET specific surface area (measured according to JIS Z 8830) of this spindle-shaped calcite crystalline calcium carbonate was 5.9 m 2 / g. (Table 2, row of carbonation step reaction temperature 25 ° C, column of sodium carbonate aqueous solution concentration 16%)
- Example 3 Synthesis of acicular aragonite crystalline calcium carbonate (1)
- the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
- Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 50 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
- FIG. 4 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 3.
- the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 6.3 m 2 / g. (Table 2, row of carbonation step reaction temperature 50 ° C, column of sodium carbonate aqueous solution concentration 16%)
- Example 4 Synthesis of acicular aragonite crystalline calcium carbonate (2)
- the concentration of lime milk was adjusted to obtain 366 kg of lime milk having a solid content concentration of 20.0%.
- Carbonation Step 366 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 666 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 50 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 99 kg of calcium carbonate powder was obtained.
- FIG. 5 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 4.
- the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 8.5 m 2 / g. (Table 3, row of carbonation step reaction temperature 50 ° C, column of sodium carbonate aqueous solution concentration 19%)
- Example 5 Synthesis of acicular aragonite crystalline calcium carbonate (3)
- the concentration of lime milk was adjusted to obtain 389 kg of lime milk having a solid content concentration of 15.0%.
- Carbonation step 389 kg of lime milk obtained in the liquefaction step was introduced into a reaction tank equipped with a propeller agitator. 630 kg of the sodium carbonate aqueous solution obtained in the carbonation step was added over 120 minutes, and the reaction solution was stirred. At this time, the propeller agitator was operated so that the complete mixing time in the reaction tank was 21 seconds, and the temperature in the reaction tank was adjusted to 80 ° C. The obtained calcium carbonate suspension was filtered, the filtered cake was washed with water, and then dried in a constant temperature dryer at 105 ° C. for 1 hour. 79 kg of calcium carbonate powder was obtained.
- FIG. 6 is an electron micrograph (magnification of 10000 times) of calcium carbonate obtained in Example 5.
- the BET specific surface area (measured according to JIS Z 8830) of this needle-shaped aragonite crystalline calcium carbonate was 3.4 m 2 / g. (Table 2, row of carbonation step reaction temperature 80 ° C, column of sodium carbonate aqueous solution concentration 16%)
- Example 2 [Other synthetic examples of spindle-shaped calcite crystalline calcium carbonate]
- various aqueous sodium carbonate solutions having different concentrations were prepared.
- sodium carbonate aqueous solutions having different concentrations are gradually added and stirred using a propeller stirrer, and the temperature in the reaction tank is increased.
- the temperature in the reaction tank is increased.
- the results of each synthesis example are shown in Table 2 below.
- Example 2 [Other synthetic examples of acicular aragonite crystalline calcium carbonate]
- various aqueous sodium carbonate solutions having different concentrations were prepared.
- the results of each synthesis example are shown in Table 2 below.
- Example 4 various aqueous sodium carbonate solutions having different concentrations were prepared.
- Tables 2 and 3 show the crystal shape and BET specific surface area of calcium carbonate produced in each synthetic example.
- Example 2 is described in "Spindle 6" in the row of Table 2, where the reaction temperature of the carbonation step is 25 ° C., and the column of sodium carbonate aqueous solution concentration of 19%. It means that a spindle-shaped calcite crystalline calcium carbonate having a BET specific surface area of 6 m 2 / g (the value of the BET specific surface area in the table is a value rounded off from the measured value) was obtained by the method of Example 2. Further, in Tables 2 and 3, "-" means that the reaction under the specified conditions was difficult because sodium carbonate was precipitated from the aqueous sodium carbonate solution under the relevant conditions.
- the desired crystal shape and BET were obtained by adjusting the solid content concentration, sodium carbonate aqueous solution concentration, and reaction temperature of the initial lime milk in the carbonation step by the method of the present invention.
- Calcium carbonate having a specific surface area can be produced separately.
- carbon dioxide gas is absorbed by a relatively high-concentration sodium hydroxide aqueous solution, so that carbon dioxide gas can be used efficiently.
- acicular crystals and spindle-shaped crystals of calcium carbonate could be produced.
- concentration, reaction temperature, reaction time, mixing time, etc. of lime milk and sodium carbonate aqueous solution in the carbonation step calcium carbonate having a desired crystal form can be produced separately. Since the method of the present invention reuses carbon dioxide gas, a filtrate and the like, the load on the environment can be reduced as a whole.
- the calcium carbonate produced by the method of the present invention is particularly used as a filler for sealing materials, adhesives, rubber compositions, plastic compositions and papers, as well as pigments for paper coating and pigments for paints and inks. Can be widely used as.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
本発明は、炭酸ガス吸収工程時に利用されなかった炭酸ガスを再度炭酸ガス吸収工程に再使用すること、ならびに、炭酸カルシウムの製造工程で得られた濾液や使用済み洗浄液に含まれている水酸化ナトリウムを、炭酸ガス吸収工程や水化工程に再循環してこれを再使用することを第二の目的とする。
本発明は、炭酸カルシウムの製造場所以外に設置された燃焼炉等の排ガス中の炭酸ガスを水酸化ナトリウム水溶液に吸収させ、炭酸ナトリウムとして製造場所へ運搬して利用することを可能とし、さらに本発明を実施することで、総体的に環境中への炭酸ガス放出量を抑制し、地球温暖化の改善に寄与することを第三の目的とする。
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-22%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m2/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする。
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m2/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする。
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法に係る。
炭酸カルシウムの製造方法においては、該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m2/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする。
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含むことができる。
本発明の製造方法では、所望の形状と粒子径とを有する炭酸カルシウムを得ることができる。抄紙、塗工顔料、プラスチック、シーラント、ゴム、食品等の各用途に適した炭酸カルシウムを、連続的に、制御して製造することが可能となる。
一の実施形態に係る製造方法により得られた、本発明の二の実施形態に係る炭酸カルシウムは、カルサイト結晶、アラゴナイト結晶、バテライト結晶等の結晶形を有していて良い。上記の各工程において、濃度や温度等を変えることにより、種々の結晶形の炭酸カルシウムを製造することができる。得られる炭酸カルシウムの粒子は、球状のほか、略立方体、紡錘状、針状、微小球形の結晶が連なった形状等のような、種々の形状を有していて良い。
一方、酸化カルシウムと水化用水(濃度が0-6%未満の濃度の水酸化ナトリウム水溶液を指す。)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
を含む、炭酸カルシウムの製造方法であって、
該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-22%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m2/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態は、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガス(二酸化炭素)を吸収させ、炭酸ナトリウム水溶液を得る工程である。水酸化ナトリウムは一般に苛性ソーダとも呼ばれ、市販品を適宜利用することができる。水酸化ナトリウム水溶液は、水酸化ナトリウムを水に溶解して得られるほか、製紙工程で得られる水酸化ナトリウムを含む液体(いわゆる「白液」)を用いることもできる。本工程で用いられる水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、5-21%、好ましくは8-15%とすることができる。本工程で水酸化ナトリウム水溶液の濃度を最大で21%とすることにより、炭酸ガスの吸収効率を向上させることができる。本実施形態において、水酸化ナトリウム水溶液に吸収させる炭酸ガスは、二酸化炭素単独の気体のほか、炭酸ガスと他の気体とを含む混合気体であっても良いものとする。本実施形態で使用する炭酸ガスとして、炭酸ガスを含む排ガスを利用することができる。このような排ガスとして、たとえば、石灰焼成炉、ボイラー、ごみ焼却炉、セメント焼成炉、耐火物加熱炉、製鋼用転炉、製鋼用溶鉱炉、キュポラ、コークスガス発生炉、石炭ガス発生炉、石油分解用炉、ガラス製造反射炉、オイルガス発生炉およびアセチレン発生炉からの排ガスを挙げることができる。水酸化ナトリウム水溶液に炭酸ガスを吸収させると、炭酸ナトリウムが生成する。炭酸ナトリウムの濃度が4-24%になるまで、炭酸ガスを吸収させることができる。なお、本明細書においては特に断らない限り、%は重量%のことである。
なお、炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、本炭酸ガス吸収工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましい。
初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度9-25℃の範囲で反応させることで、BET比表面積が30-90m2/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることができる。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。なお、本明細書で「微細な粒子形状の結晶」とは、たとえばBET比表面積が30m2/g以上の微細な一次粒子を構成要素とする結晶を云うものとする。炭酸カルシウムの結晶として、カルサイト結晶、アラゴナイト結晶、バテライト結晶等の構造多形体が知られているが、本実施形態の製造方法で製造される炭酸カルシウムはカルサイト結晶である。微細な粒子形状の結晶は、たとえば単結晶の形状が六面体であり、六面体の対向する少なくとも一対の面が菱形である(六方晶系菱面体格子)結晶構造のものを含んでいる場合がある。
また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
一方、酸化カルシウムと水化用水(0-6%未満の濃度の水酸化ナトリウム水溶液)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
を含む、炭酸カルシウムの製造方法であって、
該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m2/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態は、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガス(二酸化炭素)を吸収させ、炭酸ナトリウム水溶液を得る工程である。水酸化ナトリウムは一般に苛性ソーダとも呼ばれ、市販品を適宜利用することができる。水酸化ナトリウム水溶液は、水酸化ナトリウムを水に溶解して得られるほか、製紙工程で得られる水酸化ナトリウムを含む液体(いわゆる「白液」)を用いることもできる。本工程で用いられる水酸化ナトリウム水溶液の水酸化ナトリウムの濃度は、13-21%、好ましくは15-20%とすることができる。本工程で水酸化ナトリウム水溶液の濃度を最大で21%とすることにより、炭酸ガスの吸収効率を向上させることができる。本実施形態において、水酸化ナトリウム水溶液に吸収させる炭酸ガスは、二酸化炭素単独の気体のほか、炭酸ガスと他の気体とを含む混合気体であっても良いものとする。本実施形態で使用する炭酸ガスとして、炭酸ガスを含む排ガスを利用することができる。このような排ガスとして、たとえば、石灰焼成炉、ボイラー、ごみ焼却炉、セメント焼成炉、耐火物加熱炉、製鋼用転炉、製鋼用溶鉱炉、キュポラ、コークスガス発生炉、石炭ガス発生炉、石油分解用炉、ガラス製造反射炉、オイルガス発生炉およびアセチレン発生炉からの排ガスを挙げることができる。水酸化ナトリウム水溶液に炭酸ガスを吸収させると、炭酸ナトリウムが生成する。炭酸ナトリウムの濃度が15-24%になるまで、炭酸ガスを吸収させることができる。なお、本明細書においては特に断らない限り、%は重量%のことである。
なお、炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、炭酸化工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましい。
初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度20-40℃の範囲で反応させる。五の実施形態に係る製造方法により、本発明の六の実施形態に係る炭酸カルシウムを得ることができる。六の実施形態に係る炭酸カルシウムは、好ましくはBET比表面積が4-20m2/gの紡錘状カルサイト結晶形炭酸カルシウムである。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。
また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m2/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法である。本実施形態も、五の実施形態と同様、炭酸ガス吸収工程と、水化工程と、炭酸化工程とを少なくとも含む炭酸カルシウムの製造方法である。七の実施形態の炭酸ガス吸収工程は、水酸化ナトリウム水溶液に炭酸ガスを吸収させ、炭酸ナトリウム水溶液を得る工程であり、上記の五の実施形態の炭酸ガス吸収工程と全く同様に行うことができる。
炭酸ガス吸収工程において利用されなかった炭酸ガスは、そのまま大気中に放出するのではなく、炭酸化工程の水酸化ナトリウム水溶液に吸収させるように再使用することが環境保全の観点から非常に好ましいことも、上記の五の実施形態と同様である。
初期固形分濃度を調整した石灰乳に、炭酸ガス吸収工程で得られ、濃度を調整した炭酸ナトリウム水溶液を添加して、温度40-80℃の範囲で反応させる。七の実施形態に係る製造方法により、本発明の八の実施形態に係る炭酸カルシウムを得ることができる。八の実施形態に係る炭酸カルシウムは、好ましくはBET比表面積が3-10m2/gの針状アラゴナイト結晶形炭酸カルシウムである。炭酸化工程の反応温度が高すぎても、低すぎても、加熱や冷却に必要なエネルギー等に必要なコストが増大するほか、所望のBET比表面積ならびに形状を有する炭酸カルシウムを得ることができなくなる。また、針状アラゴナイト結晶を多く含む炭酸カルシウムを製造すべく、水酸化カルシウムのBET比表面積を上記のように調整した場合、炭酸化工程の反応温度を高くすると、アラゴナイト結晶(針状)の形状が太くなる傾向がある。本工程の反応では、炭酸カルシウムと水酸化ナトリウムが生じ、水溶性の水酸化ナトリウムは反応液中に溶解し、水溶性の低い炭酸カルシウムは固体として析出する。
また固液分離工程で得られた濾液および洗浄工程で得られた使用済み洗浄液は、上記の水化工程に再利用することも可能である。濾液および使用済み洗浄液を水化工程に再利用する場合は、水酸化ナトリウムの濃度が6%未満となるように調整することが好適である。水酸化ナトリウムの濃度の調整は、たとえば、水により希釈することにより行う。
一方、酸化カルシウムと水化用水(0-6%未満の濃度の水酸化ナトリウム水溶液)とを用意して、これらを反応させ(水化工程2)、必要な場合は分級操作等を行い、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である精製石灰乳を得る。
こうして得た精製石灰乳に、炭酸ナトリウム水溶液を反応させる(炭酸化工程3)と、炭酸カルシウムが生成する。生成した炭酸カルシウムを濾過し(固液分離工程4)、得られた固体の炭酸カルシウムは洗浄液を用いて洗浄する(洗浄工程5)。固液分離工程4で得られた濾液ならびに洗浄工程5で得られた使用済み洗浄液は回収して、炭酸ガス吸収工程1の水酸化ナトリウム水溶液、あるいは、水化工程2の水化用水として再使用される(矢印20および30)。
(1)炭酸ガス吸収工程
濃度11.8%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度14.8%の炭酸ナトリウム水溶液423kgを得た。
(2)水化工程
水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m3/gであった。石灰乳の濃度を調整して、固形分濃度5.0%の石灰乳を553kg得た。
(3)炭酸化工程
水化工程で得られた553kgをプロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液423kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が20秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は15℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を49kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ、20nm程度の微細な粒子形状の粒子が連鎖状に連なる形状をしていた。図2は、この実施例1で得られた炭酸カルシウムの電子顕微鏡写真(倍率:30000倍)である。この微細な粒子形状を有する炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、60.0m2/gであった(表1、炭酸化工程反応温度15℃の行、炭酸ナトリウム水溶液濃度15%の列)。
実施例1において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例1の水化工程で得られた固形分濃度5.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を10℃/15℃/20℃として、炭酸化工程を行った。各合成例の結果を以下の表1に記載する。
表1に示されている通り、本発明の方法で、炭酸化工程の初期石灰乳の固形分濃度、炭酸ナトリウム水溶液濃度、および反応温度を調整することにより、所望の結晶形状とBET比表面積とを有する炭酸カルシウムを作ることができる。
(1)炭酸ガス吸収工程
濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
(2)水化工程
水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m2/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
(3)炭酸化工程
水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は25℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ紡錘状形状をしていた。図3は、実施例2で得られた炭酸カルシウムの電子顕微鏡写真(倍率20000倍)である。この紡錘状カルサイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、5.9m2/gであった。(表2、炭酸化工程反応温度25℃の行、炭酸ナトリウム水溶液濃度16%の列)
(1)炭酸ガス吸収工程
濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
(2)水化工程
水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m2/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
(3)炭酸化工程
水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は50℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図4は、実施例3で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、6.3m2/gであった。(表2、炭酸化工程反応温度50℃の行、炭酸ナトリウム水溶液濃度16%の列)
(1)炭酸ガス吸収工程
濃度15.6%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度19.0%の炭酸ナトリウム水溶液666kgを得た。
(2)水化工程
水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m2/gであった。石灰乳の濃度を調整して、固形分濃度20.0%の石灰乳を366kg得た。
(3)炭酸化工程
水化工程で得られた366kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液666kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は50℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を99kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図5は、実施例4で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、8.5m2/gであった。(表3、炭酸化工程反応温度50℃の行、炭酸ナトリウム水溶液濃度19%の列)
(1)炭酸ガス吸収工程
濃度12.9%の水酸化ナトリウム水溶液に、30体積%の炭酸ガスを含有する二酸化炭素-空気混合ガスを、水溶液のpHが11.5になるまで導入した。濃度16.0%の炭酸ナトリウム水溶液630kgを得た。
(2)水化工程
水に酸化カルシウムを混合し、水化させて水酸化カルシウムの懸濁液である石灰乳を得た。得られた水酸化カルシウムのBET比表面積を日本工業規格JIS Z 8830(ISO 9277:2010)にしたがい測定したところ、15.9m2/gであった。石灰乳の濃度を調整して、固形分濃度15.0%の石灰乳を389kg得た。
(3)炭酸化工程
水化工程で得られた389kgの石灰乳を、プロペラ撹拌機を備えた反応タンクに導入した。ここに炭酸化工程で得られた炭酸ナトリウム水溶液630kgを120分間かけて添加し、反応液を撹拌した。この時、反応タンク内での完全混合時間が21秒間となるようにプロペラ撹拌機を作動させ、反応タンク内温度は80℃となるように調整した。得られた炭酸カルシウム懸濁液を濾過し、濾過ケーキを水で洗浄した後、105℃の恒温乾燥機で1時間乾燥した。炭酸カルシウム粉体を79kg得た。得られた炭酸カルシウムを電子顕微鏡にて観察したところ針状形状であるアラゴナイトであった。図6は、実施例5で得られた炭酸カルシウムの電子顕微鏡写真(倍率10000倍)である。この針状アラゴナイト結晶形炭酸カルシウムのBET比表面積(JIS Z 8830にしたがい測定)は、3.4m2/gであった。(表2、炭酸化工程反応温度80℃の行、炭酸ナトリウム水溶液濃度16%の列)
実施例1において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例1の水化工程で得られた固形分濃度15.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を20℃/25℃/40℃として、炭酸化工程を行った。各合成例の結果を以下の表2に記載する。
実施例2において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例2の水化工程で得られた固形分濃度15.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を50℃/65℃/70℃/80℃として、炭酸化工程を行った。各合成例の結果を以下の表2に記載する。
また、実施例4において、濃度の異なる炭酸ナトリウム水溶液を種々調製した。実施例3の水化工程で得られた固形分濃度20.0%の石灰乳に、上記の濃度の異なる炭酸ナトリウム水溶液を徐々に添加してプロペラ撹拌機を用いて撹拌し、反応タンク内温度を40℃/50℃/60℃/70℃/80℃として、炭酸化工程を行った。各合成例の結果を以下の表3に記載する。
表2、表3に示されている通り、本発明の方法で、炭酸化工程の初期石灰乳の固形分濃度、炭酸ナトリウム水溶液濃度、および反応温度を調整することにより、所望の結晶形状とBET比表面積とを有する炭酸カルシウムを作り分けることができる。
Claims (23)
- 以下の工程:
5-21%の濃度の水酸化ナトリウム水溶液に、炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る、炭酸ガス吸収工程と;
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る、水化工程と;
該石灰乳に、該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と;
を含む、炭酸カルシウムの製造方法。 - 該炭酸化工程において、該石灰乳の固形分濃度を1-24%に調整し、該固形分濃度を調整した石灰乳に、該炭酸ナトリウム水溶液を添加して、温度9-80℃で反応させる、請求項1に記載の製造方法。
- 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と、炭酸カルシウムとに分離する、固液分離工程をさらに含む、請求項1または2に記載の製造方法。
- 該水酸化ナトリウムを含む濾液の水酸化ナトリウムの濃度を5-21%に調整し、該炭酸ガス吸収工程に再利用する、請求項3に記載の製造方法。
- 請求項1~4のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
- 以下の工程:
5-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、4-24%の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法であって、
該炭酸化工程にて、該石灰乳の初期濃度を1-6%、該炭酸ナトリウム水溶液の濃度を4-24%とし、9-25℃の範囲で反応させ、BET比表面積が30-90m2/gの微細な粒子形状を有するカルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。 - 該炭酸ガス吸収工程において利用されなかった炭酸ガスを再度該炭酸ガス吸収工程に使用する、請求項6に記載の製造方法。
- 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含む、請求項6または7のいずれかに記載の製造方法。 - 該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを5-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項8に記載の製造方法。
- 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項8または9に記載の製造方法。
- 請求項6~10のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
- 以下の工程:
13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法であって、
該炭酸化工程にて、該石灰乳の初期濃度を11-19%、該炭酸ナトリウム水溶液の濃度を15-24%とし、20-40℃の範囲で反応させ、BET比表面積が4-20m2/gの紡錘状カルサイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。 - 該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用する、請求項12に記載の製造方法。
- 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含む、請求項12または13のいずれかに記載の製造方法。 - 該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項14に記載の製造方法。
- 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項14または15に記載の製造方法。
- 請求項12~16のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
- 以下の工程:
13-21%の濃度の水酸化ナトリウム水溶液に炭酸ガスを吸収させ、15-24%以下の濃度の炭酸ナトリウム水溶液を得る炭酸ガス吸収工程と、
酸化カルシウムと、濃度が0-6%未満の水酸化ナトリウム水溶液とを反応させて、BET比表面積が5-40m2/gの水酸化カルシウムの懸濁液である石灰乳を得る水化工程と、
該石灰乳に、該炭酸ガス吸収工程で得た該炭酸ナトリウム水溶液を添加して反応させる、炭酸化工程と、
を含む、炭酸カルシウムの製造方法であって、
該炭酸化工程にて、該石灰乳の初期濃度を11-24%、該炭酸ナトリウム水溶液の濃度を15-24%とし、40-80℃の範囲で反応させ、BET比表面積が3-10m2/gの針状アラゴナイト結晶形炭酸カルシウムを得ることを特徴とする、前記製造方法。 - 該炭酸ガス吸収工程において利用されなかった炭酸ガスを、再度該炭酸ガス吸収工程に使用する、請求項18に記載の製造方法。
- 該炭酸化工程の後に、水酸化ナトリウムを含む濾液と炭酸カルシウムとに分離する、固液分離工程と、
該固液分離工程で得られた炭酸カルシウムを洗浄液で洗浄する、洗浄工程と、
をさらに含む、請求項18または19に記載の製造方法。 - 該固液分離工程で得られた該濾液および該洗浄工程で得られた使用済み洗浄液に、高濃度の水酸化ナトリウム水溶液を添加するか、もしくは、該濾液および該使用済み洗浄液を加熱することにより濃縮し、水酸化ナトリウムを13-21%の濃度で含む水溶液を得、該水溶液を該炭酸ガス吸収工程に利用する、請求項20に記載の製造方法。
- 該固液分離工程で得られた該濾液および該洗浄工程で得られた該使用済み洗浄液を、水酸化ナトリウムの濃度が6%未満となるように調整した水溶液を得、該水溶液を該水化工程に利用する、請求項20または21に記載の製造方法。
- 請求項18~22のいずれか1項に記載の製造方法により製造された、炭酸カルシウム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/014,356 US20230271845A1 (en) | 2020-12-28 | 2021-12-24 | Method for producing calcium carbonate and calcium carbonate |
CN202180078622.4A CN116528963A (zh) | 2020-12-28 | 2021-12-24 | 碳酸钙的制造方法及碳酸钙 |
EP21915240.2A EP4269347A1 (en) | 2020-12-28 | 2021-12-24 | Method for producing calcium carbonate, and calcium carbonate |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-218308 | 2020-12-28 | ||
JP2020218308A JP6970469B1 (ja) | 2020-12-28 | 2020-12-28 | 炭酸カルシウムの製造方法 |
JP2021-180957 | 2021-11-05 | ||
JP2021180957A JP7089311B1 (ja) | 2021-11-05 | 2021-11-05 | 炭酸カルシウムの製造方法 |
JP2021-180950 | 2021-11-05 | ||
JP2021180950A JP7089310B1 (ja) | 2021-11-05 | 2021-11-05 | 炭酸カルシウムの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022145380A1 true WO2022145380A1 (ja) | 2022-07-07 |
Family
ID=82259433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048281 WO2022145380A1 (ja) | 2020-12-28 | 2021-12-24 | 炭酸カルシウムの製造方法、および炭酸カルシウム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230271845A1 (ja) |
EP (1) | EP4269347A1 (ja) |
WO (1) | WO2022145380A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115651423A (zh) * | 2022-08-25 | 2023-01-31 | 江西华明纳米碳酸钙有限公司 | 一种表面改性纳米碳酸钙及其制备方法 |
CN116253350A (zh) * | 2023-03-24 | 2023-06-13 | 中国科学院兰州化学物理研究所 | 一种二氧化碳捕集原位循环利用制备纳米碳酸钙的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5219541A (en) * | 1991-07-23 | 1993-06-15 | Tenneco Minerals Company | Sodium hydroxide production with a calcium carbonate seed crystal |
JP2001199720A (ja) * | 2000-01-18 | 2001-07-24 | Nippon Paper Industries Co Ltd | 炭酸カルシウムの製造方法 |
JP2002293537A (ja) | 2001-04-02 | 2002-10-09 | Okutama Kogyo Co Ltd | 炭酸カルシウムの製造方法 |
JP2007070164A (ja) * | 2005-09-07 | 2007-03-22 | Nittetsu Mining Co Ltd | シリカ−炭酸カルシウム複合粒子の製造方法、該複合粒子又はそれを含有する顔料、填料もしくは紙 |
JP2019048270A (ja) * | 2017-09-11 | 2019-03-28 | 住友大阪セメント株式会社 | 排水の処理方法 |
-
2021
- 2021-12-24 EP EP21915240.2A patent/EP4269347A1/en active Pending
- 2021-12-24 US US18/014,356 patent/US20230271845A1/en active Pending
- 2021-12-24 WO PCT/JP2021/048281 patent/WO2022145380A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5219541A (en) * | 1991-07-23 | 1993-06-15 | Tenneco Minerals Company | Sodium hydroxide production with a calcium carbonate seed crystal |
JP2001199720A (ja) * | 2000-01-18 | 2001-07-24 | Nippon Paper Industries Co Ltd | 炭酸カルシウムの製造方法 |
JP2002293537A (ja) | 2001-04-02 | 2002-10-09 | Okutama Kogyo Co Ltd | 炭酸カルシウムの製造方法 |
JP2007070164A (ja) * | 2005-09-07 | 2007-03-22 | Nittetsu Mining Co Ltd | シリカ−炭酸カルシウム複合粒子の製造方法、該複合粒子又はそれを含有する顔料、填料もしくは紙 |
JP2019048270A (ja) * | 2017-09-11 | 2019-03-28 | 住友大阪セメント株式会社 | 排水の処理方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115651423A (zh) * | 2022-08-25 | 2023-01-31 | 江西华明纳米碳酸钙有限公司 | 一种表面改性纳米碳酸钙及其制备方法 |
CN115651423B (zh) * | 2022-08-25 | 2023-10-13 | 江西华明纳米碳酸钙有限公司 | 一种表面改性纳米碳酸钙及其制备方法 |
CN116253350A (zh) * | 2023-03-24 | 2023-06-13 | 中国科学院兰州化学物理研究所 | 一种二氧化碳捕集原位循环利用制备纳米碳酸钙的方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4269347A1 (en) | 2023-11-01 |
US20230271845A1 (en) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022145380A1 (ja) | 炭酸カルシウムの製造方法、および炭酸カルシウム | |
KR101759765B1 (ko) | 고순도 침전형 탄산칼슘의 제조 | |
MX2012011318A (es) | Proceso para obtener carbonato de calcio precipitado. | |
US8658119B2 (en) | Production and/or recovery of products from waste sludge | |
JP6970469B1 (ja) | 炭酸カルシウムの製造方法 | |
WO2008066065A1 (fr) | Carbonate de calcium léger, son procédé de fabrication et papier d'impression le contenant | |
JP7089311B1 (ja) | 炭酸カルシウムの製造方法 | |
KR20210141141A (ko) | 굴 패각을 이용한 바테라이트형 탄산칼슘 제조 방법 | |
JP2010077009A (ja) | 炭酸カルシウムの製造方法 | |
JP2011225390A (ja) | 紡錘状軽質炭酸カルシウムの製造方法 | |
JP7089310B1 (ja) | 炭酸カルシウムの製造方法 | |
CN1053642C (zh) | 一种碳酸钙的制备方法 | |
JP5320242B2 (ja) | 炭酸カルシウムの製造方法 | |
JP2005139012A (ja) | 針状炭酸カルシウムの製造方法 | |
CN110963520A (zh) | 一种石灰沫生产立方形碳酸钙的方法 | |
JP2001270713A (ja) | アラゴナイト結晶系炭酸カルシウムの製造方法 | |
WO2024075541A1 (ja) | 炭酸カルシウムの製造方法、炭酸カルシウムおよび抄紙用填料 | |
CN108793193A (zh) | 一种硫脲生产废渣制备石灰氮的方法 | |
JP2011046554A (ja) | 針状軽質炭酸カルシウムの製造方法 | |
JP4813075B2 (ja) | アラゴナイト系針状炭酸カルシウムの製造方法 | |
JP2024031279A (ja) | 高い隠ぺい性を有する炭酸カルシウムの製造方法及び製造システム | |
CN117003274A (zh) | 一种利用高炉煤气制纳米碳酸钙的方法 | |
JP2024031278A (ja) | 高い隠ぺい性を有する塗料用炭酸カルシウム及び当該炭酸カルシウムを配合した高い隠ぺい性を有する塗料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21915240 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180078622.4 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021915240 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021915240 Country of ref document: EP Effective date: 20230728 |