WO2022145047A1 - 光送信装置、光送信方法及び光伝送システム - Google Patents

光送信装置、光送信方法及び光伝送システム Download PDF

Info

Publication number
WO2022145047A1
WO2022145047A1 PCT/JP2021/000005 JP2021000005W WO2022145047A1 WO 2022145047 A1 WO2022145047 A1 WO 2022145047A1 JP 2021000005 W JP2021000005 W JP 2021000005W WO 2022145047 A1 WO2022145047 A1 WO 2022145047A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical
modulated
phase
frequency
Prior art date
Application number
PCT/JP2021/000005
Other languages
English (en)
French (fr)
Inventor
利明 下羽
暁弘 田邉
陽一 深田
遼 宮武
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/270,537 priority Critical patent/US20240063916A1/en
Priority to PCT/JP2021/000005 priority patent/WO2022145047A1/ja
Priority to JP2022572872A priority patent/JPWO2022145047A1/ja
Publication of WO2022145047A1 publication Critical patent/WO2022145047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/006Devices for generating or processing an RF signal by optical means

Definitions

  • the present invention relates to an optical transmission device, an optical transmission method, and an optical transmission system.
  • FM batch conversion method An optical transmission system that collectively converts Frequency Division Multiplexing (FDM) signals into Frequency Modulation (FM) signals (hereinafter referred to as "FM batch conversion method") has been introduced into video signal distribution systems. (See Non-Patent Documents 1 and 2).
  • FIG. 4 is a diagram showing a first example of the configuration of a frequency modulation unit provided in an optical transmission device of such an optical transmission system.
  • the frequency modulation unit 100 includes a first laser oscillator 101, a second laser oscillator 102, a phase modulator 103, a combiner unit 104, and a detection unit 105.
  • the first laser oscillator 101 is a laser diode.
  • the first laser oscillator 101 generates laser light based on the first oscillation frequency "f1".
  • a video signal (modulated signal) of cable television broadcasting in a frequency-multiplexed signal is input to the first laser oscillator 101 from a head-end device (not shown).
  • the first laser oscillator 101 generates an optical signal directly modulated according to a video signal of cable television broadcasting by using a laser beam based on the first oscillation frequency "f1".
  • the second laser oscillator 102 is a laser diode.
  • the second laser oscillator 102 generates laser light based on the second oscillation frequency “f2”.
  • the video signal whose phase is inverted is referred to as "opposite phase video signal”.
  • a video signal of the opposite phase of the cable television broadcast in the frequency multiplex signal is input to the second laser oscillator 102 from a head-end device (not shown).
  • the first laser oscillator 101 generates an optical signal directly modulated according to the video signal having the opposite phase by using the laser light based on the second oscillation frequency “f2”.
  • An optical signal directly modulated according to the video signal of the cable television broadcast is input to the phase modulator 103 from the first laser oscillator 101. Further, a satellite broadcast video signal (modulated signal) in the frequency multiplexed signal is input to the phase modulator 103 from a head-end device (not shown).
  • the phase modulator 103 modulates the phase of the optical signal directly modulated according to the video signal of the cable television broadcast according to the video signal of the satellite broadcast.
  • the phase modulator 103 outputs the phase-modulated optical signal to the combiner unit 104.
  • a phase-modulated optical signal is input to the combined wave unit 104 from the phase modulator 103. Further, an optical signal directly modulated according to the video signal having the opposite phase is input to the combine wave unit 104 from the second laser oscillator 102.
  • the combiner unit 104 combines a phase-modulated optical signal and an optical signal directly modulated according to an opposite-phase video signal.
  • the detection unit 105 uses a photodiode to execute batch reception processing (optical heterodyne detection) for the combined optical signal. As a result, the detection unit 105 generates a frequency-modulated signal with high linearity. The center frequency of this frequency-modulated signal is "
  • ITU-T J.185 Transmission equipment for transferring multi-channel television signals over optical access networks by frequency modulation conversion, [online], [searched on December 21, 2nd year of Reiwa], Internet ⁇ URL: https: // www .itu.int/rec/T-REC-J.185-201206-I/en > Toshiaki Shimoha, 2 outsiders, "Optical video distribution technology using FM batch conversion method," IEICE Technical Report CS2019-84, IE2019-64 (2019-12), [online], [Reiwa 2] Searched on December 21, 2014], Internet ⁇ URL: https://www.ieice.org/ken/paper/20191206T1TI/>
  • the frequency modulation unit In the FM batch conversion method, the frequency modulation unit generates an optical signal directly modulated according to the input video signal (modulation signal) by using two laser beams. Very high linearity is required for the characteristics between the bias current and the oscillation frequency in these two laser beams. Therefore, there is a problem that the selection cost of each laser oscillator is very high. In order to solve this problem, a phase modulator is connected to the subsequent stage of one of the two laser oscillators, and all the transmitted video signals are input to the phase modulator. Can be considered.
  • FIG. 5 is a diagram showing a second example of the configuration of the frequency modulation unit provided in the optical transmission device of the optical transmission system.
  • the frequency modulation unit 110 includes a first laser oscillator 111, a second laser oscillator 112, a phase modulator 113, a combiner unit 114, a detection unit 115, and an amplification unit 116.
  • the first laser oscillator 111 generates laser light based on the first oscillation frequency "f1".
  • the first laser oscillator 111 outputs the laser light based on the first oscillation frequency “f1” to the phase modulator 113.
  • the second laser oscillator 112 generates laser light based on the second oscillation frequency "f2”.
  • the second laser oscillator 112 outputs the laser light based on the second oscillation frequency “f2” to the combine unit 114.
  • the video signal of cable TV broadcasting and the video signal of satellite broadcasting are input to the amplification unit 116 as frequency multiplexing signals from a head-end device (not shown).
  • the amplification unit 116 amplifies the voltage of these video signals to about several volts in order to obtain a sufficient frequency deviation amount in the frequency modulation signal.
  • the amplification unit 116 outputs the voltage-amplified video signal to the phase modulator 113.
  • the phase modulator 113 generates an optical signal phase-modulated using a video signal whose voltage is amplified by using a laser beam based on the first oscillation frequency "f1".
  • a phase-modulated optical signal is input to the combiner unit 114 from the phase modulator 113.
  • laser light based on the second oscillation frequency "f2" is input to the combine wave unit 114 from the second laser oscillator 112.
  • the combined wave unit 114 combines a phase-modulated optical signal with a laser beam based on the second oscillation frequency "f2".
  • the detection unit 115 uses a photodiode to perform batch reception processing (optical heterodyne detection) on the combined optical signal.
  • the signal quality deteriorates due to the distortion generated in the video signal in the amplification unit 116, so that the distortion characteristics may not be improved.
  • an object of the present invention is to provide an optical transmission device, an optical transmission method, and an optical transmission system capable of improving distortion characteristics.
  • One aspect of the present invention is a distribution unit that distributes a modulation signal to a plurality of parallel-connected amplification units, and phase-modulated according to each modulation signal whose voltage is amplified by the plurality of parallel-connected amplification units.
  • a plurality of longitudinally connected phase modulators that generate an optical signal using a laser beam based on the first oscillation frequency, a combiner that combines the laser beam based on the second oscillation frequency and the optical signal, and a combiner.
  • It is an optical transmission device including a detection unit that generates a frequency modulation signal by executing a detection process on a result of combining a laser beam based on the second oscillation frequency and the optical signal.
  • One aspect of the present invention is an optical transmission method executed by an optical transmission device, in which a distribution step for distributing a modulation signal to a plurality of parallel-connected amplification units and a voltage generated by the parallel-connected amplification units.
  • a plurality of phase modulation steps in which a phase-modulated optical signal corresponding to each amplified modulation signal is generated in a plurality of longitudinally connected phase modulators using laser light based on the first oscillation frequency, and a second phase modulation step.
  • One aspect of the present invention is an optical transmission system including an optical transmission device, an optical subscriber line end station device, and an optical line termination device, and the optical transmission device is modulated into a plurality of amplification units connected in parallel.
  • a distribution unit that distributes signals and a first optical signal phase-modulated according to each modulation signal whose voltage is amplified by the plurality of amplification units connected in parallel are subjected to laser light based on the first oscillation frequency.
  • a detection unit that generates a frequency-modulated signal by executing a detection process on the result of the combined light signal, and a second intensity-modulated second unit that performs intensity modulation according to the frequency-modulated signal.
  • the optical subscriber line end station apparatus includes an intensity modulator that generates an optical signal using laser light for transmission, the optical subscriber line end station apparatus transmits the intensity-modulated second optical signal, and the optical line termination apparatus. , An optical transmission system that acquires the intensity-modulated second optical signal.
  • FIG. 1 is a diagram showing a configuration example of the optical transmission system 1.
  • the optical transmission system 1 is a system (optical transmission network) for transmitting an optical signal.
  • the optical transmission system 1 distributes a video signal using an optical signal as an example.
  • the moving image may be a moving image or a still image.
  • the optical transmission system 1 includes a head-end device 2, an optical transmission device 3, a V-OLT 4, a transmission line 5, N units (N is an integer of 1 or more) V-ONU 6, and a display device 7. ..
  • the optical transmitter 3 includes a frequency modulator 30, a laser oscillator 31, and an intensity modulator 32.
  • the V-ONU 6 includes a detection unit 60, a frequency demodulation unit 61, and an amplification unit 62.
  • the head-end device 2 outputs a frequency-multiplexed signal including a video signal (modulated signal) to the optical transmission device 3.
  • the head-end device 2 may output a frequency-multiplexed signal including an audio signal, a data signal, or the like (modulated signal) and a video signal to the optical transmission device 3.
  • the optical transmission device 3 is a device that transmits an optical signal.
  • the frequency modulation unit 30 executes, for example, optical heterodyne detection processing on the optical beat between the optical signal phase-modulated according to the video signal and the optical signal phase-modulated according to the video signal having the opposite phase. .. As a result, the frequency modulation unit 30 generates a frequency modulation signal (FM signal).
  • FM signal frequency modulation signal
  • the laser oscillator 31 generates laser light for transmission based on a predetermined oscillation frequency.
  • the intensity modulator 32 is a device that performs intensity modulation (Intensity Modulation) on the laser light for transmission according to the frequency modulation signal.
  • the intensity modulator 32 generates an intensity-modulated optical signal using laser light for transmission.
  • the intensity modulator 32 transmits an intensity-modulated optical signal to the V-OLT4.
  • V-OLT4 Video-Optical Line Terminal
  • the V-OLT 4 transmits an optical signal intensity-modulated by the intensity modulator 32 to each V-ONU 6 via a transmission line 5.
  • the transmission line 5 transmits an optical signal using an optical fiber.
  • the transmission line 5 distributes an optical signal to each V-ONU 6 from V-ONU6-1 to V-ONU6-N by using an optical splitter.
  • V-ONU6 Video-Optical Network Unit
  • the detection unit 60 has a photodiode.
  • the detection unit 60 converts an optical signal acquired via the transmission line 5 into a frequency modulation signal (electrical signal).
  • the frequency demodulation unit 61 generates a frequency-multiplexed signal including a video signal by executing demodulation processing on the frequency-modulated signal.
  • the demodulation process includes a process of detecting the rising edge of the frequency-modulated signal and a process of detecting the falling edge of the frequency-modulated signal.
  • the amplification unit 62 amplifies the voltage of the video signal in the frequency division signal to a predetermined level.
  • the display device 7 is a device that displays an image on the screen.
  • the display device 7 acquires a frequency-multiplexed signal including a video signal whose voltage is amplified to a predetermined level from the amplification unit 62.
  • the display device 7 displays an image on the screen according to the image signal in the frequency division signal.
  • FIG. 2 is a diagram showing a configuration example of the frequency modulation unit 30.
  • the frequency modulation unit 30 includes a distribution unit 300, an amplification unit 301 of M units (M is an integer of 2 or more), a first laser oscillator 302, a phase modulator 303 of M units, and a second laser oscillator 304. It includes a combine wave unit 305 and a detection unit 306. "M" is determined, for example, based on a simulation result or an experimental result regarding the specification.
  • the amplification unit 301-m is connected to the phase modulator 303-m so that the output of the amplification unit 301-m (m is an integer from 1 to M) is input to the phase modulator 303-m. It is connected.
  • the frequency modulation unit 30 includes a combination of the amplification unit 301-m and the phase modulator 303-m.
  • phase modulators 303 of M units are connected in cascade in the subsequent stage of the first laser oscillator 302. That is, the phase modulator 303 of the previous stage and the phase modulator 303 of the next stage are connected so that the output of the phase modulator 303 of the previous stage is input to the phase modulator 303 of the next stage.
  • a frequency-multiplexed signal including a video signal (modulated signal) is input to the distribution unit 300 from the head-end device 2 as an input signal.
  • the video signals are, for example, a video signal of cable television broadcasting and a video signal of satellite broadcasting (intermediate frequency (IF) signal).
  • the video signal of cable TV broadcasting is, for example, AM (Amplitude Modulation) for analog broadcasting and QAM (Quadrature Amplitude Modulation) signal for digital broadcasting, which are included in the band from 70 MHz to 770 MHz.
  • the video signal of satellite broadcasting is, for example, a BS (Broadcast Satellite) signal included in a band from 1.0 GHz to 2.1 GHz and a CS (Communication Satellite) 110 degree signal.
  • the distribution unit 300 distributes (frequency distribution) a frequency-multiplexed signal including a video signal (modulated signal) to M units of amplification units 301.
  • the distributed video signal is input to each amplification unit 301 from the distribution unit 300.
  • the amplification unit 301 amplifies the voltage (amplitude) of the input video signal to a predetermined level.
  • the voltage of the video signal (modulation signal) input to each of the plurality of amplification units 301 can be lower than the voltage of the video signal input to the single amplification unit.
  • the amplification unit 301 outputs the voltage-amplified video signal to the phase modulator 303 connected to the self-amplification unit among the M phase modulators 303.
  • the amplification unit 301-1 outputs the voltage-amplified video signal to the phase modulator 303-1.
  • the amplification unit 301-M outputs the voltage-amplified video signal to the phase modulator 303-M.
  • the first laser oscillator 302 is a laser diode.
  • the first laser oscillator 302 generates laser light based on the first oscillation frequency "f1".
  • the first laser oscillator 302 outputs the laser light based on the first oscillation frequency “f1” to the phase modulator 303-1.
  • a video signal (modulation signal) whose voltage is amplified is input to the phase modulator 303-m from the amplification unit 301-m connected to the self-phase modulator.
  • Laser light based on the first oscillation frequency "f1" is input to the phase modulator 303-1 from the first laser oscillator 302.
  • the phase modulator 303-1 generates an optical signal phase-modulated according to the video signal whose voltage is amplified by using a laser beam based on the first oscillation frequency "f1".
  • the phase modulator 303-1 outputs an optical signal phase-modulated according to the video signal whose voltage is amplified to the phase modulator 303-2.
  • the phase modulator 303- (m-1) (this "m” is an integer from 3 to M) is a phase modulator 303- (this "m” is an integer from 3 to M), which is an optical signal phase-modulated according to a video signal whose voltage is amplified. It is generated using the optical signal output from m-2).
  • the phase modulator 303- (m-1) outputs an optical signal phase-modulated according to the video signal whose voltage is amplified to the phase modulator 303-m.
  • the phase modulator 303-M generates an optical signal phase-modulated according to the video signal whose voltage is amplified by using the optical signal output from the phase modulator 303- (M-1).
  • the phase modulator 303-M outputs an optical signal phase-modulated according to the video signal whose voltage is amplified to the combine wave unit 305.
  • the second laser oscillator 304 is a laser diode.
  • the second laser oscillator 304 generates laser light based on the second oscillation frequency "f2".
  • the second laser oscillator 304 outputs the laser light based on the second oscillation frequency “f2” to the combine wave unit 305.
  • An optical signal phase-modulated according to the video signal is input to the combine wave unit 305 from the phase modulator 303-M. Further, laser light based on the second oscillation frequency "f2" is input to the combine wave unit 305 from the second laser oscillator 304.
  • the combined wave unit 305 combines an optical signal phase-modulated according to the video signal with a laser beam based on the second oscillation frequency “f2”.
  • the combined wave unit 305 outputs the combined optical signal to the detection unit 306.
  • the detection unit 306 has a photodiode.
  • the detection unit 306 uses a photodiode to perform batch reception processing (for example, optical heterodyne detection processing) on the combined optical signal. As a result, the detection unit 306 generates a frequency modulation signal (FM signal).
  • the detection unit 306 outputs a wide band (for example, from 500 MHz to 6 GHz) frequency modulation signal to the intensity modulator 32.
  • FIG. 3 is a flowchart showing an operation example of the frequency modulation unit 30.
  • the distribution unit 300 outputs a video signal (modulated signal) to a plurality of amplification units 301 by distribution processing for the input signal (step S101).
  • Each amplification unit 301 amplifies the voltage of the video signal input to the self-amplification unit to a predetermined level.
  • Each amplification unit 301 outputs the voltage-amplified video signal to the phase modulator 303 connected to the self-amplification unit among the M phase modulators 303 (step S102).
  • the phase modulator 303-1 generates an optical signal phase-modulated according to the video signal whose voltage is amplified by using a laser beam based on the first oscillation frequency "f1".
  • the phase modulator 303-1 outputs an optical signal phase-modulated according to the video signal whose voltage is amplified to the phase modulator 303-2 (step S103-1).
  • the phase modulator 303- (m-1) (this "m” is an integer from 3 to M) is a phase modulator 303- (this "m” is an integer from 3 to M), which is an optical signal phase-modulated according to a video signal whose voltage is amplified. It is generated using the optical signal output from m-2).
  • the phase modulator 303- (m-1) outputs an optical signal phase-modulated according to the voltage-amplified video signal to the phase modulator 303-m (step S103-m).
  • the phase modulator 303-M generates an optical signal phase-modulated according to the video signal whose voltage is amplified by using the optical signal output from the phase modulator 303- (M-1).
  • the phase modulator 303-M outputs an optical signal phase-modulated according to the video signal whose voltage is amplified to the combine wave unit 305 (step S103-M).
  • the combined wave unit 305 combines the optical signal phase-modulated according to the video signal with the laser light based on the second oscillation frequency “f2” (step S104).
  • the detection unit 306 executes a batch reception process for the result of combining the optical signal phase-modulated according to the video signal and the laser beam based on the second oscillation frequency "f2", thereby performing the frequency modulation signal. Is generated (step S105).
  • the distribution unit 300 distributes the modulated signal to the plurality of amplification units 301 connected in parallel.
  • a plurality of amplification units 301 connected in parallel amplify the voltage of each modulation signal.
  • the plurality of phase modulators 303 connected in cascade use an optical signal (first optical signal) phase-modulated according to each modulation signal whose voltage is amplified, and use laser light based on the first oscillation frequency "f1".
  • the combined wave unit 305 combines a laser beam based on the second oscillation frequency “f2” with a phase-modulated optical signal (first optical signal).
  • the detection unit 306 generates a frequency modulation signal by executing a detection process on the result of combining the laser light based on the second oscillation frequency and the phase-modulated optical signal.
  • the detection unit 306 performs detection processing (for example, optical heterodyne detection processing) on the result of combining the laser light based on the second oscillation frequency “f2” and the phase-modulated optical signal (first optical signal).
  • detection processing for example, optical heterodyne detection processing
  • f2 the phase-modulated optical signal
  • first optical signal By executing, a frequency modulation signal (FM signal) is generated.
  • the intensity modulator 32 generates an intensity-modulated optical signal (second optical signal) by using intensity-modulated optical signal (second optical signal) by performing intensity modulation according to the frequency-modulated signal.
  • the V-OLT4 optical subscriber line end station device
  • the V-ONU6 optical network unit acquires an intensity-modulated optical signal (second optical signal
  • the voltage of the video signal (modulated signal) input to each of the plurality of amplification units 301 can be lower than the voltage of the video signal input to the single amplification unit, so that the voltage of the plurality of amplification units 301 can be lower.
  • the distortion generated in the video signal in the combination is less than the distortion generated in the video signal in the single amplification unit.
  • the voltage of the video signal (modulation signal) input to each of the plurality of phase modulators 303 (optical phase modulator) can be lower than the voltage of the video signal input to the single phase modulator.
  • the distortion generated in the video signal in the combination of the plurality of phase modulators 303 is less than the distortion generated in the video signal in the single phase modulator.
  • the voltage of the video signal input to each of the plurality of phase modulators 303 can be lowered, so that the distortion generated in the video signal in the plurality of phase modulators 303 is suppressed to be small. It is possible. Therefore, even if the voltage of the video signal input to each of the plurality of phase modulators 303 increases due to channel addition, band increase, or the like, the quality of the video signal is unlikely to deteriorate.
  • a part or all of each functional unit of the optical transmission system 1 is stored in a storage device and a memory in which a processor such as a CPU (Central Processing Unit) has a non-volatile recording medium (non-temporary recording medium). It is realized as software by executing the specified program.
  • the program may be recorded on a computer-readable recording medium.
  • Computer-readable recording media include, for example, flexible disks, magneto-optical disks, portable media such as ROM (ReadOnlyMemory) and CD-ROM (CompactDiscReadOnlyMemory), and storage of hard disks built into computer systems. It is a non-temporary recording medium such as a device.
  • each functional part of the optical transmission system 1 uses, for example, an LSI (Large Scale Integrated circuit), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), or the like. It may be realized by using the hardware including the electronic circuit (electronic circuit or circuitry) which has been used.
  • the present invention is applicable to a video distribution system.
  • Optical transmission system 1 ... Optical transmission system, 2 ... Headend device, 3 ... Optical transmission device, 4 ... V-OLT, 5 ... Transmission path, 6 ... V-ONU, 7 ... Display device, 30 ... Frequency modulator, 31 ... Laser oscillator , 32 ... Intensity modulator, 60 ... Detection unit, 61 ... Frequency demodulation unit, 62 ... Amplification unit, 100 ... Frequency modulator, 101 ... First laser oscillator, 102 ... Second laser oscillator, 103 ... Phase modulator, 104 ... combiner, 105 ... detector, 110 ... frequency modulator, 111 ... first laser oscillator, 112 ... second laser oscillator, 113 ...
  • phase modulator 114 ... combiner, 115 ... detector, 116 ... amplification Unit, 300 ... Distributor, 301 ... Amplifier, 302 ... First laser oscillator, 303 ... Phase modulator, 304 ... Second laser oscillator, 305 ... Combined part, 306 ... Detection unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Optical Communication System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

光送信装置は、並列接続された複数の増幅部に変調信号を分配する分配部と、並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された光信号を、第1発振周波数に基づくレーザー光を用いて生成する縦続接続された複数の位相変調器と、第2発振周波数に基づくレーザー光と光信号とを合波する合波部と、第2発振周波数に基づくレーザー光と光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波部とを備える。

Description

光送信装置、光送信方法及び光伝送システム
 本発明は、光送信装置、光送信方法及び光伝送システムに関する。
 周波数多重(Frequency Division Multiplexing : FDM)信号を周波数変調(Frequency Modulation : FM)信号に一括変換する方式(以下「FM一括変換方式」という。)の光伝送システムが、映像信号の配信システムに導入されている(非特許文献1及び2参照)。
 図4は、このような光伝送システムの光送信装置に備えられた周波数変調部の構成の第1例を示す図である。周波数変調部100は、第1レーザー発振器101と、第2レーザー発振器102と、位相変調器103と、合波部104と、検波部105とを備える。
 第1レーザー発振器101は、レーザーダイオードである。第1レーザー発振器101は、第1発振周波数「f1」に基づいてレーザー光を生成する。第1レーザー発振器101には、周波数多重信号におけるケーブルテレビ放送の映像信号(変調信号)が、ヘッドエンド装置(不図示)から入力される。第1レーザー発振器101は、ケーブルテレビ放送の映像信号に応じて直接変調された光信号を、第1発振周波数「f1」に基づくレーザー光を用いて生成する。
 第2レーザー発振器102は、レーザーダイオードである。第2レーザー発振器102は、第2発振周波数「f2」に基づいてレーザー光を生成する。以下、位相が反転された映像信号を「逆位相の映像信号」という。第2レーザー発振器102には、周波数多重信号におけるケーブルテレビ放送の逆位相の映像信号が、ヘッドエンド装置(不図示)から入力される。第1レーザー発振器101は、逆位相の映像信号に応じて直接変調された光信号を、第2発振周波数「f2」に基づくレーザー光を用いて生成する。
 位相変調器103には、ケーブルテレビ放送の映像信号に応じて直接変調された光信号が、第1レーザー発振器101から入力される。また、位相変調器103には、周波数多重信号における衛星放送の映像信号(変調信号)が、ヘッドエンド装置(不図示)から入力される。
 位相変調器103は、ケーブルテレビ放送の映像信号に応じて直接変調された光信号の位相を、衛星放送の映像信号に応じて変調する。位相変調器103は、位相変調された光信号を、合波部104に出力する。
 合波部104には、位相変調された光信号が、位相変調器103から入力される。また、合波部104には、逆位相の映像信号に応じて直接変調された光信号が、第2レーザー発振器102から入力される。合波部104は、位相変調された光信号と、逆位相の映像信号に応じて直接変調された光信号とを合波する。
 検波部105は、フォトダイオードを用いて、合波された光信号に対して一括受信処理(光ヘテロダイン検波)を実行する。これによって、検波部105は、線形性の高い周波数変調信号を生成する。この周波数変調信号の中心周波数は、「|f1-f2|」である。
ITU-T J.185 : Transmission equipment for transferring multi-channel television signals over optical access networks by frequency modulation conversion, [online],[令和2年12月21日検索],インターネット<URL:https://www.itu.int/rec/T-REC-J.185-201206-I/en> 下羽 利明,外2名, "FM一括変換方式を用いた光映像配信技術," 信学技報 IEICE Technical Report CS2019-84, IE2019-64(2019-12) , [online],[令和2年12月21日検索],インターネット<URL:https://www.ieice.org/ken/paper/20191206T1TI/>
 FM一括変換方式では、周波数変調部は、入力された映像信号(変調信号)に応じて直接変調された光信号を、2本のレーザー光を用いて生成する。この2本のレーザー光における、バイアス電流と発振周波数との間の特性には、非常に高い線形性が要求される。このため、各レーザー発振器の選別コストが非常に高いという問題がある。この問題を解決するために、2個のレーザー発振器のうちの1個のレーザー発振器の後段に位相変調器が接続された上で、伝送される全ての映像信号が位相変調器に入力されるようにすることが考えられる。
 図5は、光伝送システムの光送信装置に備えられた周波数変調部の構成の第2例を示す図である。周波数変調部110は、第1レーザー発振器111と、第2レーザー発振器112と、位相変調器113と、合波部114と、検波部115と、増幅部116とを備える。
 第1レーザー発振器111は、第1発振周波数「f1」に基づいてレーザー光を生成する。第1レーザー発振器111は、第1発振周波数「f1」に基づくレーザー光を、位相変調器113に出力する。第2レーザー発振器112は、第2発振周波数「f2」に基づいてレーザー光を生成する。第2レーザー発振器112は、第2発振周波数「f2」に基づくレーザー光を、合波部114に出力する。
 増幅部116には、ケーブルテレビ放送の映像信号と衛星放送の映像信号とが、周波数多重信号として、ヘッドエンド装置(不図示)から入力される。増幅部116は、周波数変調信号において十分な周波数偏移量が得られるようにするために、これらの映像信号の電圧を数ボルト程度まで増幅する。増幅部116は、電圧が増幅された映像信号を、位相変調器113に出力する。
 位相変調器113は、電圧が増幅された映像信号を用いて位相変調された光信号を、第1発振周波数「f1」に基づくレーザー光を用いて生成する。合波部114には、位相変調された光信号が、位相変調器113から入力される。また、合波部114には、第2発振周波数「f2」に基づくレーザー光が、第2レーザー発振器112から入力される。
 合波部114は、位相変調された光信号と、第2発振周波数「f2」に基づくレーザー光とを合波する。検波部115は、フォトダイオードを用いて、合波された光信号に対して一括受信処理(光ヘテロダイン検波)を実行する。
 しかしながら、周波数変調部110では、増幅部116において映像信号に発生する歪によって信号品質が劣化するので、歪特性を向上させることができない場合がある。
 上記事情に鑑み、本発明は、歪特性を向上させることが可能である光送信装置、光送信方法及び光伝送システムを提供することを目的としている。
 本発明の一態様は、並列接続された複数の増幅部に変調信号を分配する分配部と、前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された光信号を、第1発振周波数に基づくレーザー光を用いて生成する縦続接続された複数の位相変調器と、第2発振周波数に基づくレーザー光と前記光信号とを合波する合波部と、前記第2発振周波数に基づくレーザー光と前記光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波部とを備える光送信装置である。
 本発明の一態様は、光送信装置が実行する光送信方法であって、並列接続された複数の増幅部に変調信号を分配する分配ステップと、前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された光信号を、第1発振周波数に基づくレーザー光を用いて、縦続接続された複数の位相変調器において生成する複数の位相変調ステップと、第2発振周波数に基づくレーザー光と前記光信号とを合波する合波ステップと、前記第2発振周波数に基づくレーザー光と前記光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波ステップとを含む光送信方法である。
 本発明の一態様は、光送信装置と、光加入者線端局装置と、光回線終端装置と備える光伝送システムであって、前記光送信装置は、並列接続された複数の増幅部に変調信号を分配する分配部と、前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された第1光信号を、第1発振周波数に基づくレーザー光を用いて生成する縦続接続された複数の位相変調器と、第2発振周波数に基づくレーザー光と前記第1光信号とを合波する合波部と、前記第2発振周波数に基づくレーザー光と前記第1光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波部と、前記周波数変調信号に応じて強度変調を実行することによって、強度変調された第2光信号を、伝送用のレーザー光を用いて生成する強度変調器とを備え、前記光加入者線端局装置は、強度変調された前記第2光信号を送信し、前記光回線終端装置は、強度変調された前記第2光信号を取得する、光伝送システムである。
 本発明により、歪特性を向上させることが可能である。
実施形態における、光伝送システムの構成例を示す図である。 実施形態における、周波数変調部の構成例を示す図である。 実施形態における、周波数変調部の動作例を示すフローチャートである。 光伝送システムの光送信装置に備えられた周波数変調部の構成の第1例を示す図である。 光伝送システムの光送信装置に備えられた周波数変調部の構成の第2例を示す図である。
 本発明の実施形態について、図面を参照して詳細に説明する。
 図1は、光伝送システム1の構成例を示す図である。光伝送システム1は、光信号を伝送するシステム(光伝送ネットワーク)である。以下では、光伝送システム1は、一例として、光信号を用いて映像信号を配信する。映像は、動画像でもよいし、静止画像でもよい。
 光伝送システム1は、ヘッドエンド装置2と、光送信装置3と、V-OLT4と、伝送路5と、N台(Nは1以上の整数)のV-ONU6と、表示装置7とを備える。光送信装置3は、周波数変調部30と、レーザー発振器31と、強度変調器32とを備える。V-ONU6は、検波部60と、周波数復調部61と、増幅部62とを備える。
 ヘッドエンド装置2は、映像信号(変調信号)を含む周波数多重信号を、光送信装置3に出力する。なお、ヘッドエンド装置2は、音声信号及びデータ信号等(変調信号)と映像信号とを含む周波数多重信号を、光送信装置3に出力してもよい。
 光送信装置3は、光信号を送信する装置である。周波数変調部30は、映像信号に応じて位相変調された光信号と逆位相の映像信号に応じて位相変調された光信号との間の光ビートに対して、例えば光ヘテロダイン検波処理を実行する。これによって、周波数変調部30は、周波数変調信号(FM信号)を生成する。
 レーザー発振器31は、所定の発振周波数に基づく伝送用のレーザー光を生成する。強度変調器32は、周波数変調信号に応じて、伝送用のレーザー光に対して強度変調(Intensity Modulation)を実行する機器である。強度変調器32は、強度変調された光信号を、伝送用のレーザー光を用いて生成する。強度変調器32は、強度変調された光信号を、V-OLT4に送信する。
 V-OLT4(Video - Optical Line Terminal)は、光加入者線端局装置である。V-OLT4は、強度変調器32によって強度変調された光信号を、伝送路5を経由させて各V-ONU6に送信する。伝送路5は、光ファイバを用いて、光信号を伝送する。伝送路5は、光スプリッタを用いて、V-ONU6-1からV-ONU6-Nまでの各V-ONU6に光信号を分配する。
 V-ONU6(Video - Optical Network Unit)は、光回線終端装置である。検波部60は、フォトダイオードを有する。検波部60は、伝送路5を経由して取得された光信号を、周波数変調信号(電気信号)に変換する。周波数復調部61は、周波数変調信号に対して復調処理を実行することによって、映像信号を含む周波数多重信号を生成する。復調処理は、周波数変調信号の立ち上がりを検出する処理と、周波数変調信号の立ち下がりを検出する処理とを含む。増幅部62は、周波数多重信号における映像信号の電圧を、予め定められたレベルまで増幅させる。
 表示装置7は、映像を画面に表示する装置である。表示装置7は、予め定められたレベルまで電圧が増幅された映像信号を含む周波数多重信号を、増幅部62から取得する。表示装置7は、周波数多重信号における映像信号に応じて、映像を画面に表示する。
 次に、周波数変調部30の構成例を説明する。
 図2は、周波数変調部30の構成例を示す図である。周波数変調部30は、分配部300と、M台(Mは2以上の整数)の増幅部301と、第1レーザー発振器302と、M台の位相変調器303と、第2レーザー発振器304と、合波部305と、検波部306とを備える。「M」は、例えば、仕様に関するシミュレーション結果又は実験結果に基づいて定められる。
 図2では、増幅部301-m(mは、1からMまでの整数)の出力が位相変調器303-mに入力されるように、増幅部301-mは、位相変調器303-mに接続されている。このように、周波数変調部30は、増幅部301-mと位相変調器303-mとの組み合わせを備える。
 M台の位相変調器303は、第1レーザー発振器302の後段において、縦続接続されている。すなわち、前段の位相変調器303の出力が次段の位相変調器303に入力されるように、前段の位相変調器303と次段の位相変調器303とが接続される。
 分配部300には、映像信号(変調信号)を含む周波数多重信号が、入力信号としてヘッドエンド装置2から入力される。以下では、映像信号は、一例として、ケーブルテレビ放送の映像信号と、衛星放送の映像信号(中間周波数(Intermediate Frequency:IF)信号)とである。
 ケーブルテレビ放送の映像信号は、例えば70MHzから770MHzまでの帯域に含まれる、アナログ放送用のAM(Amplitude Modulation)と、デジタル放送用のQAM(Quadrature Amplitude Modulation)信号とである。衛星放送の映像信号は、例えば1.0GHzから2.1GHzまでの帯域に含まれる、BS(Broadcast Satellite)の信号と、CS(Communication Satellite)110度の信号とである。
 分配部300は、映像信号(変調信号)を含む周波数多重信号を、M台の増幅部301に分配(周波数分配)する。各増幅部301には、分配された映像信号が、分配部300から入力される。増幅部301は、入力された映像信号の電圧(振幅)を、所定レベルまで増幅させる。ここで、複数の増幅部301にそれぞれ入力される映像信号(変調信号)の電圧は、単体の増幅部に入力される映像信号の電圧よりも低くすることができる。
 増幅部301は、電圧が増幅された映像信号を、M台の位相変調器303のうち、自増幅部に接続された位相変調器303に出力する。例えば、増幅部301-1は、電圧が増幅された映像信号を、位相変調器303-1に出力する。例えば、増幅部301-Mは、電圧が増幅された映像信号を、位相変調器303-Mに出力する。
 第1レーザー発振器302は、レーザーダイオードである。第1レーザー発振器302は、第1発振周波数「f1」に基づいてレーザー光を生成する。第1レーザー発振器302は、第1発振周波数「f1」に基づくレーザー光を、位相変調器303-1に出力する。
 位相変調器303-mには、電圧が増幅された映像信号(変調信号)が、自位相変調器に接続された増幅部301-mから入力される。
 位相変調器303-1には、第1発振周波数「f1」に基づくレーザー光が、第1レーザー発振器302から入力される。位相変調器303-1は、電圧が増幅された映像信号に応じて位相変調された光信号を、第1発振周波数「f1」に基づくレーザー光を用いて生成する。位相変調器303-1は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-2に出力する。
 位相変調器303-(m-1)(この「m」は、3からMまでの整数)は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-(m-2)から出力された光信号を用いて生成する。位相変調器303-(m-1)は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-mに出力する。
 位相変調器303-Mは、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-(M-1)から出力された光信号を用いて生成する。位相変調器303-Mは、電圧が増幅された映像信号に応じて位相変調された光信号を、合波部305に出力する。
 第2レーザー発振器304は、レーザーダイオードである。第2レーザー発振器304は、第2発振周波数「f2」に基づいてレーザー光を生成する。第2レーザー発振器304は、第2発振周波数「f2」に基づくレーザー光を、合波部305に出力する。
 合波部305には、映像信号に応じて位相変調された光信号が、位相変調器303-Mから入力される。また、合波部305には、第2発振周波数「f2」に基づくレーザー光が、第2レーザー発振器304から入力される。合波部305は、映像信号に応じて位相変調された光信号と、第2発振周波数「f2」に基づくレーザー光とを合波する。合波部305は、合波された光信号を検波部306に出力する。
 検波部306は、フォトダイオードを有する。検波部306は、フォトダイオードを用いて、合波された光信号に対して一括受信処理(例えば、光ヘテロダイン検波処理)を実行する。これによって、検波部306は、周波数変調信号(FM信号)を生成する。検波部306は、広帯域(例えば、500MHzから6GHzまで)の周波数変調信号を、強度変調器32に出力する。
 次に、周波数変調部30の動作例を説明する。
 図3は、周波数変調部30の動作例を示すフローチャートである。分配部300は、入力信号に対する分配処理によって、映像信号(変調信号)を複数の増幅部301に出力する(ステップS101)。
 各増幅部301は、自増幅部に入力された映像信号の電圧を、所定レベルまで増幅させる。各増幅部301は、電圧が増幅された映像信号を、M台の位相変調器303のうち、自増幅部に接続された位相変調器303に出力する(ステップS102)。
 位相変調器303-1は、電圧が増幅された映像信号に応じて位相変調された光信号を、第1発振周波数「f1」に基づくレーザー光を用いて生成する。位相変調器303-1は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-2に出力する(ステップS103-1)。
 位相変調器303-(m-1)(この「m」は、3からMまでの整数)は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-(m-2)から出力された光信号を用いて生成する。位相変調器303-(m-1)は、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-mに出力する(ステップS103-m)。
 位相変調器303-Mは、電圧が増幅された映像信号に応じて位相変調された光信号を、位相変調器303-(M-1)から出力された光信号を用いて生成する。位相変調器303-Mは、電圧が増幅された映像信号に応じて位相変調された光信号を、合波部305に出力する(ステップS103-M)。
 合波部305は、映像信号に応じて位相変調された光信号と第2発振周波数「f2」に基づくレーザー光とを合波する(ステップS104)。検波部306は、映像信号に応じて位相変調された光信号と第2発振周波数「f2」に基づくレーザー光とが合波された結果に対して一括受信処理を実行することによって、周波数変調信号を生成する(ステップS105)。
 以上のように、分配部300は、並列接続された複数の増幅部301に、変調信号を分配する。並列接続された複数の増幅部301は、各変調信号の電圧を増幅する。縦続接続された複数の位相変調器303は、電圧が増幅された各変調信号に応じて位相変調された光信号(第1光信号)を、第1発振周波数「f1」に基づくレーザー光を用いて生成する。合波部305は、第2発振周波数「f2」に基づくレーザー光と位相変調された光信号(第1光信号)とを合波する。検波部306は、第2発振周波数に基づくレーザー光と位相変調された光信号とが合波された結果に対して検波処理を実行することによって、周波数変調信号を生成する。検波部306は、第2発振周波数「f2」に基づくレーザー光と位相変調された光信号(第1光信号)とが合波された結果に対して検波処理(例えば、光ヘテロダイン検波処理)を実行することによって、周波数変調信号(FM信号)を生成する。強度変調器32は、周波数変調信号に応じて強度変調を実行することによって、強度変調された光信号(第2光信号)を、伝送用のレーザー光を用いて生成する。V-OLT4(光加入者線端局装置)は、強度変調された光信号(第2光信号)を送信する。V-ONU6(光回線終端装置)は、強度変調された光信号(第2光信号)を取得する。
 ここで、複数の増幅部301にそれぞれ入力される映像信号(変調信号)の電圧は、単体の増幅部に入力される映像信号の電圧よりも低くすることができるので、複数の増幅部301の組み合わせにおいて映像信号に発生する歪は、単体の増幅部において映像信号に発生する歪よりも少ない。また、複数の位相変調器303(光位相変調器)にそれぞれ入力される映像信号(変調信号)の電圧は、単体の位相変調器に入力される映像信号の電圧よりも低くすることができるので、複数の位相変調器303の組み合わせにおいて映像信号に発生する歪は、単体の位相変調器において映像信号に発生する歪よりも少ない。
 これによって、光ビートを用いて周波数変調信号を生成する光伝送システムにおいて、歪特性を向上させることが可能である。
 このように、歪特性に優れるFM一括変換方式では、複数の位相変調器303にそれぞれ入力される映像信号の電圧を低くできるので、複数の位相変調器303において映像信号に発生する歪を小さく抑えることが可能である。このため、複数の位相変調器303にそれぞれ入力される映像信号の電圧がチャンネル追加及び帯域増加等に応じて高くなった場合でも、映像信号の品質が劣化しにくい。
 光伝送システム1の各機能部のうちの一部又は全部は、CPU(Central Processing Unit)等のプロセッサが、不揮発性の記録媒体(非一時的な記録媒体)を有する記憶装置とメモリとに記憶されたプログラムを実行することにより、ソフトウェアとして実現される。プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD-ROM(Compact Disc Read Only Memory)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置などの非一時的な記録媒体である。
 光伝送システム1の各機能部の一部又は全部は、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)又はFPGA(Field Programmable Gate Array)等を用いた電子回路(electronic circuit又はcircuitry)を含むハードウェアを用いて実現されてもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、映像配信システムに適用可能である。
1…光伝送システム、2…ヘッドエンド装置、3…光送信装置、4…V-OLT、5…伝送路、6…V-ONU、7…表示装置、30…周波数変調部、31…レーザー発振器、32…強度変調器、60…検波部、61…周波数復調部、62…増幅部、100…周波数変調部、101…第1レーザー発振器、102…第2レーザー発振器、103…位相変調器、104…合波部、105…検波部、110…周波数変調部、111…第1レーザー発振器、112…第2レーザー発振器、113…位相変調器、114…合波部、115…検波部、116…増幅部、300…分配部、301…増幅部、302…第1レーザー発振器、303…位相変調器、304…第2レーザー発振器、305…合波部、306…検波部

Claims (3)

  1.  並列接続された複数の増幅部に変調信号を分配する分配部と、
     前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された光信号を、第1発振周波数に基づくレーザー光を用いて生成する縦続接続された複数の位相変調器と、
     第2発振周波数に基づくレーザー光と前記光信号とを合波する合波部と、
     前記第2発振周波数に基づくレーザー光と前記光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波部と
     を備える光送信装置。
  2.  光送信装置が実行する光送信方法であって、
     並列接続された複数の増幅部に変調信号を分配する分配ステップと、
     前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された光信号を、第1発振周波数に基づくレーザー光を用いて、縦続接続された複数の位相変調器において生成する複数の位相変調ステップと、
     第2発振周波数に基づくレーザー光と前記光信号とを合波する合波ステップと、
     前記第2発振周波数に基づくレーザー光と前記光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波ステップと
     を含む光送信方法。
  3.  光送信装置と、光加入者線端局装置と、光回線終端装置と備える光伝送システムであって、
     前記光送信装置は、
     並列接続された複数の増幅部に変調信号を分配する分配部と、
     前記並列接続された複数の増幅部によって電圧が増幅された各変調信号に応じて位相変調された第1光信号を、第1発振周波数に基づくレーザー光を用いて生成する縦続接続された複数の位相変調器と、
     第2発振周波数に基づくレーザー光と前記第1光信号とを合波する合波部と、
     前記第2発振周波数に基づくレーザー光と前記第1光信号とが合波された結果に対して検波処理を実行することによって周波数変調信号を生成する検波部と、
     前記周波数変調信号に応じて強度変調を実行することによって、強度変調された第2光信号を、伝送用のレーザー光を用いて生成する強度変調器とを備え、
     前記光加入者線端局装置は、強度変調された前記第2光信号を送信し、
     前記光回線終端装置は、強度変調された前記第2光信号を取得する、
     光伝送システム。
PCT/JP2021/000005 2021-01-04 2021-01-04 光送信装置、光送信方法及び光伝送システム WO2022145047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/270,537 US20240063916A1 (en) 2021-01-04 2021-01-04 Optical transmitting apparatus, optical transmitting method, and optical transmission system
PCT/JP2021/000005 WO2022145047A1 (ja) 2021-01-04 2021-01-04 光送信装置、光送信方法及び光伝送システム
JP2022572872A JPWO2022145047A1 (ja) 2021-01-04 2021-01-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000005 WO2022145047A1 (ja) 2021-01-04 2021-01-04 光送信装置、光送信方法及び光伝送システム

Publications (1)

Publication Number Publication Date
WO2022145047A1 true WO2022145047A1 (ja) 2022-07-07

Family

ID=82259169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000005 WO2022145047A1 (ja) 2021-01-04 2021-01-04 光送信装置、光送信方法及び光伝送システム

Country Status (3)

Country Link
US (1) US20240063916A1 (ja)
JP (1) JPWO2022145047A1 (ja)
WO (1) WO2022145047A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082323A (ja) * 2000-07-07 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 多波長一括発生装置
JP2008219760A (ja) * 2007-03-07 2008-09-18 National Institute Of Information & Communication Technology 光送信装置及び方法
JP2009115945A (ja) * 2007-11-05 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> 多波長光源装置
JP2009258441A (ja) * 2008-04-17 2009-11-05 Ntt Advanced Technology Corp 光変調装置
JP2012060674A (ja) * 2011-12-05 2012-03-22 Fujitsu Ltd 偏光多重送信装置
JP2012249122A (ja) * 2011-05-30 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光送信器
JP2014515909A (ja) * 2011-04-26 2014-07-03 ゼットティーイー コーポレイション コヒーレントかつ周波数ロックされた光学サブキャリアの生成装置および方法
JP2020516136A (ja) * 2017-03-21 2020-05-28 ビフレスト コミュニケーションズ アぺーエス 高性能光受信機を含む光通信システム、デバイス、および方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082323A (ja) * 2000-07-07 2002-03-22 Nippon Telegr & Teleph Corp <Ntt> 多波長一括発生装置
JP2008219760A (ja) * 2007-03-07 2008-09-18 National Institute Of Information & Communication Technology 光送信装置及び方法
JP2009115945A (ja) * 2007-11-05 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> 多波長光源装置
JP2009258441A (ja) * 2008-04-17 2009-11-05 Ntt Advanced Technology Corp 光変調装置
JP2014515909A (ja) * 2011-04-26 2014-07-03 ゼットティーイー コーポレイション コヒーレントかつ周波数ロックされた光学サブキャリアの生成装置および方法
JP2012249122A (ja) * 2011-05-30 2012-12-13 Nippon Telegr & Teleph Corp <Ntt> 光通信システム及び光送信器
JP2012060674A (ja) * 2011-12-05 2012-03-22 Fujitsu Ltd 偏光多重送信装置
JP2020516136A (ja) * 2017-03-21 2020-05-28 ビフレスト コミュニケーションズ アぺーエス 高性能光受信機を含む光通信システム、デバイス、および方法

Also Published As

Publication number Publication date
JPWO2022145047A1 (ja) 2022-07-07
US20240063916A1 (en) 2024-02-22

Similar Documents

Publication Publication Date Title
JP4184474B2 (ja) 光伝送システムならびにそれに用いられる光送信装置および光受信装置
US5153763A (en) CATV distribution networks using light wave transmission lines
JP4178617B2 (ja) 光伝送システム、光送信装置及び光送信方法
US5262883A (en) CATV distribution networks using light wave transmission lines
WO2022049623A1 (ja) 光送信装置、光送信方法及び光伝送システム
JPH05110513A (ja) 光通信経路へ振幅変調信号を伝送する方法とその装置
WO2022172381A1 (ja) 光送信装置、光送信方法及び光伝送システム
US7433598B2 (en) Uncooled laser generation of narrowcast CATV signal
WO2022145047A1 (ja) 光送信装置、光送信方法及び光伝送システム
JP3352981B2 (ja) 通信システム
JP2018074477A (ja) 光伝送システム及び光伝送方法
US6072616A (en) Apparatus and methods for improving linearity and noise performance of an optical source
JP2610667B2 (ja) 光通信システム
WO2022024293A1 (ja) 光伝送システム及び伝送品質監視方法
WO2023135651A1 (ja) 光受信装置、光受信方法及び光伝送システム
WO2023162213A1 (ja) 光送信装置及び送信方法
WO2023162207A1 (ja) 光送信装置及び送信方法
JP2006287433A (ja) Fm変調方法、fm変調装置及び光伝送システム
WO2022208847A1 (ja) 光送信装置及び光送信方法
WO2023026397A1 (ja) 信号増幅方法及び光受信装置
WO2022186130A1 (ja) 光送信装置及び送信方法
WO2023032141A1 (ja) 光受信装置、光送信装置、光伝送システム、フィードバック方法及び調整方法
JPH11196054A (ja) 光通信網
JP3582561B2 (ja) 広帯域fm変調器
JP2005121922A (ja) 光変調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572872

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18270537

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21914909

Country of ref document: EP

Kind code of ref document: A1