WO2022143646A1 - 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用 - Google Patents

一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用 Download PDF

Info

Publication number
WO2022143646A1
WO2022143646A1 PCT/CN2021/142015 CN2021142015W WO2022143646A1 WO 2022143646 A1 WO2022143646 A1 WO 2022143646A1 CN 2021142015 W CN2021142015 W CN 2021142015W WO 2022143646 A1 WO2022143646 A1 WO 2022143646A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
bbd29
sequence
amino acid
gene
Prior art date
Application number
PCT/CN2021/142015
Other languages
English (en)
French (fr)
Inventor
贾慧萍
魏爱英
孟刚
赵春光
苏厚波
杨立鹏
马风勇
周晓群
郭小炜
田斌
Original Assignee
内蒙古伊品生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 内蒙古伊品生物科技有限公司 filed Critical 内蒙古伊品生物科技有限公司
Priority to KR1020237024681A priority Critical patent/KR20230122117A/ko
Priority to JP2023540760A priority patent/JP2024505625A/ja
Priority to EP21914380.7A priority patent/EP4273226A1/en
Publication of WO2022143646A1 publication Critical patent/WO2022143646A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/34Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Corynebacterium (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • C12P13/18Glutamic acid; Glutamine using biotin or its derivatives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the invention belongs to the technical field of genetic engineering and microorganisms, and particularly relates to a recombinant strain producing L-glutamic acid and a construction method and application thereof.
  • L-glutamic acid is an important amino acid and is used in food, clinical medicine and other aspects.
  • L-glutamic acid is mainly produced by fermentation with L-glutamic acid-producing bacteria or mutants thereof belonging to genera such as Brevibacterium, Corynebacterium, or Microbacterium.
  • L-glutamate is biosynthesized from ⁇ -ketoglutarate, an intermediate product of the citric acid cycle in microbial cells.
  • One of the pathways is the synthesis of L-glutamate through the catalysis of glutamate dehydrogenase (GDH) in the presence of high concentrations of ammonium ions.
  • GDH glutamate dehydrogenase
  • Another pathway (GS/GOGAT pathway) is the synthesis of L-glutamic acid by glutamine synthase and glutamine-ketoglutarate aminotransferase.
  • Glutamine synthetase catalyzes the conversion of L-glutamic acid and ammonium ions into glutamine; glutamine-oxoglutaric acid amino transferase (also known as “glutamine-oxoglutaric acid amino transferase”) Glutamate synthase (GOGAT) catalyzes the L-glutamate synthesis reaction in which one molecule of glutamine and one molecule of ⁇ -ketoglutarate have been synthesized from GS Two molecules of L-glutamic acid.
  • Improvements to the production of L-amino acids by fermentation may involve fermentation techniques such as stirring and supplying oxygen; or the composition of the nutrient medium, such as the sugar concentration during fermentation; or the processing of the fermentation broth into a suitable product form, such as by drying and pelleted fermentation broth or ion exchange chromatography; or may involve inherent performance properties of the relevant microorganism itself.
  • Methods for improving the performance properties of these microorganisms include mutagenesis, selection and screening of mutants. Strains obtained in this way are resistant to antimetabolites or are auxotrophic for metabolites of regulatory importance and produce L-amino acids and the like.
  • An object of the present invention is to develop a new technique for improving the L-glutamic acid production capacity of bacteria, thereby providing a method for efficiently producing L-glutamic acid.
  • the inventors of the present invention have found through research that the L-glutamic acid production capacity of bacteria can be improved by modifying the gene BBD29_09525 or its homologous gene in bacteria by modifying the gene or improving its expression. Based on these findings, the present invention has been completed.
  • the present invention provides L-glutamic acid-producing bacteria in which the expression of a polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 or a homologous sequence thereof is improved.
  • the present invention also provides a method for producing L-glutamic acid by using the microorganism.
  • a first aspect of the present invention provides an L-glutamic acid producing bacterium having improved expression of a polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 or a homologous sequence thereof.
  • the improved expression is enhanced expression of the polynucleotide, or the polynucleotide encoding the amino acid sequence of SEQ ID NO: 3 or a homologous sequence thereof has a point mutation, or the amino acid encoding SEQ ID NO: 3
  • the polynucleotide of the sequence or its homologous sequence has point mutations and expression is enhanced.
  • amino acid sequence of the SEQ ID NO: 3 or its homologous sequence is the protein encoded by the gene BBD29_09525 or its homologous gene.
  • the bacteria have enhanced L-glutamic acid production capacity compared to unmodified strains.
  • the term "bacteria having L-glutamic acid-producing ability" means the ability to produce and accumulate target L-glutamic acid in the medium and/or the cells of the bacteria to such an extent that when the bacteria are in Bacteria that can collect L-glutamic acid when cultured in the medium.
  • the bacterium having L-glutamic acid-producing ability may be a bacterium capable of accumulating the desired L-glutamic acid in the medium and/or the cells of the bacteria in a larger amount than that obtainable by the unmodified strain.
  • unmodified strain refers to a control strain that has not been modified in such a way that it has specific characteristics. That is, examples of unmodified strains include wild-type strains and parental strains.
  • the bacteria having L-glutamic acid-producing ability may be bacteria capable of accumulating target L-glutamic acid in a medium in an amount of preferably 0.5 g/L or more, more preferably 1.0 g/L or more.
  • L-glutamic acid refers to L-glutamic acid in free form, a salt thereof, or a mixture thereof.
  • the polynucleotide can encode about 90% or more, about 92% or more, about 95% or more, about 97% or more, about 98% or more of the amino acid sequence of SEQ ID NO:3 Amino acid sequences of high, or about 99% or greater sequence homology.
  • sequence homology refers to the percent identity between two polynucleotides or two polypeptide modules. Sequence homology between one module and another can be determined by using methods known in the art. Such sequence homology can be determined, for example, by the BLAST algorithm.
  • Expression of a polynucleotide can be enhanced by substituting or mutating expression regulatory sequences, introducing mutations to the polynucleotide sequence, by increasing the copy number of the polynucleotide via chromosomal insertion or introduction of a vector, or a combination thereof, and the like.
  • the expression regulatory sequences of the polynucleotide can be modified. Expression regulatory sequences control the expression of polynucleotides to which they are operably linked, and can include, for example, promoters, terminators, enhancers, silencers, and the like. Polynucleotides can have changes in the initiation codon. Polynucleotides can be incorporated into chromosomes at specific sites, thereby increasing copy number. Herein, a specific site may include, for example, a transposon site or an intergenic site. Additionally, polynucleotides can be incorporated into expression vectors that are introduced into host cells to increase copy number.
  • the copy number is increased by incorporating a polynucleotide or a polynucleotide with a point mutation into a specific site in the chromosome of a microorganism.
  • the overexpression of the said nucleic acid sequence in one embodiment of the invention, the overexpression of the said nucleic acid sequence.
  • a polynucleotide or a polynucleotide having a point mutation is incorporated into an expression vector, and the expression vector is introduced into a host cell to increase the copy number.
  • a polynucleotide with a promoter sequence or a polynucleotide with a point mutation with a promoter sequence is incorporated into an expression vector, and the expression vector is introduced into a host cell, Thereby the amino acid sequence is overexpressed.
  • the polynucleotide may comprise the nucleotide sequence of SEQ ID NO:1.
  • the polynucleotide encoding the amino acid sequence of SEQ ID NO:3 has a point mutation such that proline at position 113 of the amino acid sequence of SEQ ID NO:3 is replaced by a different amino acid .
  • proline at position 113 is replaced by serine.
  • amino acid sequence shown in SEQ ID NO:3 wherein the amino acid sequence after the 113th proline is replaced by serine, is shown in SEQ ID NO:4.
  • the polynucleotide sequence with point mutation is formed by mutating the 337th base of the polynucleotide sequence shown in SEQ ID NO: 1.
  • the mutation includes the mutation of the 337th base of the polynucleotide sequence shown in SEQ ID NO: 1 from cytosine (C) to thymine (T).
  • the polynucleotide sequence with point mutation comprises the polynucleotide sequence shown in SEQ ID NO:2.
  • operably linked refers to a functional linkage between a regulatory sequence and a polynucleotide sequence, whereby the regulatory sequence controls transcription and/or translation of the polynucleotide sequence.
  • the regulatory sequence can be a strong promoter capable of increasing the expression level of the polynucleotide.
  • Regulatory sequences may be promoters derived from microorganisms belonging to the genus Corynebacterium or may be promoters derived from other microorganisms.
  • the promoter can be a trc promoter, gap promoter, tac promoter, T7 promoter, lac promoter, trp promoter, araBAD promoter or cj7 promoter.
  • the promoter is the promoter of the polynucleotide (BBD29_09525 gene) encoding the amino acid sequence of SEQ ID NO:3.
  • the term "vector” refers to a polynucleotide construct that contains a gene's regulatory and gene sequences and is configured to express a target gene in a suitable host cell.
  • a vector may in turn refer to a polynucleotide construct containing sequences useful for homologous recombination such that, as a result of the vector introduced into the host cell, the regulatory sequences of endogenous genes in the genome of the host cell may be altered, or may The expressed target gene is inserted into the host's genome at a specific site.
  • the vector used in the present invention may further comprise a selectable marker to determine the introduction of the vector into the host cell or the insertion of the vector into the chromosome of the host cell.
  • Selectable markers can include markers that confer a selectable phenotype, such as drug resistance, auxotrophy, resistance to cytotoxic agents, or expression of surface proteins. In an environment treated with such selective agents, transformed cells can be selected because only cells expressing the selectable marker can survive or display different phenotypic traits.
  • the vectors described herein are well known to those skilled in the art and include, but are not limited to, plasmids, bacteriophages (eg, lambda phage or M13 filamentous phage, etc.), cosmids (ie, cosmids), or viral vectors.
  • the vector used is the pK18mobsacB plasmid, the pXMJ19 plasmid.
  • the term "transformation” refers to the introduction of a polynucleotide into a host cell such that the polynucleotide is replicable as an extragenomic element or inserted into the genome of the host cell.
  • the method of transforming the vector used in the present invention may include a method of introducing nucleic acid into cells.
  • the electrical pulse method can be implemented according to the host cell.
  • the microorganism may be yeast, bacteria, algae or fungi.
  • the bacteria may be microorganisms belonging to the genus Corynebacterium, such as Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum glutamicum), Brevibacterium flavum, Brevibacterium lactofermentum, Corynebacterium ammoniagenes, Corynebacterium pekinense, Brevibacterium saccharolyticum, Brevibacterium rose (Brevibacterium roseum), Brevibacterium thiogenitalis, etc.
  • Corynebacterium acetoacidophilum Corynebacterium acetoglutamicum
  • Corynebacterium callunae Corynebacterium glutamicum glutamicum
  • Brevibacterium flavum Brevibacterium lactofermentum
  • Corynebacterium ammoniagenes Corynebacterium pekinense
  • Brevibacterium saccharolyticum Bre
  • the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum ATCC 13869.
  • the microorganism belonging to the genus Corynebacterium is Corynebacterium glutamicum YPGLU001, which is highly glutamic acid-producing, and the preservation information is as follows: strain name: Corynebacterium glutamicum; Latin name: Corynebacterium glutamicum; Strain number: YPGLU001; Preservation institution: General Microbiology Center of China Microorganism Culture Collection; Abbreviation of Preservation Institution: CGMCC; Address: No. 3, No. 1, Beichen West Road, Chaoyang District, Beijing; Preservation Date: 2020 November 23, 2009; the registration number of the collection center: CGMCC No.21220.
  • the bacteria may also have other improvements related to increased L-glutamic acid production, for example, glutamate dehydrogenase, glutamine synthase, glutamine-ketoglutarate aminotransferase, etc. Enzyme activity or increased or decreased expression of a gene, or a gene can be replaced by a foreign gene.
  • the second aspect of the present invention provides a polynucleotide sequence, an amino acid sequence encoded by the polynucleotide sequence, a recombinant vector comprising the polynucleotide sequence, and a recombinant strain containing the polynucleotide sequence.
  • the polynucleotide sequence includes a polynucleotide encoding a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 3, wherein proline at position 113 of the sequence is substituted by a different amino acid.
  • proline at position 113 is replaced by serine.
  • amino acid sequence shown in SEQ ID NO:3 wherein the amino acid sequence after the 113th proline is replaced by serine, is shown in SEQ ID NO:4.
  • the polynucleotide sequence encoding the polypeptide containing the amino acid sequence shown in SEQ ID NO:3 contains the polynucleotide sequence shown in SEQ ID NO:1.
  • the polynucleotide sequence is formed by mutating the 337th base of the polynucleotide sequence shown in SEQ ID NO: 1.
  • the mutation refers to a change in the base/nucleotide of the site
  • the mutation method can be selected from at least one of mutagenesis, PCR site-directed mutagenesis, and/or homologous recombination methods. kind.
  • PCR site-directed mutagenesis and/or homologous recombination are preferably used.
  • the mutation includes the mutation of the 337th base of the polynucleotide sequence shown in SEQ ID NO: 1 from cytosine (C) to thymine (T).
  • the polynucleotide sequence comprises the polynucleotide sequence shown in SEQ ID NO:2.
  • the amino acid sequence includes the amino acid sequence shown in SEQ ID NO:4.
  • the recombinant vector is constructed by introducing the polynucleotide sequence into a plasmid.
  • the plasmid is the pK18mobsacB plasmid.
  • the plasmid is the pXMJ19 plasmid.
  • the polynucleotide sequence and the plasmid can be constructed into a recombinant vector through the NEBuider recombination system.
  • the recombinant strain contains the polynucleotide sequence.
  • the starting bacteria of the recombinant strain is Corynebacterium glutamicum CGMCC No.21220.
  • the starting bacteria of the recombinant strain is ATCC 13869.
  • the third aspect of the present invention also provides a method for constructing a recombinant strain producing L-glutamic acid.
  • the construction method comprises the following steps:
  • the polynucleotide sequence of the wild-type BBD29_09525 gene as shown in SEQ ID NO: 1 in the host strain was transformed, and the 337th base was mutated to obtain a recombinant strain comprising the mutated BBD29_09525 encoding gene.
  • the transformation includes at least one of mutagenesis, PCR site-directed mutagenesis, and/or homologous recombination.
  • the mutation refers to the mutation of the 337th base in SEQ ID NO: 1 from cytosine (C) to thymine (T); specifically, the polynucleotide comprising the gene encoding the mutation BBD29_09525
  • the acid sequence is shown in SEQ ID NO:2.
  • construction method comprises the steps:
  • the step (1) comprises: constructing the BBD29_09525 gene of the point mutation: according to the genome sequence of the unmodified strain, synthesizing two pairs of primers P1 and P2 and P3 and P4 for amplifying the BBD29_09525 gene fragment, by PCR
  • a point mutation was introduced into the wild-type BBD29_09525 gene SEQ ID NO: 1 by the site-directed mutagenesis method to obtain the point-mutated BBD29_09525 gene nucleotide sequence SEQ ID NO: 2, which is denoted as BBD29_09525 C337T .
  • the genome of the unmodified strain can be derived from the ATCC13869 strain, the genome sequence of which can be obtained from the NCBI website.
  • the primer is:
  • the PCR amplification is performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, and extension at 72°C for 45s (30 cycles), overextension at 72°C 10min.
  • the overlapping PCR amplification is carried out as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, and extension at 72°C for 90s (30 cycles), overrun at 72°C Extend for 10min.
  • the step (2) includes the construction of recombinant plasmids, including: assembling the isolated and purified BBD29_09525 C337T and pK18mobsacB plasmids through the NEBuider recombination system to obtain the recombinant plasmids.
  • the step (3) includes the construction of a recombinant strain, and the recombinant plasmid is transformed into a host strain to obtain a recombinant strain.
  • the conversion of step (3) is an electroconversion method.
  • the host strain is ATCC 13869.
  • the host strain is Corynebacterium glutamicum CGMCC No.21220.
  • the recombination is achieved by homologous recombination.
  • the fourth aspect of the present invention also provides a method for constructing a recombinant strain producing L-glutamic acid.
  • the construction method comprises the following steps:
  • BBD29_09525 the upstream and downstream homology arm fragments of BBD29_09525, the coding region of BBD29_09525 gene and its promoter region sequence, and introduce BBD29_09525 or BBD29_09525 C337T gene into the genome of the host strain by homologous recombination, so that the strain overexpresses BBD29_09525 or BBD29_09525 C337T gene.
  • the primer for amplifying the upstream homology arm fragment is:
  • the primers for amplifying the downstream homology arm fragments are:
  • the primers for amplifying the coding region of the gene and the sequence of its promoter region are:
  • the aforementioned P7/P12 is used as the primer, and the amplified upstream homology arm fragment, the downstream homology arm fragment, the gene coding region and its promoter region sequence fragment are mixed as The template is amplified to obtain integrated homology arm fragments.
  • the PCR system used 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5mM each) 4 ⁇ L, Mg 2+ (25mM) 4 ⁇ L, primers (10pM) 2 ⁇ L each, Ex Taq (5U) PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and overextension at 72°C for 10 min.
  • the NEBuider recombination system is used to assemble the shuttle plasmid PK18mobsacB and the integrated homology arm fragment to obtain an integrated plasmid.
  • the integrated plasmid is transfected into a host strain, and the BBD29_09525 or BBD29_09525 C337T gene is introduced into the genome of the host strain by means of homologous recombination.
  • the host strain is Corynebacterium glutamicum CGMCC No.21220.
  • the host strain is ATCC 13869.
  • the host strain is a strain carrying the polynucleotide sequence shown in SEQ ID NO: 2.
  • the fifth aspect of the present invention also provides a method for constructing a recombinant strain for producing L-glutamic acid.
  • the construction method comprises the following steps:
  • the primers for amplifying the coding region of the gene and the sequence of its promoter region are:
  • P18 5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACATGTATAACGATAGGTCGA 3' (SEQ ID NO:22).
  • the PCR system 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5 mM each) 4 ⁇ L, Mg 2+ (25 mM) 4 ⁇ L, primers (10 pM) 2 ⁇ L each, Ex Taq (5U/ ⁇ L) 0.25 ⁇ L, total volume 50 ⁇ L; the PCR amplification was carried out as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and overextension at 72°C for 10 min .
  • the NEBuider recombination system is used to assemble the shuttle plasmid pXMJ19 and the BBD29_09525 or BBD29_09525 C337T fragment with its own promoter to obtain an overexpression plasmid.
  • the host strain is Corynebacterium glutamicum CGMCC No.21220.
  • the host strain is ATCC 13869.
  • the host strain is a strain carrying the polynucleotide sequence shown in SEQ ID NO: 2.
  • the recombinant strain obtained by the present invention can be used alone in fermentation to produce L-glutamic acid, or can be mixed with other L-glutamic acid-producing bacteria to produce L-glutamic acid.
  • Another aspect of the present invention provides a method of producing L-glutamic acid, the method comprising culturing the bacteria; and obtaining L-glutamic acid from the culture.
  • Cultivation of bacteria can be carried out in a suitable medium under culture conditions known in the art.
  • the medium may contain: carbon sources, nitrogen sources, trace elements, and combinations thereof.
  • the pH of the culture can be adjusted.
  • the culturing may include preventing the generation of air bubbles, for example, by using an antifoaming agent.
  • culturing can include injecting a gas into the culture.
  • the gas can include any gas capable of maintaining aerobic conditions of the culture.
  • the temperature of the culture may be 20 to 45°C.
  • the resulting L-glutamic acid can be recovered from the culture by treating the culture with sulfuric acid or hydrochloric acid, etc., followed by a combination of methods such as anion exchange chromatography, concentration, crystallization, and isoelectric precipitation.
  • SEQ ID NO: 3 BBD29_09525 wild-type encoded protein amino acid sequence
  • SEQ ID NO: 4 BBD29_09525P113S-encoded protein amino acid sequence
  • BBD29_09525P113S is BBD29_09525P113S.
  • the present invention also provides a protein named as protein BBD29_09525 P113S , which can be any of the following:
  • amino acid sequence is the protein of SEQ ID No.4;
  • A2 A protein with more than 80% identity and the same function as the protein shown in A1) obtained by substituting and/or deleting and/or adding amino acid residues to the amino acid sequence shown in SEQ ID No. 4;
  • A3 A fusion protein with the same function obtained by linking a tag to the N-terminus and/or C-terminus of A1) or A2).
  • the present invention also provides a nucleic acid molecule named BBD29_09525 C337T , and the nucleic acid molecule BBD29_09525 C337T can be any of the following:
  • the coding sequence is the DNA molecule shown in SEQ ID No.2;
  • the nucleotide sequence is the DNA molecule shown in SEQ ID No.2.
  • the DNA molecule shown in SEQ ID No. 2 is the BBD29_09525 C337T gene described in the present invention.
  • the DNA molecule shown in SEQ ID No. 2 (BBD29_09525 C337T gene) encodes the protein BBD29_09525 P113S shown in SEQ ID No. 4.
  • the 113th serine (S) in the amino acid sequence (SEQ ID No. 4) of the protein BBD29_09525 P113S is mutated from proline (P).
  • the present invention also provides biological materials, and the biological materials can be any of the following:
  • C2 a recombinant vector containing the nucleic acid molecule BBD29_09525 C337T or a recombinant vector containing the expression cassette described in C1);
  • C3 a recombinant microorganism containing the nucleic acid molecule BBD29_09525 C337T , or a recombinant microorganism containing the expression cassette of C1), or a recombinant microorganism containing the recombinant vector of C2).
  • the present invention also provides any one of the following applications of any one of D1)-D8):
  • nucleotide sequence shown in SEQ ID No.1 is modified and/or one or several nucleotides are substituted and/or deleted and/or added to obtain the DNA molecule shown in SEQ ID No.1. DNA molecules that are more than 90% identical and have the same function;
  • D6 an expression cassette comprising the DNA molecule described in D4) or D5);
  • D7 a recombinant vector containing the DNA molecule described in D4) or D5), or a recombinant vector containing the expression cassette described in D6);
  • D8 a recombinant microorganism containing the DNA molecule described in D4) or D5), or a recombinant microorganism containing the expression cassette described in D6), or a recombinant microorganism containing the recombinant vector described in D7).
  • the DNA molecule shown in SEQ ID No.1 is the BBD29_09525 gene of the present invention.
  • the DNA molecule shown in SEQ ID No. 1 (BBD29_09525 gene) encodes the protein shown in SEQ ID No. 3.
  • identity refers to the identity of amino acid sequences or nucleotide sequences.
  • Amino acid sequence identity can be determined using homology search sites on the Internet, such as the BLAST page of the NCBI homepage website. For example, in Advanced BLAST2.1, by using blastp as the program, set the Expect value to 10, set all Filters to OFF, use BLOSUM62 as the Matrix, and set the Gap existence cost, Per residue gap cost and Lambda ratio to 11, 1 and 0.85 (default value) and search for the identity of a pair of amino acid sequences to calculate the identity value (%).
  • the identity of more than 80% may be at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity.
  • the above 90% identity may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical.
  • Modulating the production of L-glutamic acid in a microorganism as described herein may increase or decrease the amount of L-glutamic acid accumulated in the microorganism (ie, promote or inhibit L-glutamic acid biosynthesis).
  • the present invention also provides a method for improving the output of L-glutamic acid in the microorganism, the method comprising any of the following:
  • E1 improve the expression amount or content of the nucleic acid molecule BBD29_09525 C337T in the target microorganism, obtain a microorganism whose output of L-glutamic acid is higher than the target microorganism;
  • E2 improve the expression amount or content of the DNA molecule described in D4) or D5) in the target microorganism, and obtain a microorganism whose output of L-glutamic acid is higher than that of the target microorganism;
  • the mutation may be a point mutation, that is, a mutation of a single nucleotide.
  • the point mutation may be to mutate the proline residue at position 113 of the amino acid sequence encoded by the DNA molecule shown in SEQ ID No. 1 to another amino acid residue.
  • the point mutation can be the mutation of proline at position 113 of the amino acid sequence encoded by the DNA molecule shown in SEQ ID No.1 to serine to obtain a mutant protein BBD29_09525 P113S whose amino acid sequence is SEQ ID No.4 .
  • the mutation refers to changing one or several bases in a gene through site-directed mutation, resulting in a change in the amino acid composition of the corresponding protein, resulting in a new protein or a new function of the original protein, that is, gene site-directed mutation.
  • Gene site-directed mutagenesis techniques such as oligonucleotide primer-mediated site-directed mutagenesis, PCR-mediated site-directed mutagenesis or cassette mutagenesis are well known to those skilled in the art.
  • the point mutation described herein can be a single-base substitution, a single-base insertion or a single-base deletion, specifically a single-base substitution.
  • the single base substitution can be an allelic substitution.
  • the point mutation can be nucleic acid modification of cytosine (C) at position 337 of the BBD29_09525 gene (SEQ ID No. 1).
  • the point mutation can be the mutation of cytosine (C) at position 337 of the BBD29_09525 gene (SEQ ID No. 1) to thymine (T) to obtain the DNA molecule shown in SEQ ID No. 2.
  • the recombinant vector may specifically be a recombinant vector pK18- BBD29_09525C337T , PK18mobsacB-BBD29_09525, PK18mobsacB- BBD29_09525C337T , pXMJ19-BBD29_09525 or pXMJ19- BBD29_09525C337T .
  • Described recombinant vector pK18-BBD29_09525 C337T replaces the fragment (small fragment) between Xbal I and /BamH I recognition sites of pK18mobsacB vector with the DNA fragment shown in positions 37-1466 of SEQ ID No.29 in the sequence listing , keeping the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • the recombinant vector pK18-BBD29_09525 C337T contains the DNA molecule shown in positions 1-1051 of the mutated gene BBD29_09525 C337T shown in SEQ ID No. 2.
  • the recombinant vector PK18mobsacB-BBD29_09525 is used to integrate the exogenous gene BBD29_09525 into the host chromosome, and to overexpress the wild-type BBD29_09525 gene in the production bacteria.
  • the recombinant vector PK18mobsacB-BBD29_09525 is to replace the fragment (small fragment) between the Xbal I and/BamHI recognition sites of the pK18mobsacB vector with the DNA fragment shown in positions 37-3407 of SEQ ID No.30 in the sequence listing, Keep the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • the recombinant vector PK18mobsacB-BBD29_09525 C337T is used to integrate the exogenous gene BBD29_09525 C337T into the host chromosome, and overexpress the mutant gene BBD29_09525 C337T in the production bacteria.
  • Described recombinant vector PK18mobsacB- BBD29_09525C337T is to replace the fragment (small fragment) between Xbal I and /BamH I recognition sites of pK18mobsacB vector with the DNA fragment shown in the 37th-3407th position of SEQ ID No.31 in the sequence listing , keeping the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • the recombinant vector pXMJ19-BBD29_09525 is used to express the exogenous gene BBD29_09525 extrachromosomally through a plasmid, and then overexpress the wild-type BBD29_09525 gene in the production bacteria.
  • the recombinant vector pXMJ19-BBD29_09525 is to replace the fragment (small fragment) between the EcoR I and Kpn I recognition sites of the pXMJ19 vector with the DNA fragment shown in positions 37-1927 of SEQ ID No.32 in the sequence listing, maintaining The other sequences of the pXMJ19 vector were unchanged, and the resulting recombinant vector was obtained.
  • the recombinant vector pXMJ19-BBD29_09525 C337T is used to express the exogenous gene BBD29_09525 C337T extrachromosomally through a plasmid, and then overexpress the mutant gene BBD29_09525 C337T in the production bacteria.
  • the recombinant vector pXMJ19-BBD29_09525 C337T is a fragment (small fragment) between the EcoR I and Kpn I recognition sites of the pXMJ19 vector is replaced with the DNA fragment shown in positions 37-1927 of SEQ ID No.33 in the sequence listing, Keep other sequences of the pXMJ19 vector unchanged to obtain a recombinant vector.
  • the recombinant vectors pK18- BBD29_09525C337T , PK18mobsacB-BBD29_09525, PK18mobsacB- BBD29_09525C337T , pXMJ19-BBD29_09525 and pXMJ19- BBD29_09525C337T are all within the protection scope of the present invention.
  • the recombinant microorganism may specifically be recombinant bacteria YPG-007, YPG-008, YPG-009, YPG-010 or YPG-011.
  • the recombinant bacteria YPG-007 is the recombinant bacteria obtained by transforming the recombinant vector pK18-BBD29_09525 C337T into Corynebacterium glutamicum CGMCC No.21220, and the recombinant bacteria YPG-007 contains SEQ ID No.2
  • the mutated gene BBD29_09525C337T is shown .
  • the recombinant bacteria YPG-008 contains double copies of the BBD29_09525 gene shown in SEQ ID No. 1; the recombinant bacteria containing double copies of the BBD29_09525 gene can significantly and stably improve the expression of the BBD29_09525 gene.
  • the recombinant strain YPG-008 is an engineered strain that overexpresses the wild-type BBD29_09525 gene on its genome.
  • the recombinant strain YPG-009 contains the mutated BBD29_09525 C337T gene shown in SEQ ID No. 2; the recombinant strain YPG-009 is an engineering strain that overexpresses the mutant BBD29_09525 C337T gene on the genome.
  • the recombinant bacterium YPG-010 contains the BBD29_09525 gene shown in double-copy SEQ ID No.1; the recombinant bacterium YPG-010 is an engineering bacterium that overexpresses the wild-type BBD29_09525 gene on a plasmid, that is, extrachromosomally carried out from the plasmid pXMJ19-BBD29_09525 Overexpression.
  • the recombinant bacteria YPG-011 contains the mutant BBD29_09525 C337T gene shown in SEQ ID No. 2; the recombinant bacteria YPG-011 is an engineering bacteria that overexpresses the mutant BBD29_09525 C337T gene on a plasmid, that is, the plasmid pXMJ19-BBD29_09525 C337T is expressed in the plasmid pXMJ19-BBD29_09525 C337T Extrachromosomal overexpression.
  • YPG-007, YPG-008, YPG-009, YPG-010 and YPG-011 are all within the protection scope of the present invention.
  • the present invention also provides a method for constructing the recombinant microorganism, the method comprising at least any of the following:
  • F3 Edit the DNA molecule shown in SEQ ID No.1 by using gene editing means (such as single-base gene editing), so that the target microorganism contains the DNA molecule shown in SEQ ID No.2.
  • the introduction can be by transforming the host bacteria with the vector carrying the DNA molecule of the present invention by any known transformation method such as chemical transformation method or electroporation transformation method.
  • the introduced DNA molecule can be single copy or multiple copies.
  • the introduction may be the integration of the exogenous gene into the host chromosome, or the extrachromosomal expression of the plasmid.
  • the present invention also provides a method for preparing L-glutamic acid, the method comprising utilizing any of the recombinant microorganisms described herein to produce L-glutamic acid.
  • the method can be fermentation method to prepare L-glutamic acid, and the recombinant microorganism can be Corynebacterium, specifically Corynebacterium glutamicum and its variants.
  • Preservation information strain name: Corynebacterium glutamicum; Latin name: Corynebacterium glutamicum; Strain number: YPGLU001; Preservation institution: General Microbiology Center of China Microorganism Culture Collection Management Committee; Preservation Institution Abbreviation: CGMCC; Address: Chaoyang District, Beijing No. 3, No. 1 Courtyard, Beichen West Road; Preservation Date: November 23, 2020; Registration Number: CGMCC No.21220.
  • the basal medium used for culturing the bacterial strains is the same, and the corresponding required sucrose, kanamycin or chloramphenicol are added on this basal medium composition, and the basal medium composition is shown in Table 1:
  • Corynebacterium glutamicum (Corynebacterium glutamicum) YPGLU001CGMCC No.21220 in the following examples has been deposited in the General Microorganism Center of China Microorganism Culture Collection Management Committee (abbreviated as CGMCC, address: Chaoyang District, Beijing, China on November 23, 2020) No. 3, No. 1 Yard, Beichen West Road, Institute of Microbiology, Chinese Academy of Sciences), the deposit registration number is CGMCC No.21220.
  • Corynebacterium glutamicum YPGLU001 also known as Corynebacterium glutamicum CGMCC No.21220.
  • the point mutation is to mutate the 337th cytosine (C) in the nucleotide sequence (SEQ ID No.1) of the BBD29_09525 gene to thymine (T) to obtain the DNA molecule shown in SEQ ID No.2 ( The mutated BBD29_09525 gene, named BBD29_09525C337T ).
  • DNA molecule shown in SEQ ID No.1 encodes a protein whose amino acid sequence is SEQ ID No.3 (the protein name is protein BBD29_09525).
  • the DNA molecule shown in SEQ ID No. 2 encodes a mutein whose amino acid sequence is SEQ ID No. 4 (the name of the mutein is BBD29_09525 P113S ).
  • the 113th serine (S) in the amino acid sequence (SEQ ID No. 4) of the mutant protein BBD29_09525 P113S is mutated from proline (P).
  • Overlap PCR Overlap PCR technology was used for gene site-directed mutation.
  • the primers were designed as follows (synthesized by Shanghai Invitrogen Company), and the bases in bold font are the mutation positions:
  • Construction method Take Corynebacterium glutamicum ATCC13869 as the template, and use primers P1 and P2, P3 and P4 to carry out PCR amplification to obtain two BBD29_09525 gene coding regions with mutated bases and sizes of 766bp and 768bp respectively. DNA fragments (BBD29_09525Up and BBD29_09525Down). .
  • PCR system 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5mM each) 4 ⁇ L, Mg 2+ (25mM) 4 ⁇ L, primers (10pM) 2 ⁇ L each, Ex Taq (5U/ ⁇ L) 0.25 ⁇ L, total volume 50 ⁇ L.
  • the PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 45s, 30 cycles, and overextension at 72°C for 10min, to obtain two sizes of 766bp and 768bp respectively.
  • DNA fragments containing the coding region of the BBD29_09525 gene (BBD29_09525Up and BBD29_09525Down).
  • BBD29_09525Up and BBD29_09525Down were separated and purified by agarose gel electrophoresis, the target band was recovered, and then the above-mentioned two DNA fragments were used as templates, and P1 and P4 were used as primers, and amplified by overlapping PCR A fragment of 1504 bp in length was obtained and named BBD29_09525Up-Down (the sequence is shown in SEQ ID No. 29).
  • positions 37-1087 are the BBD29_09525 C337T gene fragment containing a mutation site (ie, positions 1-1051 of SEQ ID No. 2).
  • Overlapping PCR system 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5 mM each) 4 ⁇ L, Mg 2+ (25 mM) 4 ⁇ L, primers (10 pM) 2 ⁇ L each, Ex Taq (5U/ ⁇ L) 0.25 ⁇ L, total volume 50 ⁇ L.
  • the overlapping PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 90s, 30 cycles, and overextension at 72°C for 10 min.
  • This DNA fragment BBD29_09525Up-Down contains a mutation site and is used to introduce nucleic acid modification at position 337 of the coding region of the BBD29_09525 gene in Corynebacterium glutamicum CGMCC No.21220. Specifically, the glutamic acid rod Cytosine (C) at position 337 in the coding region of BBD29_09525 gene in Bacillus CGMCC No. 21220 was changed to thymine (T), resulting in the change of amino acid at position 113 of the encoded protein from proline (P) to serine (S) .
  • C glutamic acid rod Cytosine
  • the pK18mobsacB plasmid (purchased from Addgene) was digested with Xba I/BamH I, the BBD29_09525 C337T and the linearized pK18mobsacB plasmid were separated and purified by agarose gel electrophoresis, and then assembled by the NEBuider recombination system to obtain the vector pK18-BBD29_09525 C337T , This plasmid contains a kanamycin resistance marker.
  • the vector pK18-BBD29_09525 C337T was sent to a sequencing company for sequencing and identification, and the vector pK18-BBD29_09525 C337T containing the correct point mutation (CT) was kept for future use .
  • CT point mutation
  • the DNA fragment (BBD29_09525Up-Down) was purified after being separated by agarose gel electrophoresis, and the pK18mobsacB plasmid (purchased from Addgene, which was purified by enzyme digestion (Xbal I/BamH I) was separated with Xbal I/ BamH I digestion) was connected with NEBuilder enzyme (purchased from NEB company) at 50°C for 30min, the ligation product was transformed into DH5a (purchased from TAKARA company) and the single clone grown after PCR identification obtained positive recombinant vector pK18- BBD29_09525C337T , the recombinant vector Contains a kanamycin resistance (Kan r ) marker.
  • the correctly digested recombinant vector pK18-BBD29_09525 C337T was sent to a sequencing company for sequencing identification, and the recombinant vector pK18-BBD29_09525 C337T containing the correct point mutation (CT) was stored for future use.
  • CT point mutation
  • Described recombinant vector pK18-BBD29_09525 C337T replaces the fragment (small fragment) between Xbal I and /BamH I recognition sites of pK18mobsacB vector with the DNA fragment shown in positions 37-1466 of SEQ ID No.29 in the sequence listing , keeping the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • the recombinant vector pK18-BBD29_09525 C337T contains the DNA molecule shown in positions 1-1051 of the mutated gene BBD29_09525 C337T shown in SEQ ID No. 2.
  • the allelic replacement plasmid pK18-BBD29_09525 C337T in Example 1 was transformed into Corynebacterium glutamicum CGMCC No. 21220 by electric shock, and cultured in the medium. See Table 1 for medium components and culture conditions.
  • the resulting single colonies were identified by primer P1 and universal primer M13R, respectively, and the strains that could amplify a band of about 1511 bp in size were positive strains.
  • the positive strains were cultured on the medium containing 15% sucrose, the single colonies produced by the culture were cultured on the medium containing kanamycin and without kanamycin, and the culture medium without kanamycin was selected.
  • the strains that grow on the base and do not grow on the medium containing kanamycin were further identified by PCR using the following primers (synthesized by Shanghai Invitrogen Company):
  • the above-mentioned PCR amplification product is subjected to SSCP electrophoresis after high temperature denaturation and ice bath (taking the amplified fragment of plasmid pK18-BBD29_09525 C337T as a positive control, the amplified fragment of ATCC13869 as a negative control, and water as a blank control), the preparation of PAGE of SSCP electrophoresis and the The electrophoresis conditions are shown in Table 2. Due to different fragment structures and different electrophoresis positions, the strains whose electrophoresis positions are inconsistent with those of the negative control fragment and consistent with the position of the positive control fragment are the strains with successful allelic replacement. Using primers P5 and P6 to amplify the successful allelic replacement of the target fragment of the strain again by PCR, and connect it to the PMD19-T vector for sequencing. Designated as YPG-007.
  • the recombinant strain YPG-007 contains the mutated gene BBD29_09525C337T shown in SEQ ID No.2.
  • BBD29_09525 C337T in the production bacteria can increase the production of L-glutamic acid
  • the exogenous gene was integrated into the host chromosome, and the genome overexpressed BBD29_09525 gene or BBD29_09525 was constructed.
  • the primers were designed as follows (synthesized by Shanghai Invitrogen Company):
  • P12 5' CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCCATAAGAAAC AACCACTTCC3' (SEQ ID NO: 16)
  • Construction method Take Corynebacterium glutamicum ATCC13869 or YPG-007 as the template, respectively use primers P7/P8, P9/P10, P11/P12 to carry out PCR amplification to obtain an upstream homology arm fragment of about 807bp, encoded by the BBD29_09525 gene Region and promoter region fragment of about 1931bp or BBD29_09525 C337T gene coding region and promoter region fragment of about 1931bp and downstream homology arm fragment of about 787bp.
  • integration homology arm fragments 1 and 2 the size of integration homology arm fragment 1 is 3445bp, and the sequence is such as SEQ ID No.30. shown; the size of the integrated homology arm fragment 2 is 3445bp, and the sequence is shown in SEQ ID No. 31;).
  • the amplified product was recovered by electrophoresis, and the required DNA fragment of about 3445 bp was recovered by using a column DNA gel recovery kit (TIANGEN).
  • the plasmids PK18mobsacB are connected to obtain an integrated plasmid (ie, a recombinant vector) PK18mobsacB-BBD29_09525 or PK18mobsacB-BBD29_09525 C337T .
  • the plasmid contains a kanamycin resistance marker, and the recombinant plasmid integrated into the genome can be obtained by kanamycin screening.
  • the recombinant vector PK18mobsacB-BBD29_09525 is to replace the fragment (small fragment) between the Xbal I and/BamHI recognition sites of the pK18mobsacB vector with the DNA fragment shown in positions 37-3407 of SEQ ID No.30 in the sequence listing, Keep the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • Described recombinant vector PK18mobsacB- BBD29_09525C337T is to replace the fragment (small fragment) between Xbal I and /BamH I recognition sites of pK18mobsacB vector with the DNA fragment shown in the 37th-3407th position of SEQ ID No.31 in the sequence listing , keeping the other sequences of the pK18mobsacB vector unchanged to obtain a recombinant vector.
  • PCR system 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5mM each) 4 ⁇ L, Mg 2+ (25mM) 4 ⁇ L, primers (10pM) 2 ⁇ L each, Ex Taq (5U/ ⁇ L) 0.25 ⁇ L, total volume 50 ⁇ L.
  • the PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and overextension at 72°C for 10 min.
  • the 2 integrated plasmids (PK18mobsacB-BBD29_09525 and PK18mobsacB-BBD29_09525 C337T ) were electrotransformed into the strain Corynebacterium glutamicum CGMCC No.21220 respectively, and the single colony produced by the culture was identified by P13/P14 primers, and the PCR amplification was carried out.
  • the positive strain contained a fragment with a size of about 1821 bp, and the original strain was not able to amplify the fragment. Positive strains were screened by 15% sucrose and cultured on media containing kanamycin and without kanamycin, respectively.
  • the strains that do not grow on the base are further identified by PCR using the P15/P16 primers, and the amplified bacteria with a size of about 1769 bp are the strains in which the BBD29_09525 or BBD29_09525 C337T genes are integrated into the genome of Corynebacterium glutamicum CGMCC No.21220, which is named as YPG-008 (without mutation point) and YPG-009 (with mutation point).
  • the recombinant bacteria YPG-008 contains double copies of the BBD29_09525 gene shown in SEQ ID No. 1; the recombinant bacteria containing double copies of the BBD29_09525 gene can significantly and stably increase the expression of the BBD29_09525 gene.
  • the recombinant strain YPG-008 is an engineered strain that overexpresses the wild-type BBD29_09525 gene on its genome.
  • the recombinant strain YPG-009 contains the mutated BBD29_09525 C337T gene shown in SEQ ID No. 2; the recombinant strain YPG-009 is an engineered strain that overexpresses the mutant BBD29_09525 C337T gene on the genome.
  • PCR identification primers are as follows:
  • the recombinant vector pXMJ19-BBD29_09525 is to replace the fragment (small fragment) between the EcoR I and Kpn I recognition sites of the pXMJ19 vector with the DNA fragment shown in positions 37-1927 of SEQ ID No.32 in the sequence listing, maintaining The other sequences of the pXMJ19 vector were unchanged, and the resulting recombinant vector was obtained.
  • the recombinant vector pXMJ19-BBD29_09525 C337T is a fragment (small fragment) between the EcoR I and Kpn I recognition sites of the pXMJ19 vector is replaced with the DNA fragment shown in positions 37-1927 of SEQ ID No.33 in the sequence listing, Keep other sequences of the pXMJ19 vector unchanged to obtain a recombinant vector.
  • PCR system 10 ⁇ Ex Taq Buffer 5 ⁇ L, dNTP Mixture (2.5mM each) 4 ⁇ L, Mg 2+ (25mM) 4 ⁇ L, primers (10pM) 2 ⁇ L each, Ex Taq (5U/ ⁇ L) 0.25 ⁇ L, total volume 50 ⁇ L.
  • the PCR amplification was performed as follows: pre-denaturation at 94°C for 5 min, denaturation at 94°C for 30s, annealing at 52°C for 30s, extension at 72°C for 120s (30 cycles), and overextension at 72°C for 10 min.
  • Two plasmids (pXMJ19-BBD29_09525 and pXMJ19-BBD29_09525 C337T ) were electrotransformed into the strain Corynebacterium glutamicum CGMCC No. 21220 respectively, and the single colony produced by the culture was identified by M13R (-48) and P18 primers, PCR amplification
  • the transformed strains containing fragments of about 2000 bp in size were added, which were named YPG-010 (without point mutation) and YPG-011 (with point mutation).
  • Recombinant bacterium YPG-010 contains the BBD29_09525 gene shown in double-copy SEQ ID No.1; recombinant bacterium YPG-010 is an engineering bacterium that overexpresses the wild-type BBD29_09525 gene on a plasmid, that is, extrachromosomally overexpressed by plasmid pXMJ19-BBD29_09525 .
  • the recombinant strain YPG-011 contains the mutant BBD29_09525 C337T gene shown in SEQ ID No. 2; the recombinant strain YPG-011 is an engineering strain that overexpresses the mutant BBD29_09525 C337T gene on a plasmid, that is, extrachromosomally derived from the plasmid pXMJ19-BBD29_09525 C337T overexpressed.
  • P20 5'GAGATAAAAGGAAGTTGAACATCTTCTAACTGCTTTCTTT 3' (SEQ ID NO:24)
  • the amplified product was recovered by electrophoresis, and the required 1571bp DNA fragment was recovered by a column-type DNA gel recovery kit, and the shuttle plasmid pk18mobsacB plasmid recovered by NEBuider recombination system and Xba I digestion ligated to obtain a knockout plasmid.
  • This plasmid contains a kanamycin resistance marker.
  • the knockout plasmid was electrotransformed into the strain Corynebacterium glutamicum CGMCC No.21220, and the single colonies produced by the culture were identified by PCR with the following primers (synthesized by Shanghai Yingjun Company):
  • the strains with 1497bp and 3000bp bands amplified by the above PCR are positive strains, and the strains with only 3000bp bands amplified are the original strains. Positive strains were selected on 15% sucrose medium and cultured on kanamycin-containing and kanamycin-free medium, respectively. The strains that do not grow on the culture medium of mycin were further identified by PCR using the P23/P24 primers, and the strains with a size of 1497bp were amplified as the genetically engineered strains in which the coding region of the BBD29_09525 gene was knocked out, which was named YPG-012 (The BBD29_09525 gene on the genome of Corynebacterium glutamicum CGMCC No. 21220 was knocked out).
  • the bacterial strains (YPG-007, YPG-008, YPG-009, YPG-010, YPG-011, YPG-012) constructed in the above Example 2-5 and the original strain Corynebacterium glutamicum CGMCC No. 21220 were used in BLBIO- Fermentation experiments were carried out in a 5GC-4-H model fermenter (purchased from Shanghai Bailun Biotechnology Co., Ltd.) with the medium shown in Table 3 and the control process shown in Table 4. Each strain was repeated three times and the results are shown in Table 5.
  • the product encoded by the gene has an impact on the L-glutamic acid production capacity, and the recombinant strain is obtained by introducing point mutations in the coding sequence, or increasing the copy number or overexpression of the gene , the obtained strain is favorable for the production of high concentration of glutamate compared with the unmodified strain.
  • the present invention first introduced a point mutation in the coding region (SEQ ID No. 1) of the BBD29_09525 gene of Corynebacterium glutamicum CGMCC No. 21220 by allele replacement, and constructed a structure containing a point mutation ( CT) genetically engineered bacteria YPG-007.
  • BBD29_09525 gene or its mutant gene BBD29_09525 C337T in the production bacteria can increase the production of L-glutamic acid
  • the exogenous genes were integrated into the host chromosome or expressed extrachromosomally from a plasmid, and constructed a Engineering bacteria YPG-008, YPG-009, YPG-010 and YPG-011 overexpressing BBD29_09525 gene or BBD29_09525 C337T gene on genome and plasmid.
  • BBD29_09525 gene and its variants are involved in the biosynthesis of L-glutamic acid, and the overexpression or knockout of the BBD29_09525 gene, or site-directed mutation (such as point mutation) can regulate the L-glutamic acid in microorganisms. accumulated amount.
  • Point mutation in the coding region of the BBD29_09525 gene or overexpression of the BBD29_09525 gene or its mutant gene BBD29_09525 C337T in the production bacterium is helpful for the improvement of L-glutamic acid production and transformation rate, while the knockout or weakening of the BBD29_09525 gene does not Conducive to the accumulation of L-glutamic acid.
  • BBD29_09525 gene and its variant (such as BBD29_09525 C337T gene) to construct the genetically engineered strain that produces L-glutamic acid, to promote L-glutamic acid output to improve, cultivate the high-yield, high-quality strain that meets industrialized production, It has extensive application value and important economic significance for the industrial production of L-glutamic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

提供了改造基因BBD29_09525产L-谷氨酸的重组菌株及其构建方法与应用。该重组菌株为生成L-谷氨酸的细菌,其具有编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸的改善的表达;该改善的表达可为编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸具有点突变且表达是增强的。该基因工程菌是BBD29_09525基因序列第337位碱基由胞嘧啶突变为胸腺嘧啶,使编码的相应氨基酸序列第113位脯氨酸被丝氨酸取代,以及过表达BBD29_09525基因或BBD29_09525 C337T基因的工程菌。基因工程菌的L-谷氨酸产量及转化率获得提高。

Description

一种改造基因BBD29_09525产L-谷氨酸的重组菌株及其构建方法与应用 技术领域
本发明属于基因工程和微生物技术领域,具体涉及一种产L-谷氨酸的重组菌株及其构建方法与应用。
背景技术
L-谷氨酸是一种重要的氨基酸,被应用于食品、临床药物及其它方面。
传统上,L-谷氨酸主要是通过发酵,用属于短杆菌属、棒状杆菌属或微菌属等菌属的生产L-谷氨酸的细菌或其突变体进行生产。
L-谷氨酸是由微生物细胞内柠檬酸循环的中间产物α-酮戊二酸通过生物合成而来的。由α-酮戊二酸通过铵离子的同化作用来形成L-谷氨酸的生物合成途径有两条。其中一条途径是在有高浓度的铵离子存在的情况下,通过谷氨酸脱氢酶(glutamate dehydrogenase,GDH)的催化来合成L-谷氨酸。另一条途径(GS/GOGAT途径)是由谷氨酰胺合成酶及谷氨酰胺-酮戊二酸氨基转移酶来合成L-谷氨酸。谷氨酰胺合成酶(glutamine synthetase,GS)催化L-谷氨酸和铵离子转化为谷氨酰胺的反应;谷氨酰胺-酮戊二酸氨基转移酶(glutamine-oxoglutaric acid amino transferase,也称“谷氨酸合成酶”(glutamate synthase,GOGAT)催化L-谷氨酸合成反应,在该反应中,由已经由GS合成的一分子的谷氨酰胺和一分子的α-酮戊二酸分子合成两分子的L-谷氨酸。
对发酵法生产L-氨基酸的改进可以涉及发酵技术如搅拌和供应氧气;或涉及营养培养基的组成,例如发酵过程中的糖浓度;或涉及将发酵液加工成合适的产品形式,例如通过干燥和造粒发酵液或离子交换色谱;或可以涉及相关微生物本身的固有性能性质。
用于改善这些微生物的性能性质的方法包括诱变、突变体的选择和筛选。以这种方式获得的菌株对抗代谢物具有抗性或对于具有调节重要性的代谢物是营养缺陷型并产生L-氨基酸等。
虽然已有大量方法可以提高L-谷氨酸的生产能力,但是为了满足日益增加的需求,仍需要发展生产L-谷氨酸的方法。
发明公开
本发明的目的是开发用于改善细菌的L-谷氨酸生产能力的新技术,从而提供一种有效生产L-谷氨酸的方法。
为了实现上述目的,本发明的发明人通过研究发现,对细菌中的基因BBD29_09525或其同源基因,可以通过修饰所述基因或改善其表达,能够改善细菌的L-谷氨酸生产能力。基于这些发现,完成了本发明。
本发明提供了生成L-谷氨酸的细菌,其中编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸的表达改善。本发明还提供了通过使用所述微生物生产 L-谷氨酸的方法。
本发明的第一个方面提供了生成L-谷氨酸的细菌,其具有编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸的改善的表达。根据本发明,所述改善的表达是所述多核苷酸表达增强,或者编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸具有点突变,或者编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸具有点突变且表达是增强的。
所述SEQ ID NO:3的氨基酸序列或其同源序列是基因BBD29_09525或其同源基因编码的蛋白。
所述细菌与未修饰菌株相比具有增强的L-谷氨酸生产能力。
在本发明中,术语“具有L-谷氨酸生产能力的细菌”是指具有在培养基和/或细菌的细胞中以下述程度产生并累积目的L-谷氨酸的能力,使得当细菌在培养基中培养时可以收集L-谷氨酸的细菌。具有L-谷氨酸生产能力的细菌可以是能够以比未修饰菌株可获得的量更大的量在培养基和/或细菌的细胞中积累目的L-谷氨酸的细菌。
术语“未修饰菌株”是指尚未以使得具有特定特征的方式进行修饰的对照菌株。即,未修饰菌株的实例包括野生型菌株和亲本菌株。
具有L-谷氨酸生产能力的细菌可以是能够在培养基中以优选0.5g/L以上,更优选1.0g/L以上的量积累目标L-谷氨酸的细菌。
在本发明中,除非另有说明,术语“L-谷氨酸”是指游离形式的L-谷氨酸、其盐或其混合物。
所述多核苷酸可以编码与SEQ ID NO:3的氨基酸序列具有约90%或更高、约92%或更高、约95%或更高、约97%或更高、约98%或更高、或约99%或更高的序列同源性的氨基酸序列。如本文中使用的,术语“同源性”指两种多核苷酸或两种多肽模块之间的百分比同一性。可以通过使用本领域中已知的方法测定一种模块和另一种模块之间的序列同源性。例如,可以通过BLAST算法测定此类序列同源性。
可以如下增强多核苷酸的表达:通过取代或突变表达调节序列、对多核苷酸序列引入突变、通过经由染色体插入或载体导入的多核苷酸拷贝数的增加、或其组合等。
可以修饰多核苷酸的表达调节序列。表达调节序列控制与其可操作连接的多核苷酸的表达,并且例如可以包括启动子、终止子、增强子、沉默子等。多核苷酸可以具有起始密码子的变化。可以将多核苷酸掺入染色体的特定位点中,从而增加拷贝数。在本文,特定的位点可以包括例如转座子位点或基因间位点。另外,可以将多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而增加拷贝数。
在本发明的一种实施方式中,通过将多核苷酸或者具有点突变的多核苷酸掺入微生物染色体的特定位点中,从而增加拷贝数。
在本发明的一种实施方式中,通过将带有启动子序列的多核苷酸或者带有启动子序列的具有点突变的多核苷酸掺入微生物染色体的特定位点中,从而过表达所述核酸序列。
在本发明的一种实施方式中,将多核苷酸或者具有点突变的多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而增加拷贝数。
在本发明的一种实施方式中,将带有启动子序列的多核苷酸或者带有启动子序列的具有点突变的多核苷酸掺入表达载体中,将所述表达载体导入宿主细胞中,从而过表达所述氨基酸序列。
在本发明的一个具体实施方式中,所述多核苷酸可以包含SEQ ID NO:1的核苷酸序列。
在本发明的一种实施方式中,编码SEQ ID NO:3的氨基酸序列的多核苷酸的具有点突变,使得SEQ ID NO:3的氨基酸序列的第113位脯氨酸被不同的氨基酸所取代。
根据本发明,优选第113位脯氨酸被丝氨酸所取代。
根据本发明,SEQ ID NO:3所示的氨基酸序列,其中第113位脯氨酸被丝氨酸所取代后的氨基酸序列如SEQ ID NO:4所示。
在本发明的一个实施方式中,所述具有点突变的多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第337位碱基发生突变而形成的。
根据本发明,所述突变包括SEQ ID NO:1所示多核苷酸序列第337位碱基由胞嘧啶(C)突变为胸腺嘧啶(T)。
在本发明的一个实施方式中,所述具有点突变的多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。
如本文中使用的,术语“可操作连接”指调节序列和多核苷酸序列之间的功能性连接,由此调节序列控制多核苷酸序列的转录和/或翻译。调节序列可以是能提高多核苷酸的表达水平的强启动子。调节序列可以是源自属于棒杆菌属的微生物的启动子或者可以是源自其它微生物的启动子。例如,启动子可以是trc启动子、gap启动子、tac启动子、T7启动子、lac启动子、trp启动子、araBAD启动子或cj7启动子。
在本发明的一个具体实施方式中,所述启动子是编码SEQ ID NO:3的氨基酸序列的多核苷酸(BBD29_09525基因)的启动子。
如本文中使用的,术语“载体”指含有基因的调节序列和基因序列并且配置为在合适的宿主细胞中表达靶基因的多核苷酸构建体。或者,载体又可以指多核苷酸构建体,其含有可用于同源重组的序列,从而由于对宿主细胞导入的载体,可以改变宿主细胞的基因组中的内源基因的调节序列,或者可以将可以表达的靶基因插入宿主的基因组的特定位点中。在这点上,本发明中使用的载体可以进一步包含选择标志物以确定载体对宿主细胞的导入或者载体对宿主细胞的染色体的插入。选择标志物可以包含赋予可选择表型,诸如药物抗性、营 养缺陷型、针对细胞毒剂的抗性、或表面蛋白的表达的标志物。在用此类选择剂处理的环境中,由于仅表达选择标志物的细胞可以存活或者显示不同表型性状,可以选择经转化的细胞。本文所述载体是本领域技术人员公知的,包括但不限于:质粒、噬菌体(如λ噬菌体或M13丝状噬菌体等)、黏粒(即柯斯质粒)或病毒载体。
在本发明的一些具体实施方式中,使用的载体是pK18mobsacB质粒,pXMJ19质粒。
如本文中使用的,术语“转化”指将多核苷酸导入宿主细胞中,从而多核苷酸可以作为基因组外元件或者以插入宿主细胞的基因组中能复制。转化本发明中使用的载体的方法可以包括将核酸导入细胞的方法。另外,如相关技术中公开的,可以根据宿主细胞实施电脉冲方法。
本文中,所述微生物可为酵母、细菌、藻或真菌。
根据本发明,所述细菌可以是属于棒杆菌属的微生物,例如嗜乙酰棒杆菌(Corynebacterium acetoacidophilum)、醋谷棒杆菌(Corynebacterium acetoglutamicum)、美棒杆菌(Corynebacterium callunae)、谷氨酸棒杆菌(Corynebacterium glutamicum)、黄色短杆菌(Brevibacterium flavum)、乳糖发酵短杆菌(Brevibacterium lactofermentum)、产氨棒杆菌(Corynebacterium ammoniagenes)、北京棒杆菌(Corynebacterium pekinense)、解糖短杆菌(Brevibacterium saccharolyticum)、玫瑰色短杆菌(Brevibacterium roseum)、生硫短杆菌(Brevibacterium thiogenitalis)等。
在本发明的一个实施方案中,所述属于棒杆菌属的微生物是谷氨酸棒杆菌ATCC 13869。
在本发明的一个实施方案中,所述属于棒杆菌属的微生物是谷氨酸棒杆菌(Corynebacterium glutamicum)YPGLU001,该菌高产谷氨酸,保藏信息如下:菌种名称:谷氨酸棒杆菌;拉丁名:Corynebacterium glutamicum;菌株编号:YPGLU001;保藏机构:中国微生物菌种保藏管理委员会普通微生物中心;保藏机构简称:CGMCC;地址:北京市朝阳区北辰西路1号院3号;保藏日期:2020年11月23日;保藏中心登记入册编号:CGMCC No.21220。
根据本发明,所述细菌还可以具有与提高L-谷氨酸产量有关的其他改进,例如,谷氨酸脱氢酶、谷氨酰胺合成酶、谷氨酰胺-酮戊二酸氨基转移酶等酶的活性或基因的增强或降低的表达,或者可以使基因被外来基因取代。
本发明的第二个方面,提供一种多核苷酸序列,由该多核苷酸序列编码的氨基酸序列,包括所述多核苷酸序列的重组载体,含有所述多核苷酸序列的重组菌株。
根据本发明,所述多核苷酸序列包括编码含有SEQ ID NO:3所示的氨基酸序列的多肽的多核苷酸,所述序列第113位脯氨酸被不同的氨基酸所取代。
根据本发明,优选第113位脯氨酸被丝氨酸所取代。
根据本发明,SEQ ID NO:3所示的氨基酸序列,其中第113位脯氨酸被丝氨酸所取代后的氨基酸序列如SEQ ID NO:4所示。
根据本发明,优选所述编码含有SEQ ID NO:3所示的氨基酸序列的多肽的多核苷酸序列含有如SEQ ID NO:1所示的多核苷酸序列。
在本发明的一个实施方式中,所述多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第337位碱基发生突变而形成的。
根据本发明,所述突变是指所述位点的碱基/核苷酸发生变化,所述突变方法可以选自诱变、PCR定点突变法、和/或同源重组等方法中的至少一种。在本发明中,优选采用PCR定点突变法和/或同源重组。
根据本发明,所述突变包括SEQ ID NO:1所示多核苷酸序列第337位碱基由胞嘧啶(C)突变为胸腺嘧啶(T)。
在本发明的一个实施方式中,所述多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。
根据本发明,所述氨基酸序列包括如SEQ ID NO:4所示的氨基酸序列。
根据本发明,所述重组载体是将所述多核苷酸序列导入质粒构建而成。
在本发明的一个实施方式中,所述质粒为pK18mobsacB质粒。
在本发明的另一个实施方式中,所述质粒为pXMJ19质粒。
具体地,可以将所述多核苷酸序列和所述质粒通过NEBuider重组系统构建成重组载体。
根据本发明,所述重组菌株含有所述的多核苷酸序列。
作为本发明的一个实施方案,所述重组菌株的出发菌为谷氨酸棒杆菌CGMCC No.21220。
作为本发明的一个实施方案,所述重组菌株的出发菌为ATCC 13869。
本发明的第三个方面,还提供一种生成L-谷氨酸的重组菌株的构建方法。
根据本发明,所述构建方法包括如下步骤:
改造宿主菌株中如SEQ ID NO:1所示的野生型BBD29_09525基因的多核苷酸序列,使其第337位碱基发生突变,得到包含突变BBD29_09525编码基因的重组菌株。
根据本发明的构建方法,所述改造包括诱变、PCR定点突变法、和/或同源重组等方法中的至少一种。
根据本发明的构建方法,所述突变是指SEQ ID NO:1中第337位碱基由胞嘧啶(C)突变为胸腺嘧啶(T);具体地,所述包含突变BBD29_09525编码基因的多核苷酸序列如SEQ ID NO:2所示。
进一步地,所述构建方法包括如下步骤:
(1)改造如SEQ ID NO:1所示的野生型BBD29_09525基因的核苷酸序列,使其第337位碱基发生突变,得到突变的BBD29_09525基因多核苷酸序列;
(2)将所述突变的多核酸序列与质粒连接,构建重组载体;
(3)将所述重组载体导入宿主菌株,得到所述包含突变BBD29_09525编码基因的重组菌株。
根据本发明的构建方法,所述步骤(1)包括:点突变的BBD29_09525基因构建:根据未修饰菌株的基因组序列,合成两对扩增BBD29_09525基因片段的引物P1和P2及P3和P4,通过PCR定点突变法在野生型BBD29_09525基因SEQ ID NO:1中引入点突变,得到点突变的BBD29_09525基因核苷酸序列SEQ ID NO:2,记为BBD29_09525 C337T
在本发明的一个实施方式中,所述未修饰菌株基因组可以来源于ATCC13869菌株,其基因组序列可以从NCBI网站获取。
在本发明的一个实施方案中,所述步骤(1)中,所述引物为:
P1:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAG AAGGAATGTT GTCTGGGCGG 3'(SEQ ID NO:5)
P2:5'GGCGTGCTGG CTGATTCTAA GGAATTCATC 3'(SEQ ID NO:6)
P3:5'GATGAATTCC TTAGAATCAG CCAGCACGCC 3'(SEQ ID NO:7)
P4:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGATAGGTCGA TTGTTGGTGT 3'(SEQ ID NO:8)
在本发明的一个实施方案中,所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s,52℃退火30s,以及72℃延伸45s(30个循环),72℃过度延伸10min。
在本发明的一个实施方案中,所述重叠PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s,52℃退火30s,以及72℃延伸90s(30个循环),72℃过度延伸10min。
根据本发明的构建方法,所述步骤(2)包括重组质粒的构建,包括:将分离纯化后的BBD29_09525 C337T和pK18mobsacB质粒,通过NEBuider重组系统组装,获得重组质粒。
根据本发明的构建方法,所述步骤(3)包括重组菌株的构建,将重组质粒转化至宿主菌株,得到重组菌株。
在本发明的一个实施方案中,所述步骤(3)的转化为电转化法。
在本发明的一个实施方式中,所述宿主菌株是ATCC 13869。
在本发明的一个实施方式中,所述宿主菌株是谷氨酸棒杆菌CGMCC No.21220。
在本发明的一个实施方式中,所述重组是通过同源重组实现的。
本发明的第四个方面,还提供一种生成L-谷氨酸的重组菌株的构建方法。
根据本发明,所述构建方法包括如下步骤:
扩增BBD29_09525的上下游同源臂片段、BBD29_09525基因编码区及其启动子区序列,以同源重组的方式在宿主菌株的基因组中引入BBD29_09525或BBD29_09525 C337T基因,以实现所述菌株过表达BBD29_09525或BBD29_09525 C337T基 因。
在本发明的一个实施方式中,扩增上游同源臂片段的引物是:
P7:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAG GACCCGCTTG CCATACGAAG 3'(SEQ ID NO:11)
P8:5'CTGAAGCTTG AGGAAGCCTA A ATCTACTCAT CTGAAGAATC 3'(SEQ ID NO:12)
在本发明的一个实施方式中,扩增下游同源臂片段的引物是:
P11:5'TCGACCTATC GTTATACAT TTCGTGGGCA CTCTGGTTTG 3'(SEQ ID NO:15)
P12:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCCATAAGAAAC AACCACTTCC 3'(SEQ ID NO:16)
在本发明的一个实施方式中,扩增所述基因编码区及其启动子区序列的引物是:
P9:5'GATTCTTCAG ATGAGTAGAT TTAGGCTTCC TCAAGCTTCAG 3'(SEQ ID NO:13)
P10:5'CAAACCAGAG TGCCCACGAA ATGTATAACG ATAGGTCGA 3'(SEQ ID NO:14)
在本发明的一个实施方式中,再以前述P7/P12为引物,以扩增的上游同源臂片段、下游同源臂片段、基因编码区及其启动子区序列片段的三个片段混合为模板进行扩增,获得整合同源臂片段。
在本发明的一个实施方式中,所采用的PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL;PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。
在本发明的一个实施方式中,采用NEBuider重组系统,将穿梭质粒PK18mobsacB和整合同源臂片段组装,获得整合质粒。
在本发明的一个实施方式中,将整合质粒转染宿主菌株,以同源重组的方式在宿主菌株的基因组中引入BBD29_09525或BBD29_09525 C337T基因。
在本发明的一个实施方式中,所述宿主菌株是谷氨酸棒杆菌CGMCC No.21220。
在本发明的一个实施方式中,所述宿主菌株是ATCC 13869。
在本发明的一个实施方式中,所述宿主菌株是携带有SEQ ID NO:2所示多核苷酸序列的菌株。
本发明的第五个方面,还提供一种生产L-谷氨酸的重组菌株的构建方法。
根据本发明,所述构建方法包括如下步骤:
扩增BBD29_09525基因编码区及启动子区序列,或BBD29_09525 C337T基因编码区及启动子区序列,构建过表达质粒载体,将所述载体转入宿主菌株中,以实现所述菌株过表达BBD29_09525或BBD29_09525 C337T基因。
在本发明的一个实施方式中,扩增所述基因编码区及其启动子区序列的引物是:
P17:5'GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCTTAGGCTTCC TCAAGCTTCAG 3'(SEQ ID NO:21)
P18:5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACATGTATAACGATAGGTCGA 3'(SEQ ID NO:22)。
在本发明的一个实施方式中,所述PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL;所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。
在本发明的一个实施方式中,采用NEBuider重组系统,将穿梭质粒pXMJ19和带有自身启动子的BBD29_09525或BBD29_09525 C337T片段组装,获得过表达质粒。
在本发明的一个实施方式中,所述宿主菌株是谷氨酸棒杆菌CGMCC No.21220。
在本发明的一个实施方式中,所述宿主菌株是ATCC 13869。
在本发明的一个实施方式中,所述宿主菌株是携带有SEQ ID NO:2所示多核苷酸序列的菌株。
本发明获得重组菌株可以单独应用于发酵生产L-谷氨酸中,也可以和其他产L-谷氨酸的细菌混合发酵生产L-谷氨酸。
本发明的另一个方面提供了生产L-谷氨酸的方法,该方法包括培养所述细菌;并且从培养物中获得L-谷氨酸。
可以在本领域中已知的培养条件下在合适的培养基中进行细菌的培养。培养基可以包含:碳源、氮源、微量元素、及其组合。在培养中,可以调节培养物的pH。此外,培养时可以包括防止气泡产生,例如通过使用消泡剂进行气泡产生的防止。此外,培养时可以包括将气体注射入培养物中。气体可以包括能够维持培养物的需氧条件的任何气体。在培养中,培养物的温度可以是20至45℃。可以从培养物回收生成的L-谷氨酸,即用硫酸或氢氯酸等处理培养物,接着进行诸如阴离子交换层析、浓缩、结晶和等电点沉淀的方法的组合。
在本发明中:
SEQ ID NO:1:BBD29_09525野生型ORF序列
ATGTCAGATT CCCCGAAGAA CGCACCGAGG ATTACCGATG AGGCAGATGT AGTTCTCATT GGTGCCGGTA TCATGAGCTC CACGCTGGGT GCAATGCTGC GTCAGCTGGA GCCAAGCTGG ACTCAGATCG TCTTCGAGCG TTTGGATGGA CCGGCACAAG AGTCGTCCTC CCCGTGGAAC AATGCAGGAA CCGGCCACTC TGCTCTATGC GAGCTGAACT ACACCCCAGA GGTTAAGGGC AAGGTTGAAA TTGCCAAGGC TGTAGGAATC AACGAGAAGT TCCAGGTTTC CCGTCAGTTC TGGTCTCACC TCGTTGAAGA GGGCGTGCTG GCTGATCCTA AGGAATTCAT CAACCCTGTT CCTCACGTAT CTTTCGGCCA GGGCGCAGAC CAGGTTGCAT ACATCAAGGC TCGCTACGAA GCTTTGAAGG ATCACCCACT CTTCCAGGGC ATGACCTACG CTGACGATGA AGCTACCTTC  ACCGAGAAGC TGCCTTTGAT GGCAAAGGGC CGTGACTTCT CTGATCCAGT AGCAATCTCT TGGATCGATG AAGGCACCGA CATCAACTAC GGTGCTCAGA CCAAGCAGTA CCTGGATGCA TCTGAAGTTG AAGGCACTGA AATCCGCTAT GGCCACGAAG TCAAGAGCAT CAAGGCTGAT GGCGCAAAGT GGATCGTGAC CGTCAAGAAC GTACACACTG GCGACACCAA GACCATCAAG GCAAACTTCG TGTTCGTCGG CGCAGGCGGG TACGCACTGG ATCTGCTTCG CAGCGCAGGC ATCCCACAGG TCAAGGGCTT CGCTGGATTC CCAGTATCCG GCCTGTGGCT TCGTTGCACC AACGAGGAAC TGATCGAGCA GCACGCAGCC AAGGTATATG GCAAGGCATC TGTTGGCGCT CCTCCAATGT CTGTTCCTCA CCTTGACACC CGCGTTATCG AGGGTGAAAA GGGTCTGCTC TTTGGACCTT ACGGTGGCTG GACCCCTAAG TTCTTGAAGG AAGGCTCCTA CCTGGACCTG TTCAAGTCCA TCCGCCCAGA CAACATTCCT TCCTACCTTG GCGTTGCTGC TCAGGAATTT GATCTGACCA AGTACCTTGT CACTGAAGTT CTCAAGGACC AGGACAAGCG TATGGATGCT CTTCGCGAGT ACATGCCAGA GGCACAAAAC GGCGATTGGG AGACCATCGT TGCCGGACAG CGTGTTCAGG TTATTAAGCC TGCAGGATTC CCTAAGTTCG GTTCCCTGGA ATTCGGCACC ACCTTGATCA ACAACTCCGA AGGCACCATC GCCGGATTGC TCGGTGCTTC CCCTGGAGCA TCCATCGCAC CTTCCGCAAT GATCGAGCTG CTTGAGCGTT GCTTCGGTGA CCGCATGATC GAGTGGGGCG ACAAGCTGAA GGACATGATC CCTTCCTACG GCAAGAAGCT TGCTTCCGAG CCAGCACTGT TTGAGCAGCA GTGGGCACGC ACCCAGAAGA CCCTGAAGCT TGAGGAAGCC TAA
SEQ ID NO:2:BBD29_09525 C337T ORF序列
ATGTCAGATT CCCCGAAGAA CGCACCGAGG ATTACCGATG AGGCAGATGT AGTTCTCATT GGTGCCGGTA TCATGAGCTC CACGCTGGGT GCAATGCTGC GTCAGCTGGA GCCAAGCTGG ACTCAGATCG TCTTCGAGCG TTTGGATGGA CCGGCACAAG AGTCGTCCTC CCCGTGGAAC AATGCAGGAA CCGGCCACTC TGCTCTATGC GAGCTGAACT ACACCCCAGA GGTTAAGGGC AAGGTTGAAA TTGCCAAGGC TGTAGGAATC AACGAGAAGT TCCAGGTTTC CCGTCAGTTC TGGTCTCACC TCGTTGAAGA GGGCGTGCTG GCTGATTCTA AGGAATTCAT CAACCCTGTT CCTCACGTAT CTTTCGGCCA GGGCGCAGAC CAGGTTGCAT ACATCAAGGC TCGCTACGAA GCTTTGAAGG ATCACCCACT CTTCCAGGGC ATGACCTACG CTGACGATGA AGCTACCTTC ACCGAGAAGC TGCCTTTGAT GGCAAAGGGC CGTGACTTCT CTGATCCAGT AGCAATCTCT TGGATCGATG AAGGCACCGA CATCAACTAC GGTGCTCAGA CCAAGCAGTA CCTGGATGCA TCTGAAGTTG AAGGCACTGA AATCCGCTAT GGCCACGAAG TCAAGAGCAT CAAGGCTGAT GGCGCAAAGT GGATCGTGAC CGTCAAGAAC GTACACACTG GCGACACCAA GACCATCAAG GCAAACTTCG TGTTCGTCGG CGCAGGCGGG TACGCACTGG ATCTGCTTCG CAGCGCAGGC ATCCCACAGG TCAAGGGCTT CGCTGGATTC CCAGTATCCG GCCTGTGGCT TCGTTGCACC AACGAGGAAC TGATCGAGCA GCACGCAGCC AAGGTATATG GCAAGGCATC TGTTGGCGCT CCTCCAATGT CTGTTCCTCA CCTTGACACC CGCGTTATCG AGGGTGAAAA GGGTCTGCTC TTTGGACCTT ACGGTGGCTG GACCCCTAAG TTCTTGAAGG AAGGCTCCTA CCTGGACCTG TTCAAGTCCA TCCGCCCAGA CAACATTCCT TCCTACCTTG GCGTTGCTGC TCAGGAATTT GATCTGACCA AGTACCTTGT CACTGAAGTT CTCAAGGACC AGGACAAGCG TATGGATGCT  CTTCGCGAGT ACATGCCAGA GGCACAAAAC GGCGATTGGG AGACCATCGT TGCCGGACAG CGTGTTCAGG TTATTAAGCC TGCAGGATTC CCTAAGTTCG GTTCCCTGGA ATTCGGCACC ACCTTGATCA ACAACTCCGA AGGCACCATC GCCGGATTGC TCGGTGCTTC CCCTGGAGCA TCCATCGCAC CTTCCGCAAT GATCGAGCTG CTTGAGCGTT GCTTCGGTGA CCGCATGATC GAGTGGGGCG ACAAGCTGAA GGACATGATC CCTTCCTACG GCAAGAAGCT TGCTTCCGAG CCAGCACTGT TTGAGCAGCA GTGGGCACGC ACCCAGAAGA CCCTGAAGCT TGAGGAAGCC TAA
SEQ ID NO:3:BBD29_09525野生型编码蛋白氨基酸序列
MSDSPKNAPR ITDEADVVLI GAGIMSSTLG AMLRQLEPSW TQIVFERLDG PAQESSSPWN NAGTGHSALC ELNYTPEVKG KVEIAKAVGI NEKFQVSRQF WSHLVEEGVL ADPKEFINPV PHVSFGQGAD QVAYIKARYE ALKDHPLFQG MTYADDEATF TEKLPLMAKG RDFSDPVAIS WIDEGTDINY GAQTKQYLDA SEVEGTEIRY GHEVKSIKAD GAKWIVTVKN VHTGDTKTIK ANFVFVGAGG YALDLLRSAG IPQVKGFAGF PVSGLWLRCT NEELIEQHAA KVYGKASVGA PPMSVPHLDT RVIEGEKGLL FGPYGGWTPK FLKEGSYLDL FKSIRPDNIP SYLGVAAQEF DLTKYLVTEV LKDQDKRMDA LREYMPEAQN GDWETIVAGQ RVQVIKPAGF PKFGSLEFGT TLINNSEGTI AGLLGASPGA SIAPSAMIEL LERCFGDRMI EWGDKLKDMI PSYGKKLASE PALFEQQWAR TQKTLKLEEA
SEQ ID NO:4:BBD29_09525P113S编码蛋白氨基酸序列
MSDSPKNAPR ITDEADVVLI GAGIMSSTLG AMLRQLEPSW TQIVFERLDG PAQESSSPWN NAGTGHSALC ELNYTPEVKG KVEIAKAVGI NEKFQVSRQF WSHLVEEGVL ADSKEFINPV PHVSFGQGAD QVAYIKARYE ALKDHPLFQG MTYADDEATF TEKLPLMAKG RDFSDPVAIS WIDEGTDINY GAQTKQYLDA SEVEGTEIRY GHEVKSIKAD GAKWIVTVKN VHTGDTKTIK ANFVFVGAGG YALDLLRSAG IPQVKGFAGF PVSGLWLRCT NEELIEQHAA KVYGKASVGA PPMSVPHLDT RVIEGEKGLL FGPYGGWTPK FLKEGSYLDL FKSIRPDNIP SYLGVAAQEF DLTKYLVTEV LKDQDKRMDA LREYMPEAQN GDWETIVAGQ RVQVIKPAGF PKFGSLEFGT TLINNSEGTI AGLLGASPGA SIAPSAMIEL LERCFGDRMI EWGDKLKDMI PSYGKKLASE PALFEQQWAR TQKTLKLEEA
BBD29_09525 P113S即BBD29_09525P113S。
本发明还提供了蛋白质,名称为蛋白质BBD29_09525 P113S,所述蛋白质可为下述任一种:
A1)氨基酸序列是SEQ ID No.4的蛋白质;
A2)将SEQ ID No.4所示的氨基酸序列经过氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有80%以上的同一性且具有相同功能的蛋白质;
A3)在A1)或A2)的N端和/或C端连接标签得到的具有相同功能的融合蛋白质。
本发明还提供了核酸分子,名称为BBD29_09525 C337T,所述核酸分子BBD29_09525 C337T可为下述任一种:
B1)编码所述蛋白质BBD29_09525 P113S的核酸分子;
B2)编码序列是SEQ ID No.2所示的DNA分子;
B3)核苷酸序列是SEQ ID No.2所示的DNA分子。
SEQ ID No.2所示的DNA分子即为本发明所述BBD29_09525 C337T基因。
SEQ ID No.2所示的DNA分子(BBD29_09525 C337T基因)编码SEQ ID No.4所示的蛋白质BBD29_09525 P113S
所述蛋白质BBD29_09525 P113S氨基酸序列(SEQ ID No.4)中的第113位丝氨酸(S)是由脯氨酸(P)突变而来。
本发明还提供了生物材料,所述生物材料可为下述任一种:
C1)含有所述核酸分子BBD29_09525 C337T的表达盒;
C2)含有所述核酸分子BBD29_09525 C337T的重组载体、或含有C1)所述表达盒的重组载体;
C3)含有所述核酸分子BBD29_09525 C337T的重组微生物、或含有C1)所述表达盒的重组微生物、或含有C2)所述重组载体的重组微生物。
本发明还提供了D1)-D8)中任一项的下述任一种应用:
F1)D1)-D8)中任一项在调控微生物的L-谷氨酸的产量中的应用;
F2)D1)-D8)中任一项在构建产L-谷氨酸的基因工程菌中的应用;
F3)D1)-D8)中任一项在制备L-谷氨酸中的应用;
其中,所述D1)-D8)为:
D1)所述蛋白质BBD29_09525 P113S
D2)所述核酸分子BBD29_09525 C337T
D3)所述生物材料;
D4)核苷酸序列为SEQ ID No.1的DNA分子;
D5)SEQ ID No.1所示的核苷酸序列经过修饰和/或一个或几个核苷酸的取代和/或缺失和/或添加得到的与SEQ ID No.1所示的DNA分子具有90%以上的同一性,且具有相同功能的DNA分子;
D6)含有D4)或D5)中所述DNA分子的表达盒;
D7)含有D4)或D5)中所述DNA分子的重组载体、或含有D6)所述表达盒的重组载体;
D8)含有D4)或D5)中所述DNA分子的重组微生物、或含有D6)所述表达盒的重组微生物、或含有D7)所述重组载体的重组微生物。
SEQ ID No.1所示的DNA分子即为本发明所述BBD29_09525基因。
SEQ ID No.1所示的DNA分子(BBD29_09525基因)编码SEQ ID No.3所示的蛋白质。
本文中,同一性是指氨基酸序列或核苷酸序列的同一性。可使用国际互联网上的同源性检索站点测定氨基酸序列的同一性,如NCBI主页网站的BLAST网页。例如,可在高级BLAST2.1中,通过使用blastp作为程序,将Expect值设 置为10,将所有Filter设置为OFF,使用BLOSUM62作为Matrix,将Gap existence cost,Per residue gap cost和Lambda ratio分别设置为11,1和0.85(缺省值)并进行检索一对氨基酸序列的同一性进行计算,然后即可获得同一性的值(%)。
本文中,所述80%以上的同一性可为至少80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的同一性。
本文中,所述90%以上的同一性可为至少90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的同一性。
本文所述调控微生物的L-谷氨酸的产量可为提高或降低微生物中L-谷氨酸的积累量(即促进或抑制L-谷氨酸的生物合成)。
本发明还提供了一种提高微生物中L-谷氨酸的产量的方法,所述方法包括下述任一种:
E1)提高目的微生物中的所述核酸分子BBD29_09525 C337T的表达量或含量,得到L-谷氨酸的产量高于所述目的微生物的微生物;
E2)提高目的微生物中的D4)或D5)所述DNA分子的表达量或含量,得到L-谷氨酸的产量高于所述目的微生物的微生物;
E3)对所述目的微生物中的核苷酸序列为SEQ ID No.1的DNA分子进行突变,得到L-谷氨酸的产量高于所述目的微生物的微生物。
上述方法中,所述突变可为点突变(point mutation),即单个核苷酸的突变。
上述方法中,所述点突变可为将SEQ ID No.1所示DNA分子编码的氨基酸序列的第113位的脯氨酸残基突变为另一种氨基酸残基。
上述方法中,所述点突变可为将SEQ ID No.1所示DNA分子编码的氨基酸序列的第113位的脯氨酸突变为丝氨酸,得到氨基酸序列为SEQ ID No.4的突变蛋白质BBD29_09525 P113S
所述突变是指通过定点突变改变基因中的某个或某几个碱基,导致对应的蛋白质氨基酸组成发生改变,产生新的蛋白质或使原蛋白质产生新的功能,即基因定点突变。基因的定点突变技术如寡核苷酸引物介导的定点突变、PCR介导的定点突变或盒式突变等是本领域技术人员所熟知的。
本文所述点突变可为单碱基置换、单碱基插入或单碱基缺失,具体地可为单碱基置换。所述单碱基置换可为等位基因置换。
所述点突变可为将BBD29_09525基因(SEQ ID No.1)的第337位胞嘧啶(C)进行核酸改造。
具体地,所述点突变可为将BBD29_09525基因(SEQ ID No.1)的第337位胞嘧啶(C)突变为胸腺嘧啶(T),得到SEQ ID No.2所示的DNA分子。
本文中,所述重组载体具体可为重组载体pK18-BBD29_09525 C337T、 PK18mobsacB-BBD29_09525、PK18mobsacB-BBD29_09525 C337T、pXMJ19-BBD29_09525或pXMJ19-BBD29_09525 C337T
所述重组载体pK18-BBD29_09525 C337T是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.29的第37-1466位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。所述重组载体pK18-BBD29_09525 C337T含有SEQ ID No.2所示的突变的基因BBD29_09525 C337T的第1-1051位所示的DNA分子。
所述重组载体PK18mobsacB-BBD29_09525用于将外源基因BBD29_09525整合到宿主染色体中,在生产菌中过表达野生型BBD29_09525基因。所述重组载体PK18mobsacB-BBD29_09525是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.30的第37-3407位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。
所述重组载体PK18mobsacB-BBD29_09525 C337T用于将外源基因BBD29_09525 C337T整合到宿主染色体中,在生产菌中过表达突变型基因BBD29_09525 C337T。所述重组载体PK18mobsacB-BBD29_09525 C337T是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.31的第37-3407位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。
所述重组载体pXMJ19-BBD29_09525用于将外源基因BBD29_09525通过质粒在染色体外表达,进而在生产菌中过表达野生型BBD29_09525基因。所述重组载体pXMJ19-BBD29_09525是将pXMJ19载体的EcoR I和Kpn I识别位点间的片段(小片段)替换为序列表中SEQ ID No.32的第37-1927位所示的DNA片段,保持pXMJ19载体的其他序列不变,得到的重组载体。
所述重组载体pXMJ19-BBD29_09525 C337T用于将外源基因BBD29_09525 C337T通过质粒在染色体外表达,进而在生产菌中过表达突变型基因BBD29_09525 C337T。所述重组载体pXMJ19-BBD29_09525 C337T是将pXMJ19载体的EcoR I和Kpn I识别位点间的片段(小片段)替换为序列表中SEQ ID No.33的第37-1927位所示的DNA片段,保持pXMJ19载体的其他序列不变,得到的重组载体。
所述重组载体pK18-BBD29_09525 C337T、PK18mobsacB-BBD29_09525、PK18mobsacB-BBD29_09525 C337T、pXMJ19-BBD29_09525和pXMJ19-BBD29_09525 C337T均在本发明的保护范围内。
本文中,所述重组微生物具体可为重组菌YPG-007、YPG-008、YPG-009、YPG-010或YPG-011。
所述重组菌YPG-007是将所述重组载体pK18-BBD29_09525 C337T转化入谷氨酸棒杆菌(Corynebacterium glutamicum)CGMCC No.21220中得到的重组菌,所述重组菌YPG-007含有SEQ ID No.2所示的突变的基因BBD29_09525 C337T
所述重组菌YPG-008含有双拷贝的SEQ ID No.1所示的BBD29_09525基因; 含有双拷贝BBD29_09525基因的重组菌可以显著和稳定地提高BBD29_09525基因的表达量。重组菌YPG-008为在基因组上过表达野生型BBD29_09525基因的工程菌。
所述重组菌YPG-009含有SEQ ID No.2所示的突变的BBD29_09525 C337T基因;重组菌YPG-009为在基因组上过表达突变型BBD29_09525 C337T基因的工程菌。
所述重组菌YPG-010含有双拷贝SEQ ID No.1所示的BBD29_09525基因;重组菌YPG-010为在质粒上过表达野生型BBD29_09525基因的工程菌,即由质粒pXMJ19-BBD29_09525在染色体外进行过表达。
所述重组菌YPG-011含有SEQ ID No.2所示的突变的BBD29_09525 C337T基因;重组菌YPG-011为在质粒上过表达突变型BBD29_09525 C337T基因的工程菌,即由质粒pXMJ19-BBD29_09525 C337T在染色体外进行过表达。
所述重组菌YPG-007、YPG-008、YPG-009、YPG-010和YPG-011均在本发明的保护范围内。
本发明还提供了一种构建所述重组微生物的方法,所述方法包括至少下述任一种:
F1)将所述核酸分子BBD29_09525 C337T导入目的微生物,得到所述重组微生物;
F2)将SEQ ID No.1所示的DNA分子导入目的微生物,得到所述重组微生物;
F3)利用基因编辑手段(如单碱基基因编辑)对SEQ ID No.1所示的DNA分子进行编辑,使目的微生物中含有SEQ ID No.2所示的DNA分子。
所述导入可为通过化学转化法或电击转化法等任何已知的转化方法将携带本发明DNA分子的载体转化宿主菌。导入的DNA分子可以是单拷贝也可以是多拷贝。所述导入可以是将外源基因整合到宿主染色体中,也可以是由质粒在染色体外表达。
本发明还提供了一种制备L-谷氨酸的方法,所述方法包括利用本文中任一所述重组微生物生产L-谷氨酸。
上述方法中,所述方法可为发酵法制备L-谷氨酸,所述重组微生物可为棒杆菌属(Corynebacterium),具体可为谷氨酸棒杆菌(Corynebacterium glutamicum)及其变体。
保藏信息:菌种名称:谷氨酸棒杆菌;拉丁名:Corynebacterium glutamicum;菌株编号:YPGLU001;保藏机构:中国微生物菌种保藏管理委员会普通微生物中心;保藏机构简称:CGMCC;地址:北京市朝阳区北辰西路1号院3号;保藏日期:2020年11月23日;保藏中心登记入册编号:CGMCC No.21220。
实施发明的最佳方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术 领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
以下实施例中培养所述菌株使用的基础培养基组成相同,在此基础培养基组成上添加相应需要的蔗糖、卡那霉素或氯霉素等,基础培养基组成如表1所示:
表1基础培养基组成
成分 配方
蔗糖 10g/L
多聚蛋白胨 10g/L
牛肉膏 10g/L
酵母粉 5g/L
尿素 2g/L
氯化钠 2.5g/L
琼脂粉 20g/L
pH 7.0
培养温度 32度
下述实施例中的谷氨酸棒杆菌(Corynebacterium glutamicum)YPGLU001CGMCC No.21220已于2020年11月23日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所),保藏登记号为CGMCC No.21220。谷氨酸棒杆菌(Corynebacterium glutamicum)YPGLU001,又称为谷氨酸棒杆菌CGMCC No.21220。
实施例1 构建包含点突变的BBD29_09525基因编码区的转化载体pK18-BBD29_09525 C337T
依据NCBI公布的谷氨酸棒杆菌ATCC13869基因组序列,设计并合成两对扩增BBD29_09525基因编码区序列的引物,以等位基因置换的方式在菌株谷氨酸棒杆菌CGMCC No.21220中(经测序确认该菌株染色体上的BBD29_09525基因编码区与ATCC13869是一致的)引入点突变,对应编码蛋白的氨基酸序列为SEQ ID NO:3,BBD29_09525基因的核苷酸序列第337位胞嘧啶(C)变为胸腺嘧啶(T)(SEQ ID NO:2:BBD29_09525 C337T),对应编码蛋白的氨基酸序列第113位脯氨酸(P)变为丝氨酸(S)(SEQ ID NO:4:BBD29_09525P113S)。
所述点突变为将BBD29_09525基因的核苷酸序列(SEQ ID No.1)中的第337位胞嘧啶(C)突变为胸腺嘧啶(T),得到SEQ ID No.2所示的DNA分子(突变的BBD29_09525基因,名称为BBD29_09525 C337T)。
其中,SEQ ID No.1所示的DNA分子编码氨基酸序列为SEQ ID No.3的蛋白质(所述蛋白质名称为蛋白质BBD29_09525)。
SEQ ID No.2所示的DNA分子编码氨基酸序列为SEQ ID No.4的突变蛋白质(所述突变蛋白质名称为BBD29_09525 P113S)。所述突变蛋白质BBD29_09525 P113S氨基酸序列(SEQ ID No.4)中的第113位丝氨酸(S)由脯氨酸(P)突变而来。
采用重叠PCR(Overlap PCR)技术进行基因定点突变,引物设计如下(上海invitrogen公司合成),加粗字体的碱基为突变位置:
P1:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAG AAGGAATGTT GTCTGGGCGG 3'(SEQ ID NO:5)
P2:5'GGCGTGCTGG CTGATTCTAA GGAATTCATC 3'(SEQ ID NO:6)
P3:5'GATGAATTCC TTAGAATCAG CCAGCACGCC 3'(SEQ ID NO:7)
P4:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCGATAGGTCGA TTGTTGGTGT 3'(SEQ ID NO:8)
构建方法:以谷氨酸棒杆菌ATCC13869为模板,分别以引物P1和P2,P3和P4,进行PCR扩增,获得两条分别带有突变碱基,大小分别为766bp和768bp的BBD29_09525基因编码区的DNA片段(BBD29_09525Up和BBD29_09525Down)。。
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸45s,30个循环,72℃过度延伸10min,获得两条大小分别为766bp和768bp,含有BBD29_09525基因编码区的DNA片段(BBD29_09525Up和BBD29_09525Down)。
将上述两条DNA片段(BBD29_09525Up和BBD29_09525Down)经琼脂糖凝胶电泳分离纯化后,对目的条带进行回收,再以上述两条DNA片段为模板,以P1和P4为引物,通过重叠PCR扩增得到长为1504bp的片段,名称为BBD29_09525Up-Down(序列如SEQ ID No.29所示)。SEQ ID No.29所示的DNA片段中,第37-1087位为含有突变位点的BBD29_09525 C337T基因片段(即SEQ ID No.2的第1-1051位)。
重叠PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。
所述重叠PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸90s,30个循环,72℃过度延伸10min。
此DNA片段BBD29_09525Up-Down(SEQ ID No.29)含有突变位点,用于在谷氨酸棒杆菌CGMCC No.21220中BBD29_09525基因编码区的第337位引入核酸改造,具体为将谷氨酸棒杆菌CGMCC No.21220中BBD29_09525基因编码区的第337位的胞嘧啶(C)变为胸腺嘧啶(T),最终导致编码蛋白的第113位氨基酸由脯氨酸(P)变为丝氨酸(S)。
将pK18mobsacB质粒(购自Addgene公司)用Xba I/BamH I酶切后,用琼脂糖 凝胶电泳分离纯化BBD29_09525 C337T和线性化的pK18mobsacB质粒,再通过NEBuider重组系统组装,获得载体pK18-BBD29_09525 C337T,该质粒上含有卡那霉素抗性标记。并将载体pK18-BBD29_09525 C337T送测序公司测序鉴定,将含有正确点突变(C-T)的载体pK18-BBD29_09525 C337T保存备用。
具体地,将所述DNA片段(BBD29_09525Up-Down)经琼脂糖凝胶电泳分离后进行纯化,与经过酶切(Xbal I/BamH I)后纯化的pK18mobsacB质粒(购自Addgene公司,用Xbal I/BamH I酶切)用NEBuilder酶(购自NEB公司)50℃连接30min,连接产物转化DH5a(购自TAKARA公司)后长出的单克隆经PCR鉴定获得阳性重组载体pK18-BBD29_09525 C337T,该重组载体上含有卡那霉素抗性(Kan r)标记。将酶切正确的重组载体pK18-BBD29_09525 C337T送测序公司测序鉴定,并将含有正确点突变(C-T)的重组载体pK18-BBD29_09525 C337T保存备用。
所述重组载体pK18-BBD29_09525 C337T是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.29的第37-1466位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。
所述重组载体pK18-BBD29_09525 C337T含有SEQ ID No.2所示的突变的基因BBD29_09525 C337T的第1-1051位所示的DNA分子。
实施例2 构建包含点突变的BBD29_09525 C337T的工程菌株
构建方法:将实施例1中的等位替换质粒pK18-BBD29_09525 C337T通过电击转化入谷氨酸棒杆菌CGMCC No.21220中,在培养基中进行培养,培养基成分和培养条件参见表1,对培养产生的单菌落分别通过引物P1和通用引物M13R进行鉴定,能扩增出大小约1511bp条带的菌株为阳性菌株。将阳性菌株在含15%蔗糖的培养基上培养,对培养产生的单菌落分别在含有卡那霉素和不含卡那霉素的培养基上培养,选择在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用如下引物(上海invitrogen公司合成)进行PCR鉴定:
P5:5'CATCAAAGGC AGCTTCTCGG 3'(SEQ ID NO:9)
P6:5'ACTACACCCC AGAGGTTAAG 3'(SEQ ID NO:10)
上述PCR扩增产物通过高温变性、冰浴后进行SSCP电泳(以质粒pK18-BBD29_09525 C337T扩增片段为阳性对照,ATCC13869扩增片段为阴性对照,水作为空白对照),SSCP电泳的PAGE的制备及电泳条件参见表2,由于片段结构不同,电泳位置不同,因此片段电泳位置与阴性对照片段位置不一致且与阳性对照片段位置一致的菌株为等位替换成功的菌株。以引物P5和P6再次通过PCR扩增等位替换成功的菌株目的片段,并连接到PMD19-T载体进行测序,通过序列比对,碱基序列发生突变的序列验证菌株的等位替换成功,并被命名为YPG-007。
重组菌YPG-007含有SEQ ID No.2所示的突变的基因BBD29_09525 C337T
表2SSCP电泳PAGE的制备及条件
Figure PCTCN2021142015-appb-000001
Figure PCTCN2021142015-appb-000002
实施例3 构建基因组上过表达BBD29_09525或BBD29_09525 C337T基因的工程菌株
为进一步研究验证在生产菌中过表达野生型BBD29_09525基因或其突变基因BBD29_09525 C337T可以增加L-谷氨酸的产量,将外源基因整合到宿主染色体中,构建了基因组上过表达BBD29_09525基因或BBD29_09525 C337T基因的工程菌株。
依据NCBI公布的谷氨酸棒杆菌ATCC13869基因组序列,设计并合成三对扩增上下游同源臂片段及BBD29_09525基因编码区及启动子区序列的引物,以同源重组的方式在菌株谷氨酸棒杆菌CGMCC No.21220中引入BBD29_09525或BBD29_09525 C337T基因。
引物设计如下(上海invitrogen公司合成):
P7:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAG GACCCGCTTG CCATACGAAG 3'(SEQ ID NO:11)
P8:5'CTGAAGCTTG AGGAAGCCTA A ATCTACTCAT CTGAAGAATC 3'(SEQ ID NO:12)
P9:5'GATTCTTCAG ATGAGTAGAT TTAGGCTTCC TCAAGCTTCAG 3'(SEQ ID NO:13)
P10:5'CAAACCAGAG TGCCCACGAA ATGTATAACG ATAGGTCGA 3'(SEQ ID NO:14)
P11:5'TCGACCTATC GTTATACAT TTCGTGGGCA CTCTGGTTTG 3'(SEQ ID NO:15)
P12:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCCATAAGAAAC AACCACTTCC3'(SEQ ID NO:16)
构建方法:分别以谷氨酸棒杆菌ATCC13869或YPG-007为模板,分别以引物P7/P8,P9/P10,P11/P12,进行PCR扩增,获得上游同源臂片段约807bp,BBD29_09525基因编码区及启动子区片段约1931bp或BBD29_09525 C337T基因编码区及启动子区片段约1931bp及下游同源臂片段约787bp。再以P7/P12为引物,以以上扩增的三种片段混合物为模板进行扩增,获得整合同源臂片段1和2(整合同源臂片段1大小为3445bp,序列如SEQ ID No.30所示;整合同源臂片段2大小为3445bp,序列如SEQ ID No.31所示;)。PCR反应结束后,对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒(TIANGEN)进行回收所需要的约3445bp的DNA片段,采用NEBuider重组系统与经Xba I酶切回收的穿梭质粒PK18mobsacB 相连接,获得整合质粒(即重组载体)PK18mobsacB-BBD29_09525或PK18mobsacB-BBD29_09525 C337T,质粒上含有卡那霉素抗性标记,可以通过卡那霉素筛选获得质粒整合到基因组上的重组子。
所述重组载体PK18mobsacB-BBD29_09525是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.30的第37-3407位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。
所述重组载体PK18mobsacB-BBD29_09525 C337T是将pK18mobsacB载体的Xbal I和/BamH I识别位点间的片段(小片段)替换为序列表中SEQ ID No.31的第37-3407位所示的DNA片段,保持pK18mobsacB载体的其他序列不变,得到的重组载体。
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。
将2个整合质粒(PK18mobsacB-BBD29_09525和PK18mobsacB-BBD29_09525 C337T)分别电转化入菌株谷氨酸棒杆菌CGMCC No.21220中,对培养产生的单菌落通过P13/P14引物进行PCR鉴定,PCR扩增出含有大小约1821bp的片段的为阳性菌株,扩增不到片段的为原菌。阳性菌株经15%蔗糖筛选后分别在含有卡那霉素和不含卡那霉素的培养基上培养,在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用P15/P16引物进行PCR鉴定,扩增出大小约1769bp的菌为BBD29_09525或BBD29_09525 C337T基因整合到谷氨酸棒杆菌CGMCC No.21220基因组上的菌株,其被命名为YPG-008(不含突变点)和YPG-009(含突变点)。
重组菌YPG-008含有双拷贝的SEQ ID No.1所示的BBD29_09525基因;含有双拷贝BBD29_09525基因的重组菌可以显著和稳定地提高BBD29_09525基因的表达量。重组菌YPG-008为在基因组上过表达野生型BBD29_09525基因的工程菌。
重组菌YPG-009含有SEQ ID No.2所示的突变的BBD29_09525 C337T基因;重组菌YPG-009为在基因组上过表达突变型BBD29_09525 C337T基因的工程菌。
PCR鉴定引物如下所示:
P13:5'GTCCAAGGTG ACGGCCGCAC 3'(SEQ ID NO:17)
P14:5'TGACTTCTCT GATCCAGTAG 3'(SEQ ID NO:18)
P15:5'GTACTGCTTG GTCTGAGCAC 3'(SEQ ID NO:19)
P16:5'ATATTCGGCC CAGCAGCAGC 3'(SEQ ID NO:20)
实施例4 构建质粒上过表达BBD29_09525或BBD29_09525 C337T基因的工程菌株
依据NCBI公布的谷氨酸棒杆菌ATCC13869基因组序列,设计并合成一对扩增BBD29_09525基因编码区及启动子区序列的引物,引物设计如下(上海invitrogen公司合成):
P17:5'GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCTTAGGCTTCC TCAAGCTTCAG 3'(SEQ ID NO:21)
P18:5'ATCAGGCTGAAAATCTTCTCTCATCCGCCAAAACATGTATAACGATAGGTCGA 3'(SEQ ID NO:22)
构建方法:分别以YPG-008或YPG-007为模板,以引物P17/P18进行PCR扩增,获得BBD29_09525基因及其启动子片段1961bp(SEQ ID No.32)或BBD29_09525 C337T基因及其启动子片段1961bp(SEQ ID No.33),对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒进行回收所需要的1961bp的DNA片段,采用NEBuider重组系统与经EcoR I/Kpn I酶切回收的穿梭质粒pXMJ19相连接,获得过表达质粒(即重组载体)pXMJ19-BBD29_09525或pXMJ19-BBD29_09525 C337T。质粒上含有氯霉素抗性标记,可以通过氯霉素筛选获得质粒转化到菌株中。
所述重组载体pXMJ19-BBD29_09525是将pXMJ19载体的EcoR I和Kpn I识别位点间的片段(小片段)替换为序列表中SEQ ID No.32的第37-1927位所示的DNA片段,保持pXMJ19载体的其他序列不变,得到的重组载体。
所述重组载体pXMJ19-BBD29_09525 C337T是将pXMJ19载体的EcoR I和Kpn I识别位点间的片段(小片段)替换为序列表中SEQ ID No.33的第37-1927位所示的DNA片段,保持pXMJ19载体的其他序列不变,得到的重组载体。
PCR体系:10×Ex Taq Buffer 5μL,dNTP Mixture(各2.5mM)4μL,Mg 2+(25mM)4μL,引物(10pM)各2μL,Ex Taq(5U/μL)0.25μL,总体积50μL。
所述PCR扩增按如下方式进行:94℃预变性5min,94℃变性30s、52℃退火30s、72℃延伸120s(30个循环),72℃过度延伸10min。
将2个质粒(pXMJ19-BBD29_09525和pXMJ19-BBD29_09525 C337T)分别电转化入菌株谷氨酸棒杆菌CGMCC No.21220,对培养产生的单菌落通过M13R(-48)和P18引物进行PCR鉴定,PCR扩增出含有大小约2000bp的片段的为转入菌株,其被命名为YPG-010(不含点突变)和YPG-011(含点突变)。
重组菌YPG-010含有双拷贝SEQ ID No.1所示的BBD29_09525基因;重组菌YPG-010为在质粒上过表达野生型BBD29_09525基因的工程菌,即由质粒pXMJ19-BBD29_09525在染色体外进行过表达。
重组菌YPG-011含有SEQ ID No.2所示的突变的BBD29_09525 C337T基因;重组菌YPG-011为在质粒上过表达突变型BBD29_09525 C337T基因的工程菌,即由质粒pXMJ19-BBD29_09525 C337T在染色体外进行过表达。
实施例5 构建基因组上缺失BBD29_09525基因的工程菌株
根据NCBI公布的谷氨酸棒杆菌ATCC13869的基因组序列,合成两对扩增 BBD29_09525基因编码区两端片段的引物,作为上下游同源臂片段。引物设计如下(上海英俊公司合成):
P19:5'CAGTGCCAAGCTTGCATGCCTGCAGGTCGACTCTAGGCCTGACTGA TTTTGGGCTG 3'(SEQ ID NO:23)
P20:5'GAGATAAAAGGAAGTTGAACATCTTCTAACTGCTTTCTTT 3'(SEQ ID NO:24)
P21:5'AAAGAAAGCAGTTAGAAGATGTTCAACTTCCTTTTATCTC 3'(SEQ ID NO:25)
P22:5'CAGCTATGACCATGATTACGAATTCGAGCTCGGTACCCAGATGACCTC GGCAGCAGCT3'(SEQ ID NO:26)
构建方法:以谷氨酸棒杆菌ATCC13869为模板,分别以引物P19/P20和P21/P22进行PCR扩增,获得上游同源臂片段804bp及下游同源臂片段807bp。再用引物P19/P22进行重叠PCR得到整个同源臂片段1571bp。PCR反应结束后,对扩增的产物进行电泳回收,采用柱式DNA凝胶回收试剂盒进行回收所需要的1571bp的DNA片段,并通过NEBuider重组系统与经Xba I酶切回收的穿梭质粒pk18mobsacB质粒相连接,获得敲除质粒。该质粒上含有卡那霉素抗性标记。
将敲除质粒电转化入菌株谷氨酸棒杆菌CGMCC No.21220中,对培养产生的单菌落分别通过如下引物(上海英俊公司合成)进行PCR鉴定:
P23:5'GCCTGACTGA TTTTGGGCTG 3'(SEQ ID NO:27)
P24:5'AGATGACCTC GGCAGCAGCT 3'(SEQ ID NO:28)
上述PCR扩增出大小1497bp及3000bp的条带的菌株为阳性菌株,只扩增出3000bp条带的菌株为原菌。阳性菌株在15%蔗糖培养基上筛选后分别在含有卡那霉素和不含卡那霉素的培养基上培养,选择在不含卡那霉素的培养基上生长,而在含卡那霉素的培养基上不生长的菌株进一步采用P23/P24引物进行PCR鉴定,扩增出大小为1497bp条带的菌株为BBD29_09525基因编码区被敲除的基因工程菌株,其被命名为YPG-012(谷氨酸棒杆菌CGMCC No.21220上的基因组上的BBD29_09525基因被敲除)。
实施例6 L-谷氨酸发酵实验
将上述实施例2-5构建的菌株(YPG-007、YPG-008、YPG-009、YPG-010、YPG-011、YPG-012)和原始菌株谷氨酸棒杆菌CGMCC No.21220在BLBIO-5GC-4-H型号的发酵罐(购自上海百仑生物科技有限公司)中以表3所示的培养基和表4所示的控制工艺进行发酵实验。每个菌株重复三次,结果如表5所示。
表3发酵培养基配方(其余为水)
试剂名称 配比
葡萄糖 5.0g/L
磷酸 0.38g/L
硫酸镁 1.85g/L
氯化钾 1.6g/L
生物素 550μg/L
维生物素B1 300μg/L
硫酸亚铁 10mg/L
硫酸锰 10g/dL
KH 2PO 4 2.8g/L
维生素C 0.75mg/L
维生素B12 2.5μg/L
对氨基苯甲酸 0.75mg/L
消泡剂 0.0015mL/dL
甜菜碱 1.5g/L
甘蔗糖蜜 7mL/L
玉米浆 77mL/L
天冬氨酸 1.7g/L
毛发粉 2g/L
表4发酵控制工艺
Figure PCTCN2021142015-appb-000003
表5L-谷氨酸发酵实验结果
Figure PCTCN2021142015-appb-000004
结果如表5所示,在谷氨酸棒杆菌中对BBD29_09525基因过表达,或者对BBD29_09525基因编码区进行点突变BBD29_09525 C337T和/或过表达BBD29_09525基因或其突变基因BBD29_09525 C337T,有助于L-谷氨酸产量的提高,而对BBD29_09525基因进行弱化或敲除,不利于L-谷氨酸的积累。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。
工业应用
本发明通过对BBD29_09525基因的弱化或敲除,发现该基因编码的产物对L-谷氨酸生产能力产生影响,通过在编码序列引入点突变,或者增加该基因的拷贝数或过表达获得重组菌株,所获得的菌株与未改造的菌株相比,有利于生产高浓度的谷氨酸。
具体地,本发明首先以等位基因置换的方式在谷氨酸棒杆菌(Corynebacterium glutamicum)CGMCC No.21220的BBD29_09525基因编码区(SEQ ID No.1)中引入点突变,构建了包含点突变(C-T)的基因工程菌YPG-007。为进一步研究验证在生产菌中过表达野生型BBD29_09525基因或其突变基因BBD29_09525 C337T可以增加L-谷氨酸的产量,分别将外源基因整合到宿主染色体中或由质粒在染色体外表达,构建了基因组上和质粒上过表达BBD29_09525基因或BBD29_09525 C337T基因的工程菌YPG-008、YPG-009、YPG-010和YPG-011。实验表明,BBD29_09525基因及其变体参与了L-谷氨酸的生物合成,通过对BBD29_09525基因进行过表达或敲除、或定点突变(如点突变)可以调控L-谷氨酸在微生物内的积累量。对BBD29_09525基因编码区进行点突变或在生产菌中过表达BBD29_09525基因或其突变基因BBD29_09525 C337T,有助于L-谷氨酸产量及转化率的提高,而对BBD29_09525基因进行敲除或弱化,不利于L-谷氨酸的积累。可利用BBD29_09525基因及其变体(如BBD29_09525 C337T基因)来构建生产L-谷氨酸的基因工程菌种,以促进L-谷氨酸产量提高,培育符合工业化生产的高产、高质量菌种,对L-谷氨酸的工业化生产具有广泛的应用价值和重要的经济意义。

Claims (20)

  1. 一种生成L-谷氨酸的细菌,其特征在于,具有编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸的改善的表达;
    优选,所述改善的表达是编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸的表达增强,或者编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸具有点突变,或者编码SEQ ID NO:3的氨基酸序列或其同源序列的多核苷酸具有点突变且表达是增强的。
  2. 如权利要求1所述的细菌,其特征在于,编码SEQ ID NO:3的氨基酸序列的多核苷酸的点突变,使得SEQ ID NO:3的氨基酸序列的第113位脯氨酸被不同的氨基酸所取代;优选第113位脯氨酸被丝氨酸所取代。
  3. 如权利要求1-2任一项所述的细菌,其特征在于,编码SEQ ID NO:3的氨基酸序列的多核苷酸包含SEQ ID NO:1的核苷酸序列。
  4. 如权利要求1-3任一项所述的细菌,其特征在于,所述具有点突变的多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第337位碱基发生突变而形成的;
    优选,所述突变包括SEQ ID NO:1所示多核苷酸序列第337位碱基由胞嘧啶(C)突变为胸腺嘧啶(T);
    优选,所述具有点突变的多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。
  5. 如权利要求1-4任一项所述的细菌,其特征在于,所述细菌是棒杆菌属细菌,优选嗜乙酰棒杆菌(Corynebacterium acetoacidophilum)、醋谷棒杆菌(Corynebacterium acetoglutamicum)、美棒杆菌(Corynebacterium callunae)、谷氨酸棒杆菌(Corynebacterium glutamicum)、黄色短杆菌(Brevibacterium flavum)、乳糖发酵短杆菌(Brevibacterium lactofermentum)、产氨棒杆菌(Corynebacterium ammoniagenes)、北京棒杆菌(Corynebacterium pekinense)、解糖短杆菌(Brevibacterium saccharolyticum)、玫瑰色短杆菌(Brevibacterium roseum)、生硫短杆菌(Brevibacterium thiogenitalis);更优选为谷氨酸棒杆菌CGMCC No.21220或ATCC 13869。
  6. 一种多核苷酸序列,其特征在于,包括编码含有SEQ ID NO:3所示的氨基酸序列的多核苷酸,其中第113位脯氨酸被不同的氨基酸所取代;优选第113位脯氨酸被丝氨酸酸所取代;
    优选所述多核苷酸序列包括编码含有SEQ ID NO:4所示的氨基酸序列的多核苷酸;
    优选所述多核苷酸序列是由SEQ ID NO:1所示多核苷酸序列第337位碱基发生突变而形成的;优选所述突变是SEQ ID NO:1所示多核苷酸序列第337位碱基由胞嘧啶(C)突变为胸腺嘧啶(T);
    优选所述多核苷酸序列包括SEQ ID NO:2所示的多核苷酸序列。
  7. 一种氨基酸序列,其特征在于,所述序列如SEQ ID NO:4所示。
  8. 一种重组载体,其特征在于,包含权利要求6所述的多核苷酸序列。
  9. 一种重组菌株,其特征在于,包含权利要求6所述的多核苷酸序列。
  10. 一种生产L-谷氨酸的方法,所述方法包括:培养权利要求1-5任一项所述的细菌,并从所述培养物中回收L-谷氨酸。
  11. 蛋白质,其特征在于,所述蛋白质为下述任一种:
    A1)氨基酸序列是SEQ ID No.4的蛋白质;
    A2)将SEQ ID No.4所示的氨基酸序列经过氨基酸残基的取代和/或缺失和/或添加得到的与A1)所示的蛋白质具有80%以上的同一性且具有相同功能的蛋白质;
    A3)在A1)或A2)的N端和/或C端连接标签得到的具有相同功能的融合蛋白质。
  12. 核酸分子,其特征在于,所述核酸分子为下述任一种:
    B1)编码权利要求11所述蛋白质的核酸分子;
    B2)编码序列是SEQ ID No.2所示的DNA分子;
    B3)核苷酸序列是SEQ ID No.2所示的DNA分子。
  13. 生物材料,其特征在于,所述生物材料为下述任一种:
    C1)含有权利要求12所述核酸分子的表达盒;
    C2)含有权利要求12所述核酸分子的重组载体、或含有C1)所述表达盒的重组载体;
    C3)含有权利要求12所述核酸分子的重组微生物、或含有C1)所述表达盒的重组微生物、或含有C2)所述重组载体的重组微生物。
  14. D1)-D8)中任一项的下述任一种应用:
    F1)D1)-D8)中任一项在调控微生物的L-谷氨酸的产量中的应用;
    F2)D1)-D8)中任一项在构建产L-谷氨酸的基因工程菌中的应用;
    F3)D1)-D8)中任一项在制备L-谷氨酸中的应用;
    其中,所述D1)-D8)为:
    D1)权利要求11所述的蛋白质;
    D2)权利要求12所述的核酸分子;
    D3)权利要求13所述的生物材料;
    D4)核苷酸序列为SEQ ID No.1的DNA分子;
    D5)SEQ ID No.1所示的核苷酸序列经过修饰和/或一个或几个核苷酸的取代和/或缺失和/或添加得到的与SEQ ID No.1所示的DNA分子具有90%以上的同一性,且具有相同功能的DNA分子;
    D6)含有D4)或D5)中所述DNA分子的表达盒;
    D7)含有D4)或D5)中所述DNA分子的重组载体、或含有D6)所述表达盒的重组载体;
    D8)含有D4)或D5)中所述DNA分子的重组微生物、或含有D6)所述表达盒的重组微生物、或含有D7)所述重组载体的重组微生物。
  15. 一种提高微生物中L-谷氨酸的产量的方法,其特征在于,所述方法包括下述任一种:
    E1)提高目的微生物中的权利要求12所述核酸分子的表达量或含量,得到L-谷氨酸的产量高于所述目的微生物的微生物;
    E2)提高目的微生物中的权利要求14中D4)或D5)所述DNA分子的表达量或含量,得到L-谷氨酸的产量高于所述目的微生物的微生物;
    E3)对所述目的微生物中的核苷酸序列为SEQ ID No.1的DNA分子进行突变,得到L-谷氨酸的产量高于所述目的微生物的微生物。
  16. 根据权利要求15所述的方法,其特征在于,所述突变为点突变。
  17. 根据权利要求16所述的方法,其特征在于,所述点突变为将SEQ ID No.1所示DNA分子编码的氨基酸序列的第113位的脯氨酸残基突变为另一种氨基酸残基。
  18. 根据权利要求16或17所述的方法,其特征在于,所述点突变为将SEQ ID No.1所示DNA分子编码的氨基酸序列的第113位的脯氨酸突变为丝氨酸,得到氨基酸序列为SEQ ID No.4的突变蛋白质。
  19. 一种构建权利要求13或14中所述重组微生物的方法,其特征在于,所述方法包括至少下述任一种:
    F1)将权利要求12所述的核酸分子导入目的微生物,得到所述重组微生物;
    F2)将SEQ ID No.1所示的DNA分子导入目的微生物,得到所述重组微生物;
    F3)利用基因编辑手段对SEQ ID No.1所示的DNA分子进行编辑,使目的微生物中含有SEQ ID No.2所示的DNA分子。
  20. 一种制备L-谷氨酸的方法,其特征在于,所述方法包括利用权利要求13或14中所述的重组微生物生产L-谷氨酸。
PCT/CN2021/142015 2020-12-30 2021-12-28 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用 WO2022143646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237024681A KR20230122117A (ko) 2020-12-30 2021-12-28 변형 유전자 bbd29_09525에 의한 l-글루탐산 생산용재조합 균주, 이의 구축 방법 및 응용
JP2023540760A JP2024505625A (ja) 2020-12-30 2021-12-28 遺伝子bbd29_09525を改造したl-グルタミン酸生産組換え菌株及びその構築方法と応用
EP21914380.7A EP4273226A1 (en) 2020-12-30 2021-12-28 Recombinant strain for producing l-glutamic acid by modifying gene bbd29_09525, and construction method therefor and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011631266.8A CN112522175B (zh) 2020-12-30 2020-12-30 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用
CN202011631266.8 2020-12-30

Publications (1)

Publication Number Publication Date
WO2022143646A1 true WO2022143646A1 (zh) 2022-07-07

Family

ID=74977584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142015 WO2022143646A1 (zh) 2020-12-30 2021-12-28 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用

Country Status (5)

Country Link
EP (1) EP4273226A1 (zh)
JP (1) JP2024505625A (zh)
KR (1) KR20230122117A (zh)
CN (1) CN112522175B (zh)
WO (1) WO2022143646A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112522175B (zh) * 2020-12-30 2023-08-18 内蒙古伊品生物科技有限公司 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006200801A1 (en) * 1999-06-25 2006-03-23 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CN101103104A (zh) * 2005-01-19 2008-01-09 德古萨有限责任公司 棒状细菌mqo基因的等位基因
CN102498216A (zh) * 2009-08-25 2012-06-13 味之素株式会社 L-氨基酸的产生方法
CN112522175A (zh) * 2020-12-30 2021-03-19 内蒙古伊品生物科技有限公司 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9508022A (pt) * 1994-06-14 2002-05-21 Ajinomoto Kk Bactéria corineforme produtora de ácido l-glutâmico, processo para produzir ácido l-glutâmico, gene codificando para uma enzima, dna recombinante, bactéria corineforme, e, processo para produzir l-lisina
JP2016192903A (ja) * 2013-09-17 2016-11-17 味の素株式会社 海藻由来バイオマスからのl−アミノ酸の製造方法
CN111979165B (zh) * 2020-08-07 2021-05-07 黑龙江伊品生物科技有限公司 一种产l-赖氨酸的重组菌株及其构建方法与应用
CN111979164B (zh) * 2020-08-07 2021-11-12 宁夏伊品生物科技股份有限公司 一种产l-赖氨酸的重组菌株及其构建方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006200801A1 (en) * 1999-06-25 2006-03-23 Basf Aktiengesellschaft Corynebacterium glutamicum genes encoding stress, resistance and tolerance proteins
CN101103104A (zh) * 2005-01-19 2008-01-09 德古萨有限责任公司 棒状细菌mqo基因的等位基因
CN102498216A (zh) * 2009-08-25 2012-06-13 味之素株式会社 L-氨基酸的产生方法
CN112522175A (zh) * 2020-12-30 2021-03-19 内蒙古伊品生物科技有限公司 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHN JUNG HO, SEO HOGYUN, PARK WOOJIN, SEOK JIHYE, LEE JONG AN, KIM WON JUN, KIM GI BAE, KIM KYUNG-JIN, LEE SANG YUP: "Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase", NATURE COMMUNICATIONS, vol. 11, no. 1, 1 December 2020 (2020-12-01), pages 1 - 12, XP055947776, DOI: 10.1038/s41467-020-15839-z *
DATABASE Protein 15 June 2021 (2021-06-15), ANONYMOUS: "malate dehydrogenase (quinone) [Corynebacterium glutamicum]", XP055947784, retrieved from Genbank Database accession no. QWQ84640 *
DATABASE Protein 18 June 2019 (2019-06-18), ANONYMOUS: "MULTISPECIES: malate dehydrogenase (quinone) [Corynebacterium]", XP055947771, retrieved from Genbank Database accession no. WP_038584494 *
LIANG JING-BO;MA YUE-CHAO;XU QING-YANG;XIE XI-XIAN;ZHANG CHENG-LIN;CHEN NING: "Effect of Cottonseed Meal Hydrolysate as Organic Nitrogen Source on L-glutamate Fermentation", FOOD AND FERMENTATION INDUSTRIES, vol. 40, no. 2, 28 February 2014 (2014-02-28), pages 1 - 5, XP055947774, ISSN: 0253-990X, DOI: 10.13995/j.cnki.11-1802/ts.2014.02.009 *

Also Published As

Publication number Publication date
CN112522175A (zh) 2021-03-19
CN112522175B (zh) 2023-08-18
EP4273226A1 (en) 2023-11-08
JP2024505625A (ja) 2024-02-07
KR20230122117A (ko) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2022143761A1 (zh) 一种改造基因bbd29_04920的产l-谷氨酸的重组菌株及其构建方法与应用
WO2022143763A1 (zh) 具有增强的l-谷氨酸生产力的菌株及其构建方法与应用
CN111961635B (zh) 一种产l-赖氨酸的重组菌株及其构建方法与应用
CN110846312B (zh) 一种sdaA基因的启动子核酸序列、含有该核酸序列的重组菌株及其应用
WO2022143646A1 (zh) 一种改造基因bbd29_09525产l-谷氨酸的重组菌株及其构建方法与应用
WO2022143639A1 (zh) 一种改造基因bbd29_11265产l-谷氨酸的重组菌株及其构建方法与应用
US20240076701A1 (en) Recombinant strain with modified gene bbd29_14900, and method for constructing the same and use thereof
CN115975957A (zh) 大肠埃希氏菌鞭毛特异性ATP合成酶基因fliI及其突变体在L-氨基酸生产中的应用
CN112175894B (zh) 一种产l-氨基酸的重组菌株及其构建方法与应用
CN114540399A (zh) 一种制备l-缬氨酸的方法及其所用基因突变体和生物材料
CN114277069B (zh) 制备l-缬氨酸的方法及其所用生物材料
CN112501097B (zh) 一种改造yh66_06385基因的重组菌株及其构建方法与产l-异亮氨酸的应用
KR20230045051A (ko) L-아미노산을 생산하는 재조합 균주 및 이의 구축방법과 응용
US20230295645A1 (en) Recombinant strain producing l-lysine and construction methods therefor and use thereof
KR20230042224A (ko) L-아미노산을 생산하는 재조합 균주 및 이의 구축 방법과 응용
CN112626098A (zh) 一种改造kgd基因的重组菌株及其构建方法与产L-异亮氨酸的应用
CN114539367A (zh) Cey17_rs11900基因突变体及其在制备l-缬氨酸中的应用
CN115960183A (zh) 氨基酸产量相关蛋白编码基因rplP及其生物材料和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914380

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540760

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237024681

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023119340

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021914380

Country of ref document: EP

Effective date: 20230731