WO2022143865A1 - 流体控制组件和流体控制装置 - Google Patents

流体控制组件和流体控制装置 Download PDF

Info

Publication number
WO2022143865A1
WO2022143865A1 PCT/CN2021/142870 CN2021142870W WO2022143865A1 WO 2022143865 A1 WO2022143865 A1 WO 2022143865A1 CN 2021142870 W CN2021142870 W CN 2021142870W WO 2022143865 A1 WO2022143865 A1 WO 2022143865A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
flow
fluid control
valve body
subsection
Prior art date
Application number
PCT/CN2021/142870
Other languages
English (en)
French (fr)
Inventor
汪立新
王昀
林龙
池建华
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011626190.XA external-priority patent/CN114688309A/zh
Priority claimed from CN202011625561.2A external-priority patent/CN114688308A/zh
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Priority to US18/270,191 priority Critical patent/US20240084902A1/en
Priority to JP2023540521A priority patent/JP2024502966A/ja
Priority to EP21914596.8A priority patent/EP4273424A1/en
Publication of WO2022143865A1 publication Critical patent/WO2022143865A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/041Construction of housing; Use of materials therefor of sliding valves cylindrical slide valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0853Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in a single plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/04Construction of housing; Use of materials therefor of sliding valves
    • F16K27/048Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/06Construction of housing; Use of materials therefor of taps or cocks
    • F16K27/065Construction of housing; Use of materials therefor of taps or cocks with cylindrical plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K5/00Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary
    • F16K5/04Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor
    • F16K5/0407Plug valves; Taps or cocks comprising only cut-off apparatus having at least one of the sealing faces shaped as a more or less complete surface of a solid of revolution, the opening and closing movement being predominantly rotary with plugs having cylindrical surfaces; Packings therefor with particular plug arrangements, e.g. particular shape or built-in means

Definitions

  • the present application belongs to the field of fluid control, and in particular relates to a fluid control assembly and a fluid control device.
  • the flow channel switching valve has a valve body and a valve core, and the valve core is accommodated inside the valve body.
  • the general flow channel switching valve has a similar structure as shown in Figure 1.
  • the valve body 1 has two or more nozzles protruding from the peripheral side.
  • the valve core moves inside the valve body to change the communication mode of the flow channel.
  • the vehicle thermal management system used in different models will be different. Some may use a four-way flow channel switching valve, and some may use a five-way flow channel switching valve. In this way, the factory that manufactures the flow channel switching valve needs to manufacture various The style of flow channel switching valve is used to match with different systems. What's more, sometimes customers have different requirements for the interface position for other reasons, which leads to the manufacture of many types of flow channels in order to meet customer needs. Switching valves, sometimes, because the product shape is different, it is necessary to change the production line that produces the product. Therefore, the production of various types of flow channel switching valves brings a large input cost to the manufacturing plant.
  • a fluid control assembly includes a valve body part and a valve core part, the fluid control assembly has a valve cavity, and at least part of the valve core part is located in the valve cavity;
  • the valve body part has a main body part and a protruding part, the main body part forms at least part of the wall part of the valve cavity, the protruding part protrudes from the peripheral wall of the main body part, and the fluid control assembly has a first part. a flow channel, at least part of the first flow channel is located on the valve core component, the protruding part has two or more second flow channels, and the second flow channels can communicate with the first flow channel;
  • the protruding portion has two or more lugs, at least a part of the lugs have the second flow channels, and at least a part of the second flow channels have the same flow openings.
  • a fluid control device comprising the above-mentioned fluid control assembly, the fluid control device further comprising a flow channel connecting portion, and the flow channel connecting portion has two or more third flow channels At least a part of the communication ports of the second flow channels of the lugs are oriented in the same direction and toward the flow channel connection part, the second flow channels are in communication with the corresponding third flow channels, and all the communicating ports are connected to each other.
  • a sealing arrangement is provided between the second flow channel and the third flow channel.
  • the above technical solution of the present application includes a valve body part, the protruding part of the valve body part has two or more lugs, and at least a part of the flow ports of the second flow passages are oriented in the same direction.
  • Form flow channel connection assembly is suitable for various applications and facilitates the standardization of this fluid control assembly.
  • Fig. 1 is a schematic structural diagram of the existing scheme
  • FIG. 2 is a schematic structural diagram of a fluid control device provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of the valve body component in FIG. 2;
  • Fig. 4 is the partial structure schematic diagram of the fluid control assembly in Fig. 2;
  • Fig. 5 is the sectional structure schematic diagram of line A-A in Fig. 4;
  • FIG. 6 is a three-dimensional cross-sectional structural schematic diagram of another viewing angle of FIG. 5;
  • Figure 7a is a side view of the valve body component of Figure 2;
  • Fig. 7b is a schematic cross-sectional structure diagram along line C-C in Fig. 7a;
  • FIG. 8 is a schematic structural diagram of a flow channel connection part in FIG. 2;
  • FIG. 9 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • Fig. 10 is the side view structure schematic diagram of the partial structure in Fig. 9;
  • FIG. 11 is a schematic cross-sectional structure diagram of line D-D in FIG. 10;
  • Fig. 12 is the cross-sectional structure schematic diagram of the line E-E in Fig. 10;
  • Figure 13 is a schematic bottom view of the valve body component shown in Figure 9;
  • FIG. 14 is a schematic three-dimensional structure diagram of the flow channel connecting portion shown in FIG. 9;
  • FIG. 15 is a schematic diagram of a partially exploded structure of a fluid control device provided by another embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of FIG. 15 from another perspective
  • FIG. 17 is a schematic structural diagram of another embodiment of the flow channel connecting portion
  • FIG. 18 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • Figure 19a is a side view of the valve body component of Figure 18;
  • Figure 19b is a schematic cross-sectional structure diagram along the G-G line in Figure 19a;
  • FIG. 20 is a schematic structural diagram of still another embodiment of the flow channel connecting portion
  • 21 is a schematic structural diagram of a fluid control device provided by another embodiment of the application.
  • 22 is a schematic structural diagram of a fluid control device provided by another embodiment of the application.
  • FIG. 23 is a schematic structural diagram of FIG. 22 from another perspective
  • Figure 24a is a side view of the fluid control assembly of Figure 23;
  • Fig. 24b is a schematic cross-sectional structure diagram along line H-H in Fig. 24a;
  • Figure 25 is a schematic structural diagram of the flow channel connection part in Figure 24;
  • 26 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of FIG. 26 from another viewing angle
  • Figure 28a is a side view of the fluid control assembly of Figure 27;
  • Fig. 28b is a schematic cross-sectional structure diagram along the line I-I in Fig. 28a;
  • FIG. 29 is a schematic structural diagram of the flow channel connecting portion of FIG. 27;
  • FIG. 30 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • Figure 31 is a schematic structural diagram of the valve body part in Figure 30;
  • FIG. 32 is a schematic structural diagram of the flow channel connection part in FIG. 31;
  • FIG. 33 is a schematic structural diagram of a fluid control device provided by another embodiment of the present application.
  • FIG. 34 is a schematic diagram of the exploded plan structure of FIG. 33 .
  • the fluid control device 10 can be used for switching of flow paths.
  • the fluid control device 10 includes a fluid control assembly 11 and a flow channel connecting portion 16.
  • the fluid control assembly 11 mainly includes a valve core part 12 (shown in FIG. 5 ), a valve body part 15 and a control part 14.
  • the fluid control assembly 11 has a valve cavity, At least a portion of the valve core member 12 is located in the valve cavity.
  • the control part 14 can control the movement of the valve core part 12 in the valve cavity, and through the movement of the valve core part 12, for example, the valve core part 12 can rotate or move, the flow channel communication or switching of the fluid control device can be realized.
  • the fluid devices provided in the embodiments of the present application are not limited to valves, but can also be other devices used in fluid control systems such as pumps and heat exchangers, and can also be integrated components with multiple functions, such as the integration of heat exchangers and valves. parts, valve and pump integration, pump and heat exchanger integration, etc.
  • the fluid control device 10 may have 2 ports, through the movement of the valve core part 12 , the flow channels between the two ports may be connected or disconnected; for example, the fluid control device 10 may have three ports, through the movement of the valve core part 12 , two of the interfaces can be selectively conducted; for example, the fluid control device 10 can also have 4 interfaces or more interfaces. Channel switching on function.
  • the valve body part 15 has a body part 151 and a protruding part 152, the body part 151 forms at least part of the peripheral wall of the valve cavity, the protruding part 152 protrudes from the peripheral wall 155 of the body part 151, and the fluid control device has a first flow channel 13 (shown in 5), the first flow channel 13 is located inside the body portion 151, the protruding portion 152 has more than two second flow channels 156, the second flow channel 156 can communicate with the first flow channel 13; the protruding portion 152 has more than two convex
  • the lugs 157, the lugs 157 have the second flow channels 156, and the communication ports 1561 of the second flow channels 156 of at least a part of the lugs 157 face the flow channel connecting part 16.
  • the communication port 1561 of the second flow channel 156 faces the flow channel connecting portion 16 , and the flow channel connecting portion 16 has more than two third flow channels 161 .
  • the flow channel 156 and the third flow channel 161 are arranged in a sealed manner, and the flow channel connection portion 16 and the valve body component 15 are arranged in a sealed arrangement.
  • At least a part of the flow ports 1561 of the second flow channels 156 are oriented in the same direction and located on the same plane, which facilitates the installation of the fluid control assembly 11 .
  • the communication port 1561 of the second flow channel of the valve body member 15 can be communicated with the third flow channel 161 of the flow channel connection portion 16, and the fluid inlet and outlet of the fluid control device 10 are all arranged in the flow channel connection portion 16.
  • the flow channel connection part 16 realizes the flow channel diversion and shunt, and connects the external pipeline or channel with the flow channel connection part 16 , which facilitates the layout of the interface pipeline and has a compact overall structure.
  • the flow channel connecting portion 16 is integrally injection molded, the body portion 151 and the protruding portion 152 are integrally injection molded, and the flow channel connecting portion 16 and the protruding portion 152 are welded and fixed.
  • the flow channel connecting part 16 can be made of plastic material and formed by injection molding, the valve body part 15 can also be plastic material formed by injection molding, and the welding of the flow channel connecting part 16 and the protruding part 152 can be plastic welding.
  • the flow ports 1561 of the second flow channel 156 have the same orientation and are located on the same plane, the communication ports 1618 (shown in FIG. 8 ) of the third flow channel 161 are located on the same plane, and the flow ports of the second flow channel 156 The plane where the 1561 is located is welded and fixed with the plane where the communication port 1618 of the third flow channel 161 is located.
  • each lug 157 has The end portion 1571, the end portion 1571 is opposite to the flow channel connecting portion 16, the end portion 1571 is provided with the communication port 1561 of the second flow channel 156, the end portion 1571 has a bottom end surface 1575, on a radial section parallel to the valve body part 15, The bottom end faces 1575 of at least two lugs 157 are located in the same section.
  • the sealing setting is more convenient for sealing operation, structure optimization and assembly.
  • the protruding portion 152 has five lugs 157 , and the five lugs 157 are arranged along the circumferential direction of the body portion 151 , and each lug 157 has an end portion 1571 , Each end portion 1571 has a bottom end surface 1575 , and the five bottom end surfaces 1575 are in the same cross-section in a cross-section parallel to the radial direction of the valve body member 15 .
  • the flow channel connecting portion 16 and the five bottom end faces 1575 in the same section are welded and fixed at the same time, which simplifies the assembly process and reduces the production cost.
  • the five lugs 157 are arranged separately, and the end portions 1571 thereof are also arranged separately.
  • the lugs 157 may be positioned adjacently.
  • the term “protruding from the body portion 151 in the radial direction of the valve body member 15 ” means that the protruding portion 152 has a portion protruding from the body portion 151 in the radial direction of the valve body member 15 , and is not limited to Since the protruding portion 152 as a whole protrudes out of the body portion 151 in the same radial direction, the radial direction protrusion here is a radially protruding portion relative to the peripheral wall 155 of the body portion 151 .
  • the protruding portion 152 has a connecting portion 158 located between adjacent lugs 157 and connecting the outer walls 1572 of the lugs 157 .
  • the connecting portion 158 can increase the mechanical strength of the lug 157 and help improve the stability of the valve body component 15 and the flow channel connecting portion 16 when assembled.
  • the connecting portion 158 has a bottom end face 1575 , the bottom end face of the connecting portion 158 can also be in the same section as the bottom end face 1575 of the lug 157 , and the connecting portion 158 can be welded and fixed with the flow channel connecting portion 16 , so that the bottom end face 1575 of the lug 157 While welding with the flow channel connecting portion 16 , the connecting portion 158 can also be welded and fixed with the flow channel connecting portion 16 , which helps to improve the welding firmness of the lug 157 and the flow channel connecting portion 16 .
  • the lug 157 has a root portion 1573 and an outer rim portion 1574, and the communication port 1561 of the second flow channel 156 is located between the root portion 1573 and the outer rim portion 1574;
  • the distance between at least part of the outer rim portion 1574 and the axis of the body portion 151 is greater than the distance between the root portion 1573 and the axis of the body portion 151 .
  • the root portion 1573 extends from the peripheral wall 155 of the valve body member 15 in a direction away from the valve cavity, and the root portion 1573 extends along the axial direction of the body portion 151 , and the end portion 1571 of the root portion 1573 forms the second flow channel A part of the wall portion of the communication port 1561 .
  • the lug 157 can be easily connected to the flow channel connection portion 16, and at the same time when required At this time, the bottom end surfaces 1575 of each lug 157 can be located on the same plane, which facilitates the design of the structure of the flow channel connecting portion 16 .
  • one fluid control assembly 11 can be matched with flow channel connection parts 16 with different interface forms to meet customer needs, realize standardized production of fluid control assembly 11, and reduce costs.
  • the valve body member 15 has a cylindrical portion structure
  • the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15
  • the control member 14 is located at the first end portion 153 side
  • the lug 157 protrudes from the second end 154
  • the flow channel connecting part 16 and the second end 154 of the valve body part 15 are assembled, the structure is simple, and the connection between the lug 157 and the flow channel connecting part 16 is convenient, and the connection The structure is more compact.
  • each third flow channel 161 faces the valve body member 15
  • the communication port 1618 of each third flow channel 161 and the communication port 1561 of each second flow channel are arranged correspondingly
  • the connecting portion 16 has the same number of third flow channels 161 as the second flow channels 156 , and each of the second flow channels 156 and the third flow channels 161 are in one-to-one correspondence.
  • the flow channel connecting portion 16 has a main body portion 167 and a matching portion 168 .
  • the main body portion 167 and the matching portion 168 are integrally formed.
  • the communication port 1618 and the main body portion 167 are provided with connection holes 1671 corresponding to the number of the communication ports 1618 of the third flow channel 161 , and the flow channel connection portion 16 may be formed by integral injection molding.
  • the matching portion 168 has a welding portion 1681 , and the welding portion 1681 surrounds the communication port 1618 of the third flow channel 161 , and the welding portion 1681 of each matching portion 168 can be independently provided.
  • the main body part 167 may also have a welding part, and the welding part of the main body part 167 is located between the adjacent matching parts 168 to improve the welding firmness.
  • the structure of the spool part 12 can be of many kinds, such as spherical, cylindrical, irregular, etc.; there are structures with internal openings, and there are structures such as connecting grooves on the side, which are not specially limited in this specification, and can have
  • the various spool components 12 that function in this specification are considered to be covered by this specification.
  • the valve core part 12 has a hole or groove 121. At least part of the first flow channel 13 is located in the hole or groove 121.
  • the valve core part 12 can move relative to the valve body part 15. In different states, the hole or groove 121 can communicate with each other.
  • FIGS. 9-14 a schematic structural diagram of a fluid control device 20 is shown in the figures.
  • the fluid control device 20 includes a fluid control assembly 11 and a flow channel connection portion 16 .
  • the fluid control assembly 11 mainly includes a valve core part 12 , a valve body part 15 and a control part 14 , the fluid control assembly 11 has a valve cavity, and the valve body part 15 forms a valve At least part of the peripheral wall of the cavity, at least part of the valve core member 12 is located in the valve cavity.
  • At least two lugs 157 may be arranged adjacent to each other.
  • two adjacent lugs 157 are defined as a first lug 157A and a second lug 157B to distinguish the description.
  • the division of the two lugs 157 is bounded by the wall portion between the two lugs 157, the wall portion has two wall surfaces, namely wall surface a and wall surface b, the first lug 157A includes the wall surface a, the second lug 157B includes a wall surface b, and the end portion 1571 of the first lug 157A and the end portion 1571 of the second lug 157B are also bounded by the wall surface a and the wall surface b.
  • the flow channel connecting portion 16 is integrally formed by injection molding, the communication port 1618 of each third flow channel 161 faces the valve body part 15 , the communication port 1618 of each third flow channel 161 and each second flow channel 161 face the valve body part 15 .
  • the communication ports 1561 of the channels 156 are correspondingly arranged, and the channel connecting portion 16 has the same number of third channels 161 as the number of the second channels 156 , and the second channels 156 correspond to the third channels 161 one-to-one.
  • the first communication port 1562 is defined as a communication port communicating with the first flow channel 13 and the second flow channel of the first lug 157A, and the second flow channel between the first flow channel 13 and the second lug 157B is defined
  • the second communication port 1563 is communicated with the second communication port 1563, the first communication port 1562 and the second communication port 1563 do not fall into the same radial section of the valve body member 15, and the radial section is perpendicular to the valve body member 15.
  • the axial direction 9 , 11 and 12 , the first communication port 1562 and the second communication port 1563 are staggered from each other along the axial direction of the valve body member 15 .
  • the second flow channel 156 of the first lug 157A and the second flow channel 156 of the second lug 157B may have different conducting flow paths, and the second flow channel 156 of the first lug 157A and the second channel 156 of the first lug 157A may be reasonably arranged.
  • the fluid control assembly 11 has ten lugs 157
  • the flow channel connecting portion 16 has ten third flow channels 161
  • the second flow channels 156 of each lug 157 communicate with the corresponding third flow channels 161 .
  • some lugs 157 are arranged adjacently, and some lugs 157 are arranged at intervals.
  • all the lugs 157 may be arranged adjacently, or all of them may be arranged at intervals, or the number of adjacent lugs 157 may be different from this embodiment.
  • the flow channel connecting portion 16 includes a first subsection 163 and a second subsection 164 .
  • the first subsection 163 and the body portion 151 are integrally structured and are separated from the body portion 151 .
  • the first sub-section 163 Extending away from the valve cavity, the first sub-section 163 has a first groove 1631 , and the wall corresponding to the first groove 1631 and the second sub-section 164 are welded and fixed to form a third flow channel 161 .
  • Designing the flow channel connecting portion 16 to include the first sub-section 163 and the second sub-section 164 facilitates the processing of the flow channel of the flow channel connecting portion 16 and facilitates injection molding.
  • the second sub-section 164 has a second groove 1641 , the second groove 1641 and the first groove 1631 are provided correspondingly, and the wall portion corresponding to the second groove 1641 corresponds to the first groove 1631 .
  • the wall is welded and fixed.
  • the first subsection 163 can also extend integrally from the lug 157 .
  • the second subsection 164 may not have the second groove 1641 , the second subsection 164 may be a flat plate structure, and the second subsection 164 seals the first groove 1631 , the second subsection 164 and the first groove.
  • the wall corresponding to 1631 is welded and fixed.
  • the first subsection 163 may also have no first groove 1631 , the second subsection 164 has a second groove 1641 , the first subsection 163 seals the second groove 1641 , the first subsection 163 and the second groove 1641 .
  • the walls corresponding to the grooves 1641 are welded and fixed.
  • the first subsection 163 has a communication port 1618 of the third flow channel 161 , the communication port 1618 of the third flow channel 161 and the communication port 1561 of the second flow channel 156 are correspondingly arranged, and the first subsection 163 and the valve body part 15 Welded to fix.
  • the valve body member 15 has a cylindrical structure, the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15, and the fluid control assembly 11 has a control member 14, and the control member 14 is located in the first end portion 153 and the second end portion 154.
  • the lug 157 protrudes from the second end portion 154
  • the first subsection 163 is located at the second end portion 154
  • the second subsection 164 and the first subsection 163 are located at the second end of the valve body part 15 154, the structure is simple, the connection between the lug 157 and the flow channel connection part 16 is convenient, and the connection structure is more compact.
  • each flow path of the flow path connecting portion 16 can be designed in various styles, and this embodiment is only an example.
  • the fluid control device 30 includes a fluid control assembly 11 and a flow channel connecting portion 16 .
  • the fluid control assembly 11 mainly includes a valve core part 12 , a valve body part 15 and a control part 14 .
  • Most of the structures of the valve body part 15 , the valve core part 12 and the control part 14 are the same as or similar to the structure of the fluid control device 10 , and will not be repeated here.
  • the structure of the fluid control device 10 is different.
  • the flow channel connecting portion 16 is integrally injection molded, the body portion 151 and the protruding portion 152 are integrally injection molded, and the flow channel connecting portion 16 and the protruding portion 152 are welded and fixed.
  • the lug 157 has a root portion 1573 and an outer rim portion 1574, and the communication port 1561 of the second flow channel is located between the root portion 1573 and the outer rim portion 1574; that is, the root portion 1573 and the outer rim portion 1574 It is a part of the wall portion corresponding to the communication port 1561 of the second flow passage.
  • the distance L2 between at least part of the rim portion 1574 and the axis Z of the body portion 151 is greater than the distance L1 between the root portion 1573 and the axis Z of the body portion 151 .
  • the root portion 1573 extends from the peripheral wall 155 of the valve body member 15 , and the root portion 1573 extends in the axial direction of the main body portion 151 . Since the distance between at least part of the outer edge portion 1574 and the axis of the body portion 151 is greater than the distance between the root portion 1573 and the axis of the body portion 151, the lug 157 can be easily connected to the flow channel connection portion 16, and at the same time when required At this time, the bottom end surfaces 1575 of each lug 157 can be located on the same plane, which facilitates the design of the structure of the flow channel connecting portion 16 . When customer needs are different, one fluid control assembly 11 can be matched with flow channel connecting parts 16 with different interface forms to meet customer needs, realize standardized production of fluid control assembly 11, and reduce costs.
  • each third flow channel 161 faces the valve body member 15
  • at least one third flow channel 161 of the third flow channels 161 of the flow channel connection portion 16 has the first part of the third flow channel 1611 and the second part 1612 of the third flow channel
  • the first part 1611 of the third flow channel and the second part 1612 of the third flow channel are independently arranged in the flow channel connection part 16
  • the first part 1611 of the third flow channel and the second part of the third flow channel Portion 1612 communicates with the same second flow channel 156 .
  • the fluid control assembly 11 has five lugs 157 , each lug 157 having a second flow channel 156 .
  • the flow channel connecting portion 16 has five drainage portions 162, each drainage portion 162 and each lug 157 are correspondingly arranged, and each drainage portion 162 has a first part 1611 of a third flow channel and a second part 1612 of the third flow channel.
  • the first part 1611 of the channel and the second part 1612 of the third channel are arranged independently, and the fluid can independently circulate in the first part 1611 of the third channel and the second part 1612 of the third channel, so that the second channel of each lug 157 156 can be formed into two sub-flow paths through the transfer of the flow channel connection part 16, so that in the case of the fluid control assembly 11 having 5 flow channels, through the transfer of the flow channel connection part 16, 10 flow channels are formed, It can be applied to systems requiring 10-port flow channel switching in vehicle thermal management systems.
  • FIG. 17 illustrates a schematic structural diagram of a flow channel connecting portion 16 .
  • the drainage portion 162 of the flow channel connection portion 16 does not need to each have the third flow channel first portion 1611 and the third flow channel second portion 1612, and one or two or three or four of them may be Therefore, the fluid control assembly 11 of this embodiment can be used in the case of 5, 6, 7, 8, 9, and 10 interfaces.
  • the second flow channels 156 of the two lugs 157 of the valve body part 15 can also be mixed on the flow channel connecting portion 16 , that is, the flow channel connecting portion 16 It can realize the flow channel switching requirements of 4 interfaces.
  • the number of interfaces above is only an example, and the number of interfaces can be arbitrarily adjusted according to the actual situation.
  • FIG. 20 illustrates another structural schematic diagram of the flow channel connecting portion 16 .
  • the communication port 1618 of the third flow channel 161 and the communication port 1561 of the second flow channel of the flow channel connection portion 16 are provided correspondingly.
  • the communication port 1618 of the third flow channel 161 is located in the trunk portion 1613 , and the first branch portion 1614 , the second branch portion 1615 , and the third branch portion 1617 are individually connected to the trunk portion 1613 .
  • the fluid from a certain second flow channel 156 of the lug 157 enters the third flow channel 161, and will be branched from the main part 1613 to the first branch part 1614, the second branch part 1615 and the third branch part 1617, available for different system requirements.
  • FIGS. 19 a and 19 b as an embodiment, a schematic structural diagram of a fluid control device 40 is illustrated.
  • FIG. 18 illustrates a fluid control device 40 that is generally similar to the fluid control device shown in FIG. 16 . At least the difference is that the structure of the valve body part 15 and the structure of the flow channel connecting part 16 are different. And along the extension direction of the lug 157, as shown in FIG. 18, the lug 157 is a curved extension, and along the flow direction perpendicular to the fluid, the cross-section of the lug 157 is a circular ring, which can reduce the flow of the fluid in the lug 157.
  • the lugs 157 can be welded and fixed with the body part 151 and sealed, and the flow channel connecting part 16 has a body part 167 and a matching part 168 protruding from the body part 167, and the matching part 168 has a welding part 1681, The welding portion 1681 is welded to the lug 157 .
  • the valve body member 15 has a cylindrical portion structure, the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15 , and the fluid control assembly 11 has the control member 14 , the control member 14 is located on the side of the first end portion 153 , and the lug 157 protrudes between the first end portion 153 and the second end portion 154 .
  • each lug 157 has an end part 1571 .
  • the end portion 1571 is opposite to the flow channel connecting portion 16 , the end portion 1571 is provided with the communication port 1561 of the second flow channel, and the end portion 1571 has a bottom end surface 1575 . Both are on the same section. At least two of the bottom end faces 1575 are located in the same cross section, which is convenient for sealing and fixing with the flow channel connecting part 16. By sealing and fixing one cross section, the sealing setting of the communication ports 1561 of at least two second flow channels can be realized, which is more conducive to the sealing operation. , it is also convenient for structural optimization and easy assembly.
  • the lug 157 In a longitudinal section passing through the axis of the body portion 151, the lug 157 has a root portion 1573 and an outer rim portion 1574, and the communication port 1561 of the second flow channel is located between the root portion 1573 and the outer rim portion 1574; in the radial cross-section of the body portion 151 , the distance between at least part of the outer edge portion 1574 and the axis of the body portion 151 is greater than the distance between the root portion 1573 and the axis of the body portion 151 .
  • FIG. 21 shows a structural diagram of the fluid control device 50 .
  • the axial direction of the body portion 151 is the axial direction of the valve body member 15 , and the lugs 157 are convex along the radial direction of the valve body member 15 .
  • each lug 157 has an end portion 1571, the end portion 1571 is opposite to the flow channel connecting portion 16, the end portion 1571 is provided with a communication port 1561 of the second flow channel, and the end portion 1571 has a bottom end surface 1575, and the end portion 1571 has a bottom end surface 1575.
  • the root portion 1573 extends from the peripheral wall 155 of the valve body member 15, the root portion 1573 extends along the axial direction of the body portion 151, and the distal end portion 1571 of the root portion 1573 forms a part of the wall portion of the communication port 1561 of the second flow channel.
  • the root portion 1573 extends from the peripheral wall 155 of the valve body part 15, and the root portion 1573 extends along the direction of the included angle a with the axis of the main body portion 151, and the angle formed between the included angle a and the axis of the main body portion 151 is (0, 90), at this time 0 ⁇ a ⁇ 90°.
  • the angle formed between the included angle a and the axis of the body portion 151 is 90°
  • the root portion 1573 extends along the radial direction of the body portion 151
  • the end portion of the root portion 1573 forms the second A part of the wall of the flow port 1561 of the flow channel 156 can reduce the axial height of the fluid control device at this time.
  • the connection position defining the root part 1573 and the peripheral wall 155 of the valve body part 15 is the first point, which defines the root part 1573
  • the farthest end from the peripheral wall 155 of the valve body part 15 is the second point, connecting the first point and the second point to define the included angle a and the angle formed by the axis of the body part 151 is the first point and the second point
  • the connecting line forms an angle with the axis of the body portion 151 .
  • connection method can refer to the connection method of any of the above-mentioned embodiments.
  • the protruding portion 152 of the flow channel connecting portion 16 can be welded and fixed to the flow channel connecting portion 16, or when the flow channel connecting portion 16 has a subsection, the subsection can be fixed by welding.
  • the protruding portion 152 is welded or formed into an integral structure.
  • the fluid control device 60 includes a fluid control assembly 11 and a flow channel connection portion 16 .
  • the fluid control assembly 11 mainly includes a valve core part 12 , a valve body part 15 and a control part 14 .
  • Much of the structure of the fluid control device 60 can be referred to with reference to the fluid control device 10 .
  • the valve body member 15 has a cylindrical structure, the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15, and the fluid control assembly 11 has a control member 14, and the control member 14 is located in the first end portion 153 and the second end portion 154.
  • the lug 157 protrudes between the first end portion 153 and the second end portion 154 .
  • the communication port 1561 of the second flow passage 156 is located in a radial cross-section between the first end portion 153 and the second end portion 154 , and the radial cross-section is along an axis perpendicular to the valve body member 15 .
  • the cross section obtained by cutting the lug 157 in the direction of .
  • the lug 157 In a longitudinal section passing through the axis of the body portion 151, the lug 157 has a root portion 1573 and an outer rim portion 1574, and the flow opening 1561 of the second flow channel is located between the root portion 1573 and the outer rim portion 1574; in a radial cross-section of the body portion 151 , the distance between at least part of the outer edge portion 1574 and the axis of the body portion 151 is greater than the distance between the root portion 1573 and the axis of the body portion 151 .
  • the root portion 1573 extends from the peripheral wall 155 of the valve body member 15 in a direction away from the valve cavity, and the root portion 1573 extends along the axial direction of the body portion 151 , and the end portion 1571 of the root portion 1573 forms the second flow channel A part of the wall portion of the communication port 1561 .
  • the flow passage connecting portion 16 has a notch 165 , and a part of the valve body member 15 is located in the notch 165 . In this way, the flow passage connecting portion 16 may protrude on the peripheral side of the valve body member 15, so that the entire height of the fluid control device is low.
  • the communication port 1561 of the second flow passage through the valve body part 15 can communicate with the third flow passage 161 of the flow passage connecting portion 16, and communicate with the external pipeline or passage through the flow passage connecting portion 16, which facilitates the arrangement of the flow passage, and
  • the overall structure is compact.
  • each lug 157 has an end part 1571 .
  • the end portion 1571 is opposite to the flow channel connecting portion 16 , the end portion 1571 is provided with the communication port 1561 of the second flow channel, and the end portion 1571 has a bottom end surface 1575 . Both are on the same section.
  • the flow channel connecting part 16 has a drainage part 162, the drainage part 162 corresponds to the lug 157, the drainage part 162 has a groove 1621 and a top surface 1622, the groove 1621 forms at least part of the third flow channel 161, the groove 1621 and the second flow channel
  • the communication port 1561 communicates with each other, the top end surface 1622 and the bottom end surface 1575 are welded and fixed, and the welding position of the top end surface 1622 and the bottom end surface 1575 is located at the radial cross-sectional position of the body portion 151 .
  • valve core member 12 In FIG. 24 , the structure of the valve core member 12 is schematically illustrated.
  • the valve core member 12 can rotate in the valve body member 15 to change the communication relationship between the first flow channel 13 and each second flow channel 156 to realize the flow channel. the purpose of switching.
  • valve body part 15 is protruded with four lugs 157
  • the flow channel connecting part 16 is integrally formed by injection molding
  • the communication port 1618 of each third flow channel 161 faces the valve body part 15
  • each third flow channel 161 faces the valve body part 15 .
  • the communication port 1618 of the channel 161 is correspondingly arranged with the communication port 1561 of each second flow channel.
  • the flow channel connecting portion 16 has the same number of third flow channels 161 as the second flow channels 156 .
  • the flow channels 161 are in one-to-one correspondence. In this way, the fluid control device can realize the flow channel switching of 4 interface channels.
  • the fluid control device can also implement flow channel switching of other numbers and multiple interfaces.
  • FIG. 26 illustrates the structure of the fluid control device 70 , the fluid control device 70 and the fluid control device.
  • 60 is generally similar, in this embodiment, the valve body part 15 protrudes with five lugs 157, the communication port 1618 of each third flow channel 161 and the communication port 1561 of each second flow channel are arranged correspondingly, and the flow channel
  • the connecting portion 16 has the same number of third flow channels 161 as the second flow channels 156 , and each of the second flow channels 156 and the third flow channels 161 are in one-to-one correspondence. In this way, the fluid control device can realize the flow channel switching of 5 interface channels.
  • the valve body member 15 has a cylindrical structure, the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15, and the fluid control assembly 11 has a control member 14, and the control member 14 is located in the first end portion 153 and the second end portion 154.
  • the lug 157 protrudes between the first end portion 153 and the second end portion 154 .
  • the communication port 1561 of the second flow channel is located in the radial section between the first end portion 153 and the second end portion 154 .
  • the lug 157 has a root portion 1573 and an outer rim portion 1574, and the communication port 1561 of the second flow channel is located between the root portion 1573 and the outer rim portion 1574; in the radial cross-section of the body portion 151 , the distance between at least part of the outer edge portion 1574 and the axis of the body portion 151 is greater than the distance between the root portion 1573 and the axis of the body portion 151 .
  • the root portion 1573 extends from the peripheral wall 155 of the valve body member 15 , the root portion 1573 extends along the axial direction of the main body portion 151 , and the distal end portion 1571 of the root portion 1573 forms a part of the wall portion of the communication port 1561 of the second flow passage. .
  • the flow passage connecting portion 16 has a notch 165 , and a part of the valve body member 15 is located in the notch 165 . In this way, the flow passage connecting portion 16 may protrude on the peripheral side of the valve body member 15, so that the entire height of the fluid control device is low.
  • the communication port 1561 of the second flow passage through the valve body part 15 can communicate with the third flow passage 161 of the flow passage connecting portion 16, and communicate with the external pipeline or passage through the flow passage connecting portion 16, which facilitates the arrangement of the flow passage, and
  • the overall structure is compact.
  • each lug 157 has an end part 1571 .
  • the end portion 1571 is opposite to the flow channel connecting portion 16 , the end portion 1571 is provided with the communication port 1561 of the second flow channel, and the end portion 1571 has a bottom end surface 1575 . Both are on the same section.
  • the fluid control device 80 includes a fluid control assembly 11 and a flow channel connection portion 16 .
  • the fluid control assembly 11 mainly includes a valve core part 12 , a valve body part 15 and Control unit 14 .
  • the fluid control device 80 For most of the structure of the fluid control device 80, reference may be made to the fluid control device 60, and some similar features will not be repeated.
  • the valve body member 15 has a cylindrical structure, the valve body member 15 has a first end portion 153 and a second end portion 154 along the axial direction of the valve body member 15, and the fluid control assembly 11 has a control member 14, and the control member 14 is located in the first end portion 153 and the second end portion 154.
  • the lug 157 protrudes between the first end portion 153 and the second end portion 154 .
  • the communication port 1561 of the second flow channel is located in the radial section between the first end portion 153 and the second end portion 154 .
  • the protruding portion 152 has four lugs 157, and each lug 157 has a communication port 1561 for the second flow channel.
  • the flow channel connecting portion 16 has a drainage portion 162 , and the drainage portion 162 and the lug 157 are arranged in cooperation with each other.
  • the drainage portion 162 has a groove 1621 and a top end surface 1622, the groove 1621 communicates with the communication port 1561 of the second flow channel, the top end surface 1622 and the bottom end surface 1575 are welded and fixed, and the welding position of the top end surface 1622 and the bottom end surface 1575 is located in the body portion 151. Radial section location.
  • the communication port 1618 of the third flow channel 161 and the communication port 1561 of the second flow channel of the flow channel connection part 16 are arranged correspondingly.
  • the third flow channel 161 has a main part 1613 and at least one branch part.
  • the flow port 1618 of the flow channel 161 is located in the trunk portion 1613 , and each branch portion independently communicates with the trunk portion 1613 .
  • the third flow channel 161 has a main part 1613 , a first branch part 1614 , a second branch part 1615 and a third branch part 1617 , the flow port of the third flow channel 161 is located in the main part 1613 , the first branch part 1614 , the second branch part 1615 , and the third branch part 1617 are individually connected to the trunk part 1613 .
  • a second flow channel 156 can be switched through the flow channel connecting part 16 to form three interfaces, which can be applied to different application requirements. Standardization of the fluid control assembly 11 is facilitated.
  • the axial direction of the body part 151 is the axial direction of the valve body part 15
  • the lugs 157 protrude from the body part 151 along the radial direction of the valve body part 15
  • each lug 157 has an end portion 1571
  • the end portion 1571 is opposite to the flow channel connecting portion 16
  • the end portion 1571 is provided with the communication port 1561 of the second flow channel
  • the end portion 1571 has a bottom end surface 1575, in a section parallel to the axial direction of the valve body member 15, the bottom At least two of the end faces 1575 are in the same cross-section.
  • FIGS. 33-34 illustrate the structure of the fluid control device 90 .
  • the structure of the fluid control device 90 is generally similar to that of the fluid control device 10 .
  • the fluid control device 90 includes a fluid control assembly 11 and a flow channel connection portion 16.
  • the fluid control assembly 11 mainly includes a valve core part 12, a valve body part 15 and a control part 14.
  • the fluid control assembly 11 has a valve cavity, and most of the valve core part 12 located in the valve cavity.
  • the valve body part 15 , the valve core part 12 and the control part 14 reference may be made to the above specific embodiments.
  • the flow channel connecting part 16 has a first subsection 163 and a second subsection 164, the first subsection 163 and the second subsection 164 are welded and fixed, the first subsection 163 has a communication port 1618 of the third flow channel 161, the third subsection 163 is The flow port of the flow channel 161 and the communication port 1561 of the second flow channel are arranged correspondingly, and the first sub-section 163 and the valve body part 15 are welded and fixed.
  • the valve body part 15, the first subsection 163, and the second subsection 164 are all injection-molded, and the flow channel connecting part 16 is designed with the structure of the first subsection 163 and the second subsection 164, which is convenient for the first subsection 163 and the second subsection 164.
  • the forming of the internal structure of the sub-section 163 and the second sub-section 164 simplifies the processing. Also, when the flow channel connecting portion 16 has a very complex structure, it can be formed by a sub-section processing method, and then the flow channel can be sealed by welding, which is convenient to process and has strong applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Valve Housings (AREA)
  • Multiple-Way Valves (AREA)

Abstract

本申请公开了一种流体控制组件和流体控制装置,包括阀体部件(15)、阀芯部件(12),阀芯部件(12)的至少部分位于阀腔;阀体部件(15)具有本体部(151)和凸出部(152),本体部(151)形成阀腔的至少部分壁部,凸出部(152)凸出于本体部(151)的周壁,流体控制组件具有第一流道(13),第一流道(13)的至少部分位于阀芯部件(12),凸出部(152)具有两个以上第二流道(156),第二流道(156)能和第一流道(13)连通;凸出部具有两个以上凸耳(157),至少部分数量的凸耳(157)具有第二流道(156),至少部分数量的第二流道(156)的流通口的朝向相同。本申请便于流体控制组件的标准化。

Description

流体控制组件和流体控制装置
本申请要求于2020年12月31日提交中国专利局、申请号为202011625561.2、发明名称为“一种流体控制装置”,以及于2020年12月31日提交中国专利局、申请号为202011626190.X、发明名称为“流体控制组件和流体控制装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于流体控制领域,尤其涉及一种流体控制组件和流体控制装置。
背景技术
车辆热管理系统中会有流体流道的切换,因此,在车辆热管理系统中会使用多个流道切换的阀进行流路控制。流道切换阀具有阀体、阀芯,阀芯容置在阀体内部,一般的流道切换阀具有如图1类似结构,阀体1周侧凸出有两个或以上接管2,外部管路和接管连接,阀芯在阀体内部运动,改变流道的连通方式。
大多数情况下,不同车型使用的车辆热管理系统会不同,有些可能使用四通流道切换阀,有些可能使用五通流道切换阀,如此,制造流道切换阀的工厂就需要制造各种样式的流道切换阀用于和不同的系统匹配,更有甚者,有时客户还会因其他原因对接口位置有不同的需求,这就导致为了 适配客户需求要制造很多种类型的流道切换阀,有的时候,因为产品外形不同,就得改变生产该产品的生产线,因此,生产各种类型的流道切换阀给制造工厂带来了较大的投入成本。
发明内容
本申请的目的在于提供一种便于标准化的流体控制组件和流体控制装置。
为实现上述目的,采用如下技术方案:
一种流体控制组件,包括阀体部件、阀芯部件,所述流体控制组件具有阀腔,所述阀芯部件的至少部分位于所述阀腔;
所述阀体部件具有本体部和凸出部,所述本体部形成所述阀腔的至少部分壁部,所述凸出部凸出于所述本体部的周壁,所述流体控制组件具有第一流道,所述第一流道的至少部分位于所述阀芯部件,所述凸出部具有两个以上第二流道,所述第二流道能和所述第一流道连通;
所述凸出部具有两个以上凸耳,至少部分数量的所述凸耳具有所述第二流道,至少部分数量的所述第二流道的流通口的朝向相同。
为实现上述目的,还采用如下技术方案:一种流体控制装置,包括根据上述的流体控制组件,所述流体控制装置还包括流道连接部,所述流道连接部具有两个以上第三流道,至少部分数量的所述凸耳的第二流道的连通口朝向相同且朝向所述流道连接部,所述第二流道和对应的所述第三流道连通,相互连通的所述第二流道和所述第三流道之间密封设置。
本申请的上述技术方案包括阀体部件,阀体部件的凸出部具有两个以上凸耳,至少部分数量的第二流道的流通口的朝向相同,如此,本流体控制组件便于与各种形式的流道连接部装配,适用于各种应用场合,便于本流体控制组件的标准化。
附图说明
图1为现有方案的简略结构结构示意图;
图2为本申请一种实施方式提供的流体控制装置的结构结构示意图;
图3为图2中阀体部件的结构结构示意图;
图4为图2中流体控制组件的局部结构示意图;
图5为图4中A-A线的剖面结构示意图;
图6为图5的另一个视角的立体剖面结构示意图;
图7a为图2中阀体部件的侧视图;
图7b为图7a中沿C-C线的剖面结构示意图;
图8为图2中流道连接部的结构示意图;
图9为本申请另一种实施方式的提供的流体控制装置结构示意图;
图10为图9中部分结构的侧视结构示意图;
图11为图10中D-D线的剖面结构示意图;
图12为图10中E-E线的剖面结构示意图;
图13为图9所示阀体部件的仰视结构示意图;
图14为图9中所示流道连接部的立体结构示意图;
图15为本申请另一种实施方式提供的流体控制装置的部分立体分解结构示意图;
图16为图15另一视角的结构示意图;
图17为流道连接部的另一实施方式的结构示意图;
图18为本申请另一种实施方式提供的流体控制装置的结构示意图;
图19a为图18的阀体部件的侧视图;
图19b为图19a中沿G-G线的剖面结构示意图;
图20为流道连接部的又一实施方式的结构示意图;
图21为本申请另一种实施方式提供的流体控制装置的结构示意图;
图22为本申请又一种实施方式提供的流体控制装置的结构示意图;
图23为图22的另一视角的结构示意图;
图24a为图23的流体控制组件的侧视图;
图24b为图24a中沿H-H线的剖面结构示意图;
图25为图24中流道连接部的结构示意图;
图26为本申请另一种实施方式提供的流体控制装置的结构示意图;
图27为图26的另一视角的结构示意图;
图28a为图27中的流体控制组件的侧视图;
图28b为图28a中沿I-I线的剖面结构示意图;
图29为图27的流道连接部的结构示意图;
图30为本申请另一种实施方式提供的流体控制装置的结构示意图;
图31为图30中阀体部件的结构示意图;
图32为图31中流道连接部的结构示意图;
图33为本申请另一种实施方式提供的流体控制装置的结构示意图;
图34为图33的分解平面结构示意图。
具体实施方式
以下通过作为例示性具体实施方式来详细说明应用本申请结构的各个具体技术方案。
作为一种实施方式,参照图2-图8,图示示意出一种流体控制装置10的结构示意图。流体控制装置10可以用于流道的切换。流体控制装置10包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12(示于图5)、阀体部件15和控制部件14,流体控制组件11具有阀腔,阀芯部件12的至少部分位于阀腔。控制部件14可以控制阀芯部件12在阀腔运动,通过阀芯部件12的运动,例如阀芯部件12可以转动或者移动,可实现流体控制装置的流道连通或切换。
本申请实施例提供的流体装置不限于阀,也可以为泵、换热器等其他应用于流体控制系统中的装置,也可为具有多种功能的集成件,例如换热器与阀的集成件、阀与泵的集成件、泵与换热器的集成件等。
流体控制装置10例如可以具有2个接口,通过阀芯部件12的运动,使得2个接口之间的流道连通或不连通;流体控制装置10例如具有3个接 口,通过阀芯部件12的运动,可选择性地导通其中两个接口;流体控制装置10例如还可以具有4个接口或者更多个接口,通过阀芯部件12的运动,可实现不同接口间流道的导通,实现流道切换导通的功能。
阀体部件15具有本体部151和凸出部152,本体部151形成阀腔的至少部分周壁,凸出部152凸出于本体部151的周壁155,流体控制装置具有第一流道13(示于图5),第一流道13位于本体部151内部,凸出部152具有两个以上第二流道156,第二流道156能和第一流道13连通;凸出部152具有两个以上凸耳157,凸耳157具有第二流道156,至少部分数量的凸耳157的第二流道156的连通口1561朝向流道连接部16,在本实施例中,全部数量的凸耳157的第二流道156的连通口1561朝向流道连接部16,流道连接部16具有两个以上第三流道161,第二流道156和第三流道161对应连通,相互连通的第二流道156和第三流道161之间密封设置,流道连接部16和阀体部件15密封设置。其中至少部分数量的第二流道156的流通口1561的朝向相同且位于同一平面,便于流体控制组件11的安装。
如此,阀体部件15的第二流道的连通口1561可以和流道连接部16的第三流道161连通,且将流体控制装置10的流体进出口都设置在流道连接部16,通过流道连接部16实现流道导流、分流,以及将外部管路或通道和流道连接部16连接,方便接口管路布置,整体结构紧凑。
在一些实施例中,流道连接部16一体注塑成型,本体部151和凸出部152一体注塑成型,流道连接部16和凸出部152焊接固定。流道连接部16可以是塑料材料制成并通过注塑形成,阀体部件15也可以是塑料材料通过注塑形成,流道连接部16和凸出部152的焊接可以是塑料焊接方式。通过 将流道连接部16一体注塑成型、阀体部件15一体注塑成型,并将流道连接部16和阀体部件15通过焊接方式固定,加工简单。在一些实施例中,第二流道156的流通口1561的朝向相同且位于同一平面,第三流道161的连通口1618(示于图8)位于同一平面,第二流道156的流通口1561所在平面与第三流道161的连通口1618的所在平面焊接固定。
以本体部151的轴向方向为阀体部件15的轴向方向H,凸出部152的至少部分沿着阀体部件15的径向方向D凸出于本体部151,每个凸耳157具有末端部1571,末端部1571和流道连接部16相对,末端部1571设置第二流道156的连通口1561,末端部1571具有底端面1575,在平行于阀体部件15的径向截面上,至少两个凸耳157的底端面1575位于同一截面。通过将底端面1575中的至少两个位于同一截面,方便和流道连接部16密封固定,通过密封固定一个截面即可实现至少两个第二流道的连通口1561和第三流道161的密封设置,更利于密封操作,也便于结构优化,方便装配。
在本实施方式中,参照图3至图5,凸出部152具有5个凸耳157,5个凸耳157沿本体部151的圆周方向排布,每个凸耳157都具有末端部1571,每个末端部1571具有底端面1575,5个底端面1575在平行于阀体部件15的径向的截面上处于同一截面。将流道连接部16和处于同一截面的5个底端面1575同时焊接固定,简便了组装工艺,降低了生产成本。
在本实施方式中,5个凸耳157是分隔设置,其末端部1571也是分隔设置。但在有些实施方式中,凸耳157可以相邻设置。
本文中,术语“沿着阀体部件15的径向方向凸出于本体部151”是指凸 出部152具有在阀体部件15的径向方向凸出于本体部151的部分,并不限制为凸出部152整体都要朝着同一个径向方向凸出于本体部151,此处的径向方向凸出是相对本体部151的周壁155而言在径向上具有凸出的部分。
凸出部152具有连接部158,连接部158位于相邻凸耳157之间且连接凸耳157的外壁1572。连接部158可以增加凸耳157的机械强度,有助于提高阀体部件15和流道连接部16组装时的稳定性。
连接部158具有底端面1575,连接部158的底端面还可以和凸耳157的底端面1575处于同一截面,连接部158可以和流道连接部16焊接固定,如此在凸耳157的底端面1575和流道连接部16焊接的同时,连接部158也可以和流道连接部16焊接固定,有助于提高凸耳157和流道连接部16焊接的牢固度。
在经过本体部151的轴线的纵向截面,凸耳157具有根部1573和外沿部1574,第二流道156的连通口1561位于根部1573和外沿部1574之间;
在本体部151的径向截面,至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离。
在本实施方式中,根部1573自阀体部件15的周壁155向远离阀腔的方向延伸,且根部1573沿着本体部151的轴向方向延伸,根部1573的末端部1571形成第二流道的连通口1561的一部分壁部。
由于至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离,因此凸耳157可以方便和流道连接部16连接,同时在有需求的时候,各个凸耳157的底端面1575都能位于同一平面,方便流道连接部16结构的设计。当客户需求不同时,可以通过 一个流体控制组件11搭配具有不同接口形式的流道连接部16来满足客户需求,实现流体控制组件11的标准化生产,降低成本。
在本实施方式中,阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,控制部件14位于第一端部153侧,凸耳157凸出于第二端部154,流道连接部16和阀体部件15的第二端部154装配,结构简单,方便凸耳157和流道连接部16的连接,连接结构更加紧凑。
在本实施方式中,每个第三流道161的连通口1618朝向阀体部件15,每个第三流道161的连通口1618和每个第二流道的连通口1561对应设置,流道连接部16具有和第二流道156数量相同的第三流道161,各第二流道156和第三流道161一一对应。通过流道连接部16和阀体部件15焊接固定,可以将阀体部件15的第二流道156转接到流道连接部16,通过流道连接部16与外部管路或通道连通,结构连接方便,也便于安装布置。
参照图8,流道连接部16具有主体部167和配合部168,主体部167和配合部168为一体结构,配合部168一体凸出于主体部167,配合部168具有第三流道161的连通口1618,主体部167设置有与第三流道161的连通口1618数量对应的连接孔道1671,流道连接部16可以通过一体注塑形成。配合部168具有焊接部位1681,焊接部位1681围绕第三流道161的连通口1618,各配合部168位的焊接部位1681可以独立设置。
作为其他实施方式,主体部167也可以具有焊接部位,主体部167的焊接部位位于相邻配合部168之间,用于提升焊接牢固度。
阀芯部件12的结构可以有很多种,球形的、柱形的、不规则形等;有 内部开设孔道的,也有侧部开设连通槽等结构的,本说明书中不对此做特殊限制,能具有本说明书中功能的各种阀芯部件12视为本说明书中所涵盖内容。
阀芯部件12具有孔道或凹槽121,第一流道13的至少部分位于孔道或凹槽121,阀芯部件12能够相对阀体部件15运动,在不同的状态下,孔道或凹槽121可连通不同的凸耳157内的第二流道156。
参照图9-图14,作为另一种实施方式,图中示意出一种流体控制装置20的结构示意图。
流体控制装置20包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12、阀体部件15和控制部件14,流体控制组件11具有阀腔,阀体部件15形成阀腔的至少部分周壁,阀芯部件12的至少部分位于阀腔。阀体部件15、阀芯部件12、控制部件14的大部分结构可以参照上文具体实施方式,相同的结构不再赘述。
参照图11和图12,至少两个凸耳157可以相邻设置,以下为了方便描述,将两个相邻凸耳157定义为第一凸耳157A和第二凸耳157B来区分描述,此时两个凸耳157的划分以两个凸耳157之间的壁部为界,该壁部具有两个壁面,分别为壁面a和壁面b,第一凸耳157A包括壁面a,第二凸耳157B包括壁面b,第一凸耳157A的末端部1571和第二凸耳157B的末端部1571也以壁面a和壁面b为分界。
结合图8至图14,流道连接部16一体注塑形成,每个第三流道161的连通口1618朝向阀体部件15,每个第三流道161的连通口1618和每个第二流道156的连通口1561对应设置,流道连接部16具有和第二流道156 数量相同的第三流道161,各第二流道156和第三流道161一一对应。
在本实施方式中,定义与第一流道13和第一凸耳157A的第二流道连通的连通口为第一连通口1562,定义第一流道13和第二凸耳157B的第二流道的连通口连通的第二连通口1563,第一连通口1562和第二连通口1563不落入阀体部件15的同一个径向截面,该径向截面为沿垂直于阀体部件15轴向的方向切割阀体部件15所形成的截面,参照图9、图11和图12,此时第一连通口1562和第二连通口1563沿阀体部件15的轴向相互错开。如此,第一凸耳157A的第二流道156和第二凸耳157B的第二流道156可以具有不同导通流路,且可以合理布置第一凸耳157A的第二流道156和第二凸耳157B的第二流道156在阀体部件15上的排布。
在本实施方式中,流体控制组件11具有10个凸耳157,流道连接部16具有10个第三流道161,各个凸耳157的第二流道156和相应的第三流道161连通。其中,有些凸耳157相邻设置,有些凸耳157间隔设置。当然,在其他实施方式中,凸耳157可以全部相邻设置,也可以全部间隔设置,或相邻的凸耳157数量和该实施方式不同。
在一些实施例中,如图13和图14所示,流道连接部16包括第一分部163和第二分部164,第一分部163与本体部151为一体结构且自本体部151向远离阀腔的方向延伸,第一分部163具有第一槽1631,第一槽1631对应的壁部和第二分部164焊接固定形成第三流道161。将流道连接部16设计成包括第一分部163和第二分部164的方式,有助于流道连接部16的流道加工,便于注塑形成。
如图14所示,在本实施方式中,第二分部164具有第二槽1641,第 二槽1641和第一槽1631对应设置,第二槽1641对应的壁部和第一槽1631对应的壁部焊接固定。在其他实施方式中,第一分部163也可以自凸耳157一体延伸。在其他实施方式中,第二分部164也可以没有第二槽1641,第二分部164可以是个平板结构,第二分部164密封封闭第一槽1631,第二分部164和第一槽1631对应的壁部焊接固定。
在其他实施方式中,第一分部163也可以没有第一槽1631,第二分部164具有第二槽1641,第一分部163密封封闭第二槽1641,第一分部163和第二槽1641对应的壁部焊接固定。或者,第一分部163具有第三流道161的连通口1618,第三流道161的流通口1618和第二流道156的连通口1561对应设置,第一分部163和阀体部件15焊接固定。
阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,流体控制组件11具有控制部件14,控制部件14位于第一端部153侧,凸耳157凸出于第二端部154,第一分部163位于第二端部154,第二分部164和第一分部163在阀体部件15的第二端部154装配,结构简单,方便凸耳157和流道连接部16的连接,连接结构更加紧凑。
应当注意,流道连接部16的各个流路外形等设计可以各种样式,本实施例仅作为例示。
参照图15-图16,图示示意出再一种流体控制装置30的结构示意图。流体控制装置30包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12、阀体部件15和控制部件14。阀体部件15、阀芯部件12、控制部件14的大部分结构与流体控制装置10结构相同或相似,不 再赘述,至少区别在于流道连接部16的结构与图1至图8中示出的流体控制装置10结构不同。
流道连接部16一体注塑成型,本体部151和凸出部152一体注塑成型,流道连接部16和凸出部152焊接固定。
在经过本体部151的轴线的纵向截面,凸耳157具有根部1573和外沿部1574,第二流道的连通口1561位于根部1573和外沿部1574之间;即根部1573和外沿部1574是第二流道的连通口1561对应的一部分壁部。
在本体部151的径向截面,至少部分外沿部1574和本体部151的轴线Z之间的距离L2大于根部1573和本体部151的轴线Z之间的距离L1。
根部1573延伸于阀体部件15的周壁155,根部1573沿着本体部151的轴向方向延伸,根部1573的末端部1571形成第二流道的连通口1561的一部分壁部。由于至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离,因此凸耳157可以方便和流道连接部16连接,同时在有需求的时候,各个凸耳157的底端面1575都能位于同一平面,方便流道连接部16结构的设计。当客户需求不同时,可以通过一个流体控制组件11搭配具有不同接口形式的流道连接部16来满足客户需求,实现流体控制组件11的标准化生产,降低成本。
在本实施方式中,每个第三流道161的连通口1618朝向阀体部件15,流道连接部16的第三流道161中的至少一个第三流道161具有第三流道第一部分1611和第三流道第二部分1612,第三流道第一部分1611和第三流道第二部分1612在流道连接部16独立设置,第三流道第一部分1611和第三流道第二部分1612和同一个第二流道156连通。
在本实施方式中,流体控制组件11具有5个凸耳157,每个凸耳157具有第二流道156。流道连接部16具有5个引流部162,各引流部162和各个凸耳157对应设置,每个引流部162具有第三流道第一部分1611和第三流道第二部分1612,第三流道第一部分1611和第三流道第二部分1612独立设置,流体能够在第三流道第一部分1611和第三流道第二部分1612独立流通,如此,每一个凸耳157的第二流道156通过流道连接部16的转接可形成为两个子流路,这样在流体控制组件11具有5个流道的情况下,通过流道连接部16的转接,形成为10个流道,可适用于车辆热管理系统中需要10个接口的流道切换的系统。
在其他实施方式中,参照图17,图17示意出一种流道连接部16的结构示意图。流道连接部16的引流部162也可以不需要每个都具有第三流道第一部分1611和第三流道第二部分1612,其中的一个或两个或三个或四个都是可以的,因此,本实施方式的流体控制组件11可用于5个、6个、7个、8个、9个、10个接口的情况。
在其他实施方式中,如果有小于5个接口的应用场合,也可以将阀体部件15的两个凸耳157的第二流道156在流道连接部16上混流,即流道连接部16可实现4个接口的流道切换需求。以上的接口数量仅作示例性,接口数量可按实际情况随意调整。
在其他实施方式中,参照图20,图20示意出流道连接部16的另有一种结构示意图。
流道连接部16的第三流道161的连通口1618和第二流道的连通口1561对应设置,第三流道161具有主干部分1613、第一分支部分1614、 第二分支部分1615和第三分支部分1617,第三流道161的连通口1618位于主干部分1613,第一分支部分1614、第二分支部分1615、第三分支部分1617单独和主干部分1613连接。如此,从凸耳157的某一第二流道156过来的流体进入到该第三流道161中,会从主干部分1613分流至第一分支部分1614、第二分支部分1615和第三分支部分1617,可用于不同系统需求。
参照图18和图19a、图19b,作为一种实施方式,图示示意出一种流体控制装置40的结构示意图。
图18示意出流体控制装置40大体和图16所示流体控制装置相似。至少存在的不同之处在于阀体部件15的结构和流道连接部16的结构不同,在本实施例中,阀体部件15的凸耳157的周壁部与本体部151的外周壁间隔设置,且沿凸耳157的延伸方向,如图18中,凸耳157为曲线延伸,沿垂直于流体的流动方向,凸耳157的截面为圆环形,可以减小流体在凸耳157中流动的流阻,此时的凸耳157可以与本体部151焊接固定且密封设置,且流道连接部16具有主体部167和凸出与主体部167的配合部168,配合部168具有焊接部位1681,该焊接部位1681与凸耳157焊接设置。在本实施方式中,阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,流体控制组件11具有控制部件14,控制部件14位于第一端部153侧,凸耳157凸出于第一端部153和第二端部154之间。
以本体部151的轴向方向为阀体部件15的轴向方向,凸出部152沿着阀体部件15的径向方向凸出于本体部151,每个凸耳157具有末端部1571, 末端部1571和流道连接部16相对,末端部1571设置第二流道的连通口1561,末端部1571具有底端面1575,在平行于阀体部件15的径向截面上,底端面1575中的至少两个位于同一截面。将底端面1575中的至少两个位于同一截面,方便和流道连接部16密封固定,通过密封固定一个截面即可实现至少两个第二流道的连通口1561的密封设置,更利于密封操作,也便于结构优化,方便装配。
在经过本体部151的轴线的纵向截面,凸耳157具有根部1573和外沿部1574,第二流道的连通口1561位于根部1573和外沿部1574之间;在本体部151的径向截面,至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离。
参照图21,图21示意出流体控制装置50的一种结构图,以本体部151的轴向方向为阀体部件15的轴向方向,凸耳157沿着阀体部件15的径向方向凸出于本体部151,每个凸耳157具有末端部1571,末端部1571和流道连接部16相对,末端部1571设置第二流道的连通口1561,末端部1571具有底端面1575,在和阀体部件15的轴向方向呈0-90°的截面上,底端面1575中的至少两个位于同一截面。
在其他实施方式,根部1573延伸于阀体部件15的周壁155,根部1573沿着本体部151的轴向方向延伸,根部1573的末端部1571形成第二流道的连通口1561的一部分壁部。
根部1573延伸于阀体部件15的周壁155,根部1573沿着和本体部151的轴线呈夹角a方向延伸,夹角a和本体部151的轴线所成角度为(0,90],此时0<a≤90°。在一些实施例中,夹角a和本体部151的轴线所成角度为 90°,根部1573沿着本体部151的径向方向延伸,根部1573的末端部形成第二流道156的流通口1561的一部分壁部,此时可以减小流体控制装置的轴向高度。
在本文中,在凸耳157为非直线型结构时,在经过轴线的阀体部件15的轴向方向,定义根部1573和阀体部件15的周壁155的连接位置为第一点,定义根部1573离阀体部件15的周壁155的最远端为第二点,将第一点和第二点连线,定义夹角a和本体部151的轴线所成角度是第一点和第二点的连线与本体部151的轴线所成角度。当夹角a和本体部151的轴线所成角度为90度时,凸耳157的底端面1575所在平面与阀体部件15的轴向平行,此时凸出部152与流道连接部16的连接方式可以参照上述任一实施方式的连接方式,例如可以流道连接部16的将凸出部152与流道连接部16焊接固定,或者将流道连接部16具有分部时,将该分部与凸出部152焊接或成型为一体结构。
参照图22-图25,示意出流体控制装置60的一种结构。流体控制装置60包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12、阀体部件15和控制部件14。流体控制装置60的大部分结构可以参照流体控制装置10。
阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,流体控制组件11具有控制部件14,控制部件14位于第一端部153侧,凸耳157凸出于第一端部153和第二端部154之间。
如图24a、24b所示,第二流道156的连通口1561位于第一端部153 和第二端部154之间的径向截面,该径向截面为沿垂直于阀体部件15的轴线的方向切割凸耳157得到的截面。在经过本体部151的轴线的纵向截面,凸耳157具有根部1573和外沿部1574,第二流道的流通口1561位于根部1573和外沿部1574之间;在本体部151的径向截面,至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离。
在本实施方式中,根部1573自阀体部件15的周壁155向远离阀腔的方向延伸,且根部1573沿着本体部151的轴向方向延伸,根部1573的末端部1571形成第二流道的连通口1561的一部分壁部。
流道连接部16具有缺口165,阀体部件15一部分位于缺口165。如此,流道连接部16可以在阀体部件15的周侧凸出,使得流体控制装置整个高度较低。通过阀体部件15的第二流道的连通口1561可与流道连接部16的第三流道161连通,并通过流道连接部16和外部管路或通道连通,方便流路布置,且整体结构紧凑。
以本体部151的轴向方向为阀体部件15的轴向方向,凸出部152沿着阀体部件15的径向方向凸出于本体部151,每个凸耳157具有末端部1571,末端部1571和流道连接部16相对,末端部1571设置第二流道的连通口1561,末端部1571具有底端面1575,在平行于阀体部件15的径向截面上,底端面1575中的至少两个位于同一截面。
流道连接部16具有引流部162,引流部162和凸耳157相对应,引流部162具有槽1621和顶端面1622,槽1621形成至少部分第三流道161,槽1621和第二流道的连通口1561连通,顶端面1622和底端面1575焊接 固定,且顶端面1622和底端面1575的焊接位置位于本体部151的径向截面位置。
在图24中,图中简略地示意出阀芯部件12的结构,阀芯部件12能在阀体部件15内旋转,改变第一流道13和各个第二流道156的连通关系,实现流道切换的目的。
在本实施方式中,阀体部件15凸出有4个凸耳157,流道连接部16一体注塑形成,每个第三流道161的连通口1618朝向阀体部件15,每个第三流道161的连通口1618和每个第二流道的连通口1561对应设置,流道连接部16具有和第二流道156数量相同的第三流道161,各第二流道156和第三流道161一一对应。如此,流体控制装置可实现4个接口通道的流道切换。
在其他实施方式中,流体控制装置还可实现其他数量多个接口的流道切换,例如作为参照图26-图29,图26示意出流体控制装置70的结构,流体控制装置70和流体控制装置60大体类似,在本实施方式中,阀体部件15凸出有5个凸耳157,每个第三流道161的连通口1618和每个第二流道的连通口1561对应设置,流道连接部16具有和第二流道156数量相同的第三流道161,各第二流道156和第三流道161一一对应。如此,流体控制装置可实现5个接口通道的流道切换。
阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,流体控制组件11具有控制部件14,控制部件14位于第一端部153侧,凸耳157凸出于第一端部153和第二端部154之间。
第二流道的连通口1561位于第一端部153和第二端部154之间的径向截面。在经过本体部151的轴线的纵向截面,凸耳157具有根部1573和外沿部1574,第二流道的连通口1561位于根部1573和外沿部1574之间;在本体部151的径向截面,至少部分外沿部1574和本体部151的轴线之间的距离大于根部1573和本体部151的轴线之间的距离。
在本实施方式中,根部1573延伸于阀体部件15的周壁155,根部1573沿着本体部151的轴向方向延伸,根部1573的末端部1571形成第二流道的连通口1561的一部分壁部。
流道连接部16具有缺口165,阀体部件15一部分位于缺口165。如此,流道连接部16可以在阀体部件15的周侧凸出,使得流体控制装置整个高度较低。通过阀体部件15的第二流道的连通口1561可与流道连接部16的第三流道161连通,并通过流道连接部16和外部管路或通道连通,方便流路布置,且整体结构紧凑。
以本体部151的轴向方向为阀体部件15的轴向方向,凸出部152沿着阀体部件15的径向方向凸出于本体部151,每个凸耳157具有末端部1571,末端部1571和流道连接部16相对,末端部1571设置第二流道的连通口1561,末端部1571具有底端面1575,在平行于阀体部件15的径向截面上,底端面1575中的至少两个位于同一截面。
流道连接部16具有引流部162,引流部162和凸耳157相对应,引流部162具有槽1621和顶端面1622,槽1621和第二流道的连通口1561连通,顶端面1622和底端面1575焊接固定,且顶端面1622和底端面1575的焊接位置位于本体部151的径向截面位置。
参照图30-图32,图示示意出流体控制装置80的结构,流体控制装置80包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12、阀体部件15和控制部件14。流体控制装置80的大部分结构可以参照流体控制装置60,一些类似特征不做重复赘述。
阀体部件15具有筒状部结构,阀体部件15具有沿阀体部件15轴向方向的第一端部153和第二端部154,流体控制组件11具有控制部件14,控制部件14位于第一端部153侧,凸耳157凸出于第一端部153和第二端部154之间。
第二流道的连通口1561位于第一端部153和第二端部154之间的径向截面。凸出部152具有4个凸耳157,每个凸耳157具有第二流道的连通口1561。流道连接部16具有引流部162,引流部162和凸耳157配合设置。引流部162具有槽1621和顶端面1622,槽1621和第二流道的连通口1561连通,顶端面1622和底端面1575焊接固定,且顶端面1622和底端面1575的焊接位置位于本体部151的径向截面位置。
流道连接部16的第三流道161的连通口1618和第二流道的连通口1561对应设置,在一些实施例中,第三流道161具有主干部分1613和至少一个分支部分,第三流道161的流通口1618位于主干部分1613,各分支部分独立与主干部分1613连通。示例性地,第三流道161具有主干部分1613、第一分支部分1614、第二分支部分1615和第三分支部分1617,第三流道161的流通口位于主干部分1613,第一分支部分1614、第二分支部分1615、第三分支部分1617单独和主干部分1613连接。如此,一个第二流道156可以通过流道连接部16的转接,形成有三个接口,可应用不同的 应用需求。方便流体控制组件11的标准化。
作为其他方式,以本体部151的轴向方向为阀体部件15的轴向方向,凸耳157沿着阀体部件15的径向方向凸出于本体部151,每个凸耳157具有末端部1571,末端部1571和流道连接部16相对,末端部1571设置第二流道的连通口1561,末端部1571具有底端面1575,在平行于阀体部件15的轴向方向的截面上,底端面1575中的至少两个位于同一截面。
参照图33-图34,图33-图34示意出流体控制装置90的结构。流体控制装置90的结构大体和流体控制装置10相似。流体控制装置90包括流体控制组件11和流道连接部16,流体控制组件11主要包括阀芯部件12、阀体部件15和控制部件14,流体控制组件11具有阀腔,阀芯部件12大部分位于阀腔。阀体部件15、阀芯部件12、控制部件14的大部分结构可以参照上文具体实施方式。
流道连接部16具有第一分部163和第二分部164,第一分部163和第二分部164焊接固定,第一分部163具有第三流道161的连通口1618,第三流道161的流通口和第二流道的连通口1561对应设置,第一分部163和阀体部件15焊接固定。阀体部件15、第一分部163、第二分部164均通过注塑成型,且将流道连接部16以第一分部163和第二分部164两部分的结构设计,方便对第一分部163和第二分部164内部结构的成型,简化加工。也当流道连接部16具有非常复杂的结构时,可通过分部的加工方式成型,再通过焊接的方式实现流道的密封,加工方便,且适用性强。
需要说明的是:以上实施例仅用于说明本申请而并非限制本申请所描述的技术方案,例如对“前”、“后”、“左”、“右”、“上”、“下”等方向性 的界定,尽管本说明书参照上述的实施例对本申请已进行了详细的说明,但是,本领域的普通技术人员应当理解,所属技术领域的技术人员仍然可以对本申请进行相互组合、修改或者等同替换,而一切不脱离本申请的精神和范围的技术方案及其改进,均应涵盖在本申请的权利要求范围内

Claims (15)

  1. 一种流体控制组件,包括阀体部件、阀芯部件,所述流体控制组件具有阀腔,所述阀芯部件的至少部分位于所述阀腔;
    其特征在于,所述阀体部件具有本体部和凸出部,所述本体部形成所述阀腔的至少部分壁部,所述凸出部凸出于所述本体部的周壁,所述流体控制组件具有第一流道,所述第一流道的至少部分位于所述阀芯部件,所述凸出部具有两个以上第二流道,所述第二流道能和所述第一流道连通;
    所述凸出部具有两个以上凸耳,至少部分数量的所述凸耳具有所述第二流道,至少部分数量的所述第二流道的流通口的朝向相同。
  2. 根据权利要求1所述的流体控制组件,其特征在于,在经过所述本体部的轴线的纵向截面,所述凸耳具有根部和外沿部,所述第二流道的流通口位于所述根部和所述外沿部之间;
    在所述本体部的径向截面,至少部分所述外沿部和所述本体部的轴线之间的距离大于所述根部和所述本体部的轴线之间的距离。
  3. 根据权利要求2所述的流体控制组件,其特征在于,所述根部延伸于所述阀体部件的周壁,所述根部的末端部形成所述第二流道的流通口的一部分壁部;
    所述根部的至少部分沿着所述本体部的周壁延伸,或者所述根部沿着和所述本体部的轴线呈夹角a的方向延伸,夹角a和所述本体部的轴线所成角度为(0,90]。
  4. 根据权利要求1或2所述的流体控制组件,其特征在于,所述阀体部件具有筒状部结构,所述阀体部件具有沿所述阀体部件轴向方向的第一 端部和第二端部,所述流体控制组件具有控制部件;
    所述控制部件位于靠近所述第一端部的一侧,所述凸耳凸出于所述第二端部,或者,所述控制部件位于所述第一端部侧,所述凸耳凸出于所述第一端部和所述第二端部之间。
  5. 根据权利要求1或2所述的流体控制组件,其特征在于,所述阀芯部件具有孔道或凹槽,所述第一流道的至少部分位于所述孔道或凹槽,所述阀芯部件相对所述阀体部件运动,在不同的状态下,所述孔道或凹槽可连通不同的凸耳内的第二流道。
  6. 一种流体控制装置,包括根据权利要求1-5中任一项所述的流体控制组件,所述流体控制装置还包括流道连接部,所述流道连接部具有两个以上第三流道,至少部分数量的所述凸耳的第二流道的连通口朝向相同且朝向所述流道连接部,所述第二流道和对应的所述第三流道连通,相互连通的所述第二流道和所述第三流道之间密封设置。
  7. 根据权利要求6所述的流体控制装置,其特征在于,所述流道连接部一体注塑成型,所述本体部和凸出部一体注塑成型,所述流道连接部和所述凸出部焊接固定且密封设置。
  8. 根据权利要求6所述的流体控制装置,其特征在于,所述流道连接部包括第一分部和第二分部,所述第一分部自所述凸耳一体延伸,所述第一分部具有第一槽,所述第一槽对应的壁部和所述第二分部焊接固定;
    或者,所述流道连接部包括第一分部和第二分部,所述第一分部和所述第二分部焊接固定,所述第一分部具有第三流道的连通口,所述第三流道的流通口和所述第二流道的连通口对应设置,所述第一分部和所述阀体 部件焊接固定。
  9. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,以所述本体部的轴向方向为所述阀体部件的轴向方向,所述凸出部的至少部分沿着所述阀体部件的径向方向凸出于所述本体部,每个所述凸耳具有末端部,所述末端部和所述流道连接部相对,所述末端部设置所述第二流道的连通口,所述末端部具有底端面,在平行于所述阀体部件的径向的截面上,所述底端面中的至少两个位于同一截面;
    所述凸耳的第二流道的至少部分沿着所述阀体部件的轴向方向延伸。
  10. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,以所述本体部的轴向方向为所述阀体部件的轴向方向,所述凸耳的至少部分沿着所述阀体部件的径向方向凸出于所述本体部,每个所述凸耳具有末端部,所述末端部和所述流道连接部相对,所述末端部设置所述第二流道的连通口,所述末端部具有底端面,在平行于所述阀体部件的轴向方向的截面上,所述底端面中的至少两个位于同一截面;
    所述凸耳的第二流道沿着所述阀体部件的径向方向延伸。
  11. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,以所述本体部的轴向方向为所述阀体部件的轴向方向,所述凸耳的至少部分沿着所述阀体部件的径向方向凸出于所述本体部,
    每个所述凸耳具有末端部,所述末端部和所述流道连接部相对,所述末端部设置所述第二流道的连通口,所述末端部具有底端面,在和所述阀体部件的轴向方向呈0-90°的截面上,所述底端面中的至少两个位于同一截面。
  12. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,所述凸出部具有连接部,所述连接部的至少部分位于所述凸耳之间且连接所述凸耳的外壁;所述连接部和所述流道连接部焊接固定。
  13. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,每个所述第三流道的连通口朝向所述阀体部件,每个所述第三流道的连通口和每个所述第二流道的流通口对应设置,所述流道连接部具有和所述第二流道数量相同的第三流道,各所述第二流道和所述第三流道对应;
    或者,每个所述第三流道的连通口朝向所述阀体部件,所述流道连接部的所述第三流道中的至少一个第三流道具有第三流道第一部分和第三流道第二部分,所述第三流道第一部分和所述第三流道第二部分在所述流道连接部独立设置,所述第三流道第一部分和所述第三流道第二部分和同一个所述第二流道连通。
  14. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,所述流道连接部的第三流道的连通口和所述第二流道的流通口对应设置,所述第三流道具有主干部分和至少一个分支部分,所述第三流道的流通口位于所述主干部分,所述分支部分单独和所述主干部分连接。
  15. 根据权利要求6至8任一项所述的流体控制装置,其特征在于,所述流道连接部具有第一分部和第二分部,所述第一分部和所述第二分部焊接固定,所述第一分部具有第三流道的连通口,所述第三流道的流通口和所述第二流道的连通口对应设置,所述第一分部和所述阀体部件焊接固定;
    或者,所述流道连接部包括第一分部和第二分部,所述第一分部自所述 凸耳或本体部一体延伸,所述第一分部具有槽,所述槽对应的壁部和所述第二分部焊接固定。
PCT/CN2021/142870 2020-12-31 2021-12-30 流体控制组件和流体控制装置 WO2022143865A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/270,191 US20240084902A1 (en) 2020-12-31 2021-12-30 Fluid control assembly and fluid control device
JP2023540521A JP2024502966A (ja) 2020-12-31 2021-12-30 流体制御アセンブリ及び流体制御装置
EP21914596.8A EP4273424A1 (en) 2020-12-31 2021-12-30 Fluid control assembly and fluid control device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011626190.XA CN114688309A (zh) 2020-12-31 2020-12-31 流体控制组件和流体控制装置
CN202011626190.X 2020-12-31
CN202011625561.2A CN114688308A (zh) 2020-12-31 2020-12-31 一种流体控制装置
CN202011625561.2 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022143865A1 true WO2022143865A1 (zh) 2022-07-07

Family

ID=82259073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142870 WO2022143865A1 (zh) 2020-12-31 2021-12-30 流体控制组件和流体控制装置

Country Status (4)

Country Link
US (1) US20240084902A1 (zh)
EP (1) EP4273424A1 (zh)
JP (1) JP2024502966A (zh)
WO (1) WO2022143865A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338544A (ja) * 1995-06-14 1996-12-24 Asahi Eitou Kk 流路切換器
US6289913B1 (en) * 1999-12-22 2001-09-18 Eaton Corporation Servo motor operated rotary bypass valve
WO2007059394A1 (en) * 2005-11-14 2007-05-24 Borgwarner Inc Hydraulic check valve assembly
CN201739598U (zh) * 2010-08-16 2011-02-09 太原轨道交通装备有限责任公司 新型操纵阀
CN102678970A (zh) * 2012-05-20 2012-09-19 陈敏东 旋转式气体分配阀
CN105135000A (zh) * 2015-08-14 2015-12-09 叶立英 一种流体流道转换方法及其装置
JP2018071643A (ja) * 2016-10-28 2018-05-10 株式会社不二工機 電動弁及びその組立方法
CN210637528U (zh) * 2019-09-25 2020-05-29 江西鸥迪铜业有限公司 一种电子膨胀阀阀座组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08338544A (ja) * 1995-06-14 1996-12-24 Asahi Eitou Kk 流路切換器
US6289913B1 (en) * 1999-12-22 2001-09-18 Eaton Corporation Servo motor operated rotary bypass valve
WO2007059394A1 (en) * 2005-11-14 2007-05-24 Borgwarner Inc Hydraulic check valve assembly
CN201739598U (zh) * 2010-08-16 2011-02-09 太原轨道交通装备有限责任公司 新型操纵阀
CN102678970A (zh) * 2012-05-20 2012-09-19 陈敏东 旋转式气体分配阀
CN105135000A (zh) * 2015-08-14 2015-12-09 叶立英 一种流体流道转换方法及其装置
JP2018071643A (ja) * 2016-10-28 2018-05-10 株式会社不二工機 電動弁及びその組立方法
CN210637528U (zh) * 2019-09-25 2020-05-29 江西鸥迪铜业有限公司 一种电子膨胀阀阀座组件

Also Published As

Publication number Publication date
JP2024502966A (ja) 2024-01-24
US20240084902A1 (en) 2024-03-14
EP4273424A1 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
US6688325B2 (en) Modular fluid control system
KR20190046989A (ko) 차량의 유체 열교환 조립체 및 열관리 시스템
JP2011007328A (ja) マルチポート・バルブ
WO2022143865A1 (zh) 流体控制组件和流体控制装置
CN213271140U (zh) 一种过水组件和淋浴龙头
WO2022143866A1 (zh) 一种流体控制阀
JP3655155B2 (ja) マニホールド弁構造体
US20240200673A1 (en) Control valve
US11703135B2 (en) Multi-port coolant flow control valve assembly
CN208670154U (zh) 流体控制组件
CN114688309A (zh) 流体控制组件和流体控制装置
CN114688308A (zh) 一种流体控制装置
CN218294564U (zh) 控制阀
CN221257755U (zh) 多通阀及具有其的阀集成装置
CN217030060U (zh) 汇流板及压力分配装置
CN220286516U (zh) 一种四通水阀结构
CN218440809U (zh) 车用热管理多通阀和车用热管理系统
JPH0240322Y2 (zh)
CN219317695U (zh) 十二通阀、冷却系统及汽车
EP4397893A1 (en) Fluid control assembly and fluid control apparatus
CN211715836U (zh) 一种整体式流道控制结构
CN215171168U (zh) 一种汇流板及汇流装置
CN218954104U (zh) 集成式冷却液路切换阀及具有该切换阀的热管理系统
CN219102098U (zh) 一种可比例调节的五通阀
CN211009998U (zh) 一种硫化机集成阀组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914596

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18270191

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023540521

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914596

Country of ref document: EP

Effective date: 20230731