WO2022024293A1 - 光伝送システム及び伝送品質監視方法 - Google Patents

光伝送システム及び伝送品質監視方法 Download PDF

Info

Publication number
WO2022024293A1
WO2022024293A1 PCT/JP2020/029237 JP2020029237W WO2022024293A1 WO 2022024293 A1 WO2022024293 A1 WO 2022024293A1 JP 2020029237 W JP2020029237 W JP 2020029237W WO 2022024293 A1 WO2022024293 A1 WO 2022024293A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
unit
optical transmission
monitoring
Prior art date
Application number
PCT/JP2020/029237
Other languages
English (en)
French (fr)
Inventor
利明 下羽
智暁 吉田
暁弘 田邉
隆 光井
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/016,367 priority Critical patent/US20230275658A1/en
Priority to PCT/JP2020/029237 priority patent/WO2022024293A1/ja
Priority to JP2022539896A priority patent/JP7328600B2/ja
Publication of WO2022024293A1 publication Critical patent/WO2022024293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/614Coherent receivers comprising one or more polarization beam splitters, e.g. polarization multiplexed [PolMux] X-PSK coherent receivers, polarization diversity heterodyne coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Definitions

  • the present invention relates to an optical transmission system and a transmission quality monitoring method.
  • an FTTH type CATV (Cable television) system As a network system for distributing video to a subscriber's home, for example, an FTTH (Fiber to the Home) type CATV (Cable television) system is known.
  • an FM (Frequency Modulation) batch conversion method is used as the optical transmission method (see Non-Patent Document 1).
  • Images distributed in Japan include BS (Broadcasting Satellites) broadcasting and 110-degree CS (Communication Satellites) broadcasting distributed from artificial satellites to the ground using right-handed circular polarization, as well as terrestrial digital broadcasting.
  • the section from the optical transmission unit to the optical amplifier provided in the relay amplifier is divided into an active system and a standby system. May be made redundant.
  • the signal quality is generally monitored by the quality monitoring unit included in the relay amplifier.
  • the relay amplifier switches from the active system to the standby system when the monitoring value indicating the signal quality becomes equal to or less than a predetermined threshold value.
  • ITU-T J.185 Transmission equipment for transferring multi-channel television signals over optical access networks by frequency modulation conversion
  • the equipment for existing broadcasting and the equipment for new 4K / 8K satellite broadcasting are separately installed as described above, one relay in the transmission of optical signals of two different wavelengths.
  • the signal quality is monitored by the quality monitoring unit corresponding to each wavelength.
  • the relay amplifier needs to be provided with a quality monitoring unit for each wavelength. Therefore, there is a problem that the device cost of the relay amplifier becomes high and a wider installation space is required.
  • an object of the present invention is to provide an optical transmission system and a transmission quality monitoring method capable of measuring the transmission quality for each wavelength without providing a quality monitoring unit for each wavelength.
  • One aspect of the present invention is an optical transmission system having a plurality of optical transmission units and a relay device, and the plurality of optical transmission units are frequency modulation in which an input signal is converted into a frequency modulation signal by a frequency modulation batch conversion process.
  • the batch conversion unit, the multiplexing unit that multiplexes the monitoring signals of different frequencies with respect to the frequency modulation signal, and the frequency modulation signal that is an electric signal in which the monitoring signals are multiplexed are converted into optical signals having different wavelengths from each other.
  • the relay device includes an optical modulation unit for conversion, and the relay device includes a photoelectric conversion unit that acquires a combined wave signal in which optical signals having different wavelengths are combined and converts the combined wave signal into an electric signal.
  • one aspect of the present invention is a frequency modulation batch conversion step in which a plurality of optical transmission units convert an input signal into a frequency modulation signal by a frequency modulation batch conversion process, and the plurality of optical transmission units have the frequency modulation signal.
  • a multiplex step in which monitoring signals having different frequencies are multiplexed, and the plurality of optical transmitters convert the frequency modulation signal, which is an electric signal in which the monitoring signals are multiplexed, into optical signals having different wavelengths.
  • the optical modulation step to be performed the photoelectric conversion step in which the relay device acquires a combined wave signal obtained by combining optical signals having different wavelengths from each other, and the relay device converts the combined wave signal into an electric signal, and the relay device ,
  • a transmission quality monitoring method comprising a measurement step for measuring the transmission quality of a plurality of the monitoring signals included in the electrical signal.
  • the present invention it is possible to measure the transmission quality for each wavelength without providing a quality monitoring unit for each wavelength.
  • the block diagram which shows an example of the network configuration of the conventional FTTH type CATV system.
  • the block diagram which shows an example of the structure of the optical transmission system by the conventional redundant FM batch conversion method.
  • the block diagram which shows an example of the structure of the optical transmission system by the FM batch conversion system of a plurality of wavelengths made redundant.
  • the block diagram which shows the structure of the transmission quality monitoring by the optical transmission system in embodiment of this invention.
  • the flowchart which shows the operation of the optical transmission system in embodiment of this invention.
  • the FTTH type CATV system is known as a network system that distributes video to a subscriber's home.
  • FIG. 1 is a block diagram showing an example of a network configuration of a conventional FTTH type CATV system.
  • the conventional FTTH type CATV system is installed in, for example, a headend 10, an optical transmission unit 11, a relay amplifier 30, an access amplifier 40, and each subscriber's house. It is configured to include a plurality of optical receiving units 50.
  • the headend 10 receives a radio wave carrying a video signal transmitted from a broadcasting station via a transmission tower on the ground, an artificial satellite, or the like.
  • the head end 10 adjusts the received radio wave, such as amplification.
  • the head end 10 outputs an electric signal indicating the video signal to the optical transmission unit 11.
  • the optical transmission unit 11 converts the acquired electric signal into an optical signal.
  • the optical transmission unit 11 sends the optical signal to an optical transmission line constructed of an optical fiber.
  • the optical transmission line is divided into a section of a relay network (hereinafter referred to as "relay NW”) and a section of an access network (hereinafter referred to as "access NW”).
  • relay NW a relay network
  • access NW an access network
  • the relay NW is a communication network that connects the optical transmission unit 11 and the access NW.
  • the relay amplifier 30 that functions as an amplifier is configured in multiple stages when the transmission distance extends over a long distance. Each relay amplifier 30 amplifies the received optical signal. Each relay amplifier 30 sends the amplified optical signal to another relay amplifier 30 in the subsequent stage, or sends it to a device in the access NW section. Alternatively, each relay amplifier 30 branches the amplified optical signal by an optical coupler and sends it to both the other relay amplifier 30 in the subsequent stage and the equipment in the access NW section.
  • the access NW is a communication network that connects the relay NW and each optical receiving unit 50 that terminates the optical signal.
  • a PON (Passive Optical Network) configuration is generally applied in order to distribute the optical signal output from the relay NW to the optical receivers 50 installed in a plurality of subscribers' homes.
  • the amplifier 40 may be used for the purpose of compensating for the loss due to the distribution of the optical signal due to the PON configuration and the loss due to the branching of the optical signal by the relay amplifier 30.
  • the amplifier 40 may be used for the loss due to the distribution of the optical signal due to the PON configuration and the loss due to the branching of the optical signal by the relay amplifier 30.
  • the FM batch conversion method is used as the optical transmission method.
  • the optical transmission unit 11 receives an electric signal of frequency-multiplexed multi-channel video output from the head end 10.
  • the optical transmission unit 11 collectively converts the electric signal of the frequency-multiplexed multi-channel video into a one-channel wideband FM signal. Further, the optical transmission unit 11 converts the FM signal into an optical signal having one wavelength ⁇ by intensity modulation and sends it to the optical transmission line.
  • the optical receiving unit 50 receives an optical signal having this wavelength ⁇ .
  • the optical receiving unit 50 converts the received optical signal into a wideband FM signal by photoelectric conversion and then demodulates it. As a result, the optical receiving unit can take out the electric signal of the frequency-multiplexed multi-channel video from the received optical signal.
  • the images to be distributed include BS broadcasting and 110-degree CS broadcasting distributed from an artificial satellite to the ground using right-handed circularly polarized waves, as well as terrestrial digital broadcasting and the like. Furthermore, from December 2018, BS broadcasting and 110-degree CS broadcasting, which are distributed from artificial satellites to the ground using left-handed circularly polarized waves, have started as new 4K / 8K satellite broadcasting.
  • the intermediate frequency band used in this new 4K / 8K satellite broadcasting is different from the intermediate frequency band used in existing broadcasting. Therefore, if the existing broadcasting equipment does not support the intermediate frequency of the new 4K / 8K satellite broadcasting, the distribution and viewing of the new 4K / 8K satellite broadcasting cannot be realized only by the existing broadcasting equipment.
  • equipment compatible with new 4K / 8K satellite broadcasting is provided separately from equipment for existing broadcasting. A method of installation is conceivable.
  • FIG. 2 is a block diagram showing an example of a network configuration when the above method is used.
  • the head end 12 corresponding to the new 4K / 8K satellite broadcasting and the optical transmitter 13 corresponding to the new 4K / 8K satellite broadcasting are used.
  • the optical wavelength multiplexing unit 20 is newly installed.
  • the optical wavelength division multiplexing unit 20 is, for example, a WDM (Wavelength Division Multiplexing) filter.
  • the relay amplifier 30 is compatible with the new 4K / 8K satellite broadcasting in advance. Further, it is assumed that the optical signal of the existing broadcast and the optical signal of the new 4K / 8K satellite broadcast can reach the access amplifier 40 at a desired signal level in the existing optical transmission line.
  • the optical wavelength division multiplexing unit 20 (for example, a filter circuit such as a WDM filter) is an optical signal output from an optical transmission unit 11 for existing broadcasting and an optical signal output from an optical transmission unit 13 corresponding to the new 4K / 8K satellite broadcasting. And the combined optical signal (hereinafter referred to as "combined wave signal") is transmitted to the relay amplifier 30.
  • the wavelength of the output light output from the existing broadcasting optical transmission unit 11 is defined as the wavelength ⁇ 1.
  • the wavelength of the output light output from the optical transmission unit 13 corresponding to the new 4K / 8K satellite broadcasting is set to the wavelength ⁇ 2.
  • the wavelength ⁇ 1 and the wavelength ⁇ 2 are different wavelengths from each other.
  • the existing optical receiving unit 50 for broadcasting can receive the optical signal having the wavelength ⁇ 1, but may not be able to receive the optical signal having the wavelength ⁇ 2.
  • an optical receiver 51 capable of receiving an optical signal having a wavelength of ⁇ 2 in the subscriber's house There is. If an optical receiver 51 capable of receiving not only an optical signal having a wavelength ⁇ 2 but also an optical signal having a wavelength ⁇ 1 is used as the newly installed optical receiver 51, the viewer can use the newly installed light. Only the receiving unit 51 can watch both the existing broadcast and the new 4K / 8K satellite broadcast.
  • FIG. 3 is a block diagram showing an example of the configuration of an optical transmission system by a conventional redundant FM batch conversion method.
  • the optical transmission system includes an optical amplifier 320 (320-1, 320-2) and a quality monitoring unit 310 included in the relay amplifier 30 from the optical transmission unit 11 (11-1, 11-2).
  • the section up to (310-1, 310-2) is made redundant between the active system and the standby system.
  • the quality monitoring unit 310 (310-1, 310-2) included in the relay amplifier 30 monitors the signal quality. Generally, when the signal quality monitoring value in the quality monitoring unit 310-1 of the operation system becomes equal to or less than a predetermined threshold value, the optical switching unit 330 included in the relay amplifier 30 switches from the operation system to the standby system. .. As a result, the video distribution service by the optical video distribution system is maintained.
  • FIG. 4 is a block diagram showing an example of the configuration of an optical transmission system using a redundant multi-wavelength FM batch conversion method.
  • the optical wavelength distribution unit 301 (301-1, 301-) is in front of the quality monitoring unit 310 (310-1 and 310-3, 310-2 and 310-4) included in the relay amplifier 30. 2) is provided.
  • the optical wavelength distribution unit 301 (301-1, 301-2) separates the two wavelengths.
  • the signal quality of the two separated wavelengths (wavelength ⁇ 2 and wavelength ⁇ 2) is monitored by the quality monitoring unit 310 (310-1 and 310-3, 310-2 and 310-4) corresponding to each wavelength. Will be.
  • the optical transmission system in this embodiment it is possible to measure the transmission quality for each wavelength without providing a quality monitoring unit for each wavelength. This makes it possible to realize a low-cost and space-saving relay amplifier.
  • the network configuration of the optical transmission system in the present embodiment is a network configuration that shares one relay NW in the transmission of optical signals having two different wavelengths, which is shown in FIG. 2 above. Hereinafter, it will be described with reference to FIG.
  • the optical transmission system in this embodiment is an FTTH type CATV system compatible with the new 4K / 8K satellite broadcasting.
  • the optical transmission system includes a headend 10, an optical transmission unit 11, a headend 12, an optical transmission unit 13, an optical wavelength division multiplexing unit 20, and a plurality of relay amplifiers 30. It includes an access amplifier 40, a plurality of optical receiving units 50, and a plurality of optical receiving units 51.
  • the number of relay amplifiers 30 may be one. Further, the plurality of optical receiving units 50 and the plurality of optical receiving units 51 may be one each.
  • the headend 10 is a headend for existing broadcasting.
  • the headend 10 receives a radio wave carrying a video signal for existing broadcasting transmitted from a broadcasting station via a transmission tower on the ground, an artificial satellite, or the like.
  • the head end 10 adjusts the received radio wave, such as amplification.
  • the head end 10 sends an electric signal indicating the video signal to the optical transmission unit 11.
  • the optical transmission unit 11 is an optical transmission unit for existing broadcasting.
  • the optical transmission unit 11 receives the electric signal transmitted from the head end 10.
  • the optical transmission unit 11 converts the received electric signal into an optical signal having a wavelength of ⁇ 1. Then, the optical transmission unit 11 sends the optical signal to the optical transmission line constructed of the optical fiber.
  • the headend 12 is a headend compatible with the new 4K / 8K satellite broadcasting.
  • the headend 12 receives a radio wave carrying a video signal of a new 4K / 8K satellite broadcast transmitted from a broadcasting station via a transmission tower on the ground, an artificial satellite, or the like.
  • the head end 12 adjusts the received radio wave, such as amplification.
  • the head end 21 sends an electric signal indicating the video signal to the optical transmission unit 13.
  • the optical transmission unit 13 is an optical transmission unit compatible with the new 4K / 8K satellite broadcasting.
  • the optical transmission unit 13 converts the received electric signal into an optical signal having a wavelength of ⁇ 2. Then, the optical transmission unit 13 sends the optical signal to the optical transmission line.
  • the wavelength ⁇ 1 and the wavelength ⁇ 2 are different wavelengths from each other.
  • the optical transmission line is divided into a relay NW section and an access NW section.
  • the relay NW is a communication network that connects the optical transmission unit 11 and the access NW, and the optical transmission unit 13 and the access NW, respectively.
  • the access NW is a communication network connecting the relay NW and the optical receiving unit 50 and the optical receiving unit 51, and between the relay NW and the optical receiving unit 50 and the optical receiving unit 51, respectively.
  • the relay NW is composed of an optical wavelength division multiplexing unit 20 and a relay amplifier 30 configured in multiple stages.
  • the relay amplifier 30 supports not only existing broadcasting but also new 4K / 8K satellite broadcasting in advance. Further, it is assumed that the optical signal of the existing broadcast and the optical signal of the new 4K / 8K satellite broadcast can reach the access amplifier 40 at a desired signal level in the existing optical transmission line.
  • the relay amplifier 30 is a general optical fiber amplifier used in optical communication, such as an EDFA (Erbium-Doped Fiber Amplifier).
  • This optical fiber amplifier can collectively amplify optical signals as they are even when optical signals having a plurality of wavelengths are input as in the relay amplifier 30 having a network configuration shown in FIG. 2.
  • the optical fiber amplifier equipped with the APC (Automatic Power Control) function even if the input level of the optical signal to the optical fiber amplifier fluctuates, if the fluctuation is within the allowable range. It can be controlled to keep the output level of the optical signal constant.
  • the optical wavelength division multiplexing unit 20 combines two optical signals having different wavelengths.
  • the optical wavelength division multiplexing unit 20 is a filter circuit capable of combining optical signals, such as a WDM filter.
  • the optical wavelength multiplexing unit 20 combines an optical signal having a wavelength ⁇ 1 output from the optical transmitting unit 11 and an optical signal having a wavelength ⁇ 2 output from the optical transmitting unit 13.
  • the optical wavelength multiplexing unit 20 sends the combined signal (combined wave signal) to the relay amplifier 30 in the first stage.
  • the relay amplifier 30 in the first stage receives the combined wave signal transmitted from the optical wavelength division multiplexing unit 20.
  • the relay amplifier 30 in the subsequent stage receives the combined wave signal transmitted from the relay amplifier 30 in the previous stage.
  • Each relay amplifier 30 amplifies the received combined wave signal.
  • Each relay amplifier 30 sends the amplified combined wave signal to the device in the subsequent stage (that is, the relay amplifier 30 in the subsequent stage or the access amplifier 40 in the section of the access NW.
  • a PON configuration is applied to the access NW in order to distribute the optical signal (combined wave signal) received from the relay amplifier 30 to a plurality of subscribers' homes.
  • the access amplifier 40 is an amplifier installed for the purpose of compensating for the loss due to the distribution of optical signals due to the PON configuration.
  • the access amplifier 40 receives an optical signal (combined wave signal) transmitted from the relay amplifier 30.
  • the access amplifier 40 amplifies the received optical signal. Then, the access amplifier 40 sends the amplified optical signal to the optical receiving unit 50 and the optical receiving unit 51 via the PON constructed after the access amplifier 40.
  • the optical receiving unit 50 is installed, for example, in each subscriber's house or the like, and terminates an optical signal having a wavelength of ⁇ 1. Further, the optical receiving unit 51 is installed in, for example, each subscriber's house or the like, and terminates an optical signal having a wavelength of ⁇ 2.
  • the optical receiving unit 50 can receive an optical signal having a wavelength ⁇ 1 transmitted from the existing optical transmitting unit 11 for broadcasting. Further, the optical receiving unit 51 can receive an optical signal having a wavelength ⁇ 2 output from the optical transmitting unit 13 corresponding to the new 4K / 8K satellite broadcasting.
  • FIG. 2 in order to make the drawings easier to see, one optical receiving unit 50 and one optical receiving unit 51 are shown, but in reality, at least one of the optical receiving unit 50 and the optical receiving unit 51 is shown. Is installed in each of multiple subscribers' homes.
  • FIG. 5 is a block diagram showing a configuration of transmission quality monitoring by an optical transmission system according to an embodiment of the present invention.
  • FIG. 5 shows a configuration of an optical transmission system in which the sections from the optical transmission unit 11 and the optical transmission unit 13 to the optical amplifier of the relay amplifier 30 are made redundant with respect to the optical transmission system having the network configuration shown in FIG. Is shown. Further, FIG. 5 omits the description of each device of the network configuration shown in FIG. 2, the head end 10, the head end 12, and the second-stage relay amplifier 30 and thereafter.
  • the optical transmission system includes an optical transmission unit 11-1, an optical transmission unit 11-2, an optical transmission unit 13-1, an optical transmission unit 13-2, and an optical wavelength division multiplexing unit 20. -1, an optical wavelength division multiplexing unit 20-2, and a relay amplifier 30 are included.
  • the optical transmission unit 11-1 and the optical transmission unit 13-1 are operational system optical transmission units.
  • the optical transmission unit 11-2 and the optical transmission unit 13-2 are standby optical transmission units.
  • the optical transmission unit 11-1 is an optical transmission unit for existing broadcasting. As shown in FIG. 5, the optical transmission unit 11-1 includes an FM batch conversion unit 111, a monitoring signal generation unit 112, a multiplexing unit 113, a light source 114, and an optical modulator 115. ..
  • the FM batch conversion unit 111 receives an electric signal transmitted from the head end 10 which is a head end for existing broadcasting.
  • the electrical signal is a frequency division signal.
  • the FM batch conversion unit 111 collectively converts the received frequency-multiplexed signal into a wideband FM signal.
  • the FM batch conversion unit 111 outputs the FM signal to the light modulator 115.
  • the monitoring signal generation unit 112 generates a monitoring signal.
  • the monitoring signal generation unit 112 outputs the generated monitoring signal to the multiplexing unit 113 as a light intensity modulation signal.
  • the multiplexing unit 113 acquires the monitoring signal output from the monitoring signal generation unit 112.
  • the multiplexing unit 113 superimposes the acquired monitoring signal on the FM signal output from the FM batch conversion unit 111 to the optical modulator 115.
  • the light source 114 outputs light having a wavelength of ⁇ 1 to the light modulator 115.
  • the light source 114 is configured to include, for example, a semiconductor laser.
  • the optical modulator 115 is output from the FM batch conversion unit 111, and acquires an FM signal in which the monitoring signal is multiplexed by the monitoring signal generation unit 112. Further, the light modulator 115 receives the light of the wavelength ⁇ 1 output from the light source 114. The light modulator 115 converts the acquired FM signal into an optical signal having a wavelength of ⁇ 1. Then, the light modulator 115 sends the optical signal to an optical transmission line constructed of an optical fiber.
  • optical transmission unit 11-2 which is a redundant optical transmission unit of the standby system
  • optical transmission unit 11-1 which is the optical transmission unit of the operation system described above.
  • the explanation is omitted.
  • the optical transmitter 13-1 is an optical transmitter compatible with the new 4K / 8K satellite broadcasting. Although the description of the configuration of the optical transmission unit 13-1 is omitted in FIG. 5, the configuration is basically the same as the configuration of the optical transmission unit 13-1. Similar to the optical transmission unit 11-1 described above, the optical transmission unit 13-1 includes an FM batch conversion unit (not shown), a monitoring signal generation unit (not shown), a multiplexing unit (not shown), and a light source. (Not shown) and an optical modulator (not shown) are included.
  • the FM batch conversion unit (not shown) of the optical transmission unit 13-1 receives the electric signal transmitted from the head end 12, which is a head end corresponding to the new 4K / 8K satellite broadcasting. Further, the light source (not shown) of the optical transmission unit 13-1 outputs light having a wavelength ⁇ 2 to the light modulator 115. Further, the light modulator (not shown) of the optical transmission unit 13-1 converts the acquired FM signal into an optical signal having a wavelength of ⁇ 2.
  • the monitoring signal generated by the monitoring signal generation unit 112 of the optical transmission unit 11-1 of the operation system and the monitoring signal generated by the monitoring signal generation unit (not shown) of the optical transmission unit 11-2 of the standby system are These are different monitoring signals. Specifically, the frequencies of both monitoring signals do not overlap with the FM signal spectrum and are different from each other.
  • the configuration of the optical transmission unit 13-2 which is a redundant optical transmission unit of the standby system, is basically the same as the configuration of the optical transmission unit 13-1, which is the optical transmission unit of the operation system described above. , The explanation is omitted.
  • the optical wavelength multiplexing unit 20-1 includes an optical signal having a wavelength ⁇ 1 transmitted from the optical modulator 115 of the optical transmission unit 11-1 and a wavelength transmitted from the optical modulator (not shown) of the optical transmission unit 13-1. It combines with the optical signal of ⁇ 2.
  • the optical wavelength division multiplexing unit 20-1 is a filter circuit capable of combining optical signals, such as a WDM filter.
  • the optical wavelength multiplexing unit 20-1 sends a combined wave signal obtained by combining an optical signal having a wavelength ⁇ 1 and an optical signal having a wavelength ⁇ 2 to a relay amplifier 30.
  • the configuration of the optical wavelength division multiplexing unit 20-2 which is the optical wavelength division multiplexing unit of the standby system, is the same as the configuration of the optical wavelength division multiplexing unit 20-1, which is the optical wavelength division multiplexing unit of the operational system described above. , The explanation is omitted.
  • the relay amplifier 30 includes an optical distribution unit 300-1, an optical distribution unit 300-2, a quality monitoring unit 310-1, a quality monitoring unit 310-2, and an optical amplifier 320-. 1, an optical amplifier 320-2, and an optical switching unit 330 are included.
  • the optical distribution unit 300-1, the quality monitoring unit 310-1, and the optical amplifier 320-1 are functional units of the operation system. Further, the optical distribution unit 300-2, the quality monitoring unit 310-2, and the optical amplifier 320-2 are functional units of the standby system.
  • the optical distribution unit 300-1 receives the combined wave signal transmitted from the optical wavelength division multiplexing unit 20-1.
  • the optical distribution unit 300-1 distributes the received combined wave signal and outputs it to the quality monitoring unit 310-1 and the optical amplifier 320-1, respectively.
  • the optical distribution unit 300-1 is a filter circuit capable of combining optical signals, such as a WDM filter.
  • the quality monitoring unit 310-1 monitors the signal quality of the combined wave signal transmitted from the optical transmission unit 11-1. As shown in FIG. 5, the quality monitoring unit 310-1 includes a photoelectric conversion unit 311-1 and a quality measurement unit 312-1.
  • the photoelectric conversion unit 311-1 acquires the combined wave signal output from the optical distribution unit 300-1.
  • the photoelectric conversion unit 311-1 converts the acquired combined wave signal from an optical signal to an electric signal.
  • the photoelectric conversion unit 311-1 outputs an electric signal to the quality measurement unit 312-1.
  • the quality measurement unit 312-1 acquires the electric signal output from the photoelectric conversion unit 311-1.
  • the quality measurement unit 312-1 has the signal quality of the monitoring signal generated by the monitoring signal generation unit 112 of the optical transmission unit 11-1 and the monitoring signal generation unit of the optical transmission unit 13-1 based on the acquired electric signal.
  • the signal quality of the monitoring signal generated in (not shown) is measured.
  • the quality measurement unit 312-1 outputs control information indicating the measurement result to the optical switching unit 330.
  • the optical amplifier 320-1 acquires the combined wave signal output from the optical distribution unit 300-1.
  • the optical amplifier 320-1 amplifies the acquired combined wave signal.
  • the optical amplifier 320-1 outputs the amplified combined wave signal to the optical switching unit 330.
  • the configurations of the optical distribution unit 300-2, the quality monitoring unit 310-2, the photoelectric conversion unit 311-2, the quality measurement unit 312-2, and the optical amplifier 320-2, which are the functional units of the redundant standby system, are configured.
  • the configuration of the optical distribution unit 300-1, the quality monitoring unit 310-1, the photoelectric conversion unit 311-1, the quality measurement unit 312-1, and the optical amplifier 320-1, which are the functional units of the operation system described above. Is the same, so the description thereof will be omitted.
  • the optical distribution unit 300-2 receives the combined wave signal transmitted from the optical wavelength division multiplexing unit 20-2, which is the optical wavelength division multiplexing unit of the standby system.
  • the optical switching unit 330 acquires the control signal output from the quality measurement unit 312-1 and the control signal output from the quality measurement unit 312-2. Further, the optical switching unit 330 acquires an optical signal output from the optical amplifier 320-1 and an optical signal output from the optical amplifier 320-2.
  • the optical switching unit 330 switches between the operation system and the standby system based on the control signal output from the quality measurement unit 312-1 and the control signal output from the quality measurement unit 312-2. Specifically, for example, when the value indicating the signal quality of the monitoring signal based on the control signal output from the quality measuring unit 312-1 is equal to or less than a predetermined threshold value, the optical switching unit 330 is from the operating system to the standby system. Switch to. Further, for example, the optical switching unit 330 switches from the standby system to the operating system when the value indicating the signal quality of the monitoring signal based on the control signal output from the quality measuring unit 312-2 is equal to or less than a predetermined threshold value. I do.
  • the amplified combined wave signal output from the optical amplifier 320-1 is used in a subsequent device (that is, a relay amplifier 30 in the subsequent stage or an access amplifier 40).
  • the amplified combined wave signal output from the optical amplifier 320-2 is used for the device in the subsequent stage (that is, the relay amplifier 30 in the subsequent stage or for access). It is sent to the amplifier 40).
  • the monitoring signal generated by the monitoring signal generation unit 112 is multiplexed with respect to the electric signal in the previous stage of the FM batch conversion unit 111.
  • the monitoring signal generated by the monitoring signal generation unit 112 by the multiplexing unit 113 is converted into an FM signal in the subsequent stage of the FM batch conversion unit 111.
  • it is multiplexed.
  • FM batch conversion processing is performed on the electric signal (input signal) in which the monitoring signal is multiplexed.
  • FM batch conversion processing is also performed for the monitoring signal, so as shown in FIG. 3, it is necessary to demodulate FM for each wavelength (wavelength ⁇ 1 and wavelength ⁇ 2) in the relay amplifier 30. be.
  • the signal quality of the monitoring signal is measured by the quality monitoring unit 310 (310-1 and 310-3, 310-2 and 310-4) prepared for each wavelength. Need to be measured respectively.
  • the optical transmission system of the present embodiment as shown in FIG. 5, after the FM batch conversion process is performed on the electric signal (input signal), the monitoring signal is multiplexed on the FM signal. .. Since the FM batch conversion process is not performed on the monitoring signal, the optical transmission system in the present embodiment can be received by the photodiode (PD) by the intensity modulation / direct polarization (IMDD) method.
  • PD photodiode
  • IMDD intensity modulation / direct polarization
  • the optical transmission system of the present embodiment it is not necessary to perform FM demodulation when monitoring the signal quality of the monitoring signal, and as shown in FIG. 5, the quality monitoring unit 310 (310-1, 310-2) In, the FM demodulation unit becomes unnecessary. Further, in the optical transmission system of the present embodiment, it is possible to measure the transmission quality for each wavelength without providing the quality monitoring unit 310 for each wavelength. Thereby, according to the optical transmission system in the present embodiment, it is possible to realize a low-cost and space-saving relay amplifier 30 (relay device).
  • FIG. 6 is a flowchart showing the operation of the optical transmission system according to the embodiment of the present invention.
  • the optical transmission system acquires two electric signals having different wavelengths from each other (step S001).
  • the FM batch conversion unit 111 of the optical transmission unit 11-1 receives an electric signal transmitted from the head end 10 which is a head end for existing broadcasting.
  • the FM batch conversion unit (not shown) of the optical transmission unit 13-1 receives an electric signal transmitted from the head end 12, which is a head end corresponding to the new 4K / 8K satellite broadcasting.
  • the optical transmission system performs FM batch conversion processing for each electric signal (step S002).
  • the FM batch conversion unit 111 of the optical transmission unit 11-1 collectively converts the received electric signals into a wideband FM signal.
  • the FM batch conversion unit (not shown) of the optical transmission unit 13-1 collectively converts the received electric signals into a wideband FM signal.
  • the optical transmission system multiplexes monitoring signals having different frequencies for each electric signal (step S003).
  • the monitoring signal generation unit 112 of the optical transmission unit 11-1 generates a monitoring signal of the first frequency, and multiplexes the generated monitoring signal of the first frequency with the FM signal.
  • the monitoring signal generation unit (not shown) of the optical transmission unit 13-1 generates a monitoring signal of a second frequency different from the first frequency, and the generated monitoring signal of the second frequency is an FM signal. Multiplex to.
  • the optical transmission system converts each electric signal into optical signals having different wavelengths and sends them out (step S004).
  • the light modulator 115 of the optical transmission unit 11-1 converts an electric signal into an optical signal having a wavelength ⁇ 1 and sends the optical signal to an optical transmission line constructed of an optical fiber.
  • the light modulator (not shown) of the optical transmission unit 13-1 converts an electric signal into an optical signal having a wavelength ⁇ 2 and sends the optical signal to an optical transmission line constructed of an optical fiber.
  • the optical transmission system combines the two transmitted optical signals (step S005).
  • the optical wavelength multiplexing unit 20-1 is transmitted from the optical signal of wavelength ⁇ 1 transmitted from the optical modulator 115 of the optical transmission unit 11-1 and from the optical modulator (not shown) of the optical transmission unit 13-1. It combines with an optical signal having a wavelength of ⁇ 2.
  • the optical transmission system converts the combined optical signal (combined wave signal) into an electric signal (step S006).
  • the photoelectric conversion unit 311-1 of the relay amplifier 30 converts the acquired combined wave signal from an optical signal to an electric signal.
  • the optical transmission system measures the monitoring value of the signal quality of the monitoring signals of the two wavelengths (step S007).
  • the quality measuring unit 312-1 sets the signal quality monitoring value of the monitoring signal generated by the monitoring signal generation unit 112 of the optical transmission unit 11-1 based on the acquired electric signal, and the optical transmission unit 13-1.
  • the monitoring value of the signal quality of the monitoring signal generated by the monitoring signal generation unit (not shown) is measured.
  • the optical switching unit 330 is an operation system when at least one of the monitoring values indicating the signal quality of the monitoring signals of two wavelengths based on the control signal output from the quality measuring unit 312-1 is equal to or less than a predetermined threshold value. To switch to the standby system.
  • the optical switching unit 330 outputs the combined wave signal output from the optical distribution unit 300-2, which is a standby system, and amplified by the optical amplifier 320-2, to the subsequent device (that is, the relay amplifier 30 in the subsequent stage). Alternatively, it is sent to the access amplifier 40).
  • the optical transmission system amplifies the optical signal and transfers the amplified optical signal to the subsequent stage. It is sent to the device (step S010).
  • the optical switching unit 330 is used in the operating system.
  • the combined wave signal output from a certain optical distribution unit 300-1 and amplified by the optical amplifier 320-1 is sent to a subsequent device (that is, a subsequent relay amplifier 30 or an access amplifier 40). This completes the operation of the optical transmission system shown in the flowchart of FIG.
  • the optical transmission system is an FM batch conversion type optical transmission system that transmits optical signals of two different wavelengths using a shared relay NW.
  • the optical transmitters 11 (11-1, 11-2) and the optical transmitters 13 (13-1, 13-2) have different frequencies for each main signal (electrical signal) after the FM batch conversion process.
  • the monitoring signals are multiplexed and converted into optical signals, and the optical signals are transmitted to the relay NW.
  • the relay amplifier 30 (relay device) collectively receives the optical signals of each wavelength and does not perform the FM demodulation process.
  • the quality of the monitoring signal can be measured.
  • the relay amplifier 30 does not need to be provided with a quality monitoring unit and an FM demodulation unit for each wavelength.
  • the optical transmission system according to the embodiment of the present invention can realize a low-cost and space-saving relay amplifier 30 (relay device).
  • the optical wavelength division multiplexing unit 20 (for example, a filter circuit such as a WDM filter) is provided outside the relay amplifier 30, but the present invention is not limited to this.
  • the relay amplifier 30 in the first stage may have a configuration in which the optical wavelength division multiplexing unit 20 is built.
  • the functional unit corresponding to the function of the optical wavelength division multiplexing unit 20 (that is, the function of combining the optical signal having the wavelength ⁇ 1 and the optical signal having the wavelength ⁇ 2) is, for example, the optical distribution unit 300-shown in FIG. 1 and the front stage of the optical distribution unit 300-1 are provided, respectively.
  • the optical transmission system has a plurality of optical transmission units and a relay device.
  • the optical transmission units are the optical transmission units 11-1 to 11-2 and the optical transmission units 13-1 to 13-2 in the embodiment
  • the relay device is the relay amplifier 30 in the embodiment.
  • the plurality of optical transmission units include a frequency modulation batch conversion unit, a multiplex unit, and an optical modulation unit.
  • the frequency modulation batch conversion unit is the FM batch conversion unit 111 in the embodiment
  • the multiplexing unit is the multiplexing unit 113 in the embodiment
  • the optical modulation unit is the optical modulator 115 in the embodiment.
  • the frequency modulation batch conversion unit converts the input signal into a frequency modulation (FM) signal by the frequency modulation (FM) batch conversion process.
  • the multiplexing unit multiplexes monitoring signals having different frequencies from each other with respect to the frequency modulation signal.
  • the optical modulation unit converts a frequency modulation signal, which is an electric signal in which monitoring signals are multiplexed, into optical signals having different wavelengths from each other.
  • the wavelengths different from each other are the wavelength ⁇ 1 and the wavelength ⁇ 2 in the embodiment.
  • the relay device includes a photoelectric conversion unit and a measurement unit.
  • the photoelectric conversion unit is the photoelectric conversion unit 311-1 to 311-2 in the embodiment
  • the measurement unit is the quality measurement unit 312-1 to 312-2 in the embodiment.
  • the photoelectric conversion unit acquires a combined wave signal in which optical signals having different wavelengths are combined, and converts the combined wave signal into an electric signal.
  • the measuring unit measures the transmission quality of a plurality of monitoring signals included in the electric signal.
  • the transmission quality of the monitoring signal is a monitoring value of the transmission quality of the monitoring signal in the embodiment.
  • a part of the configuration of the relay amplifier 30, the optical transmission units 11-1 to 11-2, and the optical transmission units 13-1 to 13-2 in the above-described embodiment may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

複数の光送信部と中継装置とを有する光伝送システムにおいて、前記複数の光送信部は、周波数変調一括変換処理により入力信号を周波数変調信号に変換する周波数変調一括変換部と、前記周波数変調信号に対して、互いに異なる周波数の監視信号を多重する多重部と、前記監視信号が多重された電気信号である前記周波数変調信号を、互いに異なる波長の光信号に変換する光変調部とを備え、前記中継装置は、前記互いに異なる波長をもつ光信号が合波された合波信号を取得し、前記合波信号を電気信号に変換する光電変換部と、前記電気信号に含まれる複数の前記監視信号の伝送品質を測定する測定部とを備える。

Description

光伝送システム及び伝送品質監視方法
 本発明は、光伝送システム及び伝送品質監視方法に関する。
 加入者宅へ映像を配信するネットワークシステムとして、例えばFTTH(Fiber to the Home)型CATV(Cable television;ケーブルテレビ)システムが知られている。FTTH型CATVシステムでは、光伝送方式として、例えばFM(Frequency Modulation;周波数変調)一括変換方式が用いられる(非特許文献1参照)。日本において配信される映像としては、右旋円偏波を用いて人工衛星から地上へ配信されるBS(Broadcasting Satellites)放送及び110度CS(Communication Satellites)放送のほか、地上デジタル放送等がある。
 更に日本では、2018年12月から、左旋円偏波を用いて人工衛星から地上へ配信されるBS放送(中間周波数:2224~2681[MHz])と110度CS放送(中間周波数:2748~3224[MHz])とが、新4K・8K衛星放送として開始されている。この新4K・8K衛星放送で使用される中間周波数帯は、既存放送で使用されている中間周波数帯とは異なる。そのため、既存の放送設備が新4K・8K衛星放送の中間周波数に対応していない場合、既存の放送設備のみを用いるだけでは、新4K・8K衛星放送の配信及び視聴を実現することができない。既存放送の配信及び視聴に加えて更に新4K・8K衛星放送の配信及び視聴を可能にする方法の一つとして、既存放送用の設備とは別に、新4K・8K衛星放送に対応した設備を、既存のネットワークに追加する方法が考えられる。
 また、例えば非特許文献1に記載のFM一括変換方式による光映像配信システムのように、光伝送システムでは、光送信部から中継用アンプが備える光増幅器までの区間が、運用系と待機系とに冗長化されることがある。この場合、一般的に、中継用アンプが備える品質監視部において信号品質の監視が行われる。中継用アンプは、信号品質を示す監視値が所定の閾値以下となった場合、運用系から待機系への切り替えを行う。このような構成により、光映像配信システムによる映像配信サービスが維持される。
 例えば上記のような、既存放送用の設備と新4K・8K衛星放送に対応した設備とが別々に設置されたFTTH型CATVシステムのように、異なる2つの波長の光信号の伝送において1つの中継ネットワークを共用するネットワーク構成がある。このようなネットワーク構成に対して上記の冗長化が行われる場合、各々の波長に対応する品質監視部によってそれぞれ信号品質の監視が行われる。しかしながら、この場合、中継用アンプには波長ごとにそれぞれ品質監視部が設けられる必要がある。そのため、中継用アンプの装置コストが高くなり、かつ、より広い設置スペースが必要になるという課題があった。
 上記事情に鑑み、本発明は、波長ごとの品質監視部を備えることなく波長ごとの伝送品質を測定することができる光伝送システム及び伝送品質監視方法を提供することを目的とする。
 本発明の一態様は、複数の光送信部と中継装置とを有する光伝送システムであって、前記複数の光送信部は、周波数変調一括変換処理により入力信号を周波数変調信号に変換する周波数変調一括変換部と、前記周波数変調信号に対して、互いに異なる周波数の監視信号を多重する多重部と、前記監視信号が多重された電気信号である前記周波数変調信号を、互いに異なる波長の光信号に変換する光変調部と、を備え、前記中継装置は、前記互いに異なる波長をもつ光信号が合波された合波信号を取得し、前記合波信号を電気信号に変換する光電変換部と、前記電気信号に含まれる複数の前記監視信号の伝送品質を測定する測定部と、を備える光伝送システムである。
 また、本発明の一態様は、複数の光送信部が、周波数変調一括変換処理により入力信号を周波数変調信号に変換する周波数変調一括変換ステップと、前記複数の光送信部が、前記周波数変調信号に対して、互いに異なる周波数の監視信号を多重する多重ステップと、前記複数の光送信部が、前記監視信号が多重された電気信号である前記周波数変調信号を、互いに異なる波長の光信号に変換する光変調ステップと、前記中継装置が、前記互いに異なる波長をもつ光信号が合波された合波信号を取得し、前記合波信号を電気信号に変換する光電変換ステップと、前記中継装置が、前記電気信号に含まれる複数の前記監視信号の伝送品質を測定する測定ステップと、を有する伝送品質監視方法である。
 本発明により、波長ごとの品質監視部を備えることなく波長ごとの伝送品質を測定することができる。
従来のFTTH型CATVシステムのネットワーク構成の一例を示すブロック図。 既存放送用の設備とは別に新たな放送用の設備を設置する場合のネットワーク構成の一例を示すブロック図。 従来の冗長化されたFM一括変換方式による光伝送システムの構成の一例を示すブロック図。 冗長化された複数波長のFM一括変換方式による光伝送システムの構成の一例を示すブロック図。 本発明の実施形態における光伝送システムによる伝送品質監視の構成を示すブロック図。 本発明の実施形態における光伝送システムの動作を示すフローチャート。
<実施形態>
 以下、本発明の実施形態の光伝送システム及び伝送品質監視方法について、図面を参照しながら説明する。説明を分かり易くするため、比較対象として従来の光伝送システムの構成をまず説明する。
 加入者宅へ映像を配信するネットワークシステムとして、FTTH型CATVシステムが知られている。
 図1は、従来のFTTH型CATVシステムのネットワーク構成の一例を示すブロック図である。図1に示されるように、従来のFTTH型CATVシステムは、例えば、ヘッドエンド10と、光送信部11と、中継用アンプ30と、アクセス用アンプ40と、各々の加入者宅等に設置される複数の光受信部50とを含んで構成される。
 ヘッドエンド10は、放送局から送信される映像信号を乗せた電波を地上の送信塔又は人工衛星等を介して受信する。ヘッドエンド10は、受信した電波に対して増幅等の調整を行う。そして、ヘッドエンド10は、当該映像信号を示す電気信号を光送信部11へ出力する。
 光送信部11は、取得した電気信号を光信号に変換する。光送信部11は、当該光信号を光ファイバで構築された光伝送路へ送出する。
 光伝送路は、中継ネットワーク(以下、「中継NW」という。)の区間とアクセスネットワーク(以下、「アクセスNW」という。)の区間とに分けられる。
 中継NWは、光送信部11とアクセスNWとの間をつなぐ通信ネットワークである。中継NWでは、伝送距離が長距離に及ぶ場合等において、増幅器として機能する中継用アンプ30が多段構成される。各々の中継用アンプ30は、受信した光信号を増幅する。各々の中継用アンプ30は、増幅された光信号を、後段の他の中継用アンプ30へ送出したり、アクセスNW区間内の機器へ送出したりする。あるいは、各々の中継用アンプ30は、増幅された光信号を光カプラによって分岐させて、後段の他の中継用アンプ30及びアクセスNW区間内の機器の双方へ送出する。
 一方、アクセスNWは、中継NWと光信号を終端する各光受信部50との間をつなぐ通信ネットワークである。アクセスNWでは、中継NWから出力された光信号を複数の加入者宅に設置された光受信部50へ分配するために、一般的に、PON(Passive Optical Network;受動光ネットワーク)構成が適用される。更に、図1に示されるように、PON構成による光信号の分配に伴う損失及び中継用アンプ30による光信号の分岐に伴う損失等の補償を目的として、アクセスNWにおいても増幅器として機能するアクセス用アンプ40が用いられる場合がある。
 上記のようなネットワーク構成を有する従来のFTTH型CATVシステムでは、光伝送方式として、例えばFM一括変換方式が用いられる。光送信部11は、ヘッドエンド10から出力された、周波数多重された多チャンネル映像の電気信号を受信する。光送信部11は、周波数多重された多チャンネル映像の電気信号を、1チャンネルの広帯域なFM信号に一括して変換する。更に、光送信部11は、FM信号を、強度変調によって一つの波長λからなる光信号に変換し、光伝送路へ送出する。
 一方、光受信部50は、この波長λの光信号を受光する。光受信部50は、受光した光信号を、光電変換により広帯域FM信号に変換した後、復調する。これにより、光受信部は、受光した光信号から、周波数多重された多チャンネル映像の電気信号を取り出すことができる。
 従来、日本においては、上記のようなネットワーク構成及び光伝送方式によって、多チャンネルの映像配信が実現されている。配信される映像としては、右旋円偏波を用いて人工衛星から地上へ配信されるBS放送及び110度CS放送のほか、地上デジタル放送等がある。更に、2018年12月から、左旋円偏波を用いて人工衛星から地上へ配信されるBS放送と110度CS放送とが、新4K・8K衛星放送として開始されている。
 この新4K・8K衛星放送で使用される中間周波数帯は、既存放送で使用されている中間周波数帯とは異なる。そのため、既存の放送設備が新4K・8K衛星放送の中間周波数に対応していない場合、既存の放送設備のみでは新4K・8K衛星放送の配信及び視聴を実現することができない。既存放送の配信及び視聴に加えて更に新4K・8K衛星放送の配信及び視聴を可能にする方法の一つとして、新4K・8K衛星放送に対応した設備を、既存放送用の設備とは別に設置する方法が考えられる。
 図2は、上記の方法を用いた場合におけるネットワーク構成の一例を示すブロック図である。図2に示されるように、このネットワーク構成では、図1に示されるネットワーク構成に加えて、新4K・8K衛星放送に対応したヘッドエンド12、新4K・8K衛星放送に対応した光送信部13、及び光波長多重部20が新たに設置される。光波長多重部20は、例えばWDM(Wavelength Division Multiplexing;波長分割多重)フィルタである。
 なお、ここでは、中継用アンプ30は、新4K・8K衛星放送に予め対応していることを想定する。また、既存の光伝送路において、既存放送の光信号と新4K・8K衛星放送の光信号とが、所望の信号レベルでアクセス用アンプ40まで到達可能なネットワーク構成であることを想定する。
 光波長多重部20(例えばWDMフィルタ等のフィルタ回路)は、既存放送用の光送信部11から出力された光信号と新4K・8K衛星放送に対応した光送信部13から出力された光信号とを合波し、合波された光信号(以下、「合波信号」という。)を中継用アンプ30へ送出する。ここで、既存放送用の光送信部11から出力された出力光の波長を波長λ1とする。また、新4K・8K衛星放送に対応した光送信部13から出力された出力光の波長を波長λ2とする。また、波長λ1と波長λ2とは互いに異なる波長である。
 このとき、既存放送用の光受信部50は、波長λ1の光信号を受光することはできるが、波長λ2の光信号は受光することができない場合がある。このような場合において、視聴者による新4K・8K衛星放送の視聴を可能にするためには、波長λ2の光信号を受光することができる光受信部51を加入者宅に新たに設置する必要がある。なお、新たに設置される光受信部51として、波長λ2の光信号だけでなく波長λ1の光信号も受光することができる光受信部が用いられるならば、視聴者は新たに設置された光受信部51のみで、既存放送と新4K・8K衛星放送との双方の放送を視聴することができる。
 また、このようなネットワーク構成によって、既存放送用のネットワーク設備を流用することが可能となるため、新4K・8K衛星放送の配信及び視聴を実現するために必要となる機器の装置コストを抑制することができる。
 また、非特許文献1に記載のFM一括変換方式による光映像配信システムは、光送信部11から中継用アンプ30が備える光増幅器までの区間を冗長化している。
 図3は、従来の冗長化されたFM一括変換方式による光伝送システムの構成の一例を示すブロック図である。図3に示されるように、光伝送システムは、光送信部11(11-1,11-2)から中継用アンプが30備える光増幅器320(320-1,320-2)及び品質監視部310(310-1,310-2)までの区間が、運用系と待機系とに冗長化されている。
 中継用アンプ30が備える品質監視部310(310-1,310-2)は、信号品質を監視する。一般的に、運用系の品質監視部310-1において信号品質の監視値が所定の閾値以下となった場合、中継用アンプ30が備える光切り替え部330が運用系から待機系への切り替えを行う。これにより、光映像配信システムによる映像配信サービスが維持される。
 前述の図2に示されるネットワーク構成のように2つの波長の光信号の伝送において1つの中継NWを共用するネットワーク構成に対して、前述の図3に示されるような光伝送システムの冗長化を行う場合、例えば図4に示されるようなシステム構成にすることが考えられる。
 図4は、冗長化された複数波長のFM一括変換方式による光伝送システムの構成の一例を示すブロック図である。図4に示されるように、中継用アンプ30が備える品質監視部310(310-1及び310-3,310-2及び310-4)の前段に光波長分配部301(301-1,301-2)が設けられる。光波長分配部301(301-1,301-2)は、2つの波長を分離する。分離された2つの波長(波長λ2及び波長λ2)は、各々の波長に対応する品質監視部310(310-1及び310-3,310-2及び310-4)によってそれぞれ信号品質の監視が行われる。
 しかしながら、この場合、波長ごとにそれぞれ品質監視部310(310-1及び310-3,310-2及び310-4)が設けられる必要がある。そのため、中継用アンプ30の装置コストが高くなり、かつ、より広い中継用アンプ30の設置スペースが必要になる。
 以下、本実施形態における光伝送システムについて説明する。本実施形態における光伝送システムによれば、波長ごとの品質監視部を備えることなく波長ごとの伝送品質を測定することができる。これにより、低コストかつ省スペースな中継用アンプを実現することができる。
[ネットワーク構成]
 本実施形態における光伝送システムのネットワーク構成は、前述の図2に示される、異なる2つの波長の光信号の伝送において1つの中継NWを共用するネットワーク構成である。以下、図2を参照して説明する。
 本実施形態における光伝送システムは、新4K・8K衛星放送に対応したFTTH型CATVシステムである。図2に示されるように、光伝送システムは、ヘッドエンド10と、光送信部11と、ヘッドエンド12と、光送信部13と、光波長多重部20と、複数の中継用アンプ30と、アクセス用アンプ40と、複数の光受信部50と、複数の光受信部51とを含んで構成される。なお、中継用アンプ30は1つであってもよい。また、複数の光受信部50と複数の光受信部51とは、それぞれ1つずつであってもよい。
 ヘッドエンド10は、既存放送用のヘッドエンドである。ヘッドエンド10は、放送局から送信される既存放送用の映像信号を乗せた電波を地上の送信塔や人工衛星等を介して受信する。ヘッドエンド10は、受信した電波に対して増幅等の調整を行う。そして、ヘッドエンド10は、当該映像信号を示す電気信号を光送信部11へ送出する。
 光送信部11は、既存放送用の光送信部である。光送信部11は、ヘッドエンド10から送出された電気信号を受信する。光送信部11は、受信した電気信号を波長λ1の光信号に変換する。そして、光送信部11は、当該光信号を光ファイバで構築された光伝送路へ送出する。
 ヘッドエンド12は、新4K・8K衛星放送に対応したヘッドエンドである。ヘッドエンド12は、放送局から送信される新4K・8K衛星放送の映像信号を乗せた電波を地上の送信塔や人工衛星等を介して受信する。ヘッドエンド12は、受信した電波に対して増幅等の調整を行う。そして、ヘッドエンド21は、当該映像信号を示す電気信号を光送信部13へ送出する。
 光送信部13は、新4K・8K衛星放送に対応した光送信部である。光送信部13は、受信した電気信号を波長λ2の光信号に変換する。そして、光送信部13は、当該光信号を光伝送路へ送出する。
 ここで、波長λ1と波長λ2とは互いに異なる波長である。
 光伝送路は、中継NWの区間とアクセスNWの区間とに分けられる。中継NWは、光送信部11とアクセスNWとの間、及び光送信部13とアクセスNWとの間をそれぞれつなぐ通信ネットワークである。アクセスNWは、中継NWと光受信部50及び光受信部51との間、及び中継NWと光受信部50及び光受信部51との間をそれぞれつなぐ通信ネットワークである。
 中継NWは、光波長多重部20と、多段構成された中継用アンプ30とによって構成される。
 なお、ここでは、中継用アンプ30は、既存放送だけでなく、新4K・8K衛星放送にも予め対応していることを想定する。また、既存の光伝送路において、既存放送の光信号と新4K・8K衛星放送の光信号とが、所望の信号レベルでアクセス用アンプ40まで到達可能なネットワーク構成であることを想定する。
 中継用アンプ30は、例えばEDFA(Erbium-Doped Fiber Amplifier;エルビウム添加ファイバ増幅器)等の、光通信において用いられる一般的な光ファイバ増幅器である。この光ファイバ増幅器は、例えば図2に示されるネットワーク構成の中継用アンプ30のように複数の波長の光信号が入力される場合であっても、一括して光信号のまま増幅することができるという特徴がある。また、APC(Automatic Power Control;自動パワー制御)機能が搭載された光ファイバ増幅器は、当該光ファイバ増幅器への光信号の入力レベルが変動する場合であっても、変動が許容範囲であるならば光信号の出力レベルを一定に保つように制御することができる。
 光波長多重部20は、波長の異なる2つの光信号を合波する。光波長多重部20は、例えばWDMフィルタ等の、光信号を合波することができるフィルタ回路である。光波長多重部20は、光送信部11から出力された波長λ1の光信号と、光送信部13から出力された波長λ2の光信号とを合波する。光波長多重部20は、合波された信号(合波信号)を初段の中継用アンプ30へ送出する。
 初段の中継用アンプ30は、光波長多重部20から送出された合波信号を受信する。後段の中継用アンプ30は、1つ前段の中継用アンプ30から送出された合波信号を受信する。各々の中継用アンプ30は、受信した合波信号を増幅する。各々の中継用アンプ30は、増幅した合波信号を、後段の装置(すなわち、1つ後段の中継用アンプ30、又はアクセスNWの区間内のアクセス用アンプ40へ送出する。
 一般的に、中継用アンプ30から受信した光信号(合波信号)を複数の加入者宅へ分配するために、アクセスNWにはPON構成が適用される。
 アクセス用アンプ40は、PON構成による光信号の分配に伴う損失の補償等を目的として設置される増幅器である。アクセス用アンプ40は、中継用アンプ30から送出された光信号(合波信号)を受信する。アクセス用アンプ40は、受信した光信号を増幅する。そして、アクセス用アンプ40は、増幅された光信号を、当該アクセス用アンプ40の後段に構築されたPONを介して、光受信部50及び光受信部51へ送出する。
 光受信部50は、例えば各々の加入者宅等に設置され、波長λ1の光信号を終端する。また、光受信部51は、例えば各々の加入者宅等に設置され、波長λ2の光信号を終端する。光受信部50は、既存放送用の光送信部11から送出された波長λ1の光信号を受信することができる。また、光受信部51は、新4K・8K衛星放送に対応した光送信部13から出力された波長λ2の光信号を受信することができる。
 なお、図2においては、図面を見易くするため、光受信部50と光受信部51とをそれぞれ1つずつ図示しているが、実際には光受信部50及び光受信部51のうち少なくとも一方が複数の加入者宅にそれぞれ設置されている。
[品質監視の構成]
 以下、信号の品質監視について説明する。
 図5は、本発明の実施形態における光伝送システムによる伝送品質監視の構成を示すブロック図である。図5は、図2に示されるネットワーク構成を有する光伝送システムに対して、光送信部11及び光送信部13から中継用アンプ30の光増幅器までの区間が冗長化された光伝送システムの構成を示している。また、図5は、図2に示されるネットワーク構成の、ヘッドエンド10、ヘッドエンド12、及び2段目の中継用アンプ30以降の各装置の記載を省略したものである。
 図5に示されるように、光伝送システムは、光送信部11-1と、光送信部11-2と、光送信部13-1と、光送信部13-2と、光波長多重部20-1と、光波長多重部20-2と、中継用アンプ30とを含んで構成される。光送信部11-1及び光送信部13-1は、運用系の光送信部である。光送信部11-2及び光送信部13-2は、待機系の光送信部である。
 光送信部11-1は、既存放送用の光送信部である。図5に示されるように、光送信部11-1は、FM一括変換部111と、監視信号生成部112と、多重部113と、光源114と、光変調器115とを含んで構成される。
 FM一括変換部111は、既存放送用のヘッドエンドであるヘッドエンド10から送出された電気信号を受信する。電気信号は、周波数多重信号である。FM一括変換部111は、受信した周波数多重信号を一括して広帯域なFM信号に変換する。FM一括変換部111は、FM信号を光変調器115へ出力する。
 監視信号生成部112は、監視信号を生成する。監視信号生成部112は、生成された監視信号を光強度変調信号として多重部113へ出力する。
 多重部113は、監視信号生成部112から出力された監視信号を取得する。多重部113は、FM一括変換部111から光変調器115へ出力されるFM信号に、取得した監視信号を多重する。
 光源114は、波長λ1の光を光変調器115へ出力する。光源114は、例えば半導体レーザを含んで構成される。
 光変調器115は、FM一括変換部111から出力され、監視信号生成部112によって監視信号が多重されたFM信号を取得する。また、光変調器115は、光源114から出力された波長λ1の光を受光する。光変調器115は、取得されたFM信号を波長λ1の光信号に変換する。そして、光変調器115は、当該光信号を光ファイバで構築された光伝送路へ送出する。
 冗長化された待機系の光送信部である光送信部11-2の構成は、上記説明した運用系の光送信部である光送信部11-1の構成と基本的には同様であるため、説明を省略する。
 光送信部13-1は、新4K・8K衛星放送に対応した光送信部である。図5にでは、光送信部13-1の構成の記載は省略されているが、光送信部13-1の構成と基本的には同様の構成である。光送信部13-1は、上記説明した光送信部11-1と同様に、FM一括変換部(不図示)と、監視信号生成部(不図示)と、多重部(不図示)と、光源(不図示)と、光変調器(不図示)とを含んで構成される。
 但し、光送信部13-1のFM一括変換部(不図示)は、新4K・8K衛星放送に対応したヘッドエンドであるヘッドエンド12から送出された電気信号を受信する。また、光送信部13-1の光源(不図示)は、波長λ2の光を光変調器115へ出力する。また、光送信部13-1の光変調器(不図示)は、取得されたFM信号を波長λ2の光信号に変換する。
 また、運用系の光送信部11-1の監視信号生成部112が生成する監視信号と、待機系の光送信部11-2の監視信号生成部(不図示)が生成する監視信号とは、互いに異なる監視信号である。具体的には、双方の監視信号の周波数は、FM信号スペクトルとは重ならず、かつ、互いに異なる周波数とされる。
 冗長化された待機系の光送信部である光送信部13-2の構成は、上記説明した運用系の光送信部である光送信部13-1の構成と基本的には同様であるため、説明を省略する。
 光波長多重部20-1は、光送信部11-1の光変調器115から送出された波長λ1の光信号と、光送信部13-1の光変調器(不図示)から送出された波長λ2の光信号とを合波する。光波長多重部20-1は、例えばWDMフィルタ等の、光信号を合波することができるフィルタ回路である。光波長多重部20-1は、波長λ1の光信号と波長λ2の光信号とが合波された合波信号を中継用アンプ30へ送出する。
 冗長化された待機系の光波長多重部である光波長多重部20-2の構成は、上記説明した運用系の光波長多重部である光波長多重部20-1の構成と同様であるため、説明を省略する。
 図5に示されるように、中継用アンプ30は、光分配部300-1と、光分配部300-2と、品質監視部310-1と、品質監視部310-2と、光増幅器320-1と、光増幅器320-2と、光切り替え部330とを含んで構成される。光分配部300-1、品質監視部310-1、及び光増幅器320-1は、運用系の機能部である。また、光分配部300-2、品質監視部310-2、及び光増幅器320-2は、待機系の機能部である。
 光分配部300-1は、光波長多重部20-1から送出された合波信号を受信する。光分配部300-1は、受信した合波信号を分配し、品質監視部310-1と光増幅器320-1とにそれぞれ出力する。光分配部300-1は、例えばWDMフィルタ等の、光信号を合波することができるフィルタ回路である。
 品質監視部310-1は、光送信部11-1から送出された合波信号の信号品質を監視する。図5に示されるように、品質監視部310-1は、光電変換部311-1と、品質測定部312-1とを含んで構成される。
 光電変換部311-1は、光分配部300-1から出力された合波信号を取得する。光電変換部311-1は、取得した合波信号を、光信号から電気信号に変換する。光電変換部311-1は、電気信号を品質測定部312-1へ出力する。
 品質測定部312-1は、光電変換部311-1から出力された電気信号を取得する。品質測定部312-1は、取得した電気信号に基づいて、光送信部11-1の監視信号生成部112で生成された監視信号の信号品質と、光送信部13-1の監視信号生成部(不図示)で生成された監視信号の信号品質とを、それぞれ測定する。品質測定部312-1は、測定結果を示す制御情報を、光切り替え部330へ出力する。
 光増幅器320-1は、光分配部300-1から出力された合波信号を取得する。光増幅器320-1は、取得した合波信号を増幅する。光増幅器320-1は、増幅された合波信号を光切り替え部330へ出力する。
 冗長化された待機系の機能部である、光分配部300-2、品質監視部310-2、光電変換部311-2、品質測定部312-2、及び光増幅器320-2の構成は、上記説明した運用系の機能部である光分配部300-1、品質監視部310-1、光電変換部311-1、品質測定部312-1、及び光増幅器320-1の構成と基本的には同様であるため、説明を省略する。但し、光分配部300-2、は、待機系の光波長多重部である光波長多重部20-2から送出された合波信号を受信する。
 光切り替え部330は、品質測定部312-1から出力された制御信号と、品質測定部312-2から出力された制御信号とを取得する。また、光切り替え部330は、光増幅器320-1から出力された光信号と、光増幅器320-2から出力された光信号とを取得する。
 光切り替え部330は、品質測定部312-1から出力された制御信号と、品質測定部312-2から出力された制御信号とに基づいて、運用系と待機系との切り替えを行う。具体的には、例えば、光切り替え部330は、品質測定部312-1から出力された制御信号に基づく、監視信号の信号品質を示す値が所定の閾値以下である場合、運用系から待機系への切り替えを行う。また、例えば、光切り替え部330は、品質測定部312-2から出力された制御信号に基づく、監視信号の信号品質を示す値が所定の閾値以下である場合、待機系から運用系への切り替えを行う。
 光切り替え部330は、運用系に切り替えられている場合、光増幅器320-1から出力された、増幅された合波信号を後段の装置(すなわち、後段の中継用アンプ30、又はアクセス用アンプ40)へ送出する。また、光切り替え部330は、待機系に切り替えられている場合、光増幅器320-2から出力された、増幅された合波信号を後段の装置(すなわち、後段の中継用アンプ30、又はアクセス用アンプ40)へ送出する。
 図3に示される従来の光送信部11(11-1,11-2)では、FM一括変換部111の前段で、監視信号生成部112によって生成された監視信号が電気信号に対して多重される。これに対し、図5に示されるように、本実施形態における光送信部では、FM一括変換部111の後段で、多重部113により、監視信号生成部112によって生成された監視信号がFM信号に対して多重される。
 このように、従来の光伝送システムでは、監視信号が多重された電気信号(入力信号)に対してFM一括変換処理がなされる。従来の光伝送システムでは監視信号に対してもFM一括変換処理がなされるため、図3に示されるように、中継用アンプ30において波長(波長λ1及び波長λ2)ごとにそれぞれFM復調する必要がある。そして、従来の光伝送システムでは、図4に示されるように、波長ごとに用意された品質監視部310(310-1及び310-3,310-2及び310-4)によって監視信号の信号品質がそれぞれ測定される必要がある。
 これに対し、本実施形態における光伝送システムでは、図5に示されるように、電気信号(入力信号)に対してFM一括変換処理がなされた後に、FM信号に対して監視信号が多重される。監視信号に対してはFM一括変換処理がなされないため、本実施形態における光伝送システムでは、強度変調・直接偏波(IMDD)方式によるフォトダイオード(PD)での受信が可能となる。
 これにより、本実施形態における光伝送システムでは、監視信号の信号品質を監視する際にFM復調を行う必要がなく、図5に示されるように品質監視部310(310-1,310-2)においてFM復調部が不要となる。また、本実施形態における光伝送システムでは、波長ごとの品質監視部310を備えることなく波長ごとの伝送品質を測定することができる。これにより、本実施形態における光伝送システムによれば、低コストかつ省スペースな中継用アンプ30(中継装置)を実現することができる。
[光伝送システムの動作]
 以下、光伝送システムの動作の一例について説明する。
 図6は、本発明の実施形態における光伝送システムの動作を示すフローチャートである。
 まず、光伝送システムは、互いに波長の異なる2つの電気信号を取得する(ステップS001)。例えば、光送信部11-1のFM一括変換部111は、既存放送用のヘッドエンドであるヘッドエンド10から送出された電気信号を受信する。また、光送信部13-1のFM一括変換部(不図示)は、新4K・8K衛星放送に対応したヘッドエンドであるヘッドエンド12から送出された電気信号を受信する。
 次に、光伝送システムは、各電気信号に対し、それぞれFM一括変換処理を行う(ステップS002)。例えば、光送信部11-1のFM一括変換部111は、受信した電気信号を一括して広帯域なFM信号に変換する。また、光送信部13-1のFM一括変換部(不図示)は、受信した電気信号を一括して広帯域なFM信号に変換する。
 次に、光伝送システムは、各電気信号に対し、互いに異なる周波数の監視信号をそれぞれ多重する(ステップS003)。例えば、光送信部11-1の監視信号生成部112は、第1の周波数の監視信号を生成し、生成された第1の周波数の監視信号をFM信号に多重する。また、光送信部13-1の監視信号生成部(不図示)は、第1の周波数とは異なる第2の周波数の監視信号を生成し、生成された第2の周波数の監視信号をFM信号に多重する。
 次に、光伝送システムは、各電気信号を、互いに異なる波長の光信号にそれぞれ変換して送出する(ステップS004)。例えば、光送信部11-1の光変調器115は、電気信号を波長λ1の光信号に変換し、当該光信号を光ファイバで構築された光伝送路へ送出する。また、光送信部13-1の光変調器(不図示)は、電気信号を波長λ2の光信号に変換し、当該光信号を光ファイバで構築された光伝送路へ送出する。
 次に、光伝送システムは、送出された2つの光信号を合波する(ステップS005)。例えば、光波長多重部20-1は、光送信部11-1の光変調器115から送出された波長λ1の光信号と、光送信部13-1の光変調器(不図示)から送出された波長λ2の光信号とを合波する。
 次に、光伝送システムは、合波された光信号(合波信号)を電気信号に変換する(ステップS006)。例えば、中継用アンプ30の光電変換部311-1は、取得した合波信号を、光信号から電気信号に変換する。
 次に、光伝送システムは、2つの波長の監視信号の信号品質の監視値を測定する(ステップS007)。例えば、品質測定部312-1は、取得した電気信号に基づいて、光送信部11-1の監視信号生成部112で生成された監視信号の信号品質の監視値と、光送信部13-1の監視信号生成部(不図示)で生成された監視信号の信号品質の監視値とを、それぞれ測定する。
 次に、光伝送システムは、2つの波長の監視信号の信号品質の監視値の少なくとも一方が所定の閾値以下である場合(ステップS008・Yes)、系統を切り替えた後(ステップS009)、光信号を増幅し、増幅された光信号を後段の装置へ送出する(ステップS010)。例えば、光切り替え部330は、品質測定部312-1から出力された制御信号に基づく2つの波長の監視信号の信号品質を示す監視値の少なくとも一方が、所定の閾値以下である場合、運用系から待機系への切り替えを行う。これにより、光切り替え部330は、待機系である光分配部300-2から出力され、光増幅器320-2によって増幅された合波信号を、後段の装置(すなわち、後段の中継用アンプ30、又はアクセス用アンプ40)へ送出する。
 一方、光伝送システムは、2つの波長の監視信号の信号品質の監視値のいずれもが所定の閾値より大きい場合(ステップS008・Yes)、光信号を増幅し、増幅された光信号を後段の装置へ送出する(ステップS010)。例えば、光切り替え部330は、品質測定部312-1から出力された制御信号に基づく2つの波長の監視信号の信号品質を示す監視値のいずれもが、所定の閾値より大きい場合、運用系である光分配部300-1から出力され、光増幅器320-1によって増幅された合波信号を、後段の装置(すなわち、後段の中継用アンプ30、又はアクセス用アンプ40)へ送出する。
 以上で、図6のフローチャートが示す光伝送システムの動作が終了する。
 以上説明したように、本発明の実施形態における光伝送システムは、異なる2波長の光信号を共用の中継NWを用いて伝送するFM一括変換方式の光伝送システムである。光送信部11(11-1,11-2)及び光送信部13(13-1,13-2)は、FM一括変換処理後の各主信号(電気信号)に対して、互いに異なる周波数の監視信号を多重して光信号にそれぞれ変換し、当該光信号を中継NWへそれぞれ送出する。
 FM一括変換処理後の各主信号に対して監視信号が多重されるため、中継用アンプ30(中継装置)は、各波長の光信号を一括受信して、FM復調処理を行うことなく、各監視信号の品質を測定することができる。これにより、中継用アンプ30(中継装置)は、波長ごとの品質監視部、及びFM復調部が設けられる必要がない。これにより、本発明の実施形態における光伝送システムは、低コストかつ省スペースな、中継用アンプ30(中継装置)を実現することができる
 なお、本実施形態では、光波長多重部20(例えばWDMフィルタ等のフィルタ回路)が中継用アンプ30のの外部に備えられる構成であるものとしたが、これに限られるものではない。例えば、初段の中継用アンプ30が光波長多重部20を内蔵する構成であってもよい。この場合、光波長多重部20が有する機能(すなわち、波長λ1の光信号と波長λ2の光信号とを合波する機能)に相当する機能部は、例えば図5に示される光分配部300-1及び光分配部300-1の前段にそれぞれ備えられる。
 上述した実施形態によれば、光伝送システムは、複数の光送信部と中継装置とを有する。例えば、光送信部は、実施形態における光送信部11-1~11-2及び光送信部13-1~13-2であり、中継装置は、実施形態における中継用アンプ30である。
 また、上述した実施形態によれば、複数の光送信部は、周波数変調一括変換部と、多重部と、光変調部とを備える。例えば、周波数変調一括変換部は、実施形態におけるFM一括変換部111であり、多重部は、実施形態における多重部113であり、光変調部は、実施形態における光変調器115である。
 周波数変調一括変換部は、周波数変調(FM)一括変換処理により入力信号を周波数変調(FM)信号に変換する。多重部は、周波数変調信号に対して、互いに異なる周波数の監視信号をそれぞれ多重する。光変調部は、監視信号が多重された電気信号である周波数変調信号を、互いに異なる波長の光信号に変換する。例えば、互いに異なる波長は、実施形態における波長λ1及び波長λ2である。
 また、上述した実施形態によれば、中継装置は、光電変換部と、測定部とを備える。例えば、光電変換部は、実施形態における光電変換部311-1~311-2であり、測定部は、実施形態における品質測定部312-1~312-2である。
 光電変換部は、互いに異なる波長をもつ光信号が合波された合波信号を取得し、合波信号を電気信号に変換する。測定部は、電気信号に含まれる複数の監視信号の伝送品質を測定する。例えば、監視信号の伝送品質は、実施形態における監視信号の伝送品質の監視値である。
 上述した実施形態における中継用アンプ30、光送信部11-1~11-2、及び光送信部13-1~13-2の構成の一部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
10…ヘッドエンド、11(11-1~11-2)…光送信部、12…ヘッドエンド、13(13-1~13-2)…光送信部、20(20-1~20-2)…光波長多重部、30…中継用アンプ、40…アクセス用アンプ、50…光受信部、51…光受信部、111…FM一括変換部、112…監視信号生成部、113…多重部、114…光源、115…光変調器、300-1~300-2…光分配部、301(301-1~301-2)…光波長分配部、310-1~310-4…品質監視部、311-1~311-2…光電変換部、312-1~312-2…品質測定部、320-1~320-2…光増幅器、330…光切り替え部

Claims (7)

  1.  複数の光送信部と中継装置とを有する光伝送システムであって、
     前記複数の光送信部は、
     周波数変調一括変換処理により入力信号を周波数変調信号に変換する周波数変調一括変換部と、
     前記周波数変調信号に対して、互いに異なる周波数の監視信号を多重する多重部と、
     前記監視信号が多重された電気信号である前記周波数変調信号を、互いに異なる波長の光信号に変換する光変調部と、
     を備え、
     前記中継装置は、
     前記互いに異なる波長をもつ光信号が合波された合波信号を取得し、前記合波信号を電気信号に変換する光電変換部と、
     前記電気信号に含まれる複数の前記監視信号の伝送品質を測定する測定部と、
     を備える光伝送システム。
  2.  前記中継装置は、
     前記合波信号を増幅する増幅部
     をさらに備える請求項1に記載の光伝送システム。
  3.  前記複数の光送信部には、運用系の光送信部である運用系光送信部と、待機系の光送信部である待機系光送信部とが含まれる
     請求項1又は請求項2に記載の光伝送システム。
  4.  前記中継装置は、
     前記測定部によって測定された前記伝送品質に基づいて、前記運用系光送信部から送信された前記光信号が合波された合波信号を光受信部へ送信するか、又は、前記運用系光送信部から送信された前記光信号が合波された合波信号を前記光受信部へ送信するかを決定する切り替え部
     をさらに備える請求項3に記載の光伝送システム。
  5.  第1の前記光送信部から送信された第1の前記波長の第1光信号と、第2の前記光送信部から送信された第2の前記波長の第2光信号とを受信し、前記第1光信号と前記第2光信号が多重された光信号を前記中継装置へ送信する光波長多重部
     をさらに有する請求項1から4のうちいずれか一項に記載の光伝送システム。
  6.  前記光波長多重部は、波長分割多重フィルタを備える
     請求項5に記載の光伝送システム。
  7.  複数の光送信部が、周波数変調一括変換処理により入力信号を周波数変調信号に変換する周波数変調一括変換ステップと、
     前記複数の光送信部が、前記周波数変調信号に対して、互いに異なる周波数の監視信号を多重する多重ステップと、
     前記複数の光送信部が、前記監視信号が多重された電気信号である前記周波数変調信号を、互いに異なる波長の光信号に変換する光変調ステップと、
     中継装置が、前記互いに異なる波長をもつ光信号が合波された合波信号を取得し、前記合波信号を電気信号に変換する光電変換ステップと、
     前記中継装置が、前記電気信号に含まれる複数の前記監視信号の伝送品質を測定する測定ステップと、
     を有する伝送品質監視方法。
PCT/JP2020/029237 2020-07-30 2020-07-30 光伝送システム及び伝送品質監視方法 WO2022024293A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/016,367 US20230275658A1 (en) 2020-07-30 2020-07-30 Optical transmission system and transmission quality monitoring method
PCT/JP2020/029237 WO2022024293A1 (ja) 2020-07-30 2020-07-30 光伝送システム及び伝送品質監視方法
JP2022539896A JP7328600B2 (ja) 2020-07-30 2020-07-30 光伝送システム及び伝送品質監視方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029237 WO2022024293A1 (ja) 2020-07-30 2020-07-30 光伝送システム及び伝送品質監視方法

Publications (1)

Publication Number Publication Date
WO2022024293A1 true WO2022024293A1 (ja) 2022-02-03

Family

ID=80037841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029237 WO2022024293A1 (ja) 2020-07-30 2020-07-30 光伝送システム及び伝送品質監視方法

Country Status (3)

Country Link
US (1) US20230275658A1 (ja)
JP (1) JP7328600B2 (ja)
WO (1) WO2022024293A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114844580A (zh) * 2022-05-02 2022-08-02 王辉 一种基于星载KaSAR系统自闭环测试装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002519A (ja) * 2013-06-18 2015-01-05 ミハル通信株式会社 光ノード装置、光通信システム、および、光ノード装置の監視方法
JP2016171502A (ja) * 2015-03-13 2016-09-23 日本電信電話株式会社 光中継装置及び光伝送システム
US20170244479A1 (en) * 2016-02-19 2017-08-24 Huawei Technologies Co., Ltd. Optical Channel Monitoring Using Expanded-Spectrum Pilot Tone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005018118A1 (ja) 2003-08-13 2005-02-24 Nippon Telegraph And Telephone Corporation 歪み発生回路およびプリディストーション回路、並びにこれを用いた光信号送信機および光信号伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002519A (ja) * 2013-06-18 2015-01-05 ミハル通信株式会社 光ノード装置、光通信システム、および、光ノード装置の監視方法
JP2016171502A (ja) * 2015-03-13 2016-09-23 日本電信電話株式会社 光中継装置及び光伝送システム
US20170244479A1 (en) * 2016-02-19 2017-08-24 Huawei Technologies Co., Ltd. Optical Channel Monitoring Using Expanded-Spectrum Pilot Tone

Also Published As

Publication number Publication date
JP7328600B2 (ja) 2023-08-17
JPWO2022024293A1 (ja) 2022-02-03
US20230275658A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
US20080310849A1 (en) Frequency modulated burst mode optical system
KR100506201B1 (ko) 방송 통신 융합을 위한 이더넷 수동형 광 가입자 망
WO2022024293A1 (ja) 光伝送システム及び伝送品質監視方法
JP5228225B2 (ja) 光catvシステム
JP6629709B2 (ja) 光伝送システム及び光伝送方法
JP5400918B2 (ja) ノード装置、信号伝送システム、及び、信号伝送システムの変更方法
CA3017061C (en) Aggregator-based cost-optimized communications topology for a point-to-multipoint network
JP7121288B2 (ja) 光伝送システム、及びキャリア監視装置
WO2021181671A1 (ja) 光伝送装置及び光伝送方法
JP7239812B2 (ja) 光伝送システム、及び出力調整装置
WO2023162207A1 (ja) 光送信装置及び送信方法
JP5428092B2 (ja) 光端末ユニットおよび光伝送システム
WO2023162213A1 (ja) 光送信装置及び送信方法
KR100687708B1 (ko) 광가입자망을 통해 방송 신호를 결합하여 제공하는광전송수신기 장치
KR20060116317A (ko) 방송신호의 광전송 시스템 및 그 전송방법
JP2017195525A (ja) 光送信装置、光受信装置、伝送システムおよび送信方法
KR20160061038A (ko) 광 분기 내장 통합형 광수신 분배장치를 활용한 위성방송 공동설비 송출시스템
KR200434028Y1 (ko) 방송 통신 통합형 광수신 모듈
JP5376518B2 (ja) 光端末ユニットおよび光伝送システム
JP2000165354A (ja) デジタル光伝送システム
Taniguchi et al. Digital baseband signal broadcasting of ultra-high definition video over analog/digital hybrid network
KR20160045427A (ko) 통합형 광수신 분배장치를 활용한 위성방송 공동설비 송출시스템
Nakano et al. Photonic Network Systems for Digital Convergence
JP2007142496A (ja) 光波長多重伝送システム
JP2017005469A (ja) 光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947236

Country of ref document: EP

Kind code of ref document: A1